Science.gov

Sample records for mobile satellite service

  1. AUSSAT mobile satellite services

    NASA Technical Reports Server (NTRS)

    Nowland, Wayne L.; Wagg, Michael; Simpson, Daniel

    1988-01-01

    An overview of AUSSAT's planned mobile satellite system is given. The development program which is being undertaken to achieve the 1992 service date is described. Both business and technical aspects of the development program are addressed.

  2. Mobile satellite service for Canada

    NASA Technical Reports Server (NTRS)

    Sward, David

    1988-01-01

    The Mobile Satellite (MSAT) system and a special program designed to provide interim mobile satellite services (IMSS) during the construction phase of MSAT are described. A mobile satellite system is a key element in extending voice and and data telecommunications to all Canadians.

  3. The Mobile Satellite Services Market.

    ERIC Educational Resources Information Center

    Anderson, Samuel

    Mobile satellite (MSAT) technology is the basis for a new component of the telecommunications industry capable of providing services to small inexpensive subscriber terminals located almost any place in the world. The market for MSAT space segment capacity (bandwidth and power) is a natural monopoly that can be logically and technically…

  4. Satellite mobile data service for Canada

    NASA Technical Reports Server (NTRS)

    Egan, Glenn R.; Sward, David J.

    1990-01-01

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  5. Satellite mobile data service for Canada

    NASA Astrophysics Data System (ADS)

    Egan, Glenn R.; Sward, David J.

    A commercial mobile satellite system which is to be constructed and operated in Canada is examined. This is done in two phases. First, mobile data services was introduced. Hub equipment and 3000 mobile data terminals were supplied. Over the satellite tests were performed. The mobile data service provides full two way digital messaging automatic vehicle location and fleet management services. The second phase is to construct, launch and make operational the MSAT satellite and associated network control facilities. The implementation is examined of the mobile data service in Canada, including the technical description. Marketing and applications are also examined.

  6. Mobile satellite service in the United States

    NASA Technical Reports Server (NTRS)

    Agnew, Carson E.; Bhagat, Jai; Hopper, Edwin A.; Kiesling, John D.; Exner, Michael L.; Melillo, Lawrence; Noreen, Gary K.; Parrott, Billy J.

    1988-01-01

    Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations.

  7. EUTELTRACS: The European land mobile satellite service

    NASA Astrophysics Data System (ADS)

    Colcy, Jean-Noel; Steinhaeuser, Rafael; Mock, Kimberly

    1992-07-01

    EUTELTRACS is Europe's first commercially operated land mobile satellite service. EUTELTRACS provides an integrated message exchange and position reporting service for the European transportation industry with the aim of increasing cost effectiveness, radically improving efficiency and security and enhancing business flexibility. The architecture of the system is described, outlining the accuracy of the position determination, and an overview of the commercial deployment of EUTELTRACS is given.

  8. Mobile satellite communications in the Forest Service

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1988-01-01

    There are usually some places within a forest that do not have adequate communication coverage due to line-of-sight or other reasons. These areas are generally known by the foresters and radio technicians and allowances are made for that when working or traveling in those areas. However, when wildfire or other emergencies occur, communications are vital because wildfires can require hundreds of firefighters and cover thousands of acres. During these emergency operations, the existing communications are not adequate and complete radio systems are moved into the area for the conduct of fire communications. Incident command posts (ICPs) and fire camps are set up in remote locations and there is constant need for communications in the fire area and to agency headquarters and dispatch offices. Mobile satellite communications would be an ideal supplement to the Forest Service's current communications system in aiding forest fire control activities.

  9. A practical system for regional mobile satellite services

    NASA Technical Reports Server (NTRS)

    Glein, Randall; Leverson, Denis; Olmstead, Dean

    1993-01-01

    The Regional Mobile Satellite (MSAT) concept proposes a worldwide, interconnected mobile satellite service (MSS) network in which MSAT-type satellites provide the space segment services to separate regions (i.e., one or a few countries). Using this concept, mobile communications users across entire continents can now be served by a handful of regionally controlled satellites in geostationary earth orbit (GEO). All requirements, including hand-held telephone capabilities, can be cost-effectively provided using proven technologies. While other concepts of regional or global mobile communications continue to be explored, the Hughes Regional MSAT system demonstrates the near-term viability of the GEO approach.

  10. USDA Forest Service mobile satellite communications applications

    NASA Technical Reports Server (NTRS)

    Warren, John R.

    1990-01-01

    The airborne IR signal processing system being developed will require the use of mobile satellite communications to achieve its full capability and improvement in delivery timeliness of processed IR data to the Fire Staff. There are numerous other beneficial uses, both during wildland fire management operations or in daily routine tasks, which will also benefit from the availability of reliable communications from remote areas.

  11. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  12. Low Earth Orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, Ray E.; Gardiner, John G.

    1993-01-01

    Currently the geostationary type of satellite is the only one used to provide commercial mobile-satellite communication services. Low earth orbit (LEO) satellite systems are now being proposed as a future alternative. By the implementation of LEO satellite systems, predicted at between 5 and 8 years time, mobile space/terrestrial technology will have progressed to the third generation stage of development. This paper considers the system issues that will need to be addressed when developing a dual mode terminal, enabling access to both terrestrial and LEO satellite systems.

  13. DMSK Receiver For Mobile/Satellite Service

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Simon, Marvin K.; Sumida, Joe T.

    1989-01-01

    Receiver for 2.4-kbit/s differential minimum-shift keying (DMSK) and Gaussian minimum-shift keying(GMSK) suitable for communication between land-mobile stations via geostationary satellites. Operating on phase-shifted signal in 800-MHz band, in presence of fading and Doppler frequency shifts, receiver compact, makes efficient use of frequency spectrum, and wastes little power. Receiver design implemented in very-large-scale-integrated circuits. Basic DMSK receiver design relies on baseband rather than intermediate-frequency processing of in-phase and quadrature signal components because phase errors due to differential delays smaller at baseband.

  14. Developments in land mobile satellite service in Europe

    NASA Technical Reports Server (NTRS)

    Jayasuriya, D. A. R.

    1990-01-01

    The evolution of land mobile radio has reached a stage to benefit from satellite communications. The provision of a service on a pan-European basis makes the use of satellites a viable proposition. The paper describes the European position on both system and space segment aspects of the land mobile satellite service. Also, some of the functions of the European institutions, such as the European Telecommunications Standards Institute (ETSI), the Conference of European Postal and Telecommunications Administrations (CEPT), and the Commission of European Communities (CEC), in establishing these services are identified.

  15. Low cost satellite land mobile service for nationwide applications

    NASA Technical Reports Server (NTRS)

    Weiss, J. A.

    1978-01-01

    A satellite land mobile system using mobile radios in the UHF band, and Ku-band Communications Routing Terminals (earth stations) for a nationwide connection from any mobile location to any fixed or mobile location, and from any fixed location to any mobile location is proposed. The proposed nationwide satellite land mobile service provides: telephone network quality (1 out of 100 blockage) service, complete privacy for all the users, operation similar to the telephone network, alternatives for data services up to 32 Kbps data rates, and a cost effective and practical mobile radio compatible with system sizes ranging from 10,000 to 1,000,000 users. Seven satellite alternatives (ranging from 30 ft diameter dual beam antenna to 210 ft diameter 77 beam antenna) along with mobile radios having a sensitivity figure of merit (G/T) of -15 dB/deg K are considered. Optimized mobile radio user costs are presented as a function of the number of users with the satellite and mobile radio alternatives as system parameters.

  16. 77 FR 48584 - Tenth Meeting: RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite... RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The...

  17. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  18. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  19. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  20. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  1. 47 CFR 80.333 - Stations in the maritime mobile-satellite service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations in the maritime mobile-satellite..., Alarm, Urgency and Safety Procedures § 80.333 Stations in the maritime mobile-satellite service. The...-satellite service....

  2. 76 FR 66350 - Eighth Meeting: RTCA Special Committee 222 Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route... Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services for the Eighth Meeting. DATES:...

  3. 77 FR 30046 - Ninth Meeting: RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite... RTCA Special Committee 222, Inmarsat Aeronautical Mobile Satellite (Route) Services. DATES: The...

  4. Low earth orbit satellite/terrestrial mobile service compatibility

    NASA Technical Reports Server (NTRS)

    Sheriff, R. E.; Gardiner, J. G.

    1993-01-01

    Digital cellular mobile 'second generation' systems are now gradually being introduced into service; one such example is GSM, which will provide a digital voice and data service throughout Europe. Total coverage is not expected to be achieved until the mid '90's, which has resulted in several proposals for the integration of GSM with a geostationary satellite service. Unfortunately, because terrestrial and space systems have been designed to optimize their performance for their particular environment, integration between a satellite and terrestrial system is unlikely to develop further than the satellite providing a back-up service. This lack of system compatibility is now being addressed by system designers of third generation systems. The next generation of mobile systems, referred to as FPLMTS (future public land mobile telecommunication systems) by CCIR and UMTS (universal mobile telecommunication system) in European research programs, are intended to provide inexpensive, hand-held terminals that can operate in either satellite, cellular, or cordless environments. This poses several challenges for system designers, not least in terms of the choice of multiple access technique and power requirements. Satellite mobile services have been dominated by the geostationary orbital type. Recently, however, a number of low earth orbit configurations have been proposed, for example Iridium. These systems are likely to be fully operational by the turn of the century, in time for the implementation of FPLMTS. The developments in LEO mobile satellite service technology were recognized at WARC-92 with the allocation of specific frequency bands for 'big' LEO's, as well as a frequency allocation for FPLMTS which included a specific satellite allocation. When considering integrating a space service into the terrestrial network, LEO's certainly appear to have their attractions: they can provide global coverage, the round trip delay is of the order of tens of milliseconds, and

  5. European Mobile Satellite Services (EMSS): A regional system for Europe

    NASA Technical Reports Server (NTRS)

    Loisy, C.; Edin, P.; Benedicto, F. J.

    1995-01-01

    The European Space Agency is presently procuring two L-band payloads in order to promote a regional system for the provision of European Mobile Satellite Services (EMSS). These are the EMS payload on the Italsat I-F2 satellite and the LLM payload on the ARTEMIS satellite. Telecommunication system studies have been concentrating on mobile applications where full European geographical coverage is required. Potential applications include high priority Private Mobile Radio networks requiring national or European coverage, such as civil security, fire brigades, police and health services, as well as a dedicated system for provision of Air Traffic Services to the civil aviation community. A typical application is an intelligent road traffic management system combining a geographically selective traffic data collection service based on probe vehicles with a geographically selective traffic information broadcast service. Network architectures and bearer services have been developed both for data only and voice/data services. Vehicle mounted mobile transceivers using CDMA access techniques have been developed. The EMSS operational phase will start with the EMS payload in orbit in 1996 and continue with the LLM payload in 1997.

  6. An experiment to enable commercial mobile satellite service

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.; Knouse, G. H.; Weber, W. J.

    1982-01-01

    A Mobile Satellite Experiment (MSAT-X) is described, based on a planned cooperative U.S./Canadian program. The experiment would establish network architecture, develop system and ground-segment technology, and define the technical characteristics needed to help structure the regulatory/institutional framework needed to enable a first-generation commercial satellite service. A satellite of this type would augment terrestrial systems, both cellular and noncellular, in the thin-route/rural areas of the country where service is either unavailable or inadequate. Applications range from wide-area radio/dispatch (e.g., oil exploration and interstate trucking) to extension of the public mobile telephone service. Market estimates are provided and experiment objectives and requirements are delineated. The requirements are being developed in close coordination with the Department of Communications (DOC) of Canada and with industry and potential-user organizations. The paper closes with a development plan and milestone chart.

  7. EUTELTRACS: The European experience on mobile satellite services

    NASA Astrophysics Data System (ADS)

    Colcy, Jean-Noel; Steinhaeuser, Rafael

    EUTELTRACS is Europe's first commercially operated Mobile Satellite Service. Under the overall network operation of EUTELSAT, the European Telecommunications Satellite Organization, EUTELTRACS provides an integrated message exchange and position reporting service. This paper describes the EUTELTRACS system architecture, the message exchange and the position reporting services, including the result of recent analysis of message delivery time and positioning accuracy. It also provides an overview of the commercial deployment, the regulatory situation for its operation within Europe and new applications outside its target market, the international road transportation.

  8. EUTELTRACS: The European experience on mobile satellite services

    NASA Technical Reports Server (NTRS)

    Colcy, Jean-Noel; Steinhaeuser, Rafael

    1993-01-01

    EUTELTRACS is Europe's first commercially operated Mobile Satellite Service. Under the overall network operation of EUTELSAT, the European Telecommunications Satellite Organization, EUTELTRACS provides an integrated message exchange and position reporting service. This paper describes the EUTELTRACS system architecture, the message exchange and the position reporting services, including the result of recent analysis of message delivery time and positioning accuracy. It also provides an overview of the commercial deployment, the regulatory situation for its operation within Europe and new applications outside its target market, the international road transportation.

  9. A robust signalling system for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Irish, Dale; Shmith, Gary; Hart, Nick; Wines, Marie

    1989-01-01

    Presented here is a signalling system optimized to ensure expedient call set-up for satellite telephony services in a land mobile environment. In a land mobile environment, the satellite to mobile link is subject to impairments from multipath and shadowing phenomena, which result in signal amplitude and phase variations. Multipath, caused by signal scattering and reflections, results in sufficient link margin to compensate for these variations. Direct signal attenuation caused by shadowing due to buildings and vegetation may result in attenuation values in excess of 10 dB and commonly up to 20 dB. It is not practical to provide a link with sufficient margin to enable communication when the signal is blocked. When a moving vehicle passes these obstacles, the link will experience rapid changes in signal strength due to shadowing. Using statistical models of attenuation as a function of distance travelled, a communication strategy has been defined for the land mobile environment.

  10. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Satellite Service and 2 GHz Mobile-Satellite Service. 25.143 Section 25.143 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.143 Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2...

  11. 75 FR 15770 - Fifth Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services meeting. SUMMARY: The FAA... Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held Tuesday, April 20, 2010 from...

  12. 75 FR 63534 - Seventh Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services meeting. SUMMARY: The FAA... Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held November 3-5, 2010,...

  13. 75 FR 39724 - Sixth Meeting-Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Satellite (Route) Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 222: Inmarsat Aeronautical Mobile Satellite (Route) Services meeting. SUMMARY: The FAA... Aeronautical Mobile Satellite (Route) Services. DATES: The meeting will be held Tuesday, August 3, 2010 from...

  14. An alternative resource sharing scheme for land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Sue, Miles K.

    1990-01-01

    A preliminary comparison between the two competing channelization concepts for the Land Mobile Satellite Services (LMSS), namely frequency division (FD) and code division (CD), is presented. Both random access and demand-assigned approaches are considered under these concepts. The CD concept is compared with the traditional FD concept based on the system consideration and a projected traffic model. It is shown that CD is not particularly attractive for the first generation Mobile Satellite Services because of the spectral occupancy of the network bandwidth. However, the CD concept is a viable alternative for future systems such as the personal access satellite system (PASS) in the Ka-band spectrum where spectral efficiency is not of prime concern. The effects of power robbing and voice activity factor are incorporated. It was shown that the traditional rule of thumb of dividing the number of raw channels by the voice activity factor to obtain the effective number of channels is only valid asymptotically as the aggregated traffic approaches infinity.

  15. Mechanically-steered disk antenna for mobile satellite service

    NASA Technical Reports Server (NTRS)

    McCarrick, Charles D.

    1995-01-01

    This paper describes a low-profile disk antenna for vehicular mounting that accommodates L-Band (1525-1660.5 MHz) mobile satellite service requirements. The antenna uses a rotatable printed circuit array mechanically-steered in azimuth via an external tracking system. A shaped elevation beam inherent to the antenna design provides continuous coverage with a minimum gain of 9 dBic between elevation angles of 25-degrees and 60-degrees measured above the horizon. A brief background on the theory, design, and performance for this antenna is discussed.

  16. Engineering management consideration for an integrated aeronautical mobile satellite service

    NASA Astrophysics Data System (ADS)

    Belcher, John M.

    In order to meet local air traffic control terminal requirements as well as national and transborder requirements, countries have developed communications, navigation, and surveillance (CNS) systems having little systems integration and a solely ground-based solution to air traffic control problems. It is believed that the application of satellite technology is the only currently viable solution that will enable international civil aviation to overcome the shortcomings of the presently available CNS systems. If properly implemented, available satellite system technology integrated with avionics and ground based capabilities, can be used to meet new global aviation demands. A clear transition plan has to be implemented so as to ensure continuity of service, recognize user-borne costs, and satisfy institutional and national objectives in the progress toward a universal air traffic management (ATM) system. ATM systems design should rely on a modular approach for flexibility and upgrading. An aeronautical mobile satellite service is intended to provide a worldwide satellite data link and direct air/ground voice communication. Institutional and financial roadblocks for implemetation of a global based approach will likely be far greater than technical constraints.

  17. International organizations to enable world-wide mobile satellite services

    NASA Technical Reports Server (NTRS)

    Anglin, Richard L., Jr.

    1993-01-01

    Numbers of systems exist or have been proposed to provide world-wide mobile satellite services (MSS). Developers of these systems have formulated institutional structures they consider most appropriate for profitable delivery of these services. MSS systems provide niche services and complement traditional telecommunications networks; they are not integrated into world-wide networks. To be successful, MSS system operators must be able to provide an integrated suite of services to support the increasing globalization, interconnectivity, and mobility of business. The critical issue to enabling 'universal roaming' is securing authority to provide MSS in all of the nations of the world. Such authority must be secured in the context of evolving trends in international telecommunications, and must specifically address issues of standardization, regulation and organization. Today, only one existing organization has such world-wide authority. The question is how proponents of new MSS systems and services can gain similar authority. Securing the appropriate authorizations requires that these new organizations reflect the objectives of the nations in which services are to be delivered.

  18. System services and architecture of the TMI satellite mobile data system

    NASA Technical Reports Server (NTRS)

    Gokhale, D.; Agarwal, A.; Guibord, A.

    1993-01-01

    The North American Mobile Satellite Service (MSS) system being developed by AMSC/TMI and scheduled to go into service in early 1995 will include the provision for real time packet switched services (mobile data service - MDS) and circuit switched services (mobile telephony service - MTS). These services will utilize geostationary satellites which provide access to mobile terminals (MT's) through L-band beams. The MDS system utilizes a star topology with a centralized data hub (DH) and will support a large number of mobile terminals. The DH, which accesses the satellite via a single Ku band beam, is responsible for satellite resource management, for providing mobile users with access to public and private data networks, and for comprehensive network management of the system. This paper describes the various MDS services available for the users, the ground segment elements involved in the provisioning of these services, and a summary description of the channel types, protocol architecture, and network management capabilities provided within the system.

  19. Communication satellite studies applicable to mobile telephone services

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Milton, R. T.; Brown, J. P.

    1979-01-01

    The potential use of satellites as extensions of existing terrestrial land mobile systems is discussed. Compatibility, particularly with cellular type systems, is considered. Sample technical and cost parameters and market assessments are also presented.

  20. Aeronautical mobile satellite service: Air traffic control applications

    NASA Technical Reports Server (NTRS)

    Sim, Dave

    1990-01-01

    Canada's history both in aviation and in satellite communications development spans several decades. The introduction of aeronautical mobile satellite communications will serve our requirements for airspace management in areas not served by line-of-sight radio and radar facilities. The ensuing improvements in air safety and operating efficiency are eagerly awaited by the aviation community.

  1. Mobile satellite services: International co-ordination, co-operation and competition

    NASA Technical Reports Server (NTRS)

    Lundberg, Olof

    1988-01-01

    In the context of a discussion of international cooperation, coordination and competition regarding mobile satellite services, it is asserted that: there will be more than one civil mobile satellite service in the 1990's; competition between these separate mobile satellite systems is inevitable; no system should enjoy monopoly protection or subsidies; and coordination and cooperation are desirable and necessary, since the available L-band spectrum is in short supply.

  2. 76 FR 31252 - Fixed and Mobile Services in the Mobile Satellite Service Bands at 1525-1559 MHz and 1626.5-1660...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ...In this document, the Commission amends its rules to make additional spectrum available for new investment in mobile broadband networks while also ensuring that the United States maintains robust mobile satellite service capabilities. First, this document adds co- primary Fixed and Mobile allocations to the Mobile Satellite Service (MSS) 2 GHz band, consistent with the International Table of......

  3. A framework for implementing data services in multi-service mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ali, Mohammed O.; Leung, Victor C. M.; Spolsky, Andrew I.

    1988-01-01

    Mobile satellite systems being planned for introduction in the early 1990s are expected to be invariably of the multi-service type. Mobile Telephone Service (MTS), Mobile Radio Service (MRS), and Mobile Data Service (MDS) are the major classifications used to categorize the many user applications to be supported. The MTS and MRS services encompass circuit-switched voice communication applications, and may be efficiently implemented using a centralized Demand-Assigned Multiple Access (DAMA) scheme. Applications under the MDS category are, on the other hand, message-oriented and expected to vary widely in characteristics; from simplex mode short messaging applications to long duration, full-duplex interactive data communication and large file transfer applications. For some applications under this service category, the conventional circuit-based DAMA scheme may prove highly inefficient due to the long time required to set up and establish communication links relative to the actual message transmission time. It is proposed that by defining a set of basic bearer services to be supported in MDS and optimizing their transmission and access schemes independent of the MTS and MRS services, the MDS applications can be more efficiently integrated into the multi-service design of mobile satellite systems.

  4. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Licensee are parties. (i) Incorporation of ancillary terrestrial component base stations into a 1.6/2.4 GHz mobile-satellite service network or a 2 GHz mobile-satellite service network. Any licensee... terrestrial component (ATC) base stations as defined in § 25.201 at its own risk and subject to the...

  5. The application of mobile satellite services to emergency response communications

    NASA Technical Reports Server (NTRS)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  6. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  7. Land mobile communications satellite

    NASA Astrophysics Data System (ADS)

    Carnebianca, C.; Pavesi, B.; Tuozzi, A.

    1986-09-01

    The economic value and salient technical and operational characteristics of a European Land Mobile Communication Satellite (LMCS) to complement and supplement the demand for mobile services of Western European countries in the 1995 to 2005 time frames were assessed. A significant future expansion of demand for LCMS services on the part of the public is anticipated. Important augmentations of current service capabilities could be achieved by a satellite service, improving the overall system performances and/or assisting the PTT's in containing their investments in the required infrastructure. The satellite service itself could represent a profitable revenue producer.

  8. US development and commercialization of a North American mobile satellite service

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  9. US development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  10. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and... service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. (a... shall not exceed the geographical coverage area of the mobile satellite service network of the...

  11. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... terrestrial components in the mobile-satellite service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and... service networks operating in the 1.5./1.6 GHz, 1.6/2.4 GHz and 2 GHz mobile-satellite service. (a... shall not exceed the geographical coverage area of the mobile satellite service network of the...

  12. 76 FR 49364 - Fixed and Mobile Services in the Mobile Satellite Service Bands at 1525-1559 MHz and 1626.5-1660...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ..., published at 76 FR 31252, May 31, 2011. This is a summary of the Commission's document, Report No. 2932... COMMISSION 47 CFR Parts 1, 2, and 25 Fixed and Mobile Services in the Mobile Satellite Service Bands at 1525... Satellite Service Bands at 1525-1559 MHz and 1626.5-1660.5 MHz, 1610-1626.5 MHz and 2483.5-2500 MHz,...

  13. An overview of the technical design of MSAT mobile satellite communications services

    NASA Astrophysics Data System (ADS)

    Davies, N. George

    The Canadian MSAT mobile satellite communications system is being implemented in cooperation with the American Mobile Satellite Consortium (AMSC). Two satellites are to be jointly acquired and each satellite is expected to backup the other. This paper describes the technical concepts of the services to be offered and the baseline planning of the infrastructure for the ground segment. MSAT service requirements are analyzed for mobile radio, telephone, data, and aeronautical services. The MSAT system will use nine beams in a narrow range of L-band frequencies with frequency reuse. Beams may be added to cover flight information areas in the Atlantic and Pacific oceans. The elements of the network architecture are: a network control centre, data hub stations, gateway stations, base stations, mobile terminals, and a signalling system to interconnect the elements of the system. The network control center will manage the network and allocate space segment capacity; data hub stations will support a switched packet mobile data service; the gateway stations will provide interconnection to the public telephone system and data networks; and the base stations will support private circuit switched voice and data services. Several alternative designs for the signalling system are described.

  14. Implementation of a system to provide mobile satellite services in North America

    NASA Technical Reports Server (NTRS)

    Johanson, Gary A.; Davies, N. George; Tisdale, William R. H.

    1993-01-01

    This paper describes the implementation of the ground network to support Mobile Satellite Services (MSS). The system is designed to take advantage of a powerful new satellite series and provides significant improvements in capacity and throughput over systems in service today. The system is described in terms of the services provided and the system architecture being implemented to deliver those services. The system operation is described including examples of a circuit switched and packet switched call placement. The physical architecture is presented showing the major hardware components and software functionality placement within the hardware.

  15. The impact of the 1979 World Administrative Radio Conference on the fixed-satellite, inter-satellite, and mobile-satellite services

    NASA Astrophysics Data System (ADS)

    Reinhart, E. E.

    1981-08-01

    The impact of the changes in the international radio regulations enacted by the 1979 World Administrative Radio Conference (WARC-79) will be especially strong in the case of the space services, i.e. those services that include radio transmitters and/or receivers located on spacecraft. Attention is given to the six space services that are of greatest interest to commercial point-to-point and mobile telecommunications, including the Fixed-Satellite Service (FSS), the Inter-Satellite Service (ISS), the Mobile-Satellite Service (MSS), and its three components, the Land-Mobile, Maritime-Mobile, and Aeronautical Mobile-Satellite Services. In the case of these six space services, WARC-79 did not make substantial changes either in the technical regulations or in the regulatory procedures applicable over the next few years. However, WARC-79 did adopt major changes in the frequency allocations for the FSS, ISS, and MSS, and did agree to hold a future World Administrative Radio Conference that could drastically change the way in which countries obtain frequencies and orbital positions for their space services.

  16. System considerations, projected requirements and applications for aeronautical mobile satellite communications for air traffic services

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.; Miller, C. M.; Scales, W. C.; Dement, D. K.

    1990-01-01

    The projected application and requirements in the near term (to 1995) and far term (to 2010) for aeronautical mobile services supporting air traffic control operations are addressed. The implications of these requirements on spectrum needs, and the resulting effects on the satellite design and operation are discussed. The U.S. is working with international standards and regulatory organizations to develop the necessary aviation standards, signalling protocols, and implementation methods. In the provision of aeronautical safety services, a number of critical issues were identified, including system reliability and availability, access time, channel restoration time, interoperability, pre-emption techniques, and the system network interfaces. Means for accomplishing these critical services in the aeronautical mobile satellite service (AMSS), and the various activities relating to the future provision of aeronautical safety services are addressed.

  17. 47 CFR 27.1136 - Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Protection of mobile satellite services in the... Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands. An AWS licensee of the... satellite service operations in these bands. Any such AWS licensees must protect mobile satellite...

  18. Mobile satellite services for public safety, disaster mitigation and disaster medicine

    NASA Astrophysics Data System (ADS)

    Freibaum, Jerry

    Between 1967 and 1987 nearly three million lives were lost and property damage of $25 to $100 billion resulted form natural disasters that adversely affected more than 829 million people. The social and economic impacts have been staggering and are expected to grow more serious as a result of changing demographic factors. The role that the Mobile Satellite Service can play in the International Decade is discussed. MSS was not available for disaster relief operations during the recent Loma Prieta/San Francisco earthquake. However, the results of a review of the performance of seven other communication services with respect to public sector operations during and shortly after the earthquake are described. The services surveyed were: public and private telephone, mobile radio telephone, noncellular mobile radio, broadcast media, CB radio, ham radio, and government and nongovernment satellite systems. The application of MSS to disaster medicine, particularly with respect to the Armenian earthquake is also discussed.

  19. Mobile satellite services for public safety, disaster mitigation and disaster medicine

    NASA Technical Reports Server (NTRS)

    Freibaum, Jerry

    1990-01-01

    Between 1967 and 1987 nearly three million lives were lost and property damage of $25 to $100 billion resulted form natural disasters that adversely affected more than 829 million people. The social and economic impacts have been staggering and are expected to grow more serious as a result of changing demographic factors. The role that the Mobile Satellite Service can play in the International Decade is discussed. MSS was not available for disaster relief operations during the recent Loma Prieta/San Francisco earthquake. However, the results of a review of the performance of seven other communication services with respect to public sector operations during and shortly after the earthquake are described. The services surveyed were: public and private telephone, mobile radio telephone, noncellular mobile radio, broadcast media, CB radio, ham radio, and government and nongovernment satellite systems. The application of MSS to disaster medicine, particularly with respect to the Armenian earthquake is also discussed.

  20. Implementation of mobile satellite services in developing countries: The Mexican experience

    NASA Technical Reports Server (NTRS)

    Reimers, Alexis; Weitzner, Jorge

    1990-01-01

    An analysis of the differences between Developing Countries (DCs) and Industrialized Countries (ICs), in the context of Mobile Satellite Services (MSSs) providers and regulators, is presented. Additionally, a series of recommendations that may improve the odds for a successful implementation of MSSs in DCs are provided.

  1. Message handling system concepts and services in a land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Barberis, S.; Settimo, F.; Giralda, A.; Mistretta, I.; Loisy, C.; Parmentier, J. L.

    1990-01-01

    A network architecture containing the capabilities offered by the Message Handling System (MHS) to the PRODAT Land Mobile Satellite System (LMSS) is described taking into account the constraints of a preexisting satellite system which is going to become operational. The mapping between MHS services and PRODAT requirements is also reported and shows that the supplied performance can be significantly enhanced to both fixed and mobile users. The impact of the insertion of additional features on the system structure, especially on the centralized control unit, are also addressed.

  2. Canadian development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Athanassiadis, Demetre

    1990-01-01

    Canada recognized early the value of mobile satellite communications, originally through the planning of a military system and subsequently through the development of the Canadian Mobile Satellite (MSAT) systems. Acting on behalf of the government, the Department of Communications (DOC) defined and carried out a complete plan for the implementation of Mobile Satellite Services (MSS). Based on an extensive dialogue between government, industry, and users and encompassing all technical, economic regulatory, and institutional aspects, this plan resulted in the completion by 1986 of a comprehensive business plan and a decision for commercial MSS delivery. The Canadian lead for a commercial system was quickly followed by others, and in particular the U.S., giving rise to the concept of North American MSS.

  3. Global maritime mobile service via satellite - The INMARSAT system now and in the future

    NASA Astrophysics Data System (ADS)

    Snowball, A. E.

    1986-06-01

    The business and technical aspects of the INMARSAT (International Maritime Satellite Organization) system are reviewed along with its present capabilities and services and future developments now being considered. The initial phase of maritime mobile satellite communications began with the introduction by the U.S. of the Marisat system in 1976, satisfying a commitment made by COMSAT (Communications Satellite Corp.) in 1973 to provide a maritime satellite service. The Marisat Consortium, spun off by COMSAT, launched three satellites in 1973 - one to serve shipping in the Atlantic, one for the Pacific, and the third as a spare; the spare was subsequently positioned over the Indian Ocean so that the three provided almost global coverage. Each satellite was served by a coast earth station with a 13-m antenna; satellite-earth station links operated in the 6 and 4-GHz bands and the ship-satellite links were at 1.5 and 1.6 GHz. Superceding the limited Marisat system, the INMARSAT Organization, established in July 1979 and first in service on Feb. 1, 1982, now provides communications through a system of Marecs, Intelsat-V, and Marisat satellites. With 41 Signatories by mid-1985, the organization consists of an Assembly, a Council, and a Directorate. Services provided include: telephone; facsimile; low-speed data; high-speed data; telex; telegram; distress, urgency and safety communications; shore-to-ship group calls; various information and assistance services. Coast earth stations, ship earth stations, network coordination stations, and the London headquarters and operations control center are described. Future developments will include an expanded capacity network, digital services, and a role in the Future Global Maritime Distress and Safety System that will use radio beacons that will automatically transmit distress messages to land-based emergency centers in the event of a disaster at sea.

  4. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  5. 75 FR 49871 - Fixed and Mobile Services in the Mobile Satellite Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Documents in Rulemaking Proceedings, 63 FR 24121, May 1, 1998. Electronic Filers: Comments may be filed... terrestrially-based Wireless Radio Service licensees holding ``exclusive use'' spectrum rights can lease some or... these rules to terrestrial use of the MSS band will foster regulatory parity by allowing...

