Science.gov

Sample records for mocvd ybco films

  1. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates.

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Heatherly Jr, Lee; Zhang, Yifei; Kim, Kyunghoon; Goyal, Amit; Maroni, V. A.; List III, Frederick Alyious

    2009-01-01

    A recently installed research metal organic chemical vapor deposition (MOCVD) system at Oak Ridge National Laboratory, provided by SuperPower, Inc., has been used to investigate the processing variables of MOCVD YBCO precursors and trends in the resulting properties. Systematic studies of film growth were carried out by optimizing deposition temperature and oxygen flow rate. Structural and superconducting properties of the YBCO films were analyzed by extensive X-ray diffraction, scanning electron microspcopy and transport measurements. The identification of intermediate phase formations after the YBCO precursor transformation was investigated with coordinated reel-to-reel Raman microprobe analysis. With the combination of these characterization techniques, an improved understanding of the growth characteristics of MOCVD YBCO films was established. Finally, critical current densities greater than 2 MA/cm2 for film thicknesses of 0.8 m have been demonstrated.

  2. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  3. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  4. Enhanced flux pinning in MOCVD-YBCO films through Zr-additions:Systematic feasibility studies

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Specht, Eliot D; Kim, Kyunghoon; Zhang, Yifei; Cantoni, Claudia; Zuev, Yuri L; Goyal, Amit; Christen, David K; Maroni, Victor A.

    2009-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  5. Enhanced flux pinning in MOCVD-YBCO films through Zr additions : systematic feasibility studies.

    SciTech Connect

    Aytug, T.; Paranthaman, M.; Specht, E. D.; Zhang, Y.; Kim, K.; Zuev, Y. L.; Cantoni, C.; Goyal, A.; Christen, D. K.; Maroni, V. A.; Chen, Y.; Selvamanickam, V.; ORNL; SuperPower, Inc.

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  6. In-situ thin films by MOCVD

    SciTech Connect

    Norris, P.E.; Orlando, G.W. )

    1990-01-01

    This paper reports on the growth of high quality yttrium barium copper oxide (YBCO) thin films by MOCVD. Three MOCVD processes have been studied: a two-step (growth/post anneal) process requiring O{sub 2} anneal at 950--980 C, an in-situ (one step, no post growth anneal) process at 800--850 C and a plasma-enhanced, in-situ process (PE-MOCVD), which is operable at still lower substrate temperatures. The in-situ PE-MOCVD process is of great interest since, to a substantial degree, the growth temperature determines the degree of compatibility of a process with substrate materials and existing device technologies, such as VLSI-SilicoVLSI-Silicon.

  7. Residual stress measurement in YBCO thin films.

    SciTech Connect

    Cheon, J. H.; Singh, J. P.

    2002-05-13

    Residual stress in YBCO films on Ag and Hastelloy C substrates was determined by using 3-D optical interferometry and laser scanning to measure the change in curvature radius before and after film deposition. The residual stress was obtained by appropriate analysis of curvature measurements. Consistent with residual thermal stress calculations based on the thermal expansion coefficient mismatch between the substrates and YBCO film, the measured residual stress in the YBCO film on Hastelloy C substrate was tensile, while it was compressive on the Ag substrate. The stress values measured by the two techniques were generally in good agreement, suggesting that optical interferometry and laser scanning have promise for measuring residual stresses in thin films.

  8. Fast infrared response of YBCO thin films

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Donaldson, W. R.; Scofield, J. H.; Bajuk, L.

    1990-01-01

    The response to short infrared pulses of some epitaxial YBCO films prepared by sputter deposition and by electron-beam evaporation is reported. The response is found to be essentially bolometric on the ns timescale, with some indirect hints of nonequilibrium electron transport on the ps scale. Fast switching could be obtained either by biasing the switch close to the critical current or by cooling the film below about 20 K. These results are encouraging for potential application to a high-current optically-triggered opening switch.

  9. Fabrication of YSZ buffer layer by single source MOCVD technique for YBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Jun, Byung-Hyuk; Sun, Jong-Won; Kim, Ho-Jin; Lee, Dong-Wook; Jung, Choong-Hwan; Park, Soon-Dong; Kim, Chan-Joong

    2003-10-01

    Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition technique using a single liquid source for the application of YBa 2Cu 3O 7- δ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (1 0 0) single crystal MgO substrate was used for searching the deposition conditions. Bi-axially oriented CeO 2 and NiO films were fabricated on {1 0 0} <0 0 1> textured Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660-800 °C) and oxygen flow rates (100-500 sccm) were changed to find the optimum deposition condition. The best (1 0 0) oriented YSZ film on MgO was obtained at 740 °C and O 2 flow rate of 300 sccm. For a YSZ buffer layer with this deposition condition on a CeO 2/Ni template, full width half maximum values of the in-plane ( ϕ-scan) and out-of-plane ( ω-scan) alignments were 10.6° and 9.8°, respectively. The SEM image of YSZ film on CeO 2/Ni showed surface morphologies without microcracks. The film deposition rate was about 100 nm/min.

  10. The optical properties of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Wallace, Roger James

    We present strong evidence that there is no specific mid- infrared absorption band in YBCO and a generalised Drude model can be used to explain all of the observed features in the optical spectrum. A high vacuum, low temperature ATR experiment has been used to excite surface plasmons (SPP) on YBCO thin films at different temperatures. We have found that the SPP resonance condition varies systematically with temperature. The temperature dependent dielectric function and optical conductivity of YBCO at 2984nm have been determined. We have shown that the renal and imaginary dielectric function of YBCO, ~ɛ= ɛ1 + iɛ2, at 2984nm, are linearly dependent on temperature: ɛ1(T) = -52 + 0.008T and ɛ1(T) = 4 + 0.1T. We have calculated the optical conductivity, σ(T), and the normal reflectance, ℜ(T): σ(T) = 196 + 4.9T and ℜ(T) = 0.99-7.4 × 10-4T, where temperature is in kelvin and the conductivity is in Ω-1 cm-1. A generalised Drude model has been used to analyse our results. The generalised Drude memory function, M = 1//tau + i/omega/lambda, has been calculated as a function of temperature. The parameters 1/τ and λ can be approximated by 1/τ(T) = 50 + 6.6T and 1 + λ(T) ≅ 1.48 - 0.003T +.35 × 10-5T. These expressions are valid between 100K and 300K. An optical technique for determining the thickness of YBCO thin films has been developed. It has been used in an investigation of laser ablated plasmas. We have observed that the limit of material in the plasma plume is not the same as the limit of the luminosity of the plume. The angular distribution of material can be modelled by a cos n/Theta function over much of the range but a combined cos n/Theta + cos m/Theta function is required to describe the distribution near the visible tip of the plume.

  11. Cobalt disilicide buffer layer for YBCO film on silicon

    SciTech Connect

    Belousov, I.; Rudenko, E.; Linzen, S.; Seidel, P.

    1997-02-01

    The CoSi{sub 2} films were used as buffer layers of YBCO/CoSi{sub 2}/Si(100), YBCO/ZrO{sub 2}/CoSi{sub 2}/Si(100) and YBCO/CeO{sub 2}/YSZ/CoSi{sub 2}/epi-Si/Al{sub 2}O{sub 3} heterostructures in this work. Transition temperatures of YBCO films were obtained up to 86K for YBCO films deposited by laser ablation on the top of CeO{sub 2}/YSZ/CoSi{sub 2}/Si/Al{sub 2}O{sub 3} structure. Local nucleation on the crystal defects of silicon, the phenomenon of lateral directed growth (DLG) and agglomeration of CoSi{sub 2} phase are responsible for grain boundaries (GB) position in CoSi{sub 2} layer and its roughness. The roughness was decreased using an additional Zr film on the top structure.

  12. High-speed growth of YBa2Cu3O7-δ superconducting films on multilayer-coated Hastelloy C276 tape by laser-assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Ito, Akihiko; Kato, Takeharu; Yokoe, Daisaku; Hirayama, Tsukasa; Goto, Takashi

    2013-05-01

    The high-speed epitaxial growth of YBa2Cu3O7-δ (YBCO) superconducting films on multilayer (CeO2/LaMnO3/MgO/Gd2Zr2O7)-coated Hastelloy C276 tape was demonstrated using laser-assisted metal-organic chemical vapour deposition (laser-assisted MOCVD). The preferred orientation of the YBCO films changed from a-axis to c-axis as the deposition temperature was increased from 769 to 913 K. The c-axis-oriented YBCO film exhibited a high critical temperature of 90 K and a high critical current density of 0.5 MA cm-2 even at a high deposition rate of 55 μm h-1.

  13. Effects of oxygen pressure in preparation of insulating Sr 2AlTaO 6 thin films by MOCVD

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshihiro; Nakajima, Yuuichi; Morishita, Tadataka; Tanabe, Keiichi

    2002-10-01

    Approximately 300-nm-thick insulating Sr 2AlTaO 6 (SAT) films were prepared on 10-μm-thick YBa 2Cu 3O 7- δ (YBCO) films by metalorganic chemical vapor deposition (MOCVD) in the range of oxygen partial pressure from 13 Pa (0.1 Torr) to 667 Pa (5 Torr) for total deposition pressure of 13 hPa (10 Torr). Stoichiometric SAT films with good crystallinity and square-like grains originating from the cubic structure of SAT were obtained for all the oxygen partial pressure conditions. However, extraordinary areas were partially observed on the sample prepared in the low oxygen partial pressure below 67 Pa (0.5 Torr), which are supposed to be caused by unstableness of YBCO surface. Under the highest oxygen partial pressure condition of 667 Pa, the lower tetragonal YBCO film exhibited a Tc of 80 K, indicating a possibility of in situ oxygenation during cooling. It was also confirmed that the SAT film fabricated under this condition has good dielectric properties such as the dielectric constant of approximately 24 and the conductance below 10 -8 S.

  14. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  15. Optical response of YBCO thin films and weak-links

    SciTech Connect

    Osterman, D.P.; Drake, R.; Patt, R.; Track, E.K.; Radparvar, M.; Faris, S.M.

    1989-03-01

    The authors have fabricated films of the high temperature superconductor YBCO and measured their response to optical and infrared radiation. This response to light is manifested by a change in the current-voltage characteristics of YBCO weak-links. They find the change to dependent upon film quality, operating point, light chopping frequency, and temperature. Depending on the type of anneal, the superconducting films exhibit metallic or semiconducting resistivity behavior above T/sub c/. The optical responsivity of semiconducting films is larger than that of metallic films. By further annealing, semiconducting films could be converted into metallic films with a concurrent decrease in their optical reponsivity. Some of the measurements have been performed with the films immersed in superfluid helium to allow the separation of non-equilibrium effects from the equilibrium bolometric response.

  16. MOCVD of multimetal and noble metal films

    NASA Astrophysics Data System (ADS)

    Endle, James Patrick

    2000-11-01

    Carbon content in TiN films produced with tetrakis(dimethylamino)titanium (TDMAT) and methylhydrazine or dimethylhydrazine can be controlled at or below 10% with a N/Ti ratio of ˜1.3 at growth temperatures between 573 and 723 K. Post-dosing either hydrazine on a CVD TiN film results in additional N-Ti bonds, indicating a surface reaction between the two precursors occurs. Co-dosing hydrazine-like compounds with larger alkyl ligands than methyl resulted in additional carbon incorporation in the TiN film. A growth system, consisting of a load lock and growth chamber, and a precursor pyrolysis system were designed and built to study metalorganic chemical vapor deposition. Addition of a bubbler and a direct liquid injection system allowed for the vaporization of solid and liquid precursors and solutions of multiple precursors. A precursor pyrolysis system was designed for high and low vapor pressure precursors and high carrier gas flow rates. The systems were used to study (Al,Ti)N and Ir film growth. (Al,Ti)N was used as a template to study the incorporation of elements into a multimetal chemical vapor deposited film using NH3 and a DLI solution of TDMAT and the tris(dimethylarnino)alane dimer (TDMAA) in toluene-NH 3 significantly decreases the decomposition temperature of both precursors. Carbon was reduced by increasing the NH3 partial pressure, and the Al incorporation was increased by increasing the TDMAA/TDMAT ratio in the DLI solution. Exposure to ambient resulted in significant oxygen incorporation and the removal of carbon and nitrogen from the (AI,Ti)N film. Conformal (AI,Ti)N films were produced at 450 K in the presence of NH3 and at 550 K without NH3. The role of O2 in Ir film growth was studied with the newly designed equipment. O2 significantly decreases the decomposition temperature of (MeCp)Ir(COD) below 425 K by preventing a carbonaceous build-up on the iridium film. By decreasing the oxygen partial pressure, the island nucleation and coalescence

  17. Probing the temperature during switching of YBCO films

    NASA Astrophysics Data System (ADS)

    Lehner, A.; Heinrich, A.; Numssen, K.; Kinder, H.

    2002-08-01

    The switching of YBCO thin films under high current load is fundamental for fault current limiters and active power switches. Its mechanism is still under debate, however, with thermal and nonthermal models being discussed. To clarify the situation, we have placed an array of thermometers directly on top of a YBCO strip and have measured the quench propagation with high spacio-temporal resolution. We compare the results with a numerical model of heat diffusion in 3D with temperature dependent material parameters and find nearly quantitative agreement. This confirms thermal runaway as the mechanism of switching.

  18. Deposition of YBCO films by high temperature spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shields, T. C.; Abell, J. S.; Button, T. W.; Chakalov, R. A.; Chakalova, R. I.; Cai, C.; Haessler, W.; Eickemeyer, J.; de Boer, B.

    2002-08-01

    The fabrication of YBCO coated conductors on flexible textured metallic substrates requires the deposition of biaxially textured buffer layers and superconducting films. In this study we have prepared YBCO thin films on single crystal SrTiO 3 substrates and cube textured Ni substrates by spray pyrolysis. The Ni substrates have been pre-buffered with CeO 2/YSZ/CeO 2, layers deposited by pulsed laser deposition. Spray pyrolysis of nitrate solutions has been performed directly on heated substrates at temperatures between 800 and 900 °C without need for a subsequent annealing step. YBCO films deposited on both types of substrate are biaxially textured. Full width half maximum values determined from φ-scans are 8° and 20° for films on SrTiO 3 and buffered Ni substrates respectively. A transport Jc value of 1.2×10 5 A/cm 2 at 77 K and zero field has been achieved on SrTiO 3 ( T c onset=91 K, ΔTc=6 K). χ ac susceptibility measurements of films on buffered Ni substrates show Tc onsets of 88 K with ΔTc=18 K.

  19. MOCVD of very thin films of lead lanthanum titanate

    SciTech Connect

    Beach, D.B.; Vallet, C.E.

    1995-12-31

    Films of lead lanthanum titanate were deposited using metal-organic chemical vapor deposition (MOCVD) at temperatures between 500 and 550{degrees}C in a hot-wall reactor. The precursors used were Pb(THD){sub 2}, La(THD){sub 3}, and Ti(THD){sub 2}(I-OPr){sub 2} where THD = 2,2,6,6-tetramethyl-3,5-heptanedionate, O{sub 2}C{sub 11}H{sub 19}, and I-OPr = isopropoxide, OC{sub 3}H{sub 7}. The three precursors were delivered to the reactor using a single solution containing all three precursors dissolved in tetraglyme and the precursor solution was volatilized at 225{degrees}C. Films were deposited on Si and Si/Ti/Pt substrates, and characterized using Rutherford Backscattering Spectroscopy (RPS) and X-ray diffraction(XRD). Films deposited at 550{degrees}C had a composition which was close to that of the precursor solution while films deposited at 500{degrees}C were deficient in lanthanum. Even at 500{degrees}C, the desired perovskite phase showed an increase in the intensity of the X-ray lines, but did not change the width of these lines, implying the grain sizes had remained unchanged.

  20. Pulsed laser deposition of YBCO thin films on IBAD-YSZ substrates

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Venkataraman, K.; Balachandran, U.

    2003-01-01

    High-quality YBa2Cu3O7-x (YBCO) films were fabricated on yttria-stabilized zirconia (YSZ)-buffered Hastelloy C276 substrates by pulsed laser deposition. YSZ was grown by ion-beam-assisted deposition. A thin (approx10 nm) CeO2 layer was deposited before the deposition of YBCO. The crystalline structure and biaxial texture of the YBCO film and the buffer layer were examined by x-ray diffraction 2theta-scan, phi-scan and pole-figure analysis. Epitaxial growth of the YBCO film on the buffer layer was observed. Full width at half maximum (FWHM) value of 7.4° was measured from the phi-scan of YBCO(103). Raman spectroscopy showed compositional uniformity and phase integrity in the YBCO films. Surface morphologies of the YBCO films were examined by scanning electron microscopy. Comparative studies indicated that the CeO2 buffer layer significantly improves the structural alignment and superconducting properties of YBCO films. Tc = 90 K, with sharp transition, and transport Jc = 2.2 × 106 A cm-2 at 77 K in zero-external field were obtained on the 0.5 mum thick YBCO films. The dependence of Jc on the FWHM of the YBCO(103) phi-scan indicated that high Jc is associated with low FWHM.

  1. Liquid phase epitaxy of REBCO (RE=Y, Sm) thick films on YBCO thin film deposited on LAO substrate

    NASA Astrophysics Data System (ADS)

    Guo, L. S.; Chen, Y. Y.; Cheng, L.; Li, W.; Xiong, J.; Tao, B. W.; Yao, X.

    2013-03-01

    By employing YBCO/LAO thin films as seeds, we succeeded in growing REBa2Cu3Ox (REBCO, RE=Y, Sm) thick films via the LPE method in air. Remarkably, a completely covered YBCO thick film with the c-axis orientation was achieved. Moreover, SmBCO LPE films were effectively induced by the YBCO/LAO thin films at a processing temperature of 1055 °C, indicating that the YBCO/LAO thin film possesses a superheating property. Compared with the YBCO/MgO thin film, the YBCO/LAO thin film has a potentially higher thermal stability in LPE, due to its better lattice fitness at the film/substrate interface. On the other hand, compared to the thick films induced by NdGaO3 (NGO) substrates, YBCO/LAO thin-film-seeded thick films have the broad average spacing of about 150 μm between adjacent cracks, almost five times wider than the former, which benefits the practical application in electronic devices. In short, the YBCO/LAO thin film becomes a third promising candidate for inducing REBCO LPE thick films, combined with conventionally used YBCO/MgO thin films and single-crystal NGO substrates.

  2. Vortex creep in TFA-YBCO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Rouco, V.; Bartolomé, E.; Maiorov, B.; Palau, A.; Civale, L.; Obradors, X.; Puig, T.

    2014-11-01

    Vortex creep in YBa2Cu3O7 - x (YBCO) films grown from the trifluoracetate (TFA) chemical route with BaZrO3 and Ba2YTaO6 second-phase nanoparticles (NPs) has been investigated by magnetic relaxation measurements. We observe that in YBCO nanocomposites the phenomenological crossover line from the elastic to the plastic creep regime is shifted to higher magnetic fields and temperatures. The origin of this shift lies on the new isotropic-strong vortex pinning contribution appearing in these nanocomposites, induced by local lattice distortions. As a consequence, we demonstrate that the addition of non-coherent NPs produces a decrease in the creep rate S in most of the phase diagram, particularly, in the range of fields and temperatures (T\\gt 60 K, {{μ }0}H\\gt 0.5 T) relevant for large scale applications.

  3. Lithographic patterning of superconducting YBCO films

    SciTech Connect

    Mishra, S.K.; Pathak, L.C.; Ray, S.K.; Kal, S.; Bhattacharya, D.; Lahiri, S.K.; Chopra, K.L.

    1992-10-01

    Microbridges of YBa{sub 2}Cu{sub 3}O{sub 7} thin films have been fabricated by conventional photolithography and wet chemical etching using EDTA, and by lift-off lithography technique. The variation of etch rate with etch time, etchant temperature, and post-deposition sintering temperature has been studied. It has been shown that both techniques are useful for film patterning. However, an additional sintering step is necessary for the chemically etched sample to regain the original film properties. An order of increase in critical current density is observed for the patterned film. 10 refs., 7 figs.

  4. Synchrotron radiation assistant MOCVD deposition of ZnO films on Si substrate

    NASA Astrophysics Data System (ADS)

    Guangtao, Yang; Guobin, Zhang; Hongjun, Zhou; Zeming, Qi

    2009-06-01

    The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO 2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.

  5. In-situ sputtering of YBCO films for microwave applications

    NASA Technical Reports Server (NTRS)

    Ballentine, P. H.; Kadin, A. M.; Mallory, D. S.

    1991-01-01

    RF magnetron sputtering from a single YBCO target onto a heated substrate (700 C) was used to obtain c-axis-oriented 1-2-3 films that are superconducting without a subsequent annealing or oxygenation step, with Tc(R = 0) as high as 88 K on MgO and LaAlO3 substrates. This process uses an 8-in-diameter target in the sputter-up configuration, with a central grounded shield to eliminate negative ion bombardment. It can reproducibly and uniformly cover substrates as large as 3-in across at rates exceeding 1 A/s. Maintaining film composition very close to stoichiometry is essential for obtaining films with good superconducting properties and surface morphology. Optimum films have critical currents of 1 MA/sq cm at 77 K. Measurements of microwave surface resistance based on a stripline resonator indicate low surface resistance for unpatterned YBCO ground planes, but excess loss and a strong power dependence in a patterned center strip.

  6. Scanning Hall probe microscopy of supercurrents in YBCO films

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael Baruch

    High-temperature superconductors were discovered 20 years ago, inspiring dreams of levitating trains fed by superconducting power lines. The cuprates, particularly YBa2Cu3O7-delta (YBCO), still promise to fulfill such applications, but must be made to carry higher current density, Jc, which is limited by the rapid onset of dissipation. The dissipation arises from the movement of magnetic vortices in the material, driven by the magnetic field of the current. It is therefore natural to use magnetic imaging to understand these limits on the current. Initially, I fix a mesoscopic ring of YBCO to a micro-Hall sensor and demonstrate that the sensor is capable of detecting small numbers of vortices. I then proceed with magnetic imaging, constructing a cryogenic scanning Hall probe microscope that combines a 1 x 4 cm scan range with 200 nm positioning resolution by coupling stepper motors to high-resolution drivers and reducing gears. It enables me to image an entire sample, then zoom in on regions of interest, down to the level of an individual quantized vortex. Applying this capability to current-carrying YBCO strips, I generate magnetic movies of the materials' periodic response to applied ac currents. From the movies, I reconstruct current density by inverting the Biot-Savart law, and electric field by approximating dB/dt and using Faraday's law. I thereby obtain complete, space- and time-resolved characterizations of the materials, including maps of ac power losses. After demonstrating this analysis on a single-crystal film, I image two "coated conductors"---YBCO grown on metal tape. I find relatively homogeneous flux penetration in a film grown by pulsed laser deposition (PLD) on an ion beam assisted deposition (IBAD) substrate, which contrasts with the weak-link behavior of grain boundaries in a film grown by metalorganic deposition (MOD) on rolling assisted biaxially textured substrate (RABiTS). Nonetheless, the in-plane meandering of the MOD film's boundaries

  7. Fabrication of YBCO/YSZ and YBCO/MgO thick films using electrophoretic deposition with top-seeded melt growth process

    NASA Astrophysics Data System (ADS)

    Zhu, Ya-Bin; Zhou, Yue-Liang; Wang, Shu-Fang; Liu, Zhen; Zhang, Qin; Chen, Zheng-Hao; Lü, Hui-Bin; Yang, Guo-Zhen

    2004-02-01

    Superconducting thick films were grown on single crystals MgO and YSZ by electrophoretic deposition with Y2BaCuO5(Y211) addition. YBCO thick films were then accomplished by sintering the precursor films above the peritectic temperature. Single crystals of MgO (3×3×0.5 mm3) were used as top-seed to control crystal structure of the thick films. As shown by scanning electron microscopy, the morphologies of YBCO/YSZ and YBCO/MgO thick films are spherulitic texture and platelet type. The critical temperature is ~89 K for the YBCO/YSZ thick film; the onset transition temperature is 86.4 K and the transition width is ~3 K for YBCO/MgO thick film. The critical current densities (as determined by Bean model) are, in A/cm2, 3870 (77 K) for YBCO/YSZ thick films and 2399 (77 K) for YBCO/MgO thick films, which are comparable to the best Jc reported of the thick films prepared by the same method.

  8. Growth process of BaZrO3 doped YBCO films by TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Konya, K.; Masuda, Y.; Teranishi, R.; Kiss, T.; Munetoh, S.; Yamada, K.; Yoshizumi, M.; Izumi, T.

    Crystal growth process of YBa2Cu3O7-X (YBCO) films with BaZrO3 (BZO) pinning centers were investigated to enhance JC property by controlling microstructure of the films. The YBCO films were fabricated by a metal organic deposition (MOD) method using solutions with trifluoroacetates (TFA) and Zr-salts. Quenched films were prepared by cooling them rapidly during crystallization process and crystallized phases were identified by an X-ray diffraction (XRD) measurement. It is indicating that BZO forms at lower temperature than that of YBCO formation and that BZO and BaF2 are crystallized at the similar temperature range around 700°C. Then, we kept the heating temperature which is under 600°C before crystallization temperature of YBCO and investigated the effect of temperature keeping on film growth. In the film kept for more than 3 hours, BZO peak was detected by XRD measurement. However, BZO particles were not observed in the film even kept for 9 hours by transmission electron microscopy (TEM) and energy dispersive X-ray (EDS) analyses. It is indicated that growth rate of BZO is slow at 600°C. On the other hand, smaller YBCO particles and decreasing of surface roughness (Ra) were observed for the film which were kept at 600°C for 3 hours and then crystallized. This result suggests the density of YBCO film is higher than that for YBCO without that process. In summary, it can be considered that YBCO film density become high by temperature keeping process below 600°C before YBCO crystallization and that size of BZO particles are determined by heat treatment at the temperature of above 600°C

  9. On-line characterization of YBCO coated conductors using Raman spectroscopy methods.

    PubMed

    Maroni, V A; Reeves, J L; Schwab, G

    2007-04-01

    The use of Raman spectroscopy for on-line monitoring of the production of superconducting YBa2Cu3O6+X (YBCO) thin films on long-length metal tapes coated with textured buffer layers is reported for the first time. A methodology is described for obtaining Raman spectra of YBCO on moving tape exiting a metal-organic-chemical-vapor-deposition (MOCVD) enclosure. After baseline correction, the spectra recorded in this way show the expected phonons of the specific YBCO crystal orientation required for high supercurrent transport, as well as phonons of non-superconducting second-phase impurities when present. It is also possible to distinguish YBCO films that are properly textured from films having domains of misoriented YBCO grains. An investigation of the need for focus control on moving tape indicated that focusing of the laser on the surface of the highly reflective YBCO films exiting the MOCVD enclosure tends to produce aberrant photon bursts that swamp the Raman spectrum. These photon bursts are very likely a consequence of optical speckle effects induced by a combination of surface roughness, crystallographic texture, and/or local strain within the small grain microstructure of the YBCO film. Maintaining a slightly out-of-focus condition provides the best signal-to-noise ratio in terms of the obtained Raman spectra. In addition to examining moving tape at the post-MOCVD stage, Raman spectra of the film surface can also be recorded after the oxygen anneal performed to bring the YBCO to the optimum superconducting state. Consideration is given to data processing methods that could be adapted to the on-line Raman spectra to allow the tagging of out-of-specification tape segments and, at a more advanced level, feedback control to the MOCVD process. PMID:17456253

  10. On-line characterization of YBCO coated conductors using Raman spectroscopy methods.

    SciTech Connect

    Maroni, V. A.; Reeves, J. L.; Schwab, G.; Chemical Engineering; SuperPower, Inc.

    2007-04-01

    The use of Raman spectroscopy for on-line monitoring of the production of superconducting YBa2Cu3O6+X (YBCO) thin films on long-length metal tapes coated with textured buffer layers is reported for the first time. A methodology is described for obtaining Raman spectra of YBCO on moving tape exiting a metal-organic-chemical-vapor-deposition (MOCVD) enclosure. After baseline correction, the spectra recorded in this way show the expected phonons of the specific YBCO crystal orientation required for high supercurrent transport, as well as phonons of non-superconducting second-phase impurities when present. It is also possible to distinguish YBCO films that are properly textured from films having domains of misoriented YBCO grains. An investigation of the need for focus control on moving tape indicated that focusing of the laser on the surface of the highly reflective YBCO films exiting the MOCVD enclosure tends to produce aberrant photon bursts that swamp the Raman spectrum. These photon bursts are very likely a consequence of optical speckle effects induced by a combination of surface roughness, crystallographic texture, and/or local strain within the small grain microstructure of the YBCO film. Maintaining a slightly out-of-focus condition provides the best signal-to-noise ratio in terms of the obtained Raman spectra. In addition to examining moving tape at the post-MOCVD stage, Raman spectra of the film surface can also be recorded after the oxygen anneal performed to bring the YBCO to the optimum superconducting state. Consideration is given to data processing methods that could be adapted to the on-line Raman spectra to allow the tagging of out-of-specification tape segments and, at a more advanced level, feedback control to the MOCVD process.

  11. Preparation, transport properties and patterning of superconducting YBCO thin films

    NASA Astrophysics Data System (ADS)

    Kataria, N. D.; May, D.; Wolf, H.; Schneider, R.; Niemeyer, J.

    1991-09-01

    The preparation of YBCO thin films by coevaporation and magnetron sputtering is reported. The coevaporated films were fabricated on SrTiO 3 substrates by the codeposition of Y, BaF 2 and Cu at elevated substrate temperature and an ex situ annealing process. Zero resistance T c was as high as 88 K and the critical current density was j c(77K)≈10 5 A/cm 2. The superconducting sputtered films were fabricated in situ using an inverted cylindrical target on Y-stabilized ZrO 2 substrates with T c near 85 K and j c (77K)≈10 6 A/cm 2. The films were structured by a conventional photolithographic technique and chemical etching. The temperature dependence of the resistance R(T) and critical current I c(T) were measured for bridges with different line widths w. Line widths down to 3 μm were patterned on sputtered films by EDTA without any degradation of the superconducting properties, whereas due to the intrinsic surface roughness of the coevaporated films, degradation in the superconducting properties was observed for w < 10μm.

  12. Study of Modified TFA-MOD Method for YBCO Film Growth

    NASA Astrophysics Data System (ADS)

    Li, C. S.; Lu, Y. F.; Zhang, P. X.; Yu, Z. M.; Tao, B. W.; Feng, J. Q.; Jin, L. H.

    The traditional all-TFA precursor solution for coated conductors has sensitivity to the heating rate in pyrolysis process. This sensitivity could be weakened by using a modified precursor solution, which was prepared by the mixture of yttrium trifluoroacetate, barium trifluoroacetate, and copper benzoate. The YBCO films were deposited on buffered NiW substrates (NiW/Y2O3/YSZ/CeO2) with the modified precursor solution. The texture, microstructure and superconducting properties of YBCO films were characterized by X-ray diffraction, scanning electron microscopy and four-probe method, respectively. The YBCO films prepared by modified TFA-MOD method demonstrated high performance.

  13. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Thulasi Raman, K. H.; Rao, G. M.; Kumar, Niranjan; Patil, D. S.

    2015-11-01

    Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)3), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)4), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  14. Thermal stability of NdBCO/YBCO/MgO thin film seeds

    NASA Astrophysics Data System (ADS)

    Volochová, D.; Kavečanský, V.; Antal, V.; Diko, P.; Yao, X.

    2016-04-01

    Thermal stability of the Nd1+x Ba2-x Cu3O7-δ (Nd-123 or NdBCO) thin films deposited on MgO substrate, with YBa2Cu3O7-δ (Y-123 or YBCO) buffer layer (NdBCO/YBCO/MgO thin film), has been experimentally studied in order to determine the optimal film thickness acting as seed for bulk YBCO growth. YBCO bulk superconductors with Y2BaCuO5 (Y-211) and CeO2 addition were prepared by the top seeded melt growth process in a chamber furnace using NdBCO/YBCO/MgO thin film seeds of different thicknesses (200-700 nm with 20 nm YBCO buffer layer) and different maximum temperatures, T max. The maximum temperatures varied in the range of 1040 °C-1125 °C. The highest thermal stability 1118 °C was observed in the case of NdBCO/YBCO/MgO thin film of 300 nm thickness. These results are corroborated with differential scanning calorimetry and high temperature x-ray diffraction measurements, as well as microstructure observations.

  15. Precursor evolution and growth mechanism of BTO/YBCO films by TFA—MOD process

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Yan; Ding, Fa-Zhu; Gu, Hong-Wei; Zhang, Teng; Peng, Xing-Yu

    2014-10-01

    In this study, BaTiO3 (BTO)-doped YBCO films are prepared on LaAlO3 (100) single-crystal substrates by metal—organic decomposition (MOD) using trifluoroacetate (TFA) precursor solutions. The critical current density (Jc) of BTO/YBCO film is as high as 10 MA/cm2 (77 K, 0 T). The BTO peak is found in the X-ray diffraction (XRD) pattern of a final YBCO superconductivity film. Moreover, a comprehensive study of the precursor evolution is conducted mainly by X-ray analysis and μ-Raman spectroscopy. It is found that the TFA begins to decompose at the beginning of the thermal process, and then further decomposes as temperature increases, and at 700 °C BTO nanoparticles begin to appear. It suggests that the YBCO film embedded with BTO nanoparticles, whose critical current density (Jc) is enhanced, is successfully prepared by an easily scalable chemical solution deposition technique.

  16. BAF(2) POST-DEPOSITION REACTION PROCESS FOR THICK YBCO FILMS.

    SciTech Connect

    SUENAGA,M.; SOLOVYOV,V.F.; WU,L.; WIESMANN,H.J.; ZHU,Y.

    2001-07-12

    The basic processes of the so-called BaF{sub 2} process for the formation of YBa{sub 2}Cu{sub 3}O{sub 7}, YBCO, films as well as its advantages over the in situ formation processes are discussed in the previous chapter. The process and the properties of YBCO films by this process were also nicely described in earlier articles by R. Feenstra, et al. Here, we will discuss two pertinent subjects related to fabrication of technologically viable YBCO conductors using this process. These are (1) the growth of thick (>> 1 {micro}m) c-axis-oriented YBCO films and (2) their growth rates. Before the detail discussions of these subjects are given, we first briefly discuss what geometrical structure a YBCO-coated conductor should be. Then, we will provide examples of simple arguments for how thick the YBCO films and how fast their growth rates need to be. Then, the discussions in the following two sections are devoted to: (1) the present understanding of the nucleation and the growth process for YBCO, and why it is so difficult to grow thick c-axis-oriented films (> 3 {micro}m), and (2) our present understanding of the YBCO growth-limiting mechanism and methods to increase the growth rates. The values of critical-current densities J{sub c} in these films are of primary importance for the applications,. and the above two subjects are intimately related to the control of J{sub c} of the films. In general, the lower the temperatures of the YBCO formation are the higher the values of J{sub c} of the films. Thus, the present discussion is limited to those films which are reacted at {approx}735 C. This is the lowest temperature at which c-axis-oriented YBCO films (1-3 {micro}m thick) are comfortably grown. It is also well known that the non-c-axis oriented YBCO platelets are extremely detrimental to the values of J{sub c} such that their effects on J{sub c} dwarf essentially all of other microstructural effects which control J{sub c}. Hence, the discussion given below is mainly

  17. Characteristics of CoxTi1-xO2 thin films deposited by MOCVD

    SciTech Connect

    McClure, A.; Kayani, A.; Idzerda, Y.U.; Arenholz, E.; Cruz, E.

    2008-05-09

    This paper deals with the growth and characterization of ferromagnetic cobalt doped TiO{sub 2} thin films deposited by liquid precursor metal organic chemical vapor deposition (MOCVD) using a new combination of the source materials Co(TMHD){sub 3}, tetrahydrofuran (THF), and titanium isopropoxide (TIP). An array of experiments reveals the intrinsic ferromagnetic nature of the grown films, and suggests that the magnetism is not generated by oxygen vacancies.

  18. Significance of microstructure for a MOCVD-grown YSZ thin film gas sensor

    SciTech Connect

    Vetrone, J.; Foster, C.; Bai, G.

    1996-11-01

    The authors report the fabrication and characterization of a low temperature (200--400 C) thin film gas sensor constructed from a MOCVD-grown yttria-stabilized zirconia (YSZ) layer sandwiched between two platinum thin film electrodes. A reproducible gas-sensing response is produced by applying a cyclic voltage which generates voltammograms with gas-specific current peaks and shapes. Growth conditions are optimized for preparing YSZ films having dense microstructures, low leakage currents, and maximum ion conductivities. In particular, the effect of growth temperature on film morphology and texture is discussed and related to the electrical and gas-sensing properties of the thin film sensor device.

  19. Structural and optical characterization of MOCVD-grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pagni, O.; James, G. R.; Leitch, A. W. R.

    2004-03-01

    We report on the characterization of ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) using diethyl zinc (DEZ) and tert-butanol (TBOH) as precursors. Substrate temperature proved to be a crucial factor in the crystallization process, as it vastly impacted the structural properties of the samples studied. Highly c-axis oriented films with large grain size (52 nm), low tensile strain (0.6%), uniform substrate coverage and a columnar structure devoid of hexagonal needles were successfully deposited on n-Si (100) substrates. The temperature-dependent luminescence spectra recorded confirmed the excellent quality of the material obtained in this work. Our results so far set TBOH apart as an outstanding oxygen source for the MOCVD growth of ZnO.

  20. Far-infrared Hall Effect in YBCO films

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Rigal, L.; Cerne, J.; Schmadel, D. C.; Drew, H. D.; Kung, P.-J.

    2001-03-01

    In order to gain insight into the so-called "anomalous Hall effect" in Hi Tc superconductors(T.R. Chien, D.A. Brawner, Z.Z. Wang, and N.P. Ong, PRB 43, 6242(1991).) we explore Hall measurements at far-infrared (FIR) frequencies and study the temperature dependence. We separately measure the real and imaginary parts of the magneto-optical response of YBCO thin films to polarized FIR light (15-250 cm-1). The induced rotation of linearly polarized light tells us the real part of the Faraday angle, Re[θ_F(ω)], and the induced dichroism of circularly polarized light tells us Im[θ_F(ω)]. We can then deduce the complex Hall angle without resorting to Kramers-Kronig (K-K) analysis. Since both the Hall angle and the Faraday angle obey sum rules, we can compare to higher frequencies(Cerne, et al., invited talk) and determine additional information about the spectral response at intermediate frequencies. The consistency of these results is verified with K-K analysis.

  1. Nucleation And Growth Of Ba-Reduced Metal Organic Deposited YBCO Films

    SciTech Connect

    Talantsev, E. F.; Xia, J. A.; Strickland, N. M.; Hoffmann, C.; Morgan, S.; Long, N. J.; Rupich, M. W.; Li, X.; Sathyamurthy, S.

    2009-07-23

    In this study, YBCO films were fabricated on RABiTS metal substrates by metal-organic deposition of trifluoroacetates. Precursor solutions were made with different Ba concentrations (Ba/Y = 1.50, 1.70, 1.85, 2.0) with the aim of optimizing the critical current density (J{sub c}). Our results confirmed that YBCO films with Ba/Y = 1.70(J{sub c} = 3.6 MA/cm{sup 2} at T 77 K) have significantly higher J{sub c} than stoichiometric (Ba/Y = 2.0) YBCO (J{sub c} 2.4 MA/cm{sup 2}). Application of low-angle polishing techniques and X-ray diffraction (XRD) studies for quenched (partially reacted) films has shown that YBCO films with Ba/Y = 1.70 nucleate more rapidly than other films, but that the crystal growth rate is increased when the Ba-concentration is increased. These results provide new insights into the physical mechanisms required to achieve high J{sub c} in YBCO.

  2. Synthesis of (Hg,Pb)(Sr,Ba) 2Ca 2Cu 3O z superconducting films via MOCVD and PLD

    NASA Astrophysics Data System (ADS)

    Klimonsky, S. O.; Samoilenkov, S. V.; Gorbenko, O. Yu.; Emelianov, D. A.; Lyashenko, A. V.; Lee, S. R.; Kaul, A. R.; Tretyakov, Yu. D.; Andrianov, D. G.; Kalinov, A. V.; Voloshin, I. F.

    2002-12-01

    (0 0 1)-oriented Sr-containing (Hg,Pb)-1223 films have been synthesised for the first time using the two-step procedure. Hg-free precursor films with the thickness up to 1 μm have been deposited by metalorganic chemical vapor deposition (MOCVD) or pulsed infra-red laser ablation (PLD) and then the films were annealed in a mercury-containing atmosphere in sealed quartz ampoules. No post-annealing in oxygen was used. The phase composition of the PLD-derived films depended crucially on the deposition temperature of the precursor films. MOCVD-derived films contained only very small amounts of non-superconducting phases according to XRD. The Tc=118 K and j c(77 K,0.01 T)=2.5×10 6A/cm 2 have been measured for the MOCVD-derived samples.

  3. Flux pinning properties of YBCO films with nano-particles by TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Masuda, Y.; Teranishi, R.; Matsuyama, M.; Yamada, K.; Kiss, T.; Munetoh, S.; Yoshizumi, M.; Izumi, T.

    Nano-particles were doped into YBCO films as pinning centers by a metal organic deposition (MOD) method using trifluoroacetates. Two types of initial solution with a cation ratio of Y: Ba: Cu = 1: 1.5: 3 were prepared; one with the dispersion of SnO2 particles with the size of 15-25 nm and the other one with the dispersion of smaller ZrO2 particles with the size of under 8 nm, then the solution was spin-coated on CeO2/Gd2Zr2O7/Hastelloy substrates. The coated films were calcined at 430 °C in oxygen atmosphere and crystallized at 780 °C in low oxygen atmosphere. From the results of X-ray diffraction analysis (XRD), peaks of BaSnO3 were observed clearly in the YBCO film by the starting solution with SnO2. On the other hands, little peaks corresponding to BaZrO3 were observed in the film by the solution with ZrO2. Many CuO segregations were recognized at the surface of SnO2 doped YBCO film in comparison to the YBCO film with ZrO2 doping. From these results, it is indicated that most of SnO2 particles in precursors are react with Ba during heating. Critical current density (JC) of the YBCO films by both solutions showed higher performance than that of pure YBCO film in magnetic fields.

  4. The preparation of high-J c Gd0.5Y0.5Ba2Cu3O7‑δ thin films by the MOCVD process

    NASA Astrophysics Data System (ADS)

    Zhao, R. P.; Zhang, F.; Liu, Q.; Xia, Y. D.; Lu, Y. M.; Cai, C. B.; Tao, B. W.; Li, Y. R.

    2016-06-01

    A home-designed metal organic chemical vapor deposition (MOCVD) system has been employed to prepare high critical current density (J c) Gd0.5Y0.5Ba2Cu3O7‑δ (GdYBCO) thin films on LaMnO3/epitaxial MgO/ion beam assisted deposition (IBAD)-MgO/solution deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes; the thin films were directly heated by the Joule effect after applying an heating current (I h ) through the Hastelloy tapes. The effect of the mole ratio of the metal organic sources has been systematically investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicated that the GdYBCO films crystallized better and became denser with the increasing of the Cu/Ba ratio from 1.0 to 1.1, yielding a J c at 77 K and 0 T of 200 nm GdYBCO film increasing from 2.5 MA cm‑2 to 7 MA cm‑2. In addition, SEM and energy dispersive spectrometer (EDS) characterizations revealed that more and more outgrowths appeared and the density of the film was reduced with an increase in the Cu/Ba ratio from 1.1 to 1.2. When the I h was 26.8 A and the mole ratio of Gd(tmhd)3, Y(tmhd)3, Ba(tmhd)2 and Cu(tmhd)2 in the precursor was 0.55:0.55:2:2.2, the critical current (I c) of the deposited 200 nm-thick GdYBCO film reached a 140 A cm‑1 width (77 K, 0 T), corresponding to the J c 7 MA cm‑2 (77 K, 0 T).

  5. Enhanced pinning in YBCO films with BaZrO.sub.3 nanoparticles

    DOEpatents

    Driscoll, Judith L.; Foltyn, Stephen R.

    2010-06-15

    A process and composition of matter are provided and involve flux pinning in thin films of high temperature superconductive oxides such as YBCO by inclusion of particles including barium and a group 4 or group 5 metal, such as zirconium, in the thin film.

  6. Effect of Interfacial Resistance on AC Loss as a Function of Applied AC Field in YBCO Filamentary Conductors

    SciTech Connect

    Duckworth, Robert C; List III, Frederick Alyious; Zhang, Yifei

    2009-01-01

    To reduce ac loss in Y-Ba-Cu-O (YBCO) coated conductors while maintaining current sharing between filaments, an attempt was made to introduce an interfacial resistance between the YBCO filaments and a continuous silver cap layer. The YBCO filaments were produced via laser scribing of MOCVD YBCO films deposited on standard Ion Beam Assisted Deposition (IBAD) templates. After laser scribing, the filaments were exposed to air at room temperature to degrade the YBCO surface. A three micron thick silver cap layer was then and each sample was oxygen annealed at different temperature to produce different interface resistance at the interface between the silver and YBCO. Measurements of the ac loss was measured as a function of applied perpendicular field and frequency revealed a correlation between the reduction in coupling loss and the oxygen annealing temperature.

  7. Continued improvment of large area, in situ sputter deposition of superconducting YBCO thin films

    NASA Technical Reports Server (NTRS)

    Truman, J. K.; White, W. R.; Ballentine, P. H.; Mallory, D. S.; Kadin, A. M.

    1993-01-01

    The deposition of thin films of superconducting YBa2Cu3O7-x onto substrates of up to 3-in diameter by an integrated off-axis sputtering is reported. The substrate is located above the center of an 8-in-diameter YBCO planar target, and, in conjunction with a negative ion shield, negative ion effects are avoided. A large radiant heater provides backside, noncontact heating of the bare substrates. YBCO films have been grown on polished 1-cm2 MgO and LaAlO3 substrates with Tc = 90 K or greater, Jc = 2.5 x 10 exp 6 A/sq cm or greater at 77 K, and microwave surface resistance Rs less than 0.4 micro-ohm at 77 K and 10 GHz. The films have a very smooth surface morphology. Uniformity data for LaAlO3 substrates are less than +/-5 percent in Rs. Thickness uniformity results for 3-in substrates indicate less than 10 percent variation. The growth of epitaxial insulating films for use with YBCO films and application of the YBCO films in microwave devices are briefly discussed.

  8. Effects of thickness on superconducting properties and structures of Y2O3/BZO-doped MOD-YBCO films

    NASA Astrophysics Data System (ADS)

    Ding, Fa-Zhu; Gu, Hong-Wei; Wang, Hong-Yan; Zhang, Hui-Liang; Zhang, Teng; Qu, Fei; Dong, Ze-Bin; Zhou, Wei-Wei

    2015-05-01

    We report the thickness dependence of critical current density (Jc) in YBa2Cu3O7-x (YBCO) films with BaZrO3 (BZO) and Y2O3 additions grown on single crystal LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). Comparing with pure YBCO films, the Jc of BZO/Y2O3-doped YBCO films was significantly enhanced. It was also found that with the increase of the thickness of YBCO film from 0.25 μm to 1.5 μm, the Ic of BZO/Y2O3-doped YBCO film increased from 130 A/cm to 250 A/cm and yet Jc of YBCO film decreased from 6.5 MA/cm2 to 2.5 M A/cm2. The thick BZO/Y2O3-doped MOD-YBCO film showed lower Jc, which is mainly attributed to the formation of a-axis grains and pores. Project supported by the National Natural Science Foundation of China (Grant No. 51272250), the National Basic Research Program of China (Grant No. 2011CBA00105), the National High Technology Research and Development Program of China (Grant No. 2014AA032702), and the Beijing Natural Science Foundation, China (Grant No. 2152035).

  9. Optimization of fluorine content in TFA-MOD precursor solutions for YBCO film growth

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Li, C. S.; Feng, J. Q.; Yu, Z. M.; Wang, Y.; Lei, L.; Zhao, G. Y.; Sulpice, A.; Zhang, P. X.

    2016-01-01

    Several low fluorine solutions containing different contents of fluorine were prepared by a chemical process. The fluorine contents in these solutions with respect to the conventional all-trifluoroacetate solution were calculated as 0%, 7.7%, 15.4%, 23.1%, 30.8%, 38.5% and 53.8%. YBa2Cu3O7-x (YBCO) films were deposited on LaAlO3 and CeO2/MgO/Al2O3/Hastelloy substrates using these low fluorine solutions. The phase formation, texture and microstructure of the YBCO films were characterized by x-ray diffraction and scanning electron microscopy. The decomposition mechanism of the low fluorine solution was also discussed. The results indicate that the ratio of F/Ba and the carbon content in decomposed powders could be controlled by adjusting the fluorine content in the precursor solutions. Fluorine had a great influence on the phase transformation, nucleation and growth of YBCO film during the crystallization process. The optimization of fluorine content was in the range of 15.4%-23.1%, which contributed to the good texture, homogeneous microstructure and high J c value of the YBCO crystallized films.

  10. Preparation and characterization of MOCVD thin films of zinc sulphide

    NASA Astrophysics Data System (ADS)

    Osasona, O.; Djebah, A.; Ojo, I. A. O.; Eleruja, M. A.; Adedeji, A. V.; Jeynes, C.; Ajayi, E. O. B.

    1997-03-01

    Thin solid films of stoichiometric zinc sulphide on soda lime glass and stainless steel was deposited by the pyrolysis of bis-(morpholino dithioato-s,s')zinc (C 10H 16N 2O 2S 4Zn) (a single solid source precursor). The band gap of 3.67 eV was obtained by optical absorption spectroscopy. The composition, stoichiometry and thickness were determined by energy dispersive X-ray fluorescence (EDXRF) and Rutherford backscattering spectroscopy (RBS) and the absence of organic remnants in the film is demonstrated by IR spectroscopy and RBS.

  11. Biaxially aligned template films fabricated by inclined-substrate deposition for YBCO-coated conductor applications.

    SciTech Connect

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Erck, R. A.; Dorris, S. E.; Miller, D. J.; Balachandran, U.

    2002-08-12

    Inclined substrate deposition (ISD) has the potential for rapid production of high-quality biaxially textured buffer layers, which are important for YBCO-coated conductor applications. We have grown biaxially textured MgO films by ISD at deposition rates of 20-100 {angstrom}/sec. Columnar grains with a roof-tile surface structure were observed in the ISD-MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD-MgO films are tilted at an angle from the substrate normal. A small {phi}-scan full-width at half maximum (FWHM) of {approx}9{sup o} was observed on MgO films deposited at an inclination angle of 55{sup o}. In-plane texture in the ISD MgO films developed in the first 0.5 {micro}m from the interface, then stabilized with further increases in film thickness. YBCO films deposited by pulsed laser deposition on ISD-MgO buffered Hastelloy C276 substrates were biaxially aligned with the c-axis parallel to the substrate normal. T{sub c} of 91 K with a sharp transition and transport J{sub c} of 5.5 x 10{sup 5} A/cm{sup 2} at 77 K in self-field were measured on a YBCO film that was 0.46-{micro}m thick, 4-mm wide, 10-mm long.

  12. High critical current YBCO films prepared by an MOD process on RABiTS templates.

    SciTech Connect

    Li, X.; Rupich, M. W.; Kodenkandath, T.; Huang, Y.; Zhang, W.; Siegel, E.; Verebelyi, D. T.; Schoop, U.; Nguyen, N.; Thieme, C.; Chen, Z.; Feldman, D. M.; Larbalestier, D. C.; Holesinger, T. G.; Civale, L.; Jia, Q. X.; Maroni, A.; Rane, M. V.; Chemical Engineering; American Superconductor Corp.; Univ. of Wisconsin; LANL; State Univ. of New York

    2007-06-01

    The metal organic deposition (MOD) of YBCO high temperature superconducting films on RABiTS (rolling assisted biaxially textured substrates) templates has been developed at American Superconductor as a low-cost, scalable manufacturing process for the commercialization of the second generation (2G) HTS wire. The MOD process is based on the deposition of a triflu-oroacetate (TFA) based metal organic precursor film which is converted, in an ex-situ process, to the superconducting YBCO film. A major goal of the development has been achieving high critical currents. This paper reports the preparation and characterization of MOD-YBCO films with critical currents exceeding 500 A/cm-w (77 K, self-field) using a scaleable thick film approach on RABiTS templates. The high critical current films were obtained through optimization of the precursor composition, nucleation and growth conditions. The through-thickness dependence of the critical current density of MOD Alms as a function of film thickness and a correlation of the through-thickness transport properties and microstructure of the thick MOD/RABiTS samples is reported.

  13. Development of Modified MOD-TFA Approach for YBCO Film Growth

    SciTech Connect

    Bhuiyan, Md S; Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan; Hunt, Rodney Dale; List III, Frederick Alyious; Duckworth, Robert C

    2007-01-01

    Low-cost coated-conductor fabrication methods are essential for various electric-power applications. Metal-organic-deposition (MOD) approach to grow both YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) and buffer layers on textured metal substrates is very promising towards fabrication of lower-cost second generation wires. YBCO coated conductors (CC) are being developed with high critical currents that should be sufficient for their extensive use in power applications. However, the present CC has high energy losses in ac magnetic field that are unacceptable. We have developed a modified MOD precursor route to deposit {approx} 0.8 {micro}m thick YBCO films in a single coat that requires less than one-fifth of the pyrolysis time compared to the traditional MOD approach. We have also developed a filamentization technique of CC using ink-jet printing to reduce ac losses due to applied ac fields. The preliminary results of YBCO films deposited on standard RABiTS template yielded an of 140 A/cm at 77 K and self- field. A modest reduction of ac loss was observed for the solution ink-jet printed filamentary conductor.

  14. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    NASA Astrophysics Data System (ADS)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  15. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  16. MOCVD growth and structure of PbTiO{sub 3} thin films

    SciTech Connect

    Gao, Y.; Bai, G.; Merkle, K.L.; Chang, H.L.M.; Lam, D.J.

    1993-08-01

    PbTiO{sub 3} thin films grown on (001)MgO and (110)MgO by MOCVD have been characterized by x-ray diffraction and transmission electron microscopy. The PbTiO{sub 3} films deposited on (001)MgO under the optimum conditions always show a bi-layer structure. The top layer of the films near the free surface is c-axis oriented with the orientation relationship (001)[100]PbTiO{sub 3}{parallel}(001)[100]MgO. The bottom layer of the films near the substrate is a-axis oriented with (100)[001]PbTiO{sub 3}{parallel}(001)[100]MgO. 90{degrees} domains were observed, but only in the c-axis oriented layers. The thickness of the a-axis oriented layers near the substrate decreases with decreasing the cooling rate. PbTiO{sub 3} films deposited on (110) MgO, however, are single-layer, epitaxial films with (101)[001]PbTiO{sub 3}{parallel}(110)[001]MgO.

  17. Microstructure of YBCO thin films prepared by TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Nagino, I.; Matsumoto, K.; Adachi, H.; Miyata, S.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    2010-11-01

    The microstructure of the recently developed coated conductors was investigated by using electron back scatter diffraction pattern (EBSP). We prepared TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O 7-x (YBCO) films on CeO 2/LaMnO 3/IBAD-MgO/Gd 2Zr 2O 7/Hastelloy C276 substrates of 1 cm-width. The EBSP observation showed that there was a difference of surface microstructure between the midsection and the end of TFA-MOD YBCO film layer in the direction of width. This is attributed not to the local difference of the biaxial texture of CeO 2 top layer but to the local difference of growth condition during TFA-MOD process.

  18. The mechanism of sputter-induced orientation change in YBCO films on MgO (001)

    SciTech Connect

    Huang, Y.; Vuchic, B.V.; Baldo, P.; Merkle, K.L.; Buchholz, D.B.; Mahajan, S.; Lei, J.S.; Markworth, P.R.; Chang, R.P.H.

    1996-12-01

    The mechanisms of the sputter-induced orientation change in YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}(YBCO) films grown on MgO (001) substrates by pulsed organometallic beam epitaxy (POMBE) are investigated by x-ray diffraction. Rutherford backscatter spectroscopy (RBS), cross-section TEM (XTEM) and microanalysis. It is found that the W atom implantation concurring with the ion sputtering plays an important role in effecting the orientation change. This implantation changes the surface structure of the substrate and induces an intermediate layer in the initial growth of the YBCO film, which in turn acts as a template that induces the orientation change. It seems that the surface morphology change caused by ion sputtering has only a minor effect on the orientation change.

  19. Characteristics of the electrical response of YBCO films with different morphologies to optical irradiation

    SciTech Connect

    Frack, E.K.; Madhavrao, L.; Patl, R.; Drake, R.E.; Radparvar, M. )

    1991-03-01

    The authors have fabricated YBCO films of varying thicknesses (300 {Angstrom} - 3000 {Angstrom}) and morphologies, and measured their electrical response to optical radiation. This paper reports on these measurements, emphasizing the dependence on temperature, light chopping frequency, and cryogenic environment. The temperature dependence of the film resistance is determined in part by the film morphology. This morphology may be represented by a simple model consisting of a two-dimensional array of coupled grains. The magnitude of the bolometric response correlates as expected with the sharpness of the superconducting transition. The increased response observed at lower temperatures (non-equilibrium) correlates with the temperature dependence of the resistance above the transition.

  20. Long-range phase coherence in YBCO ultra-thin films

    SciTech Connect

    Aprili, M.; Lesueur, J.; Quinton, W.A.; Dumoulin, L.

    1996-12-31

    The authors have investigated the resistive transition of YBCO ultra-thin films (thickness from 5 to 50 nm) grown on MgO(100). The amount of disorder increases as the thickness is reduced, leading to a broad transition that can be described using a 3D weakly-coupled Josephson array. Below a critical thickness, this regime seems to dominate even the fluctuating part of the transition (paraconductive region), when the system undergoes a 3D-0D transition.

  1. Epitaxial growth of YBCO films on metallic substrates buffered with yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Balachandran, U.

    2002-05-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on polished Hastelloy C (HC) substrates by ion-beam-assisted deposition (IBAD) and electron-beam evaporation. A water-cooled sample stage was used to dissipate heat generated by the Kaufman ion source and to maintain the substrate temperature below 100 °C during deposition. X-ray pole figures were used for texture analysis. In-plane texture measured from the YSZ (111) φ-scan full-width-at-half-maximum (FWHM) was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. In-plane texture improved with lowered substrate temperature during IBAD deposition. RMS surface roughness of 3.3 nm was measured by atomic force microscopy. A thin CeO2 buffer layer (≈10 nm) was deposited to improve the lattice match between the YSZ and YBCO films and to enhance the biaxial alignment of YBCO films. YBCO films were epitaxially grown on IBAD-YSZ buffered HC substrates with and without CeO2 buffer layers by pulsed laser deposition (PLD). In-plane texture FWHMs of 12° and 9° were observed for CeO2 (111) and YBCO (103), respectively. Tc=90 K, with sharp transition, and Jc values of ≈2×106 A/cm2 at 77 K in zero field were observed on 0.5-μm-thick, 5-mm-wide, and 1-cm-long samples.

  2. Enhanced Flux-Pinning in Dy-Doped, MOD YBCO Films on RABiTS

    SciTech Connect

    Goyal, Amit; Li, Jing; Martin, Patrick M; Gapud, Albert Agcaoili; Specht, Eliot D; Paranthaman, Mariappan Parans; Li, X.; Zhang, W.; Kodenkandath, Thomas; Rupich, Marty

    2007-01-01

    Significant enhancements in flux-pinning were obtained for Dy-doped, YBCO films via a metal-organic deposition (MOD) process on rolling-assisted biaxially textured substrates (RABiTS). It has been reported previously that incorporation of excess rare-earth ions during the MOD process, results in improvement of Jc for H//c, however, a decrease in Jc for H//ab is observed. We report here that by altering the processing conditions the reduction in the magnitude of the current peak for H//ab can be minimized while significantly enhancing the random pinning at all field orientations. The result is a YBCO film with significantly reduced anisotropy compared to the typical YBCO films prepared by the MOD process. This is accomplished by incorporating both a high density of stacking faults and (Dy, Y)2O3 nanoparticles which result in the strong pinning for H//ab and a broad pinning peak for H//c respectively.

  3. Effect of Deposition Temperature on the Properties of TIO2 Thin Films Deposited by Mocvd

    NASA Astrophysics Data System (ADS)

    Khalifa, Zaki S.

    2016-02-01

    Crystal structure, microstructure, and optical properties of TiO2 thin films deposited on quartz substrates by metal-organic chemical vapor deposition (MOCVD) in the temperature range from 250∘C to 450∘C have been studied. The crystal structure, thickness, microstructure, and optical properties have been carried out using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), and UV-visible transmittance spectroscopy, respectively. XRD patterns show that the obtained films are pure anatase. Simultaneously, the crystal size calculated using XRD peaks, and the grain size measured by AFM decrease with the increase in deposition temperature. Moreover, the texture of the films change and roughness decrease with the increase in deposition temperature. The spectrophotometric transmittance spectra have been used to calculate the refractive index, extinction coefficient, dielectric constant, optical energy gap, and porosity of the deposited films. While the refractive index and dielectric constant decrease with the increase of deposition temperature, the porosity shows the opposite.

  4. RAPID COMMUNICATION: YBCO thin films prepared by fluorine-reduced metal organic deposition using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Cui, X. M.; Tao, B. W.; Tian, Z.; Xiong, J.; Liu, X. Z.; Li, Y. R.

    2006-04-01

    Solution deposition is a promising method for YBCO coated conductor fabrication. We developed a new fluorine-reduced 'metal-organic deposition using trifluoroacetates' (TFA-MOD) method with copper acetate as one of the starting materials. Using the fluorine-reduced TFA-MOD method, we were able to get high performance YBCO films with good out-of-plane and in-plane orientations within a shortened calcining time, which was reduced by at least 4 h in comparison with that for the normal TFA-MOD process. Good superconducting properties, with Jc of 2 MA cm-2 at 77 K and Tc of 88.3 K (ΔTc = 0.9 K), have been obtained for 350 nm epitaxial YBCO thin films on LaAlO3 single-crystal substrates. Owing to the low price of copper acetate and the shorter calcining time, fluorine-reduced TFA-MOD is a very effective and cost-cutting process.

  5. Inclined-substrate deposition of biaxially aligned template films for YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Balachandran, U.

    2002-10-01

    Inclined-substrate deposition (ISD) of magnesium oxide (MgO) produces biaxially textured template films at high deposition rates. This process is promising for the fabrication of the second-generation superconducting wires. Biaxially aligned MgO films (≈1.5 μm thick) were deposited on polished Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Buffer films were subsequently deposited on these template films, and YBCO films were deposited epitaxially on the substrates by pulsed laser deposition. X-ray pole figure analysis and φ- and ω-scans were used for texture characterization. Good in- and out-of-plane textures were observed, with MgO(0 0 2) φ-scan full-width at half maximum (FWHM) of 9.2° and ω-scan FWHM of 5.4°, respectively. Tc of 90 K with a sharp transition, and Jc≈2×10 5 A/cm 2, were obtained on a 0.5 μm thick, 0.5 cm wide, and 1 cm long YBa 2Cu 3O 7- δ (YBCO) film at 77 K in self-field.

  6. Microwave complex conductivity of the YBCO thin films as a function of static external magnetic field

    NASA Astrophysics Data System (ADS)

    Krupka, J.; Judek, J.; Jastrzebski, C.; Ciuk, T.; Wosik, J.; Zdrojek, M.

    2014-03-01

    A sapphire rod resonator operating at microwave frequencies was used to determine the electric properties of 600 nm thick YBCO films in the superconducting state. The rigorous electromagnetic modelling was applied to transform the measured Q-factor and the resonant frequency to the complex conductivity of high accuracy, which was previously shown to describe the intrinsic properties of superconductor thin films in more precise manner than the complex impedance. Static external magnetic field induces typical transition to normal state due to introduction of magnetic vortices into the sample. Observed magnetic hysteresis has the origin in the strong temperature dependent pinning. Additional energy absorption at about 1.5 T was observed.

  7. Co-doping effects of Gd and Ag on YBCO films derived by metalorganic deposition

    NASA Astrophysics Data System (ADS)

    Sun, Meijuan; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Lu, Yuming; Fan, Feng; Cai, Chuanbing

    2015-12-01

    Y1-xGdxBa2Cu3O7-δ-Ag (x = 0, 0.25, 0.5, 0.75, 1) thin films were prepared on oxide buffered Hastelloy substrates by low fluorine metalorganic depostion (MOD) process. The effects of co-doping of Ag and Gd on the microstructures and superconducting properties of YBCO thin films are investigated with respect to improvement on texture and superconducting performance in case of optimized doping content. It is found that optimum addition of Ag and Gd may lead to better c-axis orientation, superior surface microstructure and finally give rise to much improvement of superconducting performance.

  8. Inclined-substrate deposition of biaxially textured magnesium oxide thin films for YBCO coated conductors.

    SciTech Connect

    Ma, B.; Li, M.; Jee, Y. A.; Koritala, R. E.; Fisher, B. L.; Balachandran, U.; Energy Technology

    2002-02-01

    Highly textured MgO films were grown by the inclined-substrate deposition (ISD) technique at a high deposition rate. A columnar grain with a roofing-tile-shaped surface was observed in these MgO films. X-ray pole figure, and {phi}- and {omega}-scan were used to characterize in-plane and out-of-plane textures. MgO films deposited when the incline angle {alpha} was 55 and 30 degrees exhibited the best in-plane and out-of-plane texture, respectively. High-quality YBCO films were epitaxially grown on ISD-MgO-buffered Hastelloy C substrates by pulsed laser deposition. {Tc}=88 K, with sharp transition, and j{sub c} values of {approx}2x10{sup 5} A/cm{sup 2} at 77 K in zero field were observed on films 5 mm wide and 1 cm long. This work has demonstrated that biaxially textured ISD MgO buffer layers deposited on metal substrates are excellent candidates for fabrication of high-quality YBCO coated conductors.

  9. The annealing effects of V-doped GaN thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Souissi, M.; Bouzidi, M.; El Jani, B.

    2012-02-01

    We have investigated the annealing effect of V-doped GaN (GaN:V) epitaxial layers grown on sapphire by metal organic chemical vapor deposition (MOCVD). The film was annealed at a temperature of 1075 °C for 30 min in N 2 ambient after growth. The structural, surface morphology and optical properties of GaN:V films were studied by high resolution X-ray diffraction (HRXRD), atomic force microscope (AFM) and photoluminescence (PL). The results show that the annealing makes for the destruction in the crystal quality and surface morphology. After thermal annealing, the photoluminescence (PL) measurement showed a reduction of the blue luminescence (BL) band observed in GaN:V at room temperature (RT). The phenomenon is attributed to vanadium diffusion or to the V-related complex dissociation. Near-band-edge (NBE) peak exhibited a red shift after 1075 °C anneal. This is due to the decrease in the level of strain. In the infrared region, we observed the emergence of the line 0.93 eV accompanied by a decrease in the intensity of the 0.82 eV emission. Their possible origins are discussed.

  10. An advanced low-fluorine solution route for fabrication of high-performance YBCO superconducting films

    NASA Astrophysics Data System (ADS)

    Chen, Yuanqing; Wu, Chuanbao; Zhao, Gaoyang; You, Caiyin

    2012-06-01

    We have developed a new low-fluorine solution consisting of non-fluorine (F-free) barium and copper salts, and fluorine-containing yttrium trifluoroacetate. Using this new low-fluorine solution, the BaCO3 phase was avoided in the pyrolyzed precursor films. Instead, CuO, Y and Ba fluorides (YF3 and BaF2) were formed in the precursor films pyrolyzed at 450 °C, which was the same as when an All-TFA solution (prepared using Y, Ba, Cu trifluoroacetates as precursors) or other fluorine-reduced solutions were used. This new kind of low-fluorine solution has only 23% of the fluorine content in an All-TFA solution, and the fluorine content was lower than any other fluorine-reduced solution. Thus, rapid production of YBa2Cu3O7-x (YBCO) films can be easily realized. Using a heating rate of 10 °C min-1 in the pyrolysis process, a high critical current density (Jc) of 5 MA cm-2 (at 77 K, 0 T) was obtained in YBCO films fabricated on LaAlO3 (LAO) single crystal substrates from the new starting solution.

  11. The domain structure features of epitaxial PbTiO{sub 3} thin films prepared by MOCVD

    SciTech Connect

    Bai, G.R.; Chang, H.L.M.; Foster, C.M.; Lam, D.J.

    1992-03-01

    Ferroelectric oxide thin films have attracted great interest in recent years because of their potential applications in numerous electro-optic, pyroelectric, acousto-optical, and nonvolatile memory devices, and a variety of methods such as sputtering, laser ablation, and MOCVD has been used for preparation of the films. Among these ferroelectric materials, the PbTiO{sub 3} thin film has been extensively studied because of its small dielectric constant, large spontaneous polarization, small coercive field, and high Curie temperature of {approximately}500{degrees}C. However, very little work has dealt with the detailed structural properties of the films. In this work, we have prepared epitaxial PbTiO{sub 3} thin films by MOCVD and performed some detailed studies on the structure of the films, particularly those related to the twin domain structure, using X-ray diffraction technique. Based on the comparison of the domain structure features of the films grown at above Curie temperature with those of the films grown at below Curie temperature as well as of bulk PbTiO{sub 3} single crystal, a model is proposed to explain our experimental results.

  12. The domain structure features of epitaxial PbTiO sub 3 thin films prepared by MOCVD

    SciTech Connect

    Bai, G.R.; Chang, H.L.M.; Foster, C.M.; Lam, D.J.

    1992-03-01

    Ferroelectric oxide thin films have attracted great interest in recent years because of their potential applications in numerous electro-optic, pyroelectric, acousto-optical, and nonvolatile memory devices, and a variety of methods such as sputtering, laser ablation, and MOCVD has been used for preparation of the films. Among these ferroelectric materials, the PbTiO{sub 3} thin film has been extensively studied because of its small dielectric constant, large spontaneous polarization, small coercive field, and high Curie temperature of {approximately}500{degrees}C. However, very little work has dealt with the detailed structural properties of the films. In this work, we have prepared epitaxial PbTiO{sub 3} thin films by MOCVD and performed some detailed studies on the structure of the films, particularly those related to the twin domain structure, using X-ray diffraction technique. Based on the comparison of the domain structure features of the films grown at above Curie temperature with those of the films grown at below Curie temperature as well as of bulk PbTiO{sub 3} single crystal, a model is proposed to explain our experimental results.

  13. Effect of Ge on SiC film morphology in SiC/Si films grown by MOCVD

    SciTech Connect

    Sarney, W.L.; Salamanca-Riba, L.; Zhou, P.; Spencer, M.G.; Taylor, C.; Sharma, R.P.; Jones, K.A.

    1999-07-01

    SiC/Si films generally contain stacking faults and amorphous regions near the interface. High quality SiC/Si films are especially difficult to obtain since the temperatures usually required to grow high quality SiC are above the Si melting point. The authors added Ge in the form of GeH{sub 2} to the reactant gases to promote two-dimensional CVD growth of SiC films on (111) Si substrates at 1,000 C. The films grown with no Ge are essentially amorphous with very small crystalline regions, whereas those films grown with GeH{sub 2} flow rates of 10 and 15 sccm are polycrystalline with the 3C structure. Increasing the flow rate to 20 sccm improves the crystallinity and induces growth of 6H SiC over an initial 3C layer. This study presents the first observation of spontaneous polytype transformation in SiC grown on Si by MOCVD.

  14. Defects-induced thermal instability in YBCO films in microwave field

    NASA Astrophysics Data System (ADS)

    Pan, Vladimir M.; Tretiatchenko, Constantin G.; Flis, Victor S.; Komashko, Valentin A.; Pashitskii, Ernst A.; Ivanyuta, Alexander N.; Melkov, Gennadiy A.; Zandbergen, Henny; Svetchnikov, Vassily L.

    2003-05-01

    The heat instability induced by linear defects is assumed to enhance the remarkable difference between microwave properties of YBCO single crystals and thin films due to extended strain fields near out-of-plane edge dislocations. We have shown theoretically and confirmed experimentally that a single dislocation cannot have a strong effect on the surface resistance Rs, but dislocation arrays, which were observed experimentally, can induce the thermal instability, if edge dislocations in the arrays are spaced closer than the heat relaxation length. Ordered dislocation structures provide much higher local temperature perturbation than randomly distributed dislocations.

  15. Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shao, Yongliang; Hao, Xiaopeng; Wu, Yongzhong; Qu, Shuang; Chen, Xiufang; Xu, Xiangang

    2011-11-01

    In this paper, GaN films were successfully grown on the samples of MOCVD-GaN/Al2O3 (MGA) and MOCVD-GaN/6H-SiC (MGS) by HVPE method. We compare the strain of GaN films grown on the two samples by employing various characterization techniques. The surface morphology of GaN films were characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The variations of strain characteristic were also microscopically identified using the Z scan of Raman spectroscopy. The Raman peak (E2) shift indicates that the stress enhanced gradually as a function of increasing the measurement depth. The strain of GaN grown on MGA sample is compressive strain, while on MGS is tensile strain. The stress of GaN films grown on MGA and MGS sample are calculated. The difference in the value of stress between calculation and measurement was interpreted.

  16. Study of high {Tc} superconducting thin films grown by MOCVD. Final report, July 1, 1986--April 30, 1990

    SciTech Connect

    Erbil, A.

    1990-12-31

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi{sub 2}Te{sub 3} were deposited, mostly on GaAs. Several YBa{sub 2}Cu{sub 3}O{sub 7} compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10{sup 4}). YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub y} thin films were deposited by MOCVD on common substrates such as glass.

  17. Enhancement of YBCO thin film thermal stability under 1 ATM oxygen pressure by intermediate Cu2O nanolayer.

    PubMed

    Cheng, L; Wang, X; Yao, X; Wan, W; Li, F H; Xiong, J; Tao, B W; Jirsa, M

    2010-06-10

    The melting process of YBa(2)Cu(3)O(x) (YBCO or Y123) films under an oxygen atmosphere was observed in situ by means of high-temperature optical microscopy. The films were classified by pole figure measurement as c-axis oriented, with two different in-plane orientations (denoted as 0 and 45 degrees). In the 45 degrees-oriented films, electron diffraction and high-resolution transmission electron microscopy (HRTEM) detected an intermediate Cu(2)O nanolayer in the vicinity of the interface. The melting mode and the thermal stability of the YBCO thin films with different in-plane orientations were greatly influenced by oxygen partial pressure. Notably, the thermal stability of the 45 degrees-oriented YBCO films dramatically grew with increasing oxygen partial pressure. We attributed this effect to a change in the intermediate Cu(2)O nanolayer thermal stability. We conclude and suggest that the thermal stability of YBCO films can be significantly enhanced by inserting a Cu(2)O buffer nanolayer. PMID:20469891

  18. Deposition, characterization, and laser ablation patterning of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Vase, Per; Yueqiang, Shen; Freltoft, Torsten

    1990-12-01

    High quality epitaxial thin films of YBa 2Cu 3O 7 have been deposited on single-crystal MgO(001) substrates by 355 nm Nd:YAG laser ablation. Through a systematic optimization of the deposition parameters, it was found that for a target-substrate distance of 30 mm, the optimal laser intensity, substrate temperature, and deposition oxygen pressure were 300 MW/cm 2, 750 ° C, and 0.5-1.0 mbar, respectively. Microstrips with dimensions down to 10 μm across were fabricated using both a photoresist technique and laser ablation through a metal mask. The superconducting transition takes place over 1 K, and the critical temperature is reproducible within ±1.5 K, the best result being Tc,0 = 90 K. The highest critical current density measured on a 10 X 0.15 μm 2 strips was 4 X 10 6 A/cm 2 at 77 K . Film patterning using laser ablation through a metal mask was studied in detail to investigate the applicability of this method. Etch rates as a function of laser intensity were measured, and the process was followed in situ by on-line monitoring of the film resistivity.

  19. The finite size effect on the metal-insulator transition of MOCVD grown VO{sub 2} films

    SciTech Connect

    Kim, Hyung Kook; Chiarello, R.P.; You, Hoydoo; Chang, M.H.L.; Zhang, T.J.; Lam, D.J.

    1991-11-01

    We studied the finite size effect on the metal-insulator phase transition and the accompanying tetragonal to monoclinic structural phase transition of VO{sub 2} films grown by MOCVD. X-ray diffraction measurements and electrical conductivity measurements were done as a function of temperature for VO{sub 2} films with out-of-plane particle size ranging from 60--310 {Angstrom}. Each Vo{sub 2} film was grown on a thin TiO{sub 2} buffer layer, which in turn was grown by MOCVD on a polished sapphire (112) substrate. The transition was found to be first order. As the out-of-plane particle size becomes larger, the transition temperature shifts and the transition width narrows. For the 60{Angstrom} film the transition was observed at {approximately}61{degrees}C with a transition width if {approximately}10{degrees}C, while for the 310{Angstrom} film the transition temperature was {approximately}59{degrees}C and the transition width {approximately} 2{degree}C. We also observed thermal hysteresis for each film, which became smaller with increasing particle size.

  20. The finite size effect on the metal-insulator transition of MOCVD grown VO sub 2 films

    SciTech Connect

    Kim, Hyung Kook; Chiarello, R.P.; You, Hoydoo; Chang, M.H.L.; Zhang, T.J.; Lam, D.J.

    1991-11-01

    We studied the finite size effect on the metal-insulator phase transition and the accompanying tetragonal to monoclinic structural phase transition of VO{sub 2} films grown by MOCVD. X-ray diffraction measurements and electrical conductivity measurements were done as a function of temperature for VO{sub 2} films with out-of-plane particle size ranging from 60--310 {Angstrom}. Each Vo{sub 2} film was grown on a thin TiO{sub 2} buffer layer, which in turn was grown by MOCVD on a polished sapphire (112) substrate. The transition was found to be first order. As the out-of-plane particle size becomes larger, the transition temperature shifts and the transition width narrows. For the 60{Angstrom} film the transition was observed at {approximately}61{degrees}C with a transition width if {approximately}10{degrees}C, while for the 310{Angstrom} film the transition temperature was {approximately}59{degrees}C and the transition width {approximately} 2{degree}C. We also observed thermal hysteresis for each film, which became smaller with increasing particle size.

  1. Fabrication of YBCO film approached by the '211 process' in the TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Lim, Jun Hyung; Hern Jang, Seok; Joo, Jinho; Kim, Hyoungsub; Lee, Hee-Gyoun; Hong, Gye-Won; Kim, Chan-Joong

    2006-04-01

    We fabricated YBCO film using a new approach to the TFA-MOD method. In the fabrication process, Y2Ba1Cu1Ox and Ba3Cu5O8 powders were used as precursors (the so called '211 process'), instead of Y-, Ba-, and Cu-based acetates, and dissolved in trifluoroacetic acid followed by calcining and firing heat treatment. Consequently, we successfully synthesized YBCO film and evaluated the phase formation, texture evolution, and critical properties as a function of the calcining and firing temperature and humidity, in order to explore its possible application in coated conductor fabrication. The films were calcined at 430-460 °C and then fired at 750-800 °C in a 0-20% humidified Ar-O2 atmosphere. We observed that the amount of BaF2 phase was effectively reduced and that a sharp and strong biaxial texture formed under a humidified atmosphere, leading to increased critical properties. In addition, we found that the microstructure varied significantly with the firing temperature; the grains grew further, the film became denser, and the degree of texture and phase purity varied as the firing temperature increased. For the film fired at 775 °C after calcining at 460 °C, the critical current was found to be 39 A cm-1 width (the corresponding critical current density is 2.0 MA cm-2), which was probably attributable to such factors as the enhanced phase purity and out-of-plane texture, the moderate film density and grain size, and the crack-free surface.

  2. Compact spherical neutron polarimeter using high-Tc YBCO films

    NASA Astrophysics Data System (ADS)

    Wang, T.; Parnell, S. R.; Hamilton, W. A.; Li, F.; Washington, A. L.; Baxter, D. V.; Pynn, R.

    2016-03-01

    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-Tc superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device's field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field.

  3. Effects of Sn-doping on JC- B properties and crystalline structure for YBCO films by advanced TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Miyanaga, Y.; Teranishi, R.; Yamada, K.; Mori, N.; Mukaida, M.; Kiss, T.; Inoue, M.; Nakaoka, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Nanba, M.; Awaji, S.; Watanabe, K.

    2009-10-01

    To improve JC properties in a magnetic field ( JC- B) of YBa 2Cu 3O 7-δ(YBCO) films by a TFA-MOD (trifluoroacetates metal organic deposition) method, we fabricated YBCO films with SnO 2-doping as artificial pinning centers and investigated the superconducting properties and the crystalline structures. TFA-MOD is expected as a cost-effective method with a non-vacuum system to fabricate YBCO films with high superconducting properties. However, YBCO films have problems that JC decreases in a magnetic field ( B). In this study, the TFA solutions with SnO 2 for pinning centers were used as starting materials. In the transmission electron microscope image, existence of second phase particles with size of 20-30 nm has been observed in the YBCO film. These nano-particles contained Sn-element and distributed randomly in the film. The JC/ JC (self field) values of the SnO 2-doped YBCO films were enhanced in all magnetic field angles. Therefore it is considered that 3D pinning centers of Sn-compounds were introduced into YBCO film.

  4. Temperature distribution in SFCLs based on Au/YBCO films during quenches

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Rim; Sim, Jungwook; Hyun, Ok-Bae

    2006-04-01

    We investigated temperature distribution in SFCLs based on Au/YBa 2Cu 3O 7 (YBCO). SFCLs were fabricated by patterning Au/YBCO thin films grown on sapphire substrates into meander lines by photolithography. A gold film grown on the back side of the substrate was patterned into a meander line, and used as a thermometer. The front meander line was subjected to simulated AC fault currents, and the back line to DC current. Resistance of the front and back meander lines were measured and analyzed. The SFCLs were immersed in liquid nitrogen during the experiment for effective cooling. The temperature at the back side was close to that at the front side, and was closer at lower temperatures. This was observed at all stripes. The oscillatory component of the resistance of the back meander line is smaller than, and out-of-phase with that of the front meander line, which was more pronounced at higher temperatures. These results were analyzed quantitatively with the concept of heat transfer within the SFCL and to surroundings. Solutions for a heat equation explained the temperature distribution in SFCLs quantitatively: data coincided well with the solutions. In addition, quench development near the quench start point could be understood better than before, using the results.

  5. Real-time observation of the melting process of YBCO thin film on MgO substrate

    NASA Astrophysics Data System (ADS)

    J, Hu; X, Yao; L, Rao Q.

    2003-11-01

    In order to study the mechanism of the liquid phase hetero-epitaxial growth, the melting process of YBa2Cu3O7-dgr (YBCO) thin films was observed by high-temperature optical microscopy. During the heating from room temperature to a temperature above the YBCO peritectic temperature (Tp), we surprisingly find that the YBCO thin film with a MgO substrate can be substantially superheated above the Tp of the YBCO oxide (at least 50 °C) at a heating rate of 5 °C min-1. This is a novel superheating phenomenon involved in a peritectic reaction and an oxide material, which is different from one reported in systems of metals and their alloys. After the melting process, x-ray diffraction analysis was performed, which shows that Y2BaCuO5 (Y211) grains are in good alignment on the MgO substrate. The superheating mechanism of the YBCO oxide is discussed.

  6. Effects of heat treatment and film thickness on microstructure and critical properties of YBCO film processed by TFA-MOD

    NASA Astrophysics Data System (ADS)

    Jang, Seok Hern; Lim, Jun Hyung; Lee, Jin Sung; Yoon, Kyung Min; Kim, Kyu Tae; Joo, Jinho; Jung, Seung-Boo; Lee, Hoo-Jeong

    2007-01-01

    We fabricated YBCO film on an LAO substrate using the TFA-MOD method and evaluated the effects of the heat treatment temperature and film thickness on the microstructure, degree of texture, and critical properties. The calcining and firing processes were performed in the temperature ranges of 370-460 °C and 750-800 °C, respectively. We found that the phase purity, grain size and orientation, and degree of texture varied with the calcining and firing temperatures. The films fired at 775 °C after calcining at 400-430 °C showed the highest critical temperature (TC-onset) of 89.5 K and critical current (IC) of 40 A/cm-width, which corresponds to a critical current density (JC) of 1.8 MA/cm2. According to the XRD, pole-figure, SEM images, and Raman analysis, these highest critical properties are probably due to the formation of a purer YBCO phase and stronger biaxial texture. In the multi-coated films, the IC value increased from 39 to 169 A/cm-width as the number of coatings increased from one to four, while the corresponding JC was measured to be in the range of 0.8-1.2 MA/cm2. Both the IC and JC decreased when a further coating was applied due to the degradation of the microstructure.

  7. High velocity vortex channeling in vicinal YBCO thin films

    PubMed Central

    Puica, I.; Lang, W.; Durrell, J.H.

    2012-01-01

    We report on electrical transport measurements at high current densities on optimally doped YBa2Cu3O7−δ thin films grown on vicinal SrTiO3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current–voltage characteristics to high supercritical current densities (up to 24 MA cm−2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current–voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. PMID:23482832

  8. High velocity vortex channeling in vicinal YBCO thin films.

    PubMed

    Puica, I; Lang, W; Durrell, J H

    2012-09-01

    We report on electrical transport measurements at high current densities on optimally doped YBa2Cu3O7-δ thin films grown on vicinal SrTiO3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm(-2)) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. PMID:23482832

  9. In-plane orientation effect on the melting behaviour of YBCO thin film.

    PubMed

    Tang, Chen Y; Cai, Yan Q; Yao, Xin; Rao, Qun L; Tao, Bo W; Li, Yan R

    2007-02-21

    By means of high-temperature optical microscopy (HTOM), a 60 °C gap in initial melting temperature between two YBa₂Cu₃O(x) (Y123) thin films was found in situ. Using these two films as seeds, liquid phase epitaxy (LPE) dipping experiments showed the same tendency in the melting behaviour. The in-plane orientation was detected by x-ray diffraction (XRD) pole figure. On the basis of results from HTOM, LPE and XRD, it was unveiled that the interface structure has a predominant influence on the melting mode. A semi-coherent interface suppresses not only the melting growth but also the melting nucleation, while an incoherent interface encourages both of them. (In this work, melting of YBCO refers to the peritectic decomposition of Y123.). PMID:22251590

  10. Electron Paramagnetic Resonance (EPR) Studies of Near-Surface Magnetic Properties of YBCO Thin Films

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Xia, Y.-M.; Salamon, M. B.; Greene, L. H.

    2000-03-01

    Several thin film planar tunneling experiments are consistent with a broken time-reversal symmetry (BTRS) state [1-4].To compliment tunneling measurements, we have developed a technique to measure electron paramagnetic resonance (EPR) effects of the near-surface region of a superconductor. Preliminary data are consistent with the spontaneous formation of magnetic moments at low temperature on YBCO thin films and may prove to be an important confirmation of BTRS. 1. Covington,M. et al., Phys. Rev. Lett., 79, 277, (1997). 2. Kashiwaya, S. et al., J. Phys. Chem. Solids, 59, 2034, (1997). 3. Krupke, R. and Deutscher,G., Phys. Rev. Lett., 83, 4634, (1999). 4. Lesueur,J., Grison,X., Aprili,M. and Kontos,T., cond-mat/9909212. -------------------------------------------------------------

  11. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  12. Structural characterization of multi-coated YBCO films processed by metal-organic deposition method

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Lim, J. H.; Lee, S. Y.; Kim, K. T.; Lee, C. M.; Park, E. C.; Hwang, S. M.; Park, S.; Joo, J.

    2008-09-01

    YBCO films were fabricated using the TFA-MOD process. The effects of film thickness on phase formation, degree of texture, microstructures, and critical properties were evaluated by X-ray diffraction, pole-figure, and transmission electron microscopy. The films were prepared with various thicknesses by producing multi-coated films by repeating the dip-coating and calcining processes. The microstructure and resultant critical current ( Ic) and critical current density ( Jc) varied remarkably with film thickness: the Ic increased from 39 to 169 A/cm-width, while Jc ranged from 0.85 to 0.92 MA/cm 2 with increasing number of coatings from one to three or four. Both values decreased when further coatings were applied as a result of microstructural degradation. It is believed that this decrease in Ic for the multi-coated film is partly due to the presence of a second phase, pores, and poor texture formability. The optimum thickness for maximizing both the Ic and Jc values is believed to be in the range of 1.1-1.7 μm.

  13. Fabrication of GdBa2Cu3O7-δ films by photo-assisted-MOCVD process

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guoxing; Zhang, Baolin; Chou, Penchu; Liu, Suping; Ma, Xiaoyu

    2014-06-01

    Pure GdBa2Cu3O7-δ (GdBCO) films were deposited on (1 0 0)-oriented LaAlO3 (LAO) substrates by photo-assisted metal organic chemical vapor deposition (PhA-MOCVD) technique. The effects of substrate temperature (Ts) and oxygen partial pressure (Po2) on microstructure, growth rate and superconducting critical current density (Jc) were investigated. A dense and no grain boundary visible, single-crystal-like cross-sectional morphology was observed. For the GdBCO film sample obtained at Ts of 810 °C and Po2 of 4 Torr, the full width at half-maximum were 0.08° and 0.41° for out-of-plane and in-plane orientations, respectively. Such low values were similar to that of single crystal GdBCO. Optimally processed GdBCO samples exhibited Jc of 2.5 MA/cm2 at 77 K in self-field. A relatively high growth rate of 0.104 μm/min for the GdBCO film is realized by the PhA-MOCVD technique.

  14. MOCVD growth of magnesium zinc oxide films and nanostructures for photovoltaics

    NASA Astrophysics Data System (ADS)

    Duan, Ziqing

    MgxZn1-xO, which is formed by alloying ZnO with MgO, has been developed as a promising window layer in chalcopyrite thin film solar cells and hybrid polymer solar cells for enhanced open-circuit voltage and solar conversion efficiency because of its bandgap tunability. The surface morphology of MgxZn1-xO layers in those photovoltaic applications plays important roles on the performances of solar cells. Two-dimensional (2-D) dense and smooth film is preferred in the inorganic p-n junction solar cells while one-dimensional (1-D) nanostructures are favorable for the hybrid polymer solar cells. In this dissertation, metal-organic chemical vapor deposition (MOCVD) is used to grow both of MgxZn1-xO polycrystalline 2-D films and single crystalline 1-D nanostructures for solar cells. A low-temperature (~250°C) ZnO buffer layer, followed by the high-temperature (~500°C) growth of MgxZn1-xO, is found to be beneficial for the formation of a 2-D dense and smooth film. On the other hand, a high-temperature (~520°C) ZnO buffer layer followed by a high temperature (530°C-560°C) growth of MgxZn1-xO is needed to grow the 1-D Mg xZn1-xO (0≤x≤0.15) nanostructures on Si. For the first time, 1-D MgxZn1-xO nanostructures (0≤x≤0.1) are sequentially grown on a Ga-doped ZnO (GZO) 2-D film to form the 3-D photoelectrode, which is used to fabricate the P3HT-MgxZn1-xO hybride solar cells. The preliminary testing results of solar cells show that Mg xZn1-xO is promising to be used in hybrid polymer solar cells for the enhancement of open circuit voltage (VOC). MgxZn1-xO (0≤x≤0.1) polycrystalline films are used in Cu2O-MgxZn1-x O heterojunction solar cells. The current density-voltage (J-V) measurements of solar cells under illumination show that VOC, shunt resistance Rsh and the solar conversion efficiency η are improved with increasing of Mg% until 10%. A relatively high solar conversion efficiency, η AM1.5 = 0.71 % with a short circuit current JSC = 3.0 mA/cm 2 and VOC

  15. MOCVD of YBa 2Cu 3O 7-x thin films using a Ba fluorocarbon-based precursor

    NASA Astrophysics Data System (ADS)

    Fröhlich, K.; Šouc, J.; Chromik, S.; Machajdik, D.; Kliment, V.

    1992-11-01

    We have prepared superconducting YBa 2Cu 3O 7- x films by MOCVD using fluorocarbon based Ba(hfa) 2 precursor. The films were deposited at 500°C and annealed in low pressure ( pO2=10 -2Pa) dry oxygen atmosphere as well as in argon/oxygen mixture in the presence of water vapour. The samples on a MgO single crystal substrate had Tc( R=0)=79 K and Jc=10 4 A/cm 2 at T=30 K in zero magnetic field while the film on SrTiO 3, annealed under the same conditions had Tc( R=0)=86 K and Jc reached a value of 10 5 A/cm 2 at T=78 K.

  16. YBCO film deposition on very large areas up to 20 × 20 cm2

    NASA Astrophysics Data System (ADS)

    Kinder, H.; Berberich, P.; Prusseit, W.; Rieder-Zecha, S.; Semerad, R.; Utz, B.

    1997-08-01

    In the last decade we have developed thermal reactive co-evaporation as a technique to produce high quality YBCO and other oxide films of very large size up to 9 inches in diameter. This was achieved by intermittent deposition and reaction with oxygen using a heater which rotates the substrate in and out of an oxygen pocket. Even larger substrates, e. g. coated conductors, cannot be rotated. Therefore we have recently developed a new setup where the substrate is held fixed, and the oxygen pocket is set in linear reciprocation. This technique allows simultaneous deposition on a square of 20×20 cm 2. Moreover, we have developed an instant refill mechanism for the thermal boats, and stable rate control by atomic absorption spectroscopy (AAS), in order to obtain a continuous process suitable for small scale mass production.

  17. Microstructural, transport, and rf properties of multilayer-deposited YBCO films

    SciTech Connect

    Madhavrao, L.; Track, E.K.; Drake, R.E.; Patt, R.; Hohenwarter, G.K.G.; Radparvar, M. )

    1991-03-01

    This paper reports on thin films of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) fabricated by sequential multilayer rf magnetron sputter-deposition from Y{sub 2}O{sub 3}, BaCO{sub 3}, and CuO targets, and post- annealing in oxygen. This approach readily allows precise control of the film stoichiometry and is proven to be promising for applications that require deposition over large areas. Films on different substrates including SrTiO{sub 3}, LaAlO{sub 3}, MgO and sapphire are found to be c-axis oriented for film thicknesses between 300 {Angstrom} and 10,000 {Angstrom}. Transport current densities in the range of 10{sup 6} A/cm{sup 2} are obtained on SrTiO{sub 3} and LaAlO{sub 3} substrates, and in the range of 10{sup 5} A/cm{sup 2} on MgO and sapphire. Transition temperatures of 89 K (resistive) and 87 K (inductive) are obtained repeatably with LaAlO{sub 3} substrates.

  18. YBCO superconducting thin films prepared by vacuum coevaporation without post treatment in oxygen

    SciTech Connect

    Chromik, S.; Strbik, V.; Benacka, S.; Levarsky, J.; Sith, J.; Plecenik, A.; Gazi, S.; Smatko, V.; Schilder, J.

    1989-03-01

    Results on low temperature process in preparation of superconducting thin films YBa/sub 2/Cu/sub 3/O/sub x/ are presented. The YBCO thin films of thickness 0.5-1.0 ..mu..m were prepared by vacuum codeposition of Y, BaO, and Cu not only onto both polycrystalline and single crystal Al/sub 2/O/sub 3/, MgO, and SrTiO/sub 3/ but even on Si+SrTiO/sub 3/ and Si+SiO/sub 2/ substrates. The temperature of substrate was 550 - 580/sup 0/C and partial oxygen pressure in vacuum chamber 10/sup -2/ Pa. The total film growth rate was 1 nm/s with controlled individual rates to yield the desired 1:2:3 composition. The preparation of in situ superconducting thin films was successful with all used substrates. Maximum critical temperature at zero resistance was T/sub ce/ = 85 K, the onset critical temperature T/sub con/ being from 90 to 95 K.

  19. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    NASA Astrophysics Data System (ADS)

    Tang Huang, Xin; Qing Wang, You; Wang, Qiu Liang; Chen, Qing Ming

    2000-02-01

    High critical current density and in-plane aligned YBa2 Cu3 O7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O+ ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18° and 11°, respectively. The critical current density of YBCO film is 7.9 × 105 A cm-2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K.

  20. Engineered oxide thin films as 100% lattice match buffer layers for YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Akin, Y.; Heiba, Z. K.; Sigmund, W.; Hascicek, Y. S.

    2003-12-01

    One of the most important qualities of buffer layers for RE-BCO coated conductors' growth is close lattice match with RE-BCO. However, there is no natural material with a 100% lattice match with RE-BCO. In this study mixtures of europium oxide (Eu 2O 3) and ytterbium oxide (Yb 2O 3), (Eu 1- uYb u) 2O 3 (0.0⩽ u⩽1.0), were investigated as a candidate buffer layer that could have same lattice parameter as YBa 2Cu 3O 7- δ(YBCO). Because the pseudocubic lattice parameter of Eu 2O 3 is bigger, and that of Yb 2O 3 is smaller than lattice parameter of YBCO, and the mixed oxides with appropriate ratio would have same lattice parameter of YBCO. The mixtures were prepared using metal-organic precursor by sol-gel process, and it was found that all mixed samples are single phase, complete solid solutions, and have same crystal system over the whole range of " u". Lattice parameters of mixed (Eu 1- uYb u) 2O 3 oxide powders were changed between 10.86831 and 10.42828 Å which are lattice parameter of Eu 2O 3 and Yb 2O 3, respectively by changing the ratio of Eu/Yb in the mixture. Phase and lattice parameter analysis revealed that pseudocubic lattice parameter of (Eu 0.893Yb 0.107) 2O 3 is 3.82 Å which is same as the lattice parameter of YBCO. Textured (Eu 0.893Yb 0.107) 2O 3 buffer layers were grown on biaxially textured-Ni (1 0 0) substrates. The solution was prepared from Europium and Ytterbium 2,4-pentadioanate, and was deposited on the Ni substrates using a reel-to-reel sol-gel dip coating system. The textured films were annealed at 1150 °C for 10 min under 4% H 2-Ar gas flow. Extensive texture analysis has been done to characterize the texture of (Eu 0.893Yb 0.107) 2O 3 buffer layers. X-ray diffraction (XRD) of the buffer layer showed strong out-of-plane orientation on Ni tape. The (Eu 0.893Yb 0.107) 2O 3 (2 2 2) pole figure indicated a single cube-on-cube textured structure. The omega and phi scans revealed good out-of-plane and in-plane alignments. The full

  1. Influence of crossing angles of columnar defects on vortex glass transition in YBCO thin films

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Sogo, T.; Yonekura, K.; Fujiyoshi, T.; Mitsugi, F.; Ikegami, T.; Ishikawa, N.; Awaji, S.; Watanabe, K.

    2011-11-01

    To investigate the influence of the crossing angles of columnar defects (CDs) on the in-field properties of the critical current density Jc and the scaling parameter m derived from the isothermal current-voltage characteristics near the glass-liquid transition at B|| c-axis, YBCO thin films were irradiated using the 200 MeV Xe ions at two angles ± θ i relative to the c-axis. For the thin films, the obvious effect of the crossing angle of CDs occurred on the vortex glass-liquid transition more than the Jc properties. On the glass-liquid transition line, two inflection points induced by the c-axis correlated pinning were confirmed even for the samples of θ i = ±45°. In the magnetic field dependence of m, the peak or kink appeared near B/ B ϕ = 1/3 for the smaller crossing angles, whereas that was slightly visible for the samples of θ i = ±45°. In addition, the values of m for the small crossing angle were larger than those for the parallel CD configuration, while those for the larger crossing angle became smaller. These results suggested that the morphologies of correlated pinning centers strongly affect the dynamics of flux lines even in the disordered system such as thin films.

  2. Prolonged laser ablation effects of YBCO ceramic targets during thin film deposition: Influence of processing parameters

    NASA Astrophysics Data System (ADS)

    Tomov, R.; Tsaneva, V.; Tsanev, V.; Ouzounov, D.

    1996-12-01

    Cumulative laser irradiation during high-Tc superconducting thin film pulsed laser deposition (PLD) may have a detrimental effect on film characteristics. Initial decrease of deposition rate and gradual shift of the center of the deposited material spot towards the incoming laser beam were registered on cold glass substrates. Their absorbance was used for evaluation of the film thickness distribution over the substrate area. At the initial stage, two components of the spot could be distinguished along its short axis: central (˜cosn θ, n≫1) and peripherial (˜cos θ), while with cumulative irradiation the thickness followed an overall cosm θ (mYBCO target under prolonged XeCl laser irradiation were studied by EDAX and SEM for different processing parameters — laser fluence and oxygen environment. The results can be consistently explained suggesting the existence of an additional effective ablation threshold imposed by the modified surface relief.

  3. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  4. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  5. Strong vortex matching effects in YBCO films with periodic modulations of the superconducting order parameter fabricated by masked ion irradiation

    NASA Astrophysics Data System (ADS)

    Haag, L. T.; Zechner, G.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2014-08-01

    We report on measurements of the magnetoresistance and of the critical current in thin films of the high-temperature superconductor YBa2Cu3O7-δ (YBCO). A square array of regions with suppressed superconducting order parameter has been created in these films by introducing point defects via irradiation with He+ ions through a silicon stencil mask. In such a structure distinct peaks of the critical current can be observed at commensurate arrangements of magnetic flux quanta with the artificial defect lattice. Concurrently, the magnetoresistance shows pronounced minima. Both observations demonstrate that the strong intrinsic pinning in YBCO can be overcome by a periodic array of ion-damage columns with 300 nm spacing.

  6. The effect of film thickness on critical properties of YBCO film fabricated by TFA-MOD using 211-process

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Jang, S. H.; Kim, K. T.; Hwang, S. M.; Joo, J.; Lee, H.-J.; Lee, H.-G.; Hong, G.-W.

    2007-10-01

    YBCO films were fabricated by the TFA-MOD method using the "211-process", and the effects of the film thickness on phase formation, microstructure, texture evolution, and critical properties were evaluated. Various film thicknesses ranging from 0.41 μm to 2.14 μm were obtained by repeating the dip coating and calcining processes one to five times. The critical properties varied significantly with the film thickness. The Ic increased from 35 to 105 A/cm-width with increasing the film thickness from 0.41 μm to 1.17 μm. On the other hand, the corresponding Jc remained almost constant in the range of 0.76-0.90 MA/cm2. With further increases in thickness, these values decreased drastically, which was attributed to the degraded microstructure, i.e., the formation of BaF2 and a-axis grains and degraded texture and surface morphology arising from the insufficient heat treatment time. It is believed that the optimum thickness for improving both the Ic and Jc values is approximately 1.17 μm.

  7. Improvements in Crystal Structure of Two Inch Double-Sided YBCO Thin Films by Preseeded Self-Template Layer

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Liu, Xingzhao; Tao, Bowan; Zhang, Ying; Deng, Xinwu

    2003-03-01

    A self-template layer was employed to improve the crystal structure and microwave properties of large-area double-sided YBCO thin films. Two-inch double-sided YBCO thin films with excellent out-of-plane orientation and lateral homogeneity of microwave surface resistance were prepared by using a preseeded self-template layer. The full width at half maximum (FWHM) value of the rocking curve as low as 0.15° was achieved. The electronic channeling pattern was very sharp, clear and symmetric. The values of microwave surface resistance Rs (75 K, 145 GHz, 0 T) below 55 mΩ were obtained over the entire YBCO thin films on 2-inch LaAlO3 wafers. The majority of the wafer area given in percent has Rs (75 K, 145 GHz, 0 T) values in the range from 15 mΩ to 40 mΩ. The high frequency (HF) power handling capability was demonstrated by a breakdown field higher than 6 mT at 8.5 GHz and 77 K.

  8. Study on the oxygenation process during the heat treatment of TFA-MOD YBCO thin films by in situ resistance measurement

    NASA Astrophysics Data System (ADS)

    Qu, Timing; Xue, Yunran; Feng, Feng; Huang, Rongxia; Wu, Wei; Shi, Kai; Han, Zhenghe

    2013-11-01

    The oxygen content is one key factor to determine the properties of YBa2Cu3O6+y (YBCO) high temperature superconductors. In this study, YBCO thin films were produced by TFA-MOD method. The oxygenation process was carried out at 450 °C for 40 min, in various oxygen partial pressures from 0.01 to 1 atm. An in situ resistance measurement system was built up to record the resistance evolution during the whole heat treatment process. It was found that the resistance decreased exponentially and reached a saturate value in a few minutes during oxygen annealing. It was also found both the balanced resistance and the c-axis length of YBCO decreased with increasing oxygen partial pressure. A defect reaction was found to control the mechanism of the oxygenation process. A porosity assisted oxygen diffusion mechanism was proposed to explain the fast diffusion kinetics of oxygen in MOD YBCO thin films.

  9. Pulsed laser deposition of c-axis untilted YBCO films on c-axis tilted ISD MgO-buffered metallic substrates

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Venkataraman, K.; Maroni, V. A.; Vlasko-Vlasov, V.; Berghuis, P.; Welp, U.; Gray, K. E.; Balachandran, U.

    2003-05-01

    Biaxially textured MgO template layer was deposited on nontextured metal substrates by inclined-substrate deposition (ISD) at a deposition rate of 24-600 nm/min. c-axis untilted YBa 2Cu 3O 7- x (YBCO) films were deposited on these MgO-buffered substrates by pulsed laser deposition. The crystalline structures of the YBCO films and MgO layers were examined by X-ray pole figure analysis, X-ray φ-scans, and χ-scans. A tilt angle of 33° of the MgO[0 0 1] with respect to the substrate normal and c-axis untilted YBCO films were observed, respectively. Good biaxial texture of these films with full-width-at-half-maximum values of 13.8° and 10.6° for the φ-scans of YBCO(1 0 3) and MgO(2 2 0), respectively, were obtained. Morphologies were examined by scanning electron microscopy, which revealed a unique roof-tile feature and columnar grain growth for the ISD MgO layer. Raman spectroscopy and magneto-optical image technique were also used to evaluate the quality of the YBCO film. An angular dependence of Jc on the direction of an applied magnetic field confirmed the c-axis untilted orientation of the YBCO films. Tc=90 K with sharp transition and Jc=3.0×10 5 A/cm 2 at 77 K in zero field were obtained on 0.4-μm-thick YBCO films.

  10. Initial stages of TiO 2 thin films MOCVD growth studied by in situ surface analyses

    NASA Astrophysics Data System (ADS)

    Brevet, A.; Peterlé, P. M.; Imhoff, L.; Marco de Lucas, M. C.; Bourgeois, S.

    2005-02-01

    In situ chemical surface analyses using X-ray photoelectron spectroscopy (XPS) were performed to understand the initial stages of TiO 2 thin-film MOCVD growth. Deposits on Si (1 0 0), a few nanometres thick, were obtained at a fixed temperature of 650 °C and for two different pressures, 2.9 and 0.05 mbar, using titanium tetraisopropoxide (TTIP) as precursor. Pressure lowering led to a higher deposit growth rate. Reduction of titanium with respect to stoichiometric titanium dioxide and oxidation of the wet-cleaned silicon substrate are observed from decomposition of the Ti 2p and Si 2p peaks. The formation of a TiSi xO y mixed oxide is also pointed out and confirmed by the presence of a characteristic component in the O 1 s peak.

  11. Aspects of passive magnetic levitation based on high-T{sub c} superconducting YBCO thin films

    SciTech Connect

    Schoenhuber, P.; Moon, F.C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here the authors present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T{sub c} superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, the authors investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation.

  12. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    NASA Technical Reports Server (NTRS)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  13. Growth parameters effect on the electric and thermoelectric characteