Science.gov

Sample records for mobilis cloning sequencing

  1. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  2. Phosphoglycerate kinase gene from Zymomonas mobilis: cloning sequencing, and localization within the gap operon

    SciTech Connect

    Conway, T.; Ingram, L.O.

    1988-04-01

    The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 47,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerte kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of ..beta..-sheet and ..cap alpha..-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure.

  3. Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region

    SciTech Connect

    Conway, T.; Sewell, G.W.; Ingram, L.O.

    1987-12-01

    The gene encoding glyceraldehyde-3-phosphate dehydrogenase was isolated from a library of Zymomonas mobilis DNA fragments by complementing a deficient strain of Escherichia coli. It contained tandem promoters which were recognized by E. coli but appeared to function less efficiently than the enteric lac promoter in E. coli. The open reading frame for this gene encoded 337 amino acids with an aggregate molecular weight of 36,099 (including the N-terminal methionine). The primary amino acid sequence for this gene had considerable functional homology and amino acid identity with other eukaryotic and bacterial genes. Based on this comparison, the gap gene from Z. mobilis appeared to be most closely related to that of the thermophilic bacteria and to the chloroplast isozymes. Comparison of this gene with other glycolytic enzymes from Z. mobilis revealed a conserved pattern of codon bias and several common features of gene structure. A tentative transcriptional consensus sequence is proposed for Z. mobilis based on comparison of the five known promoters for three glycolytic enzymes.

  4. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823)

    PubMed Central

    Zhao, Ning; Pan, Yongxu

    2016-01-01

    Zymomonas mobilis ZM481 (ATCC 31823) is an ethanol-tolerant strain that can produce the highest level of ethanol in Z. mobilis from glucose in the shortest time. Here, we report a draft genome sequence of ZM481, which can help us understand the genes related to the ethanol tolerance of this strain. PMID:27056218

  5. Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. mobilis Lectotype Strain ATCC 10988 ▿

    PubMed Central

    Pappas, Katherine M.; Kouvelis, Vassili N.; Saunders, Elizabeth; Brettin, Thomas S.; Bruce, David; Detter, Chris; Balakireva, Mariya; Han, Cliff S.; Savvakis, Giannis; Kyrpides, Nikos C.; Typas, Milton A.

    2011-01-01

    Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. PMID:21725006

  6. High-throughput sequencing reveals adaptation-induced mutations in pentose-fermenting strains of Zymomonas mobilis.

    PubMed

    Dunn, Kori L; Rao, Christopher V

    2015-11-01

    Zymomonas mobilis is capable of producing ethanol at high rates and titers from glucose. This bacterium has previously been engineered to consume the pentose sugars xylose and arabinose, but the rate of consumption of these sugars is low. Recent research has utilized adaptive evolution to isolate strains of Z. mobilis capable of rapidly fermenting xylose. In this study, we also used adaptive evolution to isolate strains of Z. mobilis capable of rapidly fermenting xylose and arabinose. To determine the bottlenecks in pentose metabolism, we then used high-throughput sequencing to pinpoint the genetic changes responsible for the phenotypes of the adapted strains. We found that the transport of both xylose and arabinose through the native sugar transporter, Glf, limits pentose fermentations in Z. mobilis. We also found that mutations in the AddB protein increase plasmid stability and can reduce cellular aggregation in these strains. Consistent with previous research, we found that reduced xylitol production improves xylose fermentations in Z. mobilis. We also found that increased transketolase activity and reduced glyceraldehyde-3-phosphate dehydrogenase activity improve arabinose fermentations in Z. mobilis. Biotechnol. PMID:25943255

  7. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    PubMed

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species. PMID:26767090

  8. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE PAGESBeta

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Pilay, Manoj; Ivanova, Natalia N.; Markowitz, Victor M.; Woyke, Tanja; Kyrpides, Nikos C.; et al

    2016-01-13

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems alsomore » exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  9. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1990-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227

  10. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1988-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330

  11. A comprehensive list of cloned human DNA sequences

    PubMed Central

    Schmidtke, Jörg; Cooper, David N.

    1989-01-01

    A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889

  12. Hybrid Sequencing Approach Applied to Human Fecal Metagenomic Clone Libraries Revealed Clones with Potential Biotechnological Applications

    PubMed Central

    Džunková, Mária; D’Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be “domesticated” for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7–15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts. PMID:23082187

  13. Physiology and genetics of metabolic flux control in Zymomonas mobilis

    SciTech Connect

    Conway, T.

    1992-01-01

    This work seeks to understand the role of gene expression in regulating glycolytic enzyme synthesis in a balance that allows proper glycoltic flux control. The seven genes targeted for study in this laboratory have been cloned and sequenced, and molecular details of regulation have been investigated. Clear that glycolytic enzyme synthesis is coordinated to prevent the build up of toxic metabolic intermediates. The genetic mechanisms responsible for regulating balanced expression of the EntnerDoudoroff and glycolytic genes in Z. mobilis are beginning to be understood. Several layers of genetic control, perhaps in a hierarchal arrangement act in concert to determine the relative abundance of the glycolytic enzymes. These genetic controls involve differential translational efficiency, highly conserved promoter sequences, transcription factors, differential mRNA stabilities, and nucleolytic mRNA processing. The serendipitous cloning of the glucose facilitator, glf, as a result of linkage to several other genes of interest will have a significant impact on the study of Z. mobilis metabolism. The glucose facilitator is being characterized in a genetically reconstituted system in E. coli. Molecular genetic studies indicate that the ratio of glf expression to that of glk, zmf, and edd is carefully regulated, and suggests a critical role in metabolic control. Regulation of glycolytic gene expression is now sufficiently well understood to allow use of the glycolytic genes as tools to manipulate specified enzyme levels for the purpose of analyzing metabolic flux control. The critical genes have been subcloned for stable expression in Z. mobilis and placed under control of a regulated promoter system involving the tac promoter, the lacI repressor, and gene induction in by IPTG. HPLC methods have been developed that allow quantitation of virtually all of the metabolic intermediates in the cell pool.

  14. Nonoverlapping clone pooling for high-throughput sequencing.

    PubMed

    Kuroshu, Reginaldo M

    2013-01-01

    Simultaneously sequencing multiple clones using second-generation sequencers can speed up many essential clone-based sequencing methods. However, in applications such as fosmid clone sequencing and full-length cDNA sequencing, it is important to create pools of clones that do not overlap on the genome for the identification of structural variations and alternatively spliced transcripts, respectively. We define the nonoverlapping clone pooling problem and provide practical solutions based on optimal graph coloring and bin-packing algorithms with constant absolute worst-case ratios, and further extend them to cope with repetitive mappings. Using theoretical analysis and experiments, we also show that the proposed methods are applicable. PMID:24384700

  15. (Physiology and genetics of metabolic flux control in Zymomonas mobilis)

    SciTech Connect

    Conway, T.

    1992-01-01

    The funded research deals with the physiology and genetics of glycolytic flux control in Zymomonas mobilis. Two fundamental biological questions are begin addressed: First, how do the enzymes of glycolytic pathways act in concert to regulate metabolic flux Second, what is the role of gene expression in regulating high level synthesis of the glycolytic enzymes in a balance that allows proper glycolytic flux control The specific objectives of the grant are as follows: 1. To clone the structural and regulatory regions of the Z. mobilis genes encoding glucose-6-phosphate dehydrogenase, phosphoglucose isomerase, enolase, 6-phosphogluconate dehydratase, 2- keto-3-deoxy- 6-phosphogluconate aldolase, glucokinase and fructokinase. 2. To characterize the structure of these genes with respect to nucleotide sequence, transcriptional initiation sites promoter location, evolutionary relatedness to similar genes from other organisms, and organization of these genes on the genome. 3. To investigate the effects of genetically engineered alterations in the levels of the cloned enzymes on metabolic flux and cell growth. 4. To study transcriptional and post-transcriptional regulation of the genes encoding the enzymes of the Entner-Doudoroff pathway. The first two specific objectives have now been fully completed. Significant progress has been made on the fourth objective and work on the third objective is well underway.

  16. Characteristics of cloned repeated DNA sequences in the barley genome

    SciTech Connect

    Anan'ev, E.V.; Bochkanov, S.S.; Ryzhik, M.V.; Sonina, N.V.; Chernyshev, A.I.; Shchipkova, N.I.; Yakovleva, E.Yu.

    1986-12-01

    A partial clone library of barley DNA fragments based on plasmid pBR325 was created. The cloned EcoRI-fragments of chromosomal DNA are from 2 to 14 kbp in length. More than 95% of the barley DNA inserts comprise repeated sequences of different complexity and copy number. Certain of these DNA sequences are from families comprising at least 1% of the barley genome. A significant proportion of the clones hybridize with numerous sets of restriction fragments of genome DNA and they are dispersed throughout the barley chromosomes.

  17. CloneQC: lightweight sequence verification for synthetic biology

    PubMed Central

    Lee, Pablo A.; Dymond, Jessica S.; Scheifele, Lisa Z.; Richardson, Sarah M.; Foelber, Katrina J.; Boeke, Jef D.; Bader, Joel S.

    2010-01-01

    Synthetic biology projects aim to produce physical DNA that matches a designed target sequence. Chemically synthesized oligomers are generally used as the starting point for building larger and larger sequences. Due to the error rate of chemical synthesis, these oligomers can have many differences from the target sequence. As oligomers are joined together to make larger and larger synthetic intermediates, it becomes essential to perform quality control to eliminate intermediates with errors and retain only those DNA molecules that are error free with respect to the target. This step is often performed by transforming bacteria with synthetic DNA and sequencing colonies until a clone with a perfect sequence is identified. Here we present CloneQC, a lightweight software pipeline available as a free web server and as source code that performs quality control on sequenced clones. Input to the server is a list of desired sequences and forward and reverse reads for each clone. The server generates summary statistics (error rates and success rates target-by-target) and a detailed report of perfect clones. This software will be useful to laboratories conducting in-house DNA synthesis and is available at http://cloneqc.thruhere.net/ and as Berkeley Software Distribution (BSD) licensed source. PMID:20211841

  18. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    PubMed

    Einsfeldt, Karen; Baptista, Isis Cavalcante; Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; Costa, Elaine Sobral da; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  19. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli

    PubMed Central

    Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; da Costa, Elaine Sobral; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  20. Sequencing genomes from single cells by polymerase cloning.

    PubMed

    Zhang, Kun; Martiny, Adam C; Reppas, Nikos B; Barry, Kerrie W; Malek, Joel; Chisholm, Sallie W; Church, George M

    2006-06-01

    Genome sequencing currently requires DNA from pools of numerous nearly identical cells (clones), leaving the genome sequences of many difficult-to-culture microorganisms unattainable. We report a sequencing strategy that eliminates culturing of microorganisms by using real-time isothermal amplification to form polymerase clones (plones) from the DNA of single cells. Two Escherichia coli plones, analyzed by Affymetrix chip hybridization, demonstrate that plonal amplification is specific and the bias is randomly distributed. Whole-genome shotgun sequencing of Prochlorococcus MIT9312 plones showed 62% coverage of the genome from one plone at a sequencing depth of 3.5x, and 66% coverage from a second plone at a depth of 4.7x. Genomic regions not revealed in the initial round of sequencing are recovered by sequencing PCR amplicons derived from plonal DNA. The mutation rate in single-cell amplification is <2 x 10(5), better than that of current genome sequencing standards. Polymerase cloning should provide a critical tool for systematic characterization of genome diversity in the biosphere. PMID:16732271

  1. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    PubMed

    Trifonov, Edward N

    2016-04-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs. PMID:26208855

  2. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  3. Method enabling fast partial sequencing of cDNA clones.

    PubMed

    Nordström, T; Gharizadeh, B; Pourmand, N; Nyren, P; Ronaghi, M

    2001-05-15

    Pyrosequencing is a nonelectrophoretic single-tube DNA sequencing method that takes advantage of cooperativity between four enzymes to monitor DNA synthesis. To investigate the feasibility of the recently developed technique for tag sequencing, 64 colonies of a selected cDNA library from human were sequenced by both pyrosequencing and Sanger DNA sequencing. To determine the needed length for finding a unique DNA sequence, 100 sequence tags from human were retrieved from the database and different lengths from each sequence were randomly analyzed. An homology search based on 20 and 30 nucleotides produced 97 and 98% unique hits, respectively. An homology search based on 100 nucleotides could identify all searched genes. Pyrosequencing was employed to produce sequence data for 30 nucleotides. A similar search using BLAST revealed 16 different genes. Forty-six percent of the sequences shared homology with one gene at different positions. Two of the 64 clones had unique sequences. The search results from pyrosequencing were in 100% agreement with conventional DNA sequencing methods. The possibility of using a fully automated pyrosequencer machine for future high-throughput tag sequencing is discussed. PMID:11355860

  4. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    PubMed

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones. PMID:24911009

  5. Evaluation of a Pooled Strategy for High-Throughput Sequencing of Cosmid Clones from Metagenomic Libraries

    PubMed Central

    Lam, Kathy N.; Hall, Michael W.; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D.; Charles, Trevor C.

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones. PMID:24911009

  6. Cloning, expression and sequencing of Helicobacter felis urease genes.

    PubMed

    Ferrero, R L; Labigne, A

    1993-07-01

    Urease genes from Helicobacter felis were cloned and expressed in Escherichia coli cells. A genomic bank of Sau3A-digested H. felis chromosomal DNA was created using a cosmid vector. Cosmid clones were screened for urease activity following subculture on a nitrogen-limiting medium. Subcloning of DNA from an urease-positive cosmid clone led to the construction of pILL205 (9.5 kb) which conferred a urease activity of 1.2 +/- 0.5 mumole urea min-1 mg-1 bacterial protein to E. coli HB101 bacteria grown on a nitrogen-limiting medium. Random mutagenesis using a MiniTn3-Km transposable element permitted the identification of three DNA regions on pILL205 which were necessary for the expression of an urease-positive phenotype in E. coli clones. To localize the putative structural genes of H. felis on pILL205, extracts of clones harbouring the mutated copies of the plasmid were analysed by Western blotting with anti-H. felis rabbit serum. One mutant clone did not synthesize the putative UreB subunit of H. felis urease and it was postulated that the transposable element had disrupted the corresponding structural gene. By sequencing the DNA region adjacent to the transposon insertion site two open reading frames, designated ureA and ureB, were identified. The polypeptides encoded by these genes had calculated molecular masses of 26,074 and 61,663 Da, respectively, and shared 73.5% and 88.2% identity with the corresponding gene products of Helicobacter pylori urease. PMID:8412683

  7. Physiology and genetics of metabolic flux control in Zymomonas mobilis. Progress report

    SciTech Connect

    Conway, T.

    1992-08-01

    This work seeks to understand the role of gene expression in regulating glycolytic enzyme synthesis in a balance that allows proper glycoltic flux control. The seven genes targeted for study in this laboratory have been cloned and sequenced, and molecular details of regulation have been investigated. Clear that glycolytic enzyme synthesis is coordinated to prevent the build up of toxic metabolic intermediates. The genetic mechanisms responsible for regulating balanced expression of the EntnerDoudoroff and glycolytic genes in Z. mobilis are beginning to be understood. Several layers of genetic control, perhaps in a hierarchal arrangement act in concert to determine the relative abundance of the glycolytic enzymes. These genetic controls involve differential translational efficiency, highly conserved promoter sequences, transcription factors, differential mRNA stabilities, and nucleolytic mRNA processing. The serendipitous cloning of the glucose facilitator, glf, as a result of linkage to several other genes of interest will have a significant impact on the study of Z. mobilis metabolism. The glucose facilitator is being characterized in a genetically reconstituted system in E. coli. Molecular genetic studies indicate that the ratio of glf expression to that of glk, zmf, and edd is carefully regulated, and suggests a critical role in metabolic control. Regulation of glycolytic gene expression is now sufficiently well understood to allow use of the glycolytic genes as tools to manipulate specified enzyme levels for the purpose of analyzing metabolic flux control. The critical genes have been subcloned for stable expression in Z. mobilis and placed under control of a regulated promoter system involving the tac promoter, the lacI repressor, and gene induction in by IPTG. HPLC methods have been developed that allow quantitation of virtually all of the metabolic intermediates in the cell pool.

  8. Cloning and sequencing of chloroperoxidase cDNA.

    PubMed Central

    Fang, G H; Kenigsberg, P; Axley, M J; Nuell, M; Hager, L P

    1986-01-01

    An oligod-d(T) 12-18 primed cDNA library has been prepared from Caldariomyces fumago mRNA. A clone containing a full-length insert was sequenced on the supercoiled plasmid, pBR322. The complete primary sequence of chloroperoxidase has been derived. We have also determined about 73% of the peptide sequence by amino acid sequencing. The DNA sequence data matches all of the available known peptide sequences. The mature polypeptide contains 300 amino acids having a combined molecular weight of 32,974 daltons. A putative signal peptide of 21 amino acids is proposed from DNA sequence data. The chloroperoxidase gene encodes three potential glycosylation sites recognized as Asn-X-Thr/Ser sequences. Three cysteine residues are found in the protein sequence. A small region around Cys87 bears a minimal homology to the active site of cytochrome P450cam. No other heme protein homologues can be detected. We propose that Cys87 serves as a thiolate ligand to the iron of heme prosthetic group. A rare arginine codon, AGG, is used three times out of twelve in contrast to the very infrequent use of this codon in E. coli or yeast. PMID:3774552

  9. Cloning, sequence, and expression of bovine interleukin 2.

    PubMed Central

    Cerretti, D P; McKereghan, K; Larsen, A; Cantrell, M A; Anderson, D; Gillis, S; Cosman, D; Baker, P E

    1986-01-01

    Interleukin 2 (IL-2) cDNA clones have been isolated from both human and murine sources. We report here the isolation of a cDNA clone encoding bovine IL-2. This was accomplished by screening a cDNA library constructed from lectin-stimulated bovine lymph node cells, using a human IL-2 probe. Bovine IL-2 is composed of 155 amino acids and has a predicted molecular weight of 19,555. Alignment of the amino acid sequence with human IL-2 indicates that mature bovine IL-2 is composed of 135 amino acids and has a predicted molecular weight of 15,452. It has an amino acid homology of 65% with human IL-2 and 50% with murine IL-2. Bovine IL-2 is unique among IL-2 homologs in that it has a single N-linked glycosylation site. Biologically active bovine IL-2 was synthesized in an Escherichia coli expression system. Images PMID:3517854

  10. Cloning and sequencing of the gene for human. beta. -casein

    SciTech Connect

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O. )

    1990-02-26

    Human {beta}-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on {beta}casein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic {sup 32}p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human {beta}-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human {beta}-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human {beta}-casein gene and will facilitate studies on factors affecting its expression.

  11. [Physiology and genetics of metabolic flux control in Zymomonas mobilis]. Progress report

    SciTech Connect

    Conway, T.

    1992-07-01

    The funded research deals with the physiology and genetics of glycolytic flux control in Zymomonas mobilis. Two fundamental biological questions are begin addressed: First, how do the enzymes of glycolytic pathways act in concert to regulate metabolic flux? Second, what is the role of gene expression in regulating high level synthesis of the glycolytic enzymes in a balance that allows proper glycolytic flux control? The specific objectives of the grant are as follows: 1. To clone the structural and regulatory regions of the Z. mobilis genes encoding glucose-6-phosphate dehydrogenase, phosphoglucose isomerase, enolase, 6-phosphogluconate dehydratase, 2- keto-3-deoxy- 6-phosphogluconate aldolase, glucokinase and fructokinase. 2. To characterize the structure of these genes with respect to nucleotide sequence, transcriptional initiation sites promoter location, evolutionary relatedness to similar genes from other organisms, and organization of these genes on the genome. 3. To investigate the effects of genetically engineered alterations in the levels of the cloned enzymes on metabolic flux and cell growth. 4. To study transcriptional and post-transcriptional regulation of the genes encoding the enzymes of the Entner-Doudoroff pathway. The first two specific objectives have now been fully completed. Significant progress has been made on the fourth objective and work on the third objective is well underway.

  12. Cloning and sequence analysis of myostatin promoter in sheep.

    PubMed

    Du, Rong; Chen, Yong-Fu; An, Xiao-Rong; Yang, Xing-Yuan; Ma, Yi; Zhang, Lei; Yuan, Xiao-Li; Chen, Li-Mei; Qin, Jian

    2005-12-01

    To better understand the structure and function of the myostatin's gene promoter region in sheep, we cloned and sequenced a 1.517 kb fragment containing the 5'-regulatory region of the sheep myostatin gene (GenBank accession number is AY918121). The promoter sequence consists of three TATA boxes, one CAAT box, and eight putative E-boxes. Some putative muscle growth response elements for Octamer-binding factor 1(Octamer), Activator protein 1(AP1), Growth factor independence 1 zinc finger protein (Gfi-1B), Myocyte enhancer factor 2 (MEF2), Muscle-specific Mt binding site (MTBF), Glucocorticoid response elements (GRE) and Progesterone receptor binding site (PRE) were detected. Some of the motifs are conserved as compared to with that in the goat, bovine and porcine myostatin promoters. However, some differences were also found. PMID:16287620

  13. A novel approach to sequence validating protein expression clones with automated decision making

    PubMed Central

    Taycher, Elena; Rolfs, Andreas; Hu, Yanhui; Zuo, Dongmei; Mohr, Stephanie E; Williamson, Janice; LaBaer, Joshua

    2007-01-01

    Background Whereas the molecular assembly of protein expression clones is readily automated and routinely accomplished in high throughput, sequence verification of these clones is still largely performed manually, an arduous and time consuming process. The ultimate goal of validation is to determine if a given plasmid clone matches its reference sequence sufficiently to be "acceptable" for use in protein expression experiments. Given the accelerating increase in availability of tens of thousands of unverified clones, there is a strong demand for rapid, efficient and accurate software that automates clone validation. Results We have developed an Automated Clone Evaluation (ACE) system – the first comprehensive, multi-platform, web-based plasmid sequence verification software package. ACE automates the clone verification process by defining each clone sequence as a list of multidimensional discrepancy objects, each describing a difference between the clone and its expected sequence including the resulting polypeptide consequences. To evaluate clones automatically, this list can be compared against user acceptance criteria that specify the allowable number of discrepancies of each type. This strategy allows users to re-evaluate the same set of clones against different acceptance criteria as needed for use in other experiments. ACE manages the entire sequence validation process including contig management, identifying and annotating discrepancies, determining if discrepancies correspond to polymorphisms and clone finishing. Designed to manage thousands of clones simultaneously, ACE maintains a relational database to store information about clones at various completion stages, project processing parameters and acceptance criteria. In a direct comparison, the automated analysis by ACE took less time and was more accurate than a manual analysis of a 93 gene clone set. Conclusion ACE was designed to facilitate high throughput clone sequence verification projects. The

  14. Full genome sequencing of the Newcastle disease viruses VS/GA and clone 5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of the Villegas-Glisson/University of Georgia (VG/GA) strain of Newcastle disease virus (NDV) and of a plaque purified clone (clone 5) exhibiting a different phenotype were sequenced and analyzed. The VG/GA strain, isolated from the intestine of healthy turkeys replicat...

  15. Complete Genome Sequence of a Human Cytomegalovirus Strain AD169 Bacterial Artificial Chromosome Clone

    PubMed Central

    Ostermann, Eleonore; Spohn, Michael; Indenbirken, Daniela

    2016-01-01

    The complete sequence of the human cytomegalovirus strain AD169 (variant ATCC) cloned as a bacterial artificial chromosome (AD169-BAC, also known as HB15 or pHB15) was determined. The viral genome has a length of 230,290 bp and shows 52 nucleotide differences compared to a previously sequenced AD169varATCC clone. PMID:27034483

  16. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  17. Human retinoblastoma susceptibility gene: cloning, identification, and sequence

    SciTech Connect

    Lee, W.; Bookstein, R.; Hong, F.; Young, L.; Shew, J.; Lee, E.Y.P.

    1987-03-13

    Recent evidence indicates the existence of a genetic locus in chromosome region 13q14 that confers susceptibility to retinoblastoma, a cancer of the eye in children. A gene encoding a messenger RNA of 4.6 kilobases (kb), located in the proximity of esterase D, was identified as the retinoblastoma susceptibility (RB) gene on the basis of chromosomal location, homozygous deletion, and tumor-specific alterations in expression. Transcription of this gene was abnormal in six of six retinoblastomas examined: in two tumors, RB mRNA was not detectable, while four others expressed variable quantities of RB mRNA with decreased molecular size of about 4.0 kb. In contrast, full-length RB mRNA was present in human fetal retina and placenta, and in other tumors such as neuroblastoma and medulloblastoma. DNA from retinoblastoma cells had a homozygous gene deletion in one case and hemizygous deletion in another case, while the remainder were not grossly different from normal human control DNA. The gene contains at least 12 exons distributed in a region of over 100 kb. Sequence analysis of complementary DNA clones yielded a single long open reading frame that could encode a hypothetical protein of 816 amino acids.

  18. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    PubMed

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  19. An accurate clone-based haplotyping method by overlapping pool sequencing.

    PubMed

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-01

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. PMID:27095193

  20. An accurate clone-based haplotyping method by overlapping pool sequencing

    PubMed Central

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-01-01

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. PMID:27095193

  1. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    SciTech Connect

    Nierman, William C.

    2000-02-14

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phred Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.

  2. A compilation of partial sequences of randomly selected cDNA clones from the rat incisor.

    PubMed

    Matsuki, Y; Nakashima, M; Amizuka, N; Warshawsky, H; Goltzman, D; Yamada, K M; Yamada, Y

    1995-01-01

    The formation of tooth organs is regulated by a series of developmental programs. We have initiated a genome project with the ultimate goal of identifying novel genes important for tooth development. As an initial approach, we constructed a unidirectional cDNA library from the non-calcified portion of incisors of 3- to 4-week-old rats, sequenced cDNA clones, and classified their sequences by homology search through the GenBank data base and the PIR protein data base. Here, we report partial DNA sequences obtained by automated DNA sequencing on 400 cDNA clones randomly selected from the library. Of the sequences determined, 51% represented sequences of new genes that were not related to any previously reported gene. Twenty-six percent of the clones strongly matched genes and proteins in the data bases, including amelogenin, alpha 1(I) and alpha 2(I) collagen chains, osteonectin, and decorin. Nine percent of clones revealed partial sequence homology to known genes such as transcription factors and cell surface receptors. A significant number of the previously identified genes were expressed redundantly and were found to encode extracellular matrix proteins. Identification and cataloging of cDNA clones in these tissues are the first step toward identification of markers expressed in a tissue- or stage-specific manner, as well as the genetic linkage study of tooth anomalies. Further characterization of the clones described in this paper should lead to the discovery of novel genes important for tooth development. PMID:7876422

  3. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  4. Cost-effective HRMA pre-sequence typing of clone libraries; application to phage display selection

    PubMed Central

    Pepers, Barry A; Schut, Menno H; Vossen, Rolf HAM; van Ommen, Gert-Jan B; den Dunnen, Johan T; van Roon-Mom, Willeke MC

    2009-01-01

    Background Methodologies like phage display selection, in vitro mutagenesis and the determination of allelic expression differences include steps where large numbers of clones need to be compared and characterised. In the current study we show that high-resolution melt curve analysis (HRMA) is a simple, cost-saving tool to quickly study clonal variation without prior nucleotide sequence knowledge. Results HRMA results nicely matched those obtained with ELISA and compared favourably to DNA fingerprinting of restriction digested clone insert-PCR. DNA sequence analysis confirmed that HRMA-clustered clones contained identical inserts. Conclusion Using HRMA, analysis of up to 384 samples can be done simultaneously and will take approximately 30 minutes. Clustering of clones can be largely automated using the system's software within 2 hours. Applied to the analysis of clones obtained after phage display antibody selection, HRMA facilitated a quick overview of the overall success as well as the identification of identical clones. Our approach can be used to characterize any clone set prior to sequencing, thereby reducing sequencing costs significantly. PMID:19463169

  5. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence.

    PubMed Central

    Galibert, F; Chen, T N; Mandart, E

    1982-01-01

    The complete nucleotide sequence of a woodchuck hepatitis virus genome cloned in Escherichia coli was determined by the method of Maxam and Gilbert. This sequence was found to be 3,308 nucleotides long. Potential ATG initiator triplets and nonsense codons were identified and used to locate regions with a substantial coding capacity. A striking similarity was observed between the organization of human hepatitis B virus and woodchuck hepatitis virus. Nucleotide sequences of these open regions in the woodchuck virus were compared with corresponding regions present in hepatitis B virus. This allowed the location of four viral genes on the L strand and indicated the absence of protein coded by the S strand. Evolution rates of the various parts of the genome as well as of the four different proteins coded by hepatitis B virus and woodchuck hepatitis virus were compared. These results indicated that: (i) the core protein has evolved slightly less rapidly than the other proteins; and (ii) when a region of DNA codes for two different proteins, there is less freedom for the DNA to evolve and, moreover, one of the proteins can evolve more rapidly than the other. A hairpin structure, very well conserved in the two genomes, was located in the only region devoid of coding function, suggesting the location of the origin of replication of the viral DNA. Images PMID:7086958

  6. Ethanologenic Enzymes of Zymomonas mobilis

    SciTech Connect

    Ingram, Lonnie O'Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  7. Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)

    NASA Astrophysics Data System (ADS)

    Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui

    1998-03-01

    The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.

  8. An expressed sequence tag database of T-cell-enriched activated chicken splenocytes: sequence analysis of 5251 clones.

    PubMed

    Tirunagaru, V G; Sofer, L; Cui, J; Burnside, J

    2000-06-01

    The cDNA and gene sequences of many mammalian cytokines and their receptors are known. However, corresponding information on avian cytokines is limited due to the lack of cross-species activity at the functional level or strong homology at the molecular level. To improve the efficiency of identifying cytokines and novel chicken genes, a directionally cloned cDNA library from T-cell-enriched activated chicken splenocytes was constructed, and the partial sequence of 5251 clones was obtained. Sequence clustering indicates that 2357 (42%) of the clones are present as a single copy, and 2961 are distinct clones, demonstrating the high level of complexity of this library. Comparisons of the sequence data with known DNA sequences in GenBank indicate that approximately 25% of the clones match known chicken genes, 39% have similarity to known genes in other species, and 11% had no match to any sequence in the database. Several previously uncharacterized chicken cytokines and their receptors were present in our library. This collection provides a useful database for cataloging genes expressed in T cells and a valuable resource for future investigations of gene expression in avian immunology. A chicken EST Web site (http://udgenome. ags.udel. edu/chickest/chick.htm) has been created to provide access to the data, and a set of unique sequences has been deposited with GenBank (Accession Nos. AI979741-AI982511). Our new Web site (http://www. chickest.udel.edu) will be active as of March 3, 2000, and will also provide keyword-searching capabilities for BLASTX and BLASTN hits of all our clones. PMID:10860659

  9. Cloning

    MedlinePlus

    ... DNA Reproductive cloning, which creates copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  10. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  11. CLONING AND SEQUENCING OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) MATRIX METALLOPROTEINASE-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced using the RACE. The complete sequence of the CC MMP-9 cDNA g...

  12. Nucleotide sequence analysis of a cloned DNA fragment from human cells reveals homology to retrotransposons.

    PubMed Central

    Flügel, R M; Maurer, B; Bannert, H; Rethwilm, A; Schnitzler, P; Darai, G

    1987-01-01

    During molecular cloning of proviral DNA of human spumaretrovirus, various recombinant clones were established and analyzed. Blot hybridization revealed that one of the recombinant plasmids had the characteristic features of a member of the long interspersed repetitive sequences family. The DNA element was analyzed by restriction mapping and nucleotide sequencing. It showed a high degree of amino acid sequence homology of 54.3% when compared with the 5'-terminal part of the pol gene product of the murine retrotransposon LIMd. The 3' region of the cloned DNA element encodes proteins with an even higher degree of homology of 67.4% in comparison to the corresponding parts of a member of the primate KpnI sequence family. Images PMID:3031462

  13. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries. PMID:21792685

  14. Infectious hepatitis B virus from cloned DNA of known nucleotide sequence.

    PubMed Central

    Will, H; Cattaneo, R; Darai, G; Deinhardt, F; Schellekens, H; Schaller, H

    1985-01-01

    The infectivity of cloned hepatitis B viral DNA (HBV) has been tested in chimpanzees to identify a fully functional HBV genome and to assess the risk associated with its handling. Only one of two HBV DNA sequence variants tested was shown to be infectious. "Clone purified" virus of predicted nucleotide sequence was produced from the infectious HBV DNA, and the cloned viral genome was identical in structure with naturally occurring HBV. Infection could be initiated independent of whether circular monomeric or plasmid integrated dimeric forms of the viral genome were inoculated, but the infectivity of the DNA depended on liver cell transfection or intrahepatic injection. Intravenous injection of high doses of infectious HBV DNA did not induce hepatitis, suggesting that there is virtually no risk associated with routine laboratory handling of cloned HBV DNA. Images PMID:2983320

  15. Molecular cloning and characterization of potato spindle tuber viroid cDNA sequences

    PubMed Central

    Owens, Robert A.; Cress, Dean E.

    1980-01-01

    Double-stranded cDNA has been synthesized from a polyadenylylated potato spindle tuber viroid (PSTV) template and inserted in the Pst I endonuclease site of plasmid pBR322 by using the oligo(dC)·oligo(dG)-tailing procedure. Tetracycline-resistant ampicillin-sensitive transformants contained sequences complementary to PSTV [32P]cDNA, and one recombinant clone (pDC-29) contains a 460-base-pair insert. This cloned double-stranded PSTV cDNA contains the cleavage sites for six restriction endonucleases predicted by the published primary sequence of PSTV as well as one additional site each for Ava I, Hae III, Hpa II, and Sma I. The additional Ava I, Hpa II, and Sma I sites are explained by the presence of a second C-C-C-G-G-G sequence in the cloned double-stranded cDNA. The largest fragment released by Hae III digestion contains approximately 360 base pairs. These results suggest that we have cloned almost the entire sequence of PSTV, but the sequence cloned differs slightly from that published. Hybridization probes derived from pDC-29 insert have allowed detection and preliminary characterization of RNA molecules having the same size as PSTV but the opposite polarity. This RNA is present during PSTV replication in infected tomato cells. Images PMID:16592877

  16. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination.

    PubMed Central

    Chen, Y C; Peoples, O P; Walsh, C T

    1988-01-01

    The gene coding for cyclohexanone monooxygenase from Acinetobacter sp. strain NCIB 9871 was isolated by immunological screening methods. We located and determined the nucleotide sequence of the gene. The structural gene is 1,626 nucleotides long and codes for a polypeptide of 542 amino acids; 389 nucleotides 5' and 108 nucleotides 3' of the coding region are also reported. The complete amino acid sequence of the enzyme was derived by translation of the nucleotide sequence. From a comparison of the amino acid sequence with consensus sequences of nucleotide-binding folds, we identified a potential flavin-binding site at the NH2 terminus of the enzyme (residues 6 to 18) and a potential nicotinamide-binding site extending from residue 176 to residue 208 of the protein. An overproduction system for the gene to facilitate genetic manipulations was also constructed by using the tac promoter vector pKK223-3 in Escherichia coli. Images PMID:3338974

  17. Cloning of urease gene sequences from Providencia stuartii.

    PubMed Central

    Mobley, H L; Jones, B D; Jerse, A E

    1986-01-01

    Providencia stuartii was the most prevalent isolate recovered from urine specimens taken weekly over a 1-year period from 51 nursing home patients with urinary catheters in place. Thirty percent of the isolates were urease positive. Urease, which is implicated in renal stone formation, was shown to be transmissible on an 82-kilobase conjugative plasmid in one isolate. Plasmid DNA isolated from this strain was digested with EcoRI, ligated into the EcoRI site of pBR322, and used to transform Escherichia coli HB101. Ampicillin-resistant clones were replica plated onto urea segregation agar, and a urease-positive clone, designated pMID101, was isolated. Recombinant and native urease from cell lysates had identical electrophoretic mobilities on nondenaturing polyacrylamide urease activity gels. The native enzyme was induced fourfold when cells were grown in the presence of 0.1% urea and had a km of 9.4 mM and a Vmax of 3.2 mumol of NH3 per min per mg of protein. Its molecular weight was estimated to be 375,000 +/- 35,000 by Sephacryl S-300 chromatography. The enzyme was cytoplasmic in P. stuartii, was inhibited in vitro by hydroxyurea, acetohydroxamic acid, and EDTA, and appears to have a complex subunit structure and a unique molecular size within genera of the Proteeae tribe. Images PMID:3759233

  18. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    SciTech Connect

    Oshima, A.; Kyle, J.W.; Miller, R.D.; Hoffmann, J.W.; Powell, P.P.; Grubb, J.H.; Sly, W.S.; Tropak, M.; Guise, K.S.; Gravel, R.A.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.

  19. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene.

    PubMed Central

    Kim, S F; Baek, S J; Pack, M Y

    1991-01-01

    An allosteric L-(+)-lactate dehydrogenase gene of Lactobacillus casei ATCC 393 was cloned in Escherichia coli, and the nucleotide sequence of the gene was determined. The gene was composed of an open reading frame of 981 bp, starting with a GTG codon and ending with a TAA codon. The sequences for the promoter and ribosome binding site were identified, and a sequence for a structure resembling a rho-independent transcription terminator was also found. Images PMID:1768113

  20. Cloning and sequence analysis of banana streak virus DNA.

    PubMed

    Harper, G; Hull, R

    1998-01-01

    Banana streak virus (BSV), a member of the Badnavirus group of plant viruses, causes severe problems in banana cultivation, reducing fruit yield and restricting plant breeding and the movement of germplasm. Current detection methods are relatively insensitive. In order to develop a PCR-based diagnostic method that is both reliable and sensitive, the genome of a Nigerian isolate of BSV has been sequenced and shown to comprise 7389 bp and to be organized in a manner characteristic of badnaviruses. Comparison of this sequence with those of other badnaviruses showed that BSV is a distinct virus. PCR with primers based on sequence data indicated that BSV sequences are present in the banana genome. PMID:9926402

  1. Cloning and sequence analysis of cDNA for human cathepsin D.

    PubMed Central

    Faust, P L; Kornfeld, S; Chirgwin, J M

    1985-01-01

    An 1110-base-pair cDNA clone for human cathepsin D was obtained by screening a lambda gt10 human hepatoma G2 cDNA library with a human renin exon 3 genomic fragment. Poly(A)+ RNA blot analysis with this cathepsin D clone demonstrated a message length of about 2.2 kilobases. The partial clone was used to screen a size-selected human kidney cDNA library, from which two cathepsin D recombinant plasmids with inserts of about 2200 and 2150 base pairs were obtained. The nucleotide sequences of these clones and of the lambda gt10 clone were determined. The amino acid sequence predicted from the cDNA sequence shows that human cathepsin D consists of 412 amino acids with 20 and 44 amino acids in a pre- and a prosegment, respectively. The mature protein region shows 87% amino acid identity with porcine cathepsin D but differs in having nine additional amino acids. Two of these are at the COOH terminus; the other seven are positioned between the previously determined junction for the light and heavy chains of porcine cathepsin D. A high degree of sequence homology was observed between human cathepsin D and other aspartyl proteases, suggesting a conservation of three-dimensional structure in this family of proteins. Images PMID:3927292

  2. Linking the human cytogenetic map with nucleotide sequence: the CCAP clone set.

    PubMed

    Jang, Wonhee; Yonescu, Raluca; Knutsen, Turid; Brown, Theresa; Reppert, Tricia; Sirotkin, Karl; Schuler, Gregory D; Ried, Thomas; Kirsch, Ilan R

    2006-07-15

    We present the completed dataset and clone repository of the Cancer Chromosome Aberration Project (CCAP), an initiative developed and funded through the intramural program of the U.S. National Cancer Institute, to provide seamless linkage of human cytogenetic markers with the primary nucleotide sequence of the human genome. Spaced at 1-2 Mb intervals across the human genome, 1,339 bacterial artificial chromosome (BAC) clones have been localized to chromosomal bands through high-resolution fluorescence in situ hybridization (FISH) mapping. Of these clones, 99.8% can be positioned on the primary human genome sequence and 95% are placed at or close to their precise nucleotide starts and stops. This dataset can be studied and manipulated within generally available public Web sites. The clones are available from a commercial repository. The CCAP BAC clone set provides anchors for the interrogation of gene and sequence involvement in oncogenic and developmental disorders when the starting point is the recognition of a structural, numerical, or interstitial chromosomal aberration. This dataset also provides a current view of the quality and coherence of the available genome sequence and insight into the nucleotide and three-dimensional structures that manifest as Giemsa light and dark chromosomal banding patterns. PMID:16843097

  3. Partial sequence analysis of 130 randomly selected maize cDNA clones.

    PubMed Central

    Keith, C S; Hoang, D O; Barrett, B M; Feigelman, B; Nelson, M C; Thai, H; Baysdorfer, C

    1993-01-01

    As part of a project to identify novel maize (Zea mays L. cv B73) genes functionally, we have partially sequenced 130 randomly selected clones from a maize leaf cDNA library. Data base comparisons revealed seven previously sequenced maize cDNAs and 18 cDNAs with sequence similarity to related maize genes or to genes from other organisms. One hundred five cDNAs show little or no similarity to previously sequenced genes. Our results also establish the suitability of this library for large-scale sequencing in terms of its large insert size, proper insert orientation, and low duplication rate. PMID:8278499

  4. Construction of a normalized directionally cloned cDNA library from adult heart and analysis of 3040 clones by partial sequencing.

    PubMed

    Tanaka, T; Ogiwara, A; Uchiyama, I; Takagi, T; Yazaki, Y; Nakamura, Y

    1996-07-01

    Large-scale sequencing of clones from cDNA libraries derived from specific tissues is a rapid and efficient way of discovering novel genes expressed in those tissues. However, because the heart is continually contracting and relaxing, it strongly expresses muscle-contractile genes and/or mitochondrial genes, a bias that reduces the efficiency of this method. To improve the efficiency of identifying novel genes expressed in the heart, we constructed a normalized directionally cloned cDNA library from adult heart and partially sequenced 3040 clones. Comparisons of these sequence data with known DNA sequences in the database revealed that 57.1% of the clones matched human genes already known, 23.4% were identical or almost identical to human expressed sequence tags (ESTs), 14.2% bore no significant homology to any sequences in the database, and 1.2% represented repetitive sequences. The remaining 4.1% showed some homology with known genes, and Northern blot analysis of several clones in this category revealed that most of them were expressed mainly in the heart and skeletal muscle. After redundancy was excluded, the 3040 clones accounted for 1395 distinctive ESTs, 446 of which exhibited no match to any known sequence. Our results suggest that our normalized library is less redundant than standard libraries and is a useful resource for cataloging genes expressed in the heart. PMID:8661126

  5. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing.

    PubMed Central

    Schmidt, T M; DeLong, E F; Pace, N R

    1991-01-01

    The phylogenetic diversity of an oligotrophic marine picoplankton community was examined by analyzing the sequences of cloned ribosomal genes. This strategy does not rely on cultivation of the resident microorganisms. Bulk genomic DNA was isolated from picoplankton collected in the north central Pacific Ocean by tangential flow filtration. The mixed-population DNA was fragmented, size fractionated, and cloned into bacteriophage lambda. Thirty-eight clones containing 16S rRNA genes were identified in a screen of 3.2 x 10(4) recombinant phage, and portions of the rRNA gene were amplified by polymerase chain reaction and sequenced. The resulting sequences were used to establish the identities of the picoplankton by comparison with an established data base of rRNA sequences. Fifteen unique eubacterial sequences were obtained, including four from cyanobacteria and eleven from proteobacteria. A single eucaryote related to dinoflagellates was identified; no archaebacterial sequences were detected. The cyanobacterial sequences are all closely related to sequences from cultivated marine Synechococcus strains and with cyanobacterial sequences obtained from the Atlantic Ocean (Sargasso Sea). Several sequences were related to common marine isolates of the gamma subdivision of proteobacteria. In addition to sequences closely related to those of described bacteria, sequences were obtained from two phylogenetic groups of organisms that are not closely related to any known rRNA sequences from cultivated organisms. Both of these novel phylogenetic clusters are proteobacteria, one group within the alpha subdivision and the other distinct from known proteobacterial subdivisions. The rRNA sequences of the alpha-related group are nearly identical to those of some Sargasso Sea picoplankton, suggesting a global distribution of these organisms. Images PMID:2066334

  6. Cloning and nucleotide sequence of the gene encoding the Ecal DNA methyltransferase.

    PubMed Central

    Brenner, V; Venetianer, P; Kiss, A

    1990-01-01

    The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed. Images PMID:2183182

  7. Rhipicephalus microplus strain Deutsch, 10 BAC clone sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. We used labeled DNA probes from the coding reg...

  8. 5'-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency.

    PubMed Central

    Land, H; Grez, M; Hauser, H; Lindenmaier, W; Schütz, G

    1981-01-01

    A method for cloning mRNAs has been used which results in a high yield of recombinants containing complete 5'-terminal mRNA sequences. It is not dependent on self-priming to generate double-stranded DNA and therefore the S1 nuclease digestion step is not required. Instead, the cDNA is dCMP-tailed at its 3'-end with terminal deoxynucleotidyl transferase (TdT). The synthesis of the second strand is primed by oligo(dG) hybridized to the 3'-tail. Double-stranded cDNA is subsequently tailed with dCTP and annealed to dGMP-tailed vector DNA. This approach overcomes the loss of the 5'-terminal mRNA sequences and the problem of artifacts which may be introduced into cloned cDNA sequences. Chicken lysozyme cDNA was cloned into pBR322 by this procedure with a transformation efficiency of 5 x 10(3) recombinant clones per ng of ds-cDNA. Sequence analysis revealed that at least nine out of nineteen randomly isolated plasmids contained the entire 5'-untranslated mRNA sequence. The data strongly support the conclusion that the 5'-untranslated region of the lysozyme mRNA is heterogeneous in length. Images PMID:6166921

  9. Characterization of long cDNA clones from human adult spleen. II. The complete sequences of 81 cDNA clones.

    PubMed

    Jikuya, Hiroyuki; Takano, Jun; Kikuno, Reiko; Hirosawa, Makoto; Nagase, Takahiro; Nomura, Nobuo; Ohara, Osamu

    2003-02-28

    To accumulate information on the coding sequences (CDSs) of unidentified genes, we have conducted a sequencing project of human long cDNA clones. Both the end sequences of approximately 10,000 cDNA clones from two size-fractionated human spleen cDNA libraries (average sizes of 4.5 kb and 5.6 kb) were determined by single-pass sequencing to select cDNAs with unidentified sequences. We herein present the entire sequences of 81 cDNA clones, most of which were selected by two approaches based on their protein-coding potentialities in silico: Fifty-eight cDNA clones were selected as those having protein-coding potentialities at the 5'-end of single-pass sequences by applying the GeneMark analysis; and 20 cDNA clones were selected as those expected to encode proteins larger than 100 amino acid residues by analysis of the human genome sequences flanked by both the end sequences of cDNAs using the GENSCAN gene prediction program. In addition to these newly identified cDNAs, three cDNA clones were isolated by colony hybridization experiments using probes corresponding to known gene sequences since these cDNAs are likely to contain considerable amounts of new information regarding the genes already annotated. The sequence data indicated that the average sizes of the inserts and corresponding CDSs of cDNA clones analyzed here were 5.0 kb and 2.0 kb (670 amino acid residues), respectively. From the results of homology and motif searches against the public databases, functional categories of the 29 predicted gene products could be assigned; 86% of these predicted gene products (25 gene products) were classified into proteins relating to cell signaling/communication, nucleic acid management, and cell structure/motility. PMID:12693554

  10. Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli.

    PubMed

    Godiska, Ronald; Mead, David; Dhodda, Vinay; Wu, Chengcang; Hochstein, Rebecca; Karsi, Attila; Usdin, Karen; Entezam, Ali; Ravin, Nikolai

    2010-04-01

    Despite recent advances in sequencing, complete finishing of large genomes and analysis of novel proteins they encode typically require cloning of specific regions. However, many of these fragments are extremely difficult to clone in current vectors. Superhelical stress in circular plasmids can generate secondary structures that are substrates for deletion, particularly in regions that contain numerous tandem or inverted repeats. Common vectors also induce transcription and translation of inserted fragments, which can select against recombinant clones containing open reading frames or repetitive DNA. Conversely, transcription from cloned promoters can interfere with plasmid stability. We have therefore developed a novel Escherichia coli cloning vector (termed 'pJAZZ' vector) that is maintained as a linear plasmid. Further, it contains transcriptional terminators on both sides of the cloning site to minimize transcriptional interference between vector and insert. We show that this vector stably maintains a variety of inserts that were unclonable in conventional plasmids. These targets include short nucleotide repeats, such as those of the expanded Fragile X locus, and large AT-rich inserts, such as 20-kb segments of genomic DNA from Pneumocystis, Plasmodium, Oxytricha or Tetrahymena. The pJAZZ vector shows decreased size bias in cloning, allowing more uniform representation of larger fragments in libraries. PMID:20040575

  11. Characterization of sphere-forming HCT116 clones by whole RNA sequencing

    PubMed Central

    Chung, Eunkyung; Oh, Inkyung

    2016-01-01

    Purpose To determine CD133+ cells defined as cancer stem cells (CSCs) in colon cancer, we examined whether CD133+ clones in HCT116 demonstrate known features of CSCs like sphere-forming ability, chemodrug-resistance, and metastatic potential. Methods Magnetic cell isolation and cell separation demonstrated that <1% of HCT116 cells expressed CD133, with the remaining cells being CD133- clones. In colon cancer cells, radioresistance is also considered a CSC characteristic. We performed clonogenic assay using 0.4 Gy γ-irradiation. Results Interestingly, there were no differences between HCT116 parental and HCT116 CD133+ clones when the cells comprised 0.5% of the total cells, and CD133- clone demonstrated radiosensitive changes compared with parental and CD133+ clones. Comparing gene expression profiles between sphere-forming and nonforming culture conditions of HCT116 subclones by whole RNA sequencing failed to obtain specific genes expressed in CD133+ clones. Conclusion Despite no differences of gene expression profiles in monolayer attached culture conditions of each clone, sphere-forming conditions of whole HCT116 subclones, parental, CD133+, and CD133- increased 1,761 coding genes and downregulated 1,384 genes related to CSCs self-renewal and survival. Thus, spheroid cultures of HCT116 cells could be useful to expand colorectal CSCs rather than clonal expansion depending on CD133 expressions. PMID:27073788

  12. Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene.

    PubMed Central

    Graves, M C; Mullenbach, G T; Rabinowitz, J C

    1985-01-01

    We have constructed a library of Clostridium pasteurianum DNA cloned in the plasmid pBR322. Based on the known amino acid sequence for C. pasteurianum ferredoxin, a 64-fold degenerate heptadecanucleotide pool was synthesized. This mixed probe hybridized to two clones which were shown to contain greater than 6 kilobase pairs of the same genomic DNA. Sequence analysis of a common Sau3A1 0.6-kilobase-pair fragment revealed that it contains the information for the apoferredoxin structural gene. According to the DNA sequence, the only post-translational processing of this small apoprotein is the hydrolysis of the initiator methionine. Putative transcription and translation start and stop signals are present within the sequence. Images PMID:3856844

  13. Cloning and sequencing of Duck circovirus (DuCV).

    PubMed

    Hattermann, K; Schmitt, C; Soike, D; Mankertz, A

    2003-12-01

    The genome of Duck circovirus (DuCV) is circular and 1996 nts in size. Two major open reading frames were identified, encoding the replicase (V1) and the capsid protein (C1). A stem-loop structure comprising the nonamer 5'-TATTATTAC, conserved in all circo-, nano- and geminiviruses, was found. Unique to DuCV, the region between the 3'-ends of the rep and cap gene contains four repeats of a 44-bp sequence. Phylogenetic analysis shows close relation of DuCV with Goose circovirus and suggests classification of DuCV as a new member of the genus Circovirus of the virus family Circoviridae. PMID:14648300

  14. Molecular cloning and sequencing of a novel human P2 nucleotide receptor.

    PubMed

    Southey, M C; Hammet, F; Hutchins, A M; Paidhungat, M; Somers, G R; Venter, D J

    1996-11-11

    A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta. PMID:8950181

  15. Cloning and sequencing of a cDNA encoding a taste-modifying protein, miraculin.

    PubMed

    Masuda, Y; Nirasawa, S; Nakaya, K; Kurihara, Y

    1995-08-19

    A cDNA clone encoding a taste-modifying protein, miraculin (MIR), was isolated and sequenced. The encoded precursor to MIR was composed of 220 amino acid (aa) residues, including a possible signal sequence of 29 aa. Northern blot analysis showed that the mRNA encoding MIR was already expressed in fruits of Richadella dulcifica at 3 weeks after pollination and was present specifically in the pulp. PMID:7665074

  16. RTA, a candidate G protein-coupled receptor: cloning, sequencing, and tissue distribution.

    PubMed Central

    Ross, P C; Figler, R A; Corjay, M H; Barber, C M; Adam, N; Harcus, D R; Lynch, K R

    1990-01-01

    Genomic and cDNA clones, encoding a protein that is a member of the guanine nucleotide-binding regulatory protein (G protein)-coupled receptor superfamily, were isolated by screening rat genomic and thoracic aorta cDNA libraries with an oligonucleotide encoding a highly conserved region of the M1 muscarinic acetylcholine receptor. Sequence analyses of these clones showed that they encode a 343-amino acid protein (named RTA). The RTA gene is single copy, as demonstrated by restriction mapping and Southern blotting of genomic clones and rat genomic DNA. Sequence analysis of the genomic clone further showed that the RTA gene has an intron interrupting the region encoding the amino terminus of the protein. RTA RNA sequences are relatively abundant throughout the gut, vas deferens, uterus, and aorta but are only barely detectable (on Northern blots) in liver, kidney, lung, and salivary gland. In the rat brain, RTA sequences are markedly abundant in the cerebellum. RTA is most closely related to the mas oncogene (34% identity), which has been suggested to be a forebrain angiotensin receptor. We cannot detect angiotensin binding to the RTA protein after introducing the cognate cDNA or mRNA into COS cells or Xenopus oocytes, respectively, nor can we detect an electrophysiologic response in the oocyte after application of angiotensin peptides. We conclude that RTA is not an angiotensin receptor; to date, we have been unable to identify its ligand. Images PMID:2109324

  17. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  18. Complete Genome Sequence of Murine Pneumotropic Virus (Polyomaviridae) Clone pKV(37-1)

    PubMed Central

    Libbey, Jane E.

    2016-01-01

    The murine pneumotropic virus genome encoded by the pKV(37-1) clone was sequenced to completion. The regulatory region harbored a mutation not previously reported. The protein coding regions (large and small T antigens, viral proteins 1 to 3) showed multiple regions of high amino acid identity to the human, simian, and bovine polyomaviruses. PMID:27198030

  19. Complete Genome Sequence of Murine Pneumotropic Virus (Polyomaviridae) Clone pKV(37-1).

    PubMed

    Libbey, Jane E; Fujinami, Robert S

    2016-01-01

    The murine pneumotropic virus genome encoded by the pKV(37-1) clone was sequenced to completion. The regulatory region harbored a mutation not previously reported. The protein coding regions (large and small T antigens, viral proteins 1 to 3) showed multiple regions of high amino acid identity to the human, simian, and bovine polyomaviruses. PMID:27198030

  20. Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae

    PubMed Central

    Hu, Yanhui; Rolfs, Andreas; Bhullar, Bhupinder; Murthy, Tellamraju V. S.; Zhu, Cong; Berger, Michael F.; Camargo, Anamaria A.; Kelley, Fontina; McCarron, Seamus; Jepson, Daniel; Richardson, Aaron; Raphael, Jacob; Moreira, Donna; Taycher, Elena; Zuo, Dongmei; Mohr, Stephanie; Kane, Michael F.; Williamson, Janice; Simpson, Andrew; Bulyk, Martha L.; Harlow, Edward; Marsischky, Gerald; Kolodner, Richard D.; LaBaer, Joshua

    2007-01-01

    The availability of an annotated genome sequence for the yeast Saccharomyces cerevisiae has made possible the proteome-scale study of protein function and protein–protein interactions. These studies rely on availability of cloned open reading frame (ORF) collections that can be used for cell-free or cell-based protein expression. Several yeast ORF collections are available, but their use and data interpretation can be hindered by reliance on now out-of-date annotations, the inflexible presence of N- or C-terminal tags, and/or the unknown presence of mutations introduced during the cloning process. High-throughput biochemical and genetic analyses would benefit from a “gold standard” (fully sequence-verified, high-quality) ORF collection, which allows for high confidence in and reproducibility of experimental results. Here, we describe Yeast FLEXGene, a S. cerevisiae protein-coding clone collection that covers over 5000 predicted protein-coding sequences. The clone set covers 87% of the current S. cerevisiae genome annotation and includes full sequencing of each ORF insert. Availability of this collection makes possible a wide variety of studies from purified proteins to mutation suppression analysis, which should contribute to a global understanding of yeast protein function. PMID:17322287

  1. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments.

    PubMed

    Jiang, Wenjun; Zhu, Ting F

    2016-05-01

    Cloning of long microbial genomic sequences is an essential tool in synthetic biology and genome engineering. Such long sequences are often difficult to obtain directly by traditional PCR or restriction enzyme digestion, and therefore the cloning of these sequences has remained a technical obstacle in molecular biology. Based on the in vitro application of RNA-guided Cas9 nuclease, the method of Cas9-assisted targeting of chromosome segments (CATCH) cleaves target DNA in vitro from intact bacterial chromosomes embedded in agarose plugs, which can be subsequently ligated with cloning vector through Gibson assembly. Here we describe an optimized protocol of CATCH cloning for the targeted cloning of long genomic sequences of up to 100 kb from microorganisms. The protocol uses standard laboratory equipment and takes ∼8 h of bench time over several days, and it may potentially simplify and accelerate efforts to isolate and clone large gene clusters from microorganisms. PMID:27101517

  2. Nucleotide sequence of cDNA clones of the murine myb proto-oncogene.

    PubMed Central

    Gonda, T J; Gough, N M; Dunn, A R; de Blaquiere, J

    1985-01-01

    We have isolated cDNA clones of murine c-myb mRNA which contain approximately 2.8 kb of the 3.9-kb mRNA sequence. Nucleotide sequencing has shown that these clones extend both 5' and 3' to sequences homologous to the v-myb oncogenes of avian myeloblastosis virus and avian leukemia virus E26. The sequence contains an open reading frame of 1944 nucleotides, and could encode a protein which is both highly homologous, and of similar size (71 kd), to the chicken c-myb protein. Examination of the deduced amino acid sequence of the murine c-myb protein revealed the presence of a 3-fold tandem repeat of 52 residues near the N terminus of the protein, and has enabled prediction of some of the likely structural features of the protein. These include a high alpha-helix content, a basic region toward the N terminus of the protein and an overall globular configuration. The arrangement of genomic c-myb sequences, detected using the cDNA clones as probes, was compared with the reported structure of rearranged c-myb in certain tumour cells. This comparison suggested that the rearranged c-myb gene may encode a protein which, like the v-myb protein, lacks the N-terminal region of c-myb. Images Fig. 5. PMID:2998780

  3. Selection and sequence analysis of a cDNA clone encoding a known chorion protein of the A family.

    PubMed Central

    Tsitilou, S G; Regier, J C; Kafatos, F C

    1980-01-01

    Using as criteria the size, abundance and developmental specificity of hybridizing mRNA sequences, we have selected from our chorion cDNA library a clone corresponding to a specific chorion protein, A4--cl. Comparison between the clone sequence and the largely known sequence of A4--cl validates the use of the cDNA library for sequence analysis of the chorion multigene families. The two major chorion protein families, A and B, share certain structural similarities. Images PMID:7433133

  4. Identification of genomic sequences corresponding to cDNA clones

    SciTech Connect

    Spoerel, N.A.; Kafatos, F.C.

    1987-01-01

    The general methods applicable to the isolation of genomic sequences from phage lambda or cosmid libraries have been described. This chapter presents strategies for the investigation of genes that occur in several identical or nonidentical copies per genome, or that share a common conserved domain with other genes. The methods discussed are applicable both to the identification of the genes in Southern blots and to their isolation from libraries. Furthermore, the methods are well suited for the analysis of homologous genes in different species. A high proportion of genes in eukaryotes are known to be members of multigene families. Carefully controlled hybridization conditions and well-tailored probes are powerful tools in the isolation and analysis of genes which share a common domain or are members of multigene families. This chapter consists of a short review of recommended strategies and relevant parameters, which have been discussed in more detail earlier. Using three examples from the authors' analysis of the silk moth choriun locus, they demonstrate how powerful carefully tailored short single-stranded probes can be in the analysis of closely related gene copies.

  5. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: evolutional relationship between hepadnaviruses.

    PubMed Central

    Kodama, K; Ogasawara, N; Yoshikawa, H; Murakami, S

    1985-01-01

    We have determined the complete nucleotide sequence of a cloned DNA of woodchuck hepatitis virus (WHV), the most oncogenic virus among hepadnaviruses. The genome, designated WHV2, is 3,320 base pairs long and contains four major open reading frames (ORFs) coded on the same strand of nucleotide sequence as in the human hepatitis B virus (HBV) genome. Comparison of the nucleotide sequence and amino acid sequences deduced from it among the genomes of various hepadnaviruses demonstrates that each protein shows an intrinsic property in conserving its amino acid sequence. A parameter, the ratio of the number of triplets with one-letter change but no amino acid substitution to the total number of triplets in which one-letter change occurred, was introduced to measure the intrinsic properties quantitatively. For each ORF, the parameter gave characteristic values in all combinations. Therefore, the relative evolutional distance between these hepadnaviruses can be measured by the amino acid substitution rate of any ORF. These comparisons suggest that (i) the difference between two WHV clones, WHV1 and WHV2, corresponds to that among clones of a HBV subtype, HBVadr, and (ii) WHV and ground squirrel hepatitis virus can be categorized in a way similar to the subgroups of HBV. PMID:3855246

  6. Molecular cloning, expression, and sequence of the pilin gene from nontypeable Haemophilus influenzae M37.

    PubMed Central

    Coleman, T; Grass, S; Munson, R

    1991-01-01

    Nontypeable Haemophilus influenzae M37 adheres to human buccal epithelial cells and exhibits mannose-resistant hemagglutination of human erythrocytes. An isogenic variant of this strain which was deficient in hemagglutination was isolated. A protein with an apparent molecular weight of 22,000 was present in the sodium dodecyl sulfate-polyacrylamide gel profile of sarcosyl-insoluble proteins from the hemagglutination-proficient strain but was absent from the profile of the isogenic hemagglutination-deficient variant. A monoclonal antibody which reacts with the hemagglutination-proficient isolate but not with the hemagglutination-deficient isolate has been characterized. This monoclonal antibody was employed in an affinity column for purification of the protein as well as to screen a genomic library for recombinant clones expressing the gene. Several clones which contained overlapping genomic fragments were identified by reaction with the monoclonal antibody. The gene for the 22-kDa protein was subcloned and sequenced. The gene for the type b pilin from H. influenzae type b strain MinnA was also cloned and sequenced. The DNA sequence of the strain MinnA gene was identical to that reported previously for two other type b strains. The DNA sequence of the strain M37 gene is 77% identical to that of the type b pilin gene, and the derived amino acid sequence is 68% identical to that of the type b pilin. Images PMID:1673447

  7. Molecular cloning and sequencing analysis of the interferon β from Coturnix.

    PubMed

    Zheng, Bei; Chang, Wei-Shan

    2014-01-01

    One pair of primers was designed according to Gallus and Meleagris gallopavo interferon β (IFN-β) sequences published in GenBank. The primers and RNA extraction from the spleen of Coturnix were used to amplify Coturnix IFN-β cDNA by real-time polymerase chain reaction (RT-PCR). The product was cloned into pEasy-T1 vector. Evaluating recombinant plasmid by PCR and restriction enzyme digestion. Sequence the cloning sequences, comparing the sequencing results by NCBI. We successfully got a Coturnix IFN-β partial sequence. The sequence was subtyped and put to homologous analysis. The results suggested the homology of IFN-β gene of Coturnix and gene of Coturnix and chicken (88.7%), the homology of IFN-β gene of Coturnix and chicken (88.7%), the homology of IFN-β gene of Coturnix and Anas platyrhynchos (72.5%), the homology of IFN-β sequence registered in GenBank. The analysis of the genetic tree showed that the relationship of Coturnix and chicken IFN-β had a high homology. It can be seen that in this study we successfully got a partial sequence of IFN-β of quail. PMID:26155095

  8. Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: cloning, sequencing, and characterization.

    PubMed

    Basnet, Devi Bahdur; Oh, Tae-Jin; Vu, Thi Thu Hang; Sthapit, Basundhara; Liou, Kwangkyoung; Lee, Hei Chan; Yoo, Jin-Cheol; Sohng, Jae Kyung

    2006-10-31

    The entire gene cluster involved in the biosynthesis of angucyclines Sch 47554 and Sch 47555 was cloned, sequenced, and characterized. Analysis of the nucleotide sequence of genomic DNA spanning 77.5-kb revealed a total of 55 open reading frames, and the deduced products exhibited strong sequence similarities to type II polyketide synthases, deoxysugar biosynthetic enzymes, and a variety of accessory enzymes. The involvement of this gene cluster in the pathway of Sch 47554 and Sch 47555 was confirmed by genetic inactivation of the aromatase, including a portion of the ketoreductase, which was disrupted by inserting the thiostrepton gene. PMID:17085966

  9. Human phosphoribosylformylglycineamide amidotransferase (FGARAT): regional mapping, complete coding sequence, isolation of a functional genomic clone, and DNA sequence analysis.

    PubMed

    Patterson, D; Bleskan, J; Gardiner, K; Bowersox, J

    1999-11-01

    Purines play essential roles in many cellular functions, including DNA replication, transcription, intra- and extra-cellular signaling, energy metabolism, and as coenzymes for many biochemical reactions. The de-novo synthesis of purines requires 10 enzymatic steps for the production of inosine monophosphate (IMP). Defects in purine metabolism are associated with human diseases. Further, many anticancer agents function as inhibitors of the de-novo biosynthetic pathway. Genes or cDNAs for most of the enzymes comprising this pathway have been isolated from humans or other mammals. One notable exception is the phosphoribosylformylglycineamide amidotransferase (FGARAT) gene, which encodes the fourth step of this pathway. This gene has been cloned from numerous microorganisms and from Drosophila melanogaster and C. elegans. We report here the identification of a human cDNA containing the coding region of the FGARAT mRNA and the isolation of a P1 clone that contains an intact human FGARAT gene. The P1 clone corrects the purine auxotrophy and protein deficiency of Chinese hamster ovary (CHO) cell mutants (AdeB) deficient in both the activity and the protein for FGARAT. The P1 clone was used to regionally map the FGARAT gene to chromosome region 17p13, a location consistent with our prior assignment of this gene to chromosome 17. A comparison of the DNA sequence of the human FGARAT and FGARAT DNA sequence from 17 other organisms is reported. The isolation of this gene means that DNA clones for all the 10 steps of IMP synthesis have been isolated from humans or other mammals. PMID:10548741

  10. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs.

    PubMed Central

    Chan, S J; San Segundo, B; McCormick, M B; Steiner, D F

    1986-01-01

    Cathepsin B is a lysosomal thiol proteinase that may have additional extralysosomal functions. To further our investigations on the structure, mode of biosynthesis, and intracellular sorting of this enzyme, we have determined the complete coding sequences for human and mouse preprocathepsin B by using cDNA clones isolated from human hepatoma and kidney phage libraries. The nucleotide sequences predict that the primary structure of preprocathepsin B contains 339 amino acids organized as follows: a 17-residue NH2-terminal prepeptide sequence followed by a 62-residue propeptide region, 254 residues in mature (single chain) cathepsin B, and a 6-residue extension at the COOH terminus. A comparison of procathepsin B sequences from three species (human, mouse, and rat) reveals that the homology between the propeptides is relatively conserved with a minimum of 68% sequence identity. In particular, two conserved sequences in the propeptide that may be functionally significant include a potential glycosylation site and the presence of a single cysteine at position 59. Comparative analysis of the three sequences also suggests that processing of procathepsin B is a multistep process, during which enzymatically active intermediate forms may be generated. The availability of the cDNA clones will facilitate the identification of possible active or inactive intermediate processive forms as well as studies on the transcriptional regulation of the cathepsin B gene. PMID:3463996

  11. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae.

    PubMed Central

    Chu, C P; Kariyama, R; Daneo-Moore, L; Shockman, G D

    1992-01-01

    Extracellular muramidase-2 of Enterococcus hirae ATCC 9790 was purified to homogeneity by substrate binding, guanidine-HCl extraction, and reversed-phase chromatography. A monoclonal antibody, 2F8, which specifically recognizes muramidase-2, was used to screen a genomic library of E. hirae ATCC 9790 DNA in bacteriophage lambda gt11. A positive phage clone containing a 4.5-kb DNA insert was isolated and analyzed. The EcoRI-digested 4.5-kb fragment was cut into 2.3-, 1.0-, and 1.5-kb pieces by using restriction enzymes KpnI, Sau3AI, and PstI, and each fragment was subcloned into plasmid pJDC9 or pUC19. The nucleotide sequence of each subclone was determined. The sequence data indicated an open reading frame encoding a polypeptide of 666 amino acid residues, with a calculated molecular mass of 70,678 Da. The first 24 N-terminal amino acids of purified extracellular muramidase-2 were in very good agreement with the deduced amino acid sequence after a 49-amino-acid putative signal sequence. Analysis of the deduced amino acid sequence showed the presence at the C-terminal region of the protein of six highly homologous repeat units separated by nonhomologous intervening sequences that are highly enriched in serine and threonine. The overall sequence showed a high degree of homology with a recently cloned Streptococcus faecalis autolysin. Images PMID:1347040

  12. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    PubMed Central

    Neely, Robert K; Roberts, Richard J

    2008-01-01

    Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360), cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases. PMID:18479503

  13. Cloning, Sequencing, and Expression of the Chitinase Gene chiA74 from Bacillus thuringiensis

    PubMed Central

    Barboza-Corona, J. Eleazar; Nieto-Mazzocco, Elizabeth; Velázquez-Robledo, Rocio; Salcedo-Hernandez, Rubén; Bautista, Mayela; Jiménez, Beatriz; Ibarra, Jorge E.

    2003-01-01

    The endochitinase gene chiA74 from Bacillus thuringiensis serovar kenyae strain LBIT-82 was cloned in Escherichia coli DH5αF′. A sequence of 676 amino acids was deduced when the gene was completely sequenced. A molecular mass of 74 kDa was estimated for the preprotein, which includes a putative 4-kDa signal sequence located at the N terminus. The deduced amino acid sequence showed high degree of identity with other chitinases such as ChiB from Bacillus cereus (98%) and ChiA71 from Bacillus thuringiensis serovar pakistani (70%). Additionally, ChiA74 showed a modular structure comprised of three domains: a catalytic domain, a fibronectin-like domain, and a chitin-binding domain. All three domains showed conserved sequences when compared to other bacterial chitinase sequences. A ca. 70-kDa mature protein expressed by the cloned gene was detected in zymograms, comigrating with a chitinase produced by the LBIT-82 wild-type strain. ChiA74 is active within a wide pH range (4 to 9), although a bimodal activity was shown at pH 4.79 and 6.34. The optimal temperature was estimated at 57.2°C when tested at pH 6. The potential use of ChiA74 as a synergistic agent, along with the B. thuringiensis insecticidal Cry proteins, is discussed. PMID:12571025

  14. Cloning, sequencing and expression of the Taq I restriction-modification system.

    PubMed Central

    Slatko, B E; Benner, J S; Jager-Quinton, T; Moran, L S; Simcox, T G; Van Cott, E M; Wilson, G G

    1987-01-01

    The Taq I modification and restriction genes (recognition sequence TCGA) have been cloned in E. coli and their DNA sequences have been determined. Both proteins were characterized and the N-terminal sequence of the endonuclease was determined. The genes have the same transcriptional orientation with the methylase gene 5' to the endonuclease gene. The methylase gene is 1089 bp in length (363 amino acids, 40,576 daltons); the endonuclease gene is 702 bp in length (234 amino acids, 27,523 daltons); they are separated by 132 bp. Both methylase and endonuclease activity can be detected in cell extracts. The clones fully modify the vector and chromosomal DNA but they fail to restrict infecting phage. Clones carrying only the restriction gene are viable even in the absence of modification. The restriction gene contains 7 Taq I sites; the modification gene contains none. This asymmetric distribution of sites could be important in the regulation of the expression of the endonuclease gene. Images PMID:2827113

  15. Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100.

    PubMed Central

    Dallas, W S; Gowen, J E; Ray, P H; Cox, M J; Dev, I K

    1992-01-01

    The Escherichia coli gene coding for dihydropteroate synthase (DHPS) has been cloned and sequenced. The protein has 282 amino acids and a compositional molecular mass of 30,314 daltons. Increased expression of the enzyme was realized by using a T7 expression system. The enzyme was purified and crystallized. A temperature-sensitive mutant was isolated and found to express a DHPS with a lower specific activity and lower affinities for para-aminobenzoic acid and sulfathiazole. The allele had a point mutation that changed a phenylalanine codon to a leucine codon, and the mutation was in a codon that is conserved among published DHPS sequences. Images PMID:1522070

  16. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  17. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene.

    PubMed Central

    Thrash, C; Bankier, A T; Barrell, B G; Sternglanz, R

    1985-01-01

    The structural gene for yeast DNA topoisomerase I (TOP1) has been cloned from two yeast genomic plasmid banks. Integration of a plasmid carrying the gene into the chromosome and subsequent genetic mapping shows that TOP1 is identical to the gene previously called MAK1. Seven top1 (mak1) mutants including gene disruptions are viable, demonstrating that DNA topoisomerase I is not essential for viability in yeast. A 3787-base-pair DNA fragment including the gene has been sequenced. The protein predicted from the DNA sequence has 769 amino acids and a molecular weight of 90,020. Images PMID:2989818

  18. Characterization of a novel MICA allele, MICA*012:05, by cloning and sequencing.

    PubMed

    Wang, W Y; Tian, W; Wang, F; Zhu, F M; Li, L X

    2016-08-01

    A new MICA allelic variant, MICA*012:05, has been identified in a Chinese Mongolian population. Following polymerase chain reaction-sequence-based typing (PCR-SBT), this new allele was further confirmed by cloning and sequencing. MICA*012:05 was linked to an HLA-A*24-C*01-B*55:02-DRB1*09 haplotype. MICA*012:05 differs from MICA*012:01 by a single synonymous C to T substitution at nucleotide position 269 in exon 3. PMID:27273902

  19. Complex structural behavior of oligopurine-oligopyrimidine sequence cloned within the supercoiled plasmid.

    PubMed Central

    Parniewski, P; Galazka, G; Wilk, A; Klysik, J

    1989-01-01

    Synthetic sequence GATCC(AG)7ATCG(AT)4CG(AG)7 was cloned into plasmid and its structural behavior under the influence of supercoiling was analysed by chemical modification at variety of experimental conditions. It was found that this sequence adopts at least two different non-B conformations depending on -delta and pH values. Moreover, 12 nucleotide long non-pur.pyr spacer region separating two identical (AG)7 blocks does not provide a significant energy barrier protecting against unusual structures formation. Images PMID:2644622

  20. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences.

    PubMed Central

    Bellini, W J; Englund, G; Richardson, C D; Rozenblatt, S; Lazzarini, R A

    1986-01-01

    The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer. Images PMID:3754588

  1. Molecular cloning of five individual stage- and tissue-specific mRNA sequences from sea urchin pluteus embryos.

    PubMed Central

    Fregien, N; Dolecki, G J; Mandel, M; Humphreys, T

    1983-01-01

    Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA. Images PMID:6688291

  2. Cloning and sequencing of a Bacteroides ruminicola B(1)4 endoglucanase gene.

    PubMed Central

    Matsushita, O; Russell, J B; Wilson, D B

    1990-01-01

    Bacteroides ruminicola B(1)4, a noncellulolytic rumen bacterium, produces an endoglucanase (carboxymethylcellulase [CMCase]) that is excreted into the culture supernatant. Cultures grown on glucose, fructose, maltose, mannose, and cellobiose had high specific activities of CMCase (greater than 3 mmol of reducing sugar per mg of protein per min), but its synthesis was repressed by sucrose. B. rumincola did not grow on either ball-milled or acid-swollen cellulose even though the CMCase could hydrolyze swollen cellulose. The CMCase gene was cloned into Escherichia coli, and its nucleotide sequence contained a single open reading frame coding for a protein of 40,481 daltons. The enzyme was overproduced in E. coli under the control of the tac promoter and purified to homogeneity. The N-terminal sequence, amino acid composition, and molecular weight of the purified enzyme were similar to the values predicted from the open reading frame of the DNA sequence. However, the CMCase present in B. ruminicola was found to have a monomer molecular weight of 88,000 by Western immunoblotting. This discrepancy appeared to have resulted from our having cloned only part of the CMCase gene into E. coli. The amino acid sequence of the CMCase showed homology to sequences of beta-glucanases from Ruminococcus albus and Clostridium thermocellum. Images PMID:2361940

  3. Cloning and sequencing of a cDNA for Akazara scallop troponin T.

    PubMed

    Inoue, A; Ojima, T; Nishita, K

    1996-10-01

    A cDNA clone encoding troponin T of Akazara scallop (Chlamys nipponensis akazara) striated adductor muscle has been isolated and sequenced. The complete sequence deduced consists of 314 amino acid residues with a molecular weight of 37,206. Akazara scallop troponin T contains 55 amino acid residues more and 82 residues fewer than rabbit skeletal muscle troponin T and Drosophila melanogaster troponin T, respectively, showing almost the lowest sequence homology with rabbit troponin T (26%) but the highest homology with Drosophila troponin T (33%). Further, high sequence homology was seen in the functional regions: residues 33-120 and 174-227, corresponding respectively to residues 71-158 and 197-250 of rabbit troponin T (tropomyosin-binding regions); and residues 200-204, corresponding to 223 227 of rabbit troponin T (troponin I-binding region). In residues 1-70 (tropomyosin-binding region), however, only six residues are identical with rabbit troponin T. PMID:8947849

  4. Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra.

    PubMed Central

    Hackbarth, C J; Unsal, I; Chambers, H F

    1997-01-01

    A cosmid library from Mycobacterium tuberculosis H37Ra was introduced into Mycobacterium smegmatis, and eight recombinant clones with increased resistance to cefoxitin were identified. Isoelectric focusing detected an M. tuberculosis-derived beta-lactamase in one of these recombinant clones. A sequence analysis identified it as a class A beta-lactamase whose expression correlated with the increased resistance phenotype. PMID:9145897

  5. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    PubMed

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. PMID:27125687

  6. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  7. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    PubMed

    Liu, X; Gorovsky, M A

    1996-08-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  8. Detection of spurious interruptions of protein-coding regions in cloned cDNA sequences by GeneMark analysis.

    PubMed

    Hirosawa, M; Ishikawa, K; Nagase, T; Ohara, O

    2000-09-01

    cDNA is an artificial copy of mRNA and, therefore, no cDNA can be completely free from suspicion of cloning errors. Because overlooking these cloning errors results in serious misinterpretation of cDNA sequences, development of an alerting system targeting spurious sequences in cloned cDNAs is an urgent requirement for massive cDNA sequence analysis. We describe here the application of a modified GeneMark program, originally designed for prokaryotic gene finding, for detection of artifacts in cDNA clones. This program serves to provide a warning when any spurious split of protein-coding regions is detected through statistical analysis of cDNA sequences based on Markov models. In this study, 817 cDNA sequences deposited in public databases by us were subjected to analysis using this alerting system to assess its sensitivity and specificity. The results indicated that any spurious split of protein-coding regions in cloned cDNAs could be sensitively detected and systematically revised by means of this system after the experimental validation of the alerts. Furthermore, this study offered us, for the first time, statistical data regarding the rates and types of errors causing protein-coding splits in cloned cDNAs obtained by conventional cloning methods. PMID:10984451

  9. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases.

    PubMed

    Mustafa, Ghulam; Kousar, Sumaira; Rajoka, Muhammad Ibrahim; Jamil, Amer

    2016-12-01

    Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications. PMID:27080227

  10. Cloning, sequencing, gene organization, and localization of the human ribosomal protein RPL23A gene

    SciTech Connect

    Fan, Wufang; Christensen, M.; Eichler, E.

    1997-12-01

    The intron-containing gene for human ribosomal protein RPL23A has been cloned, sequenced, and localized. The gene is approximately 4.0 kb in length and contains five exons and four introns. All splice sites exactly match the AG/GT consensus rule. The transcript is about 0.6 kb and is detected in all tissues examined. In adult tissues, the RPL23A transcript is dramatically more abundant in pancreas, skeletal muscle, and heart, while much less abundant in kidney, brain, placenta, lung, and liver. A full-length cDNA clone of 576 nt was identified, and the nucleotide sequence was found to match the exon sequence precisely. The open reading frame encodes a polypeptide of 156 amino acids, which is absolutely conserved with the rat RPL23A protein. In the 5{prime} flanking region of the gene, a canonical TATA sequence and a defined CAAT box were found for the first time in a mammalian ribosomal protein gene. The intron-containing RPL23A gene was mapped to cytogenetic band 17q11 by fluorescence in situ hybridization. 33 refs., 4 figs.

  11. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  12. Molecular cloning and sequencing of mRNAs coding for minor adult globin polypeptides of Xenopus laevis.

    PubMed Central

    Knöchel, W; Meyerhof, W; Hummel, S; Grundmann, U

    1983-01-01

    Globin mRNA was isolated from immature red blood cells of an adult Xenopus laevis female. mRNA/cDNA hybrids were integrated in the Pst I cleavage site of pBR 322 by G/C tailing, and cloned in Escherichia coli strain HB 101. By restriction site analysis as well as hybridization behaviour we identified two clones coding for minor adult alpha and beta globin chains. Nucleotide sequence analysis and derived amino acid sequences are presented. PMID:6298748

  13. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  14. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    SciTech Connect

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. )

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  15. The nucleotide sequence of an infectious clone of the geminivirus beet curly top virus.

    PubMed

    Stanley, J; Markham, P G; Callis, R J; Pinner, M S

    1986-08-01

    A number of infectious clones of a Californian isolate of the leafhopper-transmitted geminivirus beet curly top virus (BCTV) have been constructed from virus-specific double-stranded DNA isolated from infected Beta vulgaris and used to demonstrate a single component genome. The nucleotide sequence of one infectious clone has been determined (2993 nucleotides). Comparison with other geminiviruses has shown that the organisation of the genome closely resembles DNA 1 of the whitefly-transmitted members. The four conserved coding regions of DNA 1 have highly homologous counterparts in BCTV with the exception of the putative coat protein which is more closely related to those of the leafhopper-transmitted geminiviruses suggesting a strong interrelationship between coat protein and insect vector. A BCTV component equivalent to DNA 2 is not required for virus infection or transmission and has not been isolated from infected plants. PMID:16453696

  16. Cloning, sequencing, and expression of a fibronectin/fibrinogen-binding protein from group A streptococci.

    PubMed Central

    Courtney, H S; Li, Y; Dale, J B; Hasty, D L

    1994-01-01

    Lipoteichoic acid and several streptococcal proteins have been reported to bind fibronectin (Fn) or fibrinogen (Fgn), which may serve as host receptors. We searched for such proteins by screening a library of genes from M type 5 group A streptococci cloned into Escherichia coli. Lysates of clones were probed with biotinylated Fn and biotinylated Fgn. One clone expressed a 54-kDa protein that reacted with Fn and Fgn. The protein, termed FBP54, was purified and used to immunize rabbits. Anti-FBP54 serum reacted with purified, recombinant FBP54 and with a protein of similar electrophoretic mobility in extracts of M type 5, 6, and 24 streptococci. Anti-FBP54 serum also reacted with 5 of 15 strains of intact, live streptococci, suggesting that FBP54 may be a surface antigen. Southern blot analysis confirmed that the gene is found in group A streptococci but not in Staphylococcus aureus or E. coli. The cloned gene was sequenced and contained an open reading frame encoding a protein with a calculated molecular weight of 54,186. Partial amino acid sequencing of purified FBP54 confirmed that this open reading frame encoded the protein. As determined by utilizing fusion proteins containing truncated forms of FBP54, the primary Fn/Fgn-binding domain appears to be contained in residues 1 to 89. These data suggest that FBP54 may be a surface protein of streptococci that reacts with both Fn and Fgn and therefore may participate in the adhesion of group A streptococci to host cells. Images PMID:8063411

  17. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    PubMed Central

    Tsantili, Ivi C; Karim, M Nazmul; Klapa, Maria I

    2007-01-01

    Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses) anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP) analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are needed to yield further

  18. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    PubMed Central

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  19. Serine protease variants encoded by Echis ocellatus venom gland cDNA: cloning and sequencing analysis.

    PubMed

    Hasson, S S; Mothana, R A; Sallam, T A; Al-balushi, M S; Rahman, M T; Al-Jabri, A A

    2010-01-01

    Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs) from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization) the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent. PMID:20936075

  20. Purification, characterization cloning, and sequencing of metalloendopeptidase from Streptomyces septatus TH-2.

    PubMed

    Hatanaka, Tadashi; Yoshiko Uesugi, Jiro Arima; Iwabuchi, Masaki

    2005-02-15

    Streptomyces septatus TH-2 secretes a large amount of a protease when cultured on a medium containing K(2)HPO(4) and glucose. The enzyme was purified to homogeneity by a three-step procedure. This enzyme had a molecular mass of approximately 35kDa, and was particularly inhibited by EDTA and phosphoramidon. Its substrate specificity was investigated using novel fluorescence energy transfer combinatorial libraries. The protease was found to prefer Phe and Tyr at the P(1) position, a hydrophobic or basic residue at the P(2) position, and a basic or small residue at the P(3) position. Its gene was cloned and sequenced, and its deduced amino acid sequence contained an HEXXH consensus sequence for zinc binding, confirming that it encodes metalloendopeptidase. The primary structure of the enzyme showed 40 and 69% identities with that of thermolysin from Bacillus thermoproteolyticus and that of a metalloendopeptidase from Streptomyces griseus, respectively. PMID:15639229

  1. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    PubMed Central

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-01-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains were more homologous to eukaryotic than to prokaryotic forms of the enzymes. Predicted secondary structures of the DHFR and TS domains were nearly identical to the structures identified in other DHFR and TS enzymes. PMID:2825189

  2. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    PubMed

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-12-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains were more homologous to eukaryotic than to prokaryotic forms of the enzymes. Predicted secondary structures of the DHFR and TS domains were nearly identical to the structures identified in other DHFR and TS enzymes. PMID:2825189

  3. Cloning and sequence analysis of the Schistosoma mansoni membrane glycoprotein antigen gene GP22.

    PubMed

    el-Sherbeini, M; Ramadan, N; Bostian, K A; Knopf, P M

    1991-11-01

    A family of Schistosoma mansoni proteins (18-22 kDa, pI 5.3-5.8) are biosynthesized in juvenile worms and immunoprecipitated by antibodies uniquely present in protective Fischer rat antiserum. A cDNA clone, lambda gt11-40, expressing epitopes common to this protein family was used to obtain a genomic DNA clone, by hybridization with a lambda gt11-40 oligonucleotide probe. In the 1.37 kb of genomic DNA sequenced, an open reading frame of 182 amino acids was identified on the strand corresponding to lambda gt11-40 coding sequences, and those of identical independently isolated cDNA clones defining a 25-kDa surface membrane glycoprotein. The new S. mansoni gene is termed GP22. There are two candidate promoters, confirmed by primer extension studies with worm RNA. Promoter 1 (P1) is preceded by a G + C-rich region and potential CAAT sequences, and is to the 5'-side of P2. Transcription from P1 is initiated at 2 different sites, apparently producing mRNAs with different translation start sites (ATG). Decoding these mRNAs yields protein products of 182 (P1), 175 (P1), 140 (P2) and 136 (P2) amino acids. The polypeptides share the following features: a hydrophobic segment near the carboxy terminus sufficient to span a lipid bilayer, with a consensus sequence for thio-esterification by a fatty acid; an external domain containing 2 potential N-linked glycosylation sites; and a candidate leucine-zipper motif, suggesting the protein may exist as a dimer on the worm surface. While sharing these common features in their carboxy terminal regions, the three proteins differ in the length and properties of their amino termini. The 140-amino acid protein has a short hydrophobic amino terminus, while the 175- and 182-amino acid proteins have more extensive hydrophobic sequences, each preceded by a hydrophilic amino terminal sequence. The heterogeneity observed in 2-dimensional gels of the antigen may be explained in part by the size and charge differences among the proteins deduced

  4. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii.

    PubMed

    Pszenny, V; Angel, S O; Duschak, V G; Paulino, M; Ledesma, B; Yabo, M I; Guarnera, E; Ruiz, A M; Bontempi, E J

    2000-04-15

    A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30-66, 114-150, 181-217 and 247-283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host. PMID:10779600

  5. Cloning, sequencing, and expression of interferon-γ from elk in North America

    USGS Publications Warehouse

    Sweeney, Steven J.; Emerson, Carlene; Eriks, Inge S.

    2001-01-01

    Eradication of Mycobacterium bovis relies on accurate detection of infected animals, including potential domestic and wildlife reservoirs. Available diagnostic tests lack the sensitivity and specificity necessary for accurate detection, particularly in infected wildlife populations. Recently, an in vitro diagnostic test for cattle which measures plasma interferon-gamma (IFN-γ) levels in blood following in vitro incubation with M. bovis purified protein derivative has been enveloped. This test appears to have increased sensitivity over traditional testing. Unfortunately, it does not detect IFN-γ from Cervidae. To begin to address this problem, the IFN-γ gene from elk (Cervus elaphus) was cloned, sequenced, expressed, and characterized. cDNA was cloned from mitogen stimulated peripheral blood mononuclear cells. The predicted amino acid (aa) sequence was compared to known sequences from cattle, sheep, goats, red deer (Cervus elaphus), humans, and mice. Biological activity of the recombinant elk IFN-γ (rElkIFN-γ) was confirmed in a vesicular stomatitis virus cytopathic effect reduction assay. Production of monoclonal antibodies to IFN-γ epitopes conserved between ruminant species could provide an important tool for the development of reliable, practical diagnostic assays for detection of a delayed type hypersensitivity response to a variety of persistent infectious agents in ruminants, including M. bovis and Brucella abortus. Moreover, development of these reagents will aid investigators in studies to explore immunological responses of elk that are associated with resistance to infectious diseases.

  6. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity.

    PubMed

    Labigne, A; Cussac, V; Courcoux, P

    1991-03-01

    Production of a potent urease has been described as a trait common to all Helicobacter pylori so far isolated from humans with gastritis as well as peptic ulceration. The detection of urease activity from genes cloned from H. pylori was made possible by use of a shuttle cosmid vector, allowing replication and movement of cloned DNA sequences in either Escherichia coli or Campylobacter jejuni. With this approach, we cloned a 44-kb portion of H. pylori chromosomal DNA which did not lead to urease activity when introduced into E. coli but permitted, although temporarily, biosynthesis of the urease when transferred by conjugation to C. jejuni. The recombinant cosmid (pILL585) expressing the urease phenotype was mapped and used to subclone an 8.1-kb fragment (pILL590) able to confer the same property to C. jejuni recipient strains. By a series of deletions and subclonings, the urease genes were localized to a 4.2-kb region of DNA and were sequenced by the dideoxy method. Four open reading frames were found, encoding polypeptides with predicted molecular weights of 26,500 (ureA), 61,600 (ureB), 49,200 (ureC), and 15,000 (ureD). The predicted UreA and UreB polypeptides correspond to the two structural subunits of the urease enzyme; they exhibit a high degree of homology with the three structural subunits of Proteus mirabilis (56% exact matches) as well as with the unique structural subunit of jack bean urease (55.5% exact matches). Although the UreD-predicted polypeptide has domains relevant to transmembrane proteins, no precise role could be attributed to this polypeptide or to the UreC polypeptide, which both mapped to a DNA sequence shown to be required to confer urease activity to a C. jejuni recipient strain. PMID:2001995

  7. Generation of expressed sequence tags of random root cDNA clones of Brassica napus by single-run partial sequencing.

    PubMed Central

    Park, Y S; Kwak, J M; Kwon, O Y; Kim, Y S; Lee, D S; Cho, M J; Lee, H H; Nam, H G

    1993-01-01

    Two hundred thirty-seven expressed sequence tags (ESTs) of Brassica napus were generated by single-run partial sequencing of 197 random root cDNA clones. A computer search of these root ESTs revealed that 21 ESTs show significant similarity to the protein-coding sequences in the existing data bases, including five stress- or defense-related genes and four clones related to the genes from other kingdoms. Northern blot analysis of the 10 data base-matched cDNA clones revealed that many of the clones are expressed most abundantly in root but less abundantly in other organs. However, two clones were highly root specific. The results show that generation of the root ESTs by partial sequencing of random cDNA clones along with the expression analysis is an efficient approach to isolate genes that are functional in plant root in a large scale. We also discuss the results of the examination of cDNA libraries and sequencing methods suitable for this approach. PMID:8029332

  8. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture.

    PubMed

    Steuernagel, Burkhard; Periyannan, Sambasivam K; Hernández-Pinzón, Inmaculada; Witek, Kamil; Rouse, Matthew N; Yu, Guotai; Hatta, Asyraf; Ayliffe, Mick; Bariana, Harbans; Jones, Jonathan D G; Lagudah, Evans S; Wulff, Brande B H

    2016-06-01

    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize. PMID:27111722

  9. Cloning of human papilloma virus genomic DNAs and analysis of homologous polynucleotide sequences.

    PubMed

    Heilman, C A; Law, M F; Israel, M A; Howley, P M

    1980-11-01

    The complete DNA genomes of four distinct human papilloma viruses (human papilloma virus subtype 1a [HPV-1a], HPV-1b, HPV-2a, and HPV-4) were molecularly cloned in Escherichia coli, using the certified plasmid vector pBR322. The restriction endonuclease patterns of the cloned HPV-1a and HPV-1b DNAs were similar to those already published for uncloned DNAs. Physical maps were constructed for HPV-2a DNA and HPV-4 DNA, since these viral DNAs had not been previously mapped. By using the cloned DNAs, the genomes of HPV-1a, HPV-2a, and HPV-4 were analyzed for nucleotide sequence homology. Under standard hybridization conditions (Tm = --28 degrees C), no homology was detectable among the genomes of these papilloma viruses, in agreement with previous reports. However, under less stringent conditions (i.e., Tm = --50 degrees C), stable DNA hybrids could be detected between these viral DNAs, indicating homologous segments in the genomes with approximately 30% base mismatch. By using specific DNA fragments immobilized on nitrocellulose filters, these regions of homology were mapped. Hybridization experiments between radiolabeled bovine papilloma virus type 1 (BPV-1) DNA and the unlabeled HPV-1a, HPV-2a, or HPV-4 DNA restriction fragments under low-stringency conditions indicated that the regions of homology among the HPV DNAs are also conserved in the BPV-1 genome with approximately the same degree of base mismatch. PMID:6253665

  10. Dynamics of defective hepatitis C virus clones in reinfected liver grafts in liver transplant recipients: ultradeep sequencing analysis.

    PubMed

    Ohtsuru, Shigeru; Ueda, Yoshihide; Marusawa, Hiroyuki; Inuzuka, Tadashi; Nishijima, Norihiro; Nasu, Akihiro; Shimizu, Kazuharu; Koike, Kaoru; Uemoto, Shinji; Chiba, Tsutomu

    2013-11-01

    Hepatitis C virus (HCV) reinfects liver allografts in transplant recipients by replicating immediately after transplantation, causing a rapid increase in blood serum HCV RNA levels. We evaluated dynamic changes in the viral genetic complexity after HCV reinfection of the graft liver; we also identified the characteristics of replicating HCV clones using a massively parallel ultradeep sequencing technique to determine the full-genome HCV sequences in the liver and serum specimens of five transplant recipients with genotype 1b HCV infection before and after liver transplantation. The recipients showed extremely high genetic heterogeneity before transplantation, and the HCV population makeup was not significantly different between the liver and blood serum specimens of the individuals. Viral quasispecies complexity in serum was significantly lower after liver transplantation than before it, suggesting that certain HCV clones selectively proliferated after transplantation. Defective HCV clones lacking the structural region of the HCV genome did not increase in number, and full-genome HCV clones selectively increased in number immediately after liver transplantation. A re-increase in the same defective clone existing before transplantation was detected 22 months after transplantation in one patient. Ultradeep sequencing technology revealed that the genetic heterogeneity of HCV was reduced after liver transplantation. Dynamic changes in defective HCV clones after liver transplantation indicate that these clones have important roles in the HCV life cycle. PMID:23985907

  11. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization.

    PubMed

    Shinozaki, Yukiko; Morita, Tomotake; Cao, Xiao-hong; Yoshida, Shigenobu; Koitabashi, Motoo; Watanabe, Takashi; Suzuki, Ken; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Fujii, Takeshi; Kitamoto, Hiroko K

    2013-04-01

    Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61-68%); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8±6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid). PMID:22678026

  12. Existence of a True Phosphofructokinase in Bacillus sphaericus: Cloning and Sequencing of the pfk Gene

    PubMed Central

    Alice, Alejandro F.; Pérez-Martínez, Gaspar; Sánchez-Rivas, Carmen

    2002-01-01

    Some strains of Bacillus sphaericus are entomopathogenic to mosquito larvae, which transmit diseases, such as filariasis and malaria, affecting millions of people worldwide. This species is unable to use hexoses and pentoses as unique carbon sources, which was proposed to be due to the lack of glycolytic enzymes, such as 6-phosphofructokinase (PFK). In this study, PFK activity was detected and the pfk gene was cloned and sequenced. Furthermore, this gene was shown to be present in strains belonging to all the homology groups of this heterogeneous species, in which PFK activity was also detected. A careful sequence analysis revealed the conservation of different catalytic and regulatory residues, as well as the enzyme's phylogenetic affiliation with the family of allosteric ATP-PFK enzymes. PMID:12450869

  13. Cloning and sequence analysis of candidate human natural killer-enhancing factor genes

    SciTech Connect

    Shau, H.; Butterfield, L.H.; Chiu, R.; Kim, A.

    1994-12-31

    A cytosol factor from human red blood cells enhances natural killer (NK) activity. This factor, termed NK-enhancing factor (NKEF), is a protein of 44000 M{sub r} consisting of two subunits of equal size linked by disulfide bonds. NKEF is expressed in the NK-sensitive erythroleukemic cell line K562. Using an antibody specific for NKEF as a probe for immunoblot screening, we isolated several clones from a {lambda}gt11 cDNA library of K562. Additional subcloning and sequencing revealed that the candidate NKEF cDNAs fell into one of two categories of closely related but non-identical genes, referred to as NKEF A and B. They are 88% identical in amino acid sequence and 71% identical in nucleotide sequence. Southern blot analysis suggests that there are two to three NKEF family members in the genome. Analysis of predicted amino acid sequences indicates that both NKEF A and B are cytosol proteins with several phosphorylation sites each, but that they have no glycosylation sites. They are significantly homologous to several other proteins from a wide variety of organisms ranging from prokaryotes to mammals, especially with regard to several well-conserved motifs within the amino acid sequences. The biological functions of these proteins in other species are mostly unknown, but some of them were reported to be induced by oxidative stress. Therefore, as well as for immunoregulation of NK activity, NKEF may be important for cells in coping with oxidative insults. 32 refs., 3 figs.

  14. Cloning and DNA sequence analysis of an aac(3)-Vb gene from Serratia marcescens.

    PubMed Central

    Rather, P N; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J

    1992-01-01

    The AAC(3)-V resistance mechanism is characterized by high-level resistance to the aminoglycosides gentamicin, netilmicin, 2'-N-ethylnetilmicin, and 6'-N-ethylnetilmicin and moderate resistance levels to tobramycin. Serratia marcescens 82041944 contains an AA(3)-V resistance mechanism as determined from aminoglycoside resistance profiles. This strain, however, does not exhibit hybridization with a probe derived from the previously cloned aac(3)-Va gene, (R. Allmansberger, B. Bräu, and W. Piepersberg, Mol. Gen. Genet. 198:514-520, 1985). High-pressure liquid chromatography analysis of the acetylation products of sisomicin carried out by extracts of S. marcescens 82041944 have demonstrated the presence of an AAC(3) enzyme. We have cloned the gene encoding this acetyltransferase and have designated it aac(3)-Vb. Nucleotide sequence comparisons show that the aac(3)-Va and aac(3)-Vb genes are 72% identical. The predicted AAC(3)-Vb protein is 28,782 Da. Comparisons of the deduced amino acid sequences show 75% identity and 84% similarity between the AAC(3)-Va and AAC(3)-Vb proteins. The use of a DNA fragment internal to the aac(3)-Vb as a hybridization probe demonstrated that the aac(3)-Vb gene is very rare in clinical isolates possessing an AAC(3)-V mechanism. PMID:1444303

  15. Sequencing and generation of an infectious clone of the pathogenic goose parvovirus strain LH.

    PubMed

    Wang, Jianye; Duan, Jinkun; Zhu, Liqian; Jiang, Zhiwei; Zhu, Guoqiang

    2015-03-01

    In this study, the complete genome of the virulent strain LH of goose parvovirus (GPV) was sequenced and cloned into the pBluescript II (SK) plasmid vector. Sequence alignments of the inverted terminal repeats (ITR) of GPV strains revealed a common 14-nt-pair deletion in the stem of the palindromic structure in the LH strain and three other strains isolated after 1982 when compared to three GPV strains isolated earlier than that time. Transfection of 11-day-old embryonated goose eggs with the plasmid pLH, which contains the entire genome of strain LH, resulted in successful rescue of the infectious virus. Death of embryos after transfection via the chorioallantoic membrane infiltration route occurred earlier than when transfection was done via the allantoic cavity inoculation route. The rescued virus exhibited virulence similar to that of its parental virus, as evaluated by the mortality rate in goslings. Generation of the pathogenic infectious clone provides us with a powerful tool to elucidate the molecular pathogenesis of GPV in the future. PMID:25559668

  16. Cloning, sequence analysis and phylogeny of connexin43 isolated from American black bear heart.

    PubMed

    Van Der Heyden, Marcel A G; Kok, Bart; Kouwenhoven, Evelyn N; Toien, Oivind; Barnes, Brian M; Fedorov, Vadim G; Efimov, Igor R; Opthof, Tobias

    2007-10-01

    Conduction in the heart requires gap junctions. In mammalian ventricular myocytes these consist of connexin43 (Cx43). Hearts of non-hibernating species display conduction disturbances at reduced temperatures. These may exacerbate into lethal arrhythmias. Hibernating species are protected against these arrhythmias by a non-resolved mechanism. To analyze whether the amino acid composition of Cx43 from the hibernating American black bear displays specific features, we cloned the full coding sequence of Ursus americanus Cx43 and compared with that of other (non)hibernating species. UaCx43 displays 99.7% identity to rabbit Cx43 at the amino acid level. No specific features were observed in UaCx43 when compared to previously cloned Cx43 from hibernating and non-hibernating mammals. Phylogenetic tree reconstruction of this and other published full-length Cx43 sequences reveals a very high level of conservation from fish to men. Finally, one of the previously identified six mammalian characteristic amino acids, is not conserved in the black bear. PMID:17654014

  17. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis.

    PubMed

    Ala' Aldeen, D A; Westphal, A H; De Kok, A; Weston, V; Atta, M S; Baldwin, T J; Bartley, J; Borriello, S P

    1996-12-01

    A lambdaZap-II expression library of Neisseria meningitidis was screened with a rabbit polyclonal antiserum (R-70) raised against c. 70-kDa proteins purified from outer membrane vesicles by elution from preparative SDS-polyacrylamide gels. Selected clones were isolated, further purified, and their recombinant pBluescript SKII plasmids were excised. The cloned DNA insert was sequenced from positive clones and analysed. Four open reading frames (ORFs) were identified, three of which showed a high degree of homology with the pyruvate dehydrogenase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase complex (PDHC) of a number of prokaryotic and eukaryotic species. Sequence analysis indicated that the meningococcal E2p (Men-E2p) contains two N-terminal lipoyl domains, an E1/E3 binding domain and a catalytic domain. The domains are separated by hinge regions rich in alanine, proline and charged residues. Another lipoyl domain with high sequence similarity to the Men-E2p lipoyl domain was found at the N-terminal of the E3 component. A further ORF, coding for a 16.5-kDa protein, was found between the ORFs encoding the E2p and E3 components. The identity and functional characteristics of the expressed and purified heterologous Men-E2p were confirmed as dihydrolipoyl acetyltransferase by immunological and biochemical assays. N-terminal amino-acid analysis confirmed the sequence of the DNA-derived mature protein. Purified Men-E2p reacted with monospecific antisera raised against the whole E2p molecule and against the lipoyl domain of the Azotobacter vinelandii E2p. Conversely, rabbit antiserum raised against Men-E2p reacted with protein extracts of A. vinelandii, Escherichia coli and N. gonorrhoeae and with the lipoyl and catalytic domains of E2p obtained by limited proteolysis. In contrast, the original R-70 antiserum reacted almost exclusively with the lipoyl domain, indicating the strong immunogenicity

  18. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  19. Molecular cloning, expression, and primary sequence of outer membrane protein P2 of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Tolan, R W

    1989-01-01

    The structural gene for the porin of Haemophilus influenzae type b, designated outer membrane protein P2, was cloned, and the DNA sequence was determined. An oligonucleotide probe generated by reverse translation of N-terminal amino acid sequence data from the purified protein was used to screen genomic DNA. The probe detected a single EcoRI fragment of approximately 1,700 base pairs which was cloned to lambda gt11 and then into M13 and partially sequenced. The derived amino acid sequence indicated that we had cloned the N-terminal portion of the P2 gene. An overlapping approximately 1,600-base-pair PvuII genomic fragment was cloned into M13, and the sequence of the remainder of the P2 gene was determined. The gene for P2 was then reconstructed under the control of the T7 promoter and expressed in Escherichia coli. The N-terminal sequence of the purified protein corresponds to residues 21 through 34 of the derived amino acid sequence. Thus, the protein is synthesized with a 20-amino-acid leader peptide. The Mr of the processed protein is 37,782, in good agreement with the estimate of 37,000 from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2535836

  20. Proteus mirabilis ambient-temperature fimbriae: cloning and nucleotide sequence of the aft gene cluster.

    PubMed Central

    Massad, G; Fulkerson, J F; Watson, D C; Mobley, H L

    1996-01-01

    Uropathogenic Proteus mirabilis produces at least four types of fimbriae. Amino acid sequences from two peptides, derived by tryptic digestion of the structural subunit of one type of these fimbriae, the ambient-temperature fimbriae, were determined: NVVPGQPSSTQ and LIEGENQLNYNA. PCR primers, based on these sequences and that of the N terminus, were used to amplify a 359-bp fragment. A cosmid clone, isolated from a P. mirabilis genomic library by hybridization with the 359-bp PCR product, was used to determine the nucleotide sequence of the atf gene cluster. A 3,903-bp region encodes three polypeptides: AtfA, the structural subunit; AtfB, the chaperone; and AtfC, the outer membrane molecular usher. No fimbria-related genes are evident either 5' or 3' to the three contiguous genes. AtfA demonstrates significant amino acid sequence identity with type 1 major fimbrial subunits of several enteric species. The 359-bp PCR product hybridized strongly with all Proteus isolates (n = 9) and 25% of 355 Escherichia coli isolates but failed to hybridize with any of 26 isolates among nine other uropathogenic species. Ambient-temperature fimbriae of P. mirabilis may represent a novel type of fimbriae of enteric species. PMID:8926119

  1. Molecular cloning, sequence characteristics, and tissue expression analysis of ECE1 gene in Tibetan pig.

    PubMed

    Wang, Yan-Dong; Zhang, Jian; Li, Chuan-Hao; Xu, Hai-Peng; Chen, Wei; Zeng, Yong-Qing; Wang, Hui

    2015-10-25

    Low air pressure and low oxygen partial pressure at high altitude seriously affect the survival and development of human beings and animals. ECE1 is a recently discovered gene that is involved in anti-hypoxia, but the full-length cDNA sequence has not been obtained. For a better understanding of the structure and function of the ECE1 gene and to study its effect in Tibetan pig, the cDNA of the ECE1 gene from the muscle of Tibetan pig was cloned, sequenced and characterized. The ECE1 full-length cDNA sequence consists of 2262 bp coding sequence (CDS) that encodes 753 amino acids with a molecular mass of 85,449 kD, 2 bp 5'UTR and 1507 bp 3'UTR. In addition, the phylogenetic tree analysis revealed that the Tibetan pig ECE1 has a closer genetic relationship and evolution distance with the land mammals ECE1. Furthermore, analysis by qPCR showed that the ECE1 transcript is constitutively expressed in the 10 tissues tested: the liver, subcutaneous fat, kidney, muscle, stomach, heart, brain, spleen, pancreas, and lung. These results serve as a foundation for further insight into the Tibetan pig ECE1 gene. PMID:26115769

  2. GIPS: A Software Guide to Sequencing-Based Direct Gene Cloning in Forward Genetics Studies.

    PubMed

    Hu, Han; Wang, Weitao; Zhu, Zhongxu; Zhu, Jianhua; Tan, Deyong; Zhou, Zhipeng; Mao, Chuanzao; Chen, Xin

    2016-04-01

    The Gene Identification via Phenotype Sequencing (GIPS) software considers a range of experimental and analysis choices in sequencing-based forward genetics studies within an integrated probabilistic framework, which enables direct gene cloning from the sequencing of several unrelated mutants of the same phenotype without the need to create segregation populations. GIPS estimates four measurements to help optimize an analysis procedure as follows: (1) the chance of reporting the true phenotype-associated gene; (2) the expected number of random genes that may be reported; (3) the significance of each candidate gene's association with the phenotype; and (4) the significance of violating the Mendelian assumption if no gene is reported or if all candidate genes have failed validation. The usage of GIPS is illustrated with the identification of a rice (Oryza sativa) gene that epistatically suppresses the phenotype of the phosphate2 mutant from sequencing three unrelated ethyl methanesulfonate mutants. GIPS is available at https://github.com/synergy-zju/gips/wiki with the user manual and an analysis example. PMID:26842621

  3. cDNA cloning and sequencing of rat alpha sub 1 -macroglobulin

    SciTech Connect

    Waermegaard, B.; Martin, N.; Johansson, S. )

    1992-03-03

    cDNA clones coding for the plasma protease inhibitor {alpha}{sub 1}-macroglobulin were isolated from a rat liver library. The obtained cDNA sequence contained 4701 nucleotides and had an open reading frame coding for a 1500 amino acid long protein, including a 24 amino acid signal peptide. The identity of the deduced protein sequence as {alpha}{sub 1}-macroglobulin was established by comparison with published peptide sequences of the protein. The mature protein shares 53% and 57% overall amino acid identity with the two other identified members of the rat {alpha}-macroglobulin family, {alpha}{sub 1}-inhibitor 3 and {alpha}{sub 2}-macroglobulin. A sequence typical for an internal thiol ester was identified. Of the 24 cysteines, 23 are conserved with {alpha}{sub 2}-macroglobulin. However, instead of the two most C-terminal cysteines in {alpha}{sub 2}-macroglobulin, which forms a disulfide bridge in the receptor binding domain, {alpha}{sub 1}-macroglobulin contains phenylalanine. One MRNA species hybridizing with the {alpha}{sub 1}-macroglobulin probe was observed in rat and mouse liver RNA ({approximately} 6.2 kb), whereas no corresponding transcript was detected in RNA from human liver.

  4. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis.

    PubMed Central

    Vander Horn, P B; Zahler, S A

    1992-01-01

    The leucyl-tRNA synthetase gene (leuS) of Bacillus subtilis was cloned and sequenced. A mutation in the gene, leuS1, increases the transcription and expression of the ilv-leu operion, permitting monitoring of leuS alleles. The leuS1 mutation was mapped to 270 degrees on the chromosome. Sequence analysis showed that the mutation is a single-base substitution, possibly in a monocistronic operon. The leader mRNA predicted by the sequence would contain a number of possible secondary structures and a T box, a sequence observed upstream of leader mRNA terminators of Bacillus tRNA synthetases and the B. subtilis ilv-leu operon. The DNA of the B. subtilis leuS open reading frame is 48% identical to the leuS gene of Escherichia coli and is predicted to encode a polypeptide with 46% identity to the leucyl-tRNA synthetase of E. coli. PMID:1317842

  5. Cloning and sequence analysis of the ces10 gene encoding a Sphingomonas paucimobilis esterase.

    PubMed

    Videira, P A; Fialho, A M; Marques, A R; Coutinho, P M; Sá-Correia, I

    2003-06-01

    The ces10 gene of the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461 was cloned and sequenced. Multi-sequence alignment of the deduced protein indicated that Ces10 belongs to the serine hydrolase family with a potential catalytic triad comprising Ser(153) (within the G-X-S-X-G consensus sequence), His(75) and Asp(125). The mixed block results obtained following pattern search and the low identities detected in a BLAST analysis indicate that Ces10 is significantly different from other characterised bacterial esterases/lipases. Nevertheless, the Ces10 amino acid sequence showed 45% similarity with Rhodococcus sp. heroin esterase and 48% with Bacillus subtilis p-nitrobenzyl esterase. Ces10, with a predicted molecular mass of 30,641 Da, was overproduced in Escherichia coli and purified to homogeneity in a histidine-tagged form. Enzyme assays using p-nitrophenyl-esters (p-NP-esters) with different acyl chain-lengths as the substrate confirmed the anticipated esterase activity. Ces10 exhibited a marked preference for short-chain fatty acids, yielding the highest activity with p-NP-propionate (optimal pH 7.4, optimal temperature 37 degrees C). PMID:12764567

  6. Flow Cytometry-assisted Cloning of Specific Sequence Motifs fromComplex 16S ribosomal RNA Gene Libraries.

    SciTech Connect

    Nielsen, J.L.; Schramm, A.; Bernhard, A.E.; van den Engh, G.J.; Stahl, D.A.

    2004-07-21

    A flow cytometry method was developed for rapid screeningand recovery of cloned DNA containing common sequence motifs. Thisapproach, termed fluorescence-activated cell sorting-assisted cloning,was used to recover sequences affiliated with a unique lineage within theBacteroidetes not abundant in a clone library of environmental 16S rRNAgenes. Retrieval and sequence analysis of phylogenetically informativegenes has become a standard cultivation-independent technique toinvestigate microbial diversity in nature (7, 18). Genes encoding the 16SrRNA, because of the relative ease of their selective amplification, havebeen most frequently employed for general diversity surveys (16).Environmental studies have also focused on specific subpopulationsaffiliated with a phylogenetic group or identified by genes encodingspecific metabolic functions (e.g., ammonia oxidation, sulfaterespiration, and nitrate reduction) (8,15,20). However, specificpopulations may be of low abundance (1,23), or the genes encodingspecific metabolic functions may be insufficiently conserved to providepriming sites for general PCR amplification. Three general approacheshave been used to obtain 16S rRNA sequence information from low-abundancepopulations: screening hundreds to thousands of clones in a general 16SrRNA gene library (21), flow cytometric sorting of a subpopulation ofenvironmentally derived cells labeled by fluorescent in situhybridization (FISH) (27), or selective PCR amplification using primersspecific for the subpopulation (2,23). While the first approach is simplytime-consuming and tedious, the second has been restricted to fairlylarge and strongly fluorescent cells from aquatic samples (5, 27). Thethird approach often generates fragments of only a few hundred bases dueto the limited number of specific priming sites. Partial sequenceinformation often degrades analysis, obscuring or distorting thephylogenetic placement of the new sequences (11, 20). A more robustcharacterization of environ

  7. Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi.

    PubMed Central

    Showalter, R E; Martin, M O; Silverman, M R

    1990-01-01

    Mutagenesis with transposon mini-Mulac was used previously to identify a regulatory locus necessary for expression of bioluminescence genes, lux, in Vibrio harveyi (M. Martin, R. Showalter, and M. Silverman, J. Bacteriol. 171:2406-2414, 1989). Mutants with transposon insertions in this regulatory locus were used to construct a hybridization probe which was used in this study to detect recombinants in a cosmid library containing the homologous DNA. Recombinant cosmids with this DNA stimulated expression of the genes encoding enzymes for luminescence, i.e., the luxCDABE operon, which were positioned in trans on a compatible replicon in Escherichia coli. Transposon mutagenesis and analysis of the DNA sequence of the cloned DNA indicated that regulatory function resided in a single gene of about 0.6-kilobases named luxR. Expression of bioluminescence in V. harveyi and in the fish light-organ symbiont Vibrio fischeri is controlled by density-sensing mechanisms involving the accumulation of small signal molecules called autoinducers, but similarity of the two luminescence systems at the molecular level was not apparent in this study. The amino acid sequence of the LuxR product of V. harveyi, which indicates a structural relationship to some DNA-binding proteins, is not similar to the sequence of the protein that regulates expression of luminescence in V. fischeri. In addition, reconstitution of autoinducer-controlled luminescence in recombinant E. coli, already achieved with lux genes cloned from V. fischeri, was not accomplished with the isolation of luxR from V. harveyi, suggesting a requirement for an additional regulatory component. PMID:2160932

  8. Development of positive control materials for DNA-based detection of cystic fibrosis: Cloning and sequencing of 31 mutations

    SciTech Connect

    Iovannisci, D.; Brown, C.; Winn-Deen, E.

    1994-09-01

    The cloning and sequencing of the gene associated with cystic fibrosis (CF) now provides the opportunity for earlier detection and carrier screening through DNA-based detection schemes. To date, over 300 mutations have been reported to the CF Consortium; however, only 30 mutations have been observed frequently enough world-wide to warrant routine screening. Many of these mutations are not available as cloned material or as established tissue culture cell lines to aid in the development of DNA-based detection assays. We have therefore cloned the 30 most frequently reported mutations, plus the mutation R347H due to its association with male infertility (31 mutations, total). Two approaches were employed: direct PCR amplification, where mutations were available from patient sources, and site-directed PCR mutagenesis of normal genomic DNA to generate the remaining mutations. After amplification, products were cloned into a sequencing vector, bacterial transformants were screened by a novel method (PCR/oligonucleotide litigation assay/sequence-coded separation), and plamid DNA sequences determined by automated fluorescent methods on the Applied Biosystems 373A. Mixing of the clones allows the construction of artificial genotypes useful as positive control material for assay validation. A second round of mutagenesis, resulting in the construction of plasmids bearing multiple mutations, will be evaluated for their utility as reagent control materials in kit development.

  9. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08.

    PubMed

    Zeng, Hua-Wei; Cai, Yu-Jie; Liao, Xiang-Ru; Zhang, Feng; Zhang, Da-Bing

    2011-04-01

    A monofunctional catalase from Serratia marcescens SYBC08 produced by liquid state fermentation in 7 liter fermenter was isolated and purified by ammonium sulfate precipitation (ASP), ion exchange chromatography (IEC), and gel filtration (GF) and characterized. Its sequence was analyzed by LC-MS/MS technique and gene cloning. The highest catalase production (20,289 U · ml(-1)) was achieved after incubation for 40 h. The purified catalase had an estimated molecular mass of 230 kDa, consisting of four identical subunits of 58 kDa. High specific activity of the catalase (199,584 U · mg(-1) protein) was 3.44 times higher than that of Halomonas sp. Sk1 catalase (57,900 U · mg(-1) protein). The enzyme without peroxidase activity was found to be an atypical electronic spectrum of monofunctional catalase. The apparent K(m) and V(max) were 78 mM and 188, 212 per µM H(2) O(2) µM heme(-1) s(-1), respectivly. The enzyme displayed a broad pH activity range (pH 5.0-11.0), with optimal pH range of 7.0-9.0: It was most active at 20 °C and had 78% activity at 0 °C. Its thermo stability was slightly higher compared to that of commercial catalase from bovine liver. LC-MS/MS analysis confirmed that the deduced amino acid sequence of cloning gene was the catalase sequence from Serratia marcescens SYBC08. The sequence was compared with that of 23 related catalases. Although most of active site residues, NADPH-binding residues, proximal residues of the heme, distal residues of the heme and residues interacting with a water molecule in the enzyme were well conserved in 23 related catalases, weakly conserved residues were found. Its sequence was closely related with that of catalases from pathogenic bacterium in the family Enterobacteriaceae. This result imply that the enzyme with high specific activity plays a significant role in preventing those microorganisms of the family Enterobacteriaceae against hydrogen peroxide resulted in cellular damage. Calalase yield by Serratia

  10. Characterization of four human YAC libraries for clone size, chimerism and X chromosome sequence representation.

    PubMed Central

    Nagaraja, R; Kere, J; MacMillan, S; Masisi, M J; Johnson, D; Molini, B J; Halley, G R; Wein, K; Trusgnich, M; Eble, B

    1994-01-01

    Four collections of human X-specific YACs, derived from human cells containing supernumerary X chromosomes or from somatic cell hybrids containing only X human DNA were characterized. In each collection, 80-85% of YAC strains contained a single X YAC. Five thousand YACs from the various libraries were sized, and cocloning was assessed in subsets by the fraction of YAC insert-ends with non-X sequences. Cocloning was substantial, ranging up to 50% for different collections; and in agreement with previous indications, in all libraries the larger the YACs, the higher the level of cocloning. In libraries made from human-hamster hybrid cells, expected numbers of clones were recovered by STS-based screening; but unexpectedly, the two collections from cells with 4 or 5 X chromosomes yielded numbers of YACs corresponding to an apparent content of only about two X equivalents. Thus it is possible that the DNA of inactive X chromosomes is poorly cloned into YACs, speculatively perhaps because of its specialized chromatin structure. Images PMID:8078777

  11. Cloning, sequencing, expression and characterization of DNA photolyase from Salmonella typhimurium.

    PubMed Central

    Li, Y F; Sancar, A

    1991-01-01

    We have cloned the phr gene that encodes DNA photolyase from Salmonella typhimurium by in vivo complementation of Escherichia coli phr gene defect. The S.typhimurium phr gene is 1419 base pairs long and the deduced amino acid sequence has 80% identity with that of E. coli photolyase. We expressed the S.typhimurium phr gene in E.coli by ligating the E.coli trc promoter 5' to the gene, and purified the enzyme to near homogeneity. The apparent molecular weight of S.typhimurium photolyase is 54,000 dalton as determined by SDS-polyacrylamide gel electrophoresis, which is consistent with the calculated molecular weight of 53,932 dalton from the deduced phr gene product. S.typhimurium photolyase is purple-blue in color with near UV-visible absorption peaks at 384, 480, 580, and 625 nm and a fluorescence peak at 470 nm. From the characteristic absorption and fluorescence spectra and reconstitution experiments, S.typhimurium photolyase appears to contain flavin and methenyltetrahydrofolate as chromophore-cofactors as do the E.coli and yeast photolyases. Thus, S.typhimurium protein is the third folate class photolyase to be cloned and characterized to date. The binding constant of S.typhimurium photolyase to thymine dimer in DNA is kD = 1.6 x 10(-9) M, and the quantum yield of photorepair at 384 nm is 0.5. Images PMID:1840665

  12. Cloning, sequencing, and expression of bacteriophage BF23 late genes 24 and 25 encoding tail proteins.

    PubMed Central

    Nakayama, S; Kaneko, T; Ishimaru, H; Moriwaki, H; Mizobuchi, K

    1994-01-01

    Two bacteriophage BF23 late genes, genes 24 and 25, were isolated on a 7.4-kb PstI fragment from the phage DNA, and their nucleotide sequences were determined. Gene 24 encodes a minor tail protein with the expected M(r) of 34,309, and gene 25 located 4 bp upstream of gene 24 encodes a major tail protein with the expected M(r) of 50,329. When total cellular RNA isolated from either phage-infected cells or cells bearing the cloned genes was analyzed by the primer extension method using the primers specific to either gene 25 or gene 24, we identified a possible late gene promoter, designated P25, in the 5'-flanking region of gene 25. This promoter was similar in structure to Escherichia coli promoters for sigma 70. Studies of the translational gene 25- and gene 24-lacZ fusions in the cloned gene system revealed that the promoter P25 was responsible for the expression of both genes 25 and 24 even in the absence of the regulatory genes which were absolutely required for late gene expression in the normal phage-infected cells. These results indicate that the two genes constitute an operon under the control of P25 and that the regulatory gene products of BF23 do not participate directly in specifying the late gene promoter. Images PMID:7961500

  13. Molecular cloning and sequencing analysis of the interferon receptor (IFNAR-1) from Columba livia

    PubMed Central

    Chang, Wei Shan

    2014-01-01

    Objective Partial sequence cloning of interferon receptor (IFNAR-1) of Columba livia. Material and methods In order to obtain a certain length (630 bp) of gene, a pair of primers was designed according to the conserved nucleotide sequence of Gallus (EU477527.1) and Taeniopygia guttata (XM_002189232.1) IFNAR-1 gene fragment that was published by GenBank. Special primers were designed by the Race method to amplify the 3'terminal cDNA. Results The Columba livia IFNAR-1 displayed 88.5%, 80.5% and 73.8% nucleotide identity to Falco peregrinus, Gallus and Taeniopygia guttata, respectively. Phylogenetic analysis of the IFNAR1 gene showed that the relationship of Columba livia, Falco peregrinus and chicken had high homology. Conclusions We successfully obtained a Columba livia IFNAR-1 gene partial sequence. Analysis of the genetic tree showed that the relationship of Columba livia and Falco peregrinus IFNAR-1 had high homology. This result can be used as reference for further research and practical application. PMID:26155117

  14. Molecular cloning, sequence analysis and tissue-specific expression of Akirin2 gene in Tianfu goat.

    PubMed

    Ma, Jisi; Xu, Gangyi; Wan, Lu; Wang, Nianlu

    2015-01-01

    The Akirin2 gene is a nuclear factor and is considered as a potential functional candidate gene for meat quality. To better understand the structures and functions of Akirin2 gene, the cDNA of the Tianfu goat Akirin2 gene was cloned. Sequence analysis showed that the Tianfu goat Akirin2 cDNA full coding sequence (CDS) contains 579bp nucleotides that encode 192 amino acids. A phylogenic tree of the Akirin2 protein sequence from the Tianfu goat and other species revealed that the Tianfu goat Akirin2 was closely related with cattle and sheep Akirin2. RT-qPCR analysis showed that Akirin2 was expressed in the myocardium, liver, spleen, lung, kidney, leg muscle, abdominal muscle and the longissimus dorsi muscle. Especially, high expression levels of Akirin2 were detected in the spleen, lung, and kidney whereas lower expression levels were seen in the liver, myocardium, leg muscle, abdominal muscle and longissimus dorsi muscle. Temporal mRNA expression showed that Akirin2 expression levels in the longissimus dorsi muscle, first increased then decreased from day 1 to month 12. Western blotting results showed that the Akirin2 protein was only detected in the lung and three skeletal muscle tissues. PMID:25239665

  15. Cloning and sequence analysis of the Blumea balsamifera DC farnesyl diphosphate synthase gene.

    PubMed

    Pang, Y X; Guan, L L; Wu, L F; Chen, Z X; Wang, K; Xie, X L; Yu, F L; Chen, X L; Zhang, Y B; Jiang, Q

    2014-01-01

    Blumea balsamifera DC is a member of the Compositae family and is frequently used as traditional Chinese medicine. Blumea balsamifera is rich in monoterpenes, which possess a variety of pharmacological activities, such as antioxidant, anti-bacteria, and anti-viral activities. Farnesyl diphosphate synthase (FPS) is a key enzyme in the biosynthetic pathway of terpenes, playing an important regulatory role in plant growth, such as resistance and secondary metabolism. Based on the conserved oligo amino acid residues of published FPS genes from other higher plant species, a cDNA sequence, designated BbFPS, was isolated from B. balsamifera DC using polymerase chain reaction. The clones were an average of 1.6 kb and contained an open reading frame that predicted a polypeptide of 342 amino acids with 89.07% identity to FPS from other plants. The deduced amino acid sequence was dominated by hydrophobic regions and contained 2 highly conserved DDxxD motifs that are essential for proper functioning of FPS. Phylogenetic analysis indicated that FPS grouped with other composite families. Prediction of secondary structure and subcellular localization suggested that alpha helices made up 70% of the amino acids of the sequence. PMID:25501197

  16. Molecular cloning, sequence identification, and gene expression analysis of bovine ADCY2 gene.

    PubMed

    Li, Y X; Jin, H G; Yan, C G; Ren, C Y; Jiang, C J; Jin, C D; Seo, K S; Jin, X

    2014-06-01

    Adenylyl cyclase 2 (ADCY2), a class B member of adenylyl cyclases, is important in accelerating phosphor-acidification as well as glycogen synthesis and breakdown. Given its distinct role in flesh tenderization after butchering, we cloned and sequenced the ADCY2 gene from Yanbian cattle and assessed its expression in bovine tissues. A 2947 bp nucleotide sequence representing the full-length cDNA of bovine ADCY2 gene was obtained by 5' and 3' remote analysis computations for gene expression. Analyses of the putative protein sequence showed that ADCY2 had high homology among species, except with the non-mammal Oreochromis niloticus. Gene structural domain analyses in humans and rats indicated that the ADCY2 protein had no flaw; only the transmembrane domain was reduced and the CYCc structure domain was shortened. Assessment of ADCY2 expression in bovine tissues by real-time PCR showed that the highest expression was in the testes, followed by the longissimus dorsi, tensor fasciae latae, and latissimus dorsi. These data will serve as a foundation for further insight into the cattle ADCY2 gene. PMID:24797538

  17. Cloning and sequencing of a gene coding for an actin binding protein of Saccharomyces exiguus.

    PubMed

    Lange, U; Steiner, S; Grolig, F; Wagner, G; Philippsen, P

    1994-03-01

    The actin binding protein Abp1p of the yeast Saccharomyces cervisiae is thought to be involved in the spatial organisation of cell surface growth. It contains a potential actin binding domain and an SH-3 region, a common motif of many signal transduction proteins [1]. We have cloned and sequenced an ABP1 homologous gene of Saccharomyces exiguus, a yeast which is only distantly related to S. cerevisiae. The protein encoded by this gene is slightly larger than the respective S. cerevisiae protein (617 versus 592 amino acids). The two genes are 67.4% identical and the deduced amino acid sequences share an overall identity of 59.8%. The most conserved regions are the 148 N-terminal amino acids containing the potential actin binding site and the 58 C-terminal amino acids including the SH3 domain. In addition, both proteins contain a repeated motif of unknown function which is rich in glutamic acids with the sequence EEEEEEEAPAPSLPSR in the S. exiguus Abp1p. PMID:8110838

  18. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    PubMed

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development. PMID:26948891

  19. Cloning, Sequencing, and Role in Serum Susceptibility of Porin II from Mesophilic Aeromonas hydrophila

    PubMed Central

    Nogueras, Maria Mercé; Merino, Susana; Aguilar, Alicia; Benedi, Vicente Javier; Tomás, Juan M.

    2000-01-01

    We cloned and sequenced the structural gene for Aeromonas hydrophila porin II from strain AH-3 (serogroup O:34). The genetic position of this gene, like that of ompF in Escherichia coli, is adjacent to aspC and transcribed in the same direction. However, upstream of the porin II gene no similarities with E. coli were found. We obtained defined insertion mutants in porin II gene either in A. hydrophila (O:34) or A. veronii sobria (serogroup O:11) serum-resistant or -sensitive strains. Furthermore, we complemented these mutants with a plasmid harboring only the porin II gene, which allowed us to define the role of porin II as an important surface molecule involved in serum susceptibility and C1q binding in these strains. PMID:10722573

  20. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase.

    PubMed Central

    Finocchiaro, G; Taroni, F; Rocchi, M; Martin, A L; Colombo, I; Tarelli, G T; DiDonato, S

    1991-01-01

    We have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase (CPTase; palmitoyl-CoA:L-carnitine O-palmitoyltransferase, EC 2.3.1.21), an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH2-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH2-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hamster somatic cell hybrids. Images PMID:1988962

  1. [Cloning, sequence analysis and expression of N-acetylglutamate kinase gene in Corynebacterium crenatum].

    PubMed

    Hao, Ning; Zhao, Zhi; Wang, Yu; Zhang, Ying-zi; Ding, Jiu-yuan

    2006-02-01

    N-Acetylglutamate kinase (EC 2.7.2.8;NAGK) genes from wild-type Corynebacterium crenatum AS 1.542 and a L-arginine-producing mutant C. crenatum 971.1 were cloned and sequenced. Analysis of argB sequences revealed that only one ORF existed, which used ATG as the initiation codon and coded a peptide of 317 amino acids with a calculated molecular weight of 33.6kDa. Only one nucleotide difference was found in the structure gene and the difference did not cause a change of amino acid by comparison of the gene sequences between the wild type C. crenatum AS 1.542 and the mutant 971.1. The ORF sequence of argB from C. crenatum AS 1.542 showed homologies of 99.89%, 76.62%, 37.94% to those from Corynebacterium glutamicum ATCC 13032, Corynebacterium efficient YS-314 and Escherichia coli k12. And the amino acid sequence deduced from ORF displayed homologies of 100%, 78.55%, 25.25% to those from microorganisms above, respectively. An internal promoter was found in the upstream of the argB gene from C. crenatum. The argB gene from C. crenatum AS 1.542 was expressed both in C. crenatum AS 1.542 and 971.1. The NAGK activity of transformed C. crenatum AS 1.542 was greatly increased by the induction of IPTG. The NAGK activity of transformed C. crenatum 971.1 was almost twice as much as that of C. crenatum 971.1 under the same induction. The amplification of the NAGK activity yielded 25% increase of L-arginine production in C. crenatum 971.1. PMID:16579472

  2. Recombinant Zymomonas mobilis with improved xylose utilization

    DOEpatents

    Zhang, Min

    2003-05-20

    A strain derived from Zymomonas mobilis ATCC31821 or its derivative capable of producing ethanol upon fermentation of a carbohydrate medium containing xylose to provide enhanced xylose utilization and enhanced ethanol process yield, the strain or its derivative comprising exogenous genes encoding xylose isornerase, xylulokinase, transaldolase and transketolase, the genes are fused to at least one promotor recognized by Zymomonas which regulates the expression of at least one of the genes.

  3. Production of acetaldehyde by Zymomonas mobilis

    SciTech Connect

    Wecker, M.S.A.; Zall, R.R.

    1987-12-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentration of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for production separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.

  4. Production of Acetaldehyde by Zymomonas mobilis

    PubMed Central

    Wecker, Matt S. A.; Zall, Robert R.

    1987-01-01

    Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value. PMID:16347497

  5. Cloning and nucleotide sequence of the gene coding for citrate synthase from a thermotolerant Bacillus sp

    SciTech Connect

    Schendel, F.J.; August, P.R.; Anderson, C.R.; Flickinger, M.C. ); Hanson, R.S. )

    1992-01-01

    Acetate salts are emerging as potentially attractive bulk chemicals for a variety of environmental applications, for example, as catalysts to facilitate combustion of high-sulfur coal by electrical utilities and as the biodegradable noncorrosive highway deicing salt calcium magnesium acetate. The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (M{sub r}, 84,500) with a sub unit with an M{sub r} of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.

  6. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis

    SciTech Connect

    Lawford, H.G.; Rousseau, J.D.

    1991-12-31

    Efficient utilization of lignocellulosic feedstocks offers an opportunity to reduce the cost of producing fuel ethanol. The fermentation performance characteristics of recombinant Escherichia coli ATCC 11303 carrying the {open_quotes}PET plasmid{close_quotes} (pLO1297) with the lac operon controlling the expression of pyruvate decarboxylase (pdc) and alcohol dehydrogenase 11 (adhB) genes cloned from Zymomonas mobilis CP4 were assessed in batch and continuous processes with sugar mixtures designed to mimic process streams from lignocellulosic hydrolysis systems.

  7. Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli.

    PubMed Central

    Richter, G; Ritz, H; Katzenmeier, G; Volk, R; Kohnle, A; Lottspeich, F; Allendorf, D; Bacher, A

    1993-01-01

    GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis. PMID:8320220

  8. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.

    PubMed

    Abedinia, M; Layfield, R; Jones, S M; Nixon, P F; Mattick, J S

    1992-03-31

    Transketolase is a key enzyme in the pentose-phosphate pathway which has been implicated in the latent human genetic disease, Wernicke-Korsakoff syndrome. Here we report the cloning and partial characterisation of the coding sequences encoding human transketolase from a human brain cDNA library. The library was screened with oligonucleotide probes based on the amino acid sequence of proteolytic fragments of the purified protein. Northern blots showed that the transketolase mRNA is approximately 2.2 kb, close to the minimum expected, of which approximately 60% was represented in the largest cDNA clone. Sequence analysis of the transketolase coding sequences reveals a number of homologies with related enzymes from other species. PMID:1567394

  9. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc.

    PubMed

    Hizume, M; Shibata, F; Maruyama, Y; Kondo, T

    2001-09-01

    Japanese red pine, Pinus densiflora, has 2n=24 chromosomes, of which most carry chromomycin A3 (CMA) and 4',6-diamidino-2-phenylindole (DAPI) bands at their centromere-proximal regions. It was proposed that these regions contain highly repetitive DNA. The DNA localized in the proximal fluorescent bands was isolated and characterized. In P. densiflora, centromeric and neighboring segments of the somatic chromosomes were dissected with a manual micromanipulator. The centromeric DNA was amplified from the DNA contained in dissected centromeric segments by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) and a cloned DNA library was constructed. Thirty-one clones carrying highly repetitive DNA were selected by colony hybridization using Cot-1 DNA from this species as a probe, and their chromosomal localization was determined by fluorescent in situ hybridization (FISH). Clone PDCD501 was localized to the proximal CMA band of 20 chromosomes. This clone contained tandem repeats, comprising a 27 bp repeat unit, which was sufficient to provide the proximal FISH signal, with a 52.3% GC content. The repetitive sequence was named PCSR (proximal CMA band-specific repeat). Clone PDCD159 was 1700 bp in length, with a 61.7% AT content, and produced FISH signals at the proximal DAPI band of the remaining four chromosomes. Four clones hybridized strongly to the secondary constriction and gave weak signals at the centromeric region of several chromosomes. Clone PDCD537, one of the four clones, was homologous to the 26S rRNA gene. A PCR experiment using microdissected centromeric regions suggested that the centromeric region contains 18S and 26S rDNA. Another 24 clones hybridized to whole chromosome arms, with varying intensities and might represent dispersed repetitive DNA. PMID:11685534

  10. Molecular cloning, sequence characterization, and tissue expression analysis of Hi-Line Brown chicken Akirin2.

    PubMed

    Man, Chaolai; Li, Xiang; Lee, Jongeun

    2011-10-01

    Akirins are novel important nuclear proteins able to modulate transcriptional activities in a gene-specific manner. Akirin2 is an important gene related to immune responses, it is necessary to isolate the akirin2 gene from chicken because it may be associated with vaccine and enhancement of immune response. In this study, a Hi-Line Brown chicken homolog of the vertebrate akirin2 gene was cloned, sequenced, and characterized. The akirin2 full-length coding sequence (CDS) consisted of 576nt and encoded 191 amino acids with a molecular weight of 21.58 kD. The COOH-terminal alpha-helix region was well conserved between chicken and other animals. RT-PCR analysis showed that the akirin2 transcripts were constitutively expressed in 16 tissues tested. Several microRNA target sites were predicted in the CDS of chicken akirin2 gene. We presume that Akirin2 protein may be used as a new-type immunopotentiator in poultry immune system in the future. PMID:21858694

  11. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris.

    PubMed Central

    Mayo, B; Kok, J; Venema, K; Bockelmann, W; Teuber, M; Reinke, H; Venema, G

    1991-01-01

    Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown. Images PMID:1674655

  12. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    PubMed Central

    2010-01-01

    Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89%) and that in the Te. nigroviridis genome (4.66%). In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp) in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp). Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different accumulation of non

  13. Cloning and Sequence Analysis of LipL32, a Surface–Exposed Lipoprotein of Pathogenic Leptospira Spp

    PubMed Central

    Khodaverdi Darian, Ebrahim; Forghanifard, Mohammad Mahdi; Moradi Bidhendi, Soheila; Chang, Yung-Fu; Yahaghi, Emad; Esmaelizad, Majid; Khaleghizadeh, Maryam; Khaki, Pejvak

    2013-01-01

    Background Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira species. A major challenge of this disease is the application of basic research to improve diagnostic methods and related vaccine development. Outer membrane proteins of Leptospira are potential candidates that may be useful as diagnostic or immunogenic factors in treatment and analysis of the disease. Objectives To develop an effective subunit vaccine against prevalent pathogenic Leptospira species, we sequenced and analyzed the LipL32 gene from three different Leptospira interrogans (L.interrogans) vaccinal serovars in Iran. Materials and Methods Following DNA extraction from these three serovars, the related LipL32 genes were amplified and cloned in the pTZ57R/T vector. Recombinant clones were confirmed by colony- PCR and DNA sequencing. The related sequences were subjected to homology analysis by comparing them to sequences in the Genbank database. Results The LipL32 sequences were >94% homologous among the vaccinal and other pathogenic Leptospira serovars in GenBank. This result indicates the conservation of this gene within the pathogenic Leptospires. Conclusions The cloned gene in this study may provide a potentially suitable platform for development of a variety of applications such as serological diagnostic tests or recombinant vaccines against leptospirosis. PMID:24719688

  14. L-asparaginase II of Escherichia coli K-12: cloning, mapping and sequencing of the ansB gene.

    PubMed

    Bonthron, D T

    1990-07-01

    The Escherichia coli gene ansB, encoding the chemotherapeutic enzyme L-asparaginase II, has been cloned, using a strategy based on the polymerase chain reaction, and sequenced. The amino acid (aa) sequence differs in eleven positions from the data previously derived by direct aa sequencing. A cleavable secretory signal peptide precedes the N terminus of the mature protein. The ansB gene maps to position 3114 kb on the physical map of E. coli [Kohara et al., Cell 50 (1987) 495-508], corresponding to approx. 63.8 min on the genetic map. PMID:2144836

  15. Multilocus sequence typing identifies epidemic clones of Flavobacterium psychrophilum in Nordic countries.

    PubMed

    Nilsen, Hanne; Sundell, Krister; Duchaud, Eric; Nicolas, Pierre; Dalsgaard, Inger; Madsen, Lone; Aspán, Anna; Jansson, Eva; Colquhoun, Duncan J; Wiklund, Tom

    2014-05-01

    Flavobacterium psychrophilum is the causative agent of bacterial cold water disease (BCWD), which affects a variety of freshwater-reared salmonid species. A large-scale study was performed to investigate the genetic diversity of F. psychrophilum in the four Nordic countries: Denmark, Finland, Norway, and Sweden. Multilocus sequence typing of 560 geographically and temporally disparate F. psychrophilum isolates collected from various sources between 1983 and 2012 revealed 81 different sequence types (STs) belonging to 12 clonal complexes (CCs) and 30 singleton STs. The largest CC, CC-ST10, which represented almost exclusively isolates from rainbow trout and included the most predominant genotype, ST2, comprised 65% of all isolates examined. In Norway, with a shorter history (<10 years) of BCWD in rainbow trout, ST2 was the only isolated CC-ST10 genotype, suggesting a recent introduction of an epidemic clone. The study identified five additional CCs shared between countries and five country-specific CCs, some with apparent host specificity. Almost 80% of the singleton STs were isolated from non-rainbow trout species or the environment. The present study reveals a simultaneous presence of genetically distinct CCs in the Nordic countries and points out specific F. psychrophilum STs posing a threat to the salmonid production. The study provides a significant contribution toward mapping the genetic diversity of F. psychrophilum globally and support for the existence of an epidemic population structure where recombination is a significant driver in F. psychrophilum evolution. Evidence indicating dissemination of a putatively virulent clonal complex (CC-ST10) with commercial movement of fish or fish products is strengthened. PMID:24561585

  16. Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase.

    PubMed Central

    McDaniel, C S; Harper, L L; Wild, J R

    1988-01-01

    Plasmid pCMS1 was isolated from Pseudomonas diminuta MG, a strain which constitutively hydrolyzes a broad spectrum of organophosphorus compounds. The native plasmid was restricted with PstI, and individual DNA fragments were subcloned into pBR322. A recombinant plasmid transformed into Escherichia coli possessed weak hydrolytic activity, and Southern blotting with the native plasmid DNA verified that the DNA sequence originated from pCMS1. When the cloned 1.3-kilobase fragment was placed behind the lacZ' promoter of M13mp10 and retransformed into E. coli, clear-plaque isolates with correctly sized inserts exhibited isopropyl-beta-D-thiogalactopyranoside-inducible whole-cell activity. Sequence determination of the M13 constructions identified an open reading frame of 975 bases preceded by a putative ribosome-binding site appropriately positioned upstream of the first ATG codon in the open reading frame. An intragenic fusion of the opd gene with the lacZ gene produced a hybrid polypeptide which was purified by beta-galactosidase immunoaffinity chromatography and used to confirm the open reading frame of opd. The gene product, an organophosphorus phosphotriesterase, would have a molecular weight of 35,418 if the presumed start site is correct. Eighty to ninety percent of the enzymatic activity was associated with the pseudomonad membrane fractions. When dissociated by treatment with 0.1% Triton and 1 M NaCl, the enzymatic activity was associated with a molecular weight of approximately 65,000, suggesting that the active enzyme was dimeric. Images PMID:2834339

  17. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    PubMed

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA. PMID:21416665

  18. Cloning, sequencing, and analysis of inv8 chromosome breakpoints associated with recombinant 8 syndrome.

    PubMed

    Graw, S L; Sample, T; Bleskan, J; Sujansky, E; Patterson, D

    2000-03-01

    Rec8 syndrome (also known as "recombinant 8 syndrome" and "San Luis Valley syndrome") is a chromosomal disorder found in individuals of Hispanic descent with ancestry from the San Luis Valley of southern Colorado and northern New Mexico. Affected individuals typically have mental retardation, congenital heart defects, seizures, a characteristic facial appearance, and other manifestations. The recombinant chromosome is rec(8)dup(8q)inv(8)(p23.1q22.1), and is derived from a parental pericentric inversion, inv(8)(p23.1q22.1). Here we report on the cloning, sequencing, and characterization of the 8p23.1 and 8q22 breakpoints from the inversion 8 chromosome associated with Rec8 syndrome. Analysis of the breakpoint regions indicates that they are highly repetitive. Of 6 kb surrounding the 8p23.1 breakpoint, 75% consists of repetitive gene family members-including Alu, LINE, and LTR elements-and the inversion took place in a small single-copy region flanked by repetitive elements. Analysis of 3.7 kb surrounding the 8q22 breakpoint region reveals that it is 99% repetitive and contains multiple LTR elements, and that the 8q inversion site is within one of the LTR elements. PMID:10712224

  19. Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis.

    PubMed Central

    Garmyn, D; Ferain, T; Bernard, N; Hols, P; Delplace, B; Delcour, J

    1995-01-01

    The gene encoding D-lactate dehydrogenase was isolated on a 2.9-kb insert from a library of Pediococcus acidilactici DNA by complementation for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase and pyruvate-formate lyase double mutant. The nucleotide sequence of ldhD encodes a protein of 331 amino acids (predicted molecular mass of 37,210 Da) which shows similarity to the family of D-2-hydroxyacid dehydrogenases. The enzyme encoded by the cloned fragment is equally active on pyruvate and hydroxypyruvate, indicating that the enzyme has both D-lactate and D-glycerate dehydrogenase activities. Three other open reading frames were found in the 2.9-kb insert, one of which (rpsB) is highly similar to bacterial genes coding for ribosomal protein S2. Northern (RNA) blotting analyses indicated the presence of a 2-kb dicistronic transcript of ldhD (a metabolic gene) and rpsB (a putative ribosomal protein gene) together with a 1-kb monocistronic rpsB mRNA. These transcripts are abundant in the early phase of exponential growth but steadily fade away to disappear in the stationary phase. Primer extension analysis identified two distinct promoters driving either cotranscription of ldhD and rpsB or transcription of rpsB alone. PMID:7539419

  20. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing.

    PubMed

    Khandeparker, Rakhee; Verma, Preeti; Deobagkar, Deepti

    2011-10-01

    Although several xylanases have been studied, only few xylanases from marine micro-organisms have been reported. We report here a novel halotolerant xylanase from marine bacterium Bacillus subtilis cho40 isolated from Chorao island of mandovi estuary Goa, India. Extracellular xylanase was produced by using agricultural residue such as wheat bran as carbon source under solid-state fermentation (SSF). The optimal pH and temperature of xylanase were reported to be 6.0 and 60°C, respectively. Xyn40 was highly salt-tolerant, and showed highest activity at 0.5M NaCl. Xylanase activity was greatly induced (140%) when pre-incubated with 0.5M NaCl for 4h. The xylanase gene, xyn40, from marine bacterium B. subtilis cho40 was cloned, and expressed in Escherichia coli. The xylanase gene was 645 bp long and had a 215 amino acid ORF protein with a molecular mass of 22.9 kDa. It had all features of xylanase enzyme and showed homology to xylanases reported from B. subtilis. It differs from the earlier reported xylanase sequences by the presence of more serine residues compared to threonine and also by the presence of polar (hydrophilic) amino acids in higher abundance (61%) than non-polar amino acids (39%). The novel xylanase, reported in this study is a halotolerant enzyme from marine isolate and can play a very important role in bioethanol production from marine seaweeds. PMID:21890005

  1. Molecular cloning, sequence analysis and expression of a novel gene induced by near-UV light in Bipolaris oryzae.

    PubMed

    Kihara, J; Sato, A; Okajima, S; Kumagai, T

    2001-09-01

    A cDNA clone derived from a novel gene (uvi-1) that is inducible by near-UV light was isolated by a differential screening procedure from a cDNA library of the fungus Bipolaris oryzae and characterized further. Sequence analysis of the clone revealed that uvi-1 encodes a protein with a putative molecular mass of 17 kDa; the UVI-1 protein shows significant similarity to a putative protein encoded by a cDNA which is expressed during appressorium formation in the rice blast fungus, Magnaporthe grisea. The corresponding genomic clone was also isolated, and Southern analysis of genomic DNA indicated the presence of a single copy of the uvi-1 gene in B. oryzae. Northern analysis showed that the uvi-1 transcripts are induced by exposure to near-UV light, but not by blue or red light. Furthermore, accumulation of uvi-1 transcripts is observed during differentiation of the appressorium. PMID:11589579

  2. Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly

    PubMed Central

    Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka

    2010-01-01

    Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877

  3. Stable zymomonas mobilis xylose and arabinose fermenting strains

    DOEpatents

    Zhang, Min; Chou, Yat-Chen

    2008-04-08

    The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.

  4. Phenotype Microarray Profiling of Zymomonas mobilis ZM4

    SciTech Connect

    Bochner, Barry; Gomez, Vanessa; Ziman, michael; Yang, Shihui; Brown, Steven D

    2009-01-01

    In this study, we developed a Phenotype MicroArray{trademark} (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format. For nitrogen metabolism, the bacterium showed a positive test results for ammonia, aspartate, asparagine, glutamate, glutamine, and peptides. Z. mobilis appeared to use a diverse array of P-sources with two exceptions being pyrophosphate and tripolyphosphate. The assays suggested that Z. mobilis uses both inorganic and organic compounds as S-sources. No stimulation by nutrients was detected; however, there was evidence of partial inhibition by purines and pyrimidines, NAD, and deferoxamine. Z. mobilis was relatively resistant to acid pH, tolerating a pH down to about 4.0. It also tolerated phosphate, sulfate, and nitrate, but was rather sensitive to chloride and nitrite. Z. mobilis showed resistance to a large number of diverse chemicals that inhibit most bacteria. The information from PM analysis provides an overview of Z. mobilis physiology and a foundation for future comparisons of other wild-type and mutant Z. mobilis strains.

  5. Cloning, sequencing and overexpression of the gene for prokaryotic factor EF-P involved in peptide bond synthesis.

    PubMed Central

    Aoki, H; Adams, S L; Chung, D G; Yaguchi, M; Chuang, S E; Ganoza, M C

    1991-01-01

    A soluble protein EF-P (elongation factor P) from Escherichia coli has been purified and shown to stimulate efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Based on the partial amino acid sequence of EF-P, 18- and 24-nucleotide DNA probes were synthesized and used to screen lambda phage clones from the Kohara Gene Bank. The entire EF-P gene was detected on lambda clone #650 which contains sequences from the 94 minute region of the E.coli genome. Two DNA fragments, 3.0 and 0.78 kilobases in length encompassing the gene, were isolated and cloned into pUC18 and pUC19. Partially purified extracts from cells transformed with these plasmids overrepresented a protein which co-migrates with EF-P upon SDS polyacrylamide gel electrophoresis, and also exhibited increased EF-P mediated peptide-bond synthetic activity. Based on DNA sequence analysis of this gene, the EF-P protein consists of 187 amino acids with a calculated molecular weight of 20,447. The sequence and chromosomal location of EF-P establishes it as a unique gene product. Images PMID:1956781

  6. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-)

    SciTech Connect

    Hirono, A.; Beutler, E. )

    1988-06-01

    Glucose-6-phosphate dehydrogenase A(-) is a common variant in Blacks that causes sensitivity to drug- and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3{prime} end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C{sup 33} {yields} G, G{sup 202} {yields} A, and A{sup 376} {yields} G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The findings of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein.

  7. The cloning and sequencing of the UDP-galactose 4-epimerase gene (galE) from Avibacterium paragallinarum.

    PubMed

    Roodt, Yolande; Bragg, Robert; Albertyn, Jacobus

    2007-08-01

    The putative uridine diphosphate (UDP)-galactose 4-epimerase encoding gene, galE, was isolated from Avibacterium paragallinarum with the use of degenerate primers, colony hybridization and inverse PCR. The data revealed an open reading frame of 1017 bp encoding a protein of 338 amino acids with a molecular weight of 37 kDa and an isoelectric point of 5.5. High sequence homology was obtained with an 87, 91 and 89% sequence identity on protein level towards the galE genes from Actinobacillus pleuropneumoniae, Haemophilus influenza and Pasteurella multocida, respectively. To verify that the cloned galE gene encodes for a UDP-galactose 4-epimeras, this gene was cloned into the pYES-2 expression vector, followed by transformation in a Saccharomyces cerevisiae gal10 deletion strain. Complementation of the gal10 deletion mutant with the galE gene confirmed that this gene encodes a UDP-galactose 4-epimerase. PMID:17541831

  8. A novel phospholipase A(2) from the venom glands of Bungarus candidus: cloning and sequence-comparison.

    PubMed

    Tsai, Inn-Ho; Hsu, Hwa-Yao; Wang, Ying-Ming

    2002-09-01

    The presence of phospholipase A(2) (PLA(2)) in the venom of Malayan krait (Bungarus candidus) and its structure were studied. The PLA(2) cDNAs from the venom gland of B. candidus (Indonesia origin) were amplified by the polymerase chain reactions (PCR) and cloned. The primers used were based on the cDNA sequences of several homologous B. multicinctus venom PLA(2)s. In addition to the A-chains of beta-bungarotoxins, a novel B. candidus PLA(2) was cloned and its full amino acid sequence deduced. Having totally 125 amino acid residues, the PLA(2) contains a pancreatic loop and is 61% identical to the acidic PLA(2) of king cobra venom. However, the enzyme was not detected from the venom sample. Its structural relationships to other elapid venom PLA(2)s were analyzed with a phylogenetic tree and discussed. PMID:12220723

  9. Molecular Cloning, Nucleotide Sequence, and Expression of Genes Encoding a Polycyclic Aromatic Ring Dioxygenase from Mycobacterium sp. Strain PYR-1

    PubMed Central

    Khan, Ashraf A.; Wang, Rong-Fu; Cao, Wei-Wen; Doerge, Daniel R.; Wennerstrom, David; Cerniglia, Carl E.

    2001-01-01

    Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits. PMID:11472934

  10. Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens, encoding periplasmic glutaminase/asparaginase.

    PubMed

    Hüser, A; Klöppner, U; Röhm, K H

    1999-09-15

    A gene (ansB) encoding a class II glutaminase/asparaginase has been cloned from Pseudomonas fluorescens and characterized by DNA sequencing, promoter analysis and heterologous expression in Escherichia coli. We show that ansB is monocistronic and depends on the alternate sigma factor sigma 54 for expression. A second open reading frame located downstream of ansB is highly homologous to a number of bacterial genes that encode secreted endonucleases of unknown function. PMID:10499283

  11. Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis.

    PubMed

    Ali, Hanif; Scanlan, Julie; Dumont, Marc G; Murrell, J Colin

    2006-10-01

    The soluble methane monooxygenase (sMMO) is a key enzyme for methane oxidation, and is found in only some methanotrophs, including Methylosinus sporium 5. sMMO expression is regulated at the level of transcription from a sigma(54) promoter by a copper-switch, and is only expressed when the copper-to-biomass ratio during growth is low. Extensive phylogenetic and genetic analyses of sMMOs and other soluble di-iron monooxygenases reveal that these enzymes have only been acquired relatively recently through horizontal gene transfer. In this study, further evidence of horizontal gene transfer was obtained, through cloning and sequencing of the genes encoding the sMMO enzyme complex plus the regulatory genes mmoG and mmoR, and identification of a duplicate copy of the mmoX gene in Ms. sporium. mmoX encodes the alpha subunit of the hydroxylase of the sMMO enzyme, which constitutes the active site (Prior & Dalton, 1985). The mmoX genes were characterized at the molecular and biochemical levels. Although both copies were transcribed, only mmoX copy 1 was essential for sMMO activity. Construction of an sMMO(-) mutant by marker-exchange mutagenesis gave some possible insights into the role of the water-soluble pigment in siderophore-mediated iron acquisition. Finally, the amenability of Ms. sporium to genetic manipulation was demonstrated by complementing the sMMO(-) mutant by heterologous expression of sMMO genes from Methylosinus trichosporium OB3b and Methylococcus capsulatus (Bath), and it was shown that Ms. sporium could be used as an alternative model organism for molecular analysis of MMO regulation. PMID:17005974

  12. Differences in Biofilm Mass, Expression of Biofilm-Associated Genes, and Resistance to Desiccation between Epidemic and Sporadic Clones of Carbapenem-Resistant Acinetobacter baumannii Sequence Type 191.

    PubMed

    Selasi, Gati Noble; Nicholas, Asiimwe; Jeon, Hyejin; Na, Seok Hyeon; Kwon, Hyo Il; Kim, Yoo Jeong; Heo, Sang Taek; Oh, Man Hwan; Lee, Je Chul

    2016-01-01

    Understanding the biology behind the epidemicity and persistence of Acinetobacter baumannii in the hospital environment is critical to control outbreaks of infection. This study investigated the contributing factors to the epidemicity of carbapenem-resistant A. baumannii (CRAB) sequence type (ST) 191 by comparing the differences in biofilm formation, expression of biofilm-associated genes, and resistance to desiccation between major epidemic (n = 16), minor epidemic (n = 12), and sporadic (n = 12) clones. Biofilm mass was significantly greater in the major epidemic than the minor epidemic and sporadic clones. Major and minor epidemic clones expressed biofilm-associated genes, abaI, bap, pgaABCD, and csuA/BABCDE, higher than the sporadic clones in sessile conditions. The csuC, csuD, and csuE genes were more highly expressed in the major epidemic than minor epidemic clones. Interestingly, minor epidemic clones expressed more biofilm-associated genes than the major epidemic clone under planktonic conditions. Major epidemic clones were more resistant to desiccation than minor epidemic and sporadic clones on day 21. In conclusion, the epidemic CRAB ST191 clones exhibit a higher capacity to form biofilms, express the biofilm-associated genes under sessile conditions, and resist desiccation than sporadic clones. These phenotypic and genotypic characteristics of CRAB ST191 may account for the epidemicity of specific CRAB ST191 clones in the hospital. PMID:27622249

  13. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    PubMed Central

    2012-01-01

    Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra

  14. Continuous production of ethanol by use of flocculent zymomonas mobilis

    DOEpatents

    Arcuri, Edward J.; Donaldson, Terrence L.

    1983-01-01

    Ethanol is produced by means of a floc-forming strain of Zymomonas mobilis bacteria. Gas is vented along the length of a column containing the flocculent bacteria to preclude disruption of liquid flow.

  15. Cloning and nucleotide sequence of the genes coding for the Sau96I restriction and modification enzymes.

    PubMed Central

    Szilák, L; Venetianer, P; Kiss, A

    1990-01-01

    The genes coding for the GGNCC specific Sau96I restriction and modification enzymes were cloned and expressed in E. coli. The DNA sequence predicts a 430 amino acid protein (Mr: 49,252) for the methyltransferase and a 261 amino acid protein (Mr: 30,486) for the endonuclease. No protein sequence similarity was detected between the Sau96I methyltransferase and endonuclease. The methyltransferase contains the sequence elements characteristic for m5C-methyltransferases. In addition to this, M.Sau96I shows similarity, also in the variable region, with one m5C-methyltransferase (M.SinI) which has closely related recognition specificity (GGA/TCC). M.Sau96I methylates the internal cytosine within the GGNCC recognition sequence. The Sau96I endonuclease appears to act as a monomer. Images PMID:2204026

  16. Cloning and sequencing of the trpE gene from Arthrobacter globiformis ATCC 8010 and several related subsurface Arthrobacter isolates

    SciTech Connect

    Chernova, T.; Viswanathan, V.K.; Austria, N.; Nichols, B.P.

    1998-09-01

    Tryptophan dependent mutants of Arthrobacter globiformis ATCC 8010 were isolated and trp genes were cloned by complementation and marker rescue of the auxotrophic strains. Rescue studies and preliminary sequence analysis reveal that at least the genes trpE, trpC, and trpB are clustered together in this organism. In addition, sequence analysis of the entire trpE gene, which encodes component I of anthranilate synthase, is described. Segments of the trpE gene from 17 subsurface isolates of Arthrobacter sp. were amplified by PCR and sequenced. The partial trpE sequences from the various strains were aligned and subjected to phylogenetic analysis. The data suggest that in addition to single base changes, recombination and genetic exchange play a major role in the evolution of the Arthrobacter genome.

  17. Emergence of KPC-producing Klebsiella pneumoniae hypervirulent clone of capsular serotype K1 that belongs to sequence type 11 in Mainland China.

    PubMed

    Wei, Dan-Dan; Wan, La-Gen; Deng, Qiong; Liu, Yang

    2016-06-01

    KPC-2 has been rarely reported in hypervirulent Klebsiella pneumoniae strains. Here, we describe a KPC-2-producing K. pneumoniae hypervirulent clone of capsular serotype K1 belonging to sequence type 11. The presence of KPC carbapenemase in hypervirulent clone could mark an evolutionary step toward its establishment as major nosocomial pathogen. PMID:27049969

  18. Isolation, characterization, and primary structure of rubredoxin from the photosynthetic bacterium, Heliobacillus mobilis

    NASA Technical Reports Server (NTRS)

    Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.

    1995-01-01

    Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.

  19. Cloning, Nucleotide Sequencing and Bioinformatics Study of NcSRS2 Gene, an Immunogen from Iranian Isolate of Neospora caninum

    PubMed Central

    Soltani, M; Sadrebazzaz, A; Nassiri, M; Tahmoorespoor, M

    2013-01-01

    Background Neosporosis is caused by an obligate intracellular parasitic protozoa Neospora caninum which infect variety of hosts. NcSRS2 is an immuno-dominant antigen of N. caninum which is considered as one of the most promising targets for a recombinant or DNA vaccine against neosporosis. As no study has been carried out to identify the molecular structure of N. caninum in Iran, as first step, we prepared a scheme to identify this gene in this parasite in Iran. Methods Tachyzoite total RNA was extracted and cDNA was synthesized and NcSRS2 gene was amplified using cDNA as template. Then the PCR product was cloned into pTZ57R/T vector and transformed into E. coli (DH5α strain). Finally, the recombinant plasmid was extracted from transformed E. coli and sequenced. Bioinformatics analysis also carried out. Results The PCR product of NcSRS2 gene was sequenced and recorded in GenBank. The deduced amino acid sequence of NcSRS2 in current study was compared with other N. caninum NcSRS2 and showed some identities and differences. Conclusion NcSRS2 gene of N. caninum successfully cloned in pTZ57R/T. Recombinant plasmid was confirmed by sequencing, colony PCR and enzymatic digestion. It is ready to express recombinant protein for further studies. PMID:23682269

  20. Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis.

    PubMed

    Oda, Y; Nakayama, R; Kuroda, A; Sekiguchi, J

    1993-11-01

    We have cloned a DNA fragment containing the gene for a cell wall hydrolase from Bacillus licheniformis FD0120 into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame (ORF; designated as cwlL), which is different from the B. licheniformis cell wall hydrolase gene cwlM, and encodes a polypeptide of 360 amino acids with a molecular mass of 38,994. The enzyme purified from the E. coli clone is an N-acetylmuramoyl-L-alanine amidase, which has a M(r) value of 41 kDa as determined by SDS-polyacrylamide gel electrophoresis, and is able to digest B. licheniformis, B. subtilis and Micrococcus luteus cell walls. The nucleotide and deduced amino acid sequences of cwlL are very similar to those of ORF3 in the putative operon xpaL1-xpaL2-ORF3 in B. licheniformis MC14. Moreover, the amino acid sequence homology of CwlL with the B. subtilis amidase CwlA indicates two evolutionarily distinguishable regions in CwlL. The sequence homology of CwlL with other cell wall hydrolases and the regulation of cwlL are discussed. PMID:7902527

  1. Incorporation of partial polyhedrin homology sequences (PPHS) enhances the production of cloned foreign genes in a baculovirus expression system.

    PubMed

    Gong, Zhaohui; Jin, Yongfeng; Zhang, Yaozhou

    2006-03-01

    Baculovirus expression vector systems (BEVSs) have been used extensively for high-level expression of cloned foreign genes. In many instances, the levels of recombinant protein(s) produced in insect cells and larvae are insufficient for experimental purposes. Thus new techniques and methods are needed to increase significantly the protein expression levels in BEVS. In the present paper, we describe the incorporation of a 15 bp element derived from the 5'-end partial sequence of the polyhedrin gene, which contains the non-coding sequence ATAAAT and the coding sequence ATGCCGAAT, into the 5'-end of the CTB (cholera toxin B subunit)-INS (insulin) fusion gene. With the addition of the PPHS (partial polyhedrin homology sequences), two extra amino acids (Pro-Asn) were added to the N-terminus of the mCTB-INS (modified CTB-INS) fusion protein. This new fusion protein was expressed in both insect cells and larvae using BEVSs. We found that the addition of PPHS enhanced 4-fold the expression of CTB-INS in both insect cells and larvae. Further analysis revealed that the additional two amino acids in mCTB-INS did not significantly affect binding affinity for G(M1) ganglioside. Therefore the PPHS can be used as a constitutive element immediately downstream of the polyhedrin promoter to induce significant increases in the expression levels of cloned foreign genes. PMID:16313236

  2. Molecular characterization and clonal diversity of meticillin-resistant Staphylococcus aureus isolated from the community in Spain: emergence of clone sequence type 72.

    PubMed

    Potel, C; Rey, S; Otero, S; Rubio, J; Álvarez, M

    2016-08-01

    Sequence type 72 meticillin-resistant Staphylococcus aureus (ST72 MRSA) was recently detected in our hospital. Although in Europe this clone is rarely isolated, it is the leading cause of community-associated MRSA infections in Korea, spreading also into hospitals, where it has also emerged as the main MRSA clone recovered from raw meat. We studied MRSA isolated from outpatients in Spain during a nine-year period. More than 70% of the isolates belonged to predominant clones found in hospitals. There was a significant increase in the ST72 prevalence. It appears that boundaries of dominance among MRSA clones have become blurred, demanding continuous surveillance. PMID:27112049

  3. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.

    PubMed Central

    Lei, B; Liu, M; Huang, S; Tu, S C

    1994-01-01

    NAD(P)H-flavin oxidoreductases (flavin reductases) from luminous bacteria catalyze the reduction of flavin by NAD(P)H and are believed to provide the reduced form of flavin mononucleotide (FMN) for luciferase in the bioluminescence reaction. By using an oligonucleotide probe based on the partial N-terminal amino acid sequence of the Vibrio harveyi NADPH-FMN oxidoreductase (flavin reductase P), a recombinant plasmid, pFRP1, was obtained which contained the frp gene encoding this enzyme. The DNA sequence of the frp gene was determined; the deduced amino acid sequence for flavin reductase P consists of 240 amino acid residues with a molecular weight of 26,312. The frp gene was overexpressed, apparently through induction, in Escherichia coli JM109 cells harboring pFRP1. The cloned flavin reductase P was purified to homogeneity by following a new and simple procedure involving FMN-agarose chromatography as a key step. The same chromatography material was also highly effective in concentrating diluted flavin reductase P. The purified enzyme is a monomer and is unusual in having a tightly bound FMN cofactor. Distinct from the free FMN, the bound FMN cofactor showed a diminished A375 peak and a slightly increased 8-nm red-shifted A453 peak and was completely or nearly nonfluorescent. The Kms for FMN and NADPH and the turnover number of this flavin reductase were determined. In comparison with other flavin reductases and homologous proteins, this flavin reductase P shows a number of distinct features with respect to primary sequence, redox center, and/or kinetic mechanism. Images PMID:8206832

  4. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-).

    PubMed Central

    Hirono, A; Beutler, E

    1988-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; D-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49) A(-) is a common variant in Blacks that causes sensitivity to drug-and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3' end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C33----G, G202----A, and A376----G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The base substitution at position 376, identical to the substitution that has been reported in G6PD A(+), was present in all G6PD A(-) samples and none of the control G6PD B(+) samples examined. The substitution at position 202 was found in four of the five G6PD A(-) samples and no normal control sample. At position 33 guanine was found in all G6PD A(-) samples and seven G6PD B(+) control samples and is, presumably, the usual nucleotide found at this position. The finding of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein. Images PMID:2836867

  5. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    PubMed Central

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  6. Molecular characterization of methicillin-resistant Staphylococcus aureus: characterization of major clones and emergence of epidemic clones of sequence type (ST) 36 and ST 121 in Tehran, Iran.

    PubMed

    Ohadian Moghadam, Solmaz; Pourmand, Mohammad Reza; Mahmoudi, Mahmood; Sadighian, Hooman

    2015-04-01

    Information about the molecular structure of MRSA strains provides significant insights into the epidemiology of this important pathogen. To investigate the molecular characteristics of MRSA isolates, MRSA isolates were subjected to molecular typing by means of spa typing, multilocus sequence typing, Staphylococcal Cassette Chromosome mec (SCCmec) grouping and to phenotypic antimicrobial susceptibility testing by means of disk diffusion assay. Then the presence of pvl genes was evaluated. Cluster analysis by eBURSTv3 showed that MRSA isolates belonged to two major clonal complexes (CC); CC8 (ST239, ST585, ST2732, ST1294) and CC30 (ST30, ST36, ST1163) and four singletons. Subsequent analysis of MRSA isolates revealed that the most prevalent SCCmec type was type III (55.8%) followed by type IV (34.9%) and type II (2.3%). Totally 11 different spa types were discriminated among which types t037 and t030 were predominant. The prevalence of Panton-Valentine leukocidin (PVL)-positive MRSA strains was high (20%), which is a matter of great concern, because the PVL is frequently associated with severe and recurrent SSTIs. ST239-III- t037 represented the most predominant MRSA clone. The presence of sequence type (ST) 36 and ST 121 are being reported for the first time in Iran. PMID:25795589

  7. Molecular Profiling of Microbial Communities from Contaminated Sources: Use of Subtractive Cloning Methods and rDNA Spacer Sequences

    SciTech Connect

    Robb, Frank T.

    2001-04-10

    The major objective of this research was to provide appropriate sequences and assemble a DNA array of oligonucleotides to be used for rapid profiling of microbial populations from polluted areas and other areas of interest. The sequences to be assigned to the DNA array were chosen from cloned genomic DNA taken from groundwater sites having well characterized pollutant histories at Hanford Nuclear Plant and Lawrence Livermore Site 300. Glass-slide arrays were made and tested; and a new multiplexed, bead-based method was developed that uses nucleic acid hybridization on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences. The test data revealed considerable strain variation between sample sites showing a striking distribution of sequences. It also suggests that diversity varies greatly with bioremediation, and that there are many bacterial intergenic spacer region sequences that can indicate its effects. The bead method exhibited superior sequence discrimination and has features for easier and more accurate measurement.

  8. Eukaryotic gene invasion by a bacterial mobile insertion sequence element IS2 during cloning into a plasmid vector.

    PubMed

    Senejani, Alireza G; Sweasy, Joann B

    2010-01-01

    Escherichia coli (E. coli) are commonly used as hosts for DNA cloning and sequencing. Upon transformation of E. coli with recombined vector carrying a gene of interest, the bacteria multiply the gene of interest while maintaining the integrity of its content. During the subcloning of a mouse genomic fragment into a plasmid vector, we noticed that the size of the insert increased significantly upon replication in E. coli. The sequence of the insert was determined and found to contain a novel DNA sequence within the mouse genomic insert. A BLAST search of GenBank revealed the novel sequence to be that of the Insertion Sequence 2 (IS2) element from E. coli that was likely inserted during replication in that organism. Importantly, a detailed search of GenBank shows that the IS2 is present within many eukaryotic nucleotide sequences, and in many cases, has been annotated as being part of the protein. The results of this study suggest that one must perform additional careful analysis of the sequence results using BLAST comparisons, and further verification of gene annotation before submission into the GenBank. PMID:20678256

  9. Morquio A syndrome: Cloning, sequence, and structure of the human N-acetylgalactosamine 6-sulfatase (GALNS) gene

    SciTech Connect

    Morris, C.P.; Guo, Xiao-Hui; Apostolou, S.

    1994-08-01

    Deficiency of the lysosomal enzyme, N-acetylgalactosamine 6-sulfatase (GALNS;EC 3.1.6.4), results in the storage of the glycosaminoglycans, keratan sulfate and chrondroitin 6-sulfate, which leads to the lysosomal storage disorder Morquio A syndrome. Four overlapping genomic clones derived from a chromosome 16-specific gridded cosmid library containing the entire GALNS gene were isolated. The structure of the gene and the sequence of the exon/intron boundaries and the 5{prime} promoter region were determined. The GALNS gene is split into 14 exons spanning approximately 40 kb. The potential promoter for GALNS lacks a TATA box but contains GC box consensus sequences, consistent with its role as a housekeeping gene. The GALNS gene contains an Alu repeat in intron 5 and a VNTR-like sequence in intron 6. 12 refs., 3 figs., 1 tab.

  10. cDNA, genomic sequence cloning and overexpression of giant panda (Ailuropoda melanoleuca) mitochondrial ATP synthase ATP5G1.

    PubMed

    Hou, W-R; Hou, Y-L; Ding, X; Wang, T

    2012-01-01

    The ATP5G1 gene is one of the three genes that encode mitochondrial ATP synthase subunit c of the proton channel. We cloned the cDNA and determined the genomic sequence of the ATP5G1 gene from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively. The cloned cDNA fragment contains an open reading frame of 411 bp encoding 136 amino acids; the length of the genomic sequence is of 1838 bp, containing three exons and two introns. Alignment analysis revealed that the nucleotide sequence and the deduced protein sequence are highly conserved compared to Homo sapiens, Mus musculus, Rattus norvegicus, Bos taurus, and Sus scrofa. The homologies for nucleotide sequences of the giant panda ATP5G1 to those of these species are 93.92, 92.21, 92.46, 93.67, and 92.46%, respectively, and the homologies for amino acid sequences are 90.44, 95.59, 93.38, 94.12, and 91.91%, respectively. Topology prediction showed that there is one protein kinase C phosphorylation site, one casein kinase II phosphorylation site, five N-myristoylation sites, and one ATP synthase c subunit signature in the ATP5G1 protein of the giant panda. The cDNA of ATP5G1 was transfected into Escherichia coli, and the ATP5G1 fused with the N-terminally GST-tagged protein gave rise to accumulation of an expected 40-kDa polypeptide, which had the characteristics of the predicted protein. PMID:23007995

  11. PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony

    2009-01-01

    Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…

  12. Cloning, sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677.

    PubMed Central

    Knauf, H J; Vogel, R F; Hammes, W P

    1992-01-01

    Lactobacillus sake LTH677 is a strain, isolated from fermented sausage, which forms a heme-dependent catalase. This rare property is highly desirable in sausage fermentation, as it prevents rancidity and discoloration caused by hydrogen peroxide. A gene bank containing MboI fragments of chromosomal DNA from Lactobacillus sake LTH677 in Escherichia coli plasmid pBR328 was constructed. The catalase gene was cloned by heterologous complementation of the Kat- phenotype of E. coli UM2. The catalase structural gene, designated katA, was assigned to a 2.3-kb region by deletion analysis of the originally cloned fragment in plasmid pHK1000. The original chromosomal arrangement was determined by Southern hybridization. Protein analysis revealed that the catalase subunit has a molecular size of 65,000 Da and that the active catalase possesses a hexameric structure. The molecular size of the subunit deduced from the nucleotide sequence was determined to 54,504 Da. The N-terminal amino acid sequence of the 65,000-Da protein corresponded to the one deduced from the DNA sequence. After recloning of katA in the E. coli-Lactococcus shuttle vector pGKV210, the gene was successfully transferred and phenotypically expressed in Lactobacillus casei, which is naturally deficient in catalase activity. Images PMID:1575485

  13. Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LTH 673.

    PubMed

    Tichaczek, P S; Vogel, R F; Hammes, W P

    1994-02-01

    Sakacin P is a heat-stable, unmodified peptide bacteriocin produced by Lactobacillus sake LTH 673. The strain was isolated from fermented dry sausages and is well adapted to this habitat. The bacteriocin inhibits the growth of the opportunistic food pathogens Enterococcus faecalis and Listeria monocytogenes and therefore, it may improve the hygienic status of fermented food, i.e. meat products. Oligonucleotide probes were designed from the N-terminal amino acid sequence of sakacin P and used to identify sakP, the structural gene of sakacin P, on the chromosome of L. sake LTH 673. SakP was cloned into Escherichia coli NM554 and the nucleotide sequence of the gene and its adjacent regions were determined. Sakacin P appears to be synthesized as a prepeptide of 61 amino acids which is proteolytically processed to the mature bacteriocin consisting of 43 amino acids. Sequencing of the cloned fragment also revealed the presence of two other open reading frames orfX and orfY, which are located upstream and downstream of sakP, respectively, putatively encoding proteins of 52 and 98 amino acids, respectively. The functions of both ORFs remain unknown. Primer extension analysis revealed a promoter upstream of sakP. Two transcripts of approximately 0.35 and 1.0 kb were detected by Northern hybridization encoding either only sakP, or both sakP and orfY, respectively. PMID:8180701

  14. The human myosin light chain kinase (MLCK) from hippocampus: Cloning, sequencing, expression, and localization to 3qcen-q21

    SciTech Connect

    Potier, M.C.; Rossier, J.; Turnell, W.G.; Pekarsky, Y.; Gardiner, K.

    1995-10-10

    Myosin light chain kinase (MLCK), a key enzyme in muscle contraction, has been shown by immunohistology to be present in neurons and glia. We describe here the cloning of the cDNA for human MLCK from hippocampus, encoding a protein sequence 95% similar to smooth muscle MLCKs but less than 60% similar to skeletal muscle MLCKs. The cDNA clone detected two RNA transcripts in human frontal and entorhinal cortex, in hippocampus, and in jejunum, one corresponding to MLCK and the other probably to telokin, the carboxy-terminal 154 codons of MLCK expressed as an independent protein in smooth muscle. Levels of expression were lower in brain compared to smooth muscle. We show that within the protein sequence, a motif of 28 or 24 residues is repeated five times, the second repeat ending with the putative methionine start codon. These repeats overlap with a second previously reported module of 12 residues repeated five times in the human sequence. In addition, the acidic C-terminus of all MLCKs from both brain and smooth muscle resembles the C-terminus of tubulins. The chromosomal localization of the gene for human MLCK is shown to be at 3qcen-q21, as determined by PCR and Southern blotting using two somatic cell hybrid panels. 33 refs., 8 figs.

  15. Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA.

    PubMed

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1988-09-01

    We report the isolation of cDNA clones for a Plasmodium falciparum gene that encodes the complete amino acid sequence of a previously identified exported blood stage antigen. The Mr of this antigen protein had been determined by sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis, by different workers, to be 113,000, 126,000, and 140,000. We show, by cDNA nucleotide sequence analysis, that this antigen gene encodes a 989 amino acid protein (111 kDa) that contains a potential signal peptide, but not a membrane anchor domain. In the FCR3 strain the serine content of the protein was 11%, of which 57% of the serine residues were localized within a 201 amino acid sequence that included 35 consecutive serine residues. The protein also contained three possible N-linked glycosylation sites and numerous possible O-linked glycosylation sites. The mRNA was abundant during late trophozoite-schizont parasite stages. We propose to identity this antigen, which had been called p126, by the acronym SERA, serine-repeat antigen, based on its complete structure. The usefulness of the cloned cDNA as a source of a possible malaria vaccine is considered in view of the previously demonstrated ability of the antigen to induce parasite-inhibitory antibodies and a protective immune response in Saimiri monkeys. PMID:2847041

  16. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores.

    PubMed Central

    Connors, M J; Mason, J M; Setlow, P

    1986-01-01

    Three Bacillus subtilis genes (termed sspA, sspB, and sspD) which code for small, acid-soluble spore proteins (SASPs) have been cloned, and their complete nucleotide sequence has been determined. The amino acid sequences of the SASPs coded for by these genes are similar to each other and to those of the SASP-1 of B. subtilis (coded for by the sspC gene) and the SASP-A/C family of B. megaterium. The sspA and sspB genes are expressed only in sporulation, in parallel with each other and with the sspC gene. Two regions upstream of the postulated transcription start sites for the sspA and B genes have significant homology with the analogous regions of the sspC gene and the SASP-A/C gene family. Purification of two of the three major B, subtilis SASPs (alpha and beta) and determination of their amino-terminal sequences indicated that the sspA gene codes for SASP-alpha and that the sspB gene codes for SASP-beta. This was confirmed by the introduction of deletion mutations into the cloned sspA and sspB genes and transfer of these deletions into the B. subtilis chromosome with concomitant loss of the wild-type gene. Images PMID:3009398

  17. Cloning, Sequencing, and Characterization of a Gene Cluster Involved in EDTA Degradation from the Bacterium BNC1

    PubMed Central

    Bohuslavek, Jan; Payne, Jason W.; Liu, Yong; Bolton, Harvey; Xun, Luying

    2001-01-01

    EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation. PMID:11157232

  18. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2

    SciTech Connect

    Lumadue, J.A.; Glick, A.B.; Ruddle, F.H.

    1987-12-01

    Among the earliest expressed antigens on the surface of activated human lymphocytes is the surface antigen 4F2. The authors have used DNA-mediated gene transfer and fluorescence-activated cell sorting to obtain cell lines that contain the gene encoding the large subunit of the human 4F2 antigen in a mouse L-cell background. Human DNAs cloned from these cell lines were subsequently used as hybridization probes to isolate a full-length cDNA clone expressing 4F2. Sequence analysis of the coding region has revealed an amino acid sequence of 529 residues. Hydrophobicity plotting has predicted a probable structure for the protein that includes an external carboxyl terminus, an internal leader sequence, a single hydrophobic transmembrane domain, and two possible membrane-associated domains. The 4F2 cDNA detects a single 1.8-kilobase mRNA in T-cell and B-cell lines. RNA gel blot analysis of RNA derived from quiescent and serum-stimulated Swiss 3T3 fibroblasts reveals a cell-cycle modulation of 4F2 gene expression: the mRNA is present in quiescent fibroblasts but increases 8-fold 24-36 hr after stimulation, at the time of maximal DNA synthesis.

  19. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs. PMID:21334357

  20. Formamidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of the fpg structural gene and overproduction of the protein.

    PubMed Central

    Boiteux, S; O'Connor, T R; Laval, J

    1987-01-01

    An Escherichia coli genomic library composed of large DNA fragments (10-15 kb) was constructed using the plasmid pBR322 as vector. From it 700 clones were individually screened for increased excision of the ring-opened form of N7-methylguanine (2-6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine) or Fapy. One clone overproduced the Fapy-DNA glycosylase activity by a factor of 10-fold as compared with the wild-type strain. The Fapy-DNA glycosylase overproducer character was associated with a 15-kb recombinant plasmid (pFPG10). After subcloning a 1.4-kb fragment which contained the Fapy-DNA glycosylase gene (fpg+) was inserted in the plasmids pUC18 and pUC19 yielding pFPG50 and pFPG60 respectively. The cells harbouring pFPG60 displayed a 50- to 100-fold increase in glycosylase activity and overexpressed a 31-kd protein. From these cells the Fapy-DNA glycosylase was purified to apparent physical homogeneity as evidenced by a single protein band at 31 kd on SDS-polyacrylamide gels. The amino acid composition of the protein and the amino acid sequence deduced from the nucleotide sequence demonstrate that the cloned fragment contains the structural gene coding for the Fapy-DNA glycosylase. The nucleotide sequence of the fpg gene is composed of 809 base pairs and codes for a protein of 269 amino acids with a calculated mol. wt of 30.2 kd. Images Fig. 2. PMID:3319582

  1. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain.

    PubMed Central

    Häse, C C; Finkelstein, R A

    1991-01-01

    The structural gene hap for the extracellular hemagglutinin/protease (HA/protease) of Vibrio cholerae was cloned and sequenced. The cloned DNA fragment contained a 1,827-bp open reading frame potentially encoding a 609-amino-acid polypeptide. The deduced protein contains a putative signal sequence followed by a large propeptide. The extracellular HA/protease consists of 414 amino acids with a computed molecular weight of 46,700. In the absence of protease inhibitors, this is processed to the 32-kDa form which is usually isolated. The deduced amino acid sequence of the mature HA/protease showed 61.5% identity with the Pseudomonas aeruginosa elastase. The cloned hap gene was inactivated and introduced into the chromosome of V. cholerae by recombination to construct the HA/protease-negative strain HAP-1. The cloned fragment containing the hap gene was then shown to complement the mutant strain. Images PMID:2045361

  2. Characterization of a novel HLA-B*40 allele, HLA-B*40:186:02, by cloning and sequencing.

    PubMed

    Wang, W Y; Zhang, W; Cai, J H; Zhu, F M; Tian, W

    2016-08-01

    A novel HLA-B*40 variant, HLA-B*40:186:02, has been identified by cloning and sequencing in a southern Chinese Han population. Aligned with HLA-B*40:01:01, HLA-B*40:186:02 has a nonsynonymous cytosine mutation at nucleotide position 165 in exon 2, leading to amino acid change from glycine to arginine at codon 56. It differs from HLA-B*40:186:01 by a synonymous change (adenine to cytosine) at position 165 in exon 2. PMID:27273892

  3. Molecular cloning, sequence characterization and heterologous expression of buffalo (Bubalus bubalis) oviduct-specific glycoprotein in E. coli.

    PubMed

    Janjanam, Jagadeesh; Singh, Surender; Choudhary, Suman; Pradeep, Mangottil A; Kumar, Sudarshan; Kumaresan, A; Das, Subrata K; Kaushik, Jai K; Mohanty, Ashok K

    2012-12-01

    Oviductin is a high molecular weight oviduct-specific glycoprotein secreted by the non-ciliated epithelial cells of oviduct during estrous cycle and early pregnancy. It plays an important role during fertilization and early embryonic development. The oviductin gene from oviductal tissues of buffalo was successfully cloned and sequenced. The sequence analysis revealed that buffalo and cattle oviductin share very high homology between their cDNA sequences. The predicted amino acid sequences of the buffalo oviductin exhibited the highest percent of identity of 97 % with bovine followed by 94 % with goat, 93 % with sheep, 78 % with porcine, 72 % with human, 67 % with hamster and rabbit and 65 % with mouse. Oviductin was also observed to share high similarity with the mammalian chitinase, however oviductins do not show chitinase activity due to Glu→Ile mutation in the active site responsible for chitinase activity. The phylogenetic tree based on amino acid sequences of oviductin indicated that buffalo oviductin was closely related to its cattle counterpart, and this clustering is in accordance with the classic taxonomic relationship. Tissue specific expression of the transcripts for buffalo oviductin revealed a high level expression in oviduct and ovary followed by testis, mammary gland, kidney, while in mammary epithelial cells and liver its expression was very low. The full length matured oviductin and its domains constituting chitinase-like domain and mucin-like domain were cloned into pET and pGEX series of expression vectors and over expressed in E. coli. The soluble recombinant oviductin was successfully purified to homogeneity. Full length recombinant oviductin was expressed partially in soluble form, where as the chitinase-like and mucin-like domains of oviductin were expressed in insoluble form and aggregating to form inclusion bodies at both 37 and 16 °C induction temperatures. PMID:22782592

  4. Molecular cloning, genomic analysis, and biological properties of rat leukemia virus and the onc sequences of Rasheed rat sarcoma virus.

    PubMed Central

    Gonda, M A; Young, H A; Elser, J E; Rasheed, S; Talmadge, C B; Nagashima, K; Li, C C; Gilden, R V

    1982-01-01

    Rasheed rat sarcoma virus (RaSV) has been shown to code for a protein of 29,000 Mr not present in replication-competent rat type C helper virus (RaLV)-infected cells. This protein is a fused gene product consisting of a portion of the RaLV p15 gag protein and the transformation-specific 21,000 Mr (p21) ras protein, which is also found in Harvey murine sarcoma virus. We now report the molecular cloning of both the SD-1 (Sprague-Dawley) strain of RaLV and the transforming ras sequences of RaSV. Heteroduplex analysis of these cloned DNAs demonstrated that the RaSV ras gene (v-Ra-ras) was inserted into the rat type C viral genome with a small deletion of RaLV genetic information in the 5' region of the gag gene and that the v-Ra-ras gene (0.72 kilobase pair) is homologous to and colinear with the p21 ras gene of Harvey murine sarcoma virus (v-Ha-ras). Restriction enzyme mapping confirmed the homology demonstrated by heteroduplex mapping, showing strong site conservation of restriction endonucleases known to cleave v-Ha-ras. Cloned v-Ra-ras DNA transformed NIH 3T3 cells, inducing the synthesis of the p29 RaSVgag-ras protein. Images PMID:6292516

  5. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    SciTech Connect

    Morin, R D; Chang, E; Petrescu, A; Liao, N; Kirkpatrick, R; Griffith, M; Butterfield, Y; Stott, J; Barber, S; Babakaiff, R; Matsuo, C; Wong, D; Yang, G; Smailus, D; Brown-John, M; Mayo, M; Beland, J; Gibson, S; Olson, T; Tsai, M; Featherstone, R; Chand, S; Siddiqui, A; Jang, W; Lee, E; Klein, S; Prange, C; Myers, R M; Green, E D; Wagner, L; Gerhard, D; Marra, M; Jones, S M; Holt, R

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence between the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.

  6. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato.

    PubMed

    Van der Straeten, D; Van Wiemeersch, L; Goodman, H M; Van Montagu, M

    1990-06-01

    1-Aminocyclopropane-1-carboxylate synthase (ACC synthase; S-adenosyl-L-methionine methylthioadenosine-lyase, EC 4.4.1.14), the key enzyme in ethylene biosynthesis, was purified 5000-fold from induced tomato pericarp. ACC synthase activity was unambiguously correlated with a 45-kDa protein by two independent methods. Peptide sequences were obtained both from the N terminus after electroblotting and from tryptic peptides separated by reversed-phase chromatography. Mixed oligonucleotide probes were used to screen a lambda gt11 library prepared from RNA of induced pericarp tissue. Putative ACC synthase clones were isolated with a frequency of 0.01%. One of these contained a 1.9-kilobase insert with a single open reading frame encoding a polypeptide of 55 kDa. A second, partial cDNA clone was found that differed from the first one in 18% of its bases. Genomic Southern blotting suggests possible tandem organization of the two genes in tomato. The entire coding region was expressed in Escherichia coli and the denatured recombinant polypeptide was used to raise polyclonal antibodies. The antibody preparation both immunoinhibits and immunoprecipitates ACC synthase activity from an enriched tomato extract, confirming the identity of the clone. Northern blot analysis demonstrates that the ACC synthase messenger accumulation is coordinated with fruit ripening. PMID:2191304

  7. Cloning, expression, and sequencing of a protease gene (tpr) from Porphyromonas gingivalis W83 in Escherichia coli.

    PubMed Central

    Bourgeau, G; Lapointe, H; Péloquin, P; Mayrand, D

    1992-01-01

    Porphyromonas gingivalis is a highly proteolytic organism which metabolizes small peptides and amino acids. Indirect evidence suggests that the proteases produced by this microorganism constitute an important virulence factor. In this study, a gene bank of P. gingivalis W83 DNA was constructed by cloning 0.5- to 20-kb HindIII-cut DNA fragments into Escherichia coli DH5 alpha by using the plasmid vector pUC19. A clone expressing a protease from P. gingivalis was isolated on LB agar containing 1% skim milk. The clone contained a 3.0-kb insert that coded for a protease with an apparent molecular mass of 64 kDa. Sequencing part of the 3.0-kb DNA fragment revealed an open reading frame encoding a protein of 482 amino acids with a molecular mass of 62.5 kDa. Putative promoter and termination elements flanking the open reading frame were identified. The activity expressed in E. coli was extensively characterized by using various substrates and protease inhibitors, and the results suggest that it is possibly a thiol protease. Images PMID:1322368

  8. Sequences of cDNA Clones from Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighteen sequences have been deposited to augment the expressed sequences of Lygus lineolaris in the National Center for Biotechnology Information database, GenBank. These sequences were obtained from laboratory reared specimens. Total RNA was extracted from specimens, and then pooled and used to ob...

  9. Zymomonas mobilis: a novel platform for future biorefineries

    PubMed Central

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  10. Zymomonas mobilis: a novel platform for future biorefineries.

    PubMed

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  11. Discovery of Ethanol-Responsive Small RNAs in Zymomonas mobilis

    PubMed Central

    Cho, Seung Hee; Lei, Roy; Henninger, Trey D.

    2014-01-01

    Zymomonas mobilis is a bacterium that can produce ethanol by fermentation. Due to its unique metabolism and efficient ethanol production, Z. mobilis has attracted special interest for biofuel energy applications; an important area of study is the regulation of those specific metabolic pathways. Small RNAs (sRNAs) have been studied as molecules that function as transcriptional regulators in response to cellular stresses. While sRNAs have been discovered in various organisms by computational prediction and experimental approaches, their discovery in Z. mobilis has not yet been reported. In this study, we have applied transcriptome analysis and computational predictions to facilitate identification and validation of 15 novel sRNAs in Z. mobilis. We furthermore characterized their expression in the context of high and low levels of intracellular ethanol. Here, we report that 3 of the sRNAs (Zms2, Zms4, and Zms6) are differentially expressed under aerobic and anaerobic conditions, when low and high ethanol productions are observed, respectively. Importantly, when we tested the effect of ethanol stress on the expression of sRNAs in Z. mobilis, Zms2, Zms6, and Zms18 showed differential expression under 5% ethanol stress conditions. These data suggest that in this organism regulatory RNAs can be associated with metabolic functions involved in ethanol stress responses. PMID:24795378

  12. Molecular cloning and sequencing of a cDNA encoding partial putative molt-inhibiting hormone from Penaeus chinensis

    NASA Astrophysics Data System (ADS)

    Wang, Zai-Zhao; Xiang, Jian-Hai

    2002-09-01

    Total RNA was extracted from eyestalks of shrimp Penaeus chinensis. Eyestalk cDNA was obtained from total RNA by reverse transcription. Reverse transcriptase-polymerase chain reaction (RT-PCR) was initiated using eyestalk cDNA and degenerate primers designed from the amino acid sequence of molt-inhibiting hormone from shrimp Penaeus japonicus. A specific cDNA was obtained and cloned into a T vector for sequencing. The cDNA consisted of 201 base pairs and encoding for a peptide of 67 amino acid residues. The peptide of P. chinensis had the highest identity with molt-inhibiting hormones of P. japonicus. The cDNA could be a partial gene of molt-inhibiting hormones from P. chinensis. This paper reports for the first time cDNA encoding for neuropeptide of P. chinensis.

  13. Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes.

    PubMed Central

    Jørgensen, S; Skov, K W; Diderichsen, B

    1991-01-01

    The lipA gene encoding an extracellular lipase from Pseudomonas cepacia was cloned and sequenced. Downstream from the lipase gene an open reading frame was identified, and the corresponding gene was named limA. lipA was well expressed only in the presence of limA. limA exerts its effect both in cis and in trans and therefore produces a diffusible gene product, presumably a protein of 344 amino acids. Replacement of the lipA expression signals (promoter, ribosome-binding site, and signal peptide-coding sequences) by heterologous signals from gram-positive bacteria still resulted in limA-dependent lipA expression in Escherichia coli, Bacillus subtilis, and Streptomyces lividans. Images PMID:1987151

  14. Vasotocin and isotocin precursors from the white sucker, Catostomus commersoni: cloning and sequence analysis of the cDNAs.

    PubMed Central

    Heierhorst, J; Morley, S D; Figueroa, J; Krentler, C; Lederis, K; Richter, D

    1989-01-01

    The nucleotide sequences of cloned cDNAs encoding the precursors for vasotocin and isotocin have been elucidated by analyzing a lambda gt11 library constructed from poly(A)+ RNA from the hypothalamic region of the teleost fish Catostomus commersoni. Screening of the library was carried out with synthetic oligonucleotide probes deduced from the amino acid sequences of the nonapeptides vasotocin and isotocin. The cDNA nucleotide sequences predict isotocin and vasotocin prohormone precursors each consisting of a signal peptide, a hormone moiety, and a neurophysin-like molecule. However, in comparison to their mammalian counterparts, both fish neurophysins are extended at their C termini by an approximately 30 amino acid sequence with a leucine-rich core segment. These extensions show striking similarities with the glycopeptide moiety (the so-called copeptin) present in mammalian vasopressin precursors, except that they lack the consensus sequence for N-glycosylation. These data suggest that mammalian copeptin is derived from the C terminus of an ancestral neurophysin. Images PMID:2748582

  15. Identification of a 35-kilodalton serovar-cross-reactive flagellar protein, FlaB, from Leptospira interrogans by N-terminal sequencing, gene cloning, and sequence analysis.

    PubMed Central

    Lin, M; Surujballi, O; Nielsen, K; Nadin-Davis, S; Randall, G

    1997-01-01

    During the screening of antibodies to pathogenic leptospires, a murine monoclonal antibody (designated M138) was found to react with various serovars. An antigen of approximately 35 kDa from Leptospira interrogans serovar pomona, which reacted strongly with M138, was characterized by N-terminal amino acid sequencing and identified as a flagellin, a class B polypeptide subunit (FlaB) of the periplasmic flagella. The gene encoding the FlaB protein, flaB, was amplified from the genomic DNA of several pathogenic serovars by PCR with a single pair of oligonucleotide primers, suggesting that FlaB is highly conserved among these serovars. Cloning and sequence analysis of flaB from serovar pomona revealed that it contains an 849-bp open reading frame with a G + C content of 46.88% which encodes a 283-amino-acid protein with a calculated molecular mass of 31.297 kDa and a predicted pI of 9.065. A sequence comparison of flagellin proteins revealed that the amino acid sequence is most variable in the central portion of the serovar pomona FlaB, which is believed to contain specific sequence information and which may thus be useful in the design of DNA or synthetic peptide probes suitable for the detection of infection with pathogenic leptospires. PMID:9317049

  16. A Swordless Knight: Epidemiology and Molecular Characteristics of the blaKPC-Negative Sequence Type 258 Klebsiella pneumoniae Clone

    PubMed Central

    Paikin, Svetlana; Sterlin, Yelena; Glick, Josef; Edgar, Rotem; Aronov, Rima; Schwaber, Mitchell J.; Carmeli, Yehuda

    2012-01-01

    In June 2010, a blaKPC-negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the blaKPC-negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (ERCNKP) isolates was conducted from June 2010 to May 2011 at LMC (314 beds) and from July 2008 to December 2010 at the Tel Aviv Sourasky Medical Center (TASMC) (1,200 beds). Molecular typing was done by arbitrarily primed PCR, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). A total of 8 of 42 (19%) ERCNKP isolates in LMC and 1 of 32 (3.1%) in TASMC belonged to the ST-258 clone. These strains carried the blaCTX-M-2 or the blaCTX-M-25 extended-spectrum β-lactamase (ESBL) gene. Sequencing of the ompK genes showed a frameshift mutation in the ompK35 gene. The fate of the blaKPC-carrying plasmid, pKpQIL, was determined by S1 analysis and by PCR of the Tn4401 transposon, repA, and the truncated blaOXA-9. Plasmid analysis of the ERCNKP ST-258 isolates showed variability in plasmid composition and absence of the Tn4401 transposon and the pKpQIL plasmid. In addition, the ST-258 clone was identified in 35/35 (100%) of KPC-producing K. pneumoniae isolates but in none of 62 ertapenem-susceptible K. pneumoniae isolates collected in the two centers. Our results suggest that ERCNKP ST-258 evolved by loss of the blaKPC-carrying plasmid pKpQIL. ERCNKP ST-258 appears to have low epidemic potential. PMID:22814467

  17. DNA sequences and composition from 12 BAC clones-derived MUSB SSR markers mapped to cotton (Gossypium Hirsutum L. x G. Barbadense L.)chromosomes 11 and 21

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To discover resistance (R) and/or pathogen-induced (PR) genes involved in disease response, 12 bacterial artificial chromosome (BAC) clones from cv. Acala Maxxa (G. hirsutum) were sequenced at the Clemson University, Genomics Institute, Clemson, SC. These BACs derived MUSB single sequence repeat (SS...

  18. Complete sequence and development of a full-length infectious clone of an Ohio isolate of Maize dwarf mosaic virus (MDMV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize dwarf mosaic virus (MDMV) is an important and widespread aphid-transmitted virus of corn. It is a member of the genus Potyvirus in the family Potyviridae. Here we report the complete genome sequence of, and construction of an infectious clone of an Ohio isolate of MDMV-A. MDMV sequences from i...

  19. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing.

    PubMed

    Witek, Kamil; Jupe, Florian; Witek, Agnieszka I; Baker, David; Clark, Matthew D; Jones, Jonathan D G

    2016-06-01

    Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops. PMID:27111721

  20. Sucrose utilization by Zymomonas mobilis: formation of a levan

    PubMed Central

    Dawes, E. A.; Ribbons, D. W.; Rees, D. A.

    1966-01-01

    1. Molar growth-yield coefficients of Zymomonas mobilis for glucose, fructose, glucose plus fructose, and sucrose are reported. Yield coefficients for sucrose are appreciably lower than those for the equivalent concentrations of glucose plus fructose. 2. Only 2·6% of [U-14C]glucose supplied in the growth medium is incorporated into cell substance by Z. mobilis utilizing glucose as the energy source. 3. During growth on sucrose a levan is formed. It has been characterized and shown to resemble other bacterial levans. 4. Levan formation from sucrose could be demonstrated with both washed cell suspensions and cell extracts of Z. mobilis. 5. Sucrose phosphorylase could not be demonstrated in extracts of the organism. PMID:4287843

  1. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae

    SciTech Connect

    Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Pelletier, Dale A; Lu, Tse-Yuan; Martin, S L.; Guo, Hao-Bo; Smith, Jeremy C; Brown, Steven D

    2010-01-01

    The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger sequencing analysis is employed to validate genomic differences and to investigate CGS and 454-pyrosequencing limitations. Transcriptomics, genetic data and growth studies indicate that over-expression of the sodium-proton antiporter gene nhaA confers the elevated AcR sodium acetate tolerance phenotype. nhaA over-expression mostly confers enhanced sodium (Na{sup +}) tolerance and not acetate (Ac{sup -}) tolerance, unless both ions are present in sufficient quantities. NaAc is more inhibitory than potassium and ammonium acetate for Z. mobilis and the combination of elevated Na{sup +} and Ac{sup -} ions exerts a synergistic inhibitory effect for strain ZM4. A structural model for the NhaA sodium-proton antiporter is constructed to provide mechanistic insights. We demonstrate that Saccharomyces cerevisiae sodium-proton antiporter genes also contribute to sodium acetate, potassium acetate, and ammonium acetate tolerances. The present combination of classical and systems biology tools is a paradigm for accelerated industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies.

  2. Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia

    PubMed Central

    Kriangkum, Jitra; Motz, Sarah N.; Mack, Tanner; Beiggi, Sara; Baigorri, Eva; Kuppusamy, Hemalatha; Belch, Andrew R.; Johnston, James B.; Pilarski, Linda M.

    2015-01-01

    The immunoglobulin heavy chain (IGH) gene rearrangement in chronic lymphocytic leukemia (CLL) provides a unique molecular signature; however, we demonstrate that 26/198 CLL patients (13%) had more than one IGH rearrangement, indicating the power of molecular technology over phenotypic analysis. Single-cell PCR analysis and next-generation immuno-sequencing identified IGH-defined clones. In 23% (18/79) of cases whose clones carried unmutated immunoglobulin heavy chain variable (IGHV) genes (U-CLL), IGH rearrangements were bialleic with one productive (P) and one non-productive (NP) allele. Two U-CLL were biclonal, each clone being monoallelic (P). In 119 IGHV-mutated (M-CLL) cases, one had biallelic rearrangements in their CLL (P/NP) and five had 2–4 distinct clones. Allelic exclusion was maintained in all B-clones analyzed. Based on single-cell PCR analysis, 5/11 partner clones (45%) reached levels of >5x109 cells/L, suggesting second CLL clones. Partner clones persisted over years. Conventional IGH characterization and next-generation sequencing of 13 CLL, 3 multiple myeloma, 2 Waldenstrom’s macroglobulinemia and 3 age-matched healthy donors consistently identified the same rearranged IGH sequences. Most multiple clones occurred in M-CLL, perhaps indicative of weak clonal dominance, thereby associating with a good prognosis. In contrast, biallelic CLL occurred primarily in U-CLL thus being associated with poor prognosis. Extending beyond intra-clonal diversity, molecular analysis of clonal evolution and apparent subclones in CLL may also reflect inter-clonal diversity. PMID:26353109

  3. Molecular cloning and organization of two leghaemoglobin genomic sequences of soybean

    NASA Astrophysics Data System (ADS)

    Sullivan, D.; Brisson, N.; Goodchild, B.; Verma, D. P. S.

    1981-02-01

    The leghaemoglobins (Lb) are myoglobin-like proteins found in all nitrogen-fixing root nodules of legumes1-3. They are encoded by plant nuclear genes4 which are specifically induced and form the predominant protein in nodules developed in symbiosis with the appropriate species of Rhizobium. The Lb is located in the host-cell cytoplasm of the infected cell5 and is thought to facilitate oxygen diffusion6,7. Amino acid sequencing of the soybean Lbs has revealed at least four primary structures differing only in a few amino acids8-10. We have previously estimated about 40 copies of Lb sequences in the soybean (Glycine max L.) genome by cDNA hybridization4. To investigate Lb gene organization and function, we prepared and characterized a Lb cDNA recombinant molecule, pLb1, and used it to isolate two genomic Lb sequences from a library constructed in Charon 4. We report here that the organization of the two genomic Lb sequences is quite distinct and one of them seems to have an intervening sequence(s). Hybridization of pLb1 with genomic DNA from various tissues showed that Lb sequences are dispersed through more than 30 kilobases of genomic DNA and that there is no apparent sequence rearrangement or methylation changes following induction of Lb genes.

  4. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing. PMID:27338271

  5. Demonstration of biological activity and nucleotide sequence of an in vitro synthesized clone of the Moloney murine sarcoma virus mos gene.

    PubMed Central

    Donoghue, D J

    1982-01-01

    A clone of the Moloney murine sarcoma virus mos gene derived by in vitro reverse transcription was characterized. When assayed for focus formation by DNA transfection on NIH/3T3 cells, this clone was biologically inactive, presumably due to the absence of a long terminal repeat sequence. Therefore, a long terminal repeat was inserted into the clone by in vitro recombination, after which the most gene was able to transform NIH/3T3 cells efficiently. The nucleotide sequence encompassing the transforming region of this clone was determined. A single long open reading frame was observed, which potentially encodes a polypeptide of 41,000 daltons. This open reading frame initiates with the first five amino acids of the murine leukemia virus env gene, after which it enters the mos sequence, where it terminates. The nucleotide sequence described in this paper was compared with other sequences of mos in an effort to resolve discrepancies in the position of the long open reading frame. Although Moloney murine sarcoma virus retains the 3' splicing site of the murine leukemia virus env gene, a mos-specific mRNA which corresponds structurally to the murine leukemia virus env mRNA was not identified. The sequence described here revealed a single nucleotide change in the proposed env gene 3' splicing site which was retained in Moloney murine sarcoma virus. This deviation from the consensus 3' splicing sequence may underlie the observed absence of mos expression via the env gene splicing pathway. Images PMID:7045395

  6. Single zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, Min; Chou, Yat-Chen; Picataggio, Stephen K.; Finkelstein, Mark

    1998-01-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol.

  7. Controlling Morphological Instability of Zymomonas mobilis Strains in Continuous Culture

    PubMed Central

    Fein, Jared E.; Zawadzki, Bogdan C.; Lawford, Hugh G.; Lawford, G. Ross

    1983-01-01

    Growth of Zymomonas mobilis ATCC 29191 and CP4 in a continuous stirred tank fermentor resulted in the selection of stable flocculating variants. Factors responsible for enhancing the system pressures selective for the morphological variants were identified. By incorporating some modifications into the design of the fermentor, it was possible to achieve steady-state operation of the chemostat with both wild-type and flocculating strains. Biochemical and microscopic studies were performed to elucidate the mechanism of flocculation in Z. mobilis. Images PMID:16346320

  8. Single Zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, M.; Chou, Y.C.; Picataggio, S.K.; Finkelstein, M.

    1998-12-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol. 6 figs.

  9. [Cloning of full-length coding sequence of tree shrew CD4 and prediction of its molecular characteristics].

    PubMed

    Tian, Wei-Wei; Gao, Yue-Dong; Guo, Yan; Huang, Jing-Fei; Xiao, Chang; Li, Zuo-Sheng; Zhang, Hua-Tang

    2012-02-01

    The tree shrews, as an ideal animal model receiving extensive attentions to human disease research, demands essential research tools, in particular cellular markers and monoclonal antibodies for immunological studies. In this paper, a 1 365 bp of the full-length CD4 cDNA encoding sequence was cloned from total RNA in peripheral blood of tree shrews, the sequence completes two unknown fragment gaps of tree shrews predicted CD4 cDNA in the GenBank database, and its molecular characteristics were analyzed compared with other mammals by using biology software such as Clustal W2.0 and so forth. The results showed that the extracellular and intracellular domains of tree shrews CD4 amino acid sequence are conserved. The tree shrews CD4 amino acid sequence showed a close genetic relationship with Homo sapiens and Macaca mulatta. Most regions of the tree shrews CD4 molecule surface showed positive charges as humans. However, compared with CD4 extracellular domain D1 of human, CD4 D1 surface of tree shrews showed more negative charges, and more two N-glycosylation sites, which may affect antibody binding. This study provides a theoretical basis for the preparation and functional studies of CD4 monoclonal antibody. PMID:22345010

  10. Cloning and sequencing of complement component C9 and its linkage to DOC-2 in the pufferfish Fugu rubripes.

    PubMed

    Yeo, G S; Elgar, G; Sandford, R; Brenner, S

    1997-10-24

    The Japanese pufferfish Fugu rubripes has a 400 Mb genome with high gene density and minimal non-coding complexity, and is therefore an ideal vertebrate model for sequence comparison. The identification of regions of conserved synteny between Fugu and humans would greatly accelerate the mapping and ordering of genes. Fugu C9 was cloned and sequenced as a first step in an attempt to characterize the region in Fugu homologous to human chromosome 5p13. The 11 exons of the Fugu C9 gene share 33% identity with human C9 and span 2.9 kb of genomic DNA. By comparison, human C9 spans 90 kb, representing a 30-fold difference in size. We have also determined by cosmid sequence scanning that DOC-2, a tumour suppresser gene which also maps to human 5p13, lies 6-7 kb from C9 in a head-to-head or 5' to 5' orientation. These results demonstrate that the Fugu C9/DOC-2 locus is a region of conserved synteny. Sequence scanning of overlapping cosmids has identified two other genes, GAS-1 and FBP, both of which map to human chromosome 9q22, and lie adjacent to the Fugu C9/DOC-2 locus, indicating the boundary between two syntenic regions. PMID:9373156