Science.gov

Sample records for mobility spectrometry ims

  1. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  2. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    NASA Astrophysics Data System (ADS)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  3. LC-IMS-MS Feature Finder. Detecting Multidimensional Liquid Chromatography, Ion Mobility, and Mass Spectrometry Features in Complex Datasets

    SciTech Connect

    Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin Shammel; Lamarche, Brian L.; Monroe, Matthew E.; Ibrahim, Yehia M.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.

    2013-09-05

    We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time, and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension.

  4. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles. PMID:26750519

  5. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

    SciTech Connect

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin Shammel

    2015-06-30

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.

  6. Metabolic Profiling of Human Blood by High Resolution Ion Mobility Mass Spectrometry (IM-MS)

    PubMed Central

    Dwivedi, Prabha; Schultz, Albert J.; Hill, Herbert H.

    2010-01-01

    A high resolution ion mobility time-of-flight mass spectrometer with electrospray ionization source (ESI-IM-MS) was evaluated as an analytical method for rapid analysis of complex biological samples such as human blood metabolome was investigated. The hybrid instrument (IM-MS) provided an average ion mobility resolving power of ~90 and a mass resolution of ~1500 (at m/z 100). A few µL of whole blood was extracted with methanol, centrifuged and infused into the IM-MS via an electrospray ionization source. Upon IM-MS profiling of the human blood metabolome approximately 1,100 metabolite ions were detected and 300 isomeric metabolites separated in short analyses time (30 minutes). Estimated concentration of the metabolites ranged from the low micromolar to the low nanomolar level. Various classes of metabolites (amino acids, organic acids, fatty acids, carbohydrates, purines and pyrimidines etc) were found to form characteristic mobility-mass correlation curves (MMCC) that aided in metabolite identification. Peaks corresponding to various sterol derivatives, estrogen derivatives, phosphocholines, prostaglandins, and cholesterol derivatives detected in the blood extract were found to occupy characteristic two dimensional IM-MS space. Low abundance metabolite peaks that can be lost in MS random noise were resolved from noise peaks by differentiation in mobility space. In addition, the peak capacity of MS increased six fold by coupling IMS prior to MS analysis. PMID:21113320

  7. Application of Ion Mobility Spectrometry (IMS) in forensic chemistry and toxicology with focus on biological matrices

    NASA Technical Reports Server (NTRS)

    Bernhard, Werner; Keller, Thomas; Regenscheit, Priska

    1995-01-01

    The IMS (Ion Mobility Spectroscopy) instrument 'Ionscan' takes advantage of the fact that trace quantities of illicit drugs are adsorbed on dust particles on clothes, in cars and on other items of evidence. The dust particles are collected on a membrane filter by a special attachment on a vacuum cleaner. The sample is then directly inserted into the spectrometer and can be analyzed immediately. We show casework applications of a forensic chemistry and toxicology laboratory. One new application of IMS in forensic chemistry is the detection of psilocybin in dried mushrooms without any further sample preparation.

  8. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  9. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  10. Direct Infusion Electrospray Ionization - Ion Mobility - High Resolution Mass Spectrometry (DIESI-IM-HRMS) for Rapid Characterization of Potential Bioprocess Streams

    NASA Astrophysics Data System (ADS)

    Munisamy, Sharon M.; Chambliss, C. Kevin; Becker, Christopher

    2012-07-01

    Direct infusion electrospray ionization - ion mobility - high resolution mass spectrometry (DIESI-IM-HRMS) has been utilized as a rapid technique for the characterization of total molecular composition in "whole-sample" biomass hydrolysates and extracts. IM-HRMS data reveal a broad molecular weight distribution of sample components (up to 1100 m/z) and provide trendline isolation of feedstock components from those introduced "in process." Chemical formulas were obtained from HRMS exact mass measurements (with typical mass error less than 5 ppm) and were consistent with structural carbohydrates and other lignocellulosic degradation products. Analyte assignments are supported via IM-MS collision-cross-section measurements and trendline analysis (e.g., all carbohydrate oligomers identified in a corn stover hydrolysate were found to fall within 6 % of an average trendline). These data represent the first report of collision cross sections for several negatively charged carbohydrates and other acidic species occurring natively in biomass hydrolysates.

  11. Increasing conclusiveness of clinical breath analysis by improved baseline correction of multi capillary column - ion mobility spectrometry (MCC-IMS) data.

    PubMed

    Szymańska, Ewa; Tinnevelt, Gerjen H; Brodrick, Emma; Williams, Mark; Davies, Antony N; van Manen, Henk-Jan; Buydens, Lutgarde M C

    2016-08-01

    Current challenges of clinical breath analysis include large data size and non-clinically relevant variations observed in exhaled breath measurements, which should be urgently addressed with competent scientific data tools. In this study, three different baseline correction methods are evaluated within a previously developed data size reduction strategy for multi capillary column - ion mobility spectrometry (MCC-IMS) datasets. Introduced for the first time in breath data analysis, the Top-hat method is presented as the optimum baseline correction method. A refined data size reduction strategy is employed in the analysis of a large breathomic dataset on a healthy and respiratory disease population. New insights into MCC-IMS spectra differences associated with respiratory diseases are provided, demonstrating the additional value of the refined data analysis strategy in clinical breath analysis. PMID:26879424

  12. Third International Workshop on Ion Mobility Spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H. (Editor)

    1995-01-01

    Basic research in ion mobility spectrometry has given rise to rapid advancement in hardware development and applications. The Third International Workshop on Ion Mobility Spectrometry (IMS) was held October 16-19, 1994, at Johnson Space Center to provide a forum for investigators to present the most recent results of both basic and applied IMS research. Presenters included manufacturers and various users, including military research organizations and drug enforcement agencies. Thirty papers were given in the following five sessions: Fundamental IMS Studies, Instrument Development, Hyphenated IMS Techniques, Applications, and Data Reduction and Signal Processing. Advances in hardware development, software development, and user applications are described.

  13. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  14. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  15. Determination of human insulin and its analogues in human blood using liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS).

    PubMed

    Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    The qualitative and quantitative determination of insulin from human blood samples is an emerging topic in doping controls as well as in other related disciplines (e.g. forensics). Beside the therapeutic use, insulin represents a prohibited, performance enhancing substance in sports drug testing. In both cases accurate, sensitive, specific, and unambiguous determination of the target peptide is of the utmost importance. The challenges concerning identifying insulins in blood by liquid chromatography coupled to ion mobility mass spectrometry (LC-IM-MS) are detecting the basal concentrations of approximately 0.2 ng/mL and covering the hyperinsulinaemic clamps at > 3 ng/mL simultaneously using up to 200 μL of plasma or serum. This is achieved by immunoaffinity purification of the insulins with magnetic beads and subsequent separation by micro-scale liquid chromatography coupled to ion mobility / high resolution mass spectrometry. The method includes human insulin as well as the synthetic or animal analogues insulin aspart, glulisine, glargine, detemir, lispro, bovine, and porcine insulin. The method validation shows reliable results considering specificity, limit of detection (0.2 ng/mL except for detemir: 0.8 ng/mL), limit of quantification (0.5 ng/mL for human insulin), precision (CV < 20%), linearity (r > 0.99), recovery, accuracy (>90%), robustness (plasma/serum), and ion suppression. For quantification of human insulin a labelled internal standard ([[(2) H10 ]-Leu(B6,B11,B15,B17) ] - human Insulin) is introduced. By means of the additional ion mobility separation of the different analogues, the chromatographic run time is shortened to 8 min without losing specificity. As proof-of-concept, the procedure was successfully applied to different blood specimens from diabetic patients receiving recombinant synthetic analogues. PMID:25219675

  16. Coulombic Effects in Ion Mobility Spectrometry

    PubMed Central

    Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.

    2009-01-01

    Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g. IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. PMID:19438247

  17. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  18. Chemical standards in ion mobility spectrometry

    SciTech Connect

    Fernandez-Maestre, Robert; Harden, Charles S.; Ewing, Robert G.; Crawford, Christina L.; Hill, Jr, Herbert H.

    2010-08-01

    In ion mobility spectrometry (IMS), reduced mobility values (K0) are used as a qualitative measure of gas phase ions, and are reported in the literature as absolute values. Unfortunately, these values do not always match with those collected in the field. One reason for this discrepancy is that the buffer gas may be contaminated with moisture or other volatile compounds. In this study, the effect of moisture and organic contaminants in the buffer gas on the mobility of IMS standards and analytes was investigated for the first time using IMS directly coupled to mass spectrometry. 2,4-Dimethylpyridine, 2,6-di- tertbutylpyridine (DTBP), and tetrabutylammonium, tetrapropylammonium, tetraethylammonium, and tetramethylammonium chlorides were used as chemical standards. In general, the mobility of IMS standard product ions was not affected by small amounts of contamination while the mobilities of many analytes were affected. In the presence of contaminants in the buffer gas, the mobility of analyte ions is often decreased by forming ion–molecule clusters with the contaminant. To ensure the measurement of accurate reduced mobility values, two IMS standards are required: an instrument and a mobility standard. An instrument standard is not affected by contaminants in the buffer as, and provides an accurate measurement of the instrumental parameters, such as voltage, drift length, pressure, and temperature. The mobility standard behaves like an analyte ion in that the compound’s mobility is affected by low levels of contamination in the buffer gas. Prudent use of both of these standards can lead to improved measurement of accurate reduced mobility values.

  19. Chemical Standards in Ion Mobility Spectrometry

    PubMed Central

    Fernández-Maestre, Roberto; Harden, Charles Steve; Ewing, Robert Gordon; Crawford, Christina Lynn; Hill, Herbert Henderson

    2010-01-01

    In ion mobility spectrometry (IMS), reduced mobility values (K0) are used as a qualitative measure of gas phase ions, and are reported in the literature as absolute values. Unfortunately, these values do not always match those collected in the field. One reason for this discrepancy is that the buffer gas may be contaminated with moisture or other volatile compounds. In this study, the effect of moisture and organic contaminants in the buffer gas on the mobility of IMS standards and analytes was investigated for the first time using IMS directly coupled to mass spectrometry. 2,4-dimethylpyridine, 2,6-di-tert-butyl pyridine (DTBP), and tetrabutylammonium, tetrapropylammonium, tetraethylammonium, and tetramethylammonium chlorides were used as chemical standards. In general, the mobility of IMS standard product ions was not affected by small amounts of contamination while the mobilities of many analytes were affected. In the presence of contaminants in the buffer gas, the mobility of analyte ions is often decreased by forming ion-molecule clusters with the contaminant. To ensure the measurement of accurate reduced mobility values, two IMS standards are required: an instrument and a mobility standard. An instrument standard is not affected by contaminants in the buffer gas, and provides an accurate measurement of the instrumental parameters, such as voltage, drift length, pressure, and temperature. The mobility standard behaves like an analyte ion in that the compound’s mobility is affected by low levels of contamination in the buffer gas. Prudent use of both of these standards can lead to improved measurement of accurate reduced mobility values. PMID:20369157

  20. Gridless overtone mobility spectrometry.

    PubMed

    Zucker, Steven M; Ewing, Michael A; Clemmer, David E

    2013-11-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions toward the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  1. Gridless Overtone Mobility Spectrometry

    PubMed Central

    Zucker, Steven M.; Ewing, Michael A.; Clemmer, David E.

    2013-01-01

    A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions towards the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin). PMID:24125033

  2. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].

    PubMed

    Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M

    2006-02-01

    The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported. PMID:16413205

  3. Review on ion mobility spectrometry. Part 1: current instrumentation.

    PubMed

    Cumeras, R; Figueras, E; Davis, C E; Baumbach, J I; Gràcia, I

    2015-03-01

    Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences in ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow that provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation and have become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as a function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465076

  4. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow which provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation has become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465076

  5. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces

    SciTech Connect

    Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No; Prior, David C.; Buschbach, Michael A.; Li, Fumin; Tolmachev, Aleksey V.; Anderson, Gordon A.; Smith, Richard D.

    2005-05-15

    The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in the biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude above that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially due to limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QToF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and back IMS-QToF interfaces. The front funnel is of the novel ''hourglass'' design that efficiently accumulates ions and pulses them into the IMS drift tubes. Even for drift tubes of two meter length, ion transmission through IMS and on to QToF is essentially lossless across the range of ion masses relevant to most applications. The RF ion focusing at IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly-charged ions) and is close to the theoretical limit. The overall sensitivity of present ESI-IMS-MS system is shown to be comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultra-high sensitivity and exceptional throughput.

  6. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces

    PubMed Central

    Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No; Prior, David C.; Buschbach, Michael A.; Li, Fumin; Tolmachev, Aleksey; Anderson, Gordon A.; Smith, Richard D.

    2007-01-01

    The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in the biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially because of limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QToF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and rear IMS-QToF interfaces. The front funnel is of the novel “hourglass” design that efficiently accumulates ions and pulses them into the IMS drift tubes. Even for drift tubes of two meter length, ion transmission through IMS and on to QToF is essentially lossless across the range of ion masses relevant to most applications. The RF ion focusing at the IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly-charged ions) and is close to the theoretical limit. The overall sensitivity of present ESI-IMS-MS system is comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultra-high sensitivity and exceptional throughput. PMID:15889926

  7. Process analysis using ion mobility spectrometry.

    PubMed

    Baumbach, J I

    2006-03-01

    Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppb(v)/ppt(v) ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis). PMID:16132133

  8. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    SciTech Connect

    Timothy R. McJunkin; Jill R. Scott; Carla J. Miller

    2003-07-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  9. Field applications of ion-mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Patricia A.

    1997-02-01

    Ion mobility spectrometry (IMS) is an excellent tool for detection of controlled substances under field conditions. Plasmagrams and tables showing the results of field applications will be discussed. Residues of drugs, such as cocaine and heroin, can be left anywhere including vehicles, boats, and houses. In houses, the carpets, walls, and floors are good locations for residues to adhere. Individual clothing can also be contaminated with drug residue. Vehicles that are suspected of having previously smuggled illegal substances can be vacuumed and screened. Tablets that look similar and respond the same when screened with the Marquis reagent can be differentiated by IMS. With Southern California being the 'methamphetamine capital of the world' and the resurgence of phencyclidine, IMS has proven extremely valuable in the screening of abandoned clandestine laboratory sites and vehicles in which the clandestine laboratories; chemicals and glassware were transported. IMS is very responsive to ephedrine/pseudophedrine, a precursor of methamphetamine and 1-piperidinocyclohexanecarbonitrile, an intermediate of phencyclidine. Once residues are detected, vacuum samples, and/or methanol wipes are collected and analyzed at the DEA Laboratory for confirmation of the suspected substance using GC-IRD or Mass Spectrometry.

  10. Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry.

    PubMed

    Sabo, Martin; Malásková, Michaela; Harmathová, Olga; Hradski, Jasna; Masár, Marián; Radjenovic, Branislav; Matejčík, Štefan

    2015-07-21

    We present a new technique suitable for direct liquid sampling and analysis by ion mobility spectrometry (IMS). The technique is based on introduction of a droplet stream to the IMS reaction region. The technique was successfully used to detect explosives dissolved in methanol and oil as well as to analyze amino acids and dipeptides. One of the main advantages of this technique is its ability to analyze liquid samples without the requirement of any special solution. PMID:26154532

  11. Development of Ion Mobility Spectrometry for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Ion Mobility Spectrometry (IMS) can provide gas chromatography with sample identification independent of sample retention time, with minimal interface. Initial commercial methods of IMS however, did not possess sufficient analytical capabilities and presented operational parameters which were unsuitable for exobiology missions. Subsequent development of IMS technology, with the focus on exobiology analytical requirements and mission imposed operational limitations, has produced an IMS interfaced with a GC capable of fulfilling the analytical requirements of several exobiology missions. Future exobiology missions will require further development of the IMS, particularly in the areas of overall instrument miniaturization and complex sample identification. The evolution of the exobiology focused IMS will be presented up to the current prototype design, which is a component of several proposed exobiology instruments. Areas of future development will also be discussed.

  12. LABORATORY DETECTION OF PLASTICS IN SEEDCOTTON WITH ION MOBILITY SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  13. Environment applications for ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Ritchie, Robert K.; Rudolph, Andreas

    1995-01-01

    The detection of environmentally important polychlorinated aromatics by ion mobility spectrometry (IMS) was investigated. Single polychlorinated biphenyl (PCB) isomers (congeners) having five or more chlorine atoms were reliably detected in isooctane solution at levels of 35 ng with a Barringer IONSCAN ion mobility spectrometer operating in negative mode; limits of detection (LOD) were extrapolated to be in the low ng region. Mixtures of up to four PCB congeners, showing characteristic multiple peaks, and complex commercial mixtures of PCBs (Aroclors) were also detected. Detection of Aroclors in transformer oil was suppressed by the presence of the antioxidant BHT (2,6-di-t-butyl4-methylphenol) in the oil. The wood preservative pentachlorophenol (PCP) was easily detected in recycled wood shavings at levels of 52 ppm with the IONSCAN; the LOD was extrapolated to be in the low ppm region.

  14. External Second Gate-Fourier Transform Ion Mobility Spectrometry.

    SciTech Connect

    Tarver, Edward E., III

    2005-01-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and versatile techniques for the detection of trace levels of organic vapors. IMS is widely used for detecting contraband narcotics, explosives, toxic industrial compounds and chemical warfare agents. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention treaty verification as well as humanitarian de-mining efforts has mandated that equal importance be placed on the analysis time as well as the quality of the analytical data. (1) IMS is unrivaled when both speed of response and sensitivity has to be considered. (2) With conventional (signal averaging) IMS systems the number of available ions contributing to the measured signal to less than 1%. Furthermore, the signal averaging process incorporates scan-to-scan variations decreasing resolution. With external second gate Fourier Transform ion mobility spectrometry (FT-IMS), the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters to increase the spectral resolution. The FT-IMS entrance gate operates with a 50% duty cycle and so affords a 7 to 10-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  15. Ion mobility spectrometry for pharmacokinetic studies – exemplary application

    PubMed Central

    Ruzsanyi, V.

    2013-01-01

    Breath analysis is an attractive non-invasive method for diagnosis and therapeutic monitoring. It uses endogenously produced compounds and metabolites of isotopically labelled precursors. In order to make such tests clinically useful, it is important to have relatively small portable instruments detecting volatile compounds within short time. A particularly promising analytical technique is ion mobility spectrometry (IMS) coupled to a multicapillary column (MCC). The present paper focuses on demonstrating the suitability of breath analysis for pharmacokinetic applications using MCC-IMS with respect to practicability and reproducibility testing the model substrate eucalyptol. Validation of the MCC-IMS measurements were performed using proton transfer reaction mass spectrometry (PTR-MS) and resulted in an excellent correspondence of the time-dependent concentrations presented by the two different analytical techniques. Moreover, the good accordance in variance of kinetic parameters with repeated measures, and the determined inter-subject differences indicate the eligibility of the analysis method. PMID:24287589

  16. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  17. Modeling vapor uptake induced mobility shifts in peptide ions observed with transversal modulation ion mobility spectrometry-mass spectrometry.

    PubMed

    Rawat, Vivek K; Vidal-de-Miguel, Guillermo; Hogan, Christopher J

    2015-10-21

    Low field ion mobility spectrometry-mass spectrometry (IMS-MS) techniques exhibit low orthogonality, as inverse mobility often scales with mass to charge ratio. This inadequacy can be mitigated by adding vapor dopants, which may cluster with analyte ions and shift their mobilities by amounts independent of both mass and mobility of the ion. It is therefore important to understand the interactions of vapor dopants with ions, to better quantify the extent of dopant facilitated mobility shifts. Here, we develop predictive models of vapor dopant facilitated mobility shifts, and compare model calculations to measurements of mobility shifts for peptide ions exposed to variable gas phase concentrations of isopropanol. Mobility measurements were made at atmospheric pressure and room temperature using a recently developed transversal modulation ion mobility spectrometer (TMIMS). Results are compared to three separate models, wherein mobility shifts due to vapor dopants are attributed to changes in gas composition and (I) no vapor dopant uptake is assumed, (II) site-specific dopant uptake by the ion is assumed (approximated via a Langmuir adsorption model), and (III) site-unspecific dopant uptake by the ion is assumed (approximated via a classical nucleation model). We find that mobility shifts in peptide ions are in excellent agreement with model II, site-specific binding predictions. Conversely, mobility shifts of tetraalkylammonium ions from previous measurements were compared with these models and best agreement was found with model III predictions, i.e. site-unspecific dopant uptake. PMID:26051323

  18. Tandem ion mobility spectrometry coupled to laser excitation

    SciTech Connect

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe; Chirot, Fabien

    2015-09-15

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  19. Structurally selective imaging mass spectrometry by imaging ion mobility-mass spectrometry.

    PubMed

    McLean, John A; Fenn, Larissa S; Enders, Jeffrey R

    2010-01-01

    This chapter describes the utility of structurally based separations combined with imaging mass spectrometry (MS) by ion mobility-MS (IM-MS) approaches. The unique capabilities of combining rapid (mus-ms) IM separations with imaging MS are detailed for an audience ranging from new to potential practitioners in IM-MS technology. Importantly, imaging IM-MS provides the ability to rapidly separate and elucidate various types of endogenous and exogenous biomolecules (e.g., nucleotides, carbohydrates, peptides, and lipids), including isobaric species. Drift tube and traveling wave IM-MS instrumentation are described and specific protocols are presented for calculating ion-neutral collision cross sections (i.e., apparent ion surface area or structure) from experimentally obtained IM-MS data. Special emphasis is placed on the use of imaging IM-MS for the analysis of samples in life sciences research (e.g., thin tissue sections), including selective imaging for peptide/protein and lipid distributions. Future directions for rapid and multiplexed imaging IM-MS/MS are detailed. PMID:20680602

  20. Detection of gunpowder stabilizers with ion mobility spectrometry.

    PubMed

    West, C; Baron, G; Minet, J-J

    2007-03-01

    This study is the first reported ion mobility detection of ethyl centralite and diphenylamine (DPA) smokeless gunpowder stabilizers, together with the nitroso and nitro derivatives of diphenylamine. First, the applicability of the ion mobility spectrometry (IMS) for the substances of interest was determined. The existence of numerous peaks, both in positive and negative modes, clearly demonstrates the success of these experiments. All mono and di-nitro derivatives of DPA tested were detected with this method. Unfortunately, many of the ions generated were not accurately identified. However, reduced mobility constants representative of each ion generated under defined operating conditions could be used for purpose of compound identification. The method was then successfully tested on real gunpowder samples. By the use of IMS, we managed to establish a rapid, simple and sensitive screening method for the detection and identification of smokeless gunpowder organic components. PMID:16828537

  1. Dynamically multiplexed ion mobility time-of-flight mass spectrometry.

    PubMed

    Belov, Mikhail E; Clowers, Brian H; Prior, David C; Danielson, William F; Liyu, Andrei V; Petritis, Brianne O; Smith, Richard D

    2008-08-01

    Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  2. Protein mixture analysis by MALDI/mobility/time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, David H.; Gillig, Kent J.; Stone, Earle; Park, Zee-Yong; Fuhrer, K.; Gonon, M.; Schultz, A. J.

    2000-03-01

    Progress in the development of ion mobility (IM) orthogonal time-of-flight (oTOF) mass spectrometry for rapid analysis of biological samples is presented. The IM-oTOF apparatus described consists of a short drift tube (1 to 15 cm) designed for ion mobility measurement in the low-field limit and a low resolution linear (20 cm) TOF mass spectrometer. Proof of concept is demonstrated by analysis of peptide mixtures generated by proteolytic digestion of proteins.

  3. IMS - MS Data Extractor

    Energy Science and Technology Software Center (ESTSC)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  4. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines. PMID:20298897

  5. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    PubMed Central

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2010-01-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in the ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube and signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of highly complex matrix, as well as to provide a three orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min that constitutes almost an order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  6. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2008-08-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, enabling (1) efficient ion accumulation in the ion funnel trap prior to IMS separation, (2) multiplexing (MP) of ion packet introduction into the IMS drift tube and (3) signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have additionally developed and rigorously evaluated a new dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in a highly complex matrix, as well as to provide a four orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features yielded ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min, corresponding to approximately an order of magnitude improvement compared to a more conventional LC-MS approach.

  7. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Alexandre A.; Isaac, Giorgis; Leveque, Nathalie; Smith, Richard D.; Metz, Thomas O.

    2011-07-01

    Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids.

  8. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    PubMed Central

    Shvartsburg, Alexandre A.; Isaac, Giorgis; Leveque, Nathalie; Smith, Richard D.; Metz, Thomas O.

    2011-01-01

    Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids. PMID:21953096

  9. Lipid Analysis and Lipidomics by Structurally Selective Ion Mobility-Mass Spectrometry

    PubMed Central

    Kliman, Michal; May, Jody C.

    2012-01-01

    Recent advances in mass spectrometry approaches to the analysis of lipids include the ability to incorporate both lipid class identification with lipid structural information for increased characterization capabilities. The detailed examination of lipids and their biosynthetic and biochemical pathways made possible by novel instrumental and bioinformatics approaches is advancing research in fundamental cellular and medical studies. Recently, high-throughput structural analysis has been demonstrated through the use of rapid gas-phase separation on the basis of the ion mobility (IM) analytical technique combined with mass spectrometry (IM-MS). While IM-MS has been extensively utilized in biochemical research for peptide, protein and small molecule analysis, the role of IM-MS in lipid research is still an active area of development. In this review of lipid-based IM-MS research, we begin with an overview of three contemporary IM techniques which show great promise in being applied towards the analysis of lipids. Fundamental concepts regarding the integration of IM-MS are reviewed with emphasis on the applications of IM-MS towards simplifying and enhancing complex biological sample analysis. Finally, several recent IM-MS lipid studies are highlighted and the future prospects of IM-MS for integrated omics studies and enhanced spatial profiling through imaging IM-MS are briefly described. PMID:21708282

  10. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    PubMed

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  11. Separation of a Set of Peptide Sequence Isomers Using Differential Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Creese, Andrew J.; Smith, Richard D.; Cooper, Helen J.

    2011-08-15

    Protein identification in bottom-up proteomics requires disentangling isomers of proteolytic peptides, a major class of which are sequence inversions. Separation of sequence isomers using ion mobility spectrometry (IMS) has been reported, but limited to pairs of species. Here we demonstrate baseline separation of all seven sequences for a tryptic peptide with eight residues using differential IMS or FAIMS. Evaluations of peak capacity of the method indicate that even larger libraries should generally be separated for heavier peptides with higher charge states.

  12. Electron Attachment Studies for CHCl3 Using Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Han, Hai-yan; Feng, Hong-tao; Li, Hu; Wang, Hong-mei; Jiang, Hai-he; Chu, Yan-nan

    2011-04-01

    The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ion-molecule reaction rate constants for the further reaction between Cl- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.

  13. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  14. Total hydrocarbon analysis by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Limero, Thomas F.; James, John T.

    1994-01-01

    Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.

  15. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  16. Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters.

    PubMed

    Cumeras, R; Figueras, E; Davis, C E; Baumbach, J I; Gràcia, I

    2015-03-01

    Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, specifically mass spectrometry as an identification approach and a multi-capillary column as a pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data sets are treated, and the influences of the experimental parameters on both conventional drift time IMS (DTIMS) and miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The present review article is preceded by a companion review article which details the current instrumentation and contains the sections that configure both conventional DTIMS and FAIMS devices. These reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  17. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin. PMID:25893550

  18. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Tan, Bo; Bohrer, Brian C.; O'Dell, David K.; Merenbloom, Samuel I.; Pazos, Mauricio X.; Clemmer, David E.; Walker, J. Michael

    2009-10-01

    Increasingly comprehensive questions related to the biosynthesis of lipids relevant to understanding new signaling pathways have created daunting tasks for their chemical analysis. Here, ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques combined with electrospray ionization have been used to examine mixtures of closely related lipid structures. The drift time distributions of sphingomyelins show baseline separations for ethylene chain length differences ([Delta] ~ 1.2 ms) and partial separations in single unsaturation differences ([Delta] ~ 0.3 ms) revealing that the most compact structures are observed with shorter chains and increasing unsaturation. Drift time distributions of different ionizations frequently fall into families with the same drift times (isodrifts) indicating that the ion attached to the lipid has little structural influence. The present data show that phospholipids, especially phosphatidylinositol, aggregate to form inverted micelles. Phospholipids (phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylinositol) are effectively separated according to their polar head groups. This method also provides information about the mixture composition of the chemically different lipids N-palmitoyl glycine, N-arachidonoyl ethanolamide, and phosphatidylcholine existing over an array of charge states and sizes (inverted micelles) depending on mixture concentration. Multidimensional IMS3-MS introduces an additional dimension to fragmentation analysis by separating the fragmented ions into groups related to size, shape and charge and allows determination of sn-1 and sn-2 substitution as is shown for phosphatidylglycerols. This contribution provides evidence for extending the targeted approach to global lipidomics analysis using the high-efficiency gas-phase separation afforded by multidimensional IMS-MS.

  19. Site-Specific Mapping of Sialic Acid Linkage Isomers by Ion Mobility Spectrometry.

    PubMed

    Guttman, Miklos; Lee, Kelly K

    2016-05-17

    Detailed structural elucidation of protein glycosylation is a tedious process often involving several techniques. Glycomics and glycoproteomics approaches with mass spectrometry offer a rapid platform for glycan profiling but are limited by the inability to resolve isobaric species such as linkage and positional isomers. Recently, ion mobility spectrometry (IMS) has been shown to effectively resolve isobaric oligosaccharides, but the utility of IMS to obtain glycan structural information on a site-specific level with proteomic analyses has yet to be investigated. Here, we report that the addition of IMS to conventional glycoproteomics platforms adds additional information regarding glycan structure and is particularly useful for differentiation of sialic acid linkage isomers on both N- and O-linked glycopeptides. With further development IMS may hold the potential for rapid and complete structural elucidation of glycan chains at a site-specific level. PMID:27089023

  20. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  1. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  2. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    PubMed

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). PMID:24468343

  3. Structures of Metallosupramolecular Coordination Assemblies Can Be Obtained by Ion Mobility Spectrometry-Mass Spectrometry

    PubMed Central

    Brocker, Erin R.; Anderson, Stanley E.; Northrop, Brian H.; Stang, Peter J.; Bowers, Michael T.

    2010-01-01

    Rigid rectangular, cyclobis[(2,9-bis[trans-Pt(PEt3)2(PF6)]anthracene)(4,4′-dipyridyl)], triangular, cyclotris[(2,9-bis[trans-Pt(PEt3)2(PF6)]phenanthrene)(4,4′-dipyridyl)], and prismatic, cyclotris[bis-[cis-Pt(PEt3)2)(CF3SO3)2](tetrakis(4-pyridyl)cyclobutadienecyclopentadienylcobalt(I))] supramolecular assemblies, based on dipyridyl ligands and square planar platinum coordination, have been investigated by ion mobility spectrometry-mass spectrometry (IMS-MS). ESI-quadrupole and TOF spectra have been obtained and fragmentation pathways assigned. Ion mobility studies give cross sections that compare very well with cross sections of the supramolecular rectangle and triangle species based on X-ray bond distances. For the larger prism structures, agreement of experimental and calculated cross sections from molecular modeling is very good, indicating IMS-MS methods can be used to characterize complex self-assembled structures where X-ray or other spectroscopic structures are not available. PMID:20815390

  4. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry.

    PubMed

    Kyle, Jennifer E; Zhang, Xing; Weitz, Karl K; Monroe, Matthew E; Ibrahim, Yehia M; Moore, Ronald J; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S; Wagoner, Jessica; Polyak, Stephen J; Metz, Thomas O; Dey, Sudhansu K; Smith, Richard D; Burnum-Johnson, Kristin E; Baker, Erin S

    2016-02-15

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. PMID:26734689

  5. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  6. Ion mobility spectrometry after supercritical fluid chromatography

    SciTech Connect

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture.

  7. Total residue analysis of swabs by ion mobility spectrometry.

    PubMed

    Strege, Mark A

    2009-06-01

    Ion mobility spectrometry (IMS) is a technique attractive for use within the pharmaceutical industry for at-line determination of residues on swabs taken from the surfaces of manufacturing equipment for the purposes of cleaning validation or verification. In this study, the development of a novel IMS method to provide a measurement of total residue present on a swab is described. The technique is based upon quantitation of charged atmospheric gas reactant ion consumption (RIC) within the instrument as a direct measure of the mass of total ionizable residue. Coupled with the conventional analysis of the active pharmaceutical ingredient within a single 2 min analysis, RIC determination provided the benefit of a single measure representative of the presence of multiple residue components or unknown components. To account for differences in response between components of a model drug product (Cymbalta) and its associated cleaning agents, a strategy was proposed to determine a "worst case" total residue test result based on RIC. A limitation of the IMS method was its incompatibility with cleaners containing a high concentration of inorganic components. The methodology provided a range from 5-50 microg per 25 cm(2) surface area and acceptable analyte recovery (50-100%). PMID:19476393

  8. Fundamentals of Trapped Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Michelmann, Karsten; Silveira, Joshua A.; Ridgeway, Mark E.; Park, Melvin A.

    2015-01-01

    Trapped ion mobility spectrometry (TIMS) is a relatively new gas-phase separation method that has been coupled to quadrupole orthogonal acceleration time-of-flight mass spectrometry. The TIMS analyzer is a segmented rf ion guide wherein ions are mobility-analyzed using an electric field that holds ions stationary against a moving gas, unlike conventional drift tube ion mobility spectrometry where the gas is stationary. Ions are initially trapped, and subsequently eluted from the TIMS analyzer over time according to their mobility ( K). Though TIMS has achieved a high level of performance ( R > 250) in a small device (<5 cm) using modest operating potentials (<300 V), a proper theory has yet to be produced. Here, we develop a quantitative theory for TIMS via mathematical derivation and simulations. A one-dimensional analytical model, used to predict the transit time and theoretical resolving power, is described. Theoretical trends are in agreement with experimental measurements performed as a function of K, pressure, and the axial electric field scan rate. The linear dependence of the transit time with 1/ K provides a fundamental basis for determination of reduced mobility or collision cross section values by calibration. The quantitative description of TIMS provides an operational understanding of the analyzer, outlines the current performance capabilities, and provides insight into future avenues for improvement.

  9. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  10. Hooked differential mobility spectrometry apparatus and method therefore

    DOEpatents

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.

  11. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.

    PubMed

    Zhang, Liangxiao; Shuai, Qian; Li, Peiwu; Zhang, Qi; Ma, Fei; Zhang, Wen; Ding, Xiaoxia

    2016-02-01

    A simple and rapid detection technology was proposed based on ion mobility spectrometry (IMS) fingerprints to determine potential adulteration of sesame oil. Oil samples were diluted by n-hexane and analyzed by IMS for 20s. Then, chemometric methods were employed to establish discriminant models for sesame oils and four other edible oils, pure and adulterated sesame oils, and pure and counterfeit sesame oils, respectively. Finally, Random Forests (RF) classification model could correctly classify all five types of edible oils. The detection results indicated that the discriminant models built by recursive support vector machine (R-SVM) method could identify adulterated sesame oil samples (⩾ 10%) with an accuracy value of 94.2%. Therefore, IMS was shown to be an effective method to detect the adulterated sesame oils. Meanwhile, IMS fingerprints work well to detect the counterfeit sesame oils produced by adding sesame oil essence into cheaper edible oils. PMID:26304320

  12. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    NASA Astrophysics Data System (ADS)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin S.; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. [Figure not available: see fulltext.

  13. EVALUATION OF GAS CHROMATOGRAPHY COUPLED WITH ION MOBILITY SPECTROMETRY FOR MONITORING VINYL CHLORIDE AND OTHER CHLORINATED AND AROMATIC COMPOUNDS IN AIR SAMPLES

    EPA Science Inventory

    The objective of this research was to evaluate, in the laboratory, the potential of gas chromatography/ion mobility spectrometry (GC/IMS) for monitoring vinyl chloride and other organic compounds in air samples in the field. It was determined that GC/IMS has the potential to dire...

  14. Ion mobility-mass spectrometry strategies for untargeted systems, synthetic, and chemical biology

    PubMed Central

    May, Jody C.; Goodwin, Cody R.; McLean, John A.

    2014-01-01

    Contemporary strategies that concentrate on only one or a handful of molecular targets limits the utility of the information gained for diagnostic and predictive purposes. Recent advances in the sensitivity, speed, and precision of measurements obtained from ion mobility coupled to mass spectrometry (IM-MS) have accelerated the utility of IM-MS in untargeted, discovery-driven studies in biology. Perhaps most evident is the impact that such wide-scale discovery capabilities have yielded in the areas of systems, synthetic, and chemical biology, where the need for comprehensive, hypothesis-driving studies from multidimensional and unbiased data is required. PMID:25462629

  15. Ultrasensitive Identification of Localization Variants of Modified Peptides Using Ion Mobility Spectrometry

    PubMed Central

    Ibrahim, Yehia M.; Shvartsburg, Alexandre A.; Smith, Richard D.; Belov, Mikhail E.

    2011-01-01

    Localization of the modification sites on peptides is challenging, particularly when multiple modifications or mixtures of localization isomers (variants) are involved. Such variants commonly coelute in liquid chromatography and may be undistinguishable in tandem mass spectrometry (MS/MS) for lack of unique fragments. Here, we have resolved the variants of singly and doubly phosphorylated peptides employing drift tube ion mobility spectrometry (IMS) coupled to time-of-flight mass spectrometry. Even with a moderate IMS resolving power of ~80, substantial separation was achieved for both 2+ and 3+ ions normally generated by electrospray ionization, including for the variant indistinguishable by MS/MS. Variants often exhibit a distribution of 3-D conformers, which can be adjusted for optimum IMS separation by prior field heating of ions in a funnel trap. The peak assignments were confirmed using MS/MS after IMS separation, but known species could be identified using just the ion mobility ‘tag”. Avoiding the MS/MS step lowers the detection limit of localization variants to <100 attomoles, an order of magnitude better than that provided by electron transfer dissociation in an Orbitrap MS. PMID:21692493

  16. Ultrasensitive Identification of Localization Variants of Modified Peptides Using Ion Mobility Spectrometry

    SciTech Connect

    Ibrahim, Yehia M.; Shvartsburg, Alexandre A.; Smith, Richard D.; Belov, Mikhail E.

    2011-05-28

    Localization of the modification sites on peptides is challenging, particularly when multiple modifications or mixtures of localization isomers (variants) are involved. Such variants commonly coelute in liquid chromatography and may be undistinguishable in tandem mass spectrometry (MS/MS) for lack of unique fragments. Here, we have resolved the variants of singly and doubly phosphorylated peptides employing drift tube ion mobility spectrometry (IMS) coupled to time-of-flight mass spectrometry. Even with a moderate IMS resolving power of ~80, substantial separation was achieved for both 2+ and 3+ ions normally generated by electrospray ionization, including for the variant indistinguishable by MS/MS. Variants often exhibit a distribution of 3-D conformers, which can be adjusted for optimum IMS separation by prior field heating of ions in a funnel trap. The peak assignments were confirmed using MS/MS after IMS separation, but known species could be identified using just the ion mobility "tag". Avoiding the MS/MS step lowers the detection limit of localization variants to <100 attomoles, an order of magnitude better than provided by electron transfer dissociation in an Orbitrap MS.

  17. T-wave Ion Mobility-mass Spectrometry: Basic Experimental Procedures for Protein Complex Analysis

    PubMed Central

    Michaelevski, Izhak; Kirshenbaum, Noam; Sharon, Michal

    2010-01-01

    Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N2) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Ω). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Ω is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Ω is calculated using a calibration curve generated from calibrant proteins with defined cross-sections1. The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions1. Several recent IM studies of both individual proteins2,3 and non-covalent protein complexes4-9, successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS-MS analysis of protein

  18. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  19. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  20. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Glover, Matthew S; Dilger, Jonathan M; Acton, Matthew D; Arnold, Randy J; Radivojac, Predrag; Clemmer, David E

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences. Graphical Abstract ᅟ. PMID:26860087

  1. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  2. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  3. Quantitative determination of residual active pharmaceutical ingredients and intermediates on equipment surfaces by ion mobility spectrometry.

    PubMed

    Qin, C; Granger, A; Papov, V; McCaffrey, J; Norwood, D L

    2010-01-01

    Ion mobility spectrometry (IMS) is an analytical technique that separates ions based on their gas phase mobility at atmospheric pressure. Since gas phase ion mobility is a function of the shape and structure of the ion, this technique has the potential to provide unique specificity and selectivity. Furthermore, IMS is very sensitive (subnanogram detection limits for many small molecules), and a single analysis is typically completed within 1 min. In principle, these features of IMS should make it an ideal choice for use in cleaning verification analysis of pharmaceutical manufacturing equipment. This report describes the successful development and validation of three different equipment cleaning verification methods using IMS. The methods were developed for a specific intermediate (Compound A) in the synthetic route for a drug substance as well as for final drug substances (active pharmaceutical ingredients Compounds B and C). The cleaning verification methods were validated with respect to specificity, linearity, precision, accuracy, stability, and limit-of-quantitation. In all cases, the limits-of-quantitation were determined to be at the nanogram or sub-nanogram level. Both swab and rinse samples collected from the equipment surfaces were successfully analyzed and manufacturing equipment down-time was significantly minimized due to the reduction in cleaning verification analysis time (for example, the total analysis time for more than 30 samples using IMS was reduced to less than 2h). PMID:19758781

  4. Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry.

    PubMed

    Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S; Park, Melvin A; Costello, Catherine E; Lin, Cheng

    2016-04-01

    One of the major challenges in structural characterization of oligosaccharides is the presence of many structural isomers in most naturally occurring glycan mixtures. Although ion mobility spectrometry (IMS) has shown great promise in glycan isomer separation, conventional IMS separation occurs on the millisecond time scale, largely restricting its implementation to fast time-of-flight (TOF) analyzers which often lack the capability to perform electron activated dissociation (ExD) tandem MS analysis and the resolving power needed to resolve isobaric fragments. The recent development of trapped ion mobility spectrometry (TIMS) provides a promising new tool that offers high mobility resolution and compatibility with high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometers when operated under the selected accumulation-TIMS (SA-TIMS) mode. Here, we present our initial results on the application of SA-TIMS-ExD-FTICR MS to the separation and identification of glycan linkage isomers. PMID:26959868

  5. Machine learning based prediction for peptide drift times in ion mobility spectrometry

    PubMed Central

    Shah, Anuj R.; Agarwal, Khushbu; Baker, Erin S.; Singhal, Mudita; Mayampurath, Anoop M.; Ibrahim, Yehia M.; Kangas, Lars J.; Monroe, Matthew E.; Zhao, Rui; Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.

    2010-01-01

    Motivation: Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics techniques, such as in the elucidation of secondary structure information, identification of post-translational modifications, as well as higher identification rates with reduced experiment times. The high throughput nature of this technique benefits from accurate calculation of cross sections, mobilities and associated drift times of peptides, thereby enhancing downstream data analysis. Here, we present a model that uses physicochemical properties of peptides to accurately predict a peptide's drift time directly from its amino acid sequence. This model is used in conjunction with two mathematical techniques, a partial least squares regression and a support vector regression setting. Results: When tested on an experimentally created high confidence database of 8675 peptide sequences with measured drift times, both techniques statistically significantly outperform the intrinsic size parameters-based calculations, the currently held practice in the field, on all charge states (+2, +3 and +4). Availability: The software executable, imPredict, is available for download from http:/omics.pnl.gov/software/imPredict.php Contact: rds@pnl.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20495001

  6. Atmospheric Solid Analysis Probe-Ion Mobility Mass Spectrometry: An Original Approach to Characterize Grafting on Cyclic Olefin Copolymer Surfaces.

    PubMed

    Vieillard, Julien; Hubert-Roux, Marie; Brisset, Florian; Soulignac, Cecile; Fioresi, Flavia; Mofaddel, Nadine; Morin-Grognet, Sandrine; Afonso, Carlos; Le Derf, Franck

    2015-12-01

    A cyclic olefin copolymer (COC) was grafted with aryl layers from aryldiazonium salts, and then we combined infrared spectrometry, atomic force microscopy (AFM), and ion mobility mass spectrometry with atmospheric solid analysis probe ionization (ASAP-IM-MS) to characterize the aryl layers. ASAP is a recent atmospheric ionization method dedicated to the direct analysis of solid samples. We demonstrated that ASAP-IM-MS is complementary to other techniques for characterizing bromine and sulfur derivatives of COC on surfaces. ASAP-IM-MS was useful for optimizing experimental grafting conditions and to elucidate hypotheses around aryl layer formation during the grafting process. Thus, ASAP-IM-MS is a good candidate tool to characterize covalent grafting on COC surfaces. PMID:26556473

  7. Resolving Interferences in Negative Mode Ion Mobility Spectrometry Using Selective Reactant Ion Chemistry

    SciTech Connect

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon; Knighton, W. B.; Grimsrud, E. P

    2001-04-01

    During the investigation of the degradation products of 2,4,6-trinitrotoluene (TNT) using ion mobility spectrometry (IMS), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (DCP) were found to have IMS responses which overlapped those of the TNT degradation products. It was observed that the Cl- reactant ion chemistry, often used for explosives analysis, was not always successful in resolving peak overlap of analytes and interferents. It is shown here that resolution of the analytes and interferences can sometimes be achieved using only air for the formation of reactant ions, at other times through the use of Br- as an alternative to Cl- for producing reactant ions, and also through the promotion of adduct stability by lowering the IMS temperature.

  8. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    SciTech Connect

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  9. Ion mobility spectrometry as a high-throughput analytical tool in occupational pyrethroid exposure.

    PubMed

    Armenta, S; Blanco, M

    2012-08-01

    The capabilities of ion mobility spectrometry (IMS) as a high throughput and green analytical tool in the occupational health and safety control, using pyrethroids as models has been evidenced. The method used for dermal and inhalation exposure assessment is based on the passive pyrethroid sampling using Teflon membranes, direct thermal extraction of the pyrethroids, and measurement of the vaporized analytes by IMS without reagent and solvent consumption. The IMS signatures of the studied synthetic pyrethroids under atmospheric pressure chemical ionization by investigating the formed negative ion products have been obtained. The main advantages of the proposed procedure are related to the obtained limits of detection, ranging from 0.08 to 5 ng, the simplicity of measurement, the lack of sample treatment, and therefore, solvent consumption and waste generation, and finally, the speed of analysis. PMID:22159370

  10. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGESBeta

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  11. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  12. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  13. Advancing the High Throughput Identification of Liver Fibrosis Protein Signatures Using Multiplexed Ion Mobility Spectrometry

    SciTech Connect

    Baker, Erin Shammel; Burnum-Johnson, Kristin E.; Jacobs, Jon M.; Diamond, Deborah L.; Brown, Roslyn N.; Ibrahim, Yehia M.; Orton, Daniel J.; Piehowski, Paul D.; Purdy, David E.; Moore, Ronald J.; Danielson, William F.; Monroe, Matthew E.; Crowell, Kevin L.; Slysz, Gordon W.; Gritsenko, Marina A.; Sandoval, John D.; Lamarche, Brian L.; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Simons, Brenna C.; McMahon, Brian J.; Bhattacharya, Renuka; Perkins, James D.; Carithers, Robert L.; Strom, Susan; Self, Steven; Katze, Michael G.; Anderson, Gordon A.; Smith, Richard D.

    2014-04-01

    Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is an imperative goal for the field of medicine. While mass spectrometry (MS)-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry (IMS) separations [1, 2] with liquid chromatography (LC) and MS to dramatically increase measurement sensitivity and throughput, further enabling future MS-based clinical applications. An initial application of the LC-IMS-MS platform for the analysis of blood serum samples from stratified post-liver transplant patients with recurrent fibrosis progression illustrates its potential utility for disease characterization and use in personalized medicine [3, 4].

  14. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  15. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry.

    PubMed

    Garimella, Sandilya V B; Ibrahim, Yehia M; Tang, Keqi; Webb, Ian K; Baker, Erin S; Tolmachev, Aleksey V; Chen, Tsung-Chi; Anderson, Gordon A; Smith, Richard D

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ. PMID:27052738

  16. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    PubMed Central

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-01-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e. peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths for all species. This peak compression occurs with only a modest reduction of resolution, and which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. PMID:27052738

  17. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-04-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  18. Gas chromatography/ion mobility spectrometry as a hyphenated technique for improved explosives detection and analysis

    NASA Technical Reports Server (NTRS)

    Mercado, AL; Marsden, Paul

    1995-01-01

    Ion Mobility Spectrometry (IMS) is currently being successfully applied to the problem of on-line trace detection of plastic and other explosives in airports and other facilities. The methods of sample retrieval primarily consist of batch sampling for particulate residue on a filter card for introduction into the IMS. The sample is desorbed into the IMS using air as the carrier and negative ions of the explosives are detected, some as an adduct with a reagent ion such as Cl(-). Based on studies and tests conducted by different airport authorities, this method seems to work well for low vapor pressure explosives such as RDX and PETN, as well as TNT that are highly adsorptive and can be found in nanogram quantities on contaminated surfaces. Recently, the changing terrorist threat and the adoption of new marking agents for plastic explosives has meant that the sample introduction and analysis capabilities of the IMS must be enhanced in order to keep up with other detector developments. The IMS has sufficient analytical resolution for a few threat compounds but the IMS Plasmogram becomes increasingly more difficult to interpret when the sample mixture gets more complex.

  19. Ion Mobility-Mass Spectrometry Analysis of Serum N-linked Glycans from Esophageal Adenocarcinoma Phenotypes

    PubMed Central

    Gaye, M. M.; Valentine, S. J.; Hu, Y.; Mirjankar, N.; Hammoud, Z. T.; Mechref, Y.; Lavine, B. K.; Clemmer, D. E.

    2012-01-01

    Three disease phenotypes, Barrett’s esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS) and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including: 7 characterized as BE, 12 as HGD, 56 as EAC and 61 as NC. In typical datasets it was possible to assign ~20 to 30 glycan ions based on MS measurements. Ion mobility distributions for these ions show multiple features. In some cases, such as the [S1H5N4+3Na]3+ and [S1F1H5N4+3Na]3+ glycan ions, the ratio of intensities of high-mobility features to low-mobility features vary significantly for different groups. The degree to which such variations in mobility profiles can be used to distinguish phenotypes is evaluated for eleven N-linked glycan ions. An outlier analysis on each sample class followed by an unsupervised PCA using a genetic algorithm for pattern recognition reveals that EAC samples are separated from NC samples based on 46 features originating from the 11-glycan composite IMS distribution. PMID:23126309

  20. Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages

    PubMed Central

    Fernández-Maestre, Roberto

    2009-01-01

    In the pharmaceutical industry, there are increasing requirements for analytical methods in quality assessment for the production of drugs. In this investigation, ion mobility spectrometry (IMS) was used for the rapid qualitative separation and identification of active ingredients in generic over-the-counter drugs and food additives in beverages. The active ingredients determined in drugs were acetaminophen, aspartame, bisacodyl, caffeine, dextromethorphan, diphenhydramine, famotidine, glucosamine, guaifenesin, loratadine, niacin, phenylephrine, pyridoxine, thiamin, and tetrahydrozoline. Aspartame and caffeine were determined in beverages. Fourteen over-the-counter drugs and beverages were analyzed. Analysis times below 10 s were obtained for IMS, and reduced mobilities were reported for the first time for 12 compounds. A quadrupole mass spectrometer coupled to a mobility spectrometer was used to assure a correct peak assignation. The combination of fast analysis, low cost, and inexpensive maintenance of IMS instruments makes IMS an attractive technique for the qualitative determination of the active ingredients in over-the-counter drugs and food additives in manufacture quality control and cleaning verification for the drug and food industries. PMID:20835390

  1. Detection and characterization of smokeless powders with ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Hernandez, Neiza M.; Rosario, Santa V.; Hernandez, Samuel P.; Mina, Nairmen

    2005-05-01

    Smokeless Powders are a class of propellants that were developed in the late 19th century to replace black powder; it has been used as an explosive in shotguns, rifles, firearms and many other larger caliber weapons. These propellants can be placed into one of three different classes according to the chemical composition of their primary energetic ingredients. Advance equipment have been designed and used for the detection of explosives devices and compounds potentially energetic. In this research we are developing an analytical methodology to detect different formulation of smokeless powders: Alliant-American Select, Alliant-Bullseye, and Alliant-Red Dot using the ion mobility spectrometry (IMS) technique. We used different surfaces like computer diskettes, CD"s, book covers and plastics to study their adsorption/desorption process. Using micropipettes, we delivered solutions with different amounts of Smokeless Powders from a 1000 ppm solution and deposit it on various types of filters to make a calibration curve. Several amounts of Smokeless Powder were deposited to the different surfaces and collected with filter paper. The samples were desorbed directly from the filter to the instrument inlet port. Subsequently, the percentage of explosive recovered was calculated.

  2. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system. PMID:26048817

  3. Ion Mobility Spectrometry Reveals Duplex DNA Dissociation Intermediates

    NASA Astrophysics Data System (ADS)

    Burmistrova, Anastasia; Gabelica, Valérie; Duwez, Anne-Sophie; De Pauw, Edwin

    2013-11-01

    Electrospray ionization (ESI) soft desolvation is widely used to investigate fragile species such as nucleic acids. Tandem mass spectrometry (MS/MS) gives access to the gas phase energetics of the intermolecular interactions in the absence of solvent, by following the dissociation of mass-selected ions. Ion mobility mass spectrometry (IMS) provides indications on the tridimensional oligonucleotide structure by attributing a collision cross section (CCS) to the studied ion. Electrosprayed duplexes longer than eight bases pairs retain their helical structure in a solvent-free environment. However, the question of conformational changes under activation in MS/MS studies remains open. The objective of this study is to probe binding energetics and characterize the unfolding steps occurring prior to oligonucleotide duplex dissociation. Comparing the evolution of CCS with collision energy and breakdown curves, we characterize dissociation pathways involved in CID-activated DNA duplex separation into single strands, and we demonstrate here the existence of stable dissociation intermediates. At fixed duplex length, dissociation pathways were found to depend on the percentage of GC base pairs and on their position in the duplex. Our results show that pure GC sequences undergo a gradual compaction until reaching the dissociation intermediate: A-helix. Mixed AT-GC sequences were found to present at least two conformers: a classic B-helix and an extended structure where the GC tract is a B-helix and the AT tract(s) fray. The dissociation in single strands takes place from both conformers when the AT base pairs are enclosed between two GC tracts or only from the extended conformer when the AT tract is situated at the end(s) of the sequence.

  4. Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae

    PubMed Central

    Halbfeld, Christoph; Ebert, Birgitta E.; Blank, Lars M.

    2014-01-01

    Volatile organic compounds (VOCs) produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS). The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control. PMID:25197771

  5. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  6. Determination of vinyl chloride in soil-gas samples by gas chromatography coupled with ion mobility spectrometry

    SciTech Connect

    Jones, T.L.; Hill, H.; Simpson, G.; Klasmeier, M.; Lopez-Avila, V.; Radolovich, G.

    1995-12-31

    The advantages of ion mobility spectrometry (IMS), such as ambient pressure operation, simplicity of design, high sensitivity, speed of response, spectral output, and ability to respond to a large number of compounds, make IMS technology attractive for a variety of field monitoring applications. A quantitative, multicompound field detector based on IMS technology has not been successful, however, because of technology limitations. For multicomponent samples, multiple ion-molecule reactions result in confusing spectral information. Varying humidity can result in ion-water clusters that cause errors in both the identification and quantification of the target analyte. These limitations could be overcome through the addition of gas chromatography (GC) prior to high-temperature IMS. When coupling GC to IMS, the following need to be considered: (a) currently available IMS cells have a relatively large internal volume (> 20 mL), reducing the chromatographic resolution; (b) smaller IMS cells are not capable of operating above 100 C; (c) the radioactive ionization cell limits the dynamic range of the device to 2 to 3 orders of magnitude; and (d) most standard miniature cells have a membrane inlet that does not allow direct interface with a GC column. The authors have overcome some of these difficulties by interfacing GC with Fourier Transform IMS (FTIMS). They will present data on determining vinyl chloride in soil-gas samples by GC-FTIMS.

  7. External second-gate Fourier transform ion mobility spectrometry: parametric optimization for detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Tarver, Edward E.

    2004-09-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and robust techniques for the detection of narcotics, explosives and chemical warfare agents. IMS is widely used in forensic, military and security applications. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention (CWC) treaty verification as well as humanitarian de-mining efforst have mandated that equal importance be placed on the time required to obtain results as well as the quality of the analytical data. In this regard IMS is virtually unrivaled when both speed of response and sensitivity have to be considered. The problem with conventional (signal averaging) IMS systems is the fixed duty cycle of the entrance gate that restricts to less than 1%, the number of available ions contributing to the measured signal. Furthermore, the signal averaging process incorporates scan-to-scan variations that degrade the spectral resolution contributing to misidentifications and false positives.

  8. Direct analysis of pharmaceutical drug formulations using ion mobility spectrometry/quadrupole-time-of-flight mass spectrometry combined with desorption electrospray ionization.

    PubMed

    Weston, Daniel J; Bateman, Robert; Wilson, Ian D; Wood, Tim R; Creaser, Colin S

    2005-12-01

    A novel approach to the rapid analysis of pharmaceutical drug formulations using hyphenated ion mobility spectrometry (IMS) and time-of-flight mass spectrometry (ToF-MS) that requires no sample pretreatment or chromatographic separation is described. A modified quadrupole time-of-flight mass spectrometer containing an ion mobility drift cell was used for gas-phase electrophoretic separation of ions prior to ToF-MS detection. The generation of sample ions directly from tablets and cream formulations was effected by desorption electrospray ionization (DESI) using a modified electrospray ion source. The analysis of a range of over-the-counter and prescription tablet formulations is described, including histamine H2 receptor antagonist (ranitidine), analgesic (paracetamol), opiate (codeine), and aromatase inhibitor anticancer (anastrozole) drugs. The successful determination of active drugs from soft formulations, such as an antiseptic cream (chlorhexidine) and a nicotine-containing skin patch, is also presented. Limits of detection for the active drugs using the DESI/IMS/ToF-MS method fell within the high-picomole to nanomole range. In all cases, the use of ion mobility drift tube separation showed increased selectivity for active drug responses (present as low as 0.14% w/w) over excipient responses such as poly(ethylene glycol). Tandem mass spectrometric analysis of precursor ions separated by IMS allowed positive confirmation of active drugs with little loss of ion mobility efficiency. The ability to analyze hard or soft pharmaceutical formulations directly by DESI combined with ion mobility spectrometry/mass spectrometry in approximately 2 min demonstrates the potential applicability of this novel method to pharmaceutical screening of low-molecular-weight drug formulations with high selectivity over the formulation vehicle. PMID:16316164

  9. Demonstrated Potential of Ion Mobility Spectrometry for Detection of Adulterated Perfumes and Plant Speciation

    SciTech Connect

    Clark, Jared Matthew; Daum, Keith Alvin; Kalival, J. H.

    2003-01-01

    This initial study evaluates the use of ion mobility spectrometry (IMS) as a rapid test procedure for potential detection of adulterated perfumes and speciation of plant life. Sample types measured consist of five genuine perfumes, two species of sagebrush, and four species of flowers. Each sample type is treated as a separate classification problem. It is shown that discrimination using principal component analysis with K-nearest neighbors can distinguish one class from another. Discriminatory models generated using principal component regressions are not as effective. Results from this examination are encouraging and represent an initial phase demonstrating that perfumes and plants possess characteristic chemical signatures that can be used for reliable identification.

  10. Design and implementation of embedded ion mobility spectrometry instrument based on SOPC

    NASA Astrophysics Data System (ADS)

    Zhang, Genwei; Zhao, Jiang; Yang, Liu; Liu, Bo; Jiang, Yanwei; Yang, Jie

    2015-02-01

    On the hardware platform with single CYCLONE IV FPGA Chip based on SOPC technology, the control functions of IP cores of a Ion Mobility Spectrometry instrument was tested, including 32 bit Nios II soft-core processor, high-voltage module, ion gate switch, gas flow, temperature and pressure sensors, signal acquisition and communication protocol. Embedded operating system μCLinux was successfully transplanted to the hardware platform, used to schedule all the tasks, such as system initialization, parameter setting, signal processing, recognition algorithm and results display. The system was validated using the IMS diagram of Acetone reagent, and the instrument was proved to have a strong signal resolution.

  11. Pendular Proteins in Gases and New Avenues for Characterization of Macromolecules by Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Noskov, Sergei; Purves, Randy; Smith, Richard D.

    2009-04-21

    Polar molecules align in electric fields when the dipole energy (proportional to field intensity E × dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles and may align at E achievable in gases and room temperature. The collision cross sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. An exceptional sensitivity of that difference to the ion geometry and charge distribution holds the potential for a powerful new method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p depending on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, the p for realistic ions must exceed ~300 - 400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above ~30 kDa. FAIMS analyses of protein ions and complexes of ~30 - 130 kDa show an order-of-magnitude expansion of separation space compared to smaller proteins and other ions, consistent with expectations for the dipole-aligned regime.

  12. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry

    PubMed Central

    Shvartsburg, Alexandre A.; Noskov, Sergei Y.; Purves, Randy W.; Smith, Richard D.

    2009-01-01

    Polar molecules align in electric fields when the dipole energy (proportional to field intensity E × dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles that align at E achievable in gases and room temperature. The collision cross-sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. The exceptional sensitivity of that difference to ion geometry and charge distribution holds the potential for a powerful method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p that depends on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, p for realistic ions must exceed ≈300–400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above ≈30 kDa. As expected for the dipole-aligned regime, FAIMS analyses of protein ions and complexes of ≈30–130 kDa show an order-of-magnitude expansion of separation space compared with smaller proteins and other ions. PMID:19351899

  13. Pushing the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS

    PubMed Central

    A. Shvartsburg, Alexandre; A. Anderson, Gordon; D. Smith, Richard

    2013-01-01

    Differential ion mobility spectrometry (FAIMS) separates ions in gases based on the difference between their mobilities in strong and weak electric fields, captured directly employing a periodic waveform with dissimilar profiles in opposite polarities. As that difference is not tightly correlated with the ion size or mass, FAIMS separations are generally quite orthogonal to both conventional IMS (based on the absolute ion mobility that reflects the physical ion size) and mass spectrometry (based on mass). Until a few years ago, that advantage was largely offset by poor FAIMS resolving power (∼10–20), an order of magnitude below that achieved with conventional (drift-tube) IMS. This article summarizes the major recent technical developments that have raised FAIMS resolving power up to ∼500. These include use of higher and more stable voltages provided by new waveform generators, novel buffer gas compositions comprising high helium or hydrogen fractions, and extended filtering times up to ∼1 s. These advances have enabled previously unthinkable analyses such as broad baseline separations of peptide sequence inversions, localization variants (post-translationally modified peptides with differing PTM attachment sites) even for the larger “middle-down” peptides and smallest PTMs, and lipid regioisomers. PMID:24349930

  14. Field screening of soils contaminated with explosives using ion mobility spectrometry

    SciTech Connect

    Crockett, A.B.; Atkinson, D.A.; Jenkins, T.F.

    1996-09-01

    Soils contaminated with explosives constitute a problem at DOE facilities and Army installations. Because explosives in soil are often heterogeneously distributed and require high density sampling, field screening is essential to characterize sites more quickly, economically and accurately. Current immunoassay and colorimetric field screening procedures have proven useful, but have significant per sample costs and limited throughput. At present, several field screening are available for TNT in soil, three procedures for RDX, and one procedure for 2,4-DNTand ammonium picrate/picric acid (AP/PA). Ion mobility spectrometry (IMS) has been used to detect explosives in air at ppt levels, but limited work has been done to apply the technique to quantify explosives in soils. The objective of this study has been to evaluate the utility of IMS as a screening technique for quantifying explosive residues in soils.

  15. GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics.

    PubMed

    Struwe, Weston B; Pagel, Kevin; Benesch, Justin L P; Harvey, David J; Campbell, Matthew P

    2016-06-01

    Ion mobility mass spectrometry (IM-MS) is a promising analytical technique for glycomics that separates glycan ions based on their collision cross section (CCS) and provides glycan precursor and fragment masses. It has been shown that isomeric oligosaccharide species can be separated by IM and identified on basis of their CCS and fragmentation. These results indicate that adding CCSs information for glycans and glycan fragments to searchable databases and analysis pipelines will increase identification confidence and accuracy. We have developed a freely accessible database, GlycoMob ( http://www.glycomob.org ), containing over 900 CCSs values of glycans, oligosaccharide standards and their fragments that will be continually updated. We have measured the absolute CCSs of calibration standards, biologically derived and synthetic N-glycans ionized with various adducts in positive and negative mode or as protonated (positive ion) and deprotonated (negative ion) ions. PMID:26314736

  16. Shift reagents in ion mobility spectrometry: the effect of the number of interaction sites, size and interaction energies on the mobilities of valinol and ethanolamine.

    PubMed

    Fernández-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-05-01

    Overlapping peaks interfere in ion mobility spectrometry (IMS), but they are separated introducing mobility shift reagents (SR) in the buffer gas forming adducts with different collision cross-sections (size). IMS separations using SR depend on the ion mobility shifts which are governed by adduct's size and interaction energies (stabilities). Mobility shifts of valinol and ethanolamine ions were measured by electrospray-ionization ion mobility-mass spectrometry (MS). Methyl-chloro propionate (M) was used as SR; 2-butanol (B) and nitrobenzene (N) were used for comparison. Density functional theory was used for calculations. B produced the smallest mobility shifts because of its small size. M and N have two strong interaction sites (oxygen atoms) and similar molecular mass, and they should produce similar shifts. For both ethanolamine and valinol ions, stabilities were larger for N adducts than those of M. With ethanolamine, M produced a 68% shift, large compared to that using N, 61%, because M has a third weak interaction site on the chlorine atom and, therefore, M has more interaction possibilities than N. This third site overrode the oxygen atoms' interaction energy that favored the adduction of ethanolamine with N over that with M. On the contrary, with valinol mobility shifts were larger with N than with M (21 vs 18%) because interaction energy favored even more adduction of valinol with N than with M; that is, the interaction energy difference between adducts of valinol with M and N was larger than that between those adducts with ethanolamine, and the third M interaction could not override this larger difference. Mobility shifts were explained based on the number of SR's interaction sites, size of ions and SR, and SR-ion interaction energies. This is the first time that the number of interaction sites is used to explain mobility shifts in SR-assisted IMS. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194523

  17. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  18. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques. PMID:22594852

  19. Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers

    PubMed Central

    Liu, Xiumin; Cool, Lydia R.; Lin, Kenneth; Kasko, Andrea M.; Wesdemiotis, Chrys

    2015-01-01

    Multidimensional mass spectrometry techniques, combining matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) with tandem mass spectrometry (MS2), multistage mass spectrometry (MSn) or ion mobility mass spectrometry (IM-MS), have been employed to gain precise structural insight on the compositions, sequences and architectures of small oligomers of a hyperbranched glycopolymer, prepared by atom transfer radical copolymerization of an acrylate monomer (A) and an acrylate inimer (B), both carrying mannose ester pendants. The MS data confirmed the incorporation of multiple inimer repeat units, which ultimately lead to the hyperbranched material. The various possible structures of n-mers with the same composition were subsequently elucidated based on MS2 and MSn studies. The characteristic elimination of bromomethane molecule provided definitive information about the comonomer connectivity in the copolymeric AB2 trimer and A2B2 tetramer, identifying as present only one of the three possible trimeric isomers (viz. sequence BBA) and only two of the six possible tetrameric isomers (viz. sequences BBA2 and BABA). Complementary IM-MS studies confirmed that only one of the tetrameric structures is formed. Comparison of the experimentally determined collision cross-section of the detected isomer with those predicted by molecular simulations for the two possible sequences ascertained BBA2 as the predominant tetrameric architecture. The multidimensional MS approaches presented provide connectivity information at the atomic level without requiring high product purity (due to the dispersive nature of MS) and, hence, should be particularly useful for the microstructure characterization of novel glycopolymers and other types of complex copolymers. PMID:25519163

  20. A structural equation model relating physical function, pain, impaired mobility (IM), and falls in older adults.

    PubMed

    Dai, Boyi; Ware, William B; Giuliani, Carol A

    2012-01-01

    The current study used a structural equation model to investigate the interrelationships among physical function, pain, IM, and falls in 511 American older adults. The model included 11 measurement variables (tandem stance, single leg stance, 360° turn, chair stand, arm curl, sit and reach, back scratch, normative score of 6-min walk or 2-min step, timed up and go, pain, and fall) and four latent variables (balance, strength, flexibility, and IM). The final model with the combined sample demonstrated good fit with the participant data (χ(2)(31)=30.0, N=499, p=0.52; Goodness of Fit Index (GFI)=0.99). Balance had a significant and the largest effect on IM (standardized regression weights=-1.05, p<0.001). Strength, endurance, flexibility, and pain had small effects on IM (standardized regression weights<0.2). The findings suggest that balance and mobility testing should be a priority in fall screening and prevention programs. PMID:22766209

  1. Analysis of new synthetic drugs by ion mobility time-of-flight mass spectrometry.

    PubMed

    Sysoev, Alexey A; Poteshin, Sergey S; Chernyshev, Denis M; Karpov, Alexander V; Tuzkov, Yuriy B; Kyzmin, Vyacheslav V; Sysoev, Alexander A

    2014-01-01

    Characteristic ion mobility mass spectrometry data, reduced mobility, and limits of detection (signal-to-noise ratio = 3) were determined for six synthetic drugs and cocaine by ion mobility time-of-flight mass spectrometry (IM-TOF-MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). The studied synthetic illicit drugs recently appeared on the recreational drug market as designer drugs and were methylone, 4-MEC (4'-methylethcathinone), 3,4-MDPV (3,4-methylenedioxypyrovalerone), JWH-210 [4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone], JWH-250 [2-(2-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)ethanone], and JWH-203 [1-pentyl-3-(2'-chlorophenylacetyl) indole]. Absolute reduced mobilities in nitrogen were 1.35, 1.28, 1.41, 1.30, 1.18, 0.98, 1.09, and 1.07 cm2V(-1)s(-1), for methylone [M-H]+, methylone [M+H]+, 4-MEC [M-H]+, 4-MEC [M+H]+, 3,4-MDPV [M+H]+, JWH-210 [M+H]+, JWH-250 [M+H]+, and JWH-203 [M+H]+, respectively. Selected illicit drugs are easily identified by IM-TOF-MS during a 100s analysis. Relative Limits of detection ranged from 4 to 400 nM are demonstrated for these compounds. Such relative limits of detection correspond to 14 pg to 2 ng absolute limits of detection. Better detection limits are obtained in APCI mode for all the illicit drugs except cocaine. ESI mode was found to be preferable for the IM-TOF-MS detection of cocaine at trace levels. A single sample analysis is completed in an order of magnitude less time than that for conventional liquid chromatography/mass spectrometry approach. The application allows one to consider IM-TOF-MS as a good candidate for a method to determine quickly the recently surfaced designer drugs marketed on the internet as "bath salts," "spice," and "herbal blends". PMID:24895779

  2. Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies: I. Electrospray Spectra of 2-Ring Isomers

    PubMed Central

    2015-01-01

    Purified methylenedianiline (MDA) regioisomers were structurally characterized and differentiated using tandem mass spectrometry (MS/MS), ion mobility-mass spectrometry (IM-MS), and IM-MS/MS in conjunction with computational methods. It was determined that protonation sites on the isomers can vary depending on the position of amino groups, and the resulting protonation sites play a role in the gas-phase stability of the isomer. We also observed differences in the relative distributions of protonated conformations depending on experimental conditions and instrumentation, which is consistent with previous studies on aniline in the gas phase. This work demonstrates the utility of a multifaceted approach for the study of isobaric species and elucidates why previous MDA studies may have been unable to detect and/or differentiate certain isomers. Such analysis may prove useful in the characterization of larger MDA multimeric species, industrial MDA mixtures, and methylene diphenyl diisocyanate (MDI) mixtures used in polyurethane synthesis. PMID:24678803

  3. Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: A promising partnership.

    PubMed

    Armenta, Sergio; de la Guardia, Miguel; Abad-Fuentes, Antonio; Abad-Somovilla, Antonio; Esteve-Turrillas, Francesc A

    2015-12-24

    The extreme specificity of immunoaffinity chromatography (IAC) columns coupled to the high sensitivity of ion mobility spectrometry (IMS) measurements makes this combination really useful for rapid, selective, and sensitive determination of a high variety of analytes in different samples. The capabilities of the IAC-IMS coupling have been highlighted under three different scenarios: (i) multiclass residue analysis using a single IAC column, (ii) multiclass residue analysis using stacked IAC columns, and (iii) isomer analysis. In the first case, the determination of three strobilurin fungicides - azoxystrobin, picoxystrobin, and pyraclostrobin - in water and strawberry juice was considered, obtaining limits of quantification (LOQs) from 11 to 63μgL(-1). Recoveries from 96 to 106% for water, and from 67 to 104% for strawberry juice were obtained. In the second case, anilinopyrimidine compounds, including two analytes with similar drift time, were selectively retained in different IAC columns and analyzed after independent elution in commercial wine samples by IMS. LOQ values of 16, 14 and 12μgL(-1) were obtained for pyrimethanil, mepanipyrim, and cyprodinil, respectively. The obtained recoveries for wine samples spiked with 25 and 100μgL(-1) were from 82 to 123%. Additionally, the stacked IAC columns concept was applied to the separation of Z and E isomers of azoxystrobin that were selectively retained in specific IAC columns and quantified by IMS. Recoveries between 91 and 94% were obtained for both isomers in water samples. PMID:26654255

  4. Elucidation of Drug Metabolite Structural Isomers Using Molecular Modeling Coupled with Ion Mobility Mass Spectrometry.

    PubMed

    Reading, Eamonn; Munoz-Muriedas, Jordi; Roberts, Andrew D; Dear, Gordon J; Robinson, Carol V; Beaumont, Claire

    2016-02-16

    Ion mobility-mass spectrometry (IM-MS) in combination with molecular modeling offers the potential for small molecule structural isomer identification by measurement of their gas phase collision cross sections (CCSs). Successful application of this approach to drug metabolite identification would facilitate resource reduction, including animal usage, and may benefit other areas of pharmaceutical structural characterization including impurity profiling and degradation chemistry. However, the conformational behavior of drug molecules and their metabolites in the gas phase is poorly understood. Here the gas phase conformational space of drug and drug-like molecules has been investigated as well as the influence of protonation and adduct formation on the conformations of drug metabolite structural isomers. The use of CCSs, measured from IM-MS and molecular modeling information, for the structural identification of drug metabolites has also been critically assessed. Detection of structural isomers of drug metabolites using IM-MS is demonstrated and, in addition, a molecular modeling approach has been developed offering rapid conformational searching and energy assessment of candidate structures which agree with experimental CCSs. Here it is illustrated that isomers must possess markedly dissimilar CCS values for structural differentiation, the existence and extent of CCS differences being ionization state and molecule dependent. The results present that IM-MS and molecular modeling can inform on the identity of drug metabolites and highlight the limitations of this approach in differentiating structural isomers. PMID:26752623

  5. Membrane-Extraction Ion Mobility Spectrometry for In-Situ Detection of Chlorinated Hydrocarbons in Water

    SciTech Connect

    Du, Yongzhai; Zhang, Wei; Whitten, William B; Li, Haiyang; Watson, David B; Xu, Jun

    2010-01-01

    Membrane-extraction ion mobility spectrometry (ME-IMS) has been developed for in-situ sampling and analysis of trace chlorinated hydrocarbons in water in a single procedure. The sampling is configured so that aqueous contaminants permeate through a spiral hollow polydimethylsiloxane (PDMS) membrane and are carried away by a vapor flow through the membrane tube. The extracted analyte flows into an atmospheric pressure chemical ionization (APCI) chamber and is analyzed in a home-made IMS analyzer. PDMS membrane is found to effectively extract chlorinated hydrocarbon solvents from liquid phase to vapor. The specialized IMS analyzer has been found to have resolutions of R=33 and 41, respectively, for negative- and positive-modes and is capable of detecting aqueous tetrachloroethylene (PCE) and trichloroethylene (TCE) as low as 80 g/L and 74 g/L in negative ion mode, respectively. The time-dependent characteristics of sampling and detection of TCE are both experimentally and theoretically studied for various concentrations, membrane lengths, and flow rates. These characteristics demonstrate that membrane-extraction IMS is feasible for the continuous monitoring of chlorinated hydrocarbons in water.

  6. Transport Modeling of Membrane Extraction of Chlorinated Hydrocarbon from Water for Ion Mobility Spectrometry

    SciTech Connect

    Zhang, Wei; Du, Yongzhai; Feng, Zhili; Xu, Jun

    2010-01-01

    Membrane-extraction Ion Mobility Spectrometry (ME-IMS) is a feasible technique for the continuous monitoring of chlorinated hydrocarbons in water. This work studies theoretically the time-dependent characteristics of sampling and detection of trichloroethylene (TCE). The sampling is configured so that aqueous contaminants permeate through a hollow polydimethylsiloxane (PDMS) membrane and are carried away by a transport gas flowing through the membrane tube into IMS analyzer. The theoretical study is based on a two-dimensional transient fluid flow and mass transport model. The model describes the TCE mixing in the water, permeation through the membrane layer, and convective diffusion in the air flow inside membrane tube. The effect of various transport gas flow rates on temporal profiles of IMS signal intensity is investigated. The results show that fast time response and high transport yield can be achieved for ME-IMS by controlling the flow rate in the extraction membrane tube. These modeled time-response profiles are important for determining duty cycles of field-deployable sensors for monitoring chlorinated hydrocarbons in water.

  7. Design for gas chromatography-corona discharge-ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2012-11-20

    A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes. PMID:23083064

  8. Gas-Phase Dopant-Induced Conformational Changes Monitored with Transversal Modulation Ion Mobility Spectrometry.

    PubMed

    Meyer, Nicole Andrea; Root, Katharina; Zenobi, Renato; Vidal-de-Miguel, Guillermo

    2016-02-16

    The potential of a Transversal Modulation Ion Mobility Spectrometry (TMIMS) instrument for protein analysis applications has been evaluated. The Collision Cross Section (CCS) of cytochrome c measured with the TMIMS is in agreement with values reported in the literature. Additionally, it enables tandem IMS-IMS prefiltration in dry gas and in vapor doped gas. The chemical specificity of the different dopants enables interesting studies on the structure of proteins as CCS changed strongly depending on the specific dopant. Hexane produced an unexpectedly high CCS shift, which can be utilized to evaluate the exposure of hydrophobic parts of the protein. Alcohols produced higher shifts with a dual behavior: an increase in CCS due to vapor uptake at specific absorption sites, followed by a linear shift typical for unspecific and unstable vapor uptake. The molten globule +8 shows a very specific transition. Initially, its CCS follows the trend of the compact folded states, and then it rapidly increases to the levels of the unfolded states. This strong variation suggests that the +8 charge state undergoes a dopant-induced conformational change. Interestingly, more sterically demanding alcohols seem to unfold the protein more effectively also in the gas phase. This study shows the capabilities of the TMIMS device for protein analysis and how tandem IMS-IMS with dopants could provide better understanding of the conformational changes of proteins. PMID:26845079

  9. Liquid Nebulization-Ion Mobility Spectrometry Based Quantification of Nanoparticle-Protein Conjugate Formation.

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-08-01

    Despite the importance of examining the formation of nanoparticle-protein conjugates, there is a dearth of routine techniques for nanoparticle-protein conjugate characterization. The most prominent change to a nanoparticle population upon conjugate formation is a shift in the nanoparticle size distribution function. However, commonly employed dynamic light scattering based approaches for size distribution characterization are ineffective for nonmonodisperse samples, and further they are relatively insensitive to size shifts of only several nanometers, which are common during conjugate formation. Conversely, gas phase ion mobility spectrometry (IMS) techniques can be used to reliably examine polydisperse samples, and are sensitive to ∼1 nm size distribution function shifts; the challenge with IMS is to convert nanoparticle-protein conjugates to aerosol particles without bringing about nonspecific aggregation or conjugate formation. Except in limited circumstances, electrospray based aerosolization has proven difficult to apply for this purpose. Here we show that via liquid nebulization (LN) with online, high-flow-rate dilution (with dilution factors up to 10 000) it is possible to aerosolize nanoparticle-protein conjugates, enabling IMS measurements of their conjugate size distribution functions. We specifically employ the LN-IMS system to examine bovine serum albumin binding to gold nanoparticles. Inferred maximum protein surface coverages (∼0.025 nm(-2)) from measurements are shown to be in excellent agreement with reported values for gold from quartz crystal microbalance measurements. It is also shown that LN-IMS measurements can be used to detect size distribution function shifts on the order of 1 nm, even in circumstances where the size distribution function itself has a standard deviation of ∼5 nm. In total, the reported measurements suggest that LN-IMS is a potentially simple and robust technique for nanoparticle-protein conjugate characterization

  10. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  11. Using a Buffer Gas Modifier to Change Separation Selectivity in Ion Mobility Spectrometry

    PubMed Central

    Fernández-Maestre, Roberto; Wu, Ching; Hill, Herbert H.

    2010-01-01

    The mobilities of a set of common α-amino acids, four tetraalkylammonium ions, 2,4-dimethyl pyridine (2,4-lutidine), 2,6-di-tert-butyl pyridine (DTBP), and valinol were determined using electrospray ionization-ion mobility spectrometry-quadrupole mass spectrometry (ESI-IMS-QMS) while introducing 2-butanol into the buffer gas. The mobilities of the test compounds decreased by varying extents with 2-butanol concentration in the mobility spectrometer. When the concentration of 2-butanol increased from 0.0 to 6.8 mmol m−3 (2.5×102 ppmv), percentage reductions in mobilities were: 13.6% (serine), 12.2% (threonine), 10.4% (methionine), 10.3% (tyrosine), 9.8% (valinol), 9.2% (phenylalanine), 7.8% (tryptophan), 5.6% (2,4-lutidine), 2.2% (DTBP), 1.0% (tetramethylammonium ion, TMA, and tetraethylammonium ion, TEA), 0.0% (tetrapropylammonium ion, TPA), and 0.3% (tetrabutylammonium ion, TBA). These variations in mobility depended on the size and steric hindrance on the charge of the ions, and were due to formation of large ion-2-butanol clusters. This selective variation in mobilities was applied to the resolution of a mixture of compounds with similar reduced mobilities such as serine and valinol, which overlapped in N2-only buffer gas in the IMS spectrum. The relative insensitivity of tetraalkylammonium ions and DTBP to the introduction of 2-butanol into the buffer gas was explained by steric hindrance of the four alkyl substituents in tetraalkylammonium ions and the two tert-butyl groups in DTBP, which shielded the positive charge of the ion from the attachment of 2-butanol molecules. Low buffer gas temperatures (100 °C) produced the largest reductions in mobilities by increasing ion-2-butanol interactions and formation of clusters; high temperatures (250 °C) prevented the formation of clusters, and no reduction in ion mobility was obtained with the introduction of 2-butanol into the buffer gas. Low temperatures and high concentrations of 2-butanol produced a series of

  12. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ultra-high performance liquid chromatography-ion mobility- quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine core structure, plus methylated, oxidized, and reduced speci...

  13. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry.

    PubMed

    Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui

    2016-06-24

    In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. PMID:27208986

  14. Applicability of ion mobility spectrometry for detection of quarantine pests in wood

    NASA Astrophysics Data System (ADS)

    Ewing, K. J.; Sanghera, J.; Myers, S. W.; Ervin, A. M.; Carey, C.; Gleason, G.; Mosser, L.; Levy, L.; Hennessey, M. K.; Bulluck, R.

    2016-05-01

    Visual inspection is the most commonly used method for detecting quarantine pests in agricultural cargo items at ports. For example, solid wood packing material (SWPM) at ports may be a pathway for wood pests and is a frequent item of inspection at ports. The inspection process includes examination of the external surface of the item and often destructive sampling to detect internal pest targets. There are few tools available to inspectors to increase the efficiency of inspection and reduce the labor involved. Ion mobility spectrometry (IMS) has promise as an aid for inspection. Because pests emit volatile organic compounds (VOCs) such as hormone like substances, Ion Mobility Spectrometry (IMS) was investigated for possible utility for detecting pests during inspection. SWPM is a major pest pathway in trade, and fumigation of many kinds of wood, including SWPM, with methyl bromide (MeBr) following a published schedule1 is regularly conducted for phytosanitary reasons prior to shipment to the United States. However, the question remains as to how long the methyl bromide remains in the wood samples after fumigation such that it could act as an interferent to the detection of pest related VOC emissions. This work investigates the capability of ion mobility spectrometry to detect the presence of residual methyl bromide in fumigated maple and poplar wood samples at different times post fumigation up to 118 days after fumigation. Data show that MeBr can be detected in the less dense poplar wood up to 118 days after fumigation while MeBr can be detected in the denser maple wood 55 days after fumigation.

  15. A novel approach to increasing cocaine detection confidence utilizing ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Jadamec, J. Richard; Su, Chih-Wu; Rigdon, Stephen; Norwood, Lavan

    1995-01-01

    When a positive detection of a narcotic occurs during the search of a vessel, a decision has to be made whether further intensive search is warranted. In terms of unwarranted delays of vessels and possible property damage, the accuracy of the analytical determination is very important. Analytical accuracy becomes critical when the data may be used in court actions as evidence. For this purpose, the U.S. Coast Guard has been investigating several confirmatory ion mobility spectrometry (IMS) field methods for the detection and identification of cocaine. This paper presents the findings of our investigations on the use of catalytic pyrolysis and base hydrolysis as confirmatory methods. The catalytic effects of various metals on the pyrolysis reaction are reported. In addition, the effects of several different ion mobility spectrometer sample transfer mediums and varying laboratory conditions on the base hydrolysis of the cocaine molecule are also be reported.

  16. Measurement of drug facilitated sexual assault agents in simulated sweat by ion mobility spectrometry.

    PubMed

    Demoranville, Leonard T; Verkouteren, Jennifer R

    2013-03-15

    Ion mobility spectrometry has found widespread use for the detection of explosives and illicit drugs. The technique offers rapid results with high sensitivity and little sample preparation. As such, it is well suited for field deployed screening settings. Here the response of ion mobility spectrometers for three drug-facilitated sexual assault (DFSA) agents - flunitrazepam, ketamine, and MDMA - and related metabolites has been studied in the presence of a simulated sweat. While all three DFSA agents present certain challenges for qualitative identification, IMS can provide useful information to guide the early treatment and investigation of sexual assault cases. Used as a presumptive test, the identification of DFSA agents would later require confirmatory analysis by other techniques. PMID:23598140

  17. On the structural denaturation of biological analytes in trapped ion mobility spectrometry - mass spectrometry.

    PubMed

    Liu, Fanny C; Kirk, Samuel R; Bleiholder, Christian

    2016-06-01

    Key to native ion mobility/mass spectrometry is to prevent the structural denaturation of biological molecules in the gas phase. Here, we systematically assess structural changes induced in the protein ubiquitin during a trapped ion mobility spectrometry (TIMS) experiment. Our analysis shows that the extent of structural denaturation induced in ubiquitin ions is largely proportional to the amount of translational kinetic energy an ion gains from the applied electric field between two collisions with buffer gas particles. We then minimize the efficiency of the structural denaturation of ubiquitin ions in the gas phase during a TIMS experiment. The resulting "soft" TIMS spectra of ubiquitin are found largely identical to those observed on "soft" elevated-pressure ion mobility drift tubes and the corresponding calibrated cross sections are consistent with structures reported from NMR experiments for the native and A-state of ubiquitin. Thus, our analysis reveals that TIMS is useful for native ion mobility/mass spectrometry analysis. PMID:26998732

  18. A new approach for detection of explosives based on ion mobility spectrometry and laser desorption/ionization on porous silicon

    NASA Astrophysics Data System (ADS)

    Kuzishchin, Yury; Kotkovskii, Gennadii; Martynov, Igor; Dovzhenko, Dmitriy; Chistyakov, Alexander

    2016-05-01

    We demonstrate a new way for detection ultralow concentration of explosives in this study. It combines an ion mobility spectrometry (IMS) and a promising method of laser desorption/ionization on silicon (DIOS). The DIOS is widely used in mass spectrometry due to the possibility of small molecule detection and high sensitivity. It is known that IMS based on laser ion source is a power method for the fast detection of ultralow concentration of organic molecules. However requirement of using high energy pulse ultraviolet laser increases weight and size of the device. The use of DIOS in an ion source of IMS could decrease energy pulse requirements and allows one to construct both compact and high sensitive device for analyzing gas and liquid probes. On the other hand mechanisms of DIOS in gas media is poorly studied, especially in case of nitroaromatic compounds. The investigation of the desorption/ionization on porous silicon (pSi) surface of nitroaromatic compounds has been carried out for 2,4,6-trinitrotoluene (TNT) using IMS and mass spectrometry (MS). It has been demonstrated that TNT ion formation in a gas medium is a complicated process and includes both an electron emission from the pSi surface with subsequent ion-molecular reactions in a gas phase and a proton transfer between pSi surface and TNT molecule.

  19. Analysis of Ultra-Pure Gases by Ion Mobility Spectrometry

    NASA Technical Reports Server (NTRS)

    Stimac, Robert M.; Wernlund, Roger F.; Cohen, Martin J.

    1995-01-01

    Work has continued with the evaluation of the Ion Mobility Spectrometer (IMS) for the analysis of gases having low parts-per-billion (10(exp -9)) water concentration. A modified PCP, inc. MMS-160 Mobility Mass Spectrometer System was used for the analysis of ultra-pure argon and nitrogen. The MMS-160 system permits the mass-identification of unique reactant and product ions observed in the reduced-water host gases. When the water is removed to low ppb levels, higher energy reactant ions are observed. In nitrogen, distinct odd- and even-numbered nitrogen cluster ion mobility peaks are observed, as well as adduct ion peaks from the trace contaminants in the gas. Argon also produces a cluster ion mobility peak and adduct ion peaks from trace components in the gas. Levels of contaminants in these ultra-pure gases can be determined from the ion mobility spectra. A calibrated source was used to provide variable known quantities of water to the pure gas supply of the IMS.

  20. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.

    PubMed

    Causon, Tim J; Hann, Stephan

    2015-10-16

    In the domain of liquid phase separations, the quality of separation obtainable is most readily gauged by consideration of classical chromatographic peak capacity theory. Column-based multidimensional strategies for liquid chromatography remain the most attractive and practical route for increasing the number of spatially resolved components in order to reduce stress on necessary mass spectrometric detection. However, the stress placed on a chromatographic separation step as a second dimension in a comprehensive online methodology (i.e. online LC×LC) is rather high. As an alternative to online LC×LC combinations, coupling of HPLC with ion mobility spectrometry hyphenated to mass spectrometry (IMS-MS) has emerged as an attractive approach to permit comprehensive sampling of first dimension chromatographic peaks and subsequent introduction to an orthogonal IMS separation prior to measurement of ions by a mass spectrometer. In the present work, utilization of classical peak capacity and ion mobility theory allows theoretical assessment of the potential of two- (LC×IMS-MS) or even three-dimensional (LC×LC×IMS-MS) experimental setups to enhance peak capacity and, therefore, the number of correctly annotated features within the framework of complex, non-targeted analysis problems frequently addressed using HPLC-MS strategies. Theoretical calculations indicate that newly-available drift tube IMS-MS instrumentation can yield peak capacities of between 10 and 40 using nitrogen drift gas for typical non-targeted metabolomic, lipidomic and proteomic applications according to the expected reduced mobilities of components in the respective samples. Theoretically, this approach can significantly improve the overall peak capacity of conventional HPLC-(MS) methodologies to in excess of 10(4) depending upon the column length and gradient time employed. A more elaborate combination of LC×LC×IMS-MS would improve the ion suppression limitation and possibly allow access to

  1. Rapid, in situ detection of cocaine residues based on paper spray ionization coupled with ion mobility spectrometry.

    PubMed

    Li, Ming; Zhang, Jingjing; Jiang, Jie; Zhang, Jing; Gao, Jing; Qiao, Xiaolin

    2014-04-01

    In this paper, a novel approach based on paper spray ionization coupled with ion mobility spectrometry (PSI-IMS) was developed for rapid, in situ detection of cocaine residues in liquid samples and on various surfaces (e.g. glass, marble, skin, wood, fingernails), without tedious sample pretreatment. The obvious advantages of PSI are its low cost, easy operation and simple configuration without using nebulizing gas or discharge gas. Compared with mass spectrometry, ion mobility spectrometry (IMS) takes advantage of its low cost, easy operation, and simple configuration without requiring a vacuum system. Therefore, IMS is a more congruous detection method for PSI in the case of rapid, in situ analysis. For the analysis of cocaine residues in liquid samples, dynamic responses from 5 μg mL(-1) to 200 μg mL(-1) with a linear coefficient (R(2)) of 0.992 were obtained. In this case, the limit of detection (LOD) was calculated to be 2 μg mL(-1) as signal to noise (S/N) was 3 with a relative standard deviation (RSD) of 6.5% for 11 measurements (n = 11). Cocaine residues on various surfaces such as metal, glass, marble, wood, skin, and fingernails were also directly analyzed before wiping the surfaces with a piece of paper. The LOD was calculated to be as low as 5 ng (S/N = 3, RSD = 6.3%, n = 11). This demonstrates the capability of the PSI-IMS method for direct detection of cocaine residues at scenes of cocaine administration. Our results show that PSI-IMS is a simple, sensitive, rapid and economical method for in situ detection of this illicit drug, which could help governments to combat drug abuse. PMID:24563903

  2. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  3. Correlation of mass spectrometry identified bacterial biomarkers from a fielded pyrolysis-gas chromatography-ion mobility spectrometry biodetector with the microbiological gram stain classification scheme.

    PubMed

    Snyder, A Peter; Dworzanski, Jacek P; Tripathi, Ashish; Maswadeh, Waleed M; Wick, Charles H

    2004-11-01

    A pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) briefcase system has been shown to detect and classify deliberately released bioaerosols in outdoor field scenarios. The bioaerosols included Gram-positive and Gram-negative bacteria, MS-2 coliphage virus, and ovalbumin protein species. However, the origin and structural identities of the pyrolysate peaks in the GC-IMS data space, their microbiological information content, and taxonomic importance with respect to biodetection have not been determined. The present work interrogates the identities of the peaks by inserting a time-of-flight mass spectrometry system in parallel with the IMS detector through a Tee connection in the GC module. Biological substances producing ion mobility peaks from the pyrolysis of microorganisms were identified by their GC retention time, matching of their electron ionization mass spectra with authentic standards, and the National Institutes for Standards and Technology mass spectral database. Strong signals from 2-pyridinecarboxamide were identified in Bacillus samples including Bacillus anthracis, and its origin was traced to the cell wall peptidoglycan macromolecule. 3-Hydroxymyristic acid is a component of lipopolysaccharides in the cell walls of Gram-negative organisms. The Gram-negative Escherichia coli organism showed significant amounts of 3-hydroxymyristic acid derivatives and degradation products in Py-GC-MS analyses. Some of the fatty acid derivatives were observed in very low abundance in the ion mobility spectra, and the higher boiling lipid species were absent. Evidence is presented that the Py-GC-ambient temperature and pressure-IMS system generates and detects bacterial biochemical information that can serve as components of a biological classification scheme directly correlated to the Gram stain reaction in microorganism taxonomy. PMID:15516146

  4. Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Creese, Andrew; Smith, Richard D.; Cooper, Helen J.

    2010-10-01

    Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often co-elute in LC and/or produce non-unique fragments. Application of ion mobility spectrometry (IMS) has previously been explored, but success was limited by insufficient resolution. We show that the recently developed high-resolution differential ion mobility spectrometry (FAIMS) using helium-rich gases can readily separate phosphopeptides with variant modified sites. Specifically, use of He/N2 mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate the FAIMS capabilities for such separations to extend to other PTMs.

  5. Separation of Peptide Isomers with Variant Modified Sites by High-Resolution Differential Ion Mobility Spectrometry

    PubMed Central

    Shvartsburg, Alexandre A.; Creese, Andrew J.; Smith, Richard D.; Cooper, Helen J.

    2010-01-01

    Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often co-elute in LC and/or produce non-unique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N2 mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs. PMID:20843012

  6. Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration

    SciTech Connect

    Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.

    2009-09-01

    Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for the peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.

  7. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds

    SciTech Connect

    Ewing, Robert Gordon; Atkinson, David Alan; Eiceman, G. A.; Ewing, G. J.

    2001-05-01

    Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile C---ONO2 bonds or the acidity of protons. Thus, M- or M·Cl- species are found with only a few explosives and loss of NO2, NO3 and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5–20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.

  8. Ultrahigh-Resolution Differential Ion Mobility Spectrometry Using Extended Separation Times

    PubMed Central

    Smith, Richard D.

    2010-01-01

    Ion mobility spectrometry (IMS), and particularly differential IMS or FAIMS, is emerging as a versatile tool for separation and identification of gas-phase ions, especially in conjunction with mass spectrometry. For over two decades since its inception, the utility of FAIMS was constrained by resolving power (R) of less than ~20. Stronger electric fields and optimized gas mixtures have recently raised achievable R to ~200, but further progress with such approaches is impeded by electrical breakdown. However, the resolving power of planar FAIMS devices using any gas and field intensity scales as the square root of separation time (t). Here, we extended t from the previous maximum of 0.2 s up to fourfold by reducing the carrier gas flow and increased the resolving power by up to twofold as predicted, to >300 for multiply-charged peptides. The resulting resolution gain has enabled separation of previously “co-eluting” peptide isomers, including folding conformers and localization variants of modified peptides. More broadly, a peak capacity of ~200 has been reached in tryptic digest separations. PMID:21117630

  9. Recent developments in ion mobility spectrometry detection technology

    NASA Astrophysics Data System (ADS)

    Ritchie, Robert K.; Kuja, Frank J.; Jackson, Ronald A.; Loveless, Arthur J.; Danylewich-May, Lucy L.

    1994-03-01

    Barringer's new IONSCANTM model 350 provides improved operational flexibility, reliability, and effectiveness in the rapid on-site detection and identification of narcotics and explosives. The model 350 is a modular integrated design, with DC-power capabilities, and wheels or vehicle mounts to facilitate transportation to and operation in a variety of operational locations. Recent developments in IONSCAN ion mobility spectrometer (IMS) technology in the model 350 include a long-life air dryer/purification system and new software for improved substance detection and false alarm rate performance. New multiple peak detection capabilities for more reliable substance identification are described. Studies on IMS temperature and pressure effects are reported and their possible future use to further improve peak detection performance are discussed. Some recent applications in narcotics interdiction are described.

  10. Ion mobility spectrometers and methods for ion mobility spectrometry

    SciTech Connect

    Dahl, David A; Scott, Jill R; Appelhans, Anthony D; McJunkin, Timothy R; Olson, John E

    2009-04-14

    An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

  11. Application of a nonradioactive pulsed electron source for ion mobility spectrometry.

    PubMed

    Gunzer, Frank; Zimmermann, Stefan; Baether, Wolfgang

    2010-05-01

    Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Typical applications are the detection of chemical warfare agents, highly toxic industrial compounds, explosives, and drugs of abuse. Detection limits in the low part per billion range, fast response times, and simple instrumentation make this technique more and more popular. Common ion mobility spectrometers work by employing a radioactive source to provide electrons with high energy to ionize analytes in a series of chemical reactions. General security as well as regulatory concerns related to radioactivity result in the need for a different ionization source which on the other hand produces ions in a similar manner as a radioactive source since the ion chemistry is well-known. Here we show the application of a novel nonradioactive source that produces spectra similar to those obtained with radioactive tritium sources. Using this source in a pulsed mode offers the additional advantage of selecting certain analytes by their recombination time and thus significantly increasing the selectivity. The successful isolation of a target signal in the presence of contaminants using a pulsed electron beam or more precisely the difference in recombination times will be demonstrated for the case of dimethyl-methylphosphonate (DMMP) showing the potential of this source to reduce the possibility for false-positive detection of corresponding chemical warfare agents (CWA) by IMS. PMID:20353158

  12. Specific O₂⁻ generation in corona discharge for ion mobility spectrometry.

    PubMed

    Sabo, Martin; Matúška, Ján; Matejčík, Stefan

    2011-07-15

    This study deals with O(2)(-) generation in corona discharge (CD) in point to plane geometry for single flow ion mobility spectrometry (IMS) with gas outlet located behind the ionization source. We have designed CD of special geometry in order to achieve the high O(2)(-) yield. Using this ion source we have achieved in zero air conditions that up to 74% all negative ions were O(2)(-) or O(2)(-)(H(2)O). It has been demonstrated that the non-electronegative nitrogen positively influences the efficiency of O(2)(-) generation in O(2)/N(2) mixtures. The reduced ion mobility of 2.27 cm(2)V(-1)s(-1) has been measured for O(2)(-)/O(2)(-)(H(2)O) ions in zero air. Additional ions detected in zero air (less than 200 ppb CO(2)) using the mass spectrometric and IMS technique were, NO(2)(-), N(2)O(2)(-) (2.37 cm(2)V(-1)s(-1)), NO(3)(-), N(2)O(3)(-) and N(2)O(3)(-)(H(2)O). The CO(3)(-) and CO(4)(-) ions have been detected after the introduction of 5 ppm CO(2) into zero air. PMID:21645716

  13. Structural Elucidation of Enzymatically Synthesized Galacto-oligosaccharides Using Ion-Mobility Spectrometry-Tandem Mass Spectrometry.

    PubMed

    Carević, Milica; Bezbradica, Dejan; Banjanac, Katarina; Milivojević, Ana; Fanuel, Mathieu; Rogniaux, Hélène; Ropartz, David; Veličković, Dušan

    2016-05-11

    Galacto-oligosaccharides (GOS) represent a diverse group of well-characterized prebiotic ingredients derived from lactose in a reaction catalyzed with β-galactosidases. Enzymatic transgalactosylation results in a mixture of compounds of various degrees of polymerization and types of linkages. Because structure plays an important role in terms of prebiotic activity, it is of crucial importance to provide an insight into the mechanism of transgalactosylation reaction and occurrence of different types of β-linkages during GOS synthesis. Our study proved that a novel one-step method, based on ion-mobility spectrometry-tandem mass spectrometry (IMS-MS/MS), enables complete elucidation of GOS structure. It has been shown that β-galactosidase from Aspergillus oryzae has the highest affinity toward formation of β-(1→3) or β-(1→6) linkages. Additionally, it was observed that the occurrence of different linkages varies during the reaction course, indicating that tailoring favorable GOS structures with improved prebiotic activity can be achieved by adequate control of enzymatic synthesis. PMID:27109424

  14. MALDI Imaging Mass Spectrometry (MALDI-IMS)—Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis

    PubMed Central

    Gustafsson, Johan O. R.; Oehler, Martin K.; Ruszkiewicz, Andrew; McColl, Shaun R.; Hoffmann, Peter

    2011-01-01

    MALDI imaging mass spectrometry (MALDI-IMS) allows acquisition of mass data for metabolites, lipids, peptides and proteins directly from tissue sections. IMS is typically performed either as a multiple spot profiling experiment to generate tissue specific mass profiles, or a high resolution imaging experiment where relative spatial abundance for potentially hundreds of analytes across virtually any tissue section can be measured. Crucially, imaging can be achieved without prior knowledge of tissue composition and without the use of antibodies. In effect MALDI-IMS allows generation of molecular data which complement and expand upon the information provided by histology including immuno-histochemistry, making its application valuable to both cancer biomarker research and diagnostics. The current state of MALDI-IMS, key biological applications to ovarian cancer research and practical considerations for analysis of peptides and proteins on ovarian tissue are presented in this review. PMID:21340013

  15. Structural Characterization of Anticancer Drug Paclitaxel and Its Metabolites Using Ion Mobility Mass Spectrometry and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hong Hee; Hong, Areum; Cho, Yunju; Kim, Sunghwan; Kim, Won Jong; Kim, Hugh I.

    2016-02-01

    Paclitaxel (PTX) is a popular anticancer drug used in the treatment of various types of cancers. PTX is metabolized in the human liver by cytochrome P450 to two structural isomers, 3'- p-hydroxypaclitaxel (3 p-OHP) and 6α-hydroxypaclitaxel (6α-OHP). Analyzing PTX and its two metabolites, 3 p-OHP and 6α-OHP, is crucial for understanding general pharmacokinetics, drug activity, and drug resistance. In this study, electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) and collision induced dissociation (CID) are utilized for the identification and characterization of PTX and its metabolites. Ion mobility distributions of 3 p-OHP and 6α-OHP indicate that hydroxylation of PTX at different sites yields distinct gas phase structures. Addition of monovalent alkali metal and silver metal cations enhances the distinct dissociation patterns of these structural isomers. The differences observed in the CID patterns of metalated PTX and its two metabolites are investigated further by evaluating their gas-phase structures. Density functional theory calculations suggest that the observed structural changes and dissociation pathways are the result of the interactions between the metal cation and the hydroxyl substituents in PTX metabolites.

  16. Application of Ion Mobility Mass Spectrometry for Detection and Identification of Oxidized Organic Species during SOAS 2013

    NASA Astrophysics Data System (ADS)

    Canagaratna, M. R.; Krechmer, J.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results obtained with a chemical ionization ion mobility time-of-flight mass spectrometer (CI-IMS-TOF) that was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the Supersite in Centreville, AL. This two dimensional technique, which separates ions on the basis of their interactions with buffer gases before analysis by high-resolution time-of-flight mass spectrometry, allows for detailed separation and identification of isomeric and isobaric species. During SOAS the IMS-TOF was coupled to a chemical ionization source that utilized NO3- as the reagent ion. The NO3- reagent ion clusters with highly oxidized species and allows for a unique means of directly detecting particle phase precursors in the gas phase. Gas phase molecules corresponding to oxidized products of isoprene and terpenes were detected throughout the campaign with a time resolution of 5 minutes. Ion mobility separation and trends observed for several of these key species are discussed. In addition to ambient sampling, the CI-IMS-TOF was also operated behind a potential aerosol mass (PAM) flow reactor which exposed ambient air to high levels of OH radical. Ambient CI-IMS-TOF spectra obtained with and without the flow reactor are presented and compared with laboratory flow reactor spectra generated from isoprene and terpene precursors.

  17. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives.

    PubMed

    Sabo, M; Malásková, M; Matejčík, S

    2014-10-21

    We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN. PMID:25118619

  18. Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry.

    PubMed

    Jafari, M T; Khayamian, T

    2008-09-15

    In this study, direct determination of ammoniacal nitrogen residues in water samples using corona discharge ion mobility spectrometry (CD-IMS) was investigated. Pyridine was used as an alternate reagent gas to enhance selectivity and sensitivity of the method. The results indicate that the limit of detection (LOD) was about 9.2x10(-3)mugmL(-1) and the linear dynamic range was obtained from 0.03 to 2.00mugmL(-1). The relative standard deviation was about 11%. Furthermore, this method was successfully applied to the direct determination of ammoniacal nitrogen in river and tap water samples and the results were compared with the Nessler method. The comparison of the results validates the potential of the proposed method as an alternative technique for the analysis of the ammoniacal nitrogen in water samples. PMID:18761176

  19. Matrix-Assisted Ionization-Ion Mobility Spectrometry-Mass Spectrometry: Selective Analysis of a Europium-PEG Complex in a Crude Mixture

    NASA Astrophysics Data System (ADS)

    Fischer, Joshua L.; Lutomski, Corinne A.; El-Baba, Tarick J.; Siriwardena-Mahanama, Buddhima N.; Weidner, Steffen M.; Falkenhagen, Jana; Allen, Matthew J.; Trimpin, Sarah

    2015-12-01

    The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed.

  20. Hand-held gas chromatography-ion mobility spectrometry for on-site analysis of complex organic mixtures in air or vapors over waste sites

    SciTech Connect

    Bell, S.C. ); Eiceman, G.A. . Dept. of Chemistry)

    1991-01-01

    The strengths of Ion mobility spectrometry (IMS) are low detection limits, a wide range of application, and simplicity of design and operation. The gentle ionization processes used in IMS impart a measure of selectivity to its response. However, atmospheric pressure chemical ionization with compounds of comparable proton affinities leads to mobility spectra for which interpretive and predictive models do not exist. An alternative approach for the analysis of complex mixtures with IMS is the use of a separation device such as a gas chromatograph (GC) as an inlet. Results suggest that an IMS cell temperature of ca. 150{degrees} to 175{degrees}C provided mobility spectra with suitable spectral detail without the complications of ion-molecule clusters or fragmentation. Significant fluctuation in peak heights were observed over a 30 day test period. Neural network pattern identification techniques were applied to data obtained at room temperature and at 150{degrees}. Results showed that spectral variables within compound classes as insufficient to distinguish related compounds when mobility data was obtained using the commercial room temperature IMS cell. Similar but less severe difficulty was encountered using the 150{degrees} data. 5 refs., 3 figs., 2 tabs.

  1. Rapid and Accurate Detection of Urinary Pathogens by Mobile IMS-Based Electronic Nose: A Proof-of-Principle Study

    PubMed Central

    Roine, Antti; Saviauk, Taavi; Kumpulainen, Pekka; Karjalainen, Markus; Tuokko, Antti; Aittoniemi, Janne; Vuento, Risto; Lekkala, Jukka; Lehtimäki, Terho; Tammela, Teuvo L.; Oksala, Niku K. J.

    2014-01-01

    Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) –based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. In conclusion: These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI. PMID:25526592

  2. Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry.

    PubMed

    Kwasnik, Mark; Caramore, Joe; Fernández, Facundo M

    2009-02-15

    One of the shortcomings of atmospheric pressure drift tube ion mobility spectrometry (DTIMS) is its intrinsically low duty cycle (approximately 0.04-1%) caused by the rapid pulsing of the ion gate (25-400 micros) followed by a comparatively long drift time (25-100 ms), which translates into a loss of sensitivity. Multiplexing approaches via Hadamard and Fourier-type gating techniques have been reported for increasing the sensitivity of DTIMS. Here, we report an extended multiplexing approach which encompasses arbitrary binary ion injection waveforms with variable duty cycles ranging from 0.5 to 50%. In this approach, ion mobility spectra can be collected using conventional signal averaging, arbitrary, standard Hadamard and/or "extended" Hadamard operation modes. Initial results indicate signal-to-noise gains ranging from 2-7-fold for both arbitrary and "extended" Hadamard sequences. Standard Hadamard transform IMS provided increased sensitivity, with gains ranging from 9-12-fold, however, mobility spectra suffered from defects that appeared as false peaks, which were reduced or eliminated when using arbitrary or "extended" Hadamard waveforms for multiplexing. Digital multiplexing enables variation of the duty cycle in a continuous manner, minimizing the contribution of imperfect modulation on spectral defects without the need for complex spectral correction methods. By reducing the frequency of gating events employed in the variable duty cycle sequences, the contributions of factors such as ion depletion prior to gating, interaction of successively injected ion packets, and the cumulative effect of imperfect gating events were mitigated. PMID:19133785

  3. Selective pretreatment and determination of phenazopyridine using an imprinted polymer-electrospray ionization ion mobility spectrometry system.

    PubMed

    Rezaei, B; Jafari, M T; Rahmanian, O

    2011-01-15

    In this research, selective separation and determination of phenazopyridine (PAP) is demonstrated using molecular imprinted polymer (MIP) coupled with electrospray ionization ion mobility spectrometry (ESI-IMS). In the non-covalent approach, selective MIP produced using PAP and methacrylic acid (MAA) as a template molecule and monomer, respectively. The created polymer is utilized as a media for solid-phase extraction (SPE), revealing selective binding properties for the analyte from pharmaceutical and serum samples. A coupled MIP-IMS makes it possible to quantitize PAP in the range of 1-100 ng mL(-1) and with a 0.2 ng mL(-1) detection limit. Furthermore, the MIP selectivity is evaluated by application of some substances with analogous and different molecular structures to that of PAP. This method is successfully applied for the determination of PAP in pharmaceutical and serum samples. PMID:21147318

  4. Mapping of explosive contamination using GC/chemiluminescence and ion mobility spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Glenn, D. F.; Hartenstein, Steven D.; Hallowell, Susan F.

    1998-12-01

    Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have included mapping explosive contamination resulting from manufacturing and carrying improvised explosive devices (IEDs). Two types of trace detection equipment were used to determine levels of contamination from designated sampling areas. A total of twenty IEDs were constructed: ten using TNT and ten using C-4. Two test scenarios were used. The first scenario tracked the activities of a manufacturer who straps the device onto an independent courier. The courier then performed a series of activities to simulate waiting in an airport. The second scenario tracked the activities of a manufacturer who also served as the courier. A sample set for each test consisted of thirty samples from various locations on each IED manufacturer, thirty from each IED courier, twenty-five from the manufacturing area, and twenty-five from the courier area. Pre-samples and post-samples were collected for analysis with each detection technique. Samples analyzed by gc/chemiluminescence were taken by swiping a teflon- coated sampling swipe across the surface of the sampling area to pick up any explosive particles. Samples analyzed by ion mobility spectrometry (IMS) were taken from the clothing of the manufacturer and courier by vacuuming the surface and collecting particulates on a fiberglass filter. Samples for IMS analysis from the manufacturing and courier rooms were taken by wiping a cotton sampling swipe across the surface area. Currently, building IEDs and monitoring the explosive contamination is being directed toward detection with portal monitors.

  5. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  6. The pinhole interface for IMS/MS

    NASA Technical Reports Server (NTRS)

    Spangler, Glenn E.

    1995-01-01

    An important supplementary technique for ion mobility spectrometry (IMS) is mass spectrometry (MS). A mass spectrometer coupled to an ion mobility spectrometer (IMS/MS) can provide significant information on the composition of the ions contributing to an ion mobility peak. On the other hand, the interpretation of IMS/MS results requires knowledge of processes which can occur at the pinhole interface. When the ion composition is a mixture of ion clusters, the observed cluster distribution may not be an accurate representation of the ion clusters in the IMS. Depending on the buffer gas, lower clusters can form by equilibrating with reduced concentrations in the continuum regime of the expansion and larger clusters can form by collisional stabilization in the cooled jet stream. Besides water, nitrogen molecules can also add to the ion clusters. Even though nitrogen is non-polar, this addition is made possible by an ion-induced dipole interaction between the ion and molecule.

  7. Characterization of an Ion Mobility-Multiplexed Collision Induced Dissociation-Tandem Time-of-Flight Mass Spectrometry Approach

    PubMed Central

    Ibrahim, Yehia M.; Prior, David C.; Baker, Erin S.; Smith, Richard D.; Belov, Mikhail E.

    2010-01-01

    The confidence in peptide (and protein) identifications with ion mobility spectrometry time-of-flight mass spectrometry (IMS-TOFMS) is expected to drastically improve with the addition of information from an efficient ion dissociation step prior to MS detection. High throughput IMS-TOFMS analysis imposes a strong need for multiplexed ion dissociation approaches where multiple precursor ions yield complex sets of fragment ions that are often intermingled with each other in both the drift time and m/z domains. We have developed and evaluated an approach for collision-induced dissociation (CID) using IMS-TOFMS instrument. It has been shown that precursor ions activated inside an rf-device with an axial dc-electric field produce abundant fragment ions which are radially confined with the rf-field and collisionally cooled at an elevated pressure, resulting in high CID efficiencies comparable or higher than those measured in triple-quadrupole instruments. We have also developed an algorithm for deconvoluting these complex multiplexed tandem MS spectra by clustering both the precursor and fragment ions into matching drift time profiles and by utilizing the high mass measurement accuracy achievable with TOFMS. In a single IMS separation from direct infusion of tryptic digest of bovine serum albumin (BSA), we have reliably identified 20 unique peptides using a multiplexed CID approach downstream of the IMS separation. Peptides were identified based upon the correlation between the precursor and fragment drift time profiles and by matching the profile representative masses to those of in silico BSA tryptic peptides and their fragments. The false discovery rate (FDR) of peptide identifications from multiplexed MS/MS spectra was less than 1%. PMID:20596241

  8. Field detection and identification of a bioaerosol suite by pyrolysis-gas chromatography-ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Snyder, A. Peter; Tripathi, Ashish; Maswadeh, Waleed M.; Ho, Jim; Spence, Mel

    2002-06-01

    Improvements were made to a pyrolysis-gas chromatography-ion mobility spectrometry stand-alone biodetector to provide more pyrolyzate compound information to the IMS detector module. Air carrier gas flowing continuously through the pyrolysis tube, the rate of air flow, and pyrolysis rate were found to improve the relative quality and quantity of pyrolyzate compounds detected by the IMS detector compare to earlier work. These improvements allowed a greater degree of confidence in the correlation of biological aerosols obtain in outdoor testing scenarios to a standard GC-IMS biological aerosol dataset. The airflow improvement allowed more biomarker compounds to be observed in the GC-IMS data domain for aerosols of Gram-negative Erwinia herbicola (EH) and ovalbumin protein as compared to previous studies. Minimal differences were observed for Gram-positive spores of Bacillus subtilis var. globigii (BG) from that of earlier work. Prior outdoor aerosol challenges dealt with the detection of one organism, either EH or BG. Biological aerosols were disseminated in a Western Canadian prairie and the Py-GC-IMS was tested for its ability to detect the biological aerosols. The current series of outdoor trials consisted of three different biological aerosol challenges. Forty-two trials were conducted and a simple area calculation of the GC-IMS data domain biomarker peaks correlated with the correct bioaerosol challenge in 30 trials. In another 7 trials, the status of an aerosol was determined to be biological in origin. Two additional trials had no discernible, unambiguous GC-IMS biological response, because they were black water sprays. Reproducible limits of detection were at a concentration of less than 0.5 bacterial analyte-containing particles per liter of air (ACPLA). In order to realize this low concentration, an aerosol concentrator was used to concentrate 2000 liters of air in 2.2 minutes. Previous outdoor aerosol trials have shown the Py-GC-IMS device to be a credible

  9. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  10. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  11. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.

    PubMed

    Lai, Hanh; Leung, Alfred; Magee, Matthew; Almirall, José R

    2010-04-01

    This study demonstrates the use of solid-phase microextraction (SPME) to extract and pre-concentrate volatile signatures from static air above plastic explosive samples followed by detection using ion mobility spectrometry (IMS) optimized to detect the volatile, non-energetic components rather than the energetic materials. Currently, sample collection for detection by commercial IMS analyzers is conducted through swiping of suspected surfaces for explosive particles and vapor sampling. The first method is not suitable for sampling inside large volume areas, and the latter method is not effective because the low vapor pressure of some explosives such as RDX and PETN make them not readily available in the air for headspace sampling under ambient conditions. For the first time, headspace sampling and detection of Detasheet, Semtex H, and C-4 is reported using SPME-IMS operating under one universal setting with limits of detection ranging from 1.5 to 2.5 ng for the target volatile signatures. The target signature compounds n-butyl acetate and the taggant DMNB are associated with untagged and tagged Detasheet explosives, respectively. Cyclohexanone and DMNB are associated with tagged C-4 explosives. DMNB is associated with tagged Semtex H explosives. Within 10 to 60 s of sampling, the headspace inside a glass vial containing 1 g of explosive, more than 20 ng of the target signatures can be extracted by the SPME fiber followed by IMS detection. PMID:20229010

  12. Computational Methods for Metabolomic Data Analysis of Ion Mobility Spectrometry Data—Reviewing the State of the Art

    PubMed Central

    Hauschild, Anne-Christin; Schneider, Till; Pauling, Josch; Rupp, Kathrin; Jang, Mi; Baumbach, Jörg Ingo; Baumbach, Jan

    2012-01-01

    Ion mobility spectrometry combined with multi-capillary columns (MCC/IMS) is a well known technology for detecting volatile organic compounds (VOCs). We may utilize MCC/IMS for scanning human exhaled air, bacterial colonies or cell lines, for example. Thereby we gain information about the human health status or infection threats. We may further study the metabolic response of living cells to external perturbations. The instrument is comparably cheap, robust and easy to use in every day practice. However, the potential of the MCC/IMS methodology depends on the successful application of computational approaches for analyzing the huge amount of emerging data sets. Here, we will review the state of the art and highlight existing challenges. First, we address methods for raw data handling, data storage and visualization. Afterwards we will introduce de-noising, peak picking and other pre-processing approaches. We will discuss statistical methods for analyzing correlations between peaks and diseases or medical treatment. Finally, we study up-to-date machine learning techniques for identifying robust biomarker molecules that allow classifying patients into healthy and diseased groups. We conclude that MCC/IMS coupled with sophisticated computational methods has the potential to successfully address a broad range of biomedical questions. While we can solve most of the data pre-processing steps satisfactorily, some computational challenges with statistical learning and model validation remain. PMID:24957760

  13. Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface.

    PubMed

    Ilbeigi, Vahideh; Sabo, Martin; Valadbeigi, Younes; Matejcik, Stefan; Tabrizchi, Mahmoud

    2016-08-12

    We present a novel method for coupling thin layer chromatography (TLC) with ion mobility spectrometry (IMS) using laser desorption technique (LD). After separation of the compounds by TLC, the TLC surface was sampled by the LD-IMS without any further manipulation or preparation. The position of the laser was fixed and the TLC plate was moved in desired directions by the motorized micro-positioning stage. The method was successfully applied to analyze the TLC plates containing explosives (tri nitro toluene, 1,3,5-trinitro- 1,3,5-triazacyclohexane, pentaerythritol tetranitrate, 2,4-dinitro toluene and 3,4-dinitro toluene), amino acids (alanine, proline and isoleucine), nicotine and diphenylamine mixtures and detection limits for these compounds were determined. Combination of TLC with LD-IMS technique offers additional separation dimension, allowing separation of overlapping TLC analytes. The time for TLC sampling by LD-IMS was less than 80s. The scan rate for LD is adjustable so that fast and effective analysis of the mixtures is possible with the proposed method. PMID:27397925

  14. Separation of steroid isomers by ion mobility mass spectrometry.

    PubMed

    Ahonen, Linda; Fasciotti, Maíra; Gennäs, Gustav Boije Af; Kotiaho, Tapio; Daroda, Romeu J; Eberlin, Marcos; Kostiainen, Risto

    2013-10-01

    Ion mobility mass spectrometry performed in a compact traveling wave cell (TWIM-MS) is shown to provide a reliable, fast and repeatable method to separate derivatized steroid isomers. Three steroid isomer pairs were analyzed in their native form and as their p-toluenesulfonyl isocyanate derivatives. The native steroids were separated from each other, but no separation could be attained for the isomers. The derivatized steroid isomers were, however, properly separated by TWIM-MS with peak-to-peak resolutions close to or as high as baseline resolution (Rp-p=0.77-1.08). PMID:23992881

  15. Ion mobility spectrometry for detection of skin volatiles

    PubMed Central

    Ruzsanyi, Veronika; Mochalski, Pawel; Schmid, Alex; Wiesenhofer, Helmut; Klieber, Martin; Hinterhuber, Hartmann; Amann, Anton

    2012-01-01

    Volatile organic compounds (VOCs) released by humans through their skin were investigated in near real time using ion mobility spectrometry after gas chromatographic separation with a short multi-capillary column. VOCs typically found in a small nitrogen flow covering the skin are 3-methyl-2-butenal, 6-methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octanal, 2-ethylhexanol, nonanal and decanal at volume fractions in the low part per billion-(ppb) range. The technique presented here may contribute to elucidating some physiological processes occurring in the human skin. PMID:23217311

  16. Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti; Boyd, John

    2007-01-01

    The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.

  17. Distance Geometry Protocol to Generate Conformations of Natural Products to Structurally Interpret Ion Mobility-Mass Spectrometry Collision Cross Sections

    PubMed Central

    2015-01-01

    Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data. PMID:25360896

  18. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    PubMed

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. PMID:24742534

  19. Wireless Data Acquisition of Transient Signals for Mobile Spectrometry Applications.

    PubMed

    Trzcinski, Peter; Weagant, Scott; Karanassios, Vassili

    2016-05-01

    Wireless data acquisition using smartphones or handhelds offers increased mobility, it provides reduced size and weight, it has low electrical power requirements, and (in some cases) it has an ability to access the internet. Thus, it is well suited for mobile spectrometry applications using miniaturized, field-portable spectrometers, or detectors for chemical analysis in the field (i.e., on-site). There are four main wireless communications standards that can be used for wireless data acquisition, namely ZigBee, Bluetooth, Wi-Fi, and UWB (ultra-wide band). These are briefly reviewed and are evaluated for applicability to data acquisition of transient signals (i.e., time-domain) in the field (i.e., on-site) from a miniaturized, field-portable photomultiplier tube detector and from a photodiode array detector installed in a miniaturized, field-portable fiber optic spectrometer. These are two of the most widely used detectors for optical measurements in the ultraviolet-visible range of the spectrum. A miniaturized, 3D-printed, battery-operated microplasma-on-a-chip was used for generation of transient optical emission signals. Elemental analysis from liquid microsamples, a microplasma, and a handheld or a smartphone will be used as examples. Development and potential applicability of wireless data acquisition of transient optical emission signals for taking part of the lab to the sample types of mobile, field-portable spectrometry applications will be discussed. The examples presented are drawn from past and ongoing work in the authors' laboratory. A handheld or a smartphone were used as the mobile computing devices of choice. PMID:27006023

  20. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    PubMed

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state. PMID:22974196

  1. An Effective Approach for Coupling Direct Analysis in Real Time with Atmospheric Pressure Drift Tube Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Keelor, Joel D.; Dwivedi, Prabha; Fernández, Facundo M.

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated.

  2. An effective approach for coupling direct analysis in real time with atmospheric pressure drift tube ion mobility spectrometry.

    PubMed

    Keelor, Joel D; Dwivedi, Prabha; Fernández, Facundo M

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated. PMID:24903510

  3. LC-IMS-MS Feature Finder

    Energy Science and Technology Software Center (ESTSC)

    2013-03-07

    LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features thatmore » includes associated information about the detected features.« less

  4. LC-IMS-MS Feature Finder

    SciTech Connect

    2013-03-07

    LC-IMS-MS Feature Finder is a command line software application which searches for possible molecular ion signatures in multidimensional liquid chromatography, ion mobility spectrometry, and mass spectrometry data by clustering deisotoped peaks with similar monoisotopic mass values, charge states, elution times, and drift times. The software application includes an algorithm for detecting multiple conformations and co-eluting species in the ion mobility dimension. LC-IMS-MS Feature Finder is designed to create an output file with detected features that includes associated information about the detected features.

  5. An IMS-Based Middleware Solution for Energy-Efficient and Cost-Effective Mobile Multimedia Services

    NASA Astrophysics Data System (ADS)

    Bellavista, Paolo; Corradi, Antonio; Foschini, Luca

    Mobile multimedia services have recently become of extreme industrial relevance due to the advances in both wireless client devices and multimedia communications. That has motivated important standardization efforts, such as the IP Multimedia Subsystem (IMS) to support session control, mobility, and interoperability in all-IP next generation networks. Notwithstanding the central role of IMS in novel mobile multimedia, the potential of IMS-based service composition for the development of new classes of ready-to-use, energy-efficient, and cost-effective services is still widely unexplored. The paper proposes an original solution for the dynamic and standard-compliant redirection of incoming voice calls towards WiFi-equipped smart phones. The primary design guideline is to reduce energy consumption and service costs for the final user by automatically switching from the 3G to the WiFi infrastructure whenever possible. The proposal is fully compliant with the IMS standard and exploits the recently released IMS presence service to update device location and current communication opportunities. The reported experimental results point out that our solution, in a simple way and with full compliance with state-of-the-art industrially-accepted standards, can significantly increase battery lifetime without negative effects on call initiation delay.

  6. Determination of C1-C4 alkanes by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Cohen, Martin J.; Stimac, Robert M.; Wernlund, Roger F.; Humphry, Donald E.; Takeuchi, Norishige

    1991-01-01

    Results are presented from a comparison between two ion-mobility-spectrometer (IMS) methods of sample ionisation: a conventional IMS with very dry helium and an IMS using metastable helium ionization. As one of the tests, a mixture of several hydrocarbons expected to be the components of Titan's atmosphere (made of ethane, ethylene, acetylene, propane, n-butane, isobutane, and propyne in concentrations from 20 to 200 ppm) was analyzed by both methods. Results from the dry-He IMS showed that the dry-helium approach was more adequate for the analysis of these gases than the metastable-helium IMS approach. In the metastable-He approach, in which several versions of He ionization reaction were tested, the spectra produced were not as clear as the conventional IMS spectra, due to the fact that the strong electric field introduced in the reaction region to generate metastable helium affected the gating, resolution, and collection of the ions.

  7. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Weis, Patrick; Kappes, Manfred M

    2011-02-01

    We have developed a novel instrument that combines ion mobility spectrometry, mass spectro-metry, and photoelectron spectroscopy. The instrument couples an electrospray ion source, a high-transmission ion mobility cell based on ion funnels, a quadrupole mass filter, and a time-of-flight (magnetic bottle) photoelectron spectrometer operated with a pulsed detachment laser. We show that the instrument can resolve highly structured anion arrival time distributions and at the same time provide corresponding photoelectron spectra-using the DNA oligonucleotide ion [dC(6) - 5H](5-) as a test case. For this multianion we find at least four different, noninterconverting isomers (conformers) simultaneously present in the gas phase at room temperature. For each of these we record well-resolved and remarkably different photoelectron spectra at each of three different detachment laser wavelengths. Two-dimensional ion mobility/electron binding energy plots can be acquired with an automated data collection procedure. We expect that this kind of instrument will significantly improve the capabilities for structure determination of (bio)molecular anions in the gas phase. PMID:21214198

  8. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  9. Rapid Analysis of Isobaric Exogenous Metabolites by Differential Mobility Spectrometry Mass Spectrometry

    SciTech Connect

    Parson, Whitney B; Schneider, Bradley B; Kertesz, Vilmos; Corr, Jay; Covey, Thomas R.; Van Berkel, Gary J

    2011-01-01

    The direct separation of isobaric glucuronide metabolites from propranolol dosed tissue extracts by differential mobility spectrometry mass spectrometry (DMS-MS) with the use of a polar gas-phase chemical modifier was demonstrated. The DMS gas-phase separation was able to resolve the isobaric metabolites with separation times on the order of ms instead of mins to hrs typically required when using pre-ionization chromatographic separation methods. Direct separation of isobaric metabolites from the complex tissue extract was validated using standards as well as implementing an HPLC separation prior to the DMS-MS analysis to pre-separate the species of interest. The ability to separate isobaric exogenous metabolites directly from a complex tissue extract is expected to facilitate the drug development process by increasing analytical throughput without the requirement for pre-ionization cleanup or separation strategies.

  10. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  11. On-site analysis of old deposited chemical warfare agents by combined use of ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Stach, J.; Adler, J.; Brodacki, M.; Doering, H.R.; Flachowsky, J.; Loudon, A.

    1995-12-31

    The factory site of an old mustard gas plant was investigated with on-site analysis methods. Using ion mobility spectrometry and mass spectrometry a lot of degradation products of mustard gas could be detected. Sulfur mustard was found in one soil sample and in ceramic material of a bunker used for storage of the produced warfare agents. Concentrations of the mustard gas are in the sub ppb level. The results of ion mobility and mass spectrometry agreed in 95 % of the investigated samples.

  12. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  13. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  14. Anomerization of Acrylated Glucose During Traveling Wave Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Chendo, Christophe; Moreira, Guillaume; Tintaru, Aura; Posocco, Paola; Laurini, Erik; Lefay, Catherine; Gigmes, Didier; Viel, Stéphane; Pricl, Sabrina; Charles, Laurence

    2015-09-01

    Anomerization of simple sugars in the liquid phase is known as an acid- and base-catalyzed process, which highly depends on solvent polarity. This reaction is reported here to occur in the gas phase, during traveling wave ion mobility spectrometry (TWIMS) experiments aimed at separating α- and β-anomers of penta-acrylated glucose generated as ammonium adducts in electrospray ionization. This compound was available in two samples prepared from glucose dissolved in solvents of different polarity, namely tetrahydrofuran (THF) and N,N-dimethylacetamide (DMAC), and analyzed by electrospray tandem mass spectrometry (ESI-MS/MS) as well as traveling wave ion mobility (ESI-TWIMS-MS). In MS/MS, an anchimerically-assisted process was found to be unique to the electrosprayed α-anomer, and was only observed for the THF sample. In ESI-TWIMS-MS, a signal was measured at the drift time expected for the α-anomer for both the THF and DMAC samples, in apparent contradiction to the MS/MS results, which indicated that the α-anomer was not present in the DMAC sample. However, MS/MS experiments performed after TWIMS separation revealed that ammonium adducts of the α-anomer produced from each sample, although exhibiting the same collision cross section, were clearly different. Indeed, while the α-anomer actually present in the THF sample was electrosprayed with the ammonium adducted at the C2 acrylate, its homologue only observed when the DMAC sample was subjected to TWIMS hold the adducted ammonium at the C1 acrylate. These findings were explained by a β/α inter-conversion upon injection in the TWIMS cell, as supported by theoretical calculation and dynamic molecular modeling.

  15. Detection of Huanglongbing disease using differential mobility spectrometry.

    PubMed

    Aksenov, Alexander A; Pasamontes, Alberto; Peirano, Daniel J; Zhao, Weixiang; Dandekar, Abhaya M; Fiehn, Oliver; Ehsani, Reza; Davis, Cristina E

    2014-03-01

    The viability of the multibillion dollar global citrus industry is threatened by the "green menace", citrus greening disease (Huanglongbing, HLB), caused by the bacterial pathogen Candidatus Liberibacter. The long asymptomatic stage of HLB makes it challenging to detect emerging regional infections early to limit disease spread. We have established a novel method of disease detection based on chemical analysis of released volatile organic compounds (VOCs) that emanate from infected trees. We found that the biomarkers "fingerprint" is specific to the causal pathogen and could be interpreted using analytical methods such as gas chromatography/mass spectrometry (GC/MS) and gas chromatography/differential mobility spectrometry (GC/DMS). This VOC-based disease detection method has a high accuracy of ∼90% throughout the year, approaching 100% under optimal testing conditions, even at very early stages of infection where other methods are not adequate. Detecting early infection based on VOCs precedes visual symptoms and DNA-based detection techniques (real-time polymerase chain reaction, RT-PCR) and can be performed at a substantially lower cost and with rapid field deployment. PMID:24484549

  16. Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

    PubMed Central

    Hauschild, Anne-Christin; Kopczynski, Dominik; D’Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-01-01

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications. PMID:24957992

  17. Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry.

    PubMed

    Hofmann, Johanna; Struwe, Weston B; Scarff, Charlotte A; Scrivens, James H; Harvey, David J; Pagel, Kevin

    2014-11-01

    Glycosylation is one of the most common post-translational modifications occurring in proteins. A detailed structural characterization of the involved carbohydrates, however, is still one of the greatest challenges in modern glycoproteomics, since multiple regio- and stereoisomers with an identical monosaccharide composition may exist. Recently, ion mobility-mass spectrometry (IM-MS), a technique in which ions are separated according to their mass, charge, and shape, has evolved as a promising technique for the separation and structural analysis of complex carbohydrates. This growing interest is based on the fact that the measured drift times can be converted into collision cross sections (CCSs), which can be compared, implemented into databases, and used as additional search criteria for structural identification. However, most of the currently used commercial IM-MS instruments utilize a nonuniform traveling wave field to propel the ions through the IM cell. As a result, CCS measurements cannot be performed directly and require calibration. Here, we present a calibration data set consisting of over 500 reference CCSs for negatively charged N-glycans and their fragments. Moreover, we show that dextran, already widely used as a calibrant in high performance liquid chromatography, is also a suitable calibrant for CCS estimations. Our data also indicate that a considerably increased error has to be taken into account when reference CCSs acquired in a different drift gas are used for calibration. PMID:25268221

  18. Identification and separation of saxitoxins using hydrophilic interaction liquid chromatography coupled to traveling wave ion mobility-mass spectrometry.

    PubMed

    Poyer, Salomé; Loutelier-Bourhis, Corinne; Coadou, Gaël; Mondeguer, Florence; Enche, Julien; Bossée, Anne; Hess, Philipp; Afonso, Carlos

    2015-01-01

    The aim of this work was to develop a reliable and efficient analytical method to characterise and differentiate saxitoxin analogues (STX), including sulphated (gonyautoxins, GTX) and non-sulphated analogues. For this purpose, hydrophilic interaction liquid chromatography (HILIC) was used to separate sulphated analogues. We also resorted to ion mobility spectrometry to differentiate the STX analogues because this technique adds a new dimension of separation based on ion gas phase conformation. Positive and negative ionisation modes were used for gonyautoxins while positive ionisation mode was used for non-sulphated analogues. Subsequently, the coupling of these three complementary techniques, HILIC-IM-MS, permitted the separation and identification of STX analogues; isomer differentiation was achieved in HILIC dimension while non-sulphated analogues were separated in the IM-MS dimension. Additional structural characteristics concerning the conformation of STXs could be obtained using IM-MS measurements. Thus, the collision cross sections (CCS) of STXs are reported for the first time in the positive ionisation mode. These experimental CCSs correlated well with the calculated CCS values using the trajectory method. PMID:25601690

  19. Ion mobility spectrometry for food quality and safety.

    PubMed

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during

  20. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Silveira, Joshua A.; Michelmann, Karsten; Ridgeway, Mark E.; Park, Melvin A.

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.

  1. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics.

    PubMed

    Silveira, Joshua A; Michelmann, Karsten; Ridgeway, Mark E; Park, Melvin A

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ. PMID:26864793

  2. Analysis of IMS spectra using neural networks

    SciTech Connect

    Bell, S.E.

    1992-09-01

    Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.

  3. Analysis of IMS spectra using neural networks

    SciTech Connect

    Bell, S.E.

    1992-01-01

    Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.

  4. Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry.

    PubMed

    Jazan, Elham; Mirzaei, Hadi

    2014-01-01

    In this study, ammonia in human breath was directly determined using corona discharge ionization ion mobility spectrometry (CD-IMS) technique with several important advantages including high sensitivity, low cost, high speed, and ease of maintenance. The temperature effect on the ammonia signal was evaluated too. The results indicated that the best temperature for the investigation of breath ammonia was 150°C. The analytical results showed that the linear dynamic range was between 12 and 810ppb and the detection limit was 6.6ppb. The relative standard deviation (RSD) was obtained to be 5, 3, and 3 for 290, 348, and 522ppb, respectively. The amounts of ammonia in breath of eight healthy volunteers were measured. The values were between 236 and 1218ppb. Also, the inequality in breath ammonia levels was scrutinized over a 6h working day for three healthy volunteers. The results showed a drop in breath ammonia from the morning amount to the mid-day measurement and then, a progressive increase while the day continued. In addition, the amounts of ammonia were determined to be 1494-1553ppb in exhaled breath of two renal failure patients. The results obtained in this work revealed that the method was conveniently established without any considerable sample pretreatment for direct analysis of ammonia in human breath. PMID:24120979

  5. Simultaneous determination of 2-furfural and 5-methyl-2-furfural using corona discharge ion mobility spectrometry.

    PubMed

    Jafari, M T; Khayamian, T

    2009-06-01

    A novel technique, corona discharge ion mobility spectrometry (CD-IMS), was developed for the qualitative and quantitative determination of 2-furfural (F) and 5-methyl-2-furfural (MF) in aqueous solutions. The limits of detection (LODs) were 5.3 x 10(-3) microg/mL for F and 6.7 x 10(-3) microg/mL for MF. The linear dynamic ranges of 1.16 x 10(-2) to 1.04 microg/mL and 2.20 x 10(-2) to 1.10 microg/mL were obtained for F and MF, respectively. The relative standard deviation was below 12% for both compounds. In addition to analysis of the individual compound, simultaneous determination of F and MF was also investigated. It was realized that F imposes a matrix effect on the MF signal and vice versa. The standard addition method was used to deal with the matrix effect. The recovery of the compounds in the synthetic samples validates the capability of the method. PMID:19531891

  6. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  7. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality.

    PubMed

    Harris, Glenn A; Graf, Stephan; Knochenmuss, Richard; Fernández, Facundo M

    2012-07-01

    Significant developments in the field of ambient desorption/ionization mass spectrometry (MS) have led to high-throughput direct analysis and imaging capabilities. However, advances in coupling ambient ionization techniques with standalone drift tube ion mobility spectrometry (DTIMS) have been comparatively slower, despite the attractive ruggedness and simplicity of IMS. In this study, we have developed and characterized a laser ablation/desorption electrospray ionization (LADESI) DTIMS platform, and applied it to the detection of active pharmaceutical ingredients (APIs) in antimalarial tablets collected in developing countries. The overarching goal of this work was to perform an initial evaluation of LADESI DTIMS as a technique with the potential for constituting the core of a portable drug quality-testing platform. The set-up consisted of an IR laser for desorption and an electrospray ionizer for capturing the ablated plume coupled to a high-resolution monolithic resistive glass drift tube ion mobility spectrometer. For more confident API identification, tablet extracts were also investigated via electrospray IM MS to correlate LADESI DTIMS reduced mobility (K(0)) values to m/z values. Overall, it was found that the IR LADESI DTIMS platform provided distinct ion mobility spectral fingerprints that could be used to detect the presence of the expected APIs, helping to distinguish counterfeit drugs from their genuine counterparts. PMID:22606690

  8. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  9. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization.

    PubMed

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  10. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    NASA Astrophysics Data System (ADS)

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-10-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones.

  11. Differentiation of Compact and Extended Conformations of Di-Ubiquitin Conjugates with Lysine-Specific Isopeptide Linkages by Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Jung, Ji Eun; Pierson, Nicholas A.; Marquardt, Andreas; Scheffner, Martin; Przybylski, Michael; Clemmer, David E.

    2011-08-01

    Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS-MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS-MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.

  12. Utility of Ion Mobility Mass Spectrometry for Drug-to-Antibody Ratio Measurements in Antibody-Drug Conjugates

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Deyanova, Ekaterina G.; Passmore, David; Rangan, Vangipuram; Deshpande, Shrikant; Tymiak, Adrienne A.; Chen, Guodong

    2015-06-01

    Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.

  13. Comparing equilibrium and kinetic protein unfolding using time-resolved electrospray-coupled ion mobility mass spectrometry.

    PubMed

    Liuni, Peter; Deng, Bin; Wilson, Derek J

    2015-10-21

    Protein unfolding intermediates are thought to play a critical role in conformational pathogenesis, acting as a 'gateway' to inactivation or pathogenic aggregation. Unfolding intermediates have long been studied either by populating partially-folded species at equilibrium using incresingly denaturing conditions, or by transiently populating 'kinetic' intermediates under fully denaturing conditions using a time-resolved approach (e.g. stopped-flow fluorescence). However, it is not clear that the folding intermediates populated under equilibrium conditions are comparable to intermediates transiently populated in kinetic experiments. In this work, we combine time-resolved electrospray (TRESI) with travelling wave Ion Mobility Spectrometry (IMS) for the first time to directly compare equilibrium and kinetic unfolding intermediates of cytochrome c. Our results show a high degree of correlation between all species populated under these substantially different regimes. PMID:26115375

  14. Diagnostic filtering to screen polycyclic polyprenylated acylphloroglucinols from Garcinia oblongifolia by ultrahigh performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Hong; Zheng, Dan; Li, Hao-Hao; Wang, Hui; Tan, Hong-Sheng; Xu, Hong-Xi

    2016-03-17

    A novel multistage MS approach, insource collision-induced dissociation (CID) combined with Time Aligned Parallel (TAP) fragmentation, was established to study the fragmentation behavior of polycyclic polyprenylated acylphloroglucinols (PPAPs), which could provide a more reliable fragmentation relationship between precursor and daughter ions. The diagnostic ions for different subtypes of PPAPs and their fragmentation behaviors have been summarized. Moreover, a new and reliable multidimensional analytical workflow that combines ultrahigh performance liquid chromatography (UHPLC), data-independent mass spectrometry (MS(E)), and tandem MS with ion mobility (IM) has been optimized and established for the analysis of PPAPs in the plant Garcinia oblongifolia by diagnostic filtering. Diagnostic fragment ions were used to selectively screen PPAPs from extracts, whereas IM coupled to MS was used to maximize the peak capacity. Under the optimized UHPLC-IM-MS(E) and UHPLC-IM-MS/MS method, 140 PPAPs were detected from the crude extract of G. oblongifolia, and 10 of them were unambiguously identified by comparing them to the reference compounds. Among those PPAPs, 7 pairs of coeluting isobaric PPAPs that were indistinguishable by conventional UHPLC-HRMS alone, were further resolved using UHPLC-IM-MS. It is anticipated that the proposed method will be extended to the rapid screening and characterization of the other targeted or untargeted compounds, especially these coeluting isomers in complex samples. PMID:26920776

  15. Comparison of two methods for selegiline determination: A flow-injection chemiluminescence method using cadmium sulfide quantum dots and corona discharge ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza; Zarei, Mahmoud; Joo, Sang Woo

    2016-01-01

    Two analytical approaches including chemiluminescence (CL) and corona discharge ionization ion mobility spectrometry (CD-IMS) were developed for sensitive determination of selegiline (SG). We found that the CL intensity of the KMnO4-Na2S2O3 CL system was significantly enhanced in the presence of L-cysteine capped CdS quantum dots (QDs). A possible CL mechanism for this CL reaction is proposed. In the presence of SG, the enhanced CL system was inhibited. Based on this inhibition, a simple and sensitive flow-injection CL method was proposed for the determination of SG. Under optimum experimental conditions, the decreased CL intensity was proportional to SG concentration in the range of 0.01 to 30.0 mg L- 1. The detection limit (3σ) was 0.004 mg L- 1. Also, SG was determined using CD-IMS, and under optimum conditions of CD-IMS, calibration curves were linear in the range of 0.15 to 42.0 mg L- 1, with a detection limit (3σ) of 0.03 mg L- 1. The precision of the two methods was calculated by analyzing samples containing 5.0 mg L- 1 of SG (n = 11). The relative standard deviations (RSDs%) of the flow-injection CL and CD-IMS methods are 2.17% and 3.83%, respectively. The proposed CL system exhibits a higher sensitivity and precision than the CD-IMS method for the determination of SG.

  16. Low-temperature plasma ionization differential ion mobility spectrometry.

    PubMed

    Kuklya, Andriy; Engelhard, Carsten; Uteschil, Florian; Kerpen, Klaus; Marks, Robert; Telgheder, Ursula

    2015-09-01

    A low-temperature plasma (LTP) was used as an ionization source for differential ion mobility spectrometry (DMS) for the first time. This ionization source enhances the potential of DMS as a miniaturized system for on-site rapid monitoring. The effects of experimental parameters (e.g., discharge/carrier gas composition and flow rate, applied voltage) on the analysis of model aromatic compounds were investigated and discussed. It was found that the nature of reactant ion positive (RIP) is dependent on the discharge/carrier gas composition. The best response to the analyte was achieved when pure nitrogen was used as the discharge/carrier gas. The ability to perform analysis with zero helium consumption is especially attractive in view of the potential application of LTP-DMS for online (and on-site) monitoring. Analytical performance was determined with six environmentally relevant model compounds (benzene, toluene, ethylbenzene, p-xylene, 1,2,4-trimethylbenzene, and naphthalene) using LTP and directly compared to APPI and APCI ((63)Ni) ionization sources. When LTP was coupled to DMS, calculated LOD values were found to be in the range of 35-257 ng L(-1) (concentration in the carrier gas). These values are competitive with those calculated for two DMS equipped with traditional ionization sources (APPI, (63)Ni). The obtained results are promising enough to ensure the potential of LTP as ionization source for DMS. PMID:26266836

  17. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

    2011-04-28

    The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

  18. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.

    PubMed

    Griffiths, Rian L; Dexter, Alex; Creese, Andrew J; Cooper, Helen J

    2015-10-21

    Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the workflow enables gas-phase separation of lipid and protein molecular classes, enabling analysis of both haemoglobin and a range of lipids (phosphatidylcholine or phosphatidylethanolamine, and sphingomyelin species) from a single extraction sample. The work has implications for multiplexed clinical assays of multiple analytes. PMID:26198596

  19. Negative corona discharge-ion mobility spectrometry as a detection system for low density extraction solvent-based dispersive liquid-liquid microextraction.

    PubMed

    Ebrahimi, Amir; Jafari, Mohammad T

    2015-03-01

    This paper deals with a method based on negative corona discharge ionization ion mobility spectrometry (NCD-IMS) for the analysis of ethion (as an organophosphorus pesticide). The negative ions such as O2(-) and NO(x)(-) were eliminated from the background spectrum to increase the instrument sensitivity. The method was used to specify the sample extracted via dispersive liquid-liquid microextraction (DLLME) based on low density extraction solvent. The ion mobility spectrum of ethion in the negative mode and the reduced mobility value for its ion peak are firstly reported and compared with those of the positive mode. In order to combine the low density solvent DLLME directly with NCD-IMS, cyclohexane was selected as the extraction solvent, helping us to have a direct injection up to 20 µL solution, without any signal interference. The method was exhaustively validated in terms of sensitivity, enrichment factor, relative recovery, and repeatability. The linear dynamic range of 0.2-100.0 µg L(-1), detection limit of 0.075 µg L(-1), and the relative standard deviation (RSD) of about 5% were obtained for the analysis of ethion through this method. The average recoveries were calculated about 68% and 92% for the grape juice and underground water, respectively. Finally, some real samples were analyzed and the feasibility of the proposed method was successfully verified by the efficient extraction of the analyte using DLLME before the analysis by NCD-IMS. PMID:25618728

  20. Possible isomers in ligand protected Ag11 cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation.

    PubMed

    Baksi, Ananya; Harvey, Sophie R; Natarajan, Ganapati; Wysocki, Vicki H; Pradeep, Thalappil

    2016-03-01

    This communication reports the identification of gas phase isomers in monolayer-protected silver clusters. Two different isomers of Ag11(SG)7(-) (SG-gulathione thiolate) with different drift times have been detected using combined electrospray ionization (ESI) and ion mobility (IM) mass spectrometry (MS). Surface induced dissociation (SID) of the 3(-) charge state of such clusters shows charge stripping to give the 1(-) charged ion with some sodium attachment, in addition to fragmentation. SID and collision induced dissociation (CID) for Ag11(SG)7(-) suggest different pathways being accessed with each method. SID was introduced for the first time for the study of monolayer-protected clusters. PMID:26864967

  1. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  2. Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability.

    PubMed

    Blagojevic, Voislav; Chramow, Alexander; Schneider, Bradley B; Covey, Thomas R; Bohme, Diethard K

    2011-05-01

    The ability to resolve isomeric protonated dipeptides was investigated with the new technique of differential ion mobility mass spectrometry that uses "modifier" molecules to enhance differential mobility. Two pairs of protonated peptides [glycine-alanine (GlyAla) and alanine-glycine (AlaGly), glycine-serine (GlySer) and serine-glycine (SerGly)] and eight different modifiers (water, 2-propanol, 1,5-hexadiene, 2-chloropropane, chlorobenzene, dichloromethane, acetonitrile, and cyclohexane) were used in the initial study. Separation of the protonated peptides was found to be dependent on the mass and proton affinity of the modifier and combinations of functionalities present in the modifier and the analyte ion. Six of the eight modifiers (water, 2-propanol, chlorobenzene, cyclohexane, dichloromethane, and acetonitrile) were able to separate the protonated isomeric peptide pairs, and generally, modifiers with electron-rich groups performed the best. In the presence of some modifiers, a reduction of ion current was observed under the highest field conditions (>115 Td). Dopant-catalyzed isomerization, likely by proton-transport catalysis, and field-induced fragmentation may have contributed to these losses. Two high vapor pressure modifiers, 1,5-hexadiene and 2-chloropropane, significantly influenced ion formation leading to the formation of stable cluster populations that could be observed in the mass spectrometer. Although not a major concern, both fragmentation and influence of modifier evaporation warrant further studies in order to fully understand and possibly eliminate them. PMID:21504141

  3. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry

    PubMed Central

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-01-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment. PMID:26975333

  4. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Vahidi, Siavash; Sowole, Modupeola A.; Konermann, Lars

    2016-01-01

    The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments.

  5. Protein Structural Studies by Traveling Wave Ion Mobility Spectrometry: A Critical Look at Electrospray Sources and Calibration Issues.

    PubMed

    Sun, Yu; Vahidi, Siavash; Sowole, Modupeola A; Konermann, Lars

    2016-01-01

    The question whether electrosprayed protein ions retain solution-like conformations continues to be a matter of debate. One way to address this issue involves comparisons of collision cross sections (Ω) measured by ion mobility spectrometry (IMS) with Ω values calculated for candidate structures. Many investigations in this area employ traveling wave IMS (TWIMS). It is often implied that nanoESI is more conducive for the retention of solution structure than regular ESI. Focusing on ubiquitin, cytochrome c, myoglobin, and hemoglobin, we demonstrate that Ω values and collisional unfolding profiles are virtually indistinguishable under both conditions. These findings suggest that gas-phase structures and ion internal energies are independent of the type of electrospray source. We also note that TWIMS calibration can be challenging because differences in the extent of collisional activation relative to drift tube reference data may lead to ambiguous peak assignments. It is demonstrated that this problem can be circumvented by employing collisionally heated calibrant ions. Overall, our data are consistent with the view that exposure of native proteins to electrospray conditions can generate kinetically trapped ions that retain solution-like structures on the millisecond time scale of TWIMS experiments. ᅟ PMID:26369778

  6. Thermal Solid Sample Introduction-Fast Gas Chromatography-Low Flow Ion Mobility Spectrometry as a field screening detection system.

    PubMed

    Hajialigol, Saeed; Ghorashi, Seyed Alireza; Alinoori, Amir Hossein; Torabpour, Amir; Azimi, Mehdi

    2012-12-14

    The potential of Thermal Solid Sample Introduction (TSSI)-Fast Gas Chromatography (GC)-Low Flow Ion Mobility Spectrometry (LF-IMS) having been designed and constructed in Engineering Research Center of Esfahan, detector group was investigated for chemical detection capabilities. Customizing the configuration of fast GC-IMS as a high technology, provides unique solutions for rapid detection of a broad range of chemical mixtures in many operational environments. TSSI configuration provides fast and easily applied method for direct detection with no additional sample preparation or extraction. The time required for total analysis, less than 265 s, was determined by the wide range of solid matrixes, including nitrate esters, nitroaromatics, and a nitramine. The fast extraction together with the short separation time limits degradation of the thermally labile compounds and decreases the peak widths, which results in larger peak intensities and a simultaneous improvement in detection limits. For signal-to-noise ratio equals to 5, the detection limits for instrument for TNT, DNT and RDX were attained 15, 10 and 50 ng/μl respectively. The combination of short analysis time and low detection limits make this instrument a potential candidate for field screening techniques. PMID:23141709

  7. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-01-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment. PMID:26975333

  8. Molecular Insights into the Thermal Stability of mAbs with Variable-Temperature Ion-Mobility Mass Spectrometry.

    PubMed

    Pacholarz, Kamila J; Peters, Shirley J; Garlish, Rachel A; Henry, Alistair J; Taylor, Richard J; Humphreys, David P; Barran, Perdita E

    2016-01-01

    The aggregation of protein-based therapeutics such as monoclonal antibodies (mAbs) can affect the efficacy of the treatment and can even induce effects that are adverse to the patient. Protein engineering is used to shift the mAb away from an aggregation-prone state by increasing the thermodynamic stability of the native fold, which might in turn alter conformational flexibility. We have probed the thermal stability of three types of intact IgG molecules and two Fc-hinge fragments by using variable-temperature ion-mobility mass spectrometry (VT-IM-MS). We observed changes in the conformations of isolated proteins as a function of temperature (300-550 K). The observed differences in thermal stability between IgG subclasses can be rationalized in terms of changes to higher-order structural organization mitigated by the hinge region. VT-IM-MS provides insights into mAbs structural thermodynamics and is presented as a promising tool for thermal-stability studies for proteins of therapeutic interest. PMID:26534882

  9. High-Resolution Differential Ion Mobility Spectrometry of a Protein

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2013-01-01

    Use of elevated electric fields and helium-rich gases has recently enabled differential IMS with resolving power up to R ~ 300. Here we applied that technique to a protein (namely, ubiquitin), achieving R up to ~80 and separating many previously unresolved conformers. While still limited by conformational multiplicity, this resolution is some four times greater than that previously reported using either conventional (drift-tube or traveling-wave) or differential IMS. The capability for fine resolution of protein conformers may open new avenues for proteoform separations in top-down and intact-protein proteomics. PMID:23244633

  10. Increasing Confidence of LC-MS Identifications by Utilizing Ion Mobility Spectrometry

    SciTech Connect

    Crowell, Kevin L.; Baker, Erin Shammel; Payne, Samuel H.; Ibrahim, Yehia M.; Monroe, Matthew E.; Slysz, Gordon W.; Lamarche, Brian L.; Petyuk, Vladislav A.; Piehowski, Paul D.; Danielson, William F.; Anderson, Gordon A.; Smith, Richard D.

    2013-09-05

    Ion mobility spectrometry in conjunction with liquid chromatography separations and mass spectrometry offers a range of new possibilities for analyzing complex biological samples. To fully utilize the information obtained from these three measurement dimensions, informatics tools based on the accurate mass and time tag methodology were modified to incorporate ion mobility spectrometry drift times for peptides observed in human serum. A reference human serum database was created using 12,139 peptides, tracking the monoisotopic mass, liquid chromatography normalized elution time, and ion mobility spectrometry drift time(s) for each peptide. We demonstrate that the use of three dimensions for peak matching during the peptide identification process resulted in increased numbers of identifications and lower false discovery rates relative to the use of only the mass and normalized elution time dimensions.

  11. Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry.

    PubMed

    Rahmanian, A; Ghaziaskar, H S; Khayamian, T

    2013-01-11

    In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated. PMID:23261285

  12. Elucidation of conformer preferences for a hydrophobic antimicrobial peptide by vesicle capture-freeze-drying: a preparatory method coupled to ion mobility-mass spectrometry.

    PubMed

    Patrick, John W; Gamez, Roberto C; Russell, David H

    2015-01-01

    A novel sample preparation method to probe the solution phase structure of dimerized Gramicidin A (GA) inserted into lipid vesicle bilayers is described. This method, termed vesicle capture-freeze-drying (VCFD), when coupled with electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS), successfully demonstrates the first evidence for the preservation of membrane-bound structure in the analysis of solution phase conformers retained into the gas phase. The extremely hydrophobic character of GA ensures that only membrane-bound conformations are captured and subsequently monitored when samples are prepared using VCFD, removing a barrier that has prevented previous attempts at direct analysis using mass spectrometry. Solution-phase physicochemical interactions of GA influenced by lipid acyl chain length and extent of acyl chain unsaturation can now be probed by monitoring the conformer preferences using IM-MS. Increasing the acyl chain length from 12 to 22 carbons yields [2GA + 2Na](2+) IM-MS profiles with reduced conformer microheterogeneity. POPC (16:0, 18:1 PC), a lipid possessing a single acyl chain unsaturation point, yields the highest abundance of the single stranded head to head (SSHH) conformer. Conformer preferences adopted in the lipid bilayer are maintained as GA dimers travel from the solution phase to fully desolvated gas-phase ions demonstrating that distributions observed using ESI-IM-MS unambiguously reflect the ensemble of conformers observed in the solution phase. VCFD-ESI-IM-MS yields novel biophysical insight into the influence of lipid bilayer membranes on conformer preferences and conformer heterogeneity of an important channel-forming membrane peptide. PMID:25522119

  13. Ion mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species

    DOE PAGESBeta

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; et al

    2016-07-25

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS–MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS–MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI–IMS–MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambientmore » field campaign in the forested SE US. The ambient IMS–MS signals are consistent with laboratory IMS–MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS–MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS–MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of

  14. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry; Dynamic Switching in Structures for Lossless Ion Manipulations

    SciTech Connect

    Webb, Ian K.; Garimella, Venkata BS; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Zhang, Xinyu; Cox, Jonathan T.; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2014-10-07

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.

  15. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  16. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies.

    PubMed

    Ferguson, Carly N; Gucinski-Ruth, Ashley C

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics. Graphical Abstract ᅟ. PMID:26988372

  17. Structural characterization of synthetic polymers and copolymers using multidimensional mass spectrometry interfaced with thermal degradation, liquid chromatography and/or ion mobility separation

    NASA Astrophysics Data System (ADS)

    Alawani, Nadrah

    This dissertation focuses on coupling mass spectrometry (MS) and tandem mass spectrometry (MS/MS) to thermal degradation, liquid chromatography (LC) and/or ion mobility (IM) spectrometry for the characterization of complex mixtures. In chapter II, an introduction of the history and the principles of MS and LC are discussed. Chapter III illustrates the materials and instrumentation used to complete this dissertation. Polyethers have been characterized utilizing MS/MS, as presented in Chapter IV and Chapter VI. Diblock copolymers of polyethylene oxide and polycaprolactone, PEO-b-PCL, have been characterized by matrix-assisted laser desorption/ionization quadrupole/time-of-flight mass spectrometry (MALDI-Q/ToF) and LC-MS/MS (Chapter V). Thermoplastic elastomers have been characterized by thermal degradation using an atmospheric solids analysis probe (ASAP) and ion mobility mass spectrometry (IM-MS), as discussed in Chapter VII. Interfacing separation techniques with mass spectrometry permitted the detection of species present with low concentration in complex materials and improved the sensitivity of MS. In chapter IV, the fragmentation mechanisms in MS/MS experiments of cyclic and linear poly(ethylene oxide) macroinitiators are discussed. This study aimed at determining the influence of end groups on the fragmentation pathways. In the study reported in Chapter V, ultra high performance liquid chromatography (UHPLC) was interfaced with MS and MS/MS to achieve the separation and in-depth characterization and separation of amphiphilic diblock copolymers (PEO- b-PCL) in which the architecture of the PEO block is linear or cyclic. Applying UPLC-MS and UPLC-MS/MS provides fast accurate information about the number and type of the blocks in the copolymers. Chapter VI reports MS/MS and IM-MS analyses which were performed to elucidate the influence of molecular size and collision energy on the fragmentation pathways of polyethers subjected to collisionally activated

  18. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. PMID:27130121

  19. From Planar to Cage in 15 Easy Steps: Resolving the C60H21F9(-) → C60(-) Transformation by Ion Mobility Mass Spectrometry.

    PubMed

    Greisch, Jean-François; Amsharov, Konstantin Yu; Weippert, Jürgen; Weis, Patrick; Böttcher, Artur; Kappes, Manfred M

    2016-09-01

    A combination of mass spectrometry, collision-induced dissociation, ion mobility mass spectrometry (IM-MS), and density functional theory (DFT) has been used to study the evolution of anionic species generated by laser-desorption of the near-planar, fluorinated polycyclic aromatic hydrocarbon (PAH), C60H21F9 (s). The dominant decay process for isolated, thermally activated C60H21F9(-) species comprises a sequence of multiple regioselective cyclodehydrofluorination and cyclodehydrogenation reactions (eliminating HF and H2, respectively, while forming additional pentagons and/or hexagons). The DFT calculations allow us to set narrow bounds on the structures of the resulting fragment ions by fitting structural models to experimentally determined collision cross sections. These show that the transformation of the precursor anion proceeds via a series of intermediate structures characterized by increasing curvature, ultimately leading to the closed-shell fullerene cage C60(-) as preprogrammed by the precursor structure. PMID:27501376

  20. Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry.

    PubMed

    Najarro, Marcela; Dávila Morris, Melissa E; Staymates, Matthew E; Fletcher, Robert; Gillen, Greg

    2012-06-01

    In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission. PMID:22498665

  1. Using corona discharge-ion mobility spectrometry for detection of 2,4,6-Trichloroanisole.

    PubMed

    Lichvanová, Zuzana; Ilbeigi, Vahideh; Sabo, Martin; Tabrizchi, Mahmoud; Matejčík, Stefan

    2014-09-01

    In this work possible application of the corona discharge-ion mobility spectrometer (CD-IMS) for detection of 2,4,6-Trichloroanisole (TCA) has been investigated. We applied CD-IMS interfaced with orthogonal acceleration time of flight mass spectrometer (CD-IMS-oaTOF) to study the ion processes within the CD-IMS technique. The CD-IMS instrument was operated in two modes, (i) standard and (ii) reverse flow modes resulting in different chemical ionisation schemes by NO3(-)(HNO3)n (n=0,1,2) and O2(-)(H2O)n (n=0,1,2), respectively. The O2(-)(H2O)n ionisation was associated with formation of Cl(-) and (TCA-CH3)(-) ions from TCA. The NO3(-)(HNO3)n ionisation, resulted in formation of NO3(-)(HNO3)(TCA-Cl) adduct ions. Limit of detection (LOD) for TCA was determined in gas (100 ppb) and solid phases (150 ng). PMID:24913882

  2. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Chapter 1. Chapter 2 presents the first investigations into the atmospheric pressure ion transport phenomena during DART analysis. Chapter 3 provides a comparison on the internal energy deposition processes during DART and pneumatically assisted-ESI. Chapter 4 investigates the complex spatially-dependent sampling sensitivity, dynamic range and ion suppression effects present in most DART experiments. New implementations and applications with DART are shown in Chapters 5 and 6. In Chapter 5, DART is coupled to multiplexed drift tube ion mobility spectrometry as a potential fieldable platform for the detection of toxic industrial chemicals and chemical warfare agents simulants. In Chapter 6, transmission-mode DART is shown to be an effective method for reproducible sampling from materials which allow for gas to flow through it. Also, Chapter 6 provides a description of a MS imaging platform coupling infrared laser ablation and DART-like phenomena. Finally, in Chapter 7 I will provide perspective on the work completed with DART and the tasks and goals that future studies should focus on.

  3. Developing Fieldable Systems for Chemical Sensing Using Field Asymmetric Ion Mobility Spectrometry and Mass Spectrometry

    SciTech Connect

    Kevin Kyle, Stephan Weeks, R. Trainham

    2008-03-01

    Currently, there is an urgent need for field-rugged and field-programmable sensor systems that provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. These devices must be portable, low cost, robust, and provide accurate measurements to avoid both false positive and negative results. Furthermore, the information provided by the devices must be received in a timely manner so that informed decisions can be immediately made and the appropriate actions taken. Two technologies that are unparalleled in their sensitivity, selectivity, and trace-level detection capabilities are field asymmetric ion mobility spectrometry (FAIMS) and mass spectrometry. Here, we will show progress that has been made toward developing fieldable FAIMS systems and mass spectrometers. Working in collaboration with Sionex Corporation, the microDMx detector was equipped with a continuous air sampling system to develop selective methods for the analysis of compounds of interest. A microdiaphragm pump (KNF Neuberger, Inc.) is used to pull in gas-phase analytes directly from the air for separation and detection with the FAIMS system. The FAIMS evaluation platform (SVAC) unit currently measures 9.8-inch x 4.6-inch x 3.2-inch, weighs 3.1 lb, and utilizes a {sup 63}Ni source to ionize incoming compounds. Analytes entering the unit are separated and identified by their characteristic response to the compensation voltage (V{sub c}) at a given rf field strength (V{sub rf}). This response has been observed to be unique for a wide range of substances studied. If additional verification were required or a targeted analyte present in a complex chemical matrix, a FAIMS unit equipped with a fast gas chromatography column has been evaluated. The unit combines the separation capabilities of gas chromatography with the selectivity of FAIMS. It measures 9.5-inch x 5.25-inch x 3.5-inch

  4. IMS applications analysis

    SciTech Connect

    RODACY,PHILIP J.; REBER,STEPHEN D.; SIMONSON,ROBERT J.; HANCE,BRADLEY G.

    2000-03-01

    This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

  5. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-02-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  6. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  7. Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Siems, William F; Hill, Herbert H; Yin, Dulin

    2015-06-15

    The use of Hadamard transform ion mobility mass spectrometry (HT-IMMS) in the profiling of anthocyanins from different fruits is presented. Samples extracted with acidic methanol and purified with solid phase extraction were analyzed with direct IMMS infusion. The separation of various anthocyanins was achieved within 30s with resolving powers up to 110. The ion mobility drift times correlated with their mass-to-charge ratios with a correlation coefficient of 0.979 to produce a trend line that was characteristic for anthocyanins. Isomers with the same anthocyanidin but different hexoses were differentiated by ion mobility spectrometry. Furthermore, mobility separated ions underwent collision induced dissociation at the IMMS interface to provide MS/MS spectra. These fragmentation spectra aided in the identification of anthocyanidins via the loss of the saccharide groups. IMMS appears to be a rapid and efficient approach for profiling and identifying anthocyanins. PMID:25660880

  8. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ. PMID:26914233

  9. Control of Ion Distortion in Field Asymmetric Waveform Ion Mobility Spectrometry via Variation of Dispersion Field and Gas Temperature

    PubMed Central

    Robinson, Errol W.; Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    2009-01-01

    Field asymmetric waveform ion mobility spectrometry (FAIMS) has emerged as an analytical tool of broad utility, especially in conjunction with mass spectrometry. Of particular promise is the use of FAIMS and 2-D ion mobility methods that combine FAIMS with conventional IMS to resolve and characterize protein and other macromolecular conformers. However, FAIMS operation requires a strong electric field and ions are inevitably heated by energetic collisions with buffer gas molecules. This may induce ion isomerization or dissociation that distort the separation properties of FAIMS (and subsequent stages) and/or reduce instrumental sensitivity. As FAIMS employs a periodic waveform, whether those processes are controlled by ion temperature at maximum or average field intensity has been debated. Here we address this issue by measuring the unfolding of compact ubiquitin ion geometries as a function of waveform amplitude (dispersion field, ED) and gas temperature, T. The field heating is quantified by matching the dependences of structural transitions on ED and T: increasing ED from 12 to 16 or from 16 to 20 kV/cm is equivalent to heating the (N2) gas by ∼15 – 25 °C. The magnitude of field heating for any ED can be estimated using the two-temperature theory, and raising ED by 4 kV/cm augments heating by ∼15 – 30 °C for maximum and ∼4 – 8 °C for average field in the FAIMS cycle. Hence, isomerization of ions in FAIMS appears to be determined by the excitation at waveform peaks. PMID:18729473

  10. Control of Ion Distortion in Field Asymmetric Waveform Ion Mobility Spectrometry via Variation of Dispersion Field and Gas Temperature

    SciTech Connect

    Robinson, Errol W.; Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    2008-10-01

    Field asymmetric waveform ion mobility spectrometry (FAIMS) has emerged as an analytical tool of broad utility, especially in conjunction with mass spectrometry. Of particular promise is the use of FAIMS and 2-D ion mobility methods that combine it with conventional IMS to resolve and characterize protein and other macromolecular conformers. However, FAIMS operation requires high electric fields and ions are inevitably heated by above-thermal collisions with buffer gas molecules. This may induce ion isomerization and dissociation that distort separation properties determined by FAIMS and subsequent stages and/or reduce instrumental sensitivity. As FAIMS employs a periodic waveform, the ion temperature can be characterized at the maximum or average field intensity (E). Which method is most applicable to temperature sensitive ions, such as protein ions, has been debated. Here we address this issue by measuring the unfolding of compact ubiquitin ion geometries as a function of waveform amplitude (dispersion field, ED) and gas temperature, T. The field heating is quantified by matching the dependences of structural transitions on ED and T. Increasing ED from 12 to 16 or from 16 to 20 kV/cm is equivalent to heating the (N2) gas by ~15 - 25 oC. The magnitude of field heating for any E can be calculated using the two-temperature theory, and raising ED by 4 kV/cm augments heating by ~15 - 30 oC for maximum and ~4 - 8 oC for average E in the FAIMS cycle. Hence, isomerization of ions in FAIMS appears to be governed by the maximum internal temperature at waveform peaks.