  6. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  7. An optimized bandwidth efficient demand assigned protocol for integrated Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Wang, C. C.

    1985-01-01

    This paper describes the design of a demand assigned protocol based on bandwidth efficiency for integrated services of a Mobile Satellite System (MSS). An MSS provides data (closed-ended) and voice (open-ended) communications services for a large number of mobile users dispersed over a wide geographical area. Each mobile requests its desired service through a designated set of channels to a network management center. Either pure or slotted ALOHA random access scheme can be used to make connection requests, while data and voice communications are demand assigned. All channels have equal bandwidth and can be adaptively used for reservation requests, data connections or voice connections to maximize the bandwidth utilization. In this paper, perfect communications channels are assumed. It has been shown that, for the case considered, using the slotted ALOHA scheme for making connection requests can save about 30 percent on the total number of channels over using the pure ALHOA scheme.

  8. 47 CFR 27.1136 - Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Protection of mobile satellite services in the... Operations § 27.1136 Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands. An... duly authorized mobile satellite service operations in these bands. Any such AWS licensees must...

  9. The AMSC mobile satellite system

    NASA Technical Reports Server (NTRS)

    Agnew, Carson E.; Bhagat, Jai; Hopper, Edwin A.; Kiesling, John D.; Exner, Michael L.; Melillo, Lawrence; Noreen, Gary K.; Parrott, Billy J.

    1988-01-01

    The American Mobile Satellite Consortium (AMSC) Mobile Satellite Service (MSS) system is described. AMSC will use three multi-beam satellites to provide L-band MSS coverage to the United States, Canada and Mexico. The AMSC MSS system will have several noteworthy features, including a priority assignment processor that will ensure preemptive access to emergency services, a flexible SCPC channel scheme that will support a wide diversity of services, enlarged system capacity through frequency and orbit reuse, and high effective satellite transmitted power. Each AMSC satellite will make use of 14 MHz (bi-directional) of L-band spectrum. The Ku-band will be used for feeder links.

  10. Global Mobile Satellite Service Interference Analysis for the AeroMACS

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Apaza, Rafael D.; Hall, Ward; Phillips, Brent

    2013-01-01

    The AeroMACS (Aeronautical Mobile Airport Communications System), which is based on the IEEE 802.16-2009 mobile wireless standard, is envisioned as the wireless network which will cover all areas of airport surfaces for next generation air transportation. It is expected to be implemented in the 5091-5150 MHz frequency band which is also occupied by mobile satellite service uplinks. Thus the AeroMACS must be designed to avoid interference with this incumbent service. Simulations using Visualyse software were performed utilizing a global database of 6207 airports. Variations in base station and subscriber antenna distribution and gain pattern were examined. Based on these simulations, recommendations for global airport base station and subscriber antenna power transmission limitations are provided.

  11. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies: Part 2: Technical report

    NASA Technical Reports Server (NTRS)

    Naderi, F. (Editor)

    1982-01-01

    A conceptual system design for a satellite-aided land mobile service is described. A geostationary satellite which employs a large (55-m) UHF reflector to communicate with small inexpensive user antennas on mobile vehicles is discussed. It is shown that such a satellite system through multiple beam antennas and frequency reuse can provide thousands of radiotelephone and dispatch channels serving hundreds of thousands of users throughout the U.S.

  12. Land Mobile Satellite Service (LMSS): A conceptual system design and identification of the critical technologies. Part 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Naderi, F. (Editor)

    1982-01-01

    A system design for a satellite aided land mobile service is described. The advanced system is based on a geostationary satellite which employs a large UHF reflector to communicate with small user antennas on mobile vehicles. It is shown that the system through multiple beam antennas and frequency reuse provides for radiotelephone and dispatch channels. It is concluded that the system is technologically feasible to provide service to rural and remote regions.

  13. A retransmission protocol for the message service of a land mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Li, V. O. K.

    1985-01-01

    The objectives of NASA's land mobile satellite experiments are discussed. The assigned multiple access protocol combined with a retransmission scheme is to provide reliable transmission of data messages from mobiles to base stations (BSs). The sequences for communication between mobiles and BSs, mobiles and the network management center (NMC), and BSs and NMC are examined, and an example of mobiles/BSs communication is provided. The performance of the retransmission protocol and data message reservation and message channels delays are analyzed. A bit error rate of 0.001 is observed for satellite channels in a mobile environment and the message error probability is between 0-0.1.

  14. A FD/DAMA network architecture for the first generation land mobile satellite services

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Wang, C.; Cheng, U.; Dessouky, K.; Rafferty, W.

    1989-01-01

    A frequency division/demand assigned multiple access (FD/DAMA) network architecture for the first-generation land mobile satellite services is presented. Rationales and technical approaches are described. In this architecture, each mobile subscriber must follow a channel access protocol to make a service request to the network management center before transmission for either open-end or closed-end services. Open-end service requests will be processed on a blocked call cleared basis, while closed-end requests will be processed on a first-come-first-served basis. Two channel access protocols are investigated, namely, a recently proposed multiple channel collision resolution scheme which provides a significantly higher useful throughput, and the traditional slotted Aloha scheme. The number of channels allocated for either open-end or closed-end services can be adaptively changed according to aggregated traffic requests. Both theoretical and simulation results are presented. Theoretical results have been verified by simulation on the JPL network testbed.

  15. Mobile satellite regulation in the United States

    NASA Technical Reports Server (NTRS)

    Levin, Lon C.; Sonnenfeldt, Walter H.

    1990-01-01

    During the last decade, the U.S. FCC has developed the regulatory structure for the provision of mobile services via satellite. In May 1989, the FCC awarded American Mobile Satellite Corporation (AMSC) a license to provide the full range of domestic mobile satellite services in the U.S. At that time, the FCC reaffirmed the U.S. mobile satellite industry structure and spectrum allocations that had been adopted previously. Also in May 1989, the FCC authorized the Communications Satellite Corporation (COMSAT), the U.S. Signatory to Inmarsat, to provide international aeronautical satellite service via the Inmarsat system. Earlier in 1989, the FCC permitted the use of Ku-band satellites to provide messaging and tracking services. In the mid-1980's, the FCC established the Radiodetermination Satellite Service and awarded licenses. Among the mobile satellite matters currently facing the FCC are whether additional spectrum should be allocated for domestic 'generic' mobile satellite services, the regulatory structure for the provision of mobile satellite service on an interim basis before AMSC launches its dedicated satellites, and whether to authorize a low earth orbit satellite system to provide mobile data service.

  16. Land mobile satellite system requirements

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.

    1983-01-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  17. Land mobile satellite system requirements

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.

    1983-05-01

    A Land Mobile Satellite System (LMSS) provides voice, data and related communications services to moving vehicles and persons. Communications between the mobiles and satellite are in the 806-890 MHz band. The satellite translates these signals to a ""fixed services band'' such as 14/12 GHz band (Ku-band), and communicates in this band with fixed terminals called gateways. The gateways are located at convenient places such as telephone switches (which provide entry into the national telephone system), dispatcher headquarters, computer centers, etc. Communications are therefore principally mobile to fixed. A third communications link, also at Ku-band, is needed between the satellite and a single fixed ground station. This link provides satellite command, telemetry and ranging and also provides a network control function. The latter, through a common signalling system, receives requests and assigns channel slots, and otherwise controls, monitors and polices the network and collects billing information.

  18. A reliable pipelining protocol for the message service of the Mobile Satellite Experiment

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Yan, T.-Y.

    1986-01-01

    This paper describes and analyzes a pipelining protocol for the data message communications of MSAT-X, a proposed experimental satellite-based mobile communications network. A demand assigned multiple access protocol using pure ALOHA for making reservation requests has been developed for MSAT-X under error-free assumptions. Preliminary propagation studies indicate that the short term bit error rate of satellite channels in a mobile environment can be as high as 0.001. Therefore, error-control schemes must be developed to ensure reliable transmissions. A retransmission scheme using selective repeat to minimize the end-to-end delay is proposed. Slotted ALOHA for making reservation requests is used to increase the overall system throughput. Since the number of channels available for reservation and data channels is essentially fixed for a given voice call blocking probability and a fixed call arrival rate, the analysis presented in this paper is also applicable to the integrated voice and data services of MSAT-X. Various operational scenarios have been investigated.

  19. Computer simulation and performance assessment of the packet-data service of the Aeronautical Mobile Satellite Service (AMSS)

    NASA Technical Reports Server (NTRS)

    Ferzali, Wassim; Zacharakis, Vassilis; Upadhyay, Triveni; Weed, Dennis; Burke, Gregory

    1995-01-01

    The ICAO Aeronautical Mobile Communications Panel (AMCP) completed the drafting of the Aeronautical Mobile Satellite Service (AMSS) Standards and Recommended Practices (SARP's) and the associated Guidance Material and submitted these documents to ICAO Air Navigation Commission (ANC) for ratification in May 1994. This effort, encompassed an extensive, multi-national SARP's validation. As part of this activity, the US Federal Aviation Administration (FAA) sponsored an effort to validate the SARP's via computer simulation. This paper provides a description of this effort. Specifically, it describes: (1) the approach selected for the creation of a high-fidelity AMSS computer model; (2) the test traffic generation scenarios; and (3) the resultant AMSS performance assessment. More recently, the AMSS computer model was also used to provide AMSS performance statistics in support of the RTCA standardization activities. This paper describes this effort as well.

  20. Mobile satellite systems - A review

    NASA Astrophysics Data System (ADS)

    McNally, J. L.; Breithaupt, R. W.

    1986-10-01

    A comprehensive set of technical, economic, and policy studies have been completed in Canada to determine the viability of a mobile service to satisfy Canada's requirements. This paper will present an overall review of these studies, give a rationale as to why narrowband technologies are necessary for the commercial viability of this service, and the approach taken in the development of these technologies. A brief review of activities and proposed mobile satellite systems in other areas besides North America is also given.

  1. Experiment In Aeronautical-Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  2. Miltipath measurements for land mobile satellite service using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Lemmon, John J.

    1988-01-01

    A proposed multipath system for the land mobile satellite radio channel using the Global Positioning System (GPS) is presented. The measurement technique and equipment used to make multipath measurements on communications links are briefly described. The system configuration and performance specifications of the proposed measurement system are discussed.

  3. Integration of mobile satellite and cellular systems

    NASA Technical Reports Server (NTRS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  4. The American mobile satellite system

    NASA Technical Reports Server (NTRS)

    Garner, William B.

    1990-01-01

    During 1989, the American Mobile Satellite Corporation (AMSC) was authorized to construct, launch, and operate satellites to provide mobile satellite services (MSS) to the U.S. and Puerto Rico. The AMSC has undertaken three major development programs to bring a full range of MSS services to the U.S. The first program is the space segment program that will result in the construction and launch of the satellites as well as the construction and installation of the supporting ground telemetry and command system. The second segment will result in the specification, design, development, construction, and installation of the Network Control System necessary for managing communications access to the satellites, and the specification and development of ground equipment for standard circuit switched and packet switched communications services. The third program is the Phase 1 program to provide low speed data services within the U.S. prior to availability of the AMSC satellites and ground segment. Described here are the present status and plans for these three programs as well as an update on related business arrangements and regulatory matters.

  5. Adaptive mobile access protocol (AMAP) for the message service of a land mobile satellite experiment (MSAT-X)

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Yan, T.-Y.

    1984-01-01

    This paper describes a feasibility study of the adaptive mobile access protocol (AMAP) for MSATA-X, a proposed experimental mobile satellite communication network. The mobiles are dispersed over a wide geographical area and the channel data rate is limited due to the size and cost limitations of mobile antennas. AMAP is a reservation based multiple-access scheme. The available bandwidth is divided into subchannels, which are divided into reservation and message channels. The ALOHA multiple-access scheme is employed in the reservation channels, while the message channels are demand assigned. AMAP adaptively reallocates the reservation and message channels to optimize system performance. It has been shown that if messages are generated at a rate of one message per hour, AMAP can support approximately 2000 active users per 2400 bit/s channel with an average delay of 1.4 s.

  6. Public service satellite communications

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1978-01-01

    It is suggested that the high effective isotropic radiated power provided by high-power satellite transmitters and high-gain antennas could be used in conjunction with economical ground receivers to furnish public services in remote areas of the U.S. Applications to health care, education and public safety are mentioned. A system concept involving a communications satellite operating in the Ku-band (12-GHz down, 14-GHz up) and either 100/30 watt stationary earth terminals with 1-1.8 m antennas or mobile terminals with omnidirectional antennas is presented.

  7. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz Mobile-Satellite Service and 2 GHz Mobile-Satellite...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) That a system only using geostationary orbit satellites, at a minimum, be capable of providing Mobile... Commission. (d) In-Orbit Spares. Licensees need not file separate applications to operate technically identical in-orbit spares authorized as part of the blanket license pursuant to paragraph (a) of...

  8. A new digital land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schneider, Philip

    1990-01-01

    A description is given of the different digital services planned to be carried over existing and planned mobile satellite systems. These systems are then compared with analog services in terms of bandwidth and power efficiency. This comparison provides the rationale for the establishment of a digital land mobile satellite service (DLMSS) to use frequencies that are currently available but not yet assigned to a domestic mobile satellite system in the United States. The focus here is on the expected advantages of digital transmission techniques in accommodating additional mobile satellite systems in this portion of the spectrum, and how such techniques can fully satisfy voice, data and facsimile mobile communications requirements in a cost effective manner. A description is given of the system architecture of the DMLSS service proposed by the Geostar Messaging Corporation (GMC) and the market potential of DLMSS.

  9. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  10. LOOPUS Mob-D: System concept for a public mobile satellite system providing integrated digital services for the Northern Hemisphere from an elliptical orbit

    NASA Technical Reports Server (NTRS)

    Kuhlen, H.; Horn, P.

    1990-01-01

    A new concept for a satellite based public mobile communications system, LOOPUS Mob-D, is introduced, whereby most of the classical problems in mobile satellite systems are approached in a different way. The LOOPUS system will offer a total capacity of 6000 high rate channels in three service areas (Europe, Asia, and North America), covering the entire Northern Hemisphere with a set of group special mobile (GSM) compatible mobile services, eventually providing the 'office in the car'. Special characteristics of the LOOPUS orbit and the communications network architecture are highlighted.

  11. Secure voice for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Vaisnys, Arvydas; Berner, Jeff

    1990-01-01

    The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.

  12. The Canadian mobile satellite program

    NASA Astrophysics Data System (ADS)

    Boudreau, P. M.; Breithaupt, R. W.; McNally, J. L.

    The progressions and selection of design features for the Canadian segment of a mobile satellite (MSAT) communications system are traced. The feasibility study for a satellite-based public and government mobile communications service to underserved areas was carried out between 1980-82. The results covered the market demand, commercial viability, user cost-benefit, and spacecraft concepts. A subsequent 2 yr study was initiated to proceed with project definition. A market of 1.1 million users was identified in all of Canada, with MSAT replacing other systems for 50 percent of the market. Operations would be in the 806-890 MHz range. Traffic will be routed through gateway links functioning in the 8/7 GHz SHF band while the mobile units will be connected through an 821-825 MHz up link and an 866-870 MH downlink. New technologies will be needed for a central control station, the gateway stations, and the base stations for the mobile radio service, the mobile user terminals, and data collection platforms.

  13. Mobile satellite systems. A review

    NASA Astrophysics Data System (ADS)

    McNally, J. L.; Breithaupt, R. W.

    The advantages of a mobile satellite system have been recognized worldwide, and after the 1979 World Administrative Radio Conference (WARC) identified spectrum in the 806 to 890 MHz band for region 2, the Canadian Government quickly took steps to provide mobile satellite services for all of Canada including the 200 mile offshore ocean territorial limits. A comprehensive set of technical, economic, and policy studies have been completed in Canada to determine the viability of a mobile service to satisfy Canada's requirements. This paper will present an overall review of these studies, give a rationale as to why narrowband technologies are necessary for the commercial viability of this service, and the approach taken in the development of these technologies. A brief review of activities and proposed mobile satellite systems in other areas besides North America is also given. The effect of an early entry by commercial interests (Telesat in Canada) will be examined including system parameters which require careful coordination within Canada and the U.S. operations in order to assure commercial viability in both countries. A review of some common requirements in the Canadian and U.S. systems will be discussed in order to standardize the system and equipment approaches for each country and provide mutual back-up in the event of a spacecraft anomaly. The trade-offs between the use of UHF (800 MHz) and L-Band (1.5 GHz) when used for true mobile applications are discussed. A hybrid system design is explored which would make the most appropriate use of both bands.

  14. Proceedings of the Mobile Satellite Conference

    NASA Technical Reports Server (NTRS)

    Rafferty, William

    1988-01-01

    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them.

  15. DMSK: A practical 2400-bps receiver for the mobile satellite service: An MSAT-X Report

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Simon, M. K.; Sumida, J.

    1985-01-01

    The partical aspects of a 2400-bps differential detection minimum-shift-keying (DMSK) receiver are investigated. Fundamental issues relating to hardware precision, Doppler shift, fading, and frequency offset are examined, and it is concluded that the receiver's implementation at baseband is more advantageous both in cost and simplicity than its IF implementation. The DMSK receiver has been fabricated and tested under simulated mobile satellite environment conditions. The measured receiver performance in the presence of anomalies pertinent to the link is presented in this report. Furthermore, the receiver behavior in a band-limited channel (GMSK) is also investigated. The DMSK receiver performs substantially better than a coherent minimum-shift-keying (MSK) receiver in a heavily fading environment. The DMSK radio is simple and robust, and results in a lower error floor than its coherent counterpart. Moreover, this receiver is suitable for burst-type signals, and its recovery from deep fades is fast.

  16. Near-toll quality digital speech transmission in the mobile satellite service

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Divsalar, D.

    1986-01-01

    This paper discusses system considerations for near-toll quality digital speech transmission in a 5 kHz mobile satellite system channel. Tradeoffs are shown for power performance versus delay for a 4800 bps speech compression system in conjunction with a 16 state rate 2/3 trellis coded 8PSK modulation system. The suggested system has an additional 150 ms of delay beyond the propagation delay and requires an E(b)/N(0) of about 7 dB for a Ricean channel assumption with line-of-sight to diffuse component ratio of 10 assuming ideal synchronization. An additional loss of 2 to 3 dB is expected for synchronization in fading environment.

  17. Domestic mobile satellite systems in North America

    NASA Technical Reports Server (NTRS)

    Wachira, Muya

    1990-01-01

    Telest Mobile Inc. (TMI) and the American Mobile Satellite Corporation (AMSC) are authorized to provide mobile satellite services (MSS) in Canada and the United States respectively. They are developing compatible systems and are undertaking joint specification and procurement of spacecraft and ground segment with the aim of operational systems by late 1993. Early entry (phase 1) mobile data services are offered in 1990 using space segment capacity leased from Inmarsat. Here, an overview is given of these domestic MSS with an emphasis on the TMI component of the MSAT systen.

  18. Antennas for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.

  19. Land Mobile Satellite Antenna Development at JPL

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Jamnejad, V.; Tulintseff, A.; Huang, J.; Lee, K.; Sukamto, L.; Crist, R.

    1993-01-01

    JPL has developed several mobile-vehicular antenna systems for satellite service throughout the last decade. The frequency bands cover UHF through Ka-band, and the antennas vary from high-gain with automatic satellite-tracking to omni-directional.

  20. Interworking evolution of mobile satellite and terrestrial networks

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.

    1993-01-01

    There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.

  1. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in Mobile-Satellite Service...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MSS ATC systems shall maintain an in-orbit spare satellite. (ii) Operational GSO MSS ATC systems shall maintain a spare satellite on the ground within one year of commencing operations and launch it into...

  2. Satellite services system overview

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  3. A description of results from the handbook on signal fade degradation for the land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1990-01-01

    During the period 1983 to 1988 a series of experiments were undertaken by the Electrical Engineering Research Laboratory of the University of Texas and the Applied Physics Laboratory of the Johns Hopkins University in which propagation impairment effects were investigated for the Land Mobile Satellite Service (LMSS). The results of these efforts have appeared in a number of publications, technical reports, and conference proceedings. The rationale for the development of a 'handbook' was to locate the salient and useful results in one single document for use by communications engineers, designers of planned LMSS communications systems, and modelers of propagation effects. Where applicable, the authors have also drawn from the results of other related investigations. A description of sample results contained in this handbook which should be available in the latter part of 1990 is given.

  4. Mobile satellites for safety and disaster response

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.

    Attention is given to the advantages that have been demonstrated by NASA's Application Technology Satellites (ATSs) in several disasters and emergencies. ATS-3 relayed vital traffic out of the area devastated by Mount St. Helens in May, 1980; this satellite relay provided the only telephone service to the recovery team for the first three days after the eruption. These mobile satellite systems can also be used to furnish radio telephone, automatic monitoring and control, and position location services to anyone requiring them Commercial implementation of such a system will ensure continuous and reliable service.

  5. Performance analysis of an adaptive multiple access scheme for the message service of a land mobile satellite experiment (MSAT-X)

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Li, V. O. K.

    1984-01-01

    This paper describes an Adaptive Mobile Access Protocol (AMAP) for the message service of MSAT-X., a proposed experimental mobile satellite communication network. Message lengths generated by the mobiles are assumed to be uniformly distributed. The mobiles are dispersed over a wide geographical area and the channel data rate is limited. AMAP is a reservation based multiple access scheme. The available bandwidth is divided into subchannels, which are divided into reservation and message channels. The ALOHA multiple access scheme is employed in the reservation channels, while the message channels are demand assigned. AMAP adaptively reallocates the reservation and message channels to optimize the total average message delay.

  6. Satellite Services Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.

  7. The Ellipso (TM) mobile satellite system

    NASA Technical Reports Server (NTRS)

    Castiel, David; Draim, John E.

    1995-01-01

    The Ellipso(trademark) Mobile Satellite System is conceived to extend telecommunication services throughout the world to users that are not well, or not at all served by existing mobile or fixed telephone systems. Unlike cellular telephones, Ellipso(trademark) offers fully nationwide service to every served country, thereby providing service to users located anywhere within the national boundaries, no matter how isolated or remote. With Ellipso(trademark), a user in the middle of a wilderness area will have the same mobile telecommunications service as a user in a major metropolitan area. Ellipso(trademark) uses medium earth orbiting (MEO) satellites and an efficient system design to reach its subscribers directly and at a price that is competitive with terrestrial telephone services. The subscriber only requires a clear view of a serving satellite to achieve a connection and to connect to anyone else served by the national telecommunications system. Subscribers within view of two or more satellites will benefit from Ellipso's(trademark) unique satellite diversity processing, using all available satellites simultaneously to optimize circuit quality.

  8. Land mobile satellite demonstration system

    NASA Technical Reports Server (NTRS)

    Gooch, Guy M.; Nicholas, David C.

    1988-01-01

    A land mobile satellite demonstration system is described. It ulilizes the INMARSAT MARECS B2 satellite at 26 degrees W. The system provides data transmission using a poll-response protocol with error detection and retransmission at 200 b/s rate. For most tests a 1.8 inch monopole antenna was used, along with a satellite EIRP normally used for four voice channels. A brief summary of the results are given and the overall system consisting of three elements in addition to the satellite (the mobile unit, the base station, and the office terminal and map display) is described. Throughput statistics from one trip are summarized.

  9. The United States regional mobile satellite system

    NASA Astrophysics Data System (ADS)

    Anderson, Roy E.; Cooperman, Richard S.

    Commercial interests within the United States and Canada are preparing to implement cooperative systems that will provide land and aeronautical mobile satellite services in those two countries and in Mexico. Wide bandwidth, linear satellites ('bent pipe transponders') in geostationary orbit will be built and operated by a consortium of companies in the United States. The consortium will act as a carrier's carrier, leasing bandwidth and power to resellers and private radio leasees who will tailor the ground systems and signal characteristics to the needs of end users. A variety of voice, data, and position fixing services will add new dimensions to mobile communications throughout North America.

  10. The AMSC mobile satellite system: Design summary and comparative analysis

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.

    1989-01-01

    Mobile satellite communications will be provided in the United States by the American Mobile Satellite Consortium (AMSC). Telesat Mobile, Inc. (TMI) and AMSC are jointly developing MSAT, the first regional Mobile Satellite Service (MSS) system. MSAT will provide diverse mobile communications services - including voice, data and position location - to mobiles on land, water, and in the air throughout North America. Described here are the institutional relationships between AMSC, TMI and other organizations participating in MSAT, including the Canadian Department of Communications and NASA. The regulatory status of MSAT in the United States and international allocations to MSS are reviewed. The baseline design is described.

  11. Trends in mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Johannsen, Klaus G.; Bowles, Mike W.; Milliken, Samuel; Cherrette, Alan R.; Busche, Gregory C.

    1993-01-01

    Ever since the U.S. Federal Communication Commission opened the discussion on spectrum usage for personal handheld communication, the community of satellite manufacturers has been searching for an economically viable and technically feasible satellite mobile communication system. Hughes Aircraft Company and others have joined in providing proposals for such systems, ranging from low to medium to geosynchronous orbits. These proposals make it clear that the trend in mobile satellite communication is toward more sophisticated satellites with a large number of spot beams and onboard processing, providing worldwide interconnectivity. Recent Hughes studies indicate that from a cost standpoint the geosynchronous satellite (GEOS) is most economical, followed by the medium earth orbit satellite (MEOS) and then by the low earth orbit satellite (LEOS). From a system performance standpoint, this evaluation may be in reverse order, depending on how the public will react to speech delay and collision. This paper discusses the trends and various mobile satellite constellations in satellite communication under investigation. It considers the effect of orbital altitude and modulation/multiple access on the link and spacecraft design.

  12. NASA's mobile satellite development program

    NASA Technical Reports Server (NTRS)

    Rafferty, William; Dessouky, Khaled; Sue, Miles

    1988-01-01

    A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies.

  13. Attenuated direct and scattered wave propagation on simulated land mobile satellite service paths in the presence of trees

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Estus, Robert

    1988-01-01

    Measurements were made of direct path with no trees, attenuated direct, and tree scattered signal levels at 1.3 GHz. Signals were received in two small groves of mixed hardwood trees. In the groves studied, average total signal levels were about 13 dB below adjacent no-trees locations, with attenuated direct signal levels about 14.6 dB below the no-trees case and scattered signals about 17.3 dB below the no-trees case. A simple model for land mobile satellite service (LMSS) propagation in groves of trees is proposed. The model assumes a constant scattered signal contribution at 17 dB below no-trees levels added to an attenuated direct signal which varies, depending on the number and density of trees in the direct path. When total signal levels are strong, the attenuated direct signal dominates. When total signal levels are more than 15 dB below no-trees levels, the scattered signals dominate.

  14. Radiodetermination satellite services and standard

    NASA Astrophysics Data System (ADS)

    Rothblatt, Martin A.

    Technical and operational aspects of radiodetermination satellite services (RDSSs) are examined in a general overview. RDSS is the satellite position-finding and navigation service (with limited alphanumeric message capability) defined by the FCC and ITU for operation at 1.610-1.626 GHz (uplink) and 2.484-2.500 GHz (downlink). The history of RDSS and its relationship to other satellite communication systems are discussed, and consideration is given to RDSS system architectures; space-segment, control-segment, and user-segment design; traffic management and control of non-RDSS interference; and aeronautical, maritime, land-mobile, personal, and special RDSS applications. Diagrams, graphs, and tables of numerical data are provided.

  15. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  16. Communication satellite services for special purpose users

    NASA Technical Reports Server (NTRS)

    Wright, D. L.; Kiesling, J. D.

    1977-01-01

    The present study identifies potential satellite services, examines the technology necessary for efficient implementation of these services, and determines minimum service cost versus user network size. The generic satellite services evaluated comprise TV and radio distribution (for retransmission), video teleconferencing (interactive), audio/facsimile teleconferencing (interactive), multiplexed data/voice (point-to-point), and satellite-supported land mobile. Satellite costs are based on extrapolations from ongoing commercial satellite programs. Production methods, new technology, and effect of production quantities on present and future production costs are examined to provide information on earth station equipment cost versus the variable 'buy'. Six different launch vehicles from a Delta 2914 to a dedicated Shuttle and three frequency bands and both broadcast (no eclipse capability) and fixed service satellites are considered to assess the effect of satellite size on cost and performance. It is assumed that the user pays only for his prorata share of the space segment costs.

  17. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas; and (iv) That a system only using geostationary orbit satellites, at a minimum, be capable of... space stations authorized by the Commission. (d) In-Orbit Spares. Licensees need not file separate applications to operate technically identical in-orbit spares authorized as part of the blanket...

  18. 47 CFR 25.143 - Licensing provisions for the 1.6/2.4 GHz mobile-satellite service and 2 GHz mobile-satellite...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas; and (iv) That a system only using geostationary orbit satellites, at a minimum, be capable of... space stations authorized by the Commission. (d) In-Orbit Spares. Licensees need not file separate applications to operate technically identical in-orbit spares authorized as part of the blanket...

  19. User applications unique to mobile satellites

    NASA Astrophysics Data System (ADS)

    Castiel, David

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  20. User applications unique to mobile satellites

    NASA Technical Reports Server (NTRS)

    Castiel, David

    1990-01-01

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  1. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  2. Mobile satellite ranging

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.

    1978-01-01

    A brief review of the constraints which have limited satellite ranging hardware and an outline of the steps which are underway to improve the status of the equipment in this area are given. In addition, some suggestions are presented for the utilization of newer instruments and for possible future research and development work in this area.

  3. Propagation considerations in land mobile satellite transmission

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Smith, E. K.

    1985-01-01

    It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.

  4. Inmarsat aeronautical mobile satellite system: Internetworking issues

    NASA Technical Reports Server (NTRS)

    Sengupta, Jay R.

    1990-01-01

    The Inmarsat Aeronautical Mobile Satellite System (AMSS) provides air-ground and air-air communications services to aero-mobile users on a global basis. Communicating parties may be connected either directly, or more commonly, via interconnecting networks to the Inmarsat AMSS, in order to construct end-to-end communications circuits. The aircraft earth station (AES) and the aeronautical ground earth station (GES) are the points of interconnection of the Inmarsat AMSS to users, as well as to interconnecting networks. This paper reviews the internetworking aspects of the Inmarsat AMSS, by introducing the Inmarsat AMSS network architecture and services concepts and then discussing the internetwork address/numbering and routing techniques.

  5. A CCIR aeronautical mobile satellite report

    NASA Astrophysics Data System (ADS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-08-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  6. A CCIR aeronautical mobile satellite report

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Bishop, Dennis; Rogers, David; Smith, Ernest K.

    1989-01-01

    Propagation effects in the aeronautical mobile-satellite service differ from those in the fixed-satellite service and other mobile-satellite services because: small antennas are used on aircraft, and the aircraft body may affect the performance of the antenna; high aircraft speeds cause large Doppler spreads; aircraft terminals must accommodate a large dynamic range in transmission and reception; and due to their high speeds, banking maneuvers, and three-dimensional operation, aircraft routinely require exceptionally high integrity of communications, making even short-term propagation effects very important. Data and models specifically required to characterize the path impairments are discussed, which include: tropospheric effects, including gaseous attenuation, cloud and rain attenuation, fog attenuation, refraction and scintillation; surface reflection (multipath) effects; ionospheric effects such as scintillation; and environmental effects (aircraft motion, sea state, land surface type). Aeronautical mobile-satellite systems may operate on a worldwide basis, including propagation paths at low elevation angles. Several measurements of multipath parameters over land and sea were conducted. In some cases, laboratory simulations are used to compare measured data and verify model parameters. The received signals is considered in terms of its possible components: a direct wave subject to atmospheric effects, and a reflected wave, which generally contains mostly a diffuse component.

  7. Proceedings of the Fifth International Mobile Satellite Conference 1997

    NASA Technical Reports Server (NTRS)

    Jedrey, T. (Compiler); Rigley, J. (Compiler); Anderson, Louise (Editor)

    1997-01-01

    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments.

  8. Dimensioning of Aeronautical Satellite Services

    NASA Astrophysics Data System (ADS)

    Holzbock, M.; Jahn, A.; Werner, M.

    2002-01-01

    This paper will provide a generalised baseline for a systematic AirCom design process and address in particular the dimensioning of satellite systems for aeronautical services. These services will roll out soon in medium- and long-haul aircraft. The offered services will range from low rate telephony, internet access, and streaming applications for video and audio. The aggregate bit rates on up- and downlink will certainly be statistically time-dependent and asymmetric in forward and backward direction. A tool will be described that is able to model this traffic. Furthermore the dimensioning of satellite constellations can be done. Due to the stochastic nature of the traffic, multi-service models for the traffic generation of different services will be described. Furthermore, the traffic will be affected by the available bit rate and shaping or blocking will equalize the peak loads. If fleets with many aircraft are considered, aeronautical traffic models must be based on actual aircraft routes, flight schedules, location and time of day, as well as seats per aircraft and type of aircraft (charter, business etc.). The regionally distributed traffic has to be served by several satellites and appropriate sharing of the serving satellites may spread the traffic in hot zones and yield a better load distribution. When aeronautical services will spread out, the capacity demand will grow quickly and the capacity of existing Ku-band GEO satellites will soon be exceeded. Changing to higher frequency bands will provide large spectrum portions and smaller spotbeams will allow better frequency reuse. Even constellations with non-geostationary satellites could be re-advent to serve better the higher latitude regions. Then, another mobility component for the fast changing satellite topology need to be addressed, and routing issues of the traffic must be considered. The paper will describe solutions for the mapping of satellites and traffic demand as well as routing algorithms

  9. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Therefore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  10. Satellite servicing economic study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Threfore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  11. Lens Antenna For Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  12. Land mobile satellite propagation results

    NASA Technical Reports Server (NTRS)

    Nicholas, David C.

    1988-01-01

    During the Fall of 1987 a land mobile satellite demonstration using the MARECS B2 satellite at 26 degrees W was performed. While all the data have not been digested, some observations are in order. First, the system worked remarkably well for the margins indicated. Second, when the system worked poorly, the experimenters could almost always identify terrain or other obstacles causing blockage. Third, the forward link seems relatively more reliable than the return link, and occasional return link problems occured which have not been entirely explained.

  13. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the Mobile-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... frequency electromagnetic fields as defined in §§ 1.1307(b) and 1.1310 of this chapter for PCS networks. (6...-Satellite Service bands, MSS ATC is limited to no more than 7.775 MHz of spectrum in the L-band and 11.5 MHz of spectrum in the S-band. Licensees in these bands may implement ATC only on those channels on...

  14. 47 CFR 80.1185 - Supplemental eligibility for mobile-satellite stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Supplemental eligibility for mobile-satellite...-Satellite Stations § 80.1185 Supplemental eligibility for mobile-satellite stations. Stations in the maritime mobile-satellite service must meet the eligibility requirements contained in this section. (a)...

  15. 47 CFR 80.1185 - Supplemental eligibility for mobile-satellite stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Supplemental eligibility for mobile-satellite...-Satellite Stations § 80.1185 Supplemental eligibility for mobile-satellite stations. Stations in the maritime mobile-satellite service must meet the eligibility requirements contained in this section. (a)...

  16. 47 CFR 80.1185 - Supplemental eligibility for mobile-satellite stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Supplemental eligibility for mobile-satellite...-Satellite Stations § 80.1185 Supplemental eligibility for mobile-satellite stations. Stations in the maritime mobile-satellite service must meet the eligibility requirements contained in this section. (a)...

  17. 47 CFR 80.1185 - Supplemental eligibility for mobile-satellite stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Supplemental eligibility for mobile-satellite...-Satellite Stations § 80.1185 Supplemental eligibility for mobile-satellite stations. Stations in the maritime mobile-satellite service must meet the eligibility requirements contained in this section. (a)...

  18. 47 CFR 80.1185 - Supplemental eligibility for mobile-satellite stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Supplemental eligibility for mobile-satellite...-Satellite Stations § 80.1185 Supplemental eligibility for mobile-satellite stations. Stations in the maritime mobile-satellite service must meet the eligibility requirements contained in this section. (a)...

  19. Propagation considerations in the American Mobile Satellite system design

    NASA Technical Reports Server (NTRS)

    Kittiver, Charles; Sigler, Charles E., Jr.

    1993-01-01

    An overview of the American Mobile Satellite Corporation (AMSC) mobile satellite services (MSS) system with special emphasis given to the propagation issues that were considered in the design is presented. The aspects of the voice codec design that effect system performance in a shadowed environment are discussed. The strategies for overcoming Ku-Band rain fades in the uplink and downlink paths of the gateway station are presented. A land mobile propagation study that has both measurement and simulation activities is described.

  20. Optimizing space constellations for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Roussel, T.; Taisant, J.-P.

    1993-01-01

    Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service.

  1. OSI-compatible protocols for mobile-satellite communications: The AMSS experience

    NASA Technical Reports Server (NTRS)

    Moher, Michael

    1990-01-01

    The protocol structure of the international aeronautical mobile satellite service (AMSS) is reviewed with emphasis on those aspects of protocol performance, validation, and conformance which are peculiar to mobile services. This is in part an analysis of what can be learned from the AMSS experience with protocols which is relevant to the design of other mobile satellite data networks, e.g., land mobile.

  2. Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    NASA Technical Reports Server (NTRS)

    Kwan, Robert (Compiler); Rigley, Jack (Compiler); Cassingham, Randy (Editor)

    1993-01-01

    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications.

  3. Telelibrary: Library Services via Satellite.

    ERIC Educational Resources Information Center

    Liu, Rosa

    1979-01-01

    Investigates the provision of library services via satellite, explains briefly the operation and advantages of communication satellites, and discusses the various telecommunications equipment and services which, when coupled with satellite transmission, will enhance library activities. Demand trend projections for telecommunications services…

  4. Data stream mobility across shipboard satellite networks

    NASA Astrophysics Data System (ADS)

    Foley, S.; Meyer, J.; Berger, J.; Orcutt, J. A.

    2011-12-01

    As global research vessels in the University-National Oceanographic Laboratory System (UNOLS) fleet send more real-time data to shore during cruises, the need for satellite bandwidth, footprint coverage, transport reliability, and data mobility is increasing. A growing amount of science is becoming reliant on real-time feedback from resources on shore. To address this need, the HiSeasNet project brings Internet connectivity to shipboard scientists and sensors. Beginning with ships operated by Scripps Institution of Oceanography, the HiSeasNet project has been working to automatically adapt IP communications in the UNOLS fleet to changing network and bandwidth needs. Access points include the HiSeasNet satellite network, shore-based 3G data networks, Fleet Broadband services, and other internet service providers. With flexible data pipes and quick recovery between connections, data streams are more reliable and adaptable to the science being done on the ship.

  5. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    NASA Technical Reports Server (NTRS)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  6. An overview of the OmniTRACS: The first operational mobile Ku-band satellite communications

    NASA Technical Reports Server (NTRS)

    Salmasi, Allen

    1988-01-01

    The service features of the OmniTRACS system developed by Omninet Communications Services of Los Angeles, California are described. This system is the first operational mobile Ku-band satellite communications system that provides two-way messaging and position determination and reporting services to mobile users on a nationwide basis. The system uses existing Ku-band satellites under a secondary international allocation for mobile satellite services.

  7. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  8. Land Mobile Satellite Service (LMSS) channel simulator: An end-to-end hardware simulation and study of the LMSS communications links

    NASA Technical Reports Server (NTRS)

    Salmasi, A. B. (Editor); Springett, J. C.; Sumida, J. T.; Richter, P. H.

    1984-01-01

    The design and implementation of the Land Mobile Satellite Service (LMSS) channel simulator as a facility for an end to end hardware simulation of the LMSS communications links, primarily with the mobile terminal is described. A number of studies are reported which show the applications of the channel simulator as a facility for validation and assessment of the LMSS design requirements and capabilities by performing quantitative measurements and qualitative audio evaluations for various link design parameters and channel impairments under simulated LMSS operating conditions. As a first application, the LMSS channel simulator was used in the evaluation of a system based on the voice processing and modulation (e.g., NBFM with 30 kHz of channel spacing and a 2 kHz rms frequency deviation for average talkers) selected for the Bell System's Advanced Mobile Phone Service (AMPS). The various details of the hardware design, qualitative audio evaluation techniques, signal to channel impairment measurement techniques, the justifications for criteria of different parameter selection in regards to the voice processing and modulation methods, and the results of a number of parametric studies are further described.

  9. Telemedicine using mobile satellite communication.

    PubMed

    Murakami, H; Shimizu, K; Yamamoto, K; Mikami, T; Hoshimiya, N; Kondo, K

    1994-05-01

    With a view to providing paramedical care within moving vehicles, a telemedicine technique using mobile satellite communication was proposed. With this technique, the diagnosis from a specialist and the emergency care under his/her instructions would be available on the spot without unnecessary delay. The characteristic problems of this technique were identified as: channel capacity, size of the system, reliability of vital sign transmission, real-time operation and electromagnetic interference. Measures against these problems were devised, and their effectiveness was analyzed. A data format was designed and an experimental system was developed. The system can simultaneously transmit a color image, an audio signal, 3 channels ECG and blood pressures from a mobile station to a ground station. It can transmit an audio signal and error control signals from a ground station to a mobile station in a full duplex mode. Fundamental transmission characteristics were measured in a fixed station. Finally, experiments of medical data transmission were conducted with a navigating ship and an aircraft flying an international route. The measured threshold values of C/N(o) to guarantee satisfactory data reception were well below the lower boundary of C/N(o) of the communication link. Consequently, the feasibility of this technique was verified. PMID:8070809

  10. Payload system tradeoffs for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Moody, H. J.

    1990-01-01

    System level trade-offs carried out during Mobile Satellite (M-SAT) design activities are described. These trade-offs relate to the use of low level beam forming, flexible power and spectrum distribution, and selection of the number of beams to cover the service area. It is shown that antenna performance can be improved by sharing horns between beams using a low level beam forming network (BFN). Additionally, greatly increased power utilization is possible using a hybrid matrix concept to share power between beams.

  11. 47 CFR 25.149 - Application requirements for ancillary terrestrial components in the mobile-satellite service...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Operational NGSO MSS ATC systems shall maintain an in-orbit spare satellite. (ii) Operational GSO MSS ATC... it into orbit during the next commercially reasonable launch window following a satellite...

  12. Customer concerns regarding satellite servicing

    NASA Technical Reports Server (NTRS)

    Rysavy, Gordon

    1987-01-01

    The organization of orbital servicing of satellites is discussed. Provision of servicing equipment; design interfaces between the satellite and the servicing equipment; and the economic viability of the concept are discussed. The proposed solution for satisfying customer concerns is for the servicing organizations to baseline an adequate inventory of servicing equipment with standard interfaces and established servicing costs. With this knowledge, the customer can conduct tradeoff studies and make programmatic decisions regarding servicing options. A dialog procedure between customers and servicing specialists is outlined.

  13. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  14. Increasing cellular coverage within integrated terrestrial/satellite mobile networks

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1995-01-01

    When applying the hierarchical cellular concept, the satellite acts as giant umbrella cell covering a region with some terrestrial cells. If a mobile terminal traversing the region arrives to the border-line or limits of a regular cellular ground service, network transition occurs and the satellite system continues the mobile coverage. To adequately assess the boundaries of service of a mobile satellite system an a cellular network within an integrated environment, this paper provides an optimized scheme to predict when a network transition may be necessary. Under the assumption of a classified propagation phenomenon and Lognormal shadowing, the study applies an analytical approach to estimate the location of a mobile terminal based on a reception of the signal strength emitted by a base station.

  15. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Astrophysics Data System (ADS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  16. Need for, and financial feasibility of, satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Marantz, C. S.; Freibaum, J.

    1982-01-01

    Questions regarding the role of a mobile-satellite system in augmenting the terrestrial communications system are considered, and a market assessment study is discussed. Aspects of an investment analysis are examined, taking into account a three phase financial study of four postulated land Mobile Satellite Service (LMSS) systems, project profitability evaluation methods, risk analysis methods, financial projections, potential investor acceptance standards, and a risk analysis. It is concluded that a satellite augmented terrestrial mobile service appears to be economically and technically superior to a service depending exclusively on terrestrial systems. The interest in the Mobile Satellite Service is found to be worldwide, and the ground equipment market is potentially large.

  17. Satellite communication for public services

    NASA Technical Reports Server (NTRS)

    Cooper, R. S.; Redisch, W. N.

    1977-01-01

    Public service programs using NASA's ATS-6 and CTS satellites are discussed. Examples include the ATS-6 Health and Education Telecommunications experimental program and the use of CTS to enable students in one university to take courses presented at another distant university. Possible applications of satellite communication systems to several areas of public service are described, and economic and political obstacles hindering the implementation of these programs are considered. It is suggested that a federally sponsored program demonstrating the utility of satellites accomodating a large number of small terminals is needed to encourage commercial satellite operations.

  18. FD/DAMA Scheme For Mobile/Satellite Communications

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Wang, Charles C.; Cheng, Unjeng; Rafferty, William; Dessouky, Khaled I.

    1992-01-01

    Integrated-Adaptive Mobile Access Protocol (I-AMAP) proposed to allocate communication channels to subscribers in first-generation MSAT-X mobile/satellite communication network. Based on concept of frequency-division/demand-assigned multiple access (FD/DAMA) where partition of available spectrum adapted to subscribers' demands for service. Requests processed, and competing requests resolved according to channel-access protocol, or free-access tree algorithm described in "Connection Protocol for Mobile/Satellite Communications" (NPO-17735). Assigned spectrum utilized efficiently.

  19. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary Mobile-Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the space station's orbit, considering the worst-case frequency tolerance of all frequency determining...) of such outages; (2) A detailed description of the utilization made of the in-orbit satellite...

  20. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...), as calculated for a fixed point on the Earth's surface in the plane of the space station's orbit... utilization made of the in-orbit satellite system. That description should identify the percentage of...

  1. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...), as calculated for a fixed point on the Earth's surface in the plane of the space station's orbit... utilization made of the in-orbit satellite system. That description should identify the percentage of...

  2. Modem for the land mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Henely, Steven J.

    1988-01-01

    This paper describes a modem which has been developed and implemented using a digital signal processor (DSP) for a land mobile satellite demonstration system. The requirements of this digital modem were determined by the characteristics of the land mobile satellite channel. This paper discusses the algorithms which implement the differentiated phase shift keying (DPSK) demodulator. An algorithm is included which estimates symbol timing independent of carrier phase without the use of a square-law nonlinearity.

  3. Managing Mobile/Satellite Propagation Data

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    "Data Management System for Mobile Satellite Propagation" software package collection of FORTRAN programs and UNIX shell scripts designed to handle huge amounts of data resulting from mobile/satellite radio-propagation experiments. Data from experiments converted into standard and more useful forms. Software package contains program to convert binary format of data into standard ASCII format suitable for use with wide variety of computing-machine architectures. Written in either FORTRAN 77 or UNIX shell scripts.

  4. Enhanced performance of the Westinghouse Series 1000 Mobile Satellite Telephone System

    NASA Technical Reports Server (NTRS)

    Martinson, Richard E.

    1995-01-01

    The Westinghouse Series 1000 Mobile Satellite Telephone System is designed for land mobile, maritime, and fixed site land applications. The product currently operates on the Optus Mobilesat system in Australia and will operate on American Mobile Satellite Corporation's (AMSC) Skycell service in the U.S. and TMI Communications' (TMIC) MSAT service in Canada. The architecture allows the same transceiver electronics to be used for diverse mobile applications. Advanced antenna designs have made land mobile satellite communications a reality. This paper details the unique high performance product and its configuration for the vehicle mounted land mobile application.

  5. 47 CFR 25.142 - Licensing provisions for the non-voice, non-geostationary mobile-satellite service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... signal received by their satellites from sources outside of their system shall be retransmitted with a... is authorized in the second application processing round to operate in the 148-148.25 MHz, 148.75-148... the System 2 licensee's compliance with the terms and conditions of its second processing...

  6. Using satellite communications for a mobile computer network

    NASA Technical Reports Server (NTRS)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  7. Study of EVA operations associated with satellite services

    NASA Technical Reports Server (NTRS)

    Nash, J. O.; Wilde, R. D.

    1982-01-01

    Extravehicular mobility unit (EMU) factors associated with satellite servicing activities are identified and the EMU improvements necessary to enhance satellite servicing operations are outlined. Areas of EMU capabilities, equipment and structural interfaces, time lines, EMU modifications for satellite servicing, environmental hazards, and crew training are vital to manned Eva/satellite services and as such are detailed. Evaluation of EMU capabilities indicates that the EMU can be used in performing near term, basic satellite servicing tasks; however, satellite servicing is greatly enhanced by incorporating key modifications into the EMU. The servicing missions involved in contamination sensitive payload repair are illustrated. EVA procedures and equipment can be standardized, reducing both crew training time and in orbit operations time. By standardizing and coordinating procedures, mission cumulative time lines fall well within the EMU capability.

  8. Land mobile communications satellite mission (LAMOCOSAMIS) Task 1: Market study

    NASA Astrophysics Data System (ADS)

    1985-12-01

    Land mobile communication service demand in Europe and the Mediterranean basin in the years 1995-2005 was estimated. A traffic model was derived. There is an exploding demand for land mobile communications in Europe, with overwhelming preference for two way telephone services. The users survey shows a surprising lack of sensitivity to prices and tariffs, which widely contributed to the preeminence of the needs for telephone services. This demand justifies that every effort be made to develop as fast as possible a compatible pan-European terrestrial mobile system. If a large proportion of the needs may be satisfied by terrestrial mobile system solutions, the potential remaining needs for telephony, outside of the presently planned terrestrial mobile, which can be served only by satellite, even under the pessimistic economic scenario and high cost/tariff assumptions, requires a number of equivalent telephone circuits which cannot be achieved with available state of the art technology.

  9. Satellite multiple access systems for mobile communication

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    This paper considers multiple access techniques for a mobile radio system which incorporates a geosynchronous orbiting satellite repeater through which mobile terminals communicate. The communication capacities of FDMA, TDMA and CDMA systems are examined for a 4 MHz bandwidth system to serve up to 10,000 users. An FDMA system with multibeam coverage is analyzed in detail. The system includes an order-wire network for demand-access control and reassignment of satellite channels. Satellite and terminal configurations are developed to a block diagram level and system costs and implementation requirements are discussed.

  10. An access alternative for mobile satellite networks

    NASA Technical Reports Server (NTRS)

    Wu, W. W.

    1988-01-01

    Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.

  11. Land mobile services of Inmarsat.

    NASA Astrophysics Data System (ADS)

    Bell, J.-C.

    1991-04-01

    Inmarsat is the sole satellite organization with global L-band capacity uniquely placed to serve all areas of the world and quickly develop potential markets for land mobile services. The Standard-A system is currently in use, with terminals mounted either in vehicles or moved from one site to another in transportable configurations. Attention is given to the way these terminals provide fax, telex, voice and voice-band data connections with the international public switched networks. An enhanced Standard-C system for messaging and data communications, having a small omnidirectional antenna that can be mounted in any ground vehicle to provide general two-way messaging or automatic position reporting, is presented.

  12. A land mobile satellite data system

    NASA Astrophysics Data System (ADS)

    Kent, John D. B.

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  13. Development of a mobile satellite communication unit

    NASA Technical Reports Server (NTRS)

    Suzuki, Ryutaro; Ikegami, Tetsushi; Hamamoto, Naokazu; Taguchi, Tetsu; Endo, Nobuhiro; Yamamoto, Osamu; Ichiyoshi, Osamu

    1988-01-01

    A compact 210(W) x 280(H) x 330(D) mm mobile terminal capable of transmitting voice and data through L-band mobile satellites is described. The Voice Codec can convert an analog voice to or from digital codes at rates of 9.6, 8 and 4.8 kb/s by an MPC algorithm. The terminal functions with a single 12 V power supplied vehicle battery. The equipment can operate at any L-band frequency allocated for mobile uses in a full duplex mode and will soon be put into a field test via Japans's ETS-V satellite.

  14. A land mobile satellite data system

    NASA Technical Reports Server (NTRS)

    Kent, John D. B.

    1990-01-01

    The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) was developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities between dispatch centers and customers' fleets of trucks. The design was based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth station at Weir, Quebec. The signaling protocols were derived from the Inmarsat Standard C packet signalling system with unique trucking requirements incorporated where necessary.

  15. Spacecraft (Mobile Satellite) configuration design study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  16. Processing of satellite imagery at the National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    Crowe, M.

    1977-01-01

    The National Environmental Satellite Service (NESS) image product processing system is described. Other topics discussed include: (1) image processing of polar-orbiter satellite data; (2) image processing of geostationary satellite data; and (3) quality assurance and product monitoring.

  17. Proceedings of the Fourth International Mobile Satellite Conference (IMSC 1995)

    NASA Technical Reports Server (NTRS)

    Rigley, Jack R. (Compiler); Estabrook, Polly (Compiler); Reekie, D. Hugh M. (Editor)

    1995-01-01

    The theme to the 1995 International Mobile Satellite Conference was 'Mobile Satcom Comes of Age'. The sessions included Modulation, Coding, and Multiple Access; Hybrid Networks - 1; Spacecraft Technology; propagation; Applications and Experiments - 1; Advanced System Concepts and Analysis; Aeronautical Mobile Satellite Communications; Mobile Terminal Antennas; Mobile Terminal Technology; Current and Planned Systems; Direct Broadcast Satellite; The Use of CDMA for LEO and ICO Mobile Satellite Systems; Hybrid Networks - 2; and Applications and Experiments - 2.

  18. Mechanically-Steered, Mobile Satellite-Tracking Antenna

    NASA Technical Reports Server (NTRS)

    Bell, D. J.; Berner, J. B.; Jamnejad, V.; Woo, K. E.

    1990-01-01

    Signal from satellite tracked in moving vehicle. L-band, mechanically-steered, medium-gain antenna part of prototype radio equipment mounted in vehicle to demonstrate concept of land-mobile/satellite communication system. Provides such services as mobile telephone, voice or alphanumeric dispatch, paging, position-location information, and low-rate data transmission, for users within continental United States and Alaska. Antenna rotated mechanically until it finds direction from which maximum signal comes. Rate sensors provide inertial frame of reference during acquisition, so antenna locks onto signal even when vehicle turning.

  19. Land-mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee (Inventor); Rafferty, William (Inventor); Dessouky, Khaled I. (Inventor); Wang, Charles C. (Inventor); Cheng, Unjeng (Inventor)

    1993-01-01

    A satellite communications system includes an orbiting communications satellite for relaying communications to and from a plurality of ground stations, and a network management center for making connections via the satellite between the ground stations in response to connection requests received via the satellite from the ground stations, the network management center being configured to provide both open-end service and closed-end service. The network management center of one embodiment is configured to provides both types of service according to a predefined channel access protocol that enables the ground stations to request the type of service desired. The channel access protocol may be configured to adaptively allocate channels to open-end service and closed-end service according to changes in the traffic pattern and include a free-access tree algorithm that coordinates collision resolution among the ground stations.

  20. Mobile telephony through LEO satellites: To OBP or not

    NASA Technical Reports Server (NTRS)

    Monte, Paul A.; Louie, Ming; Wiedeman, R.

    1991-01-01

    GLOBALSTAR is a satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN) and Public Switched Telephone Network (PSTN). The selection of the transponder type, bent-pipe, or onboard processing (OBP), for GLOBALSTAR is based on many criteria, each of which is essential to the commercial and technological feasibility of GLOBALSTAR. The trade study that was done to determine the pros and cons of a bent-pipe transponder or an onboard processing transponder is described. The design of GLOBALSTAR's telecommunications system is a multi-variable cost optimization between the cost and complexity of individual satellites, the number of satellites required to provide coverage to the service areas, the cost of launching the satellites into their selected orbits, the ground segment cost, user equipment cost, satellite voice channel capacity, and other issues. Emphasis is on the cost and complexity of the individual satellites, specifically the transponder type and the impact of the transponder type on satellite and ground segment cost, satellite power and weight, and satellite voice channel capacity.

  1. Satellite services system analysis study. Volume 2: Satellite and services user model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite services needs are analyzed. Topics include methodology: a satellite user model; representative servicing scenarios; potential service needs; manned, remote, and automated involvement; and inactive satellites/debris. Satellite and services user model development is considered. Groundrules and assumptions, servicing, events, and sensitivity analysis are included. Selection of references satellites is also discussed.

  2. Satellite-aided mobile radio concepts study: Concept definition of a satellite-aided mobile and personal radio communication system

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.

    1979-01-01

    The satellite system requires the use of a large satellite antenna and spacecraft array power of about 12 kW or more depending on the operating frequency. Technology developments needed include large offset reflector multibeam antennas, satellite electrical power sybsystems providing greater than 12 kW of power, signal switching hardware, and linearized efficient solid state amplifiers for the satellite-aided mobile band. Presently there is no frequency assignment for this service, and it is recommended that an allocation be pursued. The satellite system appears to be within reasonable extrapolation of the state of the art. It is further recommended that the satellite-aided system spacecraft definition studies and supporting technology development be initiated.

  3. Mobile satellite communications - Vehicle antenna technology update

    NASA Technical Reports Server (NTRS)

    Bell, D.; Naderi, F. M.

    1986-01-01

    This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.

  4. Satellite sound broadcasting system study: Mobile considerations

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1990-01-01

    Discussed here is the mobile reception part of a study to investigate a satellite sound broadcast system in the UHF or L bands. Existing propagation and reception measurements are used with proper interpretation to evaluate the signaling, coding, and diversity alternatives suitable for the system. Signal attenuation in streets shadowed by buildings appear to be around 29 db, considerably higher than the 10 db adopted by CCIR. With the marriage of proper technologies, an LMSS class satellite can provide substantial direct satellite audio broadcast capability in UHF or L bands for high quality mobile and portable indoor reception by low cost radio receivers. This scheme requires terrestrial repeaters for satisfactory mobile reception in urban areas. A specialized bandwidth efficient spread spectrum signalling technique is particularly suitable for the terrestrial repeaters.

  5. Teleglobe's international Mobile Earth Terminal service

    NASA Astrophysics Data System (ADS)

    Duchoeny, Joel

    In 1990, Teleglobe Canada initiated a developmental Mobile Earth Terminal (MET) service. By the use of the INMARSAT satellite, the service can provide voice and data communication capabilities between lightweight, self-contained terminals and the international public telephone network. Initially, the developmental program provides service to a test group of up to 18 terminals. Plans are under way to introduce a global digital service to the public by 1991-92. Such a service will have the potential to solve communication problems for such users as news media, diplomatic corps, disaster relief teams, construction teams in remote areas, and expeditions. The terminals are briefcase size and include L-band transmitter, receiver, and antenna, a power supply, and batteries. Equipment setup can be easily done in 1-2 minutes. Calls are made by aiming the antenna at the MARECS B2 satellite (covering the Atlantic Ocean region) and dialing the appropriate number.

  6. Satellite services handbook. Interface guidelines

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  7. Satellite services handbook. Interface guidelines

    NASA Astrophysics Data System (ADS)

    1983-12-01

    Satellite interfaces for on orbit servicing, both manned and unmanned are identified, and is intended to be used by designers of space vehicles, both foreign and domestic. A primary concern is for design of interfaces with the astronaut in the loop, especially extravehicular activity, but also intravehicular activity and operations that are remote but have man-in-the-loop. The main emphasis is on servicing in low earth orbits from the Space Shuttle and also from the Space Station or other platforms.

  8. Satellite services and orbital retrieval

    NASA Technical Reports Server (NTRS)

    Adornato, R. J.

    1985-01-01

    Within the capabilities of the Space Shuttle Orbiter, a broad range of services which can be made available to the satellite user community as summarized. Payload deployment, close proximity retrieval, and a number of other mission related functions are discussed. The focus here is on close proximity retrieval and retrieval of payloads in higher energy low Earth orbits.

  9. Description and performance of a digital mobile satellite terminal

    NASA Technical Reports Server (NTRS)

    Lay, N.; Jedrey, T.; Parkyn, J.; Divsalar, D.

    1990-01-01

    A major goal of the Mobile Satellite Experiment (MSAT-X) program at the Jet Propulsion Lab (JPL) is the development of an advanced digital terminal for use in land mobile satellite communication. The terminal has been developed to minimize the risk of applying advanced technologies to future commercial mobile satellite systems (MSS). Testing with existing L band satellites was performed in fixed, land mobile and aeronautical mobile environments. JPL's development and tests of its mobile terminal have demonstrated the viability of narrowband digital voice communications in a land mobile environment through geostationary satellites. This paper provides a consolidated description of the terminal architecture and the performance of its individual elements.

  10. The Globalstar mobile satellite system for worldwide personal communications

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Viterbi, Andrew J.

    1993-01-01

    Loral Aerospace Corporation along with Qualcomm Inc. have developed a satellite system which offers global mobile voice and data services to and from handheld and mobile user terminals with omni-directional antennas. By combining the use of low-earth orbit (LEO) satellites with existing terrestrial communications systems and innovative, highly efficient spread spectrum techniques, the Globalstar system provides users with low-cost, reliable communications throughout the world. The Globalstar space segment consists of a constellation of 48 LEO satellites in circular orbits with 750 NM (1389 km) altitude. Each satellite communicates with the mobile users via the satellite-user links and with gateway stations. The gateway stations handle the interface between the Globalstar network and the OSTN/PLMN systems. Globalstar transceivers are similar to currently proposed digital cellular telephones in size and have a serial number that will allow the end user to make and receive calls from or to that device anywhere in the world. The Globalstar system is designed to operate as a complement to existing local, long-distance, public, private and specialized telecommunications networks. Service is primarily designed to serve the rural and thin route communications needs of consumers, government users, and private networks.

  11. Propagation modeling for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Barts, R. Michael; Stutzman, Warren L.

    1988-01-01

    A simplified empirical model for predicting primary fade statistics for a vegetatively shadowed mobile satellite signal is presented, and predictions based on the model are presented using propagation parameter values from experimental data. Results from the empirical model are used to drive a propagation simulator to produce the secondary fade statistics of average fade duration.

  12. Repeated Transmissions In Mobile/Satellite Communications

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1988-01-01

    Repetition increases throughput and decreases delay. Paper discusses theoretical performance of communication system for land-mobile stations with satellite relay using ALOHA random-access protocol modified for repeated transimssions. Methods and conclusions contribute to general understanding of packet communications in fading channels.

  13. Carrier recovery techniques on satellite mobile channels

    NASA Technical Reports Server (NTRS)

    Vucetic, B.; Du, J.

    1990-01-01

    An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.

  14. Integration between terrestrial-based and satellite-based land mobile communications systems

    NASA Technical Reports Server (NTRS)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  15. Satellite-Based Educational Services. Technical Memorandum.

    ERIC Educational Resources Information Center

    Operations Research, Inc., Silver Spring, MD.

    This memorandum contains engineering information relevant to the use of communication satellites for educational purposes. Information is provided for ground terminals as well as satellites. Satellite related issues addressed include: (1) expected life of service of various satellites, (2) constraints on the availability of the satellites, (3)…

  16. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  17. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  18. Navigation using local position determination from a mobile satellite terminal

    NASA Astrophysics Data System (ADS)

    Kee, Steven M.; Marquart, Robert C.

    The authors describe the implementation and performance evaluation of a location-determination system which uses a mobile satellite transmitter for one-way communications of position data for vehicle tracking. Field results have demonstrated that a mobile satellite terminal can provide reliable messaging and position reporting for many over-the-road applications. With installation techniques suitable for nontechnical personnel using a minimum of test equipment, the mobile terminal can provide proximity reporting adequate for most fleet dispatch requirements. Position data with one-way or two-way communications can improve the logistics and management of service fleets by eliminating deadhead mileage, maximizing route efficiencies, and heading off problems with up-to-date status information of transported loads.

  19. Propagation effects on spread-spectrum mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Flock, Warren L.; Smith, Ernest K.

    1988-01-01

    In contrast to the situation at L-band, wide bandwidths of 500 MHz or more have been allocated for mobile satellite service at frequencies between 20 and 50 GHz. These broad bandwidths are well suited for the use of spread-spectrum. Certain system considerations about the use of such high frequencies for mobile satellite service are mentioned first, and attention is then given to propagation effects on high-frequency broad-band systems. Attenuation due to rain is a constant at 20 to 50 MHz, but would not be a serious problem if outages occurring for one to three percent of the time, depending on location, are considered to be acceptable. Clear air absorption becomes a significant factor above 40 GHz, but should not exceed 2 dB at a 10 degree elevation angle and frequencies below 40 GHz. Spread-spectrum provides a form of frequency diversity that helps to minimize the effects of multipath.

  20. Satellite servicing: A business opportunity?

    NASA Technical Reports Server (NTRS)

    Wong, R. E.; Medler, E. H.

    1984-01-01

    The possibilities of satellite servicing as a business opportunity are examined. The service rate which a user must be charged to yield a reasonable return is derived and then compared against the market's willingness to pay that rate. Steps taken to provide the basis from which the service rate could be derived include: (1) constructing a hypothetical on orbit servicing business offering both on orbit and associated ground services; (2) estimating the total on orbit service business potential by analyzing mission models to the year 2000; and (3) setting up ground rules to bound the conduct of the business. Using this basic information service demand (business volume) cost to set up the business, costs for operation and maintenance tax rates and desired rate of return are estimated to determine the user charge. Sensitivity of the service rate to various parameters are also assessed. The time span for the business venture runs from 1986 through 2000 with service to 1991 provided via the orbiter and by a space station beyond 1991. This point analysis shows about five years of negative cash flow, with steady profits thereafter.

  1. Satellite-aided mobile communications, experiments, applications and prospects

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.; Milton, R. T.

    1980-01-01

    NASA's ATS-series of satellites were used in a series of communications and position fixing experiments with automotive vehicles, ships and aircraft. Applications of the communications were demonstrated and evaluated for public services including law enforcement, search and rescue, and medical emergency, and for commercial uses in the land and maritime transportation industries. The technical success of the experiments and the demonstrated potential value of the communications prompted a study that concluded an operational satellite-aided system would be a valuable augmentation of planned trunking or cellular type terrestrial mobile radio telephone systems.

  2. Analogue and digital linear modulation techniques for mobile satellite

    NASA Technical Reports Server (NTRS)

    Whitmarsh, W. J.; Bateman, A.; Mcgeehan, J. P.

    1990-01-01

    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described.

  3. 47 CFR 20.7 - Mobile services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Mobile services. 20.7 Section 20.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES COMMERCIAL MOBILE RADIO SERVICES § 20.7 Mobile services. The following are mobile services within the meaning of sections 3(n)...

  4. 47 CFR 20.7 - Mobile services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Mobile services. 20.7 Section 20.7 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES COMMERCIAL MOBILE SERVICES § 20.7 Mobile services. The following are mobile services within the meaning of sections 3(n) and...

  5. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  6. Optimization and conceptual design of demonstration military and civilian mobile satellites using existing buses

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Payne, W. F.; Carter, D. R.; Jeffrey, G. I.

    The Canadian Mobile Satellite (MSAT) program had the objective to demonstrate the feasibility of reliable communications, via a geosynchronous satellite, to a variety of civilian and military users, operating in different frequency bands. The military system would provide, with various degrees of protection against jamming, a variety of military communication services. The civilian mobile satellite system was intended to provide public, mobile radio service (MRS), mobile telephone service (MTS), and data service (DS) to mobile and transportable terminals operating in the 821-825 MHz and 866-870 MHz bands. Service is to be provided for remote data collection platforms. The present investigation is concerned with the feasibility for a military or combined mission using an existing civilian bus, at least for the demonstration phase. It is found that such a use of a civilian bus is indeed feasible.

  7. Payload accommodations. Satellite servicing support

    NASA Technical Reports Server (NTRS)

    Lee, Roscoe

    1990-01-01

    The proposed technology studies discussed at the Space Transportation Avionics Symposium in Williamsburg, VA on 7 to 9 November 1989, are discussed. The discussions and findings of the Payload Accommodations Subpanel are also summarized. The major objective of the proposed focused technology development is to develop and demonstrate (ground and flight) autonomous rendezvous, proximity operations, and docking/berthing capabilities to support satellite servicing. It is expected that autonomous rendezvous and docking (AR and D) capabilities will benefit both the users (e.g., satellite developers and operators) and the transportation system developers and operators. AR and D will provide increased availability of rendezvous and docking services by reducing the operational constraints associated with current capabilities. These constraints include specific lighting conditions, continuous space-to-ground communications, and lengthy ground tracking periods. AR and D will provide increased cost efficiency with the potential for reduced propellant expenditures and workloads (flight and/or ground crews). The AR and D operations will be more consistent, allowing more flexibility in the design of the satellite control system and docking/berthing mechanisms.

  8. A second-generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1986-01-01

    A design for a low-user-cost, 9000 channel capacity second generation mobile satellite system (Msat-2) for continental U.S., Alaska and Canada using two geostationary satellites at 90 and 130 deg west longitude, is presented. The increased capacity over the first generation system is obtained by use of a 20 m deployable antenna with an offset-fed antenna configuration, a high-power satellite bus, and by relaxing the north-south stationkeeping requirement to + or - 2 deg and the eclipse capability to 50 percent. Efficient frequency utilization is achieved for uplink and downlink spectra by a 7-frequency reuse scheme with 285 5-kHz channels per subband, and subband reuse of up to four times. Problems of interbeam interference and multipath fading contributed to the choice of a nonoverlapping feed for the Msat-2, and a proper modulation scheme using Gaussian baseband filtered minimum-shift-keying with differential detection.

  9. Addendum to the Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    NASA Technical Reports Server (NTRS)

    Kwan, Robert (Compiler); Rigley, Jack (Compiler); Cassingham, Randy (Editor)

    1993-01-01

    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. This Third IMSC focuses on the increasing worldwide commercial activities in Mobile Satellite Services, along with technical advances in the field. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. The official Proceedings presented in 11 sessions include: direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; hybrid networks for personal and mobile applications; advanced system concepts and analysis; propagation; and mobile terminal technology; and mobile antenna technology.

  10. An economic systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    This paper deals with the economic interaction of the terrestrial and satellite land-mobile radio service systems. The cellular, trunked and satellite land-mobile systems are described. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as functions of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/km squared) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  11. Satellite services system analysis study. Volume 3: Service equipment requirements

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service equipment mission requirements are discussed. On-orbit operations, satellite classes, and reference missions are included. Service equipment usage and requirements are considered. Equipment identification methodology is discussed. Service equipment usage is analyzed, including initial launch, revisit, Earth return, and orbital storage. A summary of service requirements and equipment is presented, including service equipment status, even interaction, satellite features, and observations.

  12. FEC decoder design optimization for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Roy, Ashim; Lewi, Leng

    1990-01-01

    A new telecommunications service for location determination via satellite is being proposed for the continental USA and Europe, which provides users with the capability to find the location of, and communicate from, a moving vehicle to a central hub and vice versa. This communications system is expected to operate in an extremely noisy channel in the presence of fading. In order to achieve high levels of data integrity, it is essential to employ forward error correcting (FEC) encoding and decoding techniques in such mobile satellite systems. A constraint length k = 7 FEC decoder has been implemented in a single chip for such systems. The single chip implementation of the maximum likelihood decoder helps to minimize the cost, size, and power consumption, and improves the bit error rate (BER) performance of the mobile earth terminal (MET).

  13. FEC decoder design optimization for mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Roy, Ashim; Lewi, Leng

    A new telecommunications service for location determination via satellite is being proposed for the continental USA and Europe, which provides users with the capability to find the location of, and communicate from, a moving vehicle to a central hub and vice versa. This communications system is expected to operate in an extremely noisy channel in the presence of fading. In order to achieve high levels of data integrity, it is essential to employ forward error correcting (FEC) encoding and decoding techniques in such mobile satellite systems. A constraint length k = 7 FEC decoder has been implemented in a single chip for such systems. The single chip implementation of the maximum likelihood decoder helps to minimize the cost, size, and power consumption, and improves the bit error rate (BER) performance of the mobile earth terminal (MET).

  14. Mobile user environment and satellite diversity for NGSO S-PCN's

    NASA Technical Reports Server (NTRS)

    Werner, Markus; Bischl, Hermann; Lutz, Erich

    1995-01-01

    The performance of satellite diversity under the influence of the mobile user environment is analyzed. To this end, a digital channel model is presented which takes into account the elevation angle as well as the user mobility in a given environment. For different LEO and MEO systems and for varying mobile user environments, some crucial benefits and drawbacks of satellite diversity are discussed. Specifically, the important GW service area concept is introduced. The conclusions are validated by numerical results from computer simulations. Globalstar (LEO) and Inmarsat (MEO) are compared in terms of visibility, service availability and equivalent handover complexity for different environments and user mobility.

  15. Low-Earth orbit satellite servicing economics

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Cepollina, F. J.

    1982-01-01

    Servicing economics of low Earth orbit satellites were studied. The following topics are examined: the economic importance of the repair missions; comparison of mission cost as opposed to satellite modulation transfer functions over a 10 year period; the effect of satellite flight rate change due to changes in satellite failure rate; estimated satellite cost reduction with shuttle operation projects from the 1960's to the 1970's; design objectives of the multimission modular spacecraft; and the economic importance of the repair mission.

  16. Mobile satellite business networks: A part of the European mobile system

    NASA Technical Reports Server (NTRS)

    deMateo, M. L.; Jongejans, A.; Loisy, C.; VanHimbeeck, C.; Marchal, J. P.; Borella, A.; Sartori, M.

    1995-01-01

    The European Space Agency (ESA) is presently procuring an L-band payload EMS, to be embarked on the ITALSAT-2 satellite due for launch in early 1996, in order to promote a regional European mobile system. One of the Land Mobile Communication systems supported by EMS is the MSBN (Mobile Satellite Business Network) voice and data system which will offer the services of a business network on a seamless European coverage. This paper will first recall the characteristics of the MSBN system, which is based on quasi-synchronized CDMA (Code Division Multiple Access) techniques in both directions, and then describe the CDMA receivers implementation. Main validation test results will also be reported confirming predicted performances.

  17. Transmission over EHF mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Zhuang, W.; Chouinard, J.-Y.; Yongacoglu, A.

    1993-01-01

    Land mobile satellite communications at Ka-band (30/20 GHz) are attracting an increasing interest among researchers because of the frequency band availability and the possibility of small earth station designs. However, communications at the Ka-band pose significant challenges in the system designs due to severe channel impairments. Because only very limited experimental data for mobile applications at Ka-band is available, this paper studies the channel characteristics based on experimental data at L-band (1.6/1.5 GHz) and the use of frequency scaling. The land mobile satellite communication channel at Ka-band is modelled as log-normal Rayleigh fading channel. The first and second-order statistics of the fading channel are studied. The performance of a coherent BPSK system over the fading channel at L-band and K-band is evaluated theoretically and validated by computer simulations. Conclusions on the communication channel characteristics and system performance at L-band and Ka-band are presented.

  18. Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    NASA Technical Reports Server (NTRS)

    Huck, R. W. (Compiler); Rafferty, William (Compiler); Reekie, D. Hugh M. (Editor)

    1990-01-01

    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression.

  19. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  20. Propagation degradation for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1988-01-01

    The results of four propagation tests for mobile satellite systems, which used remotely piloted vehicles and helicopters to simulate a transmitter satellite source platform, are presented. The signal degradation by individual trees, attenuation caused by roadside trees when the vehicle was moving, and multipath effects in hilly and mountainous terrain were studied. Three tests were conducted at UHF (870 MHz) and one test was performed at UHF and L band (1500 MHz). It was found that attenuation by roadside trees is the dominant cause of signal fading. The signal degradation may amount to 7 dB or more for 10 percent of the traveling time along tree-lined roads, with attenuations of 15 dB or more 1 percent of the time. The signal degradation caused by multipath effects amounted to only about 2 dB for 10 percent of the time and 9 dB for 1 percent of the time.

  1. Developing mobile lithotripsy services.

    PubMed

    Kates, J A; Krella, J M; Schoen, E J

    1990-03-01

    Today's health care environment forces hospitals to seek competitive advantages over other providers in their area, yet circumstances and situations exist where cooperation among providers is the only way to ensure the effective and efficient provision of quality care to area residents. In the case of new and expensive medical technology, cooperation may be necessary to make state-of-the-art treatment modalities available to the patient population in an affordable manner. The role of outside consultants and legal counsel should not be overlooked. Independent consultants can be a valuable resource in dealing with planning agencies and in preparing a Certificate of Need. In addition, reputable firms can lend additional credibility to the conduct of feasibility studies and the preparation of financial projections. Continuity in terms of staffing and committee representatives is also extremely important. In a process that covered a three-and-one-half year time period, participants can lose sight of the original goals of the venture and even interest in the project. Hospitals and physicians in northeastern Pennsylvania combined to provide an alternative to surgical intervention for the removal of kidney stones. The process was a lengthy and complicated one, but one that resulted in a service which, above all, is of benefit to those affected by kidney stone disease. The delivery network currently includes seven facilities, five as partners and two on a fee-for-service basis, with an additional five making application to join the program in the future.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10104392

  2. Satellite Servicing Capabilities Office Testing

    NASA Technical Reports Server (NTRS)

    Sanders, Sean

    2015-01-01

    While at the KSC, I was given the opportunity of assisting the Satellite Servicing Capabilities Office (SSCO) specifically the Propellant Transfer System (PTS) lead by my mentor, Brian Nufer. While waiting to test different components in the PTS, I was able to assist with testing for the Hose Management Assembly (HMA) and was able to work on a simulation in Labview. For the HMA, I was able to help with testing of a coating as well as to help test the durability of the pinch rollers in space. In Labview, I experimented with building a simulation for the PTS, to show where fluids and gases were flowing depending on which valves in the PTS were opened. Not all of the integrated parts required assembly level testing, which allowed me to test these parts individually by myself and document the results. I was also able to volunteer to assist project NEO, allowing me to gain some knowledge of cryogenic fluid systems.

  3. Land-mobile-satellite fade measurements in Australia

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius; Hase, Yoshihiro

    1992-01-01

    Attenuation measurements were implemented at L-band (1.5 GHz) in southeastern Australia during an 11-day period in October 1988 as part of a continuing examination of the propagation effects due to roadside trees and terrain for mobile-satellite service. Beacon transmissions from the geostationary ETS-V and IPORS satellites were observed. The Australian campaign expanded to another continent our Mobile Satellite Service data base of measurements executed in the eastern and southwestern United States regions. An empirical fade distribution model based on U.S. data predicted the Australian results with errors generally less than 1 dB in the 1-20 percent probability region. Directive antennas are shown to suffer deeper fades under severe shadowing conditions (3 dB excess at 4 percent), the equal-probability isolation between co- and cross-polarized transmissions deteriorated to 10 dB at the 5 dB fade level, and antenna diversity reception may reduce unavailability of the system by a factor of 2-8.

  4. A wideband channel model for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.

  5. A system architecture for an advanced Canadian wideband mobile satellite system

    NASA Technical Reports Server (NTRS)

    Takats, P.; Keelty, M.; Moody, H.

    1993-01-01

    In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.

  6. Global Interconnectivity Between Mobile Satellite and Terrestrial Users: Call Signalling Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Moon, Todd; Spade, Rob

    1996-01-01

    This paper will discuss some of the challenges in connecting mobile satellite users and mobile terrestrial users in a cost efficient manner and with a grade of service comparable to that of satellite to fixed user calls. Issues arising from the translation between the mobility management protocols resident at the satellite Earth station and those resident at cellular switches - either GSM (Group Special Mobile) or IS-41 (used by U.S. digital cellular systems) type - will be discussed. The impact of GSM call routing procedures on the call setup of a satellite to roaming GSM user will be described. Challenges facing provision of seamless call handoff between satellite and cellular systems will be given. A summary of the issues explored in the paper are listed and future work outlined.

  7. A public service communications satellite user brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The capabilities of a proposed communications satellite that would be devoted to experiments and demonstrations of various public services is described. A Public Service Communications Satellite study was undertaken at the NASA Goddard Space Flight Center (GSFC) to define the problems and opportunities of a renewed NASA role and the form such NASA involvement should take. The concept that has evolved has resulted from careful consideration of experiments that were already undertaken on existing satellites.

  8. Network design consideration of a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  9. New Satellite Services for the Next Millennium

    NASA Astrophysics Data System (ADS)

    Wakeling, J.

    There are many new satellite communication systems that are either on the verge of commercial service or in the advanced planning and design stages for launch in the next millennium. Many will address what are considered to be new markets for satellites, using services and applications originally developed for terrestrial networks. Many of these services are network oriented and this will require a step change in the way that the satellite resource is managed if these systems are to succeed. This paper discusses these issues and offers some thoughts on what additional future services this change in approach may generate in the next millennium.

  10. Non-GEO mobile satellite systems: A risk assessment

    NASA Technical Reports Server (NTRS)

    Gaffney, Leah M.; Hulkkower, Neal D.; Klein, Leslie

    1995-01-01

    Since 1991, The MITRE Corporation has performed several independent evaluations of proposed mobile satellite service (MSS) systems that would operate from low Earth orbit (LEO) or medium Earth orbit (MEO), also known as intermediate circular orbit (ICO). This paper introduces a top level Risk Taxonomy tailored to summarize the technical and programmatic risks that MITRE has identified. In general, as risks are identified and addressed, a system's technical characteristics, cost and schedule are affected. This paper traces changes in three key parameters - satellite launch mass, system cost, and system schedule - for each of the five original non-GEO MSS systems for which license applications were made to the U.S. Federal Communications Commission (FCC) from November 1990 until June 1991. Finally, specific risk areas are identified using the Risk Taxonomy as a framework for discussion.

  11. Toward a North American standard for mobile data services

    NASA Astrophysics Data System (ADS)

    Dean, Richard A.; Levesque, Allen H.

    1991-09-01

    The rapid introduction of digital mobile communications systems is an important part of the emerging digital communications scene. These developments pose both a potential problem and a challenge. On one hand, these separate market driven developments can result in an uncontrolled mixture of analog and digital links which inhibit data modem services across the mobile/Public Switched network (PSTN). On the other hand, the near coincidence of schedules for development of some of these systems, i.e., Digital Cellular, Mobile Satellite, Land Mobile Radio, and ISDN, provides an opportunity to address interoperability problems by defining interfaces, control, and service standards that are compatible among these new services. In this paper we address the problem of providing data services interoperation between mobile terminals and data devices on the PSTN. The expected data services include G3 Fax, asynchronous data, and the government's STU-3 secure voice system, and future data services such as ISDN. We address a common architecture and a limited set of issues that are key to interoperable mobile data services. We believe that common mobile data standards will both improve the quality of data service and simplify the systems for manufacturers, data users, and service providers.

  12. Toward a North American Standard for Mobile Data Services

    NASA Technical Reports Server (NTRS)

    Dean, Richard A.; Levesque, Allen H.

    1991-01-01

    The rapid introduction of digital mobile communications systems is an important part of the emerging digital communications scene. These developments pose both a potential problem and a challenge. On one hand, these separate market driven developments can result in an uncontrolled mixture of analog and digital links which inhibit data modem services across the mobile/Public Switched network (PSTN). On the other hand, the near coincidence of schedules for development of some of these systems, i.e., Digital Cellular, Mobile Satellite, Land Mobile Radio, and ISDN, provides an opportunity to address interoperability problems by defining interfaces, control, and service standards that are compatible among these new services. In this paper we address the problem of providing data services interoperation between mobile terminals and data devices on the PSTN. The expected data services include G3 Fax, asynchronous data, and the government's STU-3 secure voice system, and future data services such as ISDN. We address a common architecture and a limited set of issues that are key to interoperable mobile data services. We believe that common mobile data standards will both improve the quality of data service and simplify the systems for manufacturers, data users, and service providers.

  13. A discussion on mobile satellite system and the myths of CDMA and diversity revealed

    NASA Technical Reports Server (NTRS)

    Hart, Nicholas; Goerke, Thomas; Jahn, Axel

    1995-01-01

    The paper explores the myths and facts surrounding: link margins and constellation designs; the use of satellite diversity in a mobile satellite channel; trade-offs in multiple access technique. Different satellite constellations are presented, which are comparable with those used by the big LEO proponents, with the associated trade-offs in the system design. Propagation data and results from various narrowband and wideband measurement campaigns are used to illustrate the expected differences in service performance.

  14. SAW based systems for mobile communications satellites

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  15. An ANSERLIN array for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.

    1990-01-01

    Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.

  16. Repeater in the sky. [public service communications satellite program

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Brown, J. P.

    1977-01-01

    The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.

  17. Signalling design and architecture for a proposed mobile satellite network

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Cheng, U.; Wang, C.

    1990-01-01

    In a frequency-division/demand-assigned multiple-access (FD/DAMA) architecture, each mobile subscriber must make a connection request to the Network Management Center before transmission for either open-end or closed-end services. Open-end services are for voice calls and long file transfer and are processed on a blocked-call-cleared basis. Closed-end services are for transmitting burst data and are processed on a first-come first-served basis. This paper presents the signalling design and architecture for non-voice services of an FD/DAMA mobile satellite network. The connection requests are made through the recently proposed multiple channel collision resolution scheme which provides a significantly higher throughput than the traditional slotted ALOHA scheme. For non-voice services, it is well known that retransmissions are necessary to ensure the delivery of a message in its entirety from the source to destination. Retransmission protocols for open-end and closed-end data transfer are investigated. The signal structure for the proposed network is derived from X-25 standards with appropriate modifications. The packet types and their usages are described in this paper.

  18. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint.

  19. Study of LEO-SAT microwave link for broad-band mobile satellite communication system

    NASA Technical Reports Server (NTRS)

    Fujise, Masayuki; Chujo, Wataru; Chiba, Isamu; Furuhama, Yoji; Kawabata, Kazuaki; Konishi, Yoshihiko

    1993-01-01

    In the field of mobile satellite communications, a system based on low-earth-orbit satellites (LEO-SAT's) such as the Iridium system has been proposed. The LEO-SAT system is able to offer mobile telecommunication services in high-latitude areas. Rain degradation, fading and shadowing are also expected to be decreased when the system is operated at a high elevation angle. Furthermore, the propagation delay generated in the LEO-SAT system is less pronounced than that in the geostationary orbit satellite (GEO-SAT) system and, in voice services, the effect of the delay is almost negligible. We proposed a concept of a broad-band mobile satellite communication system with LEO-SAT's and Optical ISL. In that system, a fixed L-band (1.6/1.5 GHz) multibeam is used to offer narrow band service to the mobile terminals in the entire area covered by a LEO-SAT and steerable Ka-band (30/20 GHz) spot beams are used for the wide band service. In this paper, we present results of a study of LEO-SAT microwave link between a satellite and a mobile terminal for a broad-band mobile satellite communication system. First, the results of link budget calculations are presented and the antennas mounted on satellites are shown. For a future mobile antenna technology, we also show digital beamforming (DBF) techniques. DBF, together with modulation and/or demodulation, is becoming a key technique for mobile antennas with advanced functions such as antenna pattern calibration, correction, and radio interference suppression. In this paper, efficient DBF techniques for transmitting and receiving are presented. Furthermore, an adaptive array antenna system suitable for this LEO-SAT is presented.

  20. Satellite Telemetry and Command using Big LEO Mobile Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Huegel, Fred

    1998-01-01

    Various issues associated with satellite telemetry and command using Big LEO mobile telecommunications systems are presented in viewgraph form. Specific topics include: 1) Commercial Satellite system overviews: Globalstar, ICO, and Iridium; 2) System capabilities and cost reduction; 3) Satellite constellations and contact limitations; 4) Capabilities of Globalstar, ICO and Iridium with emphasis on Globalstar; and 5) Flight transceiver issues and security.

  1. A generalized transmultiplexer and its application to mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ichiyoshi, Osamu

    1990-01-01

    A generalization of digital transmultiplexer technology is presented. The proposed method can realize transmultiplexer (TMUX) and transdemultiplexer (TDUX) filter banks whose element filters have bandwidths greater than the channel spacing frequency. This feature is useful in many communications applications. As an example, a satellite switched (SS) Frequency Division Multiple Access (FDMA) system is proposed for spot beam satellite communications, particularly for mobile satellite communications.

  2. Computer control of a robotic satellite servicer

    NASA Technical Reports Server (NTRS)

    Fernandez, K. R.

    1980-01-01

    The advantages that will accrue from the in-orbit servicing of satellites are listed. It is noted that in a concept in satellite servicing which holds promise as a compromise between the high flexibility and adaptability of manned vehicles and the lower cost of an unmanned vehicle involves an unmanned servicer carrying a remotely supervised robotic manipulator arm. Because of deficiencies in sensor technology, robot servicing would require that satellites be designed according to a modular concept. A description is given of the servicer simulation hardware, the computer and interface hardware, and the software. It is noted that several areas require further development; these include automated docking, modularization of satellite design, reliable connector and latching mechanisms, development of manipulators for space environments, and development of automated diagnostic techniques.

  3. 4800 B/S speech compression techniques for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.

    1986-01-01

    This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.

  4. An upward compatible spectrum sharing architecture for existing, actively planned and emerging mobile satellite systems

    NASA Astrophysics Data System (ADS)

    Azarbar, Bahman

    Existing and actively planned mobile satellite systems are competing for a viable share of the spectrum allocated by the International Telecommunications Union (ITU) to the satellite based mobile services in the 1.5/1.6 GHz range. The limited amount of spectrum available worldwide and the sheer number of existing and planned mobile satellite systems dictate the adoption of an architecture which will maximize sharing possibilities. A viable sharing architecture must recognize the operational needs and limitations of the existing systems. Furthermore, recognizing the right of access of the future systems as they will emerge in time, the adopted architecture must allow for additional growth and be amenable to orderly introduction of future systems. An attempt to devise such a sharing architecture is described. A specific example of the application of the basic concept to the existing and planned mobile satellite systems is also discussed.

  5. An upward compatible spectrum sharing architecture for existing, actively planned and emerging mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Azarbar, Bahman

    1990-01-01

    Existing and actively planned mobile satellite systems are competing for a viable share of the spectrum allocated by the International Telecommunications Union (ITU) to the satellite based mobile services in the 1.5/1.6 GHz range. The limited amount of spectrum available worldwide and the sheer number of existing and planned mobile satellite systems dictate the adoption of an architecture which will maximize sharing possibilities. A viable sharing architecture must recognize the operational needs and limitations of the existing systems. Furthermore, recognizing the right of access of the future systems as they will emerge in time, the adopted architecture must allow for additional growth and be amenable to orderly introduction of future systems. An attempt to devise such a sharing architecture is described. A specific example of the application of the basic concept to the existing and planned mobile satellite systems is also discussed.

  6. Communication Satellites: Experimental & Operational, Commercial & Public Service.

    ERIC Educational Resources Information Center

    Development Communication Report, 1979

    1979-01-01

    The title reflects the first and major article in an issue of this newsletter devoted entirely to communication satellites. This series of articles on the potential and applications of communication satellites in development projects is concerned with their development for commercial and public service, development in the Pacific region, SPACECOM…

  7. Operating Frequencies for Educational Satellite Services.

    ERIC Educational Resources Information Center

    Singh, Jai P.

    Part of a continuing study of application of communication satellites for helping to meet educational needs, this memorandum discusses operating frequencies for educational satellite services. Each of the factors affecting choice of transmission frequencies is identified and discussed in a separate section. Included among these factors are…

  8. Weight and structural analysis of four structural concepts for a land mobile satellite system

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J.; Wright, R. L.; Farmer, J. T.

    1982-01-01

    The present study is concerned with a Land Mobile Satellite System (LMSS) which can provide mobile communications for commercial and government applications in nonmetropolitan areas of the continental U.S. and Canada as an augmentation to existing and planned terrestrial systems. The satellite system would provide 'narrow band' telecommunications services, thin-route fixed telephone and data services in the 806-890 MHz band, and continuous emergency beacon monitoring in the 406-406.1 MHz band. It is pointed out that a satellite system operating in concert with terrestrial cellular systems could provide truly ubiquitous mobile communications services in the U.S. and Canada. A single shuttle shuttle launch could place the LMSS spacecraft in geosynchronous orbit over the continental U.S. in 1995 with a 10-year lifetime. Attention is given to the structural concepts, a weight analysis, and a structural analysis.

  9. Signalling characteristics in satellite-aided land mobile communications

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.

    1982-01-01

    The feasibility of land mobile radio communications has been demonstrated by a large number of experiments with NASA's ATS satellites. Significant differences in the propagation characteristics of satellite and terrestrial mobile signal paths were observed in the experiments. Terrestrial paths are best in cities where they can provide frequency reuse and assure communication by bouncing signals around obstructions. Satellites may be best in thinly populated areas because they eliminate the need for many tower mounted relays. The satellite paths do not have the severe Rayleigh fading that limits the range and signal quality of terrestrial paths if the satellite is above approximately ten degrees elevation, a value easily achieved for the United States. The experiments verified that high quality voice communications and other functions, such as data transmission and vehicle position surveillance, are easily accomplished through geostationary satellites with vehicle transmitter power and antenna gain no different than those of terrestrial mobile communications.

  10. Signalling characteristics in satellite-aided land mobile communications

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.

    The feasibility of land mobile radio communications has been demonstrated by a large number of experiments with NASA's ATS satellites. Significant differences in the propagation characteristics of satellite and terrestrial mobile signal paths were observed in the experiments. Terrestrial paths are best in cities where they can provide frequency reuse and assure communication by bouncing signals around obstructions. Satellites may be best in thinly populated areas because they eliminate the need for many tower mounted relays. The satellite paths do not have the severe Rayleigh fading that limits the range and signal quality of terrestrial paths if the satellite is above approximately ten degrees elevation, a value easily achieved for the United States. The experiments verified that high quality voice communications and other functions, such as data transmission and vehicle position surveillance, are easily accomplished through geostationary satellites with vehicle transmitter power and antenna gain no different than those of terrestrial mobile communications.

  11. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    NASA Technical Reports Server (NTRS)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-01-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  12. Channel coding for satellite mobile channels

    NASA Astrophysics Data System (ADS)

    Wong, K. H. H.; Hanzo, L.; Steele, R.

    1989-09-01

    The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite mobile radio channel is addressed for speech and data transmissions. Different convolutional codes (CC) using Viterbi decoding with soft decision are examined with interblock interleaving. Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis decoding combined with block interleaving are also investigated. A concatenated arrangement employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions via minimum shift keying over Gaussian and Rayleigh fading channels. For an interblock interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36), over the Galois field GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of 42dB for a BER of 10 to the -6th, and an uncorrectable error detection probability of 1 - 10 to the -9th.

  13. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  14. Toward Risk Reduction for Mobile Service Composition.

    PubMed

    Deng, Shuiguang; Huang, Longtao; Li, Ying; Zhou, Honggeng; Wu, Zhaohui; Cao, Xiongfei; Kataev, Mikhail Yu; Li, Ling

    2016-08-01

    The advances in mobile technologies enable us to consume or even provide services through powerful mobile devices anytime and anywhere. Services running on mobile devices within limited range can be composed to coordinate together through wireless communication technologies and perform complex tasks. However, the mobility of users and devices in mobile environment imposes high risk on the execution of the tasks. This paper targets reducing this risk by constructing a dependable service composition after considering the mobility of both service requesters and providers. It first proposes a risk model and clarifies the risk of mobile service composition; and then proposes a service composition approach by modifying the simulated annealing algorithm. Our objective is to form a service composition by selecting mobile services under the mobility model and to ensure the service composition have the best quality of service and the lowest risk. The experimental results demonstrate that our approach can yield near-optimal solutions and has a nearly linear complexity with respect to a problem size. PMID:26168456

  15. Public Service Communications Satellite User Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Wolff, E. A.

    1977-01-01

    Information on user requirements for public service communications was acquired to provide the basis of a study to determine the optimum satellite system to satisfy user requirements. The concept for such a system is described: Topics discussed included requirements for data and message services, elementary and secondary education, extension and continuing education, environmental communications, library services, medical education, medical services, public broadcasting, public safety, religious applications, state and local communications, and voluntary services. Information was also obtained on procedures to follow to make the transfer to commercial services.

  16. Mobile radio alternative systems study satellite/terrestrial (hybrid) systems concepts

    NASA Technical Reports Server (NTRS)

    Kiesling, J. D.; Anderson, R. E.

    1983-01-01

    The use of satellites for mobile radio service in non-urban areas of the United States in the years from 1985 to 2000 was investigated. Several satellite concepts are considered: a system with single-beam coverage of the fifty United States and Puerto Rico, and multi-beam satellites with greater capacity. All of the needed functions and services identified in the market study are provided by the satellite systems, including nationwide radio access to vehicles without knowledge of vehicle location wideband data transmission from remote sites, two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The costs of providing the services are within acceptable limits, and the desired returns to the system investors are attractive. The criteria by which the Federal Communication judges the competing demands for public radio spectrum are reviewed with comments on how the criteria might apply to the consideration of land mobile satellites. Institutional arrangements for operating a mobile satellite system are based on the present institutional arrangements in which the services are offered to the end users through wireline and radio common carriers, with direct access by large private and government users.

  17. Mobile radio alternative systems study satellite/terrestrial (hybrid) systems concepts

    NASA Astrophysics Data System (ADS)

    Kiesling, J. D.; Anderson, R. E.

    1983-06-01

    The use of satellites for mobile radio service in non-urban areas of the United States in the years from 1985 to 2000 was investigated. Several satellite concepts are considered: a system with single-beam coverage of the fifty United States and Puerto Rico, and multi-beam satellites with greater capacity. All of the needed functions and services identified in the market study are provided by the satellite systems, including nationwide radio access to vehicles without knowledge of vehicle location wideband data transmission from remote sites, two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The costs of providing the services are within acceptable limits, and the desired returns to the system investors are attractive. The criteria by which the Federal Communication judges the competing demands for public radio spectrum are reviewed with comments on how the criteria might apply to the consideration of land mobile satellites. Institutional arrangements for operating a mobile satellite system are based on the present institutional arrangements in which the services are offered to the end users through wireline and radio common carriers, with direct access by large private and government users.

  18. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  19. Delivery of satellite based broadband services

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  20. Satellite services system program plan

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    1985-01-01

    The purpose is to determine the potential for servicing from the Space Shuttle Orbiter and to assess NASA's role as the catalyst in bringing about routine on-orbit servicing. Specifically this study seeks to determine what requirements, in terms of both funds and time, are needed to make the Shuttle Orbiter not only a transporter of spacecraft but a servicing vehicle for those spacecraft as well. The scope of this effort is to focus on the near term development of a generic servicing capability. To make this capability truly generic and attractive requires that the customer's point of veiw be taken and transformed into a widely usable set of hardware. And to maintain a near term advent of this capability requires that a minimal reliance be made on advanced technology. With this background and scope, this study will proceed through three general phases to arrive at the desired program costs and schedule. The first step will be to determine the servicing requirements of the user community. This will provide the basis for the second phase which is to develop hardware concepts to meet these needs. Finally, a cost estimate will be made for each of the new hardware concepts and a phased hardware development plan will be established for the acquisition of these items based on the inputs obtained from the user community.

  1. Spread spectrum mobile communication experiment using ETS-V satellite

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Suzuki, Ryutaro; Kadowaki, Naoto; Taira, Shinichi; Sato, Nobuyasu

    1990-01-01

    The spread spectrum technique is attractive for application to mobile satellite communications, because of its random access capability, immunity to inter-system interference, and robustness to overloading. A novel direct sequence spread spectrum communication equipment is developed for land mobile satellite applications. The equipment is developed based on a matched filter technique to improve the initial acquisition performance. The data rate is 2.4 kilobits per sec. and the PN clock rate is 2.4552 mega-Hz. This equipment also has a function of measuring the multipath delay profile of land mobile satellite channel, making use of a correlation property of a PN code. This paper gives an outline of the equipment and the field test results with ETS-V satellite.

  2. Satellite-aided land mobile communications system implementation considerations

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1982-01-01

    It was proposed that a satellite-based land mobile radio system could effectively extend the terrestrial cellular mobile system into rural and remote areas. The market, technical and economic feasibility for such a system is studied. Some of the aspects of implementing an operational mobile-satellite system are discussed. In particular, two key factors in implementation are examined: (1) bandwidth requirements; and (2) frequency sharing. Bandwidth requirements are derived based on the satellite antenna requirements, modulation characteristics and numbers of subscribers. Design trade-offs for the satellite system and potential implementation scenarios are identified. Frequency sharing is examined from a power flux density and modulation viewpoint. Previously announced in STAR as N82-25290

  3. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  4. Mobile satellite propagation measurements and modeling: A review of results for systems engineers

    NASA Technical Reports Server (NTRS)

    Stutzman, Warren L. (Editor); Barts, R. Michael; Bostian, C. W.; Butterworth, J. S.; Campbell, Richard L.; Goldhirsh, Julius; Vogel, Wolfhard J.

    1988-01-01

    An overview of Mobile Satellite Service (MSS) propagation measurements and modeling is intended as a summary of current results. While such research is on-going, the simple models presented here should be useful to systems engineers. A complete summary of propagation experiments with literature references is also included.

  5. Performance of a family of omni and steered antennas for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.; Huang, J.; Jamnejad, V.; Bell, D.; Berner, J.; Estabrook, P.; Densmore, A.

    1990-01-01

    The design and performance of a family of vehicle antennas developed at JPL in support of an emerging US Mobile Satellite Service (MSS) system are described. Test results of the antennas are presented. Trends for future development are addressed. Recommendations on design approaches for vehicle antennas of the first generation MSS are discussed.

  6. Software and messaging for a mobile data service project

    NASA Astrophysics Data System (ADS)

    Penney, Brian K.; Seymour, John

    A trial of satellite based mobile data service (MDS) communications in the North American trucking industry is proposed for the first quarter of 1990. This paper describes the network configuration, the system software, communications protocols, and the user interfaces. The MDS will consist of 3,000 mobile earth terminals linked via C and L-band Marecs B2 satellite communications to a single hub earth station which will use a terrestrial X.25 network to connect 25 remote customer dispatch centers. The communications system is based on a modification of Immarsat Standard C communications, coding and formats. The major differences are that the hub will serve the dual purpose of network control station and coastal earth station, and a three frame multislot protocol was adopted to permit a workable access format for the short and frequent messaging activity typical of the land mobile environment.

  7. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  8. Servicing communication satellites in geostationary orbit

    NASA Technical Reports Server (NTRS)

    Russell, Paul K.; Price, Kent M.

    1990-01-01

    The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.

  9. Review of Canadian mobile satellite systems institutional arrangements policy

    NASA Technical Reports Server (NTRS)

    Gilvary, David

    1990-01-01

    Development of institutional arrangements policy for maritime, land, and aeronautical mobile satellite systems (MSS) is an integral part of the Canadian telecommunications policy process. An ongoing activity in that process is fitting of MSS institutional arrangements policy within the confines of the 1987 Canadian Telecom Policy Framework. Making sure the fit is correct is a major task at present because technology seems to be driving service demand at rapid growth rates, particularly in the case of land MSS. This growth is stimulating policy and regulatory development efforts to keep pace. In Canada, this is happening in four planned MSS applications areas: Canada-US transborder (immediate), aeronautical MSS (1990/94), Telesat Mobile Inc. EMDS via INMARSAT (1990), and MSAT (1993/94). The need for an up-to-date MSS policy in these areas is emphasized by related developments in the US and elsewhere. It arises because of the growing number of market initiatives proposing North American rather than Canada-only or US-only coverage, such as INMARSAT, Geostar, OmniTRACS, and Starlink.

  10. Requirements for a mobile communications satellite system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three types of satellite-aided mobile communications are considered for users in areas not served by (terrestrial) cellular radio systems. In System 1, mobile units are provided a direct satellite link to a gateway station, which serves as the interface to the terrestrial toll network. In System 2, a terrestrial radio link similar to those in cellular systems connects the mobile unit to a translator station; each translator relays the traffic from mobile units in its vicinity, via satellite, to the regional gateway. It is not feasible for System 2 to provide ubiquitous coverage. Therefore, System 3 is introduced, in which the small percentage of users not within range of a translator are provided a direct satellite link as in System 1. While System 2 can operate with leased satellite capacity, Systems 1 and 3 require a dedicated satellite. A major portion of this study is concerned with the design of a satellite for System 1. A weight limit of 10,000 lbs, corresponding to the projected 1990 STS capability, is imposed on the design. Frequency re-use of the allocated spectrum, through multiple satellite beams, is employed to generate the specified system capacity. Both offset-fed and center-fed reflectors are considered. For an assumed 10-MHz allocation and a population of 350,000 subscribers, a two-satellite system is required. The reflector diameters corresponding to offset-fed and center-fed geometries are 46 m and 62 m, respectively. Thus, large-space-structure technology is inherent to the implementation of System 1. In addition to establishing the technical requirements for the three types of satellite systems, the monthly service charge needed to provide a specified return on invested capital is computed. A net present value analysis is used for this purpose.

  11. Requirements for a mobile communications satellite system. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-04-01

    Three types of satellite-aided mobile communications are considered for users in areas not served by (terrestrial) cellular radio systems. In System 1, mobile units are provided a direct satellite link to a gateway station, which serves as the interface to the terrestrial toll network. In System 2, a terrestrial radio link similar to those in cellular systems connects the mobile unit to a translator station; each translator relays the traffic from mobile units in its vicinity, via satellite, to the regional gateway. It is not feasible for System 2 to provide ubiquitous coverage. Therefore, System 3 is introduced, in which the small percentage of users not within range of a translator are provided a direct satellite link as in System 1. While System 2 can operate with leased satellite capacity, Systems 1 and 3 require a dedicated satellite. A major portion of this study is concerned with the design of a satellite for System 1. A weight limit of 10,000 lbs, corresponding to the projected 1990 STS capability, is imposed on the design. Frequency re-use of the allocated spectrum, through multiple satellite beams, is employed to generate the specified system capacity. Both offset-fed and center-fed reflectors are considered. For an assumed 10-MHz allocation and a population of 350,000 subscribers, a two-satellite system is required. The reflector diameters corresponding to offset-fed and center-fed geometries are 46 m and 62 m, respectively. Thus, large-space-structure technology is inherent to the implementation of System 1. In addition to establishing the technical requirements for the three types of satellite systems, the monthly service charge needed to provide a specified return on invested capital is computed. A net present value analysis is used for this purpose.

  12. Direct broadcast satellite service by direct broadcast satellite corporation

    NASA Astrophysics Data System (ADS)

    Pritchard, W. L.; Radin, H. W.

    1984-03-01

    It is noted that common carrier operation implies the offer to transmit television programs or any other information in electronic form for any customer at a rate posted in a tariff recorded at the FCC and applied without discrimination. The satellite system developed must be flexible enough to provide virtually any transmision service its customers may decide to offer at some future time. This means that spot beams must be available, which will permit the programmer to concentrate his offerings on particular regions of the country. Also, with the first satellite, there will be full-coverage service to the entire contiguous United States; in this way, programmers wishing to reach a nationwide audience will be able to do so from the beginning of their DBS operation. In addition, there will be an effective isotropic radiated power level that is high enough to accommodate high-definition television. As a common carrier, it is also necessary to seek the maximum possible standardization of signal transmission formats, receiver and antenna characteristics, and satellite locations so that programmers wishing to provide either subscription-supported or advertiser-supported programs can reach the widest possible audiences.

  13. Modeling C-Band Co-Channel Interference From AeroMACS Omni-Directional Antennas to Mobile Satellite Service Feeder Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2011-01-01

    A new C-band (5091 to 5150 MHz) airport communications system designated as Aeronautical Mobile Airport Communications System (AeroMACS) is being planned under the Federal Aviation Administration s NextGen program. An interference analysis software program, Visualyse Professional (Transfinite Systems Ltd), is being utilized to provide guidelines on limitations for AeroMACS transmitters to avoid interference with other systems. A scenario consisting of a single omni-directional transmitting antenna at each of the major contiguous United States airports is modeled and the steps required to build the model are reported. The results are shown to agree very well with a previous study.

  14. Service connectivity architecture for mobile augmented reality

    NASA Astrophysics Data System (ADS)

    Turunen, Tuukka; Pyssysalo, Tino; Roening, Juha

    2001-06-01

    Mobile augmented reality can be utilized in a number of different services, and it provides a lot of added value compared to the interfaces used in mobile multimedia today. Intelligent service connectivity architecture is needed for the emerging commercial mobile augmented reality services, to guarantee mobility and interoperability on a global scale. Some of the key responsibilities of this architecture are to find suitable service providers, to manage the connection with and utilization of such providers, and to allow smooth switching between them whenever the user moves out of the service area of the service provider she is currently connected to. We have studied the potential support technologies for such architectures and propose a way to create an intelligent service connectivity architecture based on current and upcoming wireless networks, an Internet backbone, and mechanisms to manage service connectivity in the upper layers of the protocol stack. In this paper, we explain the key issues of service connectivity, describe the properties of our architecture, and analyze the functionality of an example system. Based on these, we consider our proposition a good solution to the quest for global interoperability in mobile augmented reality services.

  15. First satellite mobile communication trials using BLQS-CDMA

    NASA Technical Reports Server (NTRS)

    Luzdemateo, Maria; Johns, Simon; Dothey, Michel; Vanhimbeeck, Carl; Deman, Ivan; Wery, Bruno

    1993-01-01

    In this paper, technical results obtained in the first MSBN Land mobile technical trial are reported. MSBN (Mobile Satellite Business Network) is a new program undertaken by the European Space Agency (ESA) to promote mobile satellite communication in Europe, in particular voice capability. The first phase of the MSBN system implementation plan is an experimental phase. Its purpose is to evaluate through field experiments the performance of the MSBN system prior to finalization of its specifications. Particularly, the objective is to verify in the field and possibly improve the performance of the novel satellite access technique BLQS-CDMA (Band Limited Quasi-Synchronous-Code Division Multiple Access), which is proposed as baseline for the MSBN.

  16. Land mobile satellite propagation measurements in Japan using ETS-V satellite

    NASA Technical Reports Server (NTRS)

    Obara, Noriaki; Tanaka, Kenji; Yamamoto, Shin-Ichi; Wakana, Hiromitsu

    1993-01-01

    Propagation characteristics of land mobile satellite communications channels have been investigated actively in recent years. Information of propagation characteristics associated with multipath fading and shadowing is required to design commercial land mobile satellite communications systems, including protocol and error correction method. CRL (Communications Research Laboratory) has carried out propagation measurements using the Engineering Test Satellite-V (ETS-V) at L band (1.5 GHz) through main roads in Japan by a medium gain antenna with an autotracking capability. This paper presents the propagation statistics obtained in this campaign.

  17. A study and experiment plan for digital mobile communication via satellite

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Craighill, E. J.; Evans, R. G.; Vincze, A. D.; Tom, N. N.

    1978-01-01

    The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described.

  18. Flexible power and bandwidth allocation in mobile satellites

    NASA Astrophysics Data System (ADS)

    Keyes, L. A.

    The introduction of L-band mobile communication services by spot beam satellites creates a payload design challenge due to uncertainty in the location and size of the new market to be served. A combination of payload technologies that allow a flexible allocation of power and bandwidth to any portion of the coverage area is described. Power flexibility is achieved by a novel combination of a low-level beam-forming network and a matrix power module which ensures equal sharing of power among individual amplifiers. This eliminates the loss of efficiency and increased mass when an amplifier associated with a beam must be over-designed to meet uncertainties in power distribution between beams. Flexibility in allocation of bandwidth to beams is achieved by intermediate frequency subdivision of the L-band service categories defined by ITU. These spectral subdivisions are assigned to beams by an IF interconnect matrix having beam ports and filter ports as inputs and outputs, respectively. Two such filter switch matrices are required, one for the inbound L-band to feeder link transponder, and one for the outbound feeder link to L-band transponder.

  19. Narrowband and wideband characterisation of satellite mobile/PCN channel

    NASA Technical Reports Server (NTRS)

    Butt, G.; Parks, M. A. N.; Evans, B. G.

    1995-01-01

    This paper presents models characterizing satellite mobile channel. Statistical narrowband models based on the CSER high elevation angle channel measurement campaign are reported. Such models are understood to be useful for communication system simulations. It has been shown from the modelling results that for the mobile satellite links at high elevation angles line-of-sight (LOS) signal is available most of the time, even under the heavy shadowing conditions. Wideband measurement campaign which CSER is about to undertake, and subsequently the modelling approach to be adopted is also discussed. It is noted that a wideband channel model is expected to provide a useful tool in investigating CDMA applications.

  20. Mobile satellite communications technology - A summary of NASA activities

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Knouse, G. H.

    1986-01-01

    Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.

  1. An overview of results derived from mobile-satellite propagation experiments

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1990-01-01

    During the period 1983-1988, a series of Land Mobile Satellite Service (LMSS) propagation experiments were performed. These experiments were implemented with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. The earlier experiments were performed at UHF (870 mega-Hz) and the latter at both L band (1.5 giga-Hz) and UHF. The general objective of the above tests was to assess the impairment to propagation caused by trees and terrain for predominantly suburban and rural regions where cellular communication services are impractical. This paper presents an overview of the results derived from the above experiments.

  2. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  3. Spacecraft configuration study for second generation mobile satellite system

    NASA Technical Reports Server (NTRS)

    Louie, M.; Vonstentzsch, W.; Zanella, F.; Hayes, R.; Mcgovern, F.; Tyner, R.

    1985-01-01

    A high power, high performance communicatons satellite bus being developed is designed to satisfy a broad range of multimission payload requirements in a cost effective manner and is compatible with both STS and expendable launchers. Results are presented of tradeoff studies conducted to optimize the second generation mobile satellite system for its mass, power, and physical size. Investigations of the 20-meter antenna configuration, transponder linearization techniques, needed spacecraft modifications, and spacecraft power, dissipation, mass, and physical size indicate that the advanced spacecraft bus is capable of supporting the required payload for the satellite.

  4. Advanced multiple access concepts in mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ananasso, Fulvio

    1990-01-01

    Some multiple access strategies for Mobile Satellite Systems (MSS) are discussed. These strategies were investigated in the context of three separate studies conducted for the International Maritime Satellite Organization (INMARSAT) and the European Space Agency (ESA). Satellite-Switched Frequency Division Multiple Access (SS-FDMA), Code Division Multiple Access (CDMA), and Frequency-Addressable Beam architectures are addressed, discussing both system and technology aspects and outlining advantages and drawbacks of either solution with associated relevant hardware issues. An attempt is made to compare the considered option from the standpoint of user terminal/space segment complexity, synchronization requirements, spectral efficiency, and interference rejection.

  5. Sound broadcasting satellite systems for individual reception by mobile receivers

    NASA Technical Reports Server (NTRS)

    Park, Y. H.

    1982-01-01

    In this paper, the feasibility of a multi-channel sound broadcasting satellite system for operation in a band between 0.5 and 2.0 GHz is investigated. Considered are sound broadcasting satellite systems that provide conventional FM sound broadcasting for individual receivers in a wide geographical area. Comparative weight estimation of sound broadcasting satellites is carried out for various sizes of coverage area and spacecraft antenna, and for different carrier frequencies in the band from 0.5 to 2.0 GHz. It is concluded that relatively light (1200 to about 1500 lbs) spacecraft are feasible, even with low-cost portable or mobile receiving systems.

  6. A satellite system for land-mobile communications in Europe

    NASA Technical Reports Server (NTRS)

    Bartholome, P.; Rogard, R.

    1988-01-01

    There exists a great unsatisified demand for land mobile communications in Europe, particularly in sectors of business activity such as the road transport industry. This demand could best be satisfied by means of satellite-based private networks providing voice and data communications in a hub configuration. The potential market is estimated to encompass several hundred thousand road vehicles and the transmission capacity required would be several thousand channels. ESA is currently demonstrating the potential of satellite communications for this type of application, using a system called PRODAT. System studies are being performed with the aim of defining the architecture of a regional satellite system for Europe.

  7. 47 CFR 20.9 - Commercial mobile radio service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subcarriers within the FM baseband signal, that provide interconnected service (47 CFR 73.295 of this chapter... 47 Telecommunication 2 2013-10-01 2013-10-01 false Commercial mobile radio service. 20.9 Section... COMMERCIAL MOBILE SERVICES § 20.9 Commercial mobile radio service. (a) The following mobile services shall...

  8. 47 CFR 20.9 - Commercial mobile radio service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subcarriers within the FM baseband signal, that provide interconnected service (47 CFR 73.295 of this chapter... 47 Telecommunication 2 2012-10-01 2012-10-01 false Commercial mobile radio service. 20.9 Section... COMMERCIAL MOBILE SERVICES § 20.9 Commercial mobile radio service. (a) The following mobile services shall...

  9. 47 CFR 20.9 - Commercial mobile radio service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subcarriers within the FM baseband signal, that provide interconnected service (47 CFR 73.295 of this chapter... 47 Telecommunication 2 2011-10-01 2011-10-01 false Commercial mobile radio service. 20.9 Section... COMMERCIAL MOBILE SERVICES § 20.9 Commercial mobile radio service. (a) The following mobile services shall...

  10. 47 CFR 20.9 - Commercial mobile radio service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subcarriers within the FM baseband signal, that provide interconnected service (47 CFR 73.295 of this chapter... 47 Telecommunication 2 2014-10-01 2014-10-01 false Commercial mobile radio service. 20.9 Section... COMMERCIAL MOBILE SERVICES § 20.9 Commercial mobile radio service. (a) The following mobile services shall...

  11. A satellite data terminal for land mobile use

    NASA Technical Reports Server (NTRS)

    Sutherland, Colin A.

    1990-01-01

    Telesat Mobile Incorporated (TMI) has recently introduced the Mobile Data Service (MDS) into Canada. This paper outlines the system design and some key aspects of the detailed design of the Mobile Earth Terminal (MET) developed by Canadian Aeronautics Limited (CAL) for use with the MDS. The technical requirements for the MET are outlined and the equipment architecture is described. The major design considerations for each functional module are then addressed. Environmental conditions unique to the land mobile service are highlighted, along with the measures taken to ensure satisfactory operation and survival of the MET. Finally, the probable direction of future developments is indicated.

  12. Satellite Applications for Public Service: Project Summaries.

    ERIC Educational Resources Information Center

    Lauffer, Sandra; And Others

    Summaries of 18 different projects involving the use of satellite communications are presented in this report, including PEACESAT Education and Communication Experiments, USP Network Satellite Communication Project, Project Satellite, Satellite Instructional Television Experiment (SITE), Appalachian Education Satellite Program, Alaska Education…

  13. Terrestrial/land mobile satellite considerations, NASA plans and critical issues

    NASA Technical Reports Server (NTRS)

    Knouse, G. H.

    1979-01-01

    This paper briefly reviews the land mobile market and discusses services that might be provided by hybrid terrestrial/land mobile satellite systems (T/LMSS). In view of the expected urban/suburban patterns of planned terrestrial systems it is suggested that a satellite may prove a cost-effective complement to terrestrial systems for serving thinly populated or large geographical areas. A basic Land Mobile Satellite Service (LMSS) is described, example applications are provided, and the status and rationale for LMSS frequencies in the 806-890 MHz band is given. Next, examples are given of NASA supported land mobile satellite experiments and a preliminary T/LMSS work plan, part of an overall Narrowband Program, is presented for structuring future work. The initiation of the T/LMSS plan depends on pending management/budget decisions. The report closes with a listing of issues and potential problem areas, the solutions of which NASA believes are critical to the success of the proposed T/LMSS effort.

  14. Voice intelligibility in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1973-01-01

    An amplitude control technique is reported that equalizes low level phonemes in a satellite narrow band FM voice communication system over channels having low carrier to noise ratios. This method presents at the transmitter equal amplitude phonemes so that the low level phonemes, when they are transmitted over the noisey channel, are above the noise and contribute to output intelligibility. The amplitude control technique provides also for squelching of noise when speech is not being transmitted.

  15. Use of negotiated rulemaking in developing technical rules for low-Earth orbit mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Taylor, Leslie A.

    1993-01-01

    Technical innovations have converged with the exploding market demand for mobile telecommunications to create the impetus for low-earth orbit (LEO) communications satellite systems. The so-called 'Little LEO's' propose use of VHF and UHF spectrum to provide position - location and data messaging services. The so-called 'Big LEO's' propose to utilize the RDSS bands to provide voice and data services. In the United States, several applications were filed with the U.S. Federal Communications Commission (FCC) to construct and operate these mobile satellite systems. To enable the prompt introduction of such new technology services, the FCC is using innovative approaches to process the applications. Traditionally, when the FCC is faced with 'mutually exclusive' applications, e.g. a grant of one would preclude a grant of the others, it uses selection mechanisms such as comparative hearings or lotteries. In the case of the LEO systems, the FCC has sought to avoid these time-consuming approaches by using negotiated rulemakings. The FCC's objective is to enable the multiple applicants and other interested parties to agree on technical and service rules which will enable the grant of all qualified applications. With regard to the VHF/UHF systems, the Advisory Committee submitted a consensus report to the FCC. The process for the systems operating in the bands above 1 GHz involved more parties and more issues but still provided the FCC useful technical information to guide the adoption of rules for the new mobile satellite service.

  16. Use of negotiated rulemaking in developing technical rules for low-Earth orbit mobile satellite systems

    NASA Astrophysics Data System (ADS)

    Taylor, Leslie A.

    Technical innovations have converged with the exploding market demand for mobile telecommunications to create the impetus for low-earth orbit (LEO) communications satellite systems. The so-called 'Little LEO's' propose use of VHF and UHF spectrum to provide position - location and data messaging services. The so-called 'Big LEO's' propose to utilize the RDSS bands to provide voice and data services. In the United States, several applications were filed with the U.S. Federal Communications Commission (FCC) to construct and operate these mobile satellite systems. To enable the prompt introduction of such new technology services, the FCC is using innovative approaches to process the applications. Traditionally, when the FCC is faced with 'mutually exclusive' applications, e.g. a grant of one would preclude a grant of the others, it uses selection mechanisms such as comparative hearings or lotteries. In the case of the LEO systems, the FCC has sought to avoid these time-consuming approaches by using negotiated rulemakings. The FCC's objective is to enable the multiple applicants and other interested parties to agree on technical and service rules which will enable the grant of all qualified applications. With regard to the VHF/UHF systems, the Advisory Committee submitted a consensus report to the FCC. The process for the systems operating in the bands above 1 GHz involved more parties and more issues but still provided the FCC useful technical information to guide the adoption of rules for the new mobile satellite service.

  17. K/Ka-band channel characterization for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Pinck, Deborah S.; Rice, Michael D.

    1995-01-01

    Mobile satellite systems allow truly ubiquitous wireless communications to users anywhere and anytime. NASA's Advanced Communications Technology Satellite (ACTS) provides an ideal space-based platform for the measurement of K/Ka band propagation characteristics in a land mobile satellite application. Field tests conducted in Southern California during the first seven months of 1994 using JPL's ACTS Mobile Terminal (AMT) provided channel characterization data for the K/Ka-band link. A pilot tone was transmitted from a fixed station in Cleveland, Ohio through the satellite and downlinked at 20 GHz in the Southern California spot beam. The AMT was equipped with a narrow beam, high gain antenna which tracked the satellite in azimuth for a fixed elevation angle (46 degrees for this case). The field tests were conducted in three basic environments: clear line-of-sight (LOS) highways, lightly shadowed suburban, and heavily shadowed suburban. Preliminary results of these field tests indicate very little multipath for rural environments and for clear LOS links (as expected with a narrow beam antenna). Deep fades were experienced in shadowed areas, especially those where tree canopies covered the road.

  18. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  19. Coherent versus noncoherent signaling for satellite-aided mobile communications

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Sumida, J.

    1986-01-01

    The use of coherent versus noncoherent communications is an unresolved issue for the mobile satellite community. Should one select the more robust but less efficient noncoherent strategy for communications over satellite-aided mobile channels, or does the introduction of a space platform in the mobile link improve signal stability (both amplitude and phase) such that conventional coherent schemes become attractive? This publication tries to answer some of the questions by discussing the results from experiments using a coherent QPSK receiver. The issues discussed include items such as the measured performance in Rician fading, the link error floor in a fading environment, etc. The results are compared and contrasted with that of a noncoherent limiter/discriminator FM receiver.

  20. Rural land mobile radio market assessment and satellite and terrestrial system concepts

    NASA Technical Reports Server (NTRS)

    Stevenson, S.; Provencher, C.

    1984-01-01

    The market for satellite-based mobile radio in the rural U.S. is evaluated, summarizing the results of two NASA-funded studies reported by Anderson et al. and Hornstein. The study aims are listed, and the results are presented in tables, graphs, and maps and discussed. Space systems are found to be competitive with land-based systems, providing superior service at lower subscriber charges, but having limited compatibility with urban cellular mobile-radio systems. Of the three system concepts evaluated from a technological standpoint (direct-to-mobile, mobile-translator, and hybrid), the mobile-translator concept is considered most cost effective, at least within the constraints assumed in the study.

  1. Face feature processor on mobile service robot

    NASA Astrophysics Data System (ADS)

    Ahn, Ho Seok; Park, Myoung Soo; Na, Jin Hee; Choi, Jin Young

    2005-12-01

    In recent years, many mobile service robots have been developed. These robots are different from industrial robots. Service robots were confronted to unexpected changes in the human environment. So many capabilities were needed to service mobile robot, for example, the capability to recognize people's face and voice, the capability to understand people's conversation, and the capability to express the robot's thinking etc. This research considered face detection, face tracking and face recognition from continuous camera image. For face detection module, it used CBCH algorithm using openCV library from Intel Corporation. For face tracking module, it used the fuzzy controller to control the pan-tilt camera movement smoothly with face detection result. A PCA-FX, which adds class information to PCA, was used for face recognition module. These three procedures were called face feature processor, which were implemented on mobile service robot OMR to verify.

  2. MSAT aeronautical mobile satellite communications terminal development

    NASA Technical Reports Server (NTRS)

    Sutherland, C. A.; Sydor, J. T.

    1995-01-01

    CAL has undertaken the development of a new aeronautical mobile terminal for the North American MSAT market. The terminal is to meet the MSAT standard and is aimed in particular at the 300,000 general aviation and business aircraft in North America. The terminals are therefore relatively low cost and small in size when compared to those currently being produced for larger airline aircraft. The terminal incorporates a top mounted mechanical steered antenna and a unique antenna steering subsystem. An overview of the terminal design is presented.

  3. RF characteristics of the hoop column antenna for the land mobile satellite system mission

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1984-01-01

    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described.

  4. 47 CFR 20.9 - Commercial mobile radio service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subcarriers within the FM baseband signal, that provide interconnected service (47 CFR 73.295 of this chapter... 47 Telecommunication 2 2010-10-01 2010-10-01 false Commercial mobile radio service. 20.9 Section... COMMERCIAL MOBILE RADIO SERVICES § 20.9 Commercial mobile radio service. (a) The following mobile...

  5. Estimation of the demand for public services communications. [market research and economic analysis for a communications satellite system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Market analyses and economic studies are presented to support NASA planning for a communications satellite system to provide public services in health, education, mobile communications, data transfer, and teleconferencing.

  6. System architecture and market aspects of an European Land Mobile Satellite System via EMS

    NASA Astrophysics Data System (ADS)

    Ananasso, F.; Mistretta, I.

    1992-03-01

    The paper describes an implementation scenario of a Land Mobile Satellite System via the EMS (European Mobile System) payload embarked on Italsat F-2. Some emphasis is given on market issues aiming at singling out business niches of Land Mobile Satellite Services (LMSS) in Europe. Other crucial issues exist such as: the alternate/competitive systems, the problems of interworking with other existing and/or planned systems, the definition of network architecture that better fits the user requirements, the marketing strategy and, last but not least, the financial evaluation of the project. The paper, on the basis of a study performed by Telespazio on behalf of ESA, discusses some of these issues with emphasis on competitive market aspects.

  7. Satellite servicing mission preliminary cost estimation model

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The cost model presented is a preliminary methodology for determining a rough order-of-magnitude cost for implementing a satellite servicing mission. Mission implementation, in this context, encompassess all activities associated with mission design and planning, including both flight and ground crew training and systems integration (payload processing) of servicing hardward with the Shuttle. A basic assumption made in developing this cost model is that a generic set of servicing hardware was developed and flight tested, is inventoried, and is maintained by NASA. This implies that all hardware physical and functional interfaces are well known and therefore recurring CITE testing is not required. The development of the cost model algorithms and examples of their use are discussed.

  8. Use of CDMA access technology in mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ramasastry, Jay; Wiedeman, Bob

    1995-01-01

    Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.

  9. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  10. Global coverage Mobile Satellite Systems: System availability versus channel propagation impairments

    NASA Technical Reports Server (NTRS)

    Sforza, M.; Buonomo, S.; Poiaresbaptista, J. P. V.

    1993-01-01

    Mobile Satellite Systems (MSS) in Highly Elliptical (HEO) and circular Earth orbits at Medium (MEO) and Low (LEO) altitudes have been intensively studied in the last few years as an effective means of providing global communication services. Such global coverage MSS networks are also expected to mitigate typical channel impairments usually encountered in geostationary Land Mobile Satellite (LMS) systems. In the design stages of these satellite networks, information regarding the mobile propagation channel is needed to assess the overall link availability versus elevation angle and environmental scenarios. For multisatellite LMS configurations, the mobile user on the Earth surface sees, at any given time, more than one satellite of the constellation. In our paper, it is shown that, under certain working assumptions regarding the statistics of the propagation channel, an improvement of the link availability may be achieved through the use of a multisatellite constellation. The analyses have been carried out using the European Space Agency (ESA) LMS propagation data base which presently covers a wide range of elevation angles and environmental scenarios.

  11. Satellite broadcasting - Capabilities for public service

    NASA Technical Reports Server (NTRS)

    Marsten, R. B.

    1975-01-01

    Satellite broadcast services to support health-care and educational transmissions must work with small, low-cost terminals in allocated radio-frequency bands. The ATS-6 spacecraft has successfully demonstrated such capability in the bands of non-technical users. It supports interactive television broadcasting to simple, low-cost terminals in a nationwide series of experiments in the delivery of health-care and educational services. ATS-6 achieves this capability with a very large antenna and moderate transmitter power. The coverage limitations inherent in this approach will be overcome by the joint U.S.-Canadian Communications Technology Satellite to be launched in December 1975. The CTS will demonstrate broadcast capability with new, high-power technology in a newly-allocated radio-frequency band. This will make it possible to use smaller antennas, greatly enlarging the area coverage available to the many nontechnical experimenters using CTS for their own needs. A practical application of these technologies is now in development for operational broadcasting services in Japan.

  12. Cockpit weather graphics using mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  13. Mobile consultant: evaluation of additional services.

    PubMed

    Banitsas, Konstantinos; Georgiadis, Pantelis; Tachakra, Sapal; Cavouras, Dionisis

    2007-01-01

    As the need for mobility in the medical world increases, newer systems and applications came to light; many of them based on wireless and mobile networks. PDA based systems were presented in the past, capable of videoconferencing and transmitting high quality images between a roaming consultant and a fixed point in the hospital. These systems not only had desirable characteristics but also incorporated additional services that were found of value: paging, Voice over IP calling, Internet, email, intranet, patient record update, etc This paper presents an engineering and clinical evaluation of those additional services based on both objective and subjective criteria. It concludes that such complementary services can be desirable as they increase personnel mobility, utilize the hospital resources more efficiently while at the same time increase productivity and decrease the cost of hardware and communications. PMID:18002803

  14. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  15. Fade-durations derived from land-mobile-satellite measurements in Australia

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  16. Video quality measure for mobile IPTV service

    NASA Astrophysics Data System (ADS)

    Kim, Wonjun; Kim, Changick

    2008-08-01

    Mobile IPTV is a multimedia service based on wireless networks with interactivity and mobility. Under mobile IPTV scenarios, people can watch various contents whenever they want and even deliver their request to service providers through the network. However, the frequent change of the wireless channel bandwidth may hinder the quality of service. In this paper, we propose an objective video quality measure (VQM) for mobile IPTV services, which is focused on the jitter measurement. Jitter is the result of frame repetition during the delay and one of the most severe impairments in the video transmission via mobile channels. We first employ YUV color space to compute the duration and occurrences of jitter and the motion activity. Then the VQM is modeled by the combination of these three factors and the result of subjective assessment. Since the proposed VQM is based on no-reference (NR) model, it can be applied for real-time applications. Experimental results show that the proposed VQM highly correlates to subjective evaluation.

  17. Why is CDMA the solution for mobile satellite communication

    NASA Technical Reports Server (NTRS)

    Gilhousen, Klein S.; Jacobs, Irwin M.; Padovani, Roberto; Weaver, Lindsay A.

    1989-01-01

    It is demonstrated that spread spectrum Code Division Multiple Access (CDMA) systems provide an economically superior solution to satellite mobile communications by increasing the system maximum capacity with respect to single channel per carrier Frequency Division Multiple Access (FDMA) systems. Following the comparative analysis of CDMA and FDMA systems, the design of a model that was developed to test the feasibility of the approach and the performance of a spread spectrum system in a mobile environment. Results of extensive computer simulations as well as laboratory and field tests results are presented.

  18. Low cost coherent demodulation for mobile satellite terminals

    NASA Technical Reports Server (NTRS)

    Dutta, Santanu; Henely, Steven J.

    1993-01-01

    This paper describes some low cost approaches to coherent BPSK demodulation for mobile satellite receivers. The specific application is an Inmarsat-C Land Mobile Earth Station (LMES), but the techniques are applicable to any PSK demodulator. The techniques discussed include combined sampling and quadrature downconversion with a single A/D and novel DSP algorithms for carrier acquisition offering both superior performance and economy of DSP resources. The DSP algorithms run at 5.7 MIPS, and the entire DSP subsystem, built with commercially available parts, costs under $60 at quantity-10,000.

  19. Analysis of satellite servicing cost benefits

    NASA Technical Reports Server (NTRS)

    Builteman, H. O.

    1982-01-01

    Under the auspices of NASA/JSC a methodology was developed to estimate the value of satellite servicing to the user community. Time and funding precluded the development of an exhaustive computer model; instead, the concept of Design Reference Missions was involved. In this approach, three space programs were analyzed for various levels of servicing. The programs selected fall into broad categories which include 80 to 90% of the missions planned between now and the end of the century. Of necessity, the extrapolation of the three program analyses to the user community as a whole depends on an average mission model and equivalency projections. The value of the estimated cost benefits based on this approach depends largely on how well the equivalency assumptions and the mission model match the real world. A careful definition of all assumptions permits the analysis to be extended to conditions beyond the scope of this study.

  20. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  1. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  2. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  3. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  4. 47 CFR 25.225 - Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Broadcasting Satellite Service. 25.225 Section 25.225 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.225 Geographic Service Requirements for 17/24 GHz Broadcasting Satellite Service. (a) Each operator of a 17/24 GHz BSS space...

  5. A Mobile Satellite Experiment (MSAT-X) network definition

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Yan, Tsun-Yee

    1990-01-01

    The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented.

  6. Evaluation of CDMA system capacity for mobile satellite system applications

    NASA Technical Reports Server (NTRS)

    Smith, Partrick O.; Geraniotis, Evaggelos A.

    1988-01-01

    A specific Direct-Sequence/Pseudo-Noise (DS/PN) Code-Division Multiple-Access (CDMA) mobile satellite system (MSAT) architecture is discussed. The performance of this system is evaluated in terms of the maximum number of active MSAT subscribers that can be supported at a given uncoded bit-error probability. The evaluation decouples the analysis of the multiple-access capability (i.e., the number of instantaneous user signals) from the analysis of the multiple-access mutliplier effect allowed by the use of CDMA with burst-modem operation. We combine the results of these two analyses and present numerical results for scenarios of interest to the mobile satellite system community.

  7. Concept and implementation of the Globalstar mobile satellite system

    NASA Technical Reports Server (NTRS)

    Schindall, Joel

    1995-01-01

    Globalstar is a satellite-based mobile communications system which provides quality wireless communications (voice and/or data) anywhere in the world except the polar regions. The Globalstar system concept is based upon technological advancements in Low Earth Orbit (LEO) satellite technology and in cellular telephone technology, including the commercial application of Code Division Multiple Access (CDMA) technologies. The Globalstar system uses elements of CDMA and Frequency Division Multiple Access (FDMA), combined with satellite Multiple Beam Antenna (MBA) technology and advanced variable-rate vocoder technology to arrive at one of the most efficient modulation and multiple access systems ever proposed for a satellite communications system. The technology used in Globalstar includes the following techniques in obtaining high spectral efficiency and affordable cost per channel: (1) CDMA modulation with efficient power control; (2) high efficiency vocoder with voice activity factor; (3) spot beam antenna for increased gain and frequency reuse; (4) weighted satellite antenna gain for broad geographic coverage; (5) multisatellite user links (diversity) to enhance communications reliability; and (6) soft hand-off between beams and satellites. Initial launch is scheduled in 1997 and the system is scheduled to be operational in 1998. The Globalstar system utilizes frequencies in L-, S- and C-bands which have the potential to offer worldwide availability with authorization by the appropriate regulatory agencies.

  8. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  9. Trellis-coded CPM for satellite-based mobile communications

    NASA Technical Reports Server (NTRS)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  10. Pseudo-coherent demodulation for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    This paper proposes three so-called pseudo-coherent demodulation schemes for use in land mobile satellite channels. The schemes are derived based on maximum likelihood (ML) estimation and detection of an N-symbol observation of the received signal. Simulation results for all three demodulators are presented to allow comparison with the performance of differential PSK (DPSK) and ideal coherent demodulation for various system parameter sets of practical interest.

  11. Home Economics Rural Service: Mobile Unit Bibliography.

    ERIC Educational Resources Information Center

    Farrar, Felicia Casados, Comp.; Roybal, Reina A., Comp.

    This bibliography is a complete listing of all materials available to home economics teachers in Northern New Mexico through the Home Economics Rural Service Mobile Unit. Eleven subject areas are included: career education, child growth and development, clothing and crafts, consumer education, food and nutrition, guidance, housing and interior…

  12. Empowering Rural Women through Mobile Services

    ERIC Educational Resources Information Center

    Nagarajan, P.; Jiji, G. Wiselin

    2010-01-01

    This paper is intended as a gender issue to the rural finance practitioners. It highlights the questions that need to be asked and addressed to the gender mainstream. It will also be useful to gender experts to wish to increase their understanding on specific gender issues in rural finance through mobile services. It focuses on rural microfinance…

  13. Satellite services system analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Service requirements are considered. Topics include development of on-orbit operations scenarios, service equipment summary, crew interaction, and satellite features facilitating servicing. Service equipment concepts are considered. Topics include payload deployment, close proximity retrieval, on-orbit servicing, backup/contingency, delivery/retrieval of high energy payloads, Earth return, optional service, and advanced capabilities. Program requirements are assessed.

  14. Prospects of satellite communications for mobiles: Towards a global mobile space segment

    NASA Astrophysics Data System (ADS)

    Rosetti, C.

    1981-11-01

    Terrestrial, maritime, and air transportation applications of communications satellites are considered. Communicating with long distance trucks can be achieved by text transmission which is cheaper than voice links, avoids access problems, and uses the frequency spectrum more efficiently. The need to accept fast and slow air traffic in the same air space, especially near airports, creates safety problems that can be overcome by equipping aircraft with a satellite controlled display device, showing traffic in the vicinity. The maritime satellite service is characterized by low market penetration that can be improved by cutting equipment costs, e.g., by decreasing ship antenna performance and using high gain satellite antennas, producing narrow beams.

  15. Space operations center applications of satellite service equipment

    NASA Technical Reports Server (NTRS)

    Mccaffrey, R. W.

    1982-01-01

    Satellite servicing requirements for a continuously manned Space Operations Center (SOC) are discussed. Applications for Orbiter developed service equipment are described, together with representative satellite servicing operations for use on SOC. These services cover the full mission cycle from orbital deployment to on-orbit maintenance/repair and, eventually, removal from orbit. An orbiting base, such as the SOC, can provide many of the same services at less cost than the Space Shuttle transportation system.

  16. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  17. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  18. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  19. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  20. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...., weather forecasting) have been satisfied. The division also provides photographs collected during NASA's... to: Satellite Data Services Division, World Weather Building, Room 606, Washington, DC 20233,...

  1. 14/12-GHz-band satellite communication services

    NASA Astrophysics Data System (ADS)

    Hayashi, Kunihiro; Nagaki, Kiyoaki; Mori, Yasuo

    1990-01-01

    Three new systems for integrated TV-relay services have been developed: Satellite Video Comunication Service (SVCS) and Satellite Digital Communication Service (SDCS), with Japan's 14/12-GHz-band commercial communication satellites. These systems have been in commercial use since May 1989. Usually SVCS and SDCS have been provided using Ka-band (30/20 GHz-band) of CS-2 and Cs-3. This paper provides an overview of the design, the performance, and the systems of the new 14/12-GHz-band satellite communication services.

  2. Advanced mobile satellite communications experiment in MM-wave and Ka-band using Japans's COMETS

    NASA Astrophysics Data System (ADS)

    Isobe, Shunkichi; Hamamoto, Naokazu; Takeuchi, Makoto; Ohmori, Shingo; Yamamoto, Minoru

    Early in the 21st century, the demand for personal communications using mobile, hand-held and very small aperture terminals (VSAT) will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter-wave and Ka-band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with the National Space Development Agency of Japan (NASDA) and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission. The 2-m-diameter on-board antenna has three beams, two adjacent Ka-band beams and one millimeter-wave beam. The two Ka-band transponders have high output power SSPAs of 20 W and 10 W. The millimeter-wave transponder consists of a 20 W traveling wave tube amplifier (TWTA) and a high electron mobility transistor/low noise amplifier (HEMT/LNA) with a low noise figure of 3 dB.

  3. David Florida Laboratory: Support for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Dumoulin, Jean-Guy; Mamen, Rolf

    1995-01-01

    The comprehensive integration and environmental (including RF) test facilities of the Canadian Space Agency's David Florida Laboratory (CSA)(DFL) were used extensively for the MSAT Program. Following a description of the facilities, the paper outlines their application to the qualification of the two MSAT satellites following an overview of the test plan. Particular emphasis is given to passive intermodulation measurement (PIM) demands, which for the MSAT satellites, contributed to the need to extend the anechoic chamber. The extended chamber was also used for an EMC test and SAR signature test of the RADARSAT satellite. The DFL's facilities are being used for additional aspects of mobile satellite communications. One shielded anechoic Extra High Frequency (EHF) chamber and associated test equipment are employed predominantly for measuring the performance of the IRIDIUM satellites' Engineering Model Gateway Moveable Antennas (EM)(GMA). Other chambers are used for testing aeronautical antennas on behalf of Inmarsat. Still others combine thermal and PIM testing. The paper concludes with a review of the test requirements of evolving satcom missions such as Inmarsat Aero-1.

  4. A feedback control loop for autonomous time synchronisation for mobile satellite systems, including satellites in any Earth orbit

    NASA Astrophysics Data System (ADS)

    Soprano, C.

    This paper presents the preliminary results of the design, analysis and simulation of a feedback control-loop for application to autonomous epoch synchronization in a satellite mobile synchronous communications system which includes communications satellites in non-geostationary Earth orbits and fast-moving mobile users.

  5. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  6. Second-generation mobile satellite system. A conceptual design and trade-off study

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  7. Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled

    1989-01-01

    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.

  8. Analysis of multiple access techniques in multi-satellite and multi-spot mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Corazza, Giovanni E.; Ferrarelli, Carlo; Vatalaro, Francesco

    1995-01-01

    In this paper the analysis of mobile satellite systems adopting constellations of multi-spot satellites over non-geostationary orbits is addressed. A link design procedure is outlined, taking into account system spectrum efficiency, probability of bit error and outage probability. A semi-analytic approach to the evaluation of outage probability in the presence of fading and imperfect power control is described, and applied to single channel per carrier (SCPC) and code division multiple access (CDMA) techniques. Some results are shown for the Globalstar, Iridium and Odyssey orbital configurations.

  9. Direct broadcast satellite-radio: Portable and mobile reception trade-offs

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1991-01-01

    There has been considerable international effort in the areas of system studies, system development, and regulatory work for a Direct Broadcast Satellite Radio (DBS-R). An important milestone will be the 1992 World Radio Administrative Conference (WARC 1992) consideration of frequency allocation in the 500 - 3000 MHz range for such a service. There is an interagency agreement between Voice of America and the National Aeronautics and Space Administration for a coordinated program in DBS-R. This program includes seven tasks: systems tradeoff studies, propagation measurements, satellite experiment and demonstration, receiver development, market studies, regulatory studies, and WARC preparations. The findings of ongoing work under the first task, systems tradeoff studies, are discussed. Topics covered include digital bit rate and audio quality, propagation considerations and link margin estimates for portable reception, link margin estimates for mobile reception, coverage, and satellite size and cost estimates for a regional DBS-R coverage example.

  10. Power attenuation characteristics as switch-over criterion in personal satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Castro, Jonathan P.

    1993-01-01

    A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.

  11. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  12. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  13. Geodetic Mobil Solar Spectrometer for JASON Altimeter Satellite Calibration

    NASA Astrophysics Data System (ADS)

    Somieski, A.; Buerki, B.; Geiger, A.; Kahle, H.-G.; Becker-Ross, H.; Florek, S.; Okruss, M.

    Atmospheric water vapor is a crucial factor in achieving highest accuracies for space geodetic measurements. Water vapor causes a delay of the propagation time of the altimeter satellite signal, which propagates into errors for the determination of surface heights. Knowledge of the precipitable water vapor (PW) enables a tropospheric correction of the satellite signal. Therefore, different remote sensing techniques have been pursued to measure the PW continuously. The prototype Geodetic Mobil Solar Spectrometer (GEMOSS) was developed at the Geodesy and Geodynamics Laboratory (GGL, ETH Zurich) in cooperation with the Institute of Spectrochemistry and Applied Spectroscopy (ISAS) (Berlin, Germany). A new optical approach allows the simultaneous measurement of numerous single absorption lines of water vapor in the wide range between 728 nm and 915 nm. The large number of available absorption lines increases the accuracy of the absolute PW retrievals considerably. GEMOSS has been deployed during two campaigns in Greece in the framework of the EU-project GAVDOS, which deals with the calibration of the altimeter satellite JASON. During the overfly of JASON, the ground-based determination of PW enables the correction of the satellite measurements due to tropospheric water vapor. Comparisons with radiometer and radiosondes data allow to assess the accuracy and reliability of GEMOSS. The instrumental advancement of GEMOSS is presented together with the results of the campaigns carried out.

  14. New developments for SAW channelization for mobile satellite payloads

    NASA Technical Reports Server (NTRS)

    Peach, R. C.; Mabson, P.

    1995-01-01

    The use of SAW technology in mobile communication payloads is becoming widely accepted by the industry since being pioneered by Inmarsat for its third generation of satellites. This paper presents new developments in this area, including broadband processors of the Inmarsat 3 type, and the use of SAW filters at L-band. It is demonstrated that SAW processors have considerable potential for increasing the capacity of future communications payloads, while allowing fully transparent operation without any restriction on traffic type or modulation format. In addition to the evolutionary development of Inmarsat type processors, new SAW applications have also emerged recently. Therefore, despite the rapid changes in the industry, it is predicted that SAW processing has a strong future in satellite communications.

  15. Direct broadcast satellite-audio, portable and mobile reception tradeoffs

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1992-01-01

    This paper reports on the findings of a systems tradeoffs study on direct broadcast satellite-radio (DBS-R). Based on emerging advanced subband and transform audio coding systems, four ranges of bit rates: 16-32 kbps, 48-64 kbps, 96-128 kbps and 196-256 kbps are identified for DBS-R. The corresponding grades of audio quality will be subjectively comparable to AM broadcasting, monophonic FM, stereophonic FM, and CD quality audio, respectively. The satellite EIRP's needed for mobile DBS-R reception in suburban areas are sufficient for portable reception in most single family houses when allowance is made for the higher G/T of portable table-top receivers. As an example, the variation of the space segment cost as a function of frequency, audio quality, coverage capacity, and beam size is explored for a typical DBS-R system.

  16. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  17. Technology Development on ISS for Satellite Servicing and Exploration

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    NASA's Satellite Servicing Capabilities Office is utilizing the International Space Station to demonstrate technologies essential to satellite servicing endeavors in support of human exploration and science. Within this presentation, we will discuss the status and implications of three of these technology payloads: Restore-L, Asteroid Redirect Robotic Mission (ARRM), Raven, Robotic Refueling Mission (RRM) Phase 2, and RRM Phase 3.

  18. 10 CFR 35.80 - Provision of mobile medical service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Provision of mobile medical service. 35.80 Section 35.80 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.80 Provision of mobile medical service. (a) A licensee providing mobile medical service shall—...

  19. 10 CFR 35.80 - Provision of mobile medical service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Provision of mobile medical service. 35.80 Section 35.80 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.80 Provision of mobile medical service. (a) A licensee providing mobile medical service shall—...

  20. DATA MANAGEMENT SYSTEM FOR MOBILE SATELLITE PROPAGATION DATA

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The "Data Management System for Mobile Satellite Propogation" package is a collection of FORTRAN programs and UNIX shell scripts designed to handle the huge amounts of data resulting from Mobile Satellite propogation experiments. These experiments are designed to assist in defining channels for mobile satellite systems. By understanding multipath fading characteristics of the channel, doppler effects, and blockage due to manmade objects as well as natural surroundings, characterization of the channel can be realized. Propogation experiments, then, are performed using a prototype of the system simulating the ultimate product environment. After the data from these experiments is generated, the researcher must access this data with a minimum of effort and to derive some standard results. The programs included in this package manipulate the data files generated by the NASA/JPL Mobile Satellite propogation experiment on an interactive basis. In the experiment, a transmitter operating at 869 MHz was carried to an altitude of 32Km by a stratospheric balloon. A vehicle within the line-of-sight of the transmitter was then driven around, splitting the incoming signal into I and Q channels, and sampling the resulting signal strength at 1000 samples per second. The data was collected at various antenna elavation angles and different times of day generating the ancillary data for the experiment. This package contains a program to convert the binary format of the data generated into standard ASCII format suitable for use with a wide variety of machine architectures. Also included is a UNIX shell-script designed to parse this ASCII file into those records of data that match the researcher's desired values for the ancillary data parameters. In addition, four FORTRAN programs are included to obtain standard quantities from the data. Quantities such as probability of signal level greater than or equal to a specified signal level, probability density of the signal levels, frequency

  1. Utilization of NASA Lewis mobile terminals for the Hermes satellite

    NASA Technical Reports Server (NTRS)

    Edelman, E. A.; Fiala, J. L.; Rizzolla, L.

    1977-01-01

    The high power of the Hermes satellite enables two-way television and voice communication with small ground terminals. The Portable Earth Terminal (PET) and the Transportable Earth Terminal (TET) were developed and built by NASA-Lewis to provide communications capability to short-term users. The NASA-Lewis mobile terminals are described in terms of vehicles and onboard equipment, as well as operation aspects, including use in the field. The section on demonstrations divides the uses into categories of medicine, education, technology and government. Applications of special interest within each category are briefly described.

  2. Estimation of frequency offset in mobile satellite modems

    NASA Technical Reports Server (NTRS)

    Cowley, W. G.; Rice, M.; Mclean, A. N.

    1993-01-01

    In mobilesat applications, frequency offset on the received signal must be estimated and removed prior to further modem processing. A straightforward method of estimating the carrier frequency offset is to raise the received MPSK signal to the M-th power, and then estimate the location of the peak spectral component. An analysis of the lower signal to noise threshold of this method is carried out for BPSK signals. Predicted thresholds are compared to simulation results. It is shown how the method can be extended to pi/M MPSK signals. A real-time implementation of frequency offset estimation for the Australian mobile satellite system is described.

  3. More About Lens Antenna For Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.

    1990-01-01

    Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.

  4. Trellis coded modulation for transmission over fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divasalar, Dariush (Inventor)

    1990-01-01

    The combination of trellis coding and multiple phase-shift keyed (MPSK) signaling with asymmetry (nonuniform spacing) to the signal set is disclosed with regard to its suitability for a fading mobile satellite communication channel. For MPSK signaling, introducing nonuniformity in the phase spacing between signal points provides an improvement in performance over that achievable with trellis codes symmetric MPSK signaling, all this without increasing the average or peak power, or changing the bandwidth constraints imposed on the system. Block interleaving may be used to reduce error and pilot tone(s) may be used for improving the error correction performance of the trellis decoder in the presence of channel fading.

  5. Satellite communications for the next generation telecommunication services and networks

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  6. Providing satellite systems for the national weather satellite services.

    NASA Technical Reports Server (NTRS)

    Stroud, W. G.; Press, H.; Stampfl, R. A.

    1973-01-01

    Discussion of cooperative arrangements and agreements among NASA, the Department of Commerce, and other governmental agencies in developing and operating meteorological satellite systems. The development of present interagency agreements and their conditions are discussed along with differences from the usual NASA program introduced by the supplier-client relationship between NASA and NOAA (National Oceanic and Atmospheric Administration).

  7. 47 CFR 25.146 - Licensing and operating rules for the non-geostationary satellite orbit Fixed-Satellite Service...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5 GHz bands. 25.146 Section... the non-geostationary satellite orbit Fixed-Satellite Service (NGSO FSS) in the 10.7 GHz-14.5 GHz... satellite orbit Fixed-Satellite Service (NGSO FSS) system in the 10.7-14.5 GHz bands. The...

  8. Evaluation of voice codecs for the Australian mobile satellite system

    NASA Technical Reports Server (NTRS)

    Bundrock, Tony; Wilkinson, Mal

    1990-01-01

    The evaluation procedure to choose a low bit rate voice coding algorithm is described for the Australian land mobile satellite system. The procedure is designed to assess both the inherent quality of the codec under 'normal' conditions and its robustness under 'severe' conditions. For the assessment, normal conditions were chosen to be random bit error rate with added background acoustic noise and the severe condition is designed to represent burst error conditions when mobile satellite channel suffers from signal fading due to roadside vegetation. The assessment is divided into two phases. First, a reduced set of conditions is used to determine a short list of candidate codecs for more extensive testing in the second phase. The first phase conditions include quality and robustness and codecs are ranked with a 60:40 weighting on the two. Second, the short listed codecs are assessed over a range of input voice levels, BERs, background noise conditions, and burst error distributions. Assessment is by subjective rating on a five level opinion scale and all results are then used to derive a weighted Mean Opinion Score using appropriate weights for each of the test conditions.

  9. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  10. Domestic satellite services for rural areas

    NASA Astrophysics Data System (ADS)

    Briskman, R. D.

    1984-03-01

    It is pointed out that rural areas can be served by a domestic satellite communications system in an efficient and economical manner. To accomplish such efficiency and economy, the engineering parameters of the satellite communications system must be analyzed and selected with a view toward achieving the desired performance at minimum total cost. The equipment for an entire rural satellite communication system serving 1200 communities can be acquired for approximately $200 million (1983 dollars). An identical system, however, could also be implemented at much lower capital costs by leasing space segment capacity from existing satellite systems (Briskman and Savage, 1983).

  11. Robotic servicing on Earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1993-01-01

    An articulated calibration experiment (ACE) concept study was conducted by GSFC to prove the feasibility of instrument calibration by a resident robot on the EOS spacecraft. This study provided a basis for determining the most suitable robot design and operations concepts required to perform accurate instrument calibration on the EOS platform. During the study, the first-order dynamics of robot walking and docking motions as it moves about were evaluated to determine the accelerations and torques imparted into the spacecraft. The major perturbation to the spacecraft was the effect of robot motion and impact on the EOS platform attitude control system. If not carefully controlled, these levels could exceed the maximum allowable levels. As a result of the EOS/ACE feasibility study, a GSFC robotic ground development effort was established. This effort, as described on the paper, will identify the technology required to resolve issues associated with robot in-space servicing dynamics and its impact on spacecraft and designs. Of primary concern are those relating to robot contact loads, docking of robotic systems on space platforms, and basic motion and mobility.

  12. Performance of a low data rate speech codec for land-mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Gersho, Allen; Jedrey, Thomas C.

    1990-01-01

    In an effort to foster the development of new technologies for the emerging land mobile satellite communications services, JPL funded two development contracts in 1984: one to the Univ. of Calif., Santa Barbara and the other to the Georgia Inst. of Technology, to develop algorithms and real time hardware for near toll quality speech compression at 4800 bits per second. Both universities have developed and delivered speech codecs to JPL, and the UCSB codec was extensively tested by JPL in a variety of experimental setups. The basic UCSB speech codec algorithms and the test results of the various experiments performed with this codec are presented.

  13. 75 FR 69374 - Supplement to Universal Service Reform Mobility Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ...This document is a supplement to the Universal Service Reform Mobility Fund, published November 1, 2010. In this document, the Federal Communication Commission proposes the creation of a new Mobility Fund to make available one-time support to significantly improve coverage of current-generation or better mobile voice and Internet service for consumers in areas where such coverage is currently......

  14. 47 CFR 80.106 - Intercommunication in the mobile service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Intercommunication in the mobile service. 80... Procedures-Land Stations § 80.106 Intercommunication in the mobile service. (a) Each public coast station... receive all communications from mobile stations directed to it, transmit all communications delivered...

  15. 47 CFR 80.106 - Intercommunication in the mobile service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Intercommunication in the mobile service. 80... Procedures-Land Stations § 80.106 Intercommunication in the mobile service. (a) Each public coast station... receive all communications from mobile stations directed to it, transmit all communications delivered...

  16. Network flexibility of the IRIDIUM (R) Global Mobile Satellite System

    NASA Technical Reports Server (NTRS)

    Hutcheson, Jonathan; Laurin, Mala

    1995-01-01

    The IRIDIUM system is a global personal communications system supported by a constellation of 66 low earth orbit (LEO) satellites and a collection of earth-based 'gateway' switching installations. Like traditional wireless cellular systems, coverage is achieved by a grid of cells in which bandwidth is reused for spectral efficiency. Unlike any cellular system ever built, the moving cells can be shared by multiple switching facilities. Noteworthy features of the IRIDIUM system include inter-satellite links, a GSM-based telephony architecture, and a geographically controlled system access process. These features, working in concert, permit flexible and reliable administration of the worldwide service area by gateway operators. This paper will explore this unique concept.

  17. Architectures and protocols for an integrated satellite-terrestrial mobile system

    NASA Technical Reports Server (NTRS)

    Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.

    1993-01-01

    This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.

  18. Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.

  19. Extravehicular Crewman Work System (ECWS) study program. Volume 3: Satellite service

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The satellite service portion of the Extravehicular Crewman Work System Study defines requirements and service equipment concepts for performing satellite service from the space shuttle orbiter. Both normal and contingency orbital satellite service is required. Service oriented satellite design practices are required to provide on orbit satellite service capability for the wide variety of satellites at the subsystem level. Development of additional satellite service equipment is required. The existing space transportation system provides a limited capability for performing satellite service tasks in the shuttle payload bay area.

  20. A pattern jitter free AFC scheme for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Yoshida, Shousei

    1993-01-01

    This paper describes a scheme for pattern jitter free automatic frequency control (AFC) with a wide frequency acquisition range. In this scheme, equalizing signals fed to the frequency discriminator allow pattern jitter free performance to be achieved for all roll-off factors. In order to define the acquisition range, frequency discrimination characateristics are analyzed on a newly derived frequency domain model. As a result, it is shown that a sufficiently wide acquisition range over a given system symbol rate can be achieved independent of symbol timing errors. Additionally, computer simulation demonstrates that frequency jitter performance improves in proportion to E(sub b)/N(sub 0) because pattern-dependent jitter is suppressed in the discriminator output. These results show significant promise for applciation to mobile satellite systems, which feature relatively low symbol rate transmission with an approximately 0.4-0.7 roll-off factor.

  1. A mobile station for satellite transmission of live TV programs

    NASA Astrophysics Data System (ADS)

    Pellegrineschi, G.

    The design of a mobile uplink transmitter for DBS-TV is presented and illustrated with drawings, block diagrams, graphs, and tables of component performance data. The station is designed to ESA specifications (uplink EIRP 82 dBW at 18 GHz) and comprises a 4-m Cassegrain antenna of metallized GFRP, RF and baseband racks, and two 15-kVA diesel generators, all mounted on a flatbed truck with overall dimensions 8 x 2.5 x 5 m; a version designed for RAI use (uplink EIRP 77 dBW at 14 GHz) has dimensions about 10 percent smaller. Design features discussed include quadriplexers permitting simultaneous independent transmission and reception with different linear polarization, a soft-fail transmitter-redundancy device, microprocessor-controlled satellite acquisition and tracking, and interactive control interfaces.

  2. Speech coding at 4800 bps for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Gersho, Allen; Chan, Wai-Yip; Davidson, Grant; Chen, Juin-Hwey; Yong, Mei

    1988-01-01

    A speech compression project has recently been completed to develop a speech coding algorithm suitable for operation in a mobile satellite environment aimed at providing telephone quality natural speech at 4.8 kbps. The work has resulted in two alternative techniques which achieve reasonably good communications quality at 4.8 kbps while tolerating vehicle noise and rather severe channel impairments. The algorithms are embodied in a compact self-contained prototype consisting of two AT and T 32-bit floating-point DSP32 digital signal processors (DSP). A Motorola 68HC11 microcomputer chip serves as the board controller and interface handler. On a wirewrapped card, the prototype's circuit footprint amounts to only 200 sq cm, and consumes about 9 watts of power.

  3. A European mobile satellite system concept exploiting CDMA and OBP

    NASA Technical Reports Server (NTRS)

    Vernucci, A.; Craig, A. D.

    1993-01-01

    This paper describes a novel Land Mobile Satellite System (LMSS) concept applicable to networks allowing access to a large number of gateway stations ('Hubs'), utilizing low-cost Very Small Aperture Terminals (VSAT's). Efficient operation of the Forward-Link (FL) repeater can be achieved by adopting a synchronous Code Division Multiple Access (CDMA) technique, whereby inter-code interference (self-noise) is virtually eliminated by synchronizing orthogonal codes. However, with a transparent FL repeater, the requirements imposed by the highly decentralized ground segment can lead to significant efficiency losses. The adoption of a FL On-Board Processing (OBP) repeater is proposed as a means of largely recovering this efficiency impairment. The paper describes the network architecture, the system design and performance, the OBP functions and impact on implementation. The proposed concept, applicable to a future generation of the European LMSS, was developed in the context of a European Space Agency (ESA) study contract.

  4. Alternative multiple-access techniques for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Smith, Patrick O.; Geraniotis, Evaggelos

    1989-01-01

    The use of Code Division Multiple Access (CDMA) to satisfy the diverse requirements of a generic (land, maritime, aeronautical) mobile satellite system (MSS) network design is discussed. Comparisons between CDMA and Frequency Division Multiple Access (FDMA) show that a CDMA network design can support significantly more voice channel allocations than FDMA when relatively simple CDMA correlation receivers are employed, provided that there is sufficient space segment equivalent isotropically radiated power (EIRP). The use of more advanced CDMA receivers can improve the spectral and power efficiency. Although the use of CDMA may not gain immediate and widespread support in the international MSS community, provision for the use of CDMA for a domestic system in the U.S., and possibly for a regional system throughout North America, is likely.

  5. Considerations of digital phase modulation for narrowband satellite mobile communication

    NASA Technical Reports Server (NTRS)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  6. Design and evaluation of speech coders for mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Copperi, M.; Perosino, F.; Biglieri, E.; Albertengo, G.

    The authors deal with the design and performance analysis of two real-time speech coder algorithms implemented on an array processor, i.e., a linear predictive coder (LPC) operating at 2.4 kb/s, and a baseband residual coder (BBC) operating at 7.2/9.6 kb/s. The effects of channel impairments typical of mobile satellite systems, such as multipath fading and shadowing, on the subjective quality is evaluated by means of the diagnostic rhyme test (DRT) and the diagnostic acceptability measure (DAM). The subjective scores have been examined to pinpoint the fidelity with which distinctive phonetic features are transmitted, and important quality attributes are preserved. Results show that a BBC at 9.6 kb/s, incorporating a suitable error correcting scheme, provides a moderately good quality, while the LPC at 2.4 kb/s yields a quality that is not felt to be commercially acceptable.

  7. A Satellite-Tracking K and Ka Band Mobile Vehicle Antenna System

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Jamnejad, V.

    1993-01-01

    This paper describes the development of the K/Ka-band, satellite-tracking mobile-vehicular antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellite, which will be launched into its geostationary orbit in 1993.

  8. Adaptive beamforming in a CDMA mobile satellite communications system

    NASA Technical Reports Server (NTRS)

    Munoz-Garcia, Samuel G.

    1993-01-01

    Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of multiple access scheme in these future mobile communication systems. This is due to a variety of reasons such as the excellent performance in multipath environments, high scope for frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is limited by the self-interference between the transmissions of the different users in the network. Moreover, the disparity between the received power levels gives rise to the near-far problem, this is, weak signals are severely degraded by the transmissions from other users. In this paper, the use of time-reference adaptive digital beamforming on board the satellite is proposed as a means to overcome the problems associated with CDMA. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference sources. Since CDMA is interference limited, the interference protection provided by the antenna converts directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of power control. A payload architecture will be presented that illustrates the practical implementation of this concept. This digital payload architecture shows that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques -in particular digital beamforming- has become possible, being most attractive for Mobile Satellite Communications.

  9. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-01-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  10. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Astrophysics Data System (ADS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-08-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  11. Technical and economic feasibility of integrated video service by satellite

    NASA Technical Reports Server (NTRS)

    Price, K. M.; Kwan, R. K.; White, L. W.; Garlow, R. K.; Henderson, T. R.

    1992-01-01

    A feasibility study is presented of utilizing modern satellite technology, or more advanced technology, to create a cost-effective, user-friendly, integrated video service, which can provide videophone, video conference, or other equivalent wideband service on demand. A system is described that permits a user to select a desired audience and establish the required links similar to arranging a teleconference by phone. Attention is given to video standards, video traffic scenarios, satellite system architecture, and user costs.

  12. Satellite services system analysis study. Volume 5: Programmatics

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The overall program and resources needed for development and operation of a Satellite Services System is reviewed. Program requirements covered system operations through 1993 and were completed in preliminary form. Program requirements were refined based on equipment preliminary design and analysis. Schedules, costs, equipment utilization, and facility/advanced technology requirements were included in the update. Equipment user charges were developed for each piece of equipment and for representative satellite servicing missions.

  13. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  14. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  15. Technical and economic feasibility of integrated video service by satellite

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Garlow, R. K.; Henderson, T. R.; Kwan, Robert K.; White, L. W.

    1992-01-01

    The trends and roles of satellite based video services in the year 2010 time frame are examined based on an overall network and service model for that period. Emphasis is placed on point to point and multipoint service, but broadcast could also be accommodated. An estimate of the video traffic is made and the service and general network requirements are identified. User charges are then estimated based on several usage scenarios. In order to accommodate these traffic needs, a 28 spot beam satellite architecture with on-board processing and signal mixing is suggested.

  16. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  17. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  18. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  19. Power and spectrally efficient M-ARY QAM schemes for future mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Sreenath, K.; Feher, K.

    1990-01-01

    An effective method to compensate nonlinear phase distortion caused by the mobile amplifier is proposed. As a first step towards the future use of spectrally efficient modulation schemes for mobile satellite applications, we have investigated effects of nonlinearities and the phase compensation method on 16-QAM. The new method provides about 2 dB savings in power for 16-QAM operation with cost effective amplifiers near saturation and thereby promising use of spectrally efficient linear modulation schemes for future mobile satellite applications.

  20. Robotic mobile servicing platform for space station

    NASA Technical Reports Server (NTRS)

    Lowenthal, S. H.; Vanerden, L.

    1987-01-01

    The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves.

  1. R&D of a Next Generation LEO System for Global Multimedia Mobile Satellite Communications

    NASA Astrophysics Data System (ADS)

    Morikawa, E.; Motoyoshi, S.; Koyama, Y.; Suzuki, R.; Yasuda, Y.

    2002-01-01

    Next-generation LEO System Research Center (NeLS) was formed in the end of 1997 as a research group under the Telecommunications Advancement Organization of Japan, in cooperation with the telecommunications operators, manufacturers, universities and governmental research organization. The aim of this project is to develop new technology for global multimedia mobile satellite communications services with a user data rate around 2Mbps for handy terminals. component of the IMT-2000, and the second generation of the big-LEO systems. In prosecuting this project, two-phase approach, phase 1 and phase 2, is considered. Phase 1 is the system definition and development of key technologies. In Phase 2, we plan to verify the developed technology in Phase 1 on space. From this year we shifted the stage to Phase 2, and are now developing the prototype of on-board communication systems for flight tests, which will be planed at around 2006. The satellite altitude is assumed to be 1200 km in order to reduce the number of satellites, to avoid the Van Allen radiation belts and to increase the minimum elevation angle. Ten of the circular orbits with 55 degree of inclination are selected to cover the earth surface from -70 to 70 degree in latitude. 12 satellites are positioned at regular intervals in each orbit. In this case, the minimum elevation angle from the user terminal can be keep more than 20 degree for the visibility of the satellite, and 15 degree for simultaneous visibility of two satellites. Then, NeLS Research Center was focusing on the development of key technologies as the phase 1 project. Four kinds of key technologies; DBF satellite antenna, optical inter-satellite link system, satellite network technology with on-board ATM switch and variable rate modulation were selected. Satellite Antenna Technology: Development of on-board direct radiating active phased array antenna with digital beam forming technology would be one of the most important breakthroughs for the

  2. Trade-off between land vehicle antenna cost and gain for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Trade-offs between antenna cost and gain made for nine antennas as a feasibility study for the experimental land mobile satellite system, M-SAT(X) reported. This system is under development by JPL-NASA for a mobile telephone system to be used throughout the continental USA and Alaska. The mobile antenna is a key element in the development of this system.

  3. System capacity and economic modeling computer tool for satellite mobile communications systems

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  4. A Frequency Study for Public Services Users of Satellite Telecommunications.

    ERIC Educational Resources Information Center

    Federation of Rocky Mountain States, Inc., Denver, CO.

    This analysis attempts to consolidate frequency studies done by public broadcasting, to compile some important characteristics of potentially available bands, and to prioritize the frequency options of public service users of satellite communications. Those bands are emphasized which facilitate the transfer of public service activities to…

  5. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  6. Satellite services system analysis study, part 3

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The background, ground rules and assumptions, individual design reference mission results and total user benefit projection for the economic benefit analysis are discussed. Radiation protection, extravehicular activity (EVA) operational pressure, mobility effects, tool/glove/effects, anthropometric definition, EVA lighting, and equipment turnaround for the advanced extravehicular maneuvering unit are also discussed.

  7. An Earth Orbiting Satellite Service and Repair Facility

    NASA Technical Reports Server (NTRS)

    Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne

    1989-01-01

    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.

  8. 1. GENERAL VIEW OF PAD B MOBILE SERVICE STRUCTURE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF PAD B MOBILE SERVICE STRUCTURE IN SETTING WITH FACILITY 28416 (PAD A MOBILE SERVICE STRUCTURE) IN DISTANCE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  9. 10 CFR 35.2080 - Records of mobile medical services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of mobile medical services. 35.2080 Section 35.2080 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2080 Records of mobile medical services. (a) A licensee shall retain a copy of each letter that permits the use...

  10. 10 CFR 35.2080 - Records of mobile medical services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of mobile medical services. 35.2080 Section 35.2080 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2080 Records of mobile medical services. (a) A licensee shall retain a copy of each letter that permits the use...

  11. Mobile Application for the Delivery of Satellite Imagery and Cloud Products

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T. L.; Minnis, P.; Palikonda, R.; Spangenberg, D.; Ayers, J. K.

    2010-12-01

    The rise of mobile computing provides a novel medium for the dissemination of satellite imagery and cloud products to end-users. The authors describe an application built to explore the delivery of satellite data to mobile devices for research purposes. This project builds upon earlier work performed at NASA Langley to find novel ways to improve the delivery of satellite data and products to end-users. Since end-user needs range from visualization to information download, the application requirements reflect expected usage and also functionality that leverages conditions present in the mobile environment.

  12. Access to Real-time and Historical Satellite Products from a Mobile Application

    NASA Astrophysics Data System (ADS)

    Chee, T.; Kelly, M.; Nguyen, L.; Minnis, P.; Palikonda, R.; Spangenberg, D. A.; Ayers, J.

    2011-12-01

    The rise of mobile computing provides a novel medium for the dissemination of satellite imagery and cloud products to end users. The authors describe an application built to explore the delivery of satellite-derived cloud products to mobile devices for research purposes and other applications. This project builds upon earlier work performed at NASA Langley to find novel ways to improve the delivery of satellite data and products to end-users. Since end-user needs range from visualization to information download, the application requirements reflect expected usage and also functionality that leverages conditions present in the mobile environment.

  13. Microstrip Yagi array antenna for mobile satellite vehicle application

    NASA Technical Reports Server (NTRS)

    Huang, John; Densmore, Arthur C.

    1991-01-01

    A novel antenna structure formed by combining the Yagi-Uda array concept and the microstrip radiator technique is discussed. This antenna, called the microstrip Yagi array, has been developed for the mobile satellite (MSAT) system as a low-profile, low-cost, and mechanically steered medium-gain land-vehicle antenna. With the antenna's active patches (driven elements) and parasitic patches (reflector and director elements) located on the same horizontal plane, the main beam of the array can be tilted, by the effect of mutual coupling, in the elevation direction providing optimal coverage for users in the continental United States. Because the parasitic patches are not connected to any of the lossy RF power distributing circuit the antenna is an efficient radiating system. With the complete monopulse beamforming and power distributing circuits etched on a single thin stripline board underneath the microstrip Yagi array, the overall L-band antenna system has achieved a very low profile for vehicle's rooftop mounting, as well as a low manufacturing cost. Experimental results demonstrate the performance of this antenna.

  14. Channel characterisation for future Ka-band Mobile Satellite Systems and preliminary results

    NASA Technical Reports Server (NTRS)

    Sforza, Mario; Buonomo, Sergio; Arbesser-Rastburg, Bertram

    1994-01-01

    Mobile satellite systems (MSS) are presently designed or planned to operate, with the exception of OMNITRACKS, in the lower part of the frequency spectrum (UHF to S-bands). The decisions taken at the last World Administrative Radio Conference in 1992 to increase the allocated L- and S-bands for MSS services will only partly alleviate the problem of system capacity. In addition the use of L-and S-band frequencies generally requires large antenna apertures on board the satellite terminal side. The idea of exploiting the large spectrum resources available at higher frequencies (20-30 GHz) and the perspective of reducing user terminal size (and possibly price too) have spurred the interest of systems designers and planners. On the other hand, Ka-band frequencies suffer from increased slant path losses due to atmospheric attenuation phenomena. The European Space Agency (ESA) has recently embarked on a number of activities aimed at studying the effect of the typical mobile propagation impairments at Ka-band. This paper briefly summarizes ESA efforts in this field of research and presents preliminary experimental results.

  15. Satellite and terrestrial integrated services digital networks in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Heiichi; Kato, Shuzo

    1991-10-01

    Satellite and terrestrial Integrated Services Digital Networks (ISDN) to provide cost effective ISDN services and to enhance installation of ISDN services all over the nation are proposed. The proposed networks are based on the traffic sharing between satellite and terrestrial networks for traffic transmission among telephone offices and provide satellite subscriber lines for ISDN customers in rural areas. The former DYANET (dynamic channel assigning routing satellite aided digital networks) (1) takes the advantage of high transmission efficiency of terrestrial networks for steady traffic and the advantage of high transmission efficiency of satellite communications for light and dynamically varying traffic. By employing demand assignment and transponder hopping (for both transmission and reception) techniques, effective satellite transmission capacity is encreased to five to six times higher than that of preassignment systems. Moreover, earth station cost was significantly reduced by Large Scale Integrated Circuits (LSIC) and Monolithic Integrated Circuit (MIC) implementation and by the development of dual beam antennas. DYANET 1 has been in perfect operation employing 64 Time Division Multiple Access (TDMA) earth stations since 1988 and the latter (DYANET 2) will be put into commercial use from mid 1991.

  16. Space station automation study: satellite servicing. Volume II. Technical report

    SciTech Connect

    Meissinger, H.F.

    1984-12-20

    This study was conducted by TRW over the six month time frame from early June through November 1984. Three major tasks were completed: Servicing Requirements (Satellite and Space Station Elements) and the Role of Automation; Assessment of Automation Technology; and Conceptual Design of Servicing Facilities on the Space Station. It was found that many servicing functions could benefit from automation support; that certain research and development activities on automation technologies for servicing should start as soon as possible; and some advanced automation developments for orbital servicing could be effectively applied to US industrial ground based operations. 42 refs., 49 figs., 20 tabs.

  17. Space station automation study: satellite servicing. Volume I. Executive summary

    SciTech Connect

    Not Available

    1984-11-30

    This study was conducted by TRW over the six month time frame from early June through November 1984. Three major tasks were completed: Servicing Requirements (Satellite and Space Station Elements) and the Role of Automation; Assessment of Automation Technology; and Conceptual Design of Servicing Facilities on the Space Station. It was found that many servicing functions could benefit from automation support; that certain research and development activities on automation technologies for servicing should start as soon as possible; and some advanced automation developments for orbital servicing could be effectively applied to US industrial ground based operations. 21 figs.

  18. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2009-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  19. A new distributed computing model of mobile spatial information service grid based on mobile agent

    NASA Astrophysics Data System (ADS)

    Tian, Gen; Liu, Miao-long

    2008-10-01

    A new distributed computing model of mobile spatial information service is studied based on grid computing environment. Key technologies are presented in the model, including mobile agent (MA) distributed computing, grid computing, spatial data model, location based service (LBS), global positioning system (GPS), code division multiple access (CDMA), transfer control protocol/internet protocol (TCP/IP), and user datagram protocol (UDP). In order to deal with the narrow bandwidth and instability of the wireless internet, distributed organization of tremendous spatial data, limited processing speed and low memory of mobile devices, a new mobile agent based mobile spatial information service grid (MSISG) architecture is further proposed that has good load balance, high processing efficiency, less network communication and thus suitable for mobile distributed computing environment. It can provide applications of spatial information distributed computing and mobile service. The theories and technologies architecture of MSISG are built originally from the base, including spatial information mobile agent model, distributed grid geographic information system (GIS) server model, mobile agent server model and mobile GIS client model. An application system for MSISG is therefore developed authorship by visual c++ and embedded visual c++. A field test is carried out through this system in Shanghai, and the results show that the proposed model and methods are feasible and adaptable for mobile spatial information service.

  20. Emerging markets for satellite data communications in the public service

    NASA Technical Reports Server (NTRS)

    Potter, J. G.

    1978-01-01

    The paper discusses some of the current and potential markets for satellite data communications as projected by the Public Service Satellite Consortium (PSSC). Organizations in the public service sector are divided into three categories, depending on their expected benefits and organizational changes due to increased satellite telecommunications use: A - modest institutional adjustments are necessary and significant productivity gains are likely; B - institutional requirements picture is promising, but more information is needed to assess benefits and risk; and C - major institutional adjustments are needed, risks are high but possible benefits are high. These criteria are applied to the U.S. health care system, continuing education, equipment maintenance, libraries, environmental monitoring, and other potential markets. The potential revenues are seen to be significant, but what is needed is a cooperative effort by common carriers and major public service institutions to aggregate the market.

  1. Planning satellite communication services and spectrum-orbit utilization

    NASA Technical Reports Server (NTRS)

    Sawitz, P. H.

    1982-01-01

    The relationship between approaches to planning satellite communication services and spectrum-orbit utilization is considered, with emphasis on the fixed-satellite and the broadcasting-satellite services. It is noted that there are several possible approaches to planning space services, differing principally in the rigidity with which technical parameters are prescribed, in the time for which a plan remains in force, and in the procedures adopted for implementation and modifications. With some planning approaches, spectrum-orbit utilization is fixed at the time the plan is made. Others provide for greater flexibility by making it possible to postpone some decisions on technical parameters. In addition, the two political questions of what is equitable access and how it can be guaranteed in practice play an important role.

  2. Overview of the Anik C satellites and services

    NASA Astrophysics Data System (ADS)

    Smart, F. H.

    An overview of the important technical characteristics of the Anik C series of Canadian communications satellites is presented. The system was launched as part of the Telesat Communications payload of the Space Shuttle in 1982. Among the services the system will in the near future provide are: a 27 MHz channel bandwidth television service for pay-TV distribution in Canada; two TV channels for hockey broadcasts and a transportable TV system; a heavy-voice route telephone service for five major Canadian cities; and a telephone system for business voice and data communications. Services anticipated for Anik-C satellites later in the decade include a Single Channel Per Carrier (SCPC) voice and data communications system for British Columbia and the Maritime Provinces, and a direct-to-home broadcast service to be sold to television markets in the United States.

  3. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    NASA Astrophysics Data System (ADS)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  4. Operating frequencies for educational satellite services

    NASA Technical Reports Server (NTRS)

    Singh, J. P.

    1971-01-01

    The factors affecting the choice of transmission frequencies are identified. These include international radio regulations, natural environment, man-made environment, hardware considerations, and interconnection and spectrum space considerations. An analysis is presented of international radio regulations with emphasis on 1963 EARC and 1971 WARC frequency allocations, powerflux density restrictions, and resolutions concerning introduction of broadcasting-satellite systems. Natural-environmental effects were divided into two categories: (1) those due to transionospheric propagation, and (2) those that can be credited to the earth's atmosphere and its constituents. The frequency dependence of the signal attenuation, signal distortion, and contributions to system noise temperature due to environmental effects are discussed, and comparisons were made for frequencies of interest. Man-made environmental effects were examined in terms of various sharing limitations as well as the indigenous noise contribution to the overall system noise.

  5. Requirements for a mobile communications satellite system. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Horstein, M.

    1983-01-01

    Three types of satellite aided mobile communications are considered for users in areas not served by (terrestrial) cellular radio systems. In system 1, mobile units are provided a direct satellite link to a gateway station, which serves as the interface to the terrestrial toll network. In system 2, a terrestrial radio link similar to those in cellular systems connects the mobile unit to a translator station; each translator relays the traffic from mobile units in its vicinity, via satellite, to the regional gateway. It is not feasible for system 2 to provide obiquitous coverage. Therefore, system 3 is introduced, in which the small percentage of users not within range of a translator are provided a direct satellite link as in system 1.

  6. A description of QUALCOMM Automatic Satellite Position Reporting (QASPR(R)) for mobile communications

    NASA Technical Reports Server (NTRS)

    Ames, William G.

    1990-01-01

    Two satellite position reporting has been introduced into the OmniTRACS mobile satellite communication system. This system significantly improves position reporting reliability and accuracy while simplifying the terminal's hardware. The positioning technique uses the original OmniTRACS TDMA timing signal formats in the forward and return link directions plus an auxiliary, low power forward link signal through a second satellite to derive distance values. The distances are then converted into the mobile terminal's latitude and longitude in real time. A minor augmentation of the spread spectrum profile of the return link allowed the resolution of periodic ambiguities. The system also locates the two satellites in real time with fixed platforms in known locations using identical mobile terminal hardware. Initial accuracies of 1/4 mile have been realized uniformly throughout the USA using a satellite separation of 22 degrees and there are no dead zones, skywaves, or cycle slips as found in terrestrial systems like LORAN-C.

  7. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  8. Developing satellite communications for public service: Prospects in four service areas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Public Service Satellite Consortium evaluated prospects for satellite telecommunications in four areas of the public service: the U.S. health care system, elementary and secondary education, American libraries, and that sector of the public service which is concerned with the provision of continuing education to health professionals. Three important conclusions were reached. First, throughout the public service there are three recurring needs: improved access, cost containment, and maintenance of quality. Appropriate application of communication satellite systems could ameliorate each of these concerns. Second, there appears to be an enormous latent demand for data communication services throughout the public service. The potential demand in 1982 to support requirements in hospital administration, library services and other information-retrieval activities, equipment maintenance, and environmental monitoring may be in excess of $300 million a year. Third, administrative applications of data communication networks show particular promise, especially in rural areas.

  9. Status of NASA's Assessment of Satellite Servicing

    NASA Technical Reports Server (NTRS)

    Thronson, H. A.; Ahmed, M.; Townsend, J.; Whipple, A. L.; Oegerle, W. R.

    2010-01-01

    Following recommendations by the National Research Council, NASA's Authorization Act of 2008 (P.I. 110-422) and the Fiscal Year 2009 Omnibus Appropriations Act directed NASA to assess the feasibility of using the planned human spaceflight architecture to service existing and future observatory-class scientific spacecraft. This interest in space servicing, either with astronauts and/or with robots, reflects the decades-long success that NASA has achieved with the Space Shuttle program and the Hubble Space Telescope on behalf of the international astronomical community. This study is led by NASA Goddard Space Flight Center and will last about a year, leading to an assessment report to NASA and the science communities. We will report on the status of this study, progress toward goals, workshops, and priorities for the next few months.

  10. A spread-spectrum modem using constant envelope BPSK for a mobile satellite communications terminal

    NASA Technical Reports Server (NTRS)

    Iizuka, N.; Yamashita, A.; Takenaka, S.; Morikawa, E.; Ikegami, T.

    1990-01-01

    This paper describes a 5-kilobit/s spread spectrum modem with a 1.275 mega-Hz chip rate for mobile satellite communications. We used a Viterbi decoder with a coding gain of 7.8 dB at a BER of 10(exp -5) to decrease the required receiver power. This reduces the cost of communication services. The spread spectrum technique makes the modem immune to terrestrial radio signals and keeps it from causing interference in terrestrial radio systems. A class C power amplifier reduces the modem's power consumption. To avoid nonlinear distortion caused by the amplifier, the envelope of the input signal is kept constant by adding quadrature channel signal to the BPSK signal. To simulate the worst case, we measured the modem's output spectrum using a limiting amplifier instead of the class C amplifier, and found that 99 percent of the spectral power was confined to the specified 2.55 mega-Hz bandwidth.

  11. Olympus: Un satellite au service de l'education (Olympus: A Satellite in Service to Education).

    ERIC Educational Resources Information Center

    Lancien, Thierry

    1990-01-01

    Olympus, launched by Ariane in 1989, is the first European satellite to transmit an experimental educational and cultural program. The satellite is not only providing current programing but is testing the possibilities for distance education in the future. A schedule of humanities and science programing is presented. (MSE)

  12. Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Strickland, P. C.

    1995-01-01

    CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.

  13. Next Step Mobile: Strategy, Services, & PRM

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2012-01-01

    As emerging information technologies have driven demand for new library communication channels, there has been increased interest in the use of mobile tools to promote interaction, expand outreach, market programs, and enhance the library experience. Libraries today are at widely different levels of mobile engagement, a gap poised to grow as…

  14. The technical and economic considerations of bringing satellite communications to small mobile users

    NASA Astrophysics Data System (ADS)

    Anson, P.; Crompton, E. K.

    1984-05-01

    The potential market presented by small users is considered and the characteristics of the present systems of communication satellites are reviewed. The satellite parameters of antenna gain and directivity and of bandwidth are then discussed and the operational considerations of the existing satellites are examined with reference to the requirements of the proposed small mobile users. The implications of economic tariffs are briefly touched upon.

  15. Autonomous robotic operations for on-orbit satellite servicing

    NASA Astrophysics Data System (ADS)

    Ogilvie, Andrew; Allport, Justin; Hannah, Michael; Lymer, John

    2008-04-01

    The Orbital Express Demonstration System (OEDS) flight test successfully demonstrated technologies required to autonomously service satellites on-orbit. The mission's integrated robotics solution, the Orbital Express Demonstration Manipulator System (OEDMS) developed by MDA, performed critical flight test operations. The OEDMS comprised a six-jointed robotic manipulator arm and its avionics, non-proprietary servicing and ORU (Orbital Replacement Unit) interfaces, a vision and arm control system for autonomous satellite capture, and a suite of Ground Segment and Flight Segment software allowing script generation and execution under supervised or full autonomy. The arm was mounted on ASTRO, the servicer spacecraft developed by Boeing. The NextSat, developed by Ball Aerospace, served as the client satellite. The OEDMS demonstrated two key goals of the OEDS flight test: autonomous free-flyer capture and berthing of a client satellite, and autonomous transfer of ORUs from servicer to client and back. The paper provides a description of the OEDMS and the key operations it performed.

  16. Open Access, Satellite Education Service (OASES): Final Annual Report.

    ERIC Educational Resources Information Center

    South Oklahoma City Junior Coll., OK.

    This report assesses the Open Access, Satellite Education Services (OASES) program, a joint venture between South Oklahoma City Junior College and the Metropolitan Library System of Oklahoma County designed to provide adult education opportunities to all segments of the area's urban population. Program goals are outlined in terms of numbers of…

  17. Red, White, and Blues: Library Services to a Satellite Campus

    ERIC Educational Resources Information Center

    Lee, Marta

    2004-01-01

    Over the last decade, an increasing number of academic institutions have built satellite campuses and developed online courses to meet the needs of distance learners. As these academic institutions have expanded, demand for library service has increased significantly. In an attempt to expand its course offerings to distance learners, Regent…

  18. Third International Satellite Direct Broadcast Services User's Conference

    NASA Technical Reports Server (NTRS)

    Kamowski, J.; Vermillion, C.

    1988-01-01

    A workshop titled, The Third International Satellite Direct Broadcast Services User's Conference, jointly sponsored by NASA and NOAA/NESDIS was scheduled to be held June 20 to 24, 1988, at the International Hotel located at the Baltimore-Washington Airport. Details concerning the organizing of the conference are given.

  19. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  20. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  1. The design of a linear L-band high power amplifier for mobile communication satellites

    NASA Technical Reports Server (NTRS)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  2. Satellite services for disaster management and security applications

    NASA Astrophysics Data System (ADS)

    Koudelka, Otto; Schrotter, P.

    2007-06-01

    Advantages of communications satellites are the inherent broadcast capability, high bandwidth, reliability and flexibility in network expansion. Small transportable terminals can be made operational very quickly. Recent developments in communications and computer technology allow to provide low-cost equipment, which is affordable even in developing countries. Communications satellites can also play an important role in case of emergencies or natural disasters. The combination of satellite communications and navigation can support new services for emergency teams. At the Institute of Applied Systems Technology and the Institute of Communication Networks and Satellite Communications highly transportable terminals have been developed, both for star and mesh network topologies. A fully meshed VSAT system is used for symmetrical links. For other applications, which do not require high return link capacity an asymmetrical system is an efficient solution. It uses low-cost DVB technology for the forward link and satellite phones with data capability on the return link. Novel multicast protocols allow to use these asymmetrical links in an efficient way. The paper describes the different systems and their applications in disaster management and security applications. Emphasis is put on transfer of remote sensing images and voice over IP (VoIP) as well as videoconference services.

  3. Oceanic satellite data service system based on web

    NASA Astrophysics Data System (ADS)

    Kang, Yan; Pan, Delu; He, Xianqiang; Wang, Difeng; Chen, Jianyu; Chen, Xiaoyan

    2011-11-01

    The ocean satellite observation is more and more important to study the global change, protect ocean resource and implement ocean engineering for their large area cover and high frequency observation, which have already given us a global view of ocean environment parameters, including the sea surface temperature, ocean color, wind, wave, sea level and sea ice, etc... China has made great progress in ocean environment remote sensing over the last couple of years. These data are widely used for a variety of applications in ocean environment studies, coastal water quality monitoring environmental, fishery resources protection, development and utilization of fishery resources, coastal engineering and oceanography. But the data are no online information access and dissemination, no online visualization & browsing, no online query and analyze capability. To facilitate the application of the data and to help disseminating the data, a web-service system has developed. The system provides capabilities of online oceanic satellite information access, query, visualize and analyze. It disseminates oceanic satellite data to the users via real time retrieval, processing and publishing through standards-based geospatial web services. A region of interest can also be exported directly to Google Earth for displaying or downloaded. This web service system greatly improves accessibility, interoperability, usability, and visualization of oceanic satellite data without any client-side software installation.

  4. A second anniversary operational review of the OmniTRACS(R): The first two-way mobile Ku-band satellite communications system

    NASA Technical Reports Server (NTRS)

    Jacobs, Irwin M.; Salmasi, Allen; Gilhousen, Klein S.; Weaver, Lindsay A., Jr.; Bernard, Thomas J.

    1990-01-01

    A novel two-way mobile satellite communications and vehicle position reporting system that is currently operational in the United States and Europe is described. The system characteristics and service operations are described in detail. Technical descriptions of the equipment and signal processing techniques are provided.

  5. ACTS Mobile Terminal (AMT) Baseline Terminal and On-Board Satellite Results

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Jedrey, Thomas C.

    1996-01-01

    The advanced communications technology satellite (ACTS) mobile terminal (AMT) experiments have provided an excellent terminal technology testbed for the evaluation of K- and Ka-band mobile satellite communications (SATCOM). Such a system has proven to be highly beneficial for many different commercial and government mobile SATCOM users and applications. Combining newly developed SATCOM technology such as ACTS' highly concentrated spot beams with the smaller, higher gain K- and Ka-bands antenna technology, results in a system design that can support significantly higher throughput capacity than current commercial systems. This paper provides an overview of the architecture and design of each of these two terminals. Baseline terminal performance, satellite transponder characteristics, and an introduction to K- and Ka-band mobile SATCOM propagation are also provided.

  6. The possibilities for mobile and fixed services up to the 20/30 GHz frequency bands

    NASA Astrophysics Data System (ADS)

    Hughes, Clifford D.; Feliciani, F.; Spiller, J.

    Satellite Communications and broadcasting is presently in a period of considerable change. In the fixed service there is strong competition from terrestrial fiber optic systems which have virtually arrested the growth of the traditional satellite market for long distance high capacity communications. The satellite has however made considerable progress in areas where it has unique advantages; for example, in point to multipoint (broadcasting), multipoint to point (data collection) and generally in small terminal system applications where flexibility of deployment coupled with ease of installation are of importance. In the mobile service, in addition to the already established geostationary systems, there are numerous proposals for HEO, MEO and LEO systems. There are also several new frequency allocations as a result of the WARC 92 to be taken into account. At one extreme there are researchers working on Ka band 20/30 GHz mobile systems and there are other groups who foresee no future above the L-band frequency allocations. Amongst all these inputs it is difficult to see the direction in which development activities both for satellites and for earth segment should be focused. However, as an aid to understanding, this paper seeks to find some underlying relationships and to clarify some of the variables.

  7. The possibilities for mobile and fixed services up to the 20/30 GHz frequency bands

    NASA Technical Reports Server (NTRS)

    Hughes, Clifford D.; Feliciani, F.; Spiller, J.

    1993-01-01

    Satellite Communications and broadcasting is presently in a period of considerable change. In the fixed service there is strong competition from terrestrial fiber optic systems which have virtually arrested the growth of the traditional satellite market for long distance high capacity communications. The satellite has however made considerable progress in areas where it has unique advantages; for example, in point to multipoint (broadcasting), multipoint to point (data collection) and generally in small terminal system applications where flexibility of deployment coupled with ease of installation are of importance. In the mobile service, in addition to the already established geostationary systems, there are numerous proposals for HEO, MEO and LEO systems. There are also several new frequency allocations as a result of the WARC 92 to be taken into account. At one extreme there are researchers working on Ka band 20/30 GHz mobile systems and there are other groups who foresee no future above the L-band frequency allocations. Amongst all these inputs it is difficult to see the direction in which development activities both for satellites and for earth segment should be focused. However, as an aid to understanding, this paper seeks to find some underlying relationships and to clarify some of the variables.

  8. Using mobile technology to improve healthcare service quality.

    PubMed

    Chao, Chia Chen; Jen, Wen Yuan; Li, Yu-Chuan; Chi, Y P; Chen, Chang-I; Feng, Chen Chjeh

    2005-01-01

    Improving healthcare service quality for illness of treatment, illness prevention and patient service is difficult for most hospitals because the hospitals are lack adequate resources and labor. In order to provide better healthcare service quality for patients, mobile technology can be used to manage healthcare in a way that provides the optimal healthcare service for patients. Pursuing utilization of mobile technology for better patient service, Taipei Medical University Municipal W. F. Teaching Hospital has implemented a mobile healthcare service (m-HS) system to increase healthcare service quality. The m-HS system improves the quality of medical care as well as healthcare service. The m-HS is a multi-functional healthcare management agent, meets the mobile tendency of the present society. This study seeks to discuss the m-HS architecture and workflow processes. We believe the m-HS does have the potential to improve healthcare service quality. Finally, the conclusions and suggestions for the m-HS are given. PMID:16160283

  9. Personalized Popular Blog Recommender Service for Mobile Applications

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Yun; Liu, Duen-Ren

    Weblogs have emerged as a new communication and publication medium on the Internet for diffusing the latest useful information. Providing value-added mobile services such as blog articles is increasingly important to attract mobile users to mobile commerce. There are, however, a tremendous number of blog articles, and mobile users generally have difficulty in browsing weblogs. Accordingly, providing mobile users with blog articles that suit their interests is an important issue. Very little research, however, focuses on this issue. In this work, we propose a Customized Content Service on a mobile device (m-CCS) to filter and push blog articles to mobile users. The m-CCS can predict the latest popular blog topics by forecasting the trend of time-sensitive popularity of weblogs. Furthermore, to meet the diversified interest of mobile users, m-CCS further analyzes users’ browsing logs to derive their interests, which are then used to recommend their preferred popular blog topics and articles. The prototype system of m-CCS demonstrates that the system can effectively recommend mobile users desirable blog articles with respect to both popularity and personal interests.

  10. An economics systems analysis of land mobile radio telephone services

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Stevenson, S. M.

    1980-01-01

    The economic interaction of the terrestrial and satellite systems is considered. Parametric equations are formulated to allow examination of necessary user thresholds and growth rates as a function of system costs. Conversely, first order allowable systems costs are found as a function of user thresholds and growth rates. Transitions between satellite and terrestrial service systems are examined. User growth rate density (user/year/sq km) is shown to be a key parameter in the analysis of systems compatibility. The concept of system design matching the price/demand curves is introduced and examples are given. The role of satellite systems is critically examined and the economic conditions necessary for the introduction of satellite service are identified.

  11. Mobile-PKI Service Model for Ubiquitous Environment

    NASA Astrophysics Data System (ADS)

    Jeun, Inkyung; Chun, Kilsoo

    One of the most important things in PKI(Public Key Infrastructure) is the private key management issue. The private key must be deal with safely for secure PKI service. Even though PKI service is usually used for identification and authentication of user in e-commerce, PKI service has many inconvenient factors. Especially, the fact that storage media of private key for PKI service is limited to PC hard disk drive or smart card users must always carry, gives an inconvenience to user and is not suitable in ubiquitous network. This paper suggests the digital signature service using a mobile phone(m-PKI service) which is suitable in future network. A mobile phone is the most widely used for personal communication means and has a characteristic of high movability. We can use the PKI service anytime and anywhere using m-PKI.

  12. An adaptive array antenna for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Milne, Robert

    1990-01-01

    The design of an adaptive array antenna for land vehicle operation and its performance in an operational satellite system is described. Linear and circularly polarized antenna designs are presented. The acquisition and tracking operation of a satellite is described and the effect on the communications signal is discussed. A number of system requirements are examined that have a major impact on the antenna design. The results of environmental, power handling, and RFI testing are presented and potential problems are identified.

  13. Using Satellite Rainfall Estimates to Improve Climate Services in Africa

    NASA Astrophysics Data System (ADS)

    Dinku, T.

    2012-12-01

    Climate variability and change pose serious challenges to sustainable development in Africa. The recent famine crisis in Horn of Africa is yet again another evidence of how fluctuations in the climate can destroy lives and livelihoods. Building resilience against the negative impacts of climate and maximizing the benefits from favorable conditions will require mainstreaming climate issues into development policy, planning and practice at different levels. The availability of decision-relevant climate information at different levels is very critical. The number and quality of weather stations in many part of Africa, however, has been declining. The available stations are unevenly distributed with most of the stations located along the main roads. This imposes severe limitations to the availability of climate information and services to rural communities where these services are needed most. Where observations are taken, they suffer from gaps and poor quality and are often unavailable beyond the respective national meteorological services. Combining available local observation with satellite products, making data and products available through the Internet, and training the user community to understand and use climate information will help to alleviate these problems. Improving data availability involves organizing and cleaning all available national station observations and combining them with satellite rainfall estimates. The main advantage of the satellite products is the excellent spatial coverage at increasingly improved spatial and temporal resolutions. This approach has been implemented in Ethiopia and Tanzania, and it is in the process being implemented in West Africa. The main outputs include: 1. Thirty-year times series of combined satellite-gauge rainfall time series at 10-daily time scale 10-km spatial resolution; 2. An array of user-specific products for climate analysis and monitoring; 3. An online facility providing user-friendly tools for

  14. Frequencies above 10 GHz. [for satellite communication services

    NASA Technical Reports Server (NTRS)

    Mcavoy, N.

    1976-01-01

    The paper discusses some of the problems associated with extending the frequencies used by satellite communication services above 10 GHz. The principal propagation limitation above 10 GHz occurs when precipitation intercepts the earth-space propagation path and causes attenuation and depolarization of the transmitted signal. World attenuation statistics at 12 GHz for earth-space paths are discussed, revealing the effect of climate on attenuation properties. Space diversity is discussed as an effective means of overcoming precipitation-caused attenuation problems.

  15. Definition of technology development missions for early space station satellite servicing, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  16. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  17. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  18. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  19. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  20. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  1. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  2. 47 CFR 25.211 - Analog video transmissions in the Fixed-Satellite Services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Satellite Services. 25.211 Section 25.211 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.211 Analog video transmissions in the Fixed-Satellite Services. (a) Downlink analog video transmissions in the band 3700-4200...

  3. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  4. 47 CFR 25.215 - Technical requirements for space stations in the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Direct Broadcast Satellite Service. 25.215 Section 25.215 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Standards § 25.215 Technical requirements for space stations in the Direct Broadcast Satellite Service. In addition to §...

  5. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  6. 47 CFR 25.148 - Licensing provisions for the Direct Broadcast Satellite Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Satellite Service. 25.148 Section 25.148 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses Space Stations § 25.148 Licensing provisions for the Direct Broadcast Satellite Service. (a) License terms. License terms for...

  7. 9. GENERAL VIEW OF EAST SIDE OF MOBILE SERVICE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL VIEW OF EAST SIDE OF MOBILE SERVICE STRUCTURE SHOWING C-SHAPED AREA SURROUNDED BY ROCKET SERVICE DECKS; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. Crew Transfer Options for Servicing of Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Cerro, Jeffrey A.

    2012-01-01

    In 2011, NASA and DARPA undertook a study to examine capabilities and system architecture options which could be used to provide manned servicing of satellites in Geostationary Earth Orbit (GEO). The study focused on understanding the generic nature of the problem and examining technology requirements, it was not for the purpose of proposing or justifying particular solutions. A portion of this study focused on assessing possible capabilities to efficiently transfer crew between Earth, Low Earth Orbit (LEO), and GEO satellite servicing locations. This report summarizes the crew transfer aspects of manned GEO satellite servicing. Direct placement of crew via capsule vehicles was compared to concepts of operation which divided crew transfer into multiple legs, first between earth and LEO and second between LEO and GEO. In space maneuvering via purely propulsive means was compared to in-space maneuvering which utilized aerobraking maneuvers for return to LEO from GEO. LEO waypoint locations such as equatorial, Kennedy Space Center, and International Space Station inclinations were compared. A discussion of operational concepts is followed by a discussion of appropriate areas for technology development.

  9. An investigation of selected on-orbit satellite servicing issues

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    1986-01-01

    The results of three separate investigations performed by Science Applications International Corporation (SAIC) between August 1985 and October 1986 as the second phase of the two-phase Satellite Services System Program Plan contract for the Engineering Directorate of the Lyndon B. Johnson Space Center are discussed. The objectives of the first phase of this contract (reported in SAIC-85/1762) were to determine the potential for servicing a diverse range of spacecraft from the Space Shuttle Orbiter and to assess NASA's role as the catalyst in enabling routine on-orbit servicing. The second area of investigation was prompted by the need to understand satellite servicing requirements in the far term (1995 to 2010) and how results from the first phase of this contract could support these requirements. The mission model developed during the first phase was extended using new data and information from studies which address the later time period. The third area of investigation looked at a new servicing mode which had not been studied previously. This mode involves the on-orbit exchange of very large modules with masses greater than approximately 9,000 kilograms and/or lengths greater than approximately nine meters. The viewgraphs used for the final briefing for each of the three investigations, as presented to NASA are given.

  10. Orbit utilization in the US Broadcast Satellite Service

    NASA Astrophysics Data System (ADS)

    Kase, C. A.

    This paper deals with the development of the new broadcast satellite service (BSS) in the United States. This 12 GHz service allows direct broadcast of television to very small receivers located at the home. The Western Hemisphere (North and South America) will decide in 1983 on a plan to use the geosynchronous arc for broadcast service. In the United States the question of the number of television channels to serve the United States and spacecraft locations is critical. The paper discusses the number of zones to be covered, the number of spacecraft that can be made available for this service and their locations. Finally the estimates of spacecraft system cost are shown indicating the advantages of the various systems.

  11. Mobile access to the Internet: from personal bubble to satellites

    NASA Astrophysics Data System (ADS)

    Gerla, Mario

    2001-10-01

    Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.

  12. MoM solutions to building blockage of mobile satellite communications

    NASA Astrophysics Data System (ADS)

    Salameh, M. S. H. Al; Mahmoud, S. A.-R. T.

    2011-12-01

    This article presents a full-wave propagation model for arbitrary profile of building blockage in mobile satellite communications, by solving the electric field integral equation for induced surface currents using the method of moments. Asymptotic expressions are used to simplify the integrals. Scattered fields are then found by the radiation equations derived from Maxwell equations. The total received fields around different profiles of buildings are calculated as a function of space, elevation angle and frequency. The results agree well with measurements and other published data. Various useful parameters for designing robust and reliable communication systems like frequency response, average fade duration and coherence bandwidth are found. Performance of mobile satellite system is evaluated in terms of bit error rate of mobile satellite system in frequency non-selective, slowly fading channel.

  13. Wheeled mobility (wheelchair) service delivery: scope of the evidence.

    PubMed

    Greer, Nancy; Brasure, Michelle; Wilt, Timothy J

    2012-01-17

    Identifying the appropriate wheelchair for a person who needs one has implications for both disabled persons and society. For someone with severe locomotive problems, the right wheelchair can affect mobility and quality of life. However, policymakers are concerned about the increasing demand for unnecessarily elaborate chairs. The Office of Inspector General, U.S. Department of Health and Human Services, issued 4 reports between 2009 and 2011 detailing fraud and misapplication of Medicare funds for powered wheelchairs, more than a decade after similar concerns were first raised by 4 contractors who process claims for durable medical equipment. Subsequent concerns have arisen about whether some impaired persons who need wheeled mobility devices may now be inappropriately denied coverage. A transparent, evidence-based approach to wheeled mobility service delivery (the matching of mobility-impaired persons to appropriate devices and supporting services) might lessen these concerns. This review describes the process of wheeled mobility service delivery for long-term wheelchair users with complex rehabilitation needs and presents findings from a survey of the literature (published and gray) and interviews with key informants. Recommended steps in the delivery process were identified in textbooks, guidelines, and published literature. Delivery processes shared many commonalities; however, no research supports the recommended approaches. A search of bibliographic databases through March 2011 identified 24 studies that evaluated aspects of wheeled mobility service delivery. Most were observational, exploratory studies designed to determine consumer use of and satisfaction with the process. The evidence base for the effectiveness of approaches to wheeled mobility service delivery is insufficient, and additional research is needed to develop standards and guidelines. PMID:22250145

  14. IMT-2000 Satellite Standards with Applications to Mobile Air Traffic Communications Networks

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The International Mobile Telecommunications - 2000 (IMT-2000) standard and more specifically the Satellite component of it, is investigated as a potential alternative for communications to aircraft mobile users en-route and in terminal area. Its application to Air Traffic Management (ATM) communication needs is considered. A summary of the specifications of IMT-2000 satellite standards are outlined. It is shown via a system research analysis that it is possible to support most air traffic communication needs via an IMT-2000 infrastructure. This technology can compliment existing, or future digital aeronautical communications technologies such as VDL2, VDL3, Mode S, and UAT.

  15. The satellite climate monitoring programme of the German Meteorological Service

    NASA Astrophysics Data System (ADS)

    Bissolli, P.; Nitsche, H.; Wollenweber, G.; Benesch, W.; Müller-Westermeier, G.; Rosenow, W.

    2003-04-01

    The German Meteorological Service (DWD) is host of the Satellite Application Facility on Climate Monitoring (CM-SAF) of EUMETSAT. The CM-SAF with its international partners will provide climate data (daily and monthly means, monthly mean diurnal cycles) based on the satellite systems MSG (Meteosat Second Generation, the first MSG satellite was launched in fall 2002) and the polar orbiting satellites NOAA and EPS (the latter one is the EUMETSAT Polar Satellite System, the first satellite named METOP-1 is planned to be launched in 2005; the NOAA and METOP satellites will form the Initial Joint Polar Satellite System). The parameters to be generated by the CM-SAF are cloud parameters, components of the radiation budget at the earth’s surface and at the top of the atmosphere, ocean wind stress and water vapour in the atmosphere. The data will cover in the initial phase an area of Europe and the North Atlantic, later the area is planned to be extended to the polar regions and the whole MSG disc. The purpose of the CM-SAF is to generate, with long-term commitments on a fully operational basis, homogeneous and consistent products in high quality, which are suitable for assessments of the status of the (regional) climate system. Together with data from the Global Precipitation Climatology Centre (GPCC), which is also operated by the DWD, the CM-SAF products are suitable for monitoring components of the energy and water cycle. To establish a really powerful climate monitoring system, the German Meteorological Service additionally set up a national satellite climatology project called SAT-KLIM. This project uses the CM-SAF products for climate monitoring, but also other satellite climate data, ground based in situ and remote observations as well as model output. In SAT-KLIM, climate monitoring products will be derived from the different data sources and merged to one final high quality product. While CM-SAF can only consider present and future data, SAT-KLIM uses

  16. Enhancing Mobility: Integrating New Services into Your Library's Mobile Platform to Increase Traffic

    ERIC Educational Resources Information Center

    Felts, John W., Jr.

    2014-01-01

    Kimbel Library launched its mobile environment and ran it in full production for several months yet usage patterns were quite low and flat. The library only saw a substantial increase in usage when new, value-added services were integrated into this platform. Upon implementing and integrating discovery services, chat and SMS capabilities, and…

  17. Advanced Technologies and Satellite Services for Enhancing Space Surveillance

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Rieger, Philipp; Suess, Helmut; Neff, Thomas; Duerr, Wolfgang

    2010-08-01

    Space-based systems are becoming part of our infrastructure and our dependency on space-based services has grown. Therefore, the assured availability and operational readiness of space-based services is essential, undoubtedly. However, satellites are subject to a variety of damaging effects and potential threats. These are mostly caused by an increasingly crowded region of outer space, by space weather including solar events and, unfortunately, even attacks on space systems which are no longer sience fiction as impressively demonstrated in 2007 with the Chinese anti-satellite test and the intercept of USA-193 in 2008. Today, German armed forces use several space services primarily for reconnaissance, communications and navigation. As a matter of fact, Germany`s sovereignty and national security depend on the availability of multiple space services. This led the Federal Ministry of Defence to set up a dedicated military Space Situational Awareness Centre at Kalkar/Uedem, Germany, as a significant contribution to a national preventive security. This paper provides information on a range of technical issues related to space assets that are important for anyone involved in the debate over space security and gives a brief survey of the German SSA program. The paper deals with a subset of feasible man-made threats and its fatal effects on space assets. Furthermore, the preliminary conceptual design of an onboard sensor suitable for the instant detection of the previously described types of threats is presented. Finally, advanced technologies for the near real-time transfer of data are highlighted.

  18. Potential markets for a satellite-based mobile communications system

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Peet, C. S.; Bengston, R. J.

    1976-01-01

    The objective of the study was to define the market needs for improved land mobile communications systems. Within the context of this objective, the following goals were set: (1) characterize the present mobile communications industry; (2) determine the market for an improved system for mobile communications; and (3) define the system requirements as seen from the potential customer's viewpoint. The scope of the study was defined by the following parameters: (1) markets were confined to U.S. and Canada; (2) range of operation generally exceeded 20 miles, but this was not restrictive; (3) the classes of potential users considered included all private sector users, and non-military public sector users; (4) the time span examined was 1975 to 1985; and (5) highly localized users were generally excluded - e.g., taxicabs, and local paging.

  19. Frequency allocations for a new satellite service - Digital audio broadcasting

    NASA Technical Reports Server (NTRS)

    Reinhart, Edward E.

    1992-01-01

    The allocation in the range 500-3000 MHz for digital audio broadcasting (DAB) is described in terms of key issues such as the transmission-system architectures. Attention is given to the optimal amount of spectrum for allocation and the technological considerations relevant to downlink bands for satellite and terrestrial transmissions. Proposals for DAB allocations are compared, and reference is made to factors impinging on the provision of ground/satellite feeder links. The allocation proposals describe the implementation of 50-60-MHz bandwidths for broadcasting in the ranges near 800 MHz, below 1525 MHz, near 2350 MHz, and near 2600 MHz. Three specific proposals are examined in terms of characteristics such as service areas, coverage/beam, channels/satellite beam, and FCC license status. Several existing problems are identified including existing services crowded with systems, the need for new bands in the 1000-3000-MHz range, and variations in the nature and intensity of implementations of existing allocations that vary from country to country.

  20. Copernicus POD Service: Orbit Determination of the Sentinel Satellites

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Ayuga, Francisco; Féménias, Pierre

    2016-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Sentinel-1A was launched in April 2014 while Sentinel-2A was on June 2015 and both are routinely operated since then. Sentinel-3A is expected to be launched in February 2016 and Sentinel-1B is planned for spring 2016. Thus the CPOD Service will be operating three to four satellites simultaneously in spring 2016. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites will additionally be equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. All three types of observables (GPS, SLR and DORIS) will be used routinely for POD. The POD core of the CPOD Service is NAPEOS (Navigation Package for Earth Orbiting Satellites) the leading ESA/ESOC software for precise orbit determination. The careful selection of models and inputs is important to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 & -3 missions. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. Although the characteristics and the requirements are different for the three missions the same core POD setup is used to the largest extent possible. This strategy facilitates maintenance of the complex system of the CPOD Service. Updates in the dynamical modelling of the satellite orbits, e

  1. An operational open-end file transfer protocol for mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Wang, Charles; Cheng, Unjeng; Yan, Tsun-Yee

    1988-01-01

    This paper describes an operational open-end file transfer protocol which includes the connecting procedure, data transfer, and relinquishment procedure for mobile satellite communications. The protocol makes use of the frame level and packet level formats of the X.25 standard for the data link layer and network layer, respectively. The structure of a testbed for experimental simulation of this protocol over a mobile fading channel is also introduced.

  2. An Overview of the Revised Mobile Satellite Handbook. 'Propagation Effects for Land Mobile Satellite Systems: Overview of Experimental and Modeling Results'

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1997-01-01

    A review of the planned revised mobile satellite propagation handbook is presented. The revised manual will have a broadened scope such that it contains propagation information related to personal-mobile, airmobile, and marine-mobile scenarios; subject areas; previously not covered in the former document. It will also review new experiments, revised and new empirical and theoretical models developed since the previous publication. It is expected that many of the chapters will have been made accessible on the World Wide Web (http://propagation jpl.nasa.gov) by the time of the presentation of this paper. A formal document is expected to be published during the fall of 1997. As a sample of the contents of the revised handbook, the Extended Empirical Roadside Shadowing Model is described in detail.

  3. DS-SSMA capacity for a mobile satellite system

    NASA Technical Reports Server (NTRS)

    Bartucca, Francesco; Biglieri, Ezio

    1993-01-01

    We consider a cellular satellite system conceived to enhance the capabilities of the pan-European terrestrial system (GSM). The system adopts EHF band and highly-inclined orbits. We present a preliminary assessment of system capacity based on asynchronous direct-sequence spread-spectrum multiple access (DS-SSMA). Performance is measured in terms of error probability achieved by K users simultaneously accessing the system with a given signal-to-noise ratio.

  4. An approach to effective UHF (S/L band) data communications for satellite Personal Communication Service (PCS)

    NASA Technical Reports Server (NTRS)

    Hayase, Joshua Y.

    1995-01-01

    Reliable signaling information transfer is fundamental in supporting the needs of data communication PCS via LMS (Land Mobile Service) SSs (satellite systems). The needs of the system designer can be satisfied only through the collection of media information that can be brought to bear on the pertinent design issues. We at ISI hope to continue our dialogue with fading media experts to address the unique data communications needs of PCS via LMS SSs.

  5. Satellite broadcasting in Europe

    NASA Astrophysics Data System (ADS)

    Bartholome, P.

    1984-05-01

    Three main communications services are recognized by the International Telecommunications Union: the Fixed Service, the Mobile Service and the Broadcasting Service. In Europe, EUTELSAT has just begun to exploit the first ECS satellite. The ESA-launched satellite was originally designed to provide an international public telecommunication service, however, the satellite will be used now almost exclusively for TV program distribution, while a second ECS satellite will be used for telephony. Despite plans for the launch of a third, countries in Europe are looking to other organizations such as INTELSAT for greater satellite capacity. Other organizations include Unisat, DFS/Copernicus, GDL, and Videosat. Both satellite and cable networks will increase the program-viewing audience, thus encouraging plans for a pan-European television service intended for an international audience. Although the combination of cable networks and distribution satellites looks promising, high-power broadcasting satellites will play an important role because of flexibility and additional program distribution.

  6. Reinforcement Learning Based Web Service Compositions for Mobile Business

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  7. Measurements on the satellite-mobile channel at L and S bands

    NASA Technical Reports Server (NTRS)

    Smith, H.; Gardiner, J. G.; Barton, S. K.

    1993-01-01

    An experiment is described in which measurements are made on the satellite-mobile channel at L and S bands. A light aircraft carrying a c.w. beacon is flown at elevation angles of 40, 60 and 80 degrees to a mobile receiver. The signal strength at the mobile is recorded in open, urban, suburban and tree shadowed environments. This data is then analyzed to produce statistics for the channel with respect to frequency, elevation angle, and environment. Results are presented together with a brief discussion, suggested interpretation, and conclusion.

  8. Mobile hyper spectral optical complex for under satellite ocean research

    NASA Astrophysics Data System (ADS)

    Nagorniy, Ivan G.; Mayor, Alexander Y.; Salyuk, Pavel A.; Krikun, Vladimir A.

    2015-11-01

    This paper presents the mobile complex to perform continuous measurements of chlorophyll-A concentrations and dissolved organic matter by the laser induced fluorescence method. The obtained data allow evaluating the state of the photosynthetic system of phytoplankton cells. In addition, the complex allows recording the CO2 gas analyzer data, the sea water saltiness sensors, pH, temperature, and solar illumination meter. The mobility this complex ensures a possibility working on different ships and under stationary conditions. The configuration of the complex can be promptly changed for solving the current problem by promptly adding or replacing various devices and sensors. The developed software integrates all devices into the complex. The enclosure of system allows use of conventional laboratory equipment, which is resistant to vibration, but not protected from the effects of the marine environment. Results of in situ measurements performed in Sea of Japan (Peter the Great Bay) by experimental setup are given.

  9. Coordination procedure for radio relay and communication satellite services

    NASA Technical Reports Server (NTRS)

    Eckerman, J.

    1973-01-01

    A global rain rate statistic model is used to link microwave propagation statistics to measurable rain statistics in order to develop international telecommunication site criteria for radio relay and communication satellite services that minimize interference between receivers and transmitters. This rain coordination procedure utilizes a rain storm cell size, a statistical description of the rainfall rate within the cell valid for most of the earth's surface, approximations between Raleigh scatter and constancy of precipitation with altitude, and an analytic relation between radar reflectivity and rain rate.

  10. Feasibility of NASA TT&C via Commercial Satellite Services

    NASA Technical Reports Server (NTRS)

    Mitchell, Carl W.; Weiss, Roland

    1997-01-01

    This report presents the results of a study to identify impact and driving requirements by implementing commercial satellite communications service into traditional National Aeronautics and Space Administration (NASA) space-ground communications. The NASA communication system is used to relay spacecraft and instrument commands, telemetry and science data. NASA's goal is to lower the cost of operation and increase the flexibility of spacecraft operations. Use of a commercial network offers the opportunity to contact a spacecraft on a nearly "on-demand" basis with ordinary phone calls to enable real time interaction with science events.

  11. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  12. Mobile satellite propagation measurements and modeling: A review of results for systems engineers

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L. (Editor); Barts, R. M.; Bostian, C. W.; Butterworth, J. S.; Campbell, R.; Goldhirsh, J.; Vogel, W. J.

    1988-01-01

    An overview of Mobile Satellite System (MSS) propagation measurements and modeling is given, including a summary of results. The simple models presented should be of some use to systems engineers. A complete summary of propagation experiments with literature references is included.

  13. Applications technology satellite F&G /ATS F&G/ mobile terminal.

    NASA Technical Reports Server (NTRS)

    Greenbaum, L. A.; Baker, J. L.

    1971-01-01

    The mobile terminal is a flexible, easily transportable system. The terminal design incorporates a combination of unique and proven hardware to provide maximum utility consistent with reliability. The flexibility built into the system will make it possible to satisfy the requirements of the applications technology satellite program concerned with the conduction of various spacecraft technology experiments. The terminal includes two parabolic antennas.

  14. Satellite-aided mobile communications limited operational test in the trucking industry

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.

    1980-01-01

    An experiment with NASA's ATS-6 satellite, that demonstrates the practicality of satellite-aided land mobile communications is described. Satellite communications equipment for the experiment was designed so that it would be no more expensive, when mass produced, than conventional two-way mobile radio equipment. It embodied the operational features and convenience of present day mobile radios. Vehicle antennas 75 cm tall and 2 cm in diameter provided good commercial quality signals to and from trucks and jeeps. Operational applicability and usage data were gathered by installing the radio equipment in five long-haul tractor-trailer trucks and two Air Force search and rescue jeeps. Channel occupancy rates are reported. Air Force personnel found the satellite radio system extremely valuable in their search and rescue mission during maneuvers and actual rescue operations. Propagation data is subjectively analyzed and over 4 hours of random data is categorized and graded as to signal quality on a second by second basis. Trends in different topographic regions are reported. An overall communications reliability of 93% was observed despite low satellite elevation angles ranging from 9 to 24 degrees.

  15. The land mobile satellite communication channel - Recording, statistics, and channel model

    NASA Astrophysics Data System (ADS)

    Lutz, Erich; Cygan, Daniel; Dippold, Michael; Dolainsky, Frank; Papke, Wolfgang

    1991-05-01

    The communication channel between the MARECS satellite at 26 deg W and a cruising van was measured and recorded in European areas exhibiting satellite elevations from 13 to 43 deg. Different environments and mobile antennas were tested. Results of an extensive statistical evaluation include spectra of the fading amplitude, probability density, and distribution of the received signal power as well as the percentage of time for fade and nonfade periods. Based on the physical phenomena of multipath fading and signal shadowing, an analog model of the land mobile satellite channel which can readily be used for software and hardware fading simulation is developed. The most important parameter of this model is the time-share of shadowing, A, ranging from less than 1 percent on southern highways to 89 percent in the city of Stockholm. The Rice factor, c, which characterizes the channel during unshadowed periods, can vary from 3.9 to 18.1 dB. For analytical purposes, the land mobile satellite channel can be represented by a digital two-state Gilbert-Elliott model. For DPSK (differential phase-shift keying) modulation with a 10-dB signal-to-noise ratio in the satellite link, the mean bit error probability in the unshadowed channel state is typically in the range of 0.0001-0.01, while it is around 0.3 in the shadowed channel state. With regard to data transmission, block error probability density, error gap distribution, and block error probability are discussed.

  16. A variable bandwidth assignment scheme for the Land Mobile Satellite experiment

    NASA Technical Reports Server (NTRS)

    Yan, T.-Y.; Li, V. O. K.

    1985-01-01

    The Mobile Satellite Experiment is a proposed experimental satellite-based communications network which provides data and voice communications to mobile terminals dispersed in geographically dispersed areas. In this paper, an analytical model is developed to calculate the performance of a Variable Bandwidth Assignment (VBA) Scheme. Under this scheme, the satellite channel bandwidth is dynamically reassigned so that a message may be transmitted in the shortest possible time. To transmit a long message, message channels will be reconfigured to have more bandwidth such that the transmission time is reduced, while to transmit a short message, the channel bandwidth will be shrunk such that the released bandwidth can be used to serve other messages. The model is illustrated with numerical examples. It is shown that a VBA scheme can achieve considerable improvement in transmission delays over a Fixed Bandwidth Assignment Scheme.

  17. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    NASA Technical Reports Server (NTRS)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  18. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  19. The provision of spectrum for feeder links of non-geostationary mobile satellites

    NASA Astrophysics Data System (ADS)

    Bowen, Robert R.

    The possibility of sharing spectrum in the 30/20 GHz band between geostationary fixed-satellite systems and feeder-links of low-earth orbit (LEO) mobile-satellite systems is addressed, taking into account that International Telecommunications Union (ITU) Radio Regulation 2613 would be a factor in such sharing. Interference into each network in both the uplink at 30 GHz and the downlink at 20 GHz is considered. It is determined that if sharing were to take place the mobile-satellite may have to cease transmission often for intervals up to 10 seconds, may have to use high-gain tracking antennas on its spacecraft, and may find it an advantage to use code-division multiple access. An alternate solution suggested is to designate a band 50 to 100 MHz wide at 28 and 18 GHz to be used primarily for feeder links to LEO systems.

  20. The provision of spectrum for feeder links of non-geostationary mobile satellites

    NASA Technical Reports Server (NTRS)

    Bowen, Robert R.

    1993-01-01

    The possibility of sharing spectrum in the 30/20 GHz band between geostationary fixed-satellite systems and feeder-links of low-earth orbit (LEO) mobile-satellite systems is addressed, taking into account that International Telecommunications Union (ITU) Radio Regulation 2613 would be a factor in such sharing. Interference into each network in both the uplink at 30 GHz and the downlink at 20 GHz is considered. It is determined that if sharing were to take place the mobile-satellite may have to cease transmission often for intervals up to 10 seconds, may have to use high-gain tracking antennas on its spacecraft, and may find it an advantage to use code-division multiple access. An alternate solution suggested is to designate a band 50 to 100 MHz wide at 28 and 18 GHz to be used primarily for feeder links to LEO systems.