Science.gov

Sample records for mobile robot speed

  1. Design development of steering and speed control for an intelligent mobile robot

    NASA Astrophysics Data System (ADS)

    Kolli, Kaylan C.; Kola, Krishnamohan; Hall, Ernest L.

    1998-10-01

    Exploratory research on the design of a modular autonomous mobile robot controller for steering and speed control is described. The high level control of the robot incorporates a fuzzy logic approach. Steering and speed control are achieved using a three-axis Galil motion controller. The steering mechanism and the speed control involve the parallel control of the robot's two front wheels based on decisions made by the upper level fuzzy logic to guide the robot in a desired direction to follow a specific path and avoid obstacles in that path. The steering motors are Electrocraft brush DC motor. The BDC amplifiers are run in the current loop mode. The overall control is supervised by a personal computer through the multi-axis controller. The system has been simulated on Matlab and Simulink and optimal values for the digital gains were achieved for desired control. Testing of these systems has been done in a laboratory setting as well as on an outside track with positive results.

  2. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  3. Guarded Motion for Mobile Robots

    Energy Science and Technology Software Center (ESTSC)

    2005-03-30

    The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.

  4. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  5. Teleautonomous guidance for mobile robots

    NASA Technical Reports Server (NTRS)

    Borenstein, J.; Koren, Y.

    1990-01-01

    Teleautonomous guidance (TG), a technique for the remote guidance of fast mobile robots, has been developed and implemented. With TG, the mobile robot follows the general direction prescribed by an operator. However, if the robot encounters an obstacle, it autonomously avoids collision with that obstacle while trying to match the prescribed direction as closely as possible. This type of shared control is completely transparent and transfers control between teleoperation and autonomous obstacle avoidance gradually. TG allows the operator to steer vehicles and robots at high speeds and in cluttered environments, even without visual contact. TG is based on the virtual force field (VFF) method, which was developed earlier for autonomous obstacle avoidance. The VFF method is especially suited to the accommodation of inaccurate sensor data (such as that produced by ultrasonic sensors) and sensor fusion, and allows the mobile robot to travel quickly without stopping for obstacles.

  6. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity

    NASA Astrophysics Data System (ADS)

    Xie, Fugui; Liu, Xin-Jun

    2016-05-01

    This study introduces a high-speed parallel robot with Schönflies motion. This robot exhibits a promising prospect in realizing high-speed pick-andplace manipulation for packaging production lines. The robot has four identical limbs and a single platform. Its compact structure and single-platform concept provides this robot with good dynamic response potential. A line graph method based on Grassmann line geometry is used to investigate the mobility characteristics of the proposed robot. A generalized Blanding rule is also introduced into this procedure to realize mutual conversion between the line graphs for motions and constraints. Subsequently, the inverse kinematics is derived, and the singularity issue of the robot is investigated using both qualitative and quantitative approaches. Input and output transmission singularity indices are defined based on the reciprocal product in screw theory and the virtual coefficient by considering motion/force transmission performance. Thereafter, the singular loci of the proposed robot with specific geometric parameters are derived. The mobility analysis, inverse kinematics modeling, and singularity analysis conducted in this study are helpful in developing the robot.

  7. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity

    NASA Astrophysics Data System (ADS)

    Xie, Fugui; Liu, Xin-Jun

    2016-06-01

    This study introduces a high-speed parallel robot with Schönflies motion. This robot exhibits a promising prospect in realizing high-speed pick-andplace manipulation for packaging production lines. The robot has four identical limbs and a single platform. Its compact structure and single-platform concept provides this robot with good dynamic response potential. A line graph method based on Grassmann line geometry is used to investigate the mobility characteristics of the proposed robot. A generalized Blanding rule is also introduced into this procedure to realize mutual conversion between the line graphs for motions and constraints. Subsequently, the inverse kinematics is derived, and the singularity issue of the robot is investigated using both qualitative and quantitative approaches. Input and output transmission singularity indices are defined based on the reciprocal product in screw theory and the virtual coefficient by considering motion/force transmission performance. Thereafter, the singular loci of the proposed robot with specific geometric parameters are derived. The mobility analysis, inverse kinematics modeling, and singularity analysis conducted in this study are helpful in developing the robot.

  8. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  9. Segway robotic mobility platform

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Morrell, John; Mullens, Katherine D.; Burmeister, Aaron B.; Miles, Susan; Farrington, Nathan; Thomas, Kari M.; Gage, Douglas W.

    2004-12-01

    The Segway Robotic Mobility Platform (RMP) is a new mobile robotic platform based on the self-balancing Segway Human Transporter (HT). The Segway RMP is faster, cheaper, and more agile than existing comparable platforms. It is also rugged, has a small footprint, a zero turning radius, and yet can carry a greater payload. The new geometry of the platform presents researchers with an opportunity to examine novel topics, including people-height sensing and actuation modalities. This paper describes the history and development of the platform, its characteristics, and a summary of current research projects involving the platform at various institutions across the United States.

  10. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  11. Integrated mobile-robot design

    SciTech Connect

    Kortenkamp, D.; Huber, M.; Cohen, C.; Raschke, U.; Bidlack, C.; Congdon, C.B.; Koss, F.; Weymouth, T.

    1993-08-01

    Ten mobile robots entered the AAAI '92 Robot Competition, held at last year's national conference. Carmel, the University of Michigan entry, won. The competition consisted of three stages. The first stage required roaming a 22[times]22-meter arena while avoiding static and dynamic obstacles; the second involved searching for and visiting 10 objects in the same arena. The obstacles were at least 1.5 meters apart, while the objects were spaced roughly evenly throughout the arena. Visiting was defined as moving to within two robot diameters of the object. The last stage was a timed race to visit three of the objects located earlier and return home. Since the first stage was primarily a subset of the second-stage requirements, and the third-stage implementation was very similar to that of the second, the authors' focus here on the second stage. Carmel (Computer-Aided Robotics for Maintenance, Emergency, and Life support) is based on a commercially available Cybermotion K2A mobile-robot platform. It has a top speed of approximately 800 millimeters per second and moves on three synchronously driven wheels. For sensing, Carmel, has a ring of 24 Polaroid sonar sensors and a single black-and-white charge-coupled-device camera mounted on a rotating table. Carmel has three processors: one controls the drive motors, one fires the sonar ring, and the third, a 486-based PC clone, executes all the high-level modules. The 486 also has a frame grabber for acquiring images. All computation and power are contained on-board.

  12. Mobile robot sense net

    NASA Astrophysics Data System (ADS)

    Konolige, Kurt G.; Gutmann, Steffen; Guzzoni, Didier; Ficklin, Robert W.; Nicewarner, Keith E.

    1999-08-01

    Mobile robot hardware and software is developing to the point where interesting applications for groups of such robots can be contemplated. We envision a set of mobots acting to map and perform surveillance or other task within an indoor environment (the Sense Net). A typical application of the Sense Net would be to detect survivors in buildings damaged by earthquake or other disaster, where human searchers would be put a risk. As a team, the Sense Net could reconnoiter a set of buildings faster, more reliably, and more comprehensibly than an individual mobot. The team, for example, could dynamically form subteams to perform task that cannot be done by individual robots, such as measuring the range to a distant object by forming a long baseline stereo sensor form a pari of mobots. In addition, the team could automatically reconfigure itself to handle contingencies such as disabled mobots. This paper is a report of our current progress in developing the Sense Net, after the first year of a two-year project. In our approach, each mobot has sufficient autonomy to perform several tasks, such as mapping unknown areas, navigating to specific positions, and detecting, tracking, characterizing, and classifying human and vehicular activity. We detail how some of these tasks are accomplished, and how the mobot group is tasked.

  13. A motion planner for nonholonomic mobile robots

    SciTech Connect

    Laumond, J.P.; Jacobs, P.E.; Taiex, M. ); Murray, R.M. . Dept. of Mechanical Engineering)

    1994-10-01

    This paper considers the problems of motion planning for a car-like robot (i.e., a mobile robot with a nonholonomic constraint whose turning radius is lower-bounded). The authors present a fast and exact planner for their mobile robot model, based upon recursive subdivision of a collision-free path generated by a lower-level geometric planner that ignores the motion constraints. The resultant trajectory is optimized to give a path that is of near-minimal length in its homotopy class. Their claims of high speed are supported by experimental results for implementations that assume a robot moving amid polygonal obstacles. The completeness and the complexity of the algorithm are proven using an appropriate metric in the configuration space R[sup 2] [times] S[sup 1] of the robot. This metric is defined by using the length of the shortest paths in the absence of obstacles as the distance between two configurations. The authors prove that the new induced topology and the classical one are the same. Although the authors concentrate upon the car-like robot, the generalization of these techniques leads to new theoretical issues involving sub-Riemannian geometry and to practical results for nonholonomic motion planning.

  14. An autonomous vision-based mobile robot

    NASA Astrophysics Data System (ADS)

    Baumgartner, Eric Thomas

    This dissertation describes estimation and control methods for use in the development of an autonomous mobile robot for structured environments. The navigation of the mobile robot is based on precise estimates of the position and orientation of the robot within its environment. The extended Kalman filter algorithm is used to combine information from the robot's drive wheels with periodic observations of small, wall-mounted, visual cues to produce the precise position and orientation estimates. The visual cues are reliably detected by at least one video camera mounted on the mobile robot. Typical position estimates are accurate to within one inch. A path tracking algorithm is also developed to follow desired reference paths which are taught by a human operator. Because of the time-independence of the tracking algorithm, the speed that the vehicle travels along the reference path is specified independent from the tracking algorithm. The estimation and control methods have been applied successfully to two experimental vehicle systems. Finally, an analysis of the linearized closed-loop control system is performed to study the behavior and the stability of the system as a function of various control parameters.

  15. Learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  16. ARIES: A mobile robot inspector

    SciTech Connect

    Byrd, J.S.

    1995-12-31

    ARIES (Autonomous Robotic Inspection Experimental System) is a mobile robot inspection system being developed for the Department of Energy (DOE) to survey and inspect drums containing mixed and low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an autonomous inspection operation, typically performed by a human operator. It will make real-time decisions about the condition of the drums, maintain a database of pertinent information about each drum, and generate reports.

  17. Motion vision for mobile robots

    NASA Astrophysics Data System (ADS)

    Herrb, Matthieu

    The problem of using computer vision in mobile robots is dealt with. The datacube specialized cards and a parallel machine using a transputer network are studied. The tracking and localization of a three dimensional object in a sequence of images is examined, using first order prediction of the motion in the image plane and verification by a maximal clique search in the graph of mutually compatible matchings. A dynamic environment modeling module, using numerical fusion between trinocular stereovision and tracking of stereo matched primitives is presented. The integration of this perception system in the control architecture of a mobile robot is examined to achieve various functions, such as vision servo motion and environment modeling. The functional units implementing vision tasks and the data exchanged with other units are outlined. Experiments realized with the mobile robot Hilare 1.5 allowed the proposed algorithms and concepts to be validated.

  18. Adaptive Behavior for Mobile Robots

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  19. Mobile Surveillance and Monitoring Robots

    SciTech Connect

    Kimberly, Howard R.; Shipers, Larry R.

    1999-07-14

    Long-term nuclear material storage will require in-vault data verification, sensor testing, error and alarm response, inventory, and maintenance operations. System concept development efforts for a comprehensive nuclear material management system have identified the use of a small flexible mobile automation platform to perform these surveillance and maintenance operations. In order to have near-term wide-range application in the Complex, a mobile surveillance system must be small, flexible, and adaptable enough to allow retrofit into existing special nuclear material facilities. The objective of the Mobile Surveillance and Monitoring Robot project is to satisfy these needs by development of a human scale mobile robot to monitor the state of health, physical security and safety of items in storage and process; recognize and respond to alarms, threats, and off-normal operating conditions; and perform material handling and maintenance operations. The system will integrate a tool kit of onboard sensors and monitors, maintenance equipment and capability, and SNL developed non-lethal threat response technology with the intelligence to identify threats and develop and implement first response strategies for abnormal signals and alarm conditions. System versatility will be enhanced by incorporating a robot arm, vision and force sensing, robust obstacle avoidance, and appropriate monitoring and sensing equipment.

  20. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, Aed M.; Ward, Clyde R.; Jones, Joel D.; Mallet, William R.; Harpring, Larry J.; Collins, Montenius X.; Anderson, Erin K.

    1999-01-01

    A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

  1. Mobile autonomous robotic apparatus for radiologic characterization

    DOEpatents

    Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

    1999-08-10

    A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

  2. Fault diagnostic system for a mobile robot

    NASA Astrophysics Data System (ADS)

    Nikam, Umesh; Hall, Ernest L.

    1997-09-01

    This paper describes the development of a robot fault diagnosis system (RFDS). Though designed ostensibly for the University of Cincinnati's autonomous, unmanned, mobile robot for a national competition, it has the flexibility to be adapted for industrial applications as well. Using a top-down approach the robot is sub-divided into different functional units, such as the vision guidance system, the ultrasonic obstacle avoidance system, the steering mechanism, the speed control system, the braking system and the power unit. The techniques of potential failure mode and effects analysis (PFMEA) are used to analyze faults, their visible symptoms, and probable causes and remedies. The relationships obtained therefrom are mapped in a database framework. This is then coded in a user-friendly interactive Visual BasicTM program that guides the user to the likely cause(s) of failure through a question-answer format. A provision is made to ensure better accuracy of the system by incorporating historical data on failures as it becomes available. The RFDS thus provides a handy trouble-shooting tool that cuts down the time involved in diagnosing failures in the complex robot consisting of mechanical, electric, electronic and optical systems. This has been of great help in diagnosing failures and ensuring maximum performance from the robot during the contest in the face of pressure of the competition and the outdoor conditions.

  3. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  4. Communications Systems for Mobile Robotics

    SciTech Connect

    Futterman, J A; Pao, H

    2003-12-08

    Performance Confirmation is the activity by which the Yucca Mountain Project confirms that the engineered and natural containment barriers of this national nuclear waste repository are performing as predicted, so that an eventual decision to close the repository can be made. This activity involves systems that must be inspected and, in some cases, serviced by mobile robots. This paper discusses systems for underground mobile robot communications, including requirements, environments, options, issues, and down-select criteria. We reviewed a variety of systems, including Slotted Waveguide, Powerline Carrier, Leaky Feeder, Photonic Bandgap Fiber, Free-Space Optics, Millimeter Waves, Terahertz Systems, and RF Systems (including IEEE 802.11 a,b, and g, and Ultra-Wideband radio).

  5. Autonomous mobile robots: Vehicles with cognitive control

    SciTech Connect

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  6. Development of a virtual mobile robot laboratory

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Singh, Hardarshan; Raj, Jyoti; Gerhart, Grant R.

    2004-09-01

    There is an increasing interest in developing new Mobile Robots because of their applications in a variety of areas. Mobile robots can reach places, which are either inaccessible or unsafe for human beings. TACOM has developed a lab where new mobile robots can be tested. However to save cost and time it is advisable to test robots in a virtual environment before they are tested in a real Lab. The objective of this paper is to explore techniques whereby mobile robots can be tested in a simulated environment. Different techniques have been studied for such simulations and testing in a virtual environment. In particular, State flow and Zed3d software, VRML and Fuzzy Logic approaches have been exploited for this purpose. Different robots, obstacles and terrains have been simulated. It is hoped that such work will prove useful in the study of development and testing of mobile robots.

  7. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  8. Mobile robots for hazardous environments

    SciTech Connect

    Bains, N.; Scott, D.A.; Tran, K.; Campbell, T. )

    1992-01-01

    This paper describes the development of a mobile robot ARK-2 (Autonomous Robot for Known Environments) that utilizes a number of sensors for navigation in a known relatively structured indoor environment. At present, there are robots that can be preprogrammed and that move along a specified path, but they use dead-reckoning to evaluate position at any point along their paths, and this can lead to major error accumulation through wheel slippage and running over unforeseen objects on the floor. The ARK-2 robot will have the intelligence to determine its position utilizing natural landmarks at any point along its path; it is this feature that gives ARK-2 its uniqueness as well as its ability to operate in an industrial environment. The project started in September 1991 and will last 4 yr. There are five organizations involved in the project: Ontario Hydro, Atomic Energy of Canada Limited (AECL) CANDU, US Nuclear Regulatory Commission (NRC), University of Toronto, and York University. Funding is provided by the organizations involved as well as the federal and provincial governments and PRECARN Associates, which is a nonprofit precompetitive research consortium made up of 38 members.

  9. Two-Armed, Mobile, Sensate Research Robot

    NASA Technical Reports Server (NTRS)

    Engelberger, J. F.; Roberts, W. Nelson; Ryan, David J.; Silverthorne, Andrew

    2004-01-01

    The Anthropomorphic Robotic Testbed (ART) is an experimental prototype of a partly anthropomorphic, humanoid-size, mobile robot. The basic ART design concept provides for a combination of two-armed coordination, tactility, stereoscopic vision, mobility with navigation and avoidance of obstacles, and natural-language communication, so that the ART could emulate humans in many activities. The ART could be developed into a variety of highly capable robotic assistants for general or specific applications. There is especially great potential for the development of ART-based robots as substitutes for live-in health-care aides for home-bound persons who are aged, infirm, or physically handicapped; these robots could greatly reduce the cost of home health care and extend the term of independent living. The ART is a fully autonomous and untethered system. It includes a mobile base on which is mounted an extensible torso topped by a head, shoulders, and two arms. All subsystems of the ART are powered by a rechargeable, removable battery pack. The mobile base is a differentially- driven, nonholonomic vehicle capable of a speed >1 m/s and can handle a payload >100 kg. The base can be controlled manually, in forward/backward and/or simultaneous rotational motion, by use of a joystick. Alternatively, the motion of the base can be controlled autonomously by an onboard navigational computer. By retraction or extension of the torso, the head height of the ART can be adjusted from 5 ft (1.5 m) to 6 1/2 ft (2 m), so that the arms can reach either the floor or high shelves, or some ceilings. The arms are symmetrical. Each arm (including the wrist) has a total of six rotary axes like those of the human shoulder, elbow, and wrist joints. The arms are actuated by electric motors in combination with brakes and gas-spring assists on the shoulder and elbow joints. The arms are operated under closed-loop digital control. A receptacle for an end effector is mounted on the tip of the wrist and

  10. Portable control device for networked mobile robots

    DOEpatents

    Feddema, John T.; Byrne, Raymond H.; Bryan, Jon R.; Harrington, John J.; Gladwell, T. Scott

    2002-01-01

    A handheld control device provides a way for controlling one or multiple mobile robotic vehicles by incorporating a handheld computer with a radio board. The device and software use a personal data organizer as the handheld computer with an additional microprocessor and communication device on a radio board for use in controlling one robot or multiple networked robots.

  11. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  12. Face feature processor on mobile service robot

    NASA Astrophysics Data System (ADS)

    Ahn, Ho Seok; Park, Myoung Soo; Na, Jin Hee; Choi, Jin Young

    2005-12-01

    In recent years, many mobile service robots have been developed. These robots are different from industrial robots. Service robots were confronted to unexpected changes in the human environment. So many capabilities were needed to service mobile robot, for example, the capability to recognize people's face and voice, the capability to understand people's conversation, and the capability to express the robot's thinking etc. This research considered face detection, face tracking and face recognition from continuous camera image. For face detection module, it used CBCH algorithm using openCV library from Intel Corporation. For face tracking module, it used the fuzzy controller to control the pan-tilt camera movement smoothly with face detection result. A PCA-FX, which adds class information to PCA, was used for face recognition module. These three procedures were called face feature processor, which were implemented on mobile service robot OMR to verify.

  13. Vision-guided heterogeneous mobile robot docking

    NASA Astrophysics Data System (ADS)

    Spofford, John R.; Blitch, John; Klarquist, William N.; Murphy, Robin R.

    1999-08-01

    Teams of heterogeneous mobile robots are a key aspect of future unmanned system for operations in complex and dynamic urban environments, such as that envisioned by DARPA's Tactical Mobile Robotics program. One examples of an interaction among such team members is the docking of small robot of limited sensory and processing capability with a larger, more capable robot. Applications for such docking include the transfer of power, data, and materia, as well as physically combined maneuver or manipulation. A two-robot system is considered in this paper. The smaller 'throwable' robot contains a video camera capable of imaging the larger 'packable' robot and transmitting the imagery. The packable robot can both sense the throwable robot through an onboard camera, as well as sense itself through the throwable robot's transmitted video, and is capable of processing imagery from either source. This paper describes recent results in the development of control and sensing strategies for automatic mid-range docking of these two robots. Decisions addressed include the selection of which robot's image sensor to use and which robot to maneuver. Initial experimental results are presented for docking using sensor data from each robot.

  14. Hierarchical modelling of mobile, seeing robots

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-01-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  15. Reference test courses for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Jacoff, Adam; Messina, Elena; Evans, John

    2001-09-01

    One approach to measuring the performance of intelligent systems is to develop standardized or reproducible tests. These tests may be in a simulated environment or in a physical test course. The National Institute of Standards and Technology has developed a test course for evaluating the performance of mobile autonomous robots operating in an urban search and rescue mission. The test course is designed to simulate a collapsed building structure at various levels of fidelity. The course will be used in robotic competitions, such as the American Association for Artificial Intelligence (AAAI) Mobile Robot Competition and the RoboCup Rescue. Designed to be repeatable and highly reconfigurable, the test course challenges a robot's cognitive capabilities such as perception, knowledge representation, planning, autonomy and collaboration. The goal of the test course is to help define useful performance metrics for autonomous mobile robots which, if widely accepted, could accelerate development of advanced robotic capabilities by promoting the re-use of algorithms and system components. The course may also serve as a prototype for further development of performance testing environments which enable robot developers and purchasers to objectively evaluate robots for a particular application. In this paper we discuss performance metrics for autonomous mobile robots, the use of representative urban search and rescue scenarios as a challenge domain, and the design criteria for the test course.

  16. Mobile robot for a ham industry

    NASA Astrophysics Data System (ADS)

    Zalama, Eduardo; Mendez, Guillermo; Lopez-Coronado, Juan; Peran, Jose R.

    1994-02-01

    A mobile robot for a ham industry has been developed. The features of the factory, limited environment, sliding floor, and the necessity for a high storage flexibility makes impossible the usage of conventional transport systems, conveyors, automatic guided vehicles, etc. The developed system permits us to integrate the pervious transport system, that was based on fork lift trucks, with the advantage that in the case of contingency an operator can drive the mobile robot as a fork lift truck. In this way, the transport and storage can be done using fork lift trucks, mobile robots, or both, and all of them controlled by a planning program running in a Sun Sparcstation10.

  17. Mobile robot vehicles for physical security

    SciTech Connect

    McGovern, D.E.

    1987-07-01

    A fleet of vehicles is being developed and maintained by Sandia National Labs for studies in remote control and autonomous operation. These vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as test beds for developing concepts in the application of robotics to interior and exterior physical security. Actuators control the vehicle speed, brakes, and steering through manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. With these vehicles, SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided.

  18. A dragline-forming mobile robot inspired by spiders.

    PubMed

    Wang, Liyu; Culha, Utku; Iida, Fumiya

    2014-03-01

    Mobility of wheeled or legged machines can be significantly increased if they are able to move from a solid surface into a three-dimensional space. Although that may be achieved by addition of flying mechanisms, the payload fraction will be the limiting factor in such hybrid mobile machines for many applications. Inspired by spiders producing draglines to assist locomotion, the paper proposes an alternative mobile technology where a robot achieves locomotion from a solid surface into a free space. The technology resembles the dragline production pathway in spiders to a technically feasible degree and enables robots to move with thermoplastic spinning of draglines. As an implementation, a mobile robot has been prototyped with thermoplastic adhesives as source material of the draglines. Experimental results show that a dragline diameter range of 1.17-5.27 mm was achievable by the 185 g mobile robot in descending locomotion from the solid surface of a hanging structure with a power consumption of 4.8 W and an average speed of 5.13 cm min(-1). With an open-loop controller consisting of sequences of discrete events, the robot has demonstrated repeatable dragline formation with a relative deviation within -4% and a length close to the metre scale. PMID:24434546

  19. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  20. Employing Omnidirectional Visual Control for Mobile Robotics.

    ERIC Educational Resources Information Center

    Wright, J. R., Jr.; Jung, S.; Steplight, S.; Wright, J. R., Sr.; Das, A.

    2000-01-01

    Describes projects using conventional technologies--incorporation of relatively inexpensive visual control with mobile robots using a simple remote control vehicle platform, a camera, a mirror, and a computer. Explains how technology teachers can apply them in the classroom. (JOW)

  1. Steering a mobile robot in real time

    NASA Astrophysics Data System (ADS)

    Chuah, Mei C.; Fennema, Claude L., Jr.

    1994-10-01

    Using computer vision for mobile robot navigation has been of interest since the 1960s. This interest is evident in even the earliest robot projects: at SRI International (`Shakey') and at the Stanford University (`Stanford Cart'). These pioneering projects provided a foundation for late work but fell far short of providing real time solutions. Since the mid 1980s, the ARPA sponsored ALV and UGV projects have established a need for real time navigation. To achieve the necessary speed, some researchers have focused on building faster hardware; others have turned to the use of new computational architectures, such as neural nets. The work described in this paper uses another approach that has become known as `perceptual servoing.' Previously reported results show that perceptual servoing is both fast and accurate when used to steer vehicles equipped with precise odometers. When the instrumentation on the vehicle does not give precise measurements of distance traveled, as could be the case for a vehicle traveling on ice or mud, new techniques are required to accommodate the reduced ability to make accurate predictions about motion and control. This paper presents a method that computes estimates of distance traveled using landmarks and path information. The new method continues to perform in real time using modest computational facilities, and results demonstrate the effects of the new implementation on steering accuracy.

  2. Robotic vehicle with multiple tracked mobility platforms

    SciTech Connect

    Salton, Jonathan R.; Buttz, James H.; Garretson, Justin; Hayward, David R.; Hobart, Clinton G.; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  3. Extensible Hardware Architecture for Mobile Robots

    NASA Technical Reports Server (NTRS)

    Park, Eric; Kobayashi, Linda; Lee, Susan Y.

    2005-01-01

    The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the k9 rover. and won to be integrated onto the K10 series of human-robot collaboration research robots, this architecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide vane6 of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10 , followed by plans for future work.

  4. Defining proprioceptive behaviors for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Overholt, James L.; Hudas, Greg R.; Gerhart, Grant R.

    2002-07-01

    Proprioception is a sense of body position and movement that supports the control of many automatic motor functions such as posture and locomotion. This concept, normally relegated to the fields of neural physiology and kinesiology, is being utilized in the field of unmanned mobile robotics. This paper looks at developing proprioceptive behaviors for use in controlling an unmanned ground vehicle. First, we will discuss the field of behavioral control of mobile robots. Next, a discussion of proprioception and the development of proprioceptive sensors will be presented. We will then focus on the development of a unique neural-fuzzy architecture that will be used to incorporate the control behaviors coming directly from the proprioceptive sensors. Finally we will present a simulation experiment where a simple multi-sensor robot, utilizing both external and proprioceptive sensors, is presented with the task of navigating an unknown terrain to a known target position. Results of the mobile robot utilizing this unique fusion methodology will be discussed.

  5. Autonomous Navigation for Mobile Robots with Human-Robot Interaction

    NASA Astrophysics Data System (ADS)

    Ballantyne, James; Johns, Edward; Valibeik, Salman; Wong, Charence; Yang, Guang-Zhong

    Dynamic and complex indoor environments present a challenge for mobile robot navigation. The robot must be able to simultaneously map the environment, which often has repetitive features, whilst keep track of its pose and location. This chapter introduces some of the key considerations for human guided navigation. Rather than letting the robot explore the environment fully autonomously, we consider the use of human guidance for progressively building up the environment map and establishing scene association, learning, as well as navigation and planning. After the guide has taken the robot through the environment and indicated the points of interest via hand gestures, the robot is then able to use the geometric map and scene descriptors captured during the tour to create a high-level plan for subsequent autonomous navigation within the environment. Issues related to gesture recognition, multi-cue integration, tracking, target pursuing, scene association and navigation planning are discussed.

  6. Autonomous Mobile Robot That Can Read

    NASA Astrophysics Data System (ADS)

    Létourneau, Dominic; Michaud, François; Valin, Jean-Marc

    2004-12-01

    The ability to read would surely contribute to increased autonomy of mobile robots operating in the real world. The process seems fairly simple: the robot must be capable of acquiring an image of a message to read, extract the characters, and recognize them as symbols, characters, and words. Using an optical Character Recognition algorithm on a mobile robot however brings additional challenges: the robot has to control its position in the world and its pan-tilt-zoom camera to find textual messages to read, potentially having to compensate for its viewpoint of the message, and use the limited onboard processing capabilities to decode the message. The robot also has to deal with variations in lighting conditions. In this paper, we present our approach demonstrating that it is feasible for an autonomous mobile robot to read messages of specific colors and font in real-world conditions. We outline the constraints under which the approach works and present results obtained using a Pioneer 2 robot equipped with a Pentium 233 MHz and a Sony EVI-D30 pan-tilt-zoom camera.

  7. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  8. Application of mobile robot localization using sonar

    SciTech Connect

    Byrd, J.S.; Hill, K.H.

    1994-12-31

    A sonar-based mobile robot has been developed for inspection of low-level radioactive waste drums. An algorithm was developed which gives the robot the ability to refence itself to cylindrical objects. The drum-following algorithm has been demonstrated in 4-ft drum aisles at the Mobile Robotics Laboratory at the University of South Carolina. The final version has proven to be robust through extensive long-term navigation tests. Future enhancements will employ a narrow-aisle version of the Nav-master to allow navigation in 3-ft drum aisles. The final version of the inspection robot will include the drum-navigation algorithm as a low-level primitive instruction. The onboard management system will be dedicated to more of the high-level functions, such as planning, now provided by the offboard supervisory system.

  9. Switched control of a nonholonomic mobile robot

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, V.; Mahindrakar, Arun D.

    2009-05-01

    We present a switched control algorithm to stabilize a car-like mobile robot which possesses velocity level nonholonomic constraint. The control approach rests on splitting the system into several second-order subsystems and then stabilizing the system sequentially using finite-time controllers, finally resulting in the mobile robot being moved from one point to another point. State dependent switching control is employed in which the controllers switches on a thin surface in the state-space. Robustness analysis is presented by redefining the switching signal using relaxed switching surface. Both, non-robust and robust controllers are validated through numerical simulation.

  10. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  11. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  12. A mobile autonomous robot for radiological surveys

    SciTech Connect

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

  13. A mobile autonomous robot for radiological surveys

    SciTech Connect

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1992-10-01

    The Robotics Development Group at the Savannah River Site is developing an autonomous robot (SIMON) to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The robot, a Cybermotion K2A base, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It uses an ultrasonic ranging system for collision avoidance. In addition, two safety bumpers located in the front and the back of the robot will stop the robots motion when they are depressed. Paths for the robot are preprogrammed and the robots motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/0 interface for remote operation. Up to 30 detectors may be configured with the RM22A.

  14. Random issues in workspace analysis for a mobile robot

    NASA Astrophysics Data System (ADS)

    Stǎnescu, Tony; Dolga, Valer; Mondoc, Alina

    2014-12-01

    Evolution of the mobile robot is currently characterized by multiple applications in dynamic workspaces and low initial knowledge. In this paper presents aspects of approaching random processes of evolution of a mobile robot in an unstructured environment . The experimental results are used for modeling an infrared sensor (integrated in the mobile robot structure) and to assess the probability of locating obstacles in the environment.

  15. Mobility of lightweight robots over snow

    NASA Astrophysics Data System (ADS)

    Lever, James H.; Shoop, Sally A.

    2006-05-01

    Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.

  16. Simple adaptive tracking control for mobile robots

    NASA Astrophysics Data System (ADS)

    Bobtsov, Alexey; Faronov, Maxim; Kolyubin, Sergey; Pyrkin, Anton

    2014-12-01

    The problem of simple adaptive and robust control is studied for the case of parametric and dynamic dimension uncertainties: only the maximum possible relative degree of the plant model is known. The control approach "consecutive compensator" is investigated. To illustrate the efficiency of proposed approach an example with the mobile robot motion control using computer vision system is considered.

  17. Mobile robot with retractable claws

    NASA Astrophysics Data System (ADS)

    Safi, Pedram; Varela, Sergio; Villar, Jeff; Bahr, Behnam

    2012-04-01

    Robots are widely used nowadays for tasks that are either impossible or hazardous for humans to perform. Search-andrescue operations are among these, especially in the hazardous environments of nuclear power, chemical and biological plants. These rescue robots are expected to operate well in cases of natural disaster, e.g earthquakes, by overcoming unpredicted obstacles, as well as rough and even slippery surfaces like those associated with oil spills and snow storms. In this paper we discuss a robot which has claws that are normally in the retractable position, and can be activated when the robot encounters slippery surfaces or wants to climb a rough terrain. This combination takes advantage of the locomotion efficiency of wheels, and at the same time uses the retractable paws as legs or even for hooking it to objects that it wants to climb. The results of our simulations have been satisfactory and our goal is to have a working prototype with further test results at the conference.

  18. Autonomous mobile robot research using the HERMIES-III robot

    SciTech Connect

    Pin, F.G.; Beckerman, M.; Spelt, P.F.; Robinson, J.T.; Weisbin, C.R.

    1989-01-01

    This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercube configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.

  19. Robust performance of multiple tasks by a mobile robot

    NASA Technical Reports Server (NTRS)

    Beckerman, Martin; Barnett, Deanna L.; Dickens, Mike; Weisbin, Charles R.

    1989-01-01

    While there have been many successful mobile robot experiments, only a few papers have addressed issues pertaining to the range of applicability, or robustness, of robotic systems. The purpose of this paper is to report results of a series of benchmark experiments done to determine and quantify the robustness of an integrated hardware and software system of a mobile robot.

  20. Neurobiologically Inspired Mobile Robot Navigation and Planning

    PubMed Central

    Cuperlier, Nicolas; Quoy, Mathias; Gaussier, Philippe

    2007-01-01

    After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”. PMID:18958274

  1. Airborne Chemical Sensing with Mobile Robots

    PubMed Central

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  2. Advances in learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Ghaffari, Masoud; Liao, Xiaoqun S.; Alhaj Ali, Souma M.

    2004-10-01

    Intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths to accomplish a variety of tasks. Such machines have many potential useful applications in medicine, defense, industry and even the home so that the design of such machines is a challenge with great potential rewards. Even though intelligent systems may have symbiotic closure that permits them to make a decision or take an action without external inputs, sensors such as vision permit sensing of the environment and permit precise adaptation to changes. Sensing and adaptation define a reactive system. However, in many applications some form of learning is also desirable or perhaps even required. A further level of intelligence called understanding may involve not only sensing, adaptation and learning but also creative, perceptual solutions involving models of not only the eyes and brain but also the mind. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots with examples of adaptive, creative and perceptual learning. The significance of this work is in providing a greater understanding of the applications of learning to mobile robots that could lead to important beneficial applications.

  3. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  4. Brain Computer Interface based robotic rehabilitation with online modification of task speed.

    PubMed

    Sarac, Mine; Koyas, Ela; Erdogan, Ahmetcan; Cetin, Mujdat; Patoglu, Volkan

    2013-06-01

    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile--a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies. PMID:24187241

  5. Development of a mobile robot for the 1995 AUVS competition

    NASA Astrophysics Data System (ADS)

    Matthews, Bradley O.; Ruthemeyer, Michael A.; Perdue, David; Hall, Ernest L.

    1995-12-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The advantages of a modular system are related to portability and the fact that any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors systems. The speed and steering control are supervised by a 486 computer through a 3-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. The is micro-controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system, where even computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected through a commercial tracking device, communicating with the computer the X,Y coordinates of the lane marker. Testing of these systems yielded positive results by showing that at five mph the vehicle can follow a line and at the same time avoid obstacles. This design, in its modularity, creates a portable autonomous controller applicable for any mobile vehicle with only minor adaptations.

  6. Challenges in mobility and robotics for in-situ science

    NASA Technical Reports Server (NTRS)

    Wilcox, B.

    2002-01-01

    In-situ science on planetary surfaces such as Mars, Venus, Mercury and Titan pose extreme challenges for mobile robots. Future missions will involve surface, subsurface, and atmospheric mobility which focuses the need for technology development in sensing, autonomy, and mobile robot architectures for solar system exploration.

  7. Unified Approach To Control Of Motions Of Mobile Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1995-01-01

    Improved computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Present scheme similar to one described in "Coordinated Control of Mobile Robotic Manipulators" (NPO-19109). Both schemes based on configuration-control formalism. Present one incorporates explicit distinction between holonomic and nonholonomic constraints. Several other prior articles in NASA Tech Briefs discussed aspects of configuration-control formalism. These include "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes with Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).

  8. Network protocols for mobile robot systems

    NASA Astrophysics Data System (ADS)

    Gage, Douglas W.

    1998-01-01

    Communications and communications protocols will play an important role in mobile robot systems able to address real world applications. A poorly integrated 'stack' of communications protocols, or protocols which are poorly matched to the functional and performance characteristics of the underlying physical communications links, can greatly reduce the effectiveness of an otherwise well implemented robotic or networked sensors system. The proliferation of Internet-like networks in military as well as civilian domains has motivated research to address some of the performance limitations TCP suffers when using RF and other media with long bandwidth-delay, dynamic connectivity, and error-prone links. Beyond these performance issues, however, TCP is poorly matched to the requirements of mobile robot and other quasi-autonomous systems: it is oriented to providing a continuous data stream, rather than discrete messages, and the canonical 'socket' interface conceals short losses of communications connectivity, but simply gives up and forces the application layer software to deal with longer losses. For the multipurpose security and surveillance mission platform project, a software applique is being developed that will run on top of user datagram protocol to provide a reliable message-based transport service. In addition, a session layer protocol is planned to support the effective transfer of control of multiple platforms among multiple stations.

  9. Autonomous Navigation by a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand

    2005-01-01

    ROAMAN is a computer program for autonomous navigation of a mobile robot on a long (as much as hundreds of meters) traversal of terrain. Developed for use aboard a robotic vehicle (rover) exploring the surface of a remote planet, ROAMAN could also be adapted to similar use on terrestrial mobile robots. ROAMAN implements a combination of algorithms for (1) long-range path planning based on images acquired by mast-mounted, wide-baseline stereoscopic cameras, and (2) local path planning based on images acquired by body-mounted, narrow-baseline stereoscopic cameras. The long-range path-planning algorithm autonomously generates a series of waypoints that are passed to the local path-planning algorithm, which plans obstacle-avoiding legs between the waypoints. Both the long- and short-range algorithms use an occupancy-grid representation in computations to detect obstacles and plan paths. Maps that are maintained by the long- and short-range portions of the software are not shared because substantial localization errors can accumulate during any long traverse. ROAMAN is not guaranteed to generate an optimal shortest path, but does maintain the safety of the rover.

  10. Fuzzy control system for a mobile robot

    SciTech Connect

    Hai Quan Dai; Dalton, G.R.; Tulenko, J. )

    1992-01-01

    Since the first fuzzy logic control system was proposed by Mamdani, many studies have been carried out on industrial process and real-time controls. The key problem for the application of fuzzy logic control is to find a suitable set of fuzzy control rules. Three common modes of deriving fuzzy control rules are often distinguished and mentioned: (1) expert experience and knowledge; (2) modeling operator control actions; and (3) modeling a process. In cases where an operator's skill is important, it is very useful to derive fuzzy control rules by modeling an operator's control actions. It is possible to model an operator's control behaviors in terms of fuzzy implications using the input-output data concerned with his/her control actions. The authors use the model obtained in this way as the basis for a fuzzy controller. The authors use a finite number of fuzzy or approximate control rules. To control a robot in a cluttered reactor environment, it is desirable to combine all the methods. In this paper, the authors describe a general algorithm for a mobile robot control system with fuzzy logic reasoning. They discuss the way that knowledge of fuzziness will be represented in this control system. They also describe a simulation program interface to the K2A Cybermation mobile robot to be used to demonstrate the control system.

  11. Robotic mobile servicing platform for space station

    NASA Technical Reports Server (NTRS)

    Lowenthal, S. H.; Vanerden, L.

    1987-01-01

    The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves.

  12. Mobile robot navigation modulated by artificial emotions.

    PubMed

    Lee-Johnson, C P; Carnegie, D A

    2010-04-01

    For artificial intelligence research to progress beyond the highly specialized task-dependent implementations achievable today, researchers may need to incorporate aspects of biological behavior that have not traditionally been associated with intelligence. Affective processes such as emotions may be crucial to the generalized intelligence possessed by humans and animals. A number of robots and autonomous agents have been created that can emulate human emotions, but the majority of this research focuses on the social domain. In contrast, we have developed a hybrid reactive/deliberative architecture that incorporates artificial emotions to improve the general adaptive performance of a mobile robot for a navigation task. Emotions are active on multiple architectural levels, modulating the robot's decisions and actions to suit the context of its situation. Reactive emotions interact with the robot's control system, altering its parameters in response to appraisals from short-term sensor data. Deliberative emotions are learned associations that bias path planning in response to eliciting objects or events. Quantitative results are presented that demonstrate situations in which each artificial emotion can be beneficial to performance. PMID:19822475

  13. Robot speeds assays and enhances safeguards

    SciTech Connect

    Phelan, P.F.; Powell, W.D.; Blankenship, R.W.

    1990-01-01

    At the Los Alamos National Laboratory Plutonium Facility, a robotics system utilizing a gantry robot and an automated inventory system operates five calorimeters and two gamma isotopic assay instruments. This system has significantly improved safeguards, because the opportunity for diversion has been greatly reduced. Not only is the accountability much more timely because throughput has doubled but the special nuclear material has been made physically more secure in several ways. First, items awaiting assay are kept in the inventory system, whose doors remain locked whenever the robot is unattended. An alarm sounds if the doors are unlocked without authorization. Second, light curtains surround the robot's work envelope and pressure-sensitive pads cover the floor to detect entry into the assay area. Third, the robot weighs each item whenever it is moved, and the result is compared with the weight that was measured when the item was first put into inventory. 2 refs., 3 figs.

  14. Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989

    SciTech Connect

    Wolfe, W.J.; Chun, W.H.

    1990-01-01

    The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment, behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.

  15. An efficient distributed navigation algorithm for mobile robot

    NASA Astrophysics Data System (ADS)

    Yang, Xiuping; Liu, Songyan; Liu, Zhen

    2008-10-01

    An efficient distributed algorithm for mobile nodes of wireless sensor network (WSN) is proposed. A smart mobile robot is designed as the special node of WSN, and the nodes of WSN are deployed in the environment as signposts for the robot to follow. We use the RSSI value between the robot and other static nodes as the input of the navigation control system. The mobile robot state and navigation space are denoted by the RSSI potential field. Navigation directions are computed by using fuzzy logic method. To reduce the communication expense, each node within one hop communication range of robot is a distributed navigation unites. Then the fuzzy logic control centre will collect the control outputs from every beacon nodes and calculate the final outputs for mobile robot based on data fusion. The experimental results confirm that the navigation system based on WSN successfully achieved their assigned tasks.

  16. Sensor fusion for mobile robot navigation

    SciTech Connect

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion.

  17. SyRoTek--Distance Teaching of Mobile Robotics

    ERIC Educational Resources Information Center

    Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L.

    2013-01-01

    E-learning is a modern and effective approach for training in various areas and at different levels of education. This paper gives an overview of SyRoTek, an e-learning platform for mobile robotics, artificial intelligence, control engineering, and related domains. SyRoTek provides remote access to a set of fully autonomous mobile robots placed in…

  18. Meeting the challenges of installing a mobile robotic system

    NASA Technical Reports Server (NTRS)

    Decorte, Celeste

    1994-01-01

    The challenges of integrating a mobile robotic system into an application environment are many. Most problems inherent to installing the mobile robotic system fall into one of three categories: (1) the physical environment - location(s) where, and conditions under which, the mobile robotic system will work; (2) the technological environment - external equipment with which the mobile robotic system will interact; and (3) the human environment - personnel who will operate and interact with the mobile robotic system. The successful integration of a mobile robotic system into these three types of application environment requires more than a good pair of pliers. The tools for this job include: careful planning, accurate measurement data (as-built drawings), complete technical data of systems to be interfaced, sufficient time and attention of key personnel for training on how to operate and program the robot, on-site access during installation, and a thorough understanding and appreciation - by all concerned - of the mobile robotic system's role in the security mission at the site, as well as the machine's capabilities and limitations. Patience, luck, and a sense of humor are also useful tools to keep handy during a mobile robotic system installation. This paper will discuss some specific examples of problems in each of three categories, and explore approaches to solving these problems. The discussion will draw from the author's experience with on-site installations of mobile robotic systems in various applications. Most of the information discussed in this paper has come directly from knowledge learned during installations of Cybermotion's SR2 security robots. A large part of the discussion will apply to any vehicle with a drive system, collision avoidance, and navigation sensors, which is, of course, what makes a vehicle autonomous. And it is with these sensors and a drive system that the installer must become familiar in order to foresee potential trouble areas in the

  19. Simultaneous Design Method of the Sensory Morphology and Controller of Mobile Robots

    NASA Astrophysics Data System (ADS)

    Sugiura, Komei; Kawakami, Hiroshi; Katai, Osamu

    This paper proposes a method that automatically designs the sensory morphology of a mobile robot. The proposed method employs two types of adaptations -ontogenetic and phylogenetic- to optimize the sensory morphology of the robot. In ontogenetic adaptation, reinforcement learning searches for the optimal policy which is highly dependent on the sensory morphology. In phylogenetic adaptation, a genetic algorithm is used to select morphologies with which the robot can learn tasks faster. Our proposed method is applied to the design of the sensory morphology of a line-following robot. We carried out simulation experiments to compare the design solution with a hand-coded robot. The results of the experiments revealed that our robot outperforms a hand-coded robot in terms of the line-following accuracy and learning speed, although our robot has fewer sensors than the hand-coded one. We also manufactured a physical robot using the design solution. The experimental results revealed that this physical robot uses its morphology effectively and outperforms the hand-coded robot.

  20. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  1. Trajectory Tracking Control of Mobile Robot by Fluid Model

    NASA Astrophysics Data System (ADS)

    Miyata, Junichi; Murakami, Toshiyuki

    This paper describes a fluid model based path planning of mobile robot. In the previous research, the authors have already proposed TBSA (Time Based Spline Approach) for smooth motion of industrial robots(1). The TBSA is a powerful method in industrial applications, but the future position and velocity commands must be known to use it. In the general applications of repeat motion, this assumption is acceptable. In the path planning of mobile robot, however, the future position and velocity commands are unknown. To address the above issue, a strategy to generate the path of mobile robot based on fluid model is proposed in this paper. The combination of the TBSA and the generated path by fluid model brings a smooth motion of mobile robots.

  2. Mobile robotics activities in DOE laboratories

    NASA Astrophysics Data System (ADS)

    Lujan, Ron; Harbour, Jerry; Feddema, John; Bailey, Sharon; Barhen, Jacob; Reister, David

    2005-05-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV"s) as well as Unmanned Air Vehicles (UAV's). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV's and UAV's. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  3. Mobile Robotics Activities in DOE Laboratories

    SciTech Connect

    Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

    2005-03-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  4. Acoustic formation control for nonholonomic mobile robots

    NASA Astrophysics Data System (ADS)

    Hegedus, Michael James

    Two leader-follower formation controllers are proposed for a group of nonholonomic mobile robots. Each controller is installed on the following robot and requires local sensory stimuli to move the follower into its formation's desired position. As a result, communication between robots is not necessary to maintain a desired formation. The first proposed controller utilizes range and bearing data from an acoustic sensor to move the follower into position. It assumes an acoustic source is attached to the leader and a stationary landmark. The second proposed controller is a landmark-less formation controller that assume two sources are attached to the leader, and the follower is equipped with an acoustic array and inertial sensor. Results show each controller exponentially reduces the tracking error to a steady-state level and can maintain stability, even in regions where the formation kinematics becomes singular. For two-dimensional passive arrays, a general method is described that ranks and selects multiple microphone configurations within the array that are likely to produce accurate position estimates. This method segments a two-dimensional array into various combinations and configurations of microphone pairs and flattens these configurations into one-dimension for comparison. Each configuration is ranked based on the microphones' spatial information (known a-priori) and incoming bearing estimates. These rankings select different microphone pair configurations, whose position estimates are combined in an adaptive weighted-average algorithm. Simulations and experimental results show that this method selects microphone configurations that provide the least position error. Through a fusion algorithm, which combines individual microphone pair data, an array's position accuracy can improve.

  5. Hardware platform for multiple mobile robots

    NASA Astrophysics Data System (ADS)

    Parzhuber, Otto; Dolinsky, D.

    2004-12-01

    This work is concerned with software and communications architectures that might facilitate the operation of several mobile robots. The vehicles should be remotely piloted or tele-operated via a wireless link between the operator and the vehicles. The wireless link will carry control commands from the operator to the vehicle, telemetry data from the vehicle back to the operator and frequently also a real-time video stream from an on board camera. For autonomous driving the link will carry commands and data between the vehicles. For this purpose we have developed a hardware platform which consists of a powerful microprocessor, different sensors, stereo- camera and Wireless Local Area Network (WLAN) for communication. The adoption of IEEE802.11 standard for the physical and access layer protocols allow a straightforward integration with the internet protocols TCP/IP. For the inspection of the environment the robots are equipped with a wide variety of sensors like ultrasonic, infrared proximity sensors and a small inertial measurement unit. Stereo cameras give the feasibility of the detection of obstacles, measurement of distance and creation of a map of the room.

  6. Omnivision-based autonomous mobile robotic platform

    NASA Astrophysics Data System (ADS)

    Cao, Zuoliang; Hu, Jun; Cao, Jin; Hall, Ernest L.

    2001-10-01

    As a laboratory demonstration platform, TUT-I mobile robot provides various experimentation modules to demonstrate the robotics technologies that are involved in remote control, computer programming, teach-and-playback operations. Typically, the teach-and-playback operation has been proved to be an effective solution especially in structured environments. The path generated in the teach mode and path correction in real-time using path error detecting in the playback mode are demonstrated. The vision-based image database is generated as the given path representation in the teaching procedure. The algorithm of an online image positioning is performed for path following. Advanced sensory capability is employed to provide environment perception. A unique omni directional vision (omni-vision) system is used for localization and navigation. The omni directional vision involves an extremely wide-angle lens, which has the feature that a dynamic omni-vision image is processed in real time to respond the widest view during the movement. The beacon guidance is realized by observing locations of points derived from over-head features such as predefined light arrays in a building. The navigation approach is based upon the omni-vision characteristics. A group of ultrasonic sensors is employed for obstacle avoidance.

  7. Helpmate: A Mobile Robot For Transport Applications

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Bala; Barrows, Bruce; King, Steve; Stewis, Tim; Pong, Will; Weiman, Carl

    1989-03-01

    HelpMate is a mobile robotic materials transport system that performs fetch and carry tasks at Danbury Hospital. It navigates along the main arteries of the hospital, crossing between buildings via interconnecting corridors and uses infrared communication links to communicate with the elevator controller. HelpMate has been designed to work safely around humans, smoothly rerouting its local path to avoid obstacles while maintaining its mission. Safety features include both non-contact and contact obstacle sensing, emergency stop switches, auto/manual mode switches, flashing warning lights, turn indicators, and a failsafe controls design. HelpMate uses odometry, sonar and infrared proximity sensors, and vision as navigation inputs. An onboard card reader provides authorized personnel access to run time control and cargo transfer. Sensor information collected en route is used to build and maintain local navigation maps. A general knowledge of the structured properties of the world is assumed, and used both in collecting and rationalizing the sensor information and updating the robot's local knowledge base. All navigation and path planning is conducted under the direction of onboard processors.

  8. Reactive navigational controller for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Hawkins, Scott

    1993-12-01

    Autonomous mobile robots must respond to external challenges and threats in real time. One way to satisfy this requirement is to use a fast low level intelligence to react to local environment changes. A fast reactive controller has been implemented which performs the task of real time local navigation by integrating primitive elements of perception, planning, and control. Competing achievement and constraint behaviors are used to allow abstract qualitative specification of navigation goals. An interface is provided to allow a higher level deliberative intelligence with a more global perspective to set local goals for the reactive controller. The reactive controller's simplistic strategies may not always succeed, so a means to monitor and redirect the reactive controller is provided.

  9. A planning architecture for mobile robotics

    NASA Astrophysics Data System (ADS)

    Guitton, Julien; Farges, Jean-Loup; Chatila, Raja

    2008-06-01

    Mobile robots such as explorer rovers need task and path planning abilities in order to fulfill their assigned missions: path planning to plan their movements and task planning to plan their actions. The coupling between these two kinds of planning presents open issues such as the description of the environment and the consideration of geometric constraints that must be verified in order to act and move during an action. This paper addresses these issues by proposing an architecture in which a hierarchical task planner sends requests to a path planner in order to check the feasibility of actions. Requirements allowing the path planner to produce an answer are presented as well as the description of planning operators. Finally, we specify the mechanism and the communication language by which the task planner produces requests and takes into account answers.

  10. Navigation strategies for multiple autonomous mobile robots moving in formation

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  11. Comparison of three obstacle-avoidance methods for a mobile robot

    NASA Astrophysics Data System (ADS)

    Modi, Sachin B.; Chandak, Pravin; Murty, Vidya S.; Hall, Ernest L.

    2001-10-01

    Obstacle avoidance is one of the most critical factors in the design of autonomous vehicles such as mobile robots. The purpose of this paper is to compare and contrast three different methods for obstacle detection and avoidance. These include fixed mounting of sonar sensors, a rotating sonar sensor and a laser scanner. The three systems have been installed on the BEARCAT mobile robot. Current work is ongoing and was tested in June 2001 at the International Ground Robotics Competition. This test bed system provides experimental evaluation of the tradeoffs among the systems in terms of resolution, range and computation speed as well as mounting arrangements. The significance of this work is in the increased understanding of obstacle avoidance for robot control and the applications of autonomous guided vehicle technology for industry, defense and medicine.

  12. Mobile robot navigation with vision-based neural networks

    NASA Astrophysics Data System (ADS)

    Inigo, Rafael M.; Torres, Raul E.

    1995-01-01

    Mobile robot technology is spreading its use in the development of advance manufacturing systems. Methods of multi-sensory fusion data with vision, sonar and limit switches have been developed as the most flexible, but expensive approaches. Other approaches are more common such as buried wire AGV's. They decrease the cost of the mobile robot, but degrade the flexibility of the navigation system as well. This paper uses neural networks (NNs) with only one camera to obtain similar flexibility as the high cost approaches, but in a cost-efficient way. The NNs use translation and perspective information of features in images to determine the proper alignment and position of the mobile robot.

  13. Mamdani Fuzzy System for Indoor Autonomous Mobile Robot

    NASA Astrophysics Data System (ADS)

    Khan, M. K. A. Ahamed; Rashid, Razif; Elamvazuthi, I.

    2011-06-01

    Several control algorithms for autonomous mobile robot navigation have been proposed in the literature. Recently, the employment of non-analytical methods of computing such as fuzzy logic, evolutionary computation, and neural networks has demonstrated the utility and potential of these paradigms for intelligent control of mobile robot navigation. In this paper, Mamdani fuzzy system for an autonomous mobile robot is developed. The paper begins with the discussion on the conventional controller and then followed by the description of fuzzy logic controller in detail.

  14. Toward the Automated Synthesis of Cooperative Mobile Robot Teams

    SciTech Connect

    Parker, L.E.

    1998-11-01

    A current limitation in the real-world use of cooperating mobiIe robots is the difficulty in determining the proper team composition for a given robotic application. Present technology restricts the design and implementation of cooperative robot teams to the expertise of a robotics researcher, who has to develop robot teams on an application-specific basis. The objective of our research is to reduce the complexity of cooperative robotic systems through the development of a methodology that enables the automated synthesis of cooperative robot teams. We propose an approach to this problem that uses a combination of the theories of sensori-computational systems and information invariants, building on the earlier work of Donald, Rus, et al. We describe the notion of defining equivalence classes that serve as fundamental building blocks of more complex cooperative mobile robot behaviors. We postulate a methodology for framing mission requirements in terms of the goals and constraints of the problem, incorporating issues such as multi-robot interference, communication, control strategy, robot complexity, and so forth, into the mechanism. Our initial work restricts the robot application and design space to three multi-robot application domains we have previously studied and implemented: keeping formation, "mock" hazardous waste cleanup, and cooperative observation. This paper presents the foundational ideas upon which our approach to cooperative team design is based. Keywords: Cooperative behaviors, behavior synthesis, multi-robot learning

  15. Using a mobile robot to study locust collision avoidance responses.

    PubMed

    Blanchard, M; Verschure, P F; Rind, F C

    1999-10-01

    The visual systems of insects perform complex processing using remarkably compact neural circuits, yet these circuits are often studied using simplified stimuli which fail to reveal their behaviour in more complex visual environments. We address this issue by testing models of these circuits in real-world visual environments using a mobile robot. In this paper we focus on the lobula giant movement detector (LGMD) system of the locust which responds selectively to objects which approach the animal on a collision course and is thought to trigger escape behaviours. We show that a neural network model of the LGMD system shares the preference for approaching objects and detects obstacles over a range of speeds. Our results highlight aspects of the basic response properties of the biological system which have important implications for the behavioural role of the LGMD. PMID:10630469

  16. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  17. Autonomous Mobile Robot Navigation Using Harmonic Potential Field

    NASA Astrophysics Data System (ADS)

    Panati, Subbash; Baasandorj, Bayanjargal; Chong, Kil To

    2015-05-01

    Mobile robot navigation has been an area of robotics which has gained massive attention among the researchers of robotics community. Path planning and obstacle avoidance are the key aspects of mobile robot navigation. This paper presents harmonic potential field based navigation algorithm for mobile robots. Harmonic potential field method overcomes the issue of local minima which was a major bottleneck in the case of artificial potential field method. The harmonic potential field is calculated using harmonic functions and Dirichlet boundary conditions are used for the obstacles, goal and initial position. The simulation results shows that the proposed method is able to overcome the local minima issue and navigate successfully from initial position to the goal without colliding into obstacles in static environment.

  18. Concurrent algorithms for a mobile robot vision system

    SciTech Connect

    Jones, J.P.; Mann, R.C.

    1988-01-01

    The application of computer vision to mobile robots has generally been hampered by insufficient on-board computing power. The advent of VLSI-based general purpose concurrent multiprocessor systems promises to give mobile robots an increasing amount of on-board computing capability, and to allow computation intensive data analysis to be performed without high-bandwidth communication with a remote system. This paper describes the integration of robot vision algorithms on a 3-dimensional hypercube system on-board a mobile robot developed at Oak Ridge National Laboratory. The vision system is interfaced to navigation and robot control software, enabling the robot to maneuver in a laboratory environment, to find a known object of interest and to recognize the object's status based on visual sensing. We first present the robot system architecture and the principles followed in the vision system implementation. We then provide some benchmark timings for low-level image processing routines, describe a concurrent algorithm with load balancing for the Hough transform, a new algorithm for binary component labeling, and an algorithm for the concurrent extraction of region features from labeled images. This system analyzes a scene in less than 5 seconds and has proven to be a valuable experimental tool for research in mobile autonomous robots. 9 refs., 1 fig., 3 tabs.

  19. An Autonomous Mobile Robot for Tsukuba Challenge: JW-Future

    NASA Astrophysics Data System (ADS)

    Fujimoto, Katsuharu; Kaji, Hirotaka; Negoro, Masanori; Yoshida, Makoto; Mizutani, Hiroyuki; Saitou, Tomoya; Nakamura, Katsu

    “Tsukuba Challenge” is the only of its kind to require mobile robots to work autonomously and safely on public walkways. In this paper, we introduce the outline of our robot “JW-Future”, developed for this experiment based on an electric wheel chair. Additionally, the significance of participation to such a technical trial is discussed from the viewpoint of industries.

  20. Adaptive control of mobile robots using a neural network.

    PubMed

    de Sousa Júnior, C; Hermerly, E M

    2001-06-01

    A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results. PMID:11574958

  1. A Contest-Oriented Project for Learning Intelligent Mobile Robots

    ERIC Educational Resources Information Center

    Huang, Hsin-Hsiung; Su, Juing-Huei; Lee, Chyi-Shyong

    2013-01-01

    A contest-oriented project for undergraduate students to learn implementation skills and theories related to intelligent mobile robots is presented in this paper. The project, related to Micromouse, Robotrace (Robotrace is the title of Taiwanese and Japanese robot races), and line-maze contests was developed by the embedded control system research…

  2. Mars Exploration Rover mobility and robotic arm operational performance

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Maimone, Mark; Trebi-Ollennu, Ashitey; Yen, Jeng; Petras, Richard; Wilson, Reg

    2005-01-01

    The purpose of this paper is to describe an actual instance of a practical human-robot system used on a NASA Mars rover mission that has been underway since January 2004 involving daily intercation between humans on Earth and mobile robots on Mars.

  3. Integrating Mobile Robotics and Vision with Undergraduate Computer Science

    ERIC Educational Resources Information Center

    Cielniak, G.; Bellotto, N.; Duckett, T.

    2013-01-01

    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision and is directly linked to the research conducted at the authors' institution. The paper describes the most relevant…

  4. Object Detection Techniques Applied on Mobile Robot Semantic Navigation

    PubMed Central

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  5. Object detection techniques applied on mobile robot semantic navigation.

    PubMed

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  6. Interaction dynamics of multiple mobile robots with simple navigation strategies

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1989-01-01

    The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulations studies of two or more interacting robots.

  7. ARK: Autonomous mobile robot in an industrial environment

    NASA Technical Reports Server (NTRS)

    Nickerson, S. B.; Jasiobedzki, P.; Jenkin, M.; Jepson, A.; Milios, E.; Down, B.; Service, J. R. R.; Terzopoulos, D.; Tsotsos, J.; Wilkes, D.

    1994-01-01

    This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation.

  8. Vibration suppression of speed-controlled robots with nonlinear control

    NASA Astrophysics Data System (ADS)

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-06-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  9. Vibration suppression of speed-controlled robots with nonlinear control

    NASA Astrophysics Data System (ADS)

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-04-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  10. Execution monitoring for a mobile robot system

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1990-01-01

    Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.

  11. Robust mobile robot localization: From single-robot uncertainties to multi-robot interdependencies

    NASA Astrophysics Data System (ADS)

    Roumeliotis, Stergios I.

    2000-10-01

    Robust localization is the problem of determining the position of a mobile robot with respect to a global or local frame of reference in the presence of sensor noise, uncertainties and potential failures. Previous work in this field has used Kalman filters to reduce the effects of sensor noise on updates of the vehicle position estimate or Bayesian multiple hypothesis to resolve the ambiguity associated with the identification of detected landmarks. This dissertation introduces a general framework for localization that subsumes both approaches in a single architecture and applies it to the general problem of localizing a mobile robot within a known environment. Odometric and/or inertial sensors are fused with data obtained from exteroceptive sensors. The approach is validated by solution of the "kidnapped robot" problem. The second problem treated in this dissertation concerns the common assumption that all sensors provide information at the same rate. This assumption is relaxed by allowing high rate noisy odometric or inertial data from kinetic sensors while absolute attitude and/or position data (e.g., from sun sensors) are obtained infrequently. We address the resulting observability limitation by incorporating a Smoother in the attitude estimation algorithm. Smoothing of the attitude estimates reduces the overall uncertainty and allows for longer traverses before a new absolute orientation measurement is required. Simulation examples also show the ability of this method to increase the accuracy of robot mapping. The third problem concerns multiple robots collaborating on a single task. In prior research with a group of, say M, robots the group localization problem is usually approached by independently solving M pose estimation problems. When collaboration among robots exists, current methods usually require that at least one member of the group holds a fixed position while visual contact with all the other members of the team is maintained. If these two

  12. A Mobile Service Robot for Life Science Laboratories

    NASA Astrophysics Data System (ADS)

    Schulenburg, Erik; Elkmann, Norbert; Fritzsche, Markus; Teutsch, Christian

    In this paper we presents a project that is developing a mobile service robot to assist users in biological and pharmaceutical laboratories by executing routine jobs such as filling and transporting microplates. A preliminary overview of the design of the mobile platform with a robotic arm is provided. Safety aspects are one focus of the project since the robot and humans will share a common environment. Hence, several safety sensors such as laser scanners, thermographie components and artificial skin are employed. These are described along with the approaches to object recognition.

  13. Verification hybrid control of a wheeled mobile robot and manipulator

    NASA Astrophysics Data System (ADS)

    Muszynska, Magdalena; Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz

    2016-04-01

    In this article, innovative approaches to realization of the wheeled mobile robots and manipulator tracking are presented. Conceptions include application of the neural-fuzzy systems to compensation of the controlled system's nonlinearities in the tracking control task. Proposed control algorithms work on-line, contain structure, that adapt to the changeable work conditions of the controlled systems, and do not require the preliminary learning. The algorithm was verification on the real object which was a Scorbot - ER 4pc robotic manipulator and a Pioneer - 2DX mobile robot.

  14. Cooperation of mobile robots for accident scene inspection

    NASA Astrophysics Data System (ADS)

    Byrne, R. H.; Harrington, J.

    A telerobotic system demonstration was developed for the Department of Energy's Accident Response group to highlight the applications of telerobotic vehicles to accident site inspection. The proof-of-principle system employs two mobile robots, Dixie and RAYBOT, to inspect a simulated accident site. Both robots are controlled serially from a single driving station, allowing an operator to take advantage of having multiple robots at the scene. The telerobotic system is described and some of the advantages of having more than one robot present are discussed. Future plans for the system are also presented.

  15. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.

    PubMed

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and 24 fuzzy rules for the robot's movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  16. Towards Principled Experimental Study of Autonomous Mobile Robots

    NASA Technical Reports Server (NTRS)

    Gat, Erann

    1995-01-01

    We review the current state of research in autonomous mobile robots and conclude that there is an inadequate basis for predicting the reliability and behavior of robots operating in unengineered environments. We present a new approach to the study of autonomous mobile robot performance based on formal statistical analysis of independently reproducible experiments conducted on real robots. Simulators serve as models rather than experimental surrogates. We demonstrate three new results: 1) Two commonly used performance metrics (time and distance) are not as well correlated as is often tacitly assumed. 2) The probability distributions of these performance metrics are exponential rather than normal, and 3) a modular, object-oriented simulation accurately predicts the behavior of the real robot in a statistically significant manner.

  17. Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri

    2002-01-01

    The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.

  18. BALI development environment for small mobile robots

    NASA Astrophysics Data System (ADS)

    Lim, Willie Y.

    1995-12-01

    The design and prototyping of a development environment, called BALI, for a small robot, viz., the MIT 6.270 robot, is presented in this paper. BALI is being developed and used for research work using a 6.270-based robot. Building on the experience with IC (interactive-C) for programming the 6.270 robot and new technologies like Java, a more powerful and low cost robot development environment is possible. The goal of BALI is to provide a flexible, customizable, and extensible development environment so that robot researchers can quickly tailor BALI to their robots. Given that the 6.270 robot is really a building kit made up of LEGO blocks (or similar kinds of physical building blocks), the 68HC11-based motherboard, and a variety of sensors, BALI cannot be specially built for one 'instance' of the 6.270 robot. Rather the guiding principles for building BALI should be to provide the GUI (graphical user interface) 'primitives' from which one can assemble and build his or her development environment. Thus GUI primitives for displaying status information, sensor readings, robot orientation, and environment maps must be provided. Much of these primitives are already provided in Java. It is the robot-specific ones that have to be developed for BALI. The Java- like language that forms the core of BALI is the main focus of this paper.

  19. Hazardous materials emergency response mobile robot

    NASA Astrophysics Data System (ADS)

    Stone, Henry W.; Lloyd, James W.; Alahuzos, George A.

    1995-08-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm is presented. This robot inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  20. Hazardous materials emergency response mobile robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Lloyd, James W. (Inventor); Alahuzos, George A. (Inventor)

    1995-01-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm is presented. This robot inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  1. Levels of autonomy control approach for mobile robots

    NASA Astrophysics Data System (ADS)

    Moorehead, Stewart J.

    2003-09-01

    Increasingly mobile robots are finding applications in the military, mining, nuclear and agriculture industries. These fields require a robot capable of operating in a highly unstructured and changing environment. Current autonomous control techniques are not robust enough to allow successful operation at all times in these environments. Teleoperation can help with many tasks but causes operator fatigue and negates much of the economic advantages of using robots by requiring one person per robot. This paper introduces a control system for mobile robots based on the concept of levels of autonomy. Levels of autonomy recognizes that control can be shared between the operator and robot in a continuous fashion from teleoperation to full autonomy. By sharing control, the robot can benefit from the operator's knowledge of the world to help extricate it from difficult situations. The robot can operate as autonomously as the situation allows, reducing operator fatigue and increasing the economic benefit by allowing a single operator to control multiple robots simultaneously. This paper presents a levels of autonomy control system developed for use in exploration or reconnaissance tasks.

  2. Hands-free operation of a small mobile robot

    SciTech Connect

    AMAI,WENDY A.; FAHRENHOLTZ,JILL C.; LEGER,CHRIS L.

    2000-03-14

    The Intelligent Systems and Robotics Center of Sandia National laboratories has an ongoing research program in advanced user interfaces. As part of this research, promising new transduction devices, particularly hands-free devices, are being explored for the control of mobile and floor-mounted robotic systems. Brainwave control has been successfully demonstrated by other researchers in a variety of fields. In the research described here, Sandia developed and demonstrated a proof-of-concept brainwave-controlled mobile robot system. Preliminary results were encouraging. Additional work required to turn this into a reliable. fieldable system for mobile robotic control is identified. Used in conjunction with other controls, brainwave control could be an effective control method in certain circumstances.

  3. Low-level stored waste inspection using mobile robots

    SciTech Connect

    Byrd, J.S.; Pettus, R.O.

    1996-06-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system.

  4. Stability analysis of a mobile robot base carrying a robotic manipulator

    SciTech Connect

    Bouchard, J.F.; Sias, F.R. Jr.

    1994-12-31

    A robotic manipulator mounted on a mobile robot base is useful for performing tasks in an environment not suitable for humans. However, the capabilities of such a robot may be limited by its physical stability. A mobile robot by itself is designed to have a high degree of stability, with a center of gravity located low to the ground and well within the area enclosed by its wheels. When a manipulator is mounted on a mobile robot, the overall center of gravity is raised and may also be shifted outside of the area of stability, which would cause the robot to tip. Three factors that may influence the physical stability of such a configuration are the position of the manipulator links, the load at the tool position, and the inclide on which the robot is supported. A stability analysis provides numerical information concerning the effect that each of these three factors has on the stability of the robot`s vehicle-manipulator system.

  5. Object guided autonomous exploration for mobile robots in indoor environments

    NASA Astrophysics Data System (ADS)

    Nieto-Granda, Carlos; Choudhary, Siddarth; Rogers, John G.; Twigg, Jeff; Murali, Varun; Christensen, Henrik I.

    2014-06-01

    Autonomous mobile robotic teams are increasingly used in exploration of indoor environments. Accurate modeling of the world around the robot and describing the interaction of the robot with the world greatly increases the ability of the robot to act autonomously. This paper demonstrates the ability of autonomous robotic teams to find objects of interest. A novel feature of our approach is the object discovery and the use of it to augment the mapping and navigation process. The generated map can then be decomposed into semantic regions while also considering the distance and line of sight to anchor points. The advantage of this approach is that the robot can return a dense map of the region around an object of interest. The robustness of this approach is demonstrated in indoor environments with multiple platforms with the objective of discovering objects of interest.

  6. Hazardous materials emergency response mobile robot

    NASA Astrophysics Data System (ADS)

    Stone, Henry W.; Lloyd, James; Alahuzos, George

    1992-07-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  7. Hazardous materials emergency response mobile robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Lloyd, James (Inventor); Alahuzos, George (Inventor)

    1992-01-01

    A simple or unsophisticated robot incapable of effecting straight-line motion at the end of its arm inserts a key held in its end effector or hand into a door lock with nearly straight-line motion by gently thrusting its back heels downwardly so that it pivots forwardly on its front toes while holding its arm stationary. The relatively slight arc traveled by the robot's hand is compensated by a complaint tool with which the robot hand grips the door key. A visible beam is projected through the axis of the hand or gripper on the robot arm end at an angle to the general direction in which the robot thrusts the gripper forward. As the robot hand approaches a target surface, a video camera on the robot wrist watches the beam spot on the target surface fall from a height proportional to the distance between the robot hand and the target surface until the beam spot is nearly aligned with the top of the robot hand. Holes in the front face of the hand are connected through internal passages inside the arm to an on-board chemical sensor. Full rotation of the hand or gripper about the robot arm's wrist is made possible by slip rings in the wrist which permit passage of the gases taken in through the nose holes in the front of the hand through the wrist regardless of the rotational orientation of the wrist.

  8. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  9. Infrared sensor system for mobile-robot positioning in intelligent spaces.

    PubMed

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  10. Soft Robots: Manipulation, Mobility, and Fast Actuation

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George

    2012-02-01

    Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.

  11. On-Line Method and Apparatus for Coordinated Mobility and Manipulation of Mobile Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1996-01-01

    A simple and computationally efficient approach is disclosed for on-line coordinated control of mobile robots consisting of a manipulator arm mounted on a mobile base. The effect of base mobility on the end-effector manipulability index is discussed. The base mobility and arm manipulation degrees-of-freedom are treated equally as the joints of a kinematically redundant composite robot. The redundancy introduced by the mobile base is exploited to satisfy a set of user-defined additional tasks during the end-effector motion. A simple on-line control scheme is proposed which allows the user to assign weighting factors to individual degrees-of-mobility and degrees-of-manipulation, as well as to each task specification. The computational efficiency of the control algorithm makes it particularly suitable for real-time implementations. Four case studies are discussed in detail to demonstrate the application of the coordinated control scheme to various mobile robots.

  12. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  13. Evaluation of a Home Biomonitoring Autonomous Mobile Robot.

    PubMed

    Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei

    2016-01-01

    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too. PMID:27212940

  14. Evaluation of a Home Biomonitoring Autonomous Mobile Robot

    PubMed Central

    Dorronzoro Zubiete, Enrique; Nakahata, Keigo; Imamoglu, Nevrez; Sekine, Masashi; Sun, Guanghao; Gomez, Isabel; Yu, Wenwei

    2016-01-01

    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too. PMID:27212940

  15. Rice-obot 1: An intelligent autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R.; Ciscon, L.; Berberian, D.

    1989-01-01

    The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.

  16. Temporal coordination of perceptual algorithms for mobile robot navigation

    SciTech Connect

    Arkin, R.C.; MacKenzie, D. . Mobile Robot Lab.)

    1994-06-01

    A methodology for integrating multiple perceptual algorithms within a reactive robotic control system is presented. A model using finite state acceptors is developed as a means for expressing perceptual processing over space and time in the context of a particular motor behavior. This model can be utilized for a wide range of perceptual sequencing problems. The feasibility of this method is demonstrated in two separate implementations. The first is in the context of mobile robot docking where the mobile robot uses four different vision and ultrasonic algorithms to position itself relative to a docking workstation over a long-range course. The second uses vision, IR beacon, and ultrasonic algorithms to park the robot next to a desired plastic pole randomly placed within an arena.

  17. Remote radioactive waste drum inspection with an autonomous mobile robot

    SciTech Connect

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-11-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions.

  18. Remote radioactive waste drum inspection with an autonomous mobile robot

    SciTech Connect

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions.

  19. Trajectory planning and optimal tracking for an industrial mobile robot

    NASA Astrophysics Data System (ADS)

    Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.

    1994-02-01

    This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.

  20. Object Transportation by Two Mobile Robots with Hand Carts.

    PubMed

    Sakuyama, Takuya; Figueroa Heredia, Jorge David; Ogata, Taiki; Hara, Tatsunori; Ota, Jun

    2014-01-01

    This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50-60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement. PMID:27433499

  1. Efficient Control Law Simulation for Multiple Mobile Robots

    SciTech Connect

    Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.; Kwok, K.S.

    1998-10-06

    In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The time to calculate the control law for each robot at each time step is demonstrated to be O(logN).

  2. Modular behaviors in heterogeneous groups of mobile robots

    NASA Astrophysics Data System (ADS)

    Dedeoglu, Goksel; Sukhatme, Gaurav S.

    2000-10-01

    We provide an overview of the software components underlying four different tasks performed by a heterogeneous group of mobile robots. These tasks are drawn from three domains 1. Robot Competitions (Robot Soccer and Find Life on Mars), 2. Security and Surveillance (Perimeter Protection) and 3. Building Environmental Models (Multi-Robot Navigation and Mapping). Once decomposed as a set of cooperating behaviors, we show how these (seemingly unrelated) tasks lead to similar solutions as far as their modular breakdown is concerned, thereby yielding high reusability. Although our collection of robot platforms is notably diverse in terms of mechanics, sensory and computational capabilities, cross-platform migration and extension of existing behavior assemblages require minimal programming effort.

  3. Object Transportation by Two Mobile Robots with Hand Carts

    PubMed Central

    Hara, Tatsunori

    2014-01-01

    This paper proposes a methodology by which two small mobile robots can grasp, lift, and transport large objects using hand carts. The specific problems involve generating robot actions and determining the hand cart positions to achieve the stable loading of objects onto the carts. These problems are solved using nonlinear optimization, and we propose an algorithm for generating robot actions. The proposed method was verified through simulations and experiments using actual devices in a real environment. The proposed method could reduce the number of robots required to transport large objects with 50–60%. In addition, we demonstrated the efficacy of this task in real environments where errors occur in robot sensing and movement. PMID:27433499

  4. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    PubMed Central

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  5. Optical flow based velocity estimation for mobile robots

    NASA Astrophysics Data System (ADS)

    Li, Xiuzhi; Zhao, Guanrong; Jia, Songmin; Qin, Baoling; Yang, Ailin

    2015-02-01

    This paper presents an optical flow based novel technique to perceive the instant motion velocity of mobile robots. The primary focus of this study is to determine the robot's ego-motion using displacement field in temporally consecutive image pairs. In contrast to most previous approaches for estimating velocity, we employ a polynomial expansion based dense optical flow approach and propose a quadratic model based RANSAC refinement of flow fields to render our method more robust with respect to noise and outliers. Accordingly, techniques for geometrical transformation and interpretation of the inter-frame motion are presented. Advantages of our proposal are validated by real experimental results conducted on Pioneer robot.

  6. Mobile robot navigation and control: A case study

    SciTech Connect

    Roy, N.; Dudek, G.; Daum, M.

    1996-12-31

    Robotic systems (and in particular mobile autonomous agents) embody a complex interaction of computational processes, mechanical systems, sensors, and communications hardware. System integration can present significant difficulties to the construction of a real system, because the hardware is often built around convenience of design rather than convenience of system integration. Nonetheless, in order for robots to perform real-world tasks such as navigation, localization and exploration, the different subsystems of motion, sensing and computation must be merged into a single, realisable unit. Our group is investigating particular problems in the domain of computational perception, in the context of mobile robotics. In particular, we are concerned with environment exploration, position estimation, and map construction. We have several mobile platforms integrating different sensing modalities, which we are able to control simultaneously from a single source.

  7. Hazardous-environment problems: Mobile robots to the rescue

    SciTech Connect

    Meieran, H.B. )

    1992-01-01

    This paper presents a rationale for employing a spectrum of similar mobile robots to conduct appropriate common missions for the following five hazardous-environment issues: (1) dismantlement of nuclear weapons; (2) environmental restoration and waste management of US Department of Energy weapons sites; (3) operations in nuclear power plants and other facilities; (4) waste chemical site remediation and cleanup activities; and (5) assistance in handling toxic chemical/radiation accidents. Mobile robots have been developed for several hazardous-environment industries, the most visible ones being construction/excavation/tunneling, explosive ordnance/bomb disposal (EOD), fire-fighting, military operations, mining, nuclear, and security. A summary of the range of functions that mobile robots are currently capable of conducting is presented.

  8. Intelligent mobility for robotic vehicles in the army after next

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Goetz, Richard C.; Gorsich, David J.

    1999-07-01

    The TARDEC Intelligent Mobility program addresses several essential technologies necessary to support the army after next (AAN) concept. Ground forces in the AAN time frame will deploy robotic unmanned ground vehicles (UGVs) in high-risk missions to avoid exposing soldiers to both friendly and unfriendly fire. Prospective robotic systems will include RSTA/scout vehicles, combat engineering/mine clearing vehicles, indirect fire artillery and missile launch platforms. The AAN concept requires high on-road and off-road mobility, survivability, transportability/deployability and low logistics burden. TARDEC is developing a robotic vehicle systems integration laboratory (SIL) to evaluate technologies and their integration into future UGV systems. Example technologies include the following: in-hub electric drive, omni-directional wheel and steering configurations, off-road tires, adaptive tire inflation, articulated vehicles, active suspension, mine blast protection, detection avoidance and evasive maneuver. This paper will describe current developments in these areas relative to the TARDEC intelligent mobility program.

  9. Parallel-distributed mobile robot simulator

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo

    1996-06-01

    The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.

  10. Computer Security For Mobile Robots: Attacks And Counter Strategies

    NASA Astrophysics Data System (ADS)

    Hogge, Sharon M.

    1987-02-01

    The objective of this work is to investigate the security requirements and strategies for intelligent mobile robots, perform tests to determine strengths and weaknesses of test bed platforms, and develop counter strategies to improve security of the test bed platforms. This research will discuss the implications of these results on large scale ongoing efforts in mobile robotics. Potential security threats range from accidental intrusion of the device's hardware or software by untrained personnel to deliberate "spoofing" of sensor suites by unauthorized users or enemies.

  11. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  12. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  13. Experimentation and concept formation by an autonomous mobile robot

    SciTech Connect

    Spelt, P.F.; deSaussure, G.; Oliver, G.; Silliman, M.

    1990-01-01

    The Center for Engineering Systems Advanced Research (CESAR) conducts basic research in the area of intelligent machines. In this paper, we describe our approach to a class of machine learning which involves autonomous concept formation using feedback from trial-and-error experimentation with the environment. Our formulation was experimentally validated on an autonomous mobile robot, which learned the task of control panel monitoring and manipulation for effective process control. Conclusions are drawn concerning the applicability of the system to a more general class of learning problems, and implications for the use of autonomous mobile robots in hostile and unknown environments are discussed. 11 refs., 7 figs.

  14. Collective search by mobile robots using alpha-beta coordination

    SciTech Connect

    Goldsmith, S.Y.; Robinett, R. III

    1998-04-01

    One important application of mobile robots is searching a geographical region to locate the origin of a specific sensible phenomenon. Mapping mine fields, extraterrestrial and undersea exploration, the location of chemical and biological weapons, and the location of explosive devices are just a few potential applications. Teams of robotic bloodhounds have a simple common goal; to converge on the location of the source phenomenon, confirm its intensity, and to remain aggregated around it until directed to take some other action. In cases where human intervention through teleoperation is not possible, the robot team must be deployed in a territory without supervision, requiring an autonomous decentralized coordination strategy. This paper presents the alpha beta coordination strategy, a family of collective search algorithms that are based on dynamic partitioning of the robotic team into two complementary social roles according to a sensor based status measure. Robots in the alpha role are risk takers, motivated to improve their status by exploring new regions of the search space. Robots in the beta role are motivated to improve but are conservative, and tend to remain aggregated and stationary until the alpha robots have identified better regions of the search space. Roles are determined dynamically by each member of the team based on the status of the individual robot relative to the current state of the collective. Partitioning the robot team into alpha and beta roles results in a balance between exploration and exploitation, and can yield collective energy savings and improved resistance to sensor noise and defectors. Alpha robots waste energy exploring new territory, and are more sensitive to the effects of ambient noise and to defectors reporting inflated status. Beta robots conserve energy by moving in a direct path to regions of confirmed high status.

  15. Tactical mobile robots for urban search and rescue

    NASA Astrophysics Data System (ADS)

    Blitch, John; Sidki, Nahid; Durkin, Tim

    2000-07-01

    Few disasters can inspire more compassion for victims and families than those involving structural collapse. Video clips of children's bodies pulled from earthquake stricken cities and bombing sties tend to invoke tremendous grief and sorrow because of the totally unpredictable nature of the crisis and lack of even the slightest degree of negligence (such as with those who choose to ignore storm warnings). Heartbreaking stories of people buried alive for days provide a visceral and horrific perspective of some of greatest fears ever to be imagined by human beings. Current trends toward urban sprawl and increasing human discord dictates that structural collapse disasters will continue to present themselves at an alarming rate. The proliferation of domestic terrorism, HAZMAT and biological contaminants further complicates the matter further and presents a daunting problem set for Urban Search and Rescue (USAR) organizations around the world. This paper amplifies the case for robot assisted search and rescue that was first presented during the KNOBSAR project initiated at the Colorado School of Mines in 1995. It anticipates increasing technical development in mobile robot technologies and promotes their use for a wide variety of humanitarian assistance missions. Focus is placed on development of advanced robotic systems that are employed in a complementary tool-like fashion as opposed to traditional robotic approaches that portend to replace humans in hazardous tasks. Operational challenges for USAR are presented first, followed by a brief history of mobiles robot development. The paper then presents conformal robotics as a new design paradigm with emphasis on variable geometry and volumes. A section on robot perception follows with an initial attempt to characterize sensing in a volumetric manner. Collaborative rescue is then briefly discussed with an emphasis on marsupial operations and linked mobility. The paper concludes with an emphasis on Human Robot Interface

  16. Intelligent mobility research for robotic locomotion in complex terrain

    NASA Astrophysics Data System (ADS)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit

    2006-05-01

    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  17. Curb Mounting, Vertical Mobility, and Inverted Mobility on Rough Surfaces Using Microspine-Enabled Robots

    NASA Technical Reports Server (NTRS)

    Parness, Aaron

    2012-01-01

    Three robots that extend microspine technology to enable advanced mobility are presented. First, the Durable Reconnaissance and Observation Platform (DROP) and the ReconRobotics Scout platform use a new rotary configuration of microspines to provide improved soldier-portable reconnaissance by moving rapidly over curbs and obstacles, transitioning from horizontal to vertical surfaces, climbing rough walls and surviving impacts. Next, the four-legged LEMUR robot uses new configurations of opposed microspines to anchor to both manmade and natural rough surfaces. Using these anchors as feet enables mobility in unstructured environments, from urban disaster areas to deserts and caves.

  18. A fuzzy logic controller for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1993-01-01

    The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.

  19. Motion control design of the Bearcat II mobile robot

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Liao, Xiaoqun; Hall, Ernest L.

    1999-08-01

    Motion control is one of the most critical factors in the design of a robot. The purpose of this paper is to describe the research for applying motion control principles for a mobile robot systems design, which is on going at the University of Cincinnati Robotics Center. The mobile robot was constructed during the 1998-1999 academic year, and called BEARCAT II. Its design has inherited many features of its predecessor, BEARCAT II, such as vision guidance, sonar detection and digital control. In addition, BEARCAT II achieved many innovative motion control features as rotating sonar, zero turning radius, current control loop, and multi- level controller. This paper will focus on the motion control design, development and programming for the vehicle steering control and rotating sonar systems. The systems have been constructed and tested at the 1999 International Ground Robotics Competition with the BEARCAT II running an obstacle course for 153.5 feet and finishing fourth in the competition. The significance of this work is in the increased understanding of robot control and the potential application of autonomous guided vehicle technology for industry, defense and medicine.

  20. Global Localization and Concurrent Mapping for Mobile Robot on the robotic simulator ``SIMBAD''

    NASA Astrophysics Data System (ADS)

    Rachid, Boutine; Benmohamed, M.

    2009-03-01

    It was always a great challenge for the researchers, to build mobile robots able to explore and navigate in real environment. In this paper, we present a global localization, and concurrent mapping approach, implemented on a simulated robot, and tested in unknown virtual world. We use a particle filter to represent the posterior about the position and the heading of the robot, and a kalman filter to update the position of landmarks. In order to prove the convenience of our implementation, which is inspired from SLAM literature, we test it on SIMBAD simulator, and we illustrate some results.

  1. Real-time control of the ANDROS mobile robot

    SciTech Connect

    Clifford, S.; Haddox, D.; Ekdahl, D.; Tulenko, J.S.

    1994-12-31

    The standard control capabilities of REMOTEC`s ANDROS Mark VA mobile robot is limited to a joystick, a joint control panel, and a television monitor. The ANDROS is equipped with one color pan-and-tilt camera and one fixed black-and-white camera. Using this standard configuraiton, an operator must always be present at the console for the robot to carry out even routine movements and tasks. In addition, the operator`s ability to judge spatial relationships between the robot`s end effector and target objects is limited by the two-dimensional camera image. Consequently, simple tasks such as grabbing an object are made difficult because of problems with depth perception and narrow field of view.

  2. Teaching Robotics Software with the Open Hardware Mobile Manipulator

    ERIC Educational Resources Information Center

    Vona, M.; Shekar, N. H.

    2013-01-01

    The "open hardware mobile manipulator" (OHMM) is a new open platform with a unique combination of features for teaching robotics software and algorithms. On-board low- and high-level processors support real-time embedded programming and motor control, as well as higher-level coding with contemporary libraries. Full hardware designs and…

  3. Task-Based Flocking Algorithm for Mobile Robot Cooperation

    NASA Astrophysics Data System (ADS)

    He, Hongsheng; Ge, Shuzhi Sam; Tong, Guofeng

    In this paper, one task-based flocking algorithm that coordinates a swarm of robots is presented and evaluated based on the standard simulation platform. Task-based flocking algorithm(TFA) is an effective framework for mobile robots cooperation. Flocking behaviors are integrated into the cooperation of the multi-robot system to organize a robot team to achieve a common goal. The goal of the whole team is obtained through the collaboration of the individual robot’s task. The flocking model is presented, and the flocking energy function is defined based on that model to analyze the stability of the flocking and the task switching criterion. The simulation study is conducted in a five-versus-five soccer game, where the each robot dynamically selects its task in accordance with status and the whole robot team behaves as a flocking. Through simulation results and experiments, it is proved that the task-based flocking algorithm can effectively coordinate and control the robot flock to achieve the goal.

  4. An emergency response mobile robot for operations in combustible atmospheres

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)

    1993-01-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  5. Emergency response mobile robot for operations in combustible atmospheres

    NASA Technical Reports Server (NTRS)

    Stone, Henry W. (Inventor); Ohm, Timothy R. (Inventor)

    1995-01-01

    A mobile, self-powered, self-contained, and remote-controlled robot is presented. The robot is capable of safely operating in a combustible atmosphere and providing information about the atmosphere to the operator. The robot includes non-sparking and non-arcing electro-mechanical and electronic components designed to prevent the robot from igniting the combustible atmosphere. The robot also includes positively pressurized enclosures that house the electromechanical and electronic components of the robot and prevent intrusion of the combustible atmosphere into the enclosures. The enclosures are interconnected such that a pressurized gas injected into any one of the enclosures is routed to all the other enclosures through the interconnections. It is preferred that one or more sealed internal channels through structures intervening between the enclosures be employed. Pressure transducers for detecting if the pressure within the enclosures falls below a predetermined level are included. The robot also has a sensing device for determining the types of combustible substances in the surrounding atmosphere, as well as the concentrations of each type of substance relative to a pre-determined lower explosive limit (LEL). In addition, the sensing device can determine the percent level of oxygen present in the surrounding atmosphere.

  6. Hardware Development for a Mobile Educational Robot.

    ERIC Educational Resources Information Center

    Mannaa, A. M.; And Others

    1987-01-01

    Describes the development of a robot whose mainframe is essentially transparent and walks on four legs. Discusses various gaits in four-legged motion. Reports on initial trials of a full-sized model without computer-control, including smoothness of motion and actual obstacle crossing features. (CW)

  7. Telepresence for mobile robots in nuclear environments

    NASA Astrophysics Data System (ADS)

    McKay, Mark D.; Anderson, Matthew O.

    1996-12-01

    A growing concern with the rapid advances in technology is robotic systems will become so complex that operators will be overwhelmed by the complexity and number of controls. Thus, there is a need within the remote and teleoperated robotic field for better man-machine interfaces. Telepresence attempts to bring real world senses to the operator, especially where the scale and orientation of the robot is so different from the scale of a human operator. This paper reports on research performed at the INEL which identified and evaluated current developments in telepresence best suited for nuclear applications by surveying of national laboratories, universities, and evaluation of commercial products available in industry. The resulting telepresence system, VirtualwindoW, attempts to minimize the complexity of robot controls and to give the operator the 'feel' of the environment without actually contacting items in the environment. The authors of this report recommend that a prolonged use study be conducted on the VirtualwindoW to determine and bench mark the length of time users can be safely exposed to this technology. In addition, it is proposed that a stand alone system be developed which combines the existing multi-computer platform into a single processor telepresence platform. The stand alone system would provide a standard camera interface and allow the VirtualwindoW to be ported to other telerobotic systems.

  8. System safety analysis of an autonomous mobile robot

    SciTech Connect

    Bartos, R.J.

    1994-08-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate{trademark} robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA{copyright}) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection.

  9. Mobile robot on-board vision system

    SciTech Connect

    McClure, V.W.; Nai-Yung Chen.

    1993-06-15

    An automatic robot system is described comprising: an AGV transporting and transferring work piece, a control computer on board the AGV, a process machine for working on work pieces, a flexible robot arm with a gripper comprising two gripper fingers at one end of the arm, wherein the robot arm and gripper are controllable by the control computer for engaging a work piece, picking it up, and setting it down and releasing it at a commanded location, locating beacon means mounted on the process machine, wherein the locating beacon means are for locating on the process machine a place to pick up and set down work pieces, vision means, including a camera fixed in the coordinate system of the gripper means, attached to the robot arm near the gripper, such that the space between said gripper fingers lies within the vision field of said vision means, for detecting the locating beacon means, wherein the vision means provides the control computer visual information relating to the location of the locating beacon means, from which information the computer is able to calculate the pick up and set down place on the process machine, wherein said place for picking up and setting down work pieces on the process machine is a nest means and further serves the function of holding a work piece in place while it is worked on, the robot system further comprising nest beacon means located in the nest means detectable by the vision means for providing information to the control computer as to whether or not a work piece is present in the nest means.

  10. Intelligent control and cooperation for mobile robots

    NASA Astrophysics Data System (ADS)

    Stingu, Petru Emanuel

    The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation

  11. A collision avoidance algorithm for the mobile robot and the robot manipulator in multi-robot system

    NASA Astrophysics Data System (ADS)

    Jih, Yeung-Jaw Joe

    1991-08-01

    As the modern, highly automated factory becomes more and more complicated, the collision avoidance between robots and other obstacles in the work space becomes increasingly important as well. A local collision avoidance algorithm which was developed based on the general structure of the Artificial Potential Field Force along with the Strategy Force and the Pseudo Distance Function is presented. In this algorithm, a goal attracting force is defined in order to drive the robot from the starting position to the goal position. When the distance between a robot and obstacle becomes smaller than a pre-defined effective avoidance distance, an artificial repulsion force is generated as a function of the distance resulting in repulsion between the two closing objects. The commanding force (by combining goal attracting force and the repulsion force) drives the robot toward the goal position without colliding with other objects in the work space. Since the repulsion force, developed here, depends on the distance only, the complicated geometric function for the object model is less important in the algorithm used in this dissertation. The simplicity of this improved artificial force collision algorithm would make it possible to be used on a real-time basis within a time variant environment. Further improvement is realized by introducing a Strategy Force within the Artificial Force whenever a locking situation is detected. The Euclidean distance between the objects normally used in this algorithm is also replaced by a defined Pseudo Distance calculated by a Pseudo Distance Function. The Pseudo Distance Function uses basic geometric information between two objects to calculate the Pseudo Distance. The Pseudo Distance is always smaller than the true minimum distance. This greatly simplified robot collision avoidance algorithm is applicable not only on a two-dimensional mobile robot system but on a three-dimensional multi-robot system as well. Simulations are performed on both

  12. Mobile Robotic Teams Applied to Precision Agriculture

    SciTech Connect

    Anderson, Matthew Oley; Kinoshita, Robert Arthur; Mckay, Mark D; Willis, Walter David; Gunderson, R.W.; Flann, N.S.

    1999-04-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University’s Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in realtime. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

  13. Mobile Robotic Teams Applied to Precision Agriculture

    SciTech Connect

    M.D. McKay; M.O. Anderson; N.S. Flann; R.A. Kinoshita; R.W. Gunderson; W.D. Willis

    1999-04-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University�s Center for Self-Organizing and Intelligent Systems (CSOIS) have developed a team of autonomous robotic vehicles applicable to precision agriculture. A unique technique has been developed to plan, coordinate, and optimize missions in large structured environments for these autonomous vehicles in real-time. Two generic tasks are supported: 1) Driving to a precise location, and 2) Sweeping an area while activating on-board equipment. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle, and task conditions. This paper discusses the development of the autonomous robotic team, details of the mission-planning algorithm, and successful field demonstrations at the INEEL.

  14. SIMON: A mobile robot for floor contamination surveys

    SciTech Connect

    Dudar, E.; Teese, G.; Wagner, D.

    1991-12-31

    The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot`s motion when they are depressed. Paths for the robot are preprogrammed and the robot`s motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

  15. A natural-language interface to a mobile robot

    NASA Technical Reports Server (NTRS)

    Michalowski, S.; Crangle, C.; Liang, L.

    1987-01-01

    The present work on robot instructability is based on an ongoing effort to apply modern manipulation technology to serve the needs of the handicapped. The Stanford/VA Robotic Aid is a mobile manipulation system that is being developed to assist severely disabled persons (quadriplegics) in performing simple activities of everyday living in a homelike, unstructured environment. It consists of two major components: a nine degree-of-freedom manipulator and a stationary control console. In the work presented here, only the motions of the Robotic Aid's omnidirectional motion base have been considered, i.e., the six degrees of freedom of the arm and gripper have been ignored. The goal has been to develop some basic software tools for commanding the robot's motions in an enclosed room containing a few objects such as tables, chairs, and rugs. In the present work, the environmental model takes the form of a two-dimensional map with objects represented by polygons. Admittedly, such a highly simplified scheme bears little resemblance to the elaborate cognitive models of reality that are used in normal human discourse. In particular, the polygonal model is given a priori and does not contain any perceptual elements: there is no polygon sensor on board the mobile robot.

  16. Recognizing and interpreting gestures on a mobile robot

    SciTech Connect

    Kortenkamp, D.; Huber, E.; Bonasso, R.P.

    1996-12-31

    Gesture recognition is an important skill for robots that work closely with humans. Gestures help to clarify spoken commands and are a compact means of relaying geometric information. We have developed a real-time, three-dimensional gesture recognition system that resides on-board a mobile robot. Using a coarse three-dimensional model of a human to guide stereo measurements of body parts, the system is capable of recognizing six distinct gestures made by an unadorned human in an unaltered environment. An active vision approach focuses the vision system`s attention on small, moving areas of space to allow for frame rate processing even when the person and/or the robot are moving. This paper describes the gesture recognition system, including the coarse model and the active vision approach. This paper also describes how the gesture recognition system is integrated with an intelligent control architecture to allow for complex gesture interpretation and complex robot action. Results from experiments with an actual mobile robot are given.

  17. Improving mobile robot localization: grid-based approach

    NASA Astrophysics Data System (ADS)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  18. Distributed cooperating processes in a mobile robot control system

    NASA Technical Reports Server (NTRS)

    Skillman, Thomas L., Jr.

    1988-01-01

    A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.

  19. A Qualitative Approach to Mobile Robot Navigation Using RFID

    NASA Astrophysics Data System (ADS)

    Hossain, M.; Rashid, M. M.; Bhuiyan, M. M. I.; Ahmed, S.; Akhtaruzzaman, M.

    2013-12-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot.

  20. Multiagent collaboration for experimental calibration of an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Vachon, Bertrand; Berge-Cherfaoui, Veronique

    1991-03-01

    This paper presents an action in mission SOCRATES whose aim is the development of a self-calibration method for an autonomous mobile robot. The robot has to determine the precise location of the coordinate system shared by its sensors. Knowledge of this system is a sine qua non condition for efficient multisensor fusion and autonomous navigation in an unknown environment. But, as perceptions and motions are not accurate, this knowledge can only be achieved by multisensor fusion. The application described highlights this kind of problem. Multisensor fusion is used here especially in its symbolic aspect. Useful knowledge includes both numerous data coming from various sensors and suitable ways to process these data. A blackboard architecture has been chosen to manage useful information. Knowledge sources are called agents and the implement physical sensors (perceptors or actuators) as well as logical sensors (high level data processors). The problem to solve is self- calibration which includes the determination of the coordinate system R of the robot and the transformations necessary to convert data from sensor reference to R. The origin of R has been chosen to be O, the rotation center of the robot. As its genuine location may vary due to robot or ground characteristics, an experimental determination of O is attempted. A strategy for measuring distances in approximate positions is proposed. This strategy must take into account the fact that motions of the robot as well as perceptions may be inaccurate. Results obtained during experiments and future extensions of the system are discussed.

  1. Some Novel Design Principles for Collective Behaviors in Mobile Robots

    SciTech Connect

    OSBOURN, GORDON C.

    2002-09-01

    We present a set of novel design principles to aid in the development of complex collective behaviors in fleets of mobile robots. The key elements are: the use of a graph algorithm that we have created, with certain proven properties, that guarantee scalable local communications for fleets of arbitrary size; the use of artificial forces to simplify the design of motion control; the use of certain proximity values in the graph algorithm to simplify the sharing of robust navigation and sensor information among the robots. We describe these design elements and present a computer simulation that illustrates the behaviors readily achievable with these design tools.

  2. An autonomous mobil robot to perform waste drum inspections

    SciTech Connect

    Peterson, K.D.; Ward, C.R.

    1994-03-01

    A mobile robot is being developed by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure and create accurate, high quality documentation to ensure regulatory compliance. Development work is being coordinated among several DOE, academic and commercial entities in accordance with DOE`s technology transfer initiative. The prototype system was demonstrated in November of 1993. A system is now being developed for field trails at the Fernald site.

  3. Active object programming for military autonomous mobile robot software prototyping

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.

    2001-10-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge panel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  4. Active objects programming for military autonomous mobile robots software prototyping

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.

    2001-09-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge pannel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  5. Mobile robots: An assessment of business opportunities in an emerging industry

    SciTech Connect

    Miller, R.K.

    1987-01-01

    The mobile robotics industry is one that is certain to reach the billion-dollar level in the early 1990s. The authors' analysis finds that at least eight areas of application have the potential of exceeding the manufacturing AGVS market by the turn of the century: service and maintenance robots, medical robots, agricultural robots, military robots, office automation, electric utilities, space robots, and construction/mining. This report describes these and other applications, and reviews the mobile robotic products of 45 companies. Leading research is also assessed, and a market forecast is presented.

  6. Intelligent control in mobile robotics: the PANORAMA project

    NASA Astrophysics Data System (ADS)

    Greenway, Phil

    1994-03-01

    The European Community's strategic research initiative in information technology has been in place for seven years. A good example of the pan-European collaborative projects conducted under this initiative is PANORAMA: Perception and Navigation for Autonomous Mobile Robot Applications. This four-and-a-half-year project, completed in October 1993, aimed to prove the feasibility of an autonomous mobile robotic system replacing a human-operated vehicle working outdoors in a partially structured environment. The autonomous control of a mobile rock drilling machine was chosen as a challenging and representative test scenario. This paper presents an overview of intelligent mobile robot control architectures. Goals and objectives of the project are described, together with the makeup of the consortium and the roles of the members within it. The main technical achievements from PANORAMA are then presented, with emphasis given to the problems of realizing intelligent control. In particular, the planning and replanning of a mission, and the corresponding architectural choices and infrastructure required to support the chosen task oriented approach, are discussed. Specific attention is paid to the functional decomposition of the system, and how the requirements for `intelligent control' impact on the organization of the identified system components. Future work and outstanding problems are considered in some concluding remarks.

  7. Embodied Computation: An Active-Learning Approach to Mobile Robotics Education

    ERIC Educational Resources Information Center

    Riek, L. D.

    2013-01-01

    This paper describes a newly designed upper-level undergraduate and graduate course, Autonomous Mobile Robots. The course employs active, cooperative, problem-based learning and is grounded in the fundamental computational problems in mobile robotics defined by Dudek and Jenkin. Students receive a broad survey of robotics through lectures, weekly…

  8. Vision based object pose estimation for mobile robots

    NASA Technical Reports Server (NTRS)

    Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry

    1994-01-01

    Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.

  9. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  10. Real-time optical flow estimation on a GPU for a skied-steered mobile robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-04-01

    Accurate egomotion estimation is required for mobile robot navigation. Often the egomotion is estimated using optical flow algorithms. For an accurate estimation of optical flow most of modern algorithms require high memory resources and processor speed. However simple single-board computers that control the motion of the robot usually do not provide such resources. On the other hand, most of modern single-board computers are equipped with an embedded GPU that could be used in parallel with a CPU to improve the performance of the optical flow estimation algorithm. This paper presents a new Z-flow algorithm for efficient computation of an optical flow using an embedded GPU. The algorithm is based on the phase correlation optical flow estimation and provide a real-time performance on a low cost embedded GPU. The layered optical flow model is used. Layer segmentation is performed using graph-cut algorithm with a time derivative based energy function. Such approach makes the algorithm both fast and robust in low light and low texture conditions. The algorithm implementation for a Raspberry Pi Model B computer is discussed. For evaluation of the algorithm the computer was mounted on a Hercules mobile skied-steered robot equipped with a monocular camera. The evaluation was performed using a hardware-in-the-loop simulation and experiments with Hercules mobile robot. Also the algorithm was evaluated using KITTY Optical Flow 2015 dataset. The resulting endpoint error of the optical flow calculated with the developed algorithm was low enough for navigation of the robot along the desired trajectory.

  11. The Challenge of Planning and Execution for Spacecraft Mobile Robots

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The need for spacecraft mobile robots continues to grow. These robots offer the potential to increase the capability, productivity, and duration of space missions while decreasing mission risk and cost. Spacecraft Mobile Robots (SMRs) can serve a number of functions inside and outside of spacecraft from simpler tasks, such as performing visual diagnostics and crew support, to more complex tasks, such as performing maintenance and in-situ construction. One of the predominant challenges to deploying SMRs is to reduce the need for direct operator interaction. Teleoperation is often not practical due to the communication latencies incurred because of the distances involved and in many cases a crewmember would directly perform a task rather than teleoperate a robot to do it. By integrating a mixed-initiative constraint-based planner with an executive that supports adjustably autonomous control, we intend to demonstrate the feasibility of autonomous SMRs by deploying one inside the International Space Station (ISS) and demonstrate in simulation one that operates outside of the ISS. This paper discusses the progress made at NASA towards this end, the challenges ahead, and concludes with an invitation to the research community to participate.

  12. Mobile robotic sensors for perimeter detection and tracking.

    PubMed

    Clark, Justin; Fierro, Rafael

    2007-02-01

    Mobile robot/sensor networks have emerged as tools for environmental monitoring, search and rescue, exploration and mapping, evaluation of civil infrastructure, and military operations. These networks consist of many sensors each equipped with embedded processors, wireless communication, and motion capabilities. This paper describes a cooperative mobile robot network capable of detecting and tracking a perimeter defined by a certain substance (e.g., a chemical spill) in the environment. Specifically, the contributions of this paper are twofold: (i) a library of simple reactive motion control algorithms and (ii) a coordination mechanism for effectively carrying out perimeter-sensing missions. The decentralized nature of the methodology implemented could potentially allow the network to scale to many sensors and to reconfigure when adding/deleting sensors. Extensive simulation results and experiments verify the validity of the proposed cooperative control scheme. PMID:17275822

  13. Dynamic map building for an autonomous mobile robot

    SciTech Connect

    Leonard, J.J.; Durrant-Whyte, H.F. ); Cox, I.J. )

    1992-08-01

    This article presents an algorithm for autonomous map building and maintenance for a mobile robot. The authors believe that mobile robot navigation can be treated as a problem of tracking geometric features that occur naturally in the environment. They represent each feature in the map by a location estimate (the feature state vector) and two distinct measures of uncertainty: a covariance matrix to represent uncertainty in feature location, and a credibility measure to represent their belief in the validity of the feature. During each position update cycle, predicted measurements are generated for each geometric feature in the map and compared with actual sensor observations. Successful matches cause a feature's credibility to be increased. Unpredicted observations are used to initialize new geometric features, while unobserved predictions result in a geometric feature's credibility being decreased. They also describe experimental results obtained with the algorithm that demonstrate successful map building using real sonar data.

  14. Avoiding moving obstacles by deviation from a mobile robot`s nominal path

    SciTech Connect

    Tsoularis, A.; Kambhampati, C.

    1999-05-01

    This paper deals with the problem of obstacle avoidance by deviation from the nominal path. Deviation is the only option available to the robot when the acceleration or deceleration plan on the nominal path fails to produce a viable avoidance strategy. The obstacle avoidance on the nominal path was dealt with in the authors` previous development, where the robot`s motion was only subject to an upper bound on its speed. When the robot has to deviate, its motion is subject to a maximum steering constraint and a maximum deviation constraint in addition to the maximum speed constraint. The problem is solved geometrically by identifying final states for the robot that are reachable, satisfy all the constraints, and guarantee collision avoidance. The final state-reachability conditions that the authors obtain in the process ensure that no unnecessary deviation plan is initiated. These conditions, along with the simplicity of the geometric arguments they employ, make the scheme an attractive option for on-line implementation. The only significant complexity arises when minimizing the performance index. They have suggested dynamic programming as an optimization took, but any other nonlinear optimization technique can be adopted.

  15. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1996-06-01

    It is widely accepted that dead-reckoning based on the rolling with no-slip condition on the wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The authors establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  16. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1997-03-01

    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. We establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  17. Wheel rolling constraints and slip in mobile robots

    SciTech Connect

    Shekhar, S.

    1997-03-01

    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The author establishes that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  18. Fuzzy Visual Path Following by a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Hamissi, A.; Bazoula, A.

    2008-06-01

    We present in this work a variant of a visual navigation method developed for path following by a nonholonomic mobile robot moving in an environment free of obstacles. Only an embedded CCD camera is used for perception. The integration of perception and action leads us to develop firstly a method of extraction of the useful information from each acquired image, secondly a control approach using fuzzy logic.

  19. Model-based description of environment interaction for mobile robots

    NASA Astrophysics Data System (ADS)

    Borghi, Giuseppe; Ferrari, Carlo; Pagello, Enrico; Vianello, Marco

    1999-01-01

    We consider a mobile robot that attempts to accomplish a task by reaching a given goal, and interacts with its environment through a finite set of actions and observations. The interaction between robot and environment is modeled by Partially Observable Markov Decision Processes (POMDP). The robot takes its decisions in presence of uncertainty about the current state, by maximizing its reward gained during interactions with the environment. It is able to self-locate into the environment by collecting actions and perception histories during the navigation. To make the state estimation more reliable, we introduce an additional information in the model without adding new states and without discretizing the considered measures. Thus, we associate to the state transition probabilities also a continuous metric given through the mean and the variance of some significant sensor measurements suitable to be kept under continuous form, such as odometric measurements, showing that also such unreliable data can supply a great deal of information to the robot. The overall control system of the robot is structured as a two-levels layered architecture, where the low level implements several collision avoidance algorithms, while the upper level takes care of the navigation problem. In this paper, we concentrate on how to use POMDP models at the upper level.

  20. Robust feature detection using sonar sensors for mobile robots

    NASA Astrophysics Data System (ADS)

    Choi, Jinwoo; Ahn, Sunghwan; Chung, Wan Kyun

    2005-12-01

    Sonar sensor is an attractive tool for the SLAM of mobile robot because of their economic aspects. This cheap sensor gives relatively accurate range readings if disregarding angular uncertainty and specular reflections. However, these defects make feature detection difficult for the most part of the SLAM. This paper proposed a robust sonar feature detection algorithm. This algorithm gives feature detection methods for both point features and line features. The point feature detection method was based on the TBF scheme. Moreover, three additional processes improved the performance of feature detection as follows; 1) stable intersections, 2) efficient sliding window update and 3) removal of the false point features on the wall. The line feature detection method was based on the basic property of adjacent sonar sensors. Along the line feature, three adjacent sonar sensors gave similar range readings. Using this sensor property, it proposed a novel algorithm for line feature detection, which is simple and the feature can be obtained by using only current sensor data. The proposed feature detection algorithm gives a good solution for the SLAM of mobile robots because it gives accurate feature information for both the point and line features even with sensor errors. Furthermore, a sufficient number of features are available to correct mobile robot pose. Experimental results for point feature and line feature detection demonstrate the performance of the proposed algorithm in a home-like environment.

  1. SIMON: A mobile robot for floor contamination surveys

    SciTech Connect

    Dudar, E.; Teese, G.; Wagner, D.

    1991-01-01

    The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot's motion when they are depressed. Paths for the robot are preprogrammed and the robot's motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

  2. Vision-based stabilization of nonholonomic mobile robots by integrating sliding-mode control and adaptive approach

    NASA Astrophysics Data System (ADS)

    Cao, Zhengcai; Yin, Longjie; Fu, Yili

    2013-01-01

    Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.

  3. Mobile robotic assistive balance trainer - an intelligent compliant and adaptive robotic balance assistant for daily living.

    PubMed

    Tiseo, Carlo; Lim, Zhen Yi; Shee, Cheng Yap; Ang, Wei Tech

    2014-01-01

    Balance control probably has the greatest impact on independence in activities of daily living (ADL), because it is a fundamental motor skill and prerequisite to the maintenance of a myriad of postures and mobile activities. We propose a new rehabilitation therapy to administer standing and mobile balance control training, enabled by a Mobile Robotic Assistive Balance Trainer (MRABT). The targeted group for this initial work is post stroke patients, although it can be extended to subjects with other neurological insults in the future. The proposed system consists of a mobile base and a parallel robotic arm which provides support to the patient at the hip. The compliant robotic arm with intelligent control algorithm will only provide support and assistance to the patient when the center of mass of the body deviates beyond the predefined safety boundary, mimicking the helping hands of a parent when a toddler learns to walk. In this paper, we present our initial work in the design and kinematic analysis of the system. PMID:25571190

  4. Optimal control of 2-wheeled mobile robot at energy performance index

    NASA Astrophysics Data System (ADS)

    Kaliński, Krzysztof J.; Mazur, Michał

    2016-03-01

    The paper presents the application of the optimal control method at the energy performance index towards motion control of the 2-wheeled mobile robot. With the use of the proposed method of control the 2-wheeled mobile robot can realise effectively the desired trajectory. The problem of motion control of mobile robots is usually neglected and thus performance of the realisation of the high level control tasks is limited.

  5. The WPI Autonomous Mobile Robot Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Green, Peter E.; Hall, Kyle S.

    1987-01-01

    This paper presents a report on the WPI autonomous mobile robot (WAMR). This robot is currently under development by the Intelligent Machines Project at WPI. Its purpose is to serve as a testbed for real-time artificial intelligence. WAMR is expected to find its way from one place in a building to another, avoiding people and obstacles enroute. It is given no a priori knowledge of the building, but must learn about its environment by goal-directed exploration. Design concepts and descriptions of the major items completed thus far are presented. WAMR is a self-contained, wheeled robot that uses evidence based techniques to reason about actions. The robot builds and continually updates a world model of its environment. This is done using a combination of ultrasonic and visual data. This world model is interpreted and movement plans are generated by a planner utilizing uses real-time incremental evidence techniques. These movement plans are then carried out by a hierarchical evidence-based adaptive controller. Two interesting features of the robot are the line imaging ultrasonic sensor and the video subsystem. The former uses frequency variation to form a line image of obstacles between one and twenty feet in front of the robot. The latter attempts to mimic the human eye using neural network pattern recognition techniques. Several items have been completed thus far. The paper describes some of these, including the multiprocessor navigator and non-skid motion control system, the ultrasonic line imager, the concepts of the vision system, and the computer hardware and software environment.

  6. Design, characterization and control of the Unique Mobility Corporation robot

    NASA Astrophysics Data System (ADS)

    Velasco, Virgilio B., Jr.; Newman, Wyatt S.; Steinetz, Bruce; Kopf, Carlo; Malik, John

    1994-05-01

    Space and mass are at a premium on any space mission, and thus any machinery designed for space use should be lightweight and compact, without sacrificing strength. It is for this reason that NASA/LeRC contracted Unique Mobility Corporation to exploit their novel actuator designs to build a robot that would advance the present state of technology with respect to these requirements. Custom-designed motors are the key feature of this robot. They are compact, high-performance dc brushless servo motors with a high pole count and low inductance, thus permitting high torque generation and rapid phase commutation. Using a custom-designed digital signal processor-based controller board, the pulse width modulation power amplifiers regulate the fast dynamics of the motor currents. In addition, the programmable digital signal processor (DSP) controller permits implementation of nonlinear compensation algorithms to account for motoring vs. regeneration, torque ripple, and back-EMF. As a result, the motors produce a high torque relative to their size and weight, and can do so with good torque regulation and acceptably high velocity saturation limits. This paper presents the Unique Mobility Corporation robot prototype: its actuators, its kinematic design, its control system, and its experimental characterization. Performance results, including saturation torques, saturation velocities and tracking accuracy tests are included.

  7. Design, characterization and control of the Unique Mobility Corporation robot

    NASA Technical Reports Server (NTRS)

    Velasco, Virgilio B., Jr.; Newman, Wyatt S.; Steinetz, Bruce; Kopf, Carlo; Malik, John

    1994-01-01

    Space and mass are at a premium on any space mission, and thus any machinery designed for space use should be lightweight and compact, without sacrificing strength. It is for this reason that NASA/LeRC contracted Unique Mobility Corporation to exploit their novel actuator designs to build a robot that would advance the present state of technology with respect to these requirements. Custom-designed motors are the key feature of this robot. They are compact, high-performance dc brushless servo motors with a high pole count and low inductance, thus permitting high torque generation and rapid phase commutation. Using a custom-designed digital signal processor-based controller board, the pulse width modulation power amplifiers regulate the fast dynamics of the motor currents. In addition, the programmable digital signal processor (DSP) controller permits implementation of nonlinear compensation algorithms to account for motoring vs. regeneration, torque ripple, and back-EMF. As a result, the motors produce a high torque relative to their size and weight, and can do so with good torque regulation and acceptably high velocity saturation limits. This paper presents the Unique Mobility Corporation robot prototype: its actuators, its kinematic design, its control system, and its experimental characterization. Performance results, including saturation torques, saturation velocities and tracking accuracy tests are included.

  8. Significant line segments for an indoor mobile robot

    SciTech Connect

    Lebegue, X.; Aggarwal, J.K. . Dept. of Electrical and Computer Engineering)

    1993-12-01

    New algorithms for detecting and interpreting linear features of a real scene as imaged by a single camera on a mobile robot are described. The low-level processing stages are specifically designed to increase the usefulness and the quality of the extracted features for indoor scene understanding. In order to derive 3-D information from a 2-D image, the authors consider only lines with particular orientations in 3-D. The detection and interpretation processes provide a 3-D orientation hypothesis for each 2-D segment. This in turn is used to estimate the robot's orientation and relative position in the environment. Next, the orientation data is used by a motion stereo algorithm to fully estimate the 3-D structure when a sequence of images becomes available. From detection to 3-D estimation, a strong emphasis is placed on real-world applications and very fast processing with conventional hardware. Results of experimentation with a mobile robot under realistic conditions are given and discussed.

  9. Viewing and controlling a mobile robot with common Web technologies

    NASA Astrophysics Data System (ADS)

    Colon, Eric; Baudoin, Yvan

    1998-08-01

    Despite enthusiastic researches all over the world, completely autonomous robots are yet today an utopia. But pure teleoperated Robotics System, as generally used in unknown or dangerous environment, have also their limitations and drawbacks. The introduction of a partial autonomy, where appropriate, could greatly enhance the performances of the man-machine systems. The interactive autonomy objective is to hide sophisticated systems behind simple interfaces and to transparently provide help to the user. These principles can be implemented to control a manipulation arm or a mobile vehicle. Telecontrol is generally associated with video images, nevertheless in specific applications or under special circumstances, the images have a poor quality, can be degraded when using the systems or are not available. This implies the introduction of a 3D model that can be used as stand alone or as augmented reality display. Existing internet technologies can be used for interfacing the real and the virtual worlds. VRML provides the 3D aspects, Java is the unifying language between different computer system, browsers and plug-ins are completing the team. Using these technologies we have developed a multi client/server application to remotely view and control a mobile robot. In this paper we give the description of this application and we provide a basic presentation of the tools.

  10. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  11. Embodying a cognitive model in a mobile robot

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Lyons, Damian; Lonsdale, Deryle

    2006-10-01

    The ADAPT project is a collaboration of researchers in robotics, linguistics and artificial intelligence at three universities to create a cognitive architecture specifically designed to be embodied in a mobile robot. There are major respects in which existing cognitive architectures are inadequate for robot cognition. In particular, they lack support for true concurrency and for active perception. ADAPT addresses these deficiencies by modeling the world as a network of concurrent schemas, and modeling perception as problem solving. Schemas are represented using the RS (Robot Schemas) language, and are activated by spreading activation. RS provides a powerful language for distributed control of concurrent processes. Also, The formal semantics of RS provides the basis for the semantics of ADAPT's use of natural language. We have implemented the RS language in Soar, a mature cognitive architecture originally developed at CMU and used at a number of universities and companies. Soar's subgoaling and learning capabilities enable ADAPT to manage the complexity of its environment and to learn new schemas from experience. We describe the issues faced in developing an embodied cognitive architecture, and our implementation choices.

  12. Two-axis hydraulic joint for high speed, heavy lift robotic operations

    SciTech Connect

    Vaughn, M.R.; Robinett, R.D.; Phelan, J.R.; VanZuiden, D.M.

    1994-04-01

    A hydraulically driven universal joint was developed for a heavy lift, high speed nuclear waste remediation application. Each axis is driven by a simple hydraulic cylinder controlled by a jet pipe servovalve. Servovalve behavior is controlled by a force feedback control system, which damps the hydraulic resonance. A prototype single joint robot was built and tested. A two joint robot is under construction.

  13. A Mobile Robot Operation with Instruction of Neck Movement using Laser Pointer

    NASA Astrophysics Data System (ADS)

    Shibata, Satoru; Yamamoto, Tomonori; Jindai, Mitsuru

    A human-robot system in which a mobile robot follows the movement of the laser spot projected on the floor by the laser pointer attached at the human head is considered. Human gives instruction of desired movement to the omni-directional mobile robot by rotating his or her head. The mobile robot can realize intended movement by following the movement of the laser spot on the floor. By projecting an instructive point to be followed by the mobile robot, the user can clearly recognize the relation between the direction being faced and the desired position of the mobile robot. In addition, the user can convey a motion trajectory to the mobile robot continuously. Kansei transfer function is introduced between the instruction movement of the laser spot and following motion of the robot to realize psychologically acceptable motion of the robot. In addition, three modes, stopping mode, following mode, and autonomous motion mode to the target, are considered. The effectiveness of the proposed system was discussed experimentally, and confirmed by the smooth trajectory of the following motion of the mobile robot and good psychological evaluations.

  14. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Stephen H.; Wen, John Ting-Yung; Saridis, George N.

    1991-01-01

    The dynamic equations of motion are presented for two or more cooperating manipulators on a freely moving mobile platform. The system of cooperating robot manipulators forms a closed kinematic chain where the force of interaction must be included in the formulation of robot and platform dynamics. The formulation includes the full dynamic interactions from arms to platform and arm tip to arm tip, and the possible translation and rotation of the platform. The equations of motion are shown to be identical in structure to the fixed-platform cooperative manipulator dynamics. The number of DOFs of the system is sufficiently large to make recursive dynamic calculation methods potentially more efficient than closed-form solutions. A complete simulation with two 6-DOF manipulators of a free-floating platform is presented along a with a multiple-arm controller to position the common load.

  15. Detection of free spaces for mobile robot navigation

    NASA Astrophysics Data System (ADS)

    Azzizi, Norelhouda; Zaatri, Abdelouahab; Rahmani, Fouad Lazhar

    2014-10-01

    This work is situated within the framework of the semi-autonomous and autonomous navigation of mobile robots in unknown environments with obstacles occurrence. It is based on the implementation of a vision-based system using an embedded monocular CCD camera. The vision system is designed to dynamically determine the free space in which the robot can move without obstacle collisions. This system is composed of a sequel of image processing operations: contour detection by Canny's filter, connection of neighborhood pixels, elimination of small contours which are considered as noise. The free space is determined by analyzing the perceived area and checking the presence of obstacles. Finally, obstacle borders are delimited enabling to prevent obstacles. Some experimental results are presented to illustrate the effective possibility of use of our system.

  16. Positional estimation techniques for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Aggarwal, J. K.

    1990-01-01

    Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented.

  17. CoMRoS: Cooperative mobile robots Stuttgart

    SciTech Connect

    Braeunl, T.; Kalbacher, M.; Levi, P.; Mamier, G.

    1996-12-31

    Project CoMRoS has the goal to develop intelligent cooperating mobile robots. Several different vehicles are to solve a single task autonomously by exchanging plans without a central control. We use {open_quotes}Robuter II{close_quotes} vehicles from Robosoft France, adapted to our needs. The standard vehicle has very little local intelligence (VME bus system) and is controlled remotely by wireless Ethernet for sending steering commands and receiving sonar sensor data. A wireless video link is used to transmit camera images. Data exchange between vehicles is then performed among the corresponding workstations. The remote control is basically used to simplify testing and debugging of robot programs. However, each vehicle can also be driven completely autonomous by using a laptop PC.

  18. Walking control of small size humanoid robot: HAJIME ROBOT 18

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  19. Mobile robot navigation using qualitative reasoning

    SciTech Connect

    Pin, F.G.; Watanabe, Yutaka.

    1993-01-01

    Vehicle control in a priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise. incomplete, or unreliable data. Forsuch systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips have been developed to add a fuzzy inferencing capability to real-time control systems. The use of these boards and anapproach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation are first discussed. We then describe how the human-like navigation schemes were implemented on a test-bed platform to investigate two control modes for driving a car in a priori unknown environments on the basis of sparse and imprecise sensor data. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both nodes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulationresults as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and methodologies.

  20. Mobile robot navigation using qualitative reasoning

    SciTech Connect

    Pin, F.G.; Watanabe, Yutaka

    1993-03-01

    Vehicle control in a priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise. incomplete, or unreliable data. Forsuch systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips have been developed to add a fuzzy inferencing capability to real-time control systems. The use of these boards and anapproach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation are first discussed. We then describe how the human-like navigation schemes were implemented on a test-bed platform to investigate two control modes for driving a car in a priori unknown environments on the basis of sparse and imprecise sensor data. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver`s aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both nodes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulationresults as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver`s aid using the new fuzzy inferencing hardware system and methodologies.

  1. Non linear predictive control of a LEGO mobile robot

    NASA Astrophysics Data System (ADS)

    Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.

    2014-10-01

    Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.

  2. A novel sensor system for mobile robot using moire technique

    NASA Astrophysics Data System (ADS)

    Lee, Hyunki; Cho, Hyungsuck

    2005-12-01

    Nowadays a major research issue of mobile robots is to develop a robust 3D environment sensing for navigation and task execution. To achieve this, a variety of techniques have been developed for the determination of the 3D scene geometric information such as stereo vision, laser structured light, laser range finder and so on. But these methods have many limitations. To overcome these limitations we introduce a new sensing algorithm, which is based on the moire technique and stereo vision. To verify the performance of this sensor system we conducted a series of simulation for various simple environments. The result shows the feasibility of successful perception with several environments.

  3. Sonar Sensor Models and Their Application to Mobile Robot Localization

    PubMed Central

    Burguera, Antoni; González, Yolanda; Oliver, Gabriel

    2009-01-01

    This paper presents a novel approach to mobile robot localization using sonar sensors. This approach is based on the use of particle filters. Each particle is augmented with local environment information which is updated during the mission execution. An experimental characterization of the sonar sensors used is provided in the paper. A probabilistic measurement model that takes into account the sonar uncertainties is defined according to the experimental characterization. The experimental results quantitatively evaluate the presented approach and provide a comparison with other localization strategies based on both the sonar and the laser. Some qualitative results are also provided for visual inspection. PMID:22303171

  4. A mobile robots experimental environment with event-based wireless communication.

    PubMed

    Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián

    2013-01-01

    An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented. PMID:23881139

  5. A Mobile Robots Experimental Environment with Event-Based Wireless Communication

    PubMed Central

    Guinaldo, María; Fábregas, Ernesto; Farias, Gonzalo; Dormido-Canto, Sebastián; Chaos, Dictino; Sánchez, José; Dormido, Sebastián

    2013-01-01

    An experimental platform to communicate between a set of mobile robots through a wireless network has been developed. The mobile robots get their position through a camera which performs as sensor. The video images are processed in a PC and a Waspmote card sends the corresponding position to each robot using the ZigBee standard. A distributed control algorithm based on event-triggered communications has been designed and implemented to bring the robots into the desired formation. Each robot communicates to its neighbors only at event times. Furthermore, a simulation tool has been developed to design and perform experiments with the system. An example of usage is presented. PMID:23881139

  6. A monocular leader-follower system for small mobile robots

    NASA Astrophysics Data System (ADS)

    Monnier, Camille S.; German, Stan; Ostapchenko, Andrey

    2012-06-01

    Current generation UGV control systems typically require operators to physically control a platform through teleoperation, even for simple tasks such as travelling from one location to another. While vision-based control technologies promise to significantly reduce the burden on UGV operators, most schemes rely on specialized sensing hardware, such as LIDAR or stereo cameras, or require additional operator-worn equipment or markers to differentiate the leader from nearby pedestrians. We present a system for robust leader-follower control of small UGVs using only a single monocular camera, which is ubiquitous on mobile platforms. The system allows a user to control a mobile robot by leading the way and issuing commands through arm/hand gestures, and differentiates between the leader and nearby pedestrians. The software achieves this by integrating efficient algorithms for pedestrian detection, online appearance learning, and kinematic tracking with a lightweight technique for camera-based gesture recognition.

  7. A 3D world model builder with a mobile robot

    SciTech Connect

    Zhang, Z.; Faugeras, O. )

    1992-08-01

    This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.

  8. Sensor fusion by pseudo information measure: a mobile robot application.

    PubMed

    Asharif, Mohammad Reza; Moshiri, Behzad; HoseinNezhad, Reza

    2002-07-01

    In any autonomous mobile robot, one of the most important issues to be designed and implemented is environment perception. In this paper, a new approach is formulated in order to perform sensory data integration for generation of an occupancy grid map of the environment. This method is an extended version of the Bayesian fusion method for independent sources of information. The performance of the proposed method of fusion and its sensitivity are discussed. Map building simulation for a cylindrical robot with eight ultrasonic sensors and mapping implementation for a Khepera robot have been separately tried in simulation and experimental works. A new neural structure is introduced for conversion of proximity data that are given by Khepera IR sensors to occupancy probabilities. Path planning experiments have also been applied to the resulting maps. For each map, two factors are considered and calculated: the fitness and the augmented occupancy of the map with respect to the ideal map. The length and the least distance to obstacles were the other two factors that were calculated for the routes that are resulted by path planning experiments. Experimental and simulation results show that by using the new fusion formulas, more informative maps of the environment are obtained. By these maps more appropriate routes could be achieved. Actually, there is a tradeoff between the length of the resulting routes and their safety and by choosing the proper fusion function, this tradeoff is suitably tuned for different map building applications. PMID:12160343

  9. Knowledge/geometry-based Mobile Autonomous Robot Simulator (KMARS)

    NASA Technical Reports Server (NTRS)

    Cheng, Linfu; Mckendrick, John D.; Liu, Jeffrey

    1990-01-01

    Ongoing applied research is focused on developing guidance system for robot vehicles. Problems facing the basic research needed to support this development (e.g., scene understanding, real-time vision processing, etc.) are major impediments to progress. Due to the complexity and the unpredictable nature of a vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within the range of its sensor(s). A better understanding of the basic exploration process is needed to provide critical support to developers of both sensor systems and intelligent control systems which can be used in a wide spectrum of autonomous vehicles. Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory, Wright Research and Development Center, Wright-Patterson AFB, Ohio to develop a Knowledge/Geometry-based Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge base. The knowledge base part of the system employs the expert-system shell CLIPS ('C' Language Integrated Production System) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the overall exploration process. The initial phase project has focused on the simulation of a point robot vehicle operating in a 2D environment.

  10. Localization of Mobile Robots Using an Extended Kalman Filter in a LEGO NXT

    ERIC Educational Resources Information Center

    Pinto, M.; Moreira, A. P.; Matos, A.

    2012-01-01

    The inspiration for this paper comes from a successful experiment conducted with students in the "Mobile Robots" course in the fifth year of the integrated Master's program in the Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal. One of the topics in this Mobile Robots course is…

  11. Fuzzy control of a hand rehabilitation robot to optimize the exercise speed in passive working mode.

    PubMed

    Baniasad, Mina Arab; Akbar, Mohammad; Alasty, Aria; Farahmand, Farzam

    2011-01-01

    The robotic rehabilitation devices can undertake the difficult physical therapy tasks and provide improved treatment procedures for post stroke patients. During passive working mode, the speed of the exercise needs to be controlled continuously by the robot to avoid excessive injurious torques. We designed a fuzzy controller for a hand rehabilitation robot to adjust the exercise speed by considering the wrist angle and joint resistive torque, measured continuously, and the patient's general condition, determined by the therapist. With a set of rules based on an expert therapist experience, the fuzzy system could adapt effectively to the neuromuscular conditions of the patient's paretic hand. Preliminary clinical tests revealed that the fuzzy controller produced a smooth motion with no sudden change of the speed that could cause pain and activate the muscle reflexive mechanism. This improves the recovery procedure and promotes the robot's performance for wide clinical usage. PMID:21335755

  12. Cooperative system and method using mobile robots for testing a cooperative search controller

    DOEpatents

    Byrne, Raymond H.; Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.

    2002-01-01

    A test system for testing a controller provides a way to use large numbers of miniature mobile robots to test a cooperative search controller in a test area, where each mobile robot has a sensor, a communication device, a processor, and a memory. A method of using a test system provides a way for testing a cooperative search controller using multiple robots sharing information and communicating over a communication network.

  13. Video rate color region segmentation for mobile robotic applications

    NASA Astrophysics Data System (ADS)

    de Cabrol, Aymeric; Bonnin, Patrick J.; Hugel, Vincent; Blazevic, Pierre; Chetto, Maryline

    2005-08-01

    Color Region may be an interesting image feature to extract for visual tasks in robotics, such as navigation and obstacle avoidance. But, whereas numerous methods are used for vision systems embedded on robots, only a few use this segmentation mainly because of the processing duration. In this paper, we propose a new real-time (ie. video rate) color region segmentation followed by a robust color classification and a merging of regions, dedicated to various applications such as RoboCup four-legged league or an industrial conveyor wheeled robot. Performances of this algorithm and confrontation with other methods, in terms of result quality and temporal performances are provided. For better quality results, the obtained speed up is between 2 and 4. For same quality results, the it is up to 10. We present also the outlines of the Dynamic Vision System of the CLEOPATRE Project - for which this segmentation has been developed - and the Clear Box Methodology which allowed us to create the new color region segmentation from the evaluation and the knowledge of other well known segmentations.

  14. Optimizing a mobile robot control system using GPU acceleration

    NASA Astrophysics Data System (ADS)

    Tuck, Nat; McGuinness, Michael; Martin, Fred

    2012-01-01

    This paper describes our attempt to optimize a robot control program for the Intelligent Ground Vehicle Competition (IGVC) by running computationally intensive portions of the system on a commodity graphics processing unit (GPU). The IGVC Autonomous Challenge requires a control program that performs a number of different computationally intensive tasks ranging from computer vision to path planning. For the 2011 competition our Robot Operating System (ROS) based control system would not run comfortably on the multicore CPU on our custom robot platform. The process of profiling the ROS control program and selecting appropriate modules for porting to run on a GPU is described. A GPU-targeting compiler, Bacon, is used to speed up development and help optimize the ported modules. The impact of the ported modules on overall performance is discussed. We conclude that GPU optimization can free a significant amount of CPU resources with minimal effort for expensive user-written code, but that replacing heavily-optimized library functions is more difficult, and a much less efficient use of time.

  15. Graphical analysis of power systems for mobile robotics

    NASA Astrophysics Data System (ADS)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with

  16. Small, Untethered, Mobile Robots for Inspecting Gas Pipes

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2003-01-01

    Small, untethered mobile robots denoted gas-pipe explorers (GPEXs) have been proposed for inspecting the interiors of pipes used in the local distribution natural gas. The United States has network of gas-distribution pipes with a total length of approximately 109 m. These pipes are often made of iron and steel and some are more than 100 years old. As this network ages, there is a need to locate weaknesses that necessitate repair and/or preventive maintenance. The most common weaknesses are leaks and reductions in thickness, which are caused mostly by chemical reactions between the iron in the pipes and various substances in soil and groundwater. At present, mobile robots called pigs are used to inspect and clean the interiors of gas-transmission pipelines. Some carry magnetic-flux-leakage (MFL) sensors for measuring average wall thicknesses, some capture images, and some measure sizes and physical conditions. The operating ranges of pigs are limited to fairly straight sections of wide transmission- type (as distinguished from distribution- type) pipes: pigs are too large to negotiate such obstacles as bends with radii comparable to or smaller than pipe diameters, intrusions of other pipes at branch connections, and reductions in diameter at valves and meters. The GPEXs would be smaller and would be able to negotiate sharp bends and other obstacles that typically occur in gas-distribution pipes.

  17. Perception for mobile robot navigation: A survey of the state of the art

    NASA Technical Reports Server (NTRS)

    Kortenkamp, David

    1994-01-01

    In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.

  18. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    PubMed Central

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  19. Olfaction and hearing based mobile robot navigation for odor/sound source search.

    PubMed

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  20. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  1. A Miniature Mobile Robot for Navigation and Positioning on the Beating Heart

    PubMed Central

    Patronik, Nicholas A.; Ota, Takeyoshi; Zenati, Marco A.; Riviere, Cameron N.

    2010-01-01

    Robotic assistance enhances conventional endoscopy; yet, limitations have hindered its mainstream adoption for cardiac surgery. HeartLander is a miniature mobile robot that addresses several of these limitations by providing precise and stable access over the surface of the beating heart in a less-invasive manner. The robot adheres to the heart and navigates to any desired target in a semiautonomous fashion. The initial therapies considered for HeartLander generally require precise navigation to multiple surface targets for treatment. To balance speed and precision, we decompose any general target acquisition into navigation to the target region followed by fine positioning to each target. In closed-chest, beating-heart animal studies, we demonstrated navigation to targets located around the circumference of the heart, as well as acquisition of target patterns on the anterior and posterior surfaces with an average error of 1.7 mm. The average drift encountered during station-keeping was 0.7 mm. These preclinical results demonstrate the feasibility of precise semiautonomous delivery of therapy to the surface of the beating heart using HeartLander. PMID:20179783

  2. A Miniature Mobile Robot for Navigation and Positioning on the Beating Heart.

    PubMed

    Patronik, Nicholas A; Ota, Takeyoshi; Zenati, Marco A; Riviere, Cameron N

    2009-01-01

    Robotic assistance enhances conventional endoscopy; yet, limitations have hindered its mainstream adoption for cardiac surgery. HeartLander is a miniature mobile robot that addresses several of these limitations by providing precise and stable access over the surface of the beating heart in a less-invasive manner. The robot adheres to the heart and navigates to any desired target in a semiautonomous fashion. The initial therapies considered for HeartLander generally require precise navigation to multiple surface targets for treatment. To balance speed and precision, we decompose any general target acquisition into navigation to the target region followed by fine positioning to each target. In closed-chest, beating-heart animal studies, we demonstrated navigation to targets located around the circumference of the heart, as well as acquisition of target patterns on the anterior and posterior surfaces with an average error of 1.7 mm. The average drift encountered during station-keeping was 0.7 mm. These preclinical results demonstrate the feasibility of precise semiautonomous delivery of therapy to the surface of the beating heart using HeartLander. PMID:20179783

  3. A wideband propagation simulator for high speed mobile radio communications

    NASA Astrophysics Data System (ADS)

    Busson, P.; Lejannic, J. C.; Elzein, G.; Citerne, J.

    1994-07-01

    Multipath, jamming, listening and detection are the main limitations for mobile radio communications. Spread spectrum techniques, especially frequency hopping, can be used to avoid these problems. Therefore, a wideband simulation for multipath mobile channels appeared the most appropriate evaluation technique. It also gives useful indications for system characteristic improvements. This paper presents the design and realization of a new UHF-VHF propagation simulator, which can be considered as an extended version of Bussgang's one. This frequency hopping simulator (up to 100,000 hops per second) is wideband thus capable to deal with spread spectrum signals. As it generates up to 16 paths, it can be used in almost all mobile radio propagation situations. Moreover, it is also able to simulate high mobile relative speeds up to 2000km/h such as air-air communication systems. This simulator can reproduce, in laboratory, 16 rays Rician or Rayleigh fading channels with a maximum time delay of about 15 ms. At the highest frequency of 1200 MHz, Doppler rates up to 2 kHz can be generated corresponding to vehicle speeds up to 2000 km/h. Let note that the Bussgang simulator was defined for narrowband and fixed radio communications. In both equipments, in-phase and quadrature signals are obtained using two numerical transversal filters. Simulation results were derived in various situations especially in terrestrial urban and suburban environments, where they could be compared with measurements. The main advantage of the simulator lies in its capacity to simulate the high speed and wideband mobile radio communication channels.

  4. Experiments in augmented teleoperation for mobile robots: I

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Hunt, Shawn; Ellis, R. Darrin

    2007-04-01

    Teleoperated mobile robots are beginning to be used for a variety of tasks that require movement in close quarters in the vicinity of moving and parked vehicles, buildings and other man-made structures, and the target object for inspection or manipulation. The robots must be close enough to deploy short-range sensors and manipulators, and must be able to maneuver without potentially damaging collisions. Teleoperation is fatiguing and stressful even without the requirement for close positioning. In cooperation with the TARDEC Robotic Mobility Laboratory (TRML), we are investigating approaches to reduce workload and improve performance through augmented teleoperation. Human-robot interfaces for teleoperation commonly provide two degrees-of-freedom (DoF) motion control with visual feedback from an on-board egocentric camera and no supplemental distance or orientation cueing. This paper reports on the results of preliminary experiments to assess the effects on man-machine task performance of several options for augmented teleoperation: (a) 3 DoF motion control (rotation and omni-directional translation) versus 2 DoF control (rotation and forward/reverse motion), (b) on-board egocentric camera versus fixed-position overwatch camera versus dual egocentric-and-overwatch cameras, and (c) presence or absence of distance and orientation visual cueing. We examined three dimensions of performance: completion time, spatial accuracy, and workspace area. We investigated effects on the expected completion time and on the variance in completion time. Spatial accuracy had three components: orientation, aimpoint, and distance. We collected performance under different task conditions: (a) three position-and-orientation tolerance or accuracy objectives, and (b) four travel distances between successive inspection points. We collected data from three subjects. We analyzed the main effects and conditional interaction effects among the teleoperation options and task conditions. We were

  5. Strength and Speed Training for Elders With Mobility Disability

    PubMed Central

    Protas, Elizabeth J.; Tissier, Sandrine

    2010-01-01

    The purpose of this study was to pilot test a function-focused exercise intervention consisting of strength and gait-speed training in elders with reduced walking speed, decreased walking endurance, and functional impairment. Twelve participants, 77.2 years old (± 7.34), whose usual gait speed was <0.85 m/s, with walking endurance of <305 m in 5 min, and who were functionally impaired participated in a moderate-intensity exercise intervention. The training occurred 3 times per week, 75 min per session, for 3 months and combined 4 weeks of gait-speed training, walking exercise, and functional strengthening. The participants demonstrated mean usual gait speeds (≥1.0 m/s), endurance (≥350 m), and functional ability (≥10 score on performance battery) that were within normal limits after 12 weeks of training. Fastest gait speed (≥1.5 m/s) and muscle strength also improved significantly. Improvements were maintained during follow-up testing after 3–6 months. In summary, a 12-week intervention for frail, mobility-disabled participants led to improvements in walking, function, and strength. PMID:19799099

  6. Perspectives on mobile robots as tools for child development and pediatric rehabilitation.

    PubMed

    Michaud, François; Salter, Tamie; Duquette, Audrey; Laplante, Jean-François

    2007-01-01

    Mobile robots (i.e., robots capable of translational movements) can be designed to become interesting tools for child development studies and pediatric rehabilitation. In this article, the authors present two of their projects that involve mobile robots interacting with children: One is a spherical robot deployed in a variety of contexts, and the other is mobile robots used as pedagogical tools for children with pervasive developmental disorders. Locomotion capability appears to be key in creating meaningful and sustained interactions with children: Intentional and purposeful motion is an implicit appealing factor in obtaining children's attention and engaging them in interaction and learning. Both of these projects started with robotic objectives but are revealed to be rich sources of interdisciplinary collaborations in the field of assistive technology. This article presents perspectives on how mobile robots can be designed to address the requirements of child-robot interactions and studies. The authors also argue that mobile robot technology can be a useful tool in rehabilitation engineering, reaching its full potential through strong collaborations between roboticists and pediatric specialists. PMID:17461288

  7. Development of an advanced mobile base for personal mobility and manipulation appliance generation II robotic wheelchair

    PubMed Central

    Wang, Hongwu; Candiotti, Jorge; Shino, Motoki; Chung, Cheng-Shiu; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2013-01-01

    Background This paper describes the development of a mobile base for the Personal Mobility and Manipulation Appliance Generation II (PerMMA Gen II robotic wheelchair), an obstacle-climbing wheelchair able to move in structured and unstructured environments, and to climb over curbs as high as 8 inches. The mechanical, electrical, and software systems of the mobile base are presented in detail, and similar devices such as the iBOT mobility system, TopChair, and 6X6 Explorer are described. Findings The mobile base of PerMMA Gen II has two operating modes: “advanced driving mode” on flat and uneven terrain, and “automatic climbing mode” during stair climbing. The different operating modes are triggered either by local and dynamic conditions or by external commands from users. A step-climbing sequence, up to 0.2 m, is under development and to be evaluated via simulation. The mathematical model of the mobile base is introduced. A feedback and a feed-forward controller have been developed to maintain the posture of the passenger when driving over uneven surfaces or slopes. The effectiveness of the controller has been evaluated by simulation using the open dynamics engine tool. Conclusion Future work for PerMMA Gen II mobile base is implementation of the simulation and control on a real system and evaluation of the system via further experimental tests. PMID:23820149

  8. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it

  9. Mechanical deployment system on aries an autonomous mobile robot

    SciTech Connect

    Rocheleau, D.N.

    1995-12-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail.

  10. Experiments in mobile robot navigation and range imaging

    SciTech Connect

    Jones, J.P.; Dorum, O.H.; Andersen, C.S.; Jacobsen, S.V.; Jensen, M.S.; Kierkeby, N.O.S.; Kristensen, S.; Madsen, C.B.; Nielsen, H.M.; Sorensen, E.; Sorensen, J.J.; Christensen, H.I.

    1993-06-01

    This paper describes some experiments in sensor-based mobile robot navigation conducted at Oak Ridge National Laboratory over the past several years. Two implemented systems are described. One uses a laser range camera as the sole sensor. The other uses, in addition, an array of sonars and a stereo vision system. We discuss a communication system for heterogeneous LAN-connected multiprocessor systems, useful in reasonably large development projects such as these. We also describe some work on the estimation of curvature in range images which introduces a new variational principle motivated by minimization of the change of curvature. Application of this principle is shown to produce results which are more desirable in some respects than those obtained using standard quadratic variation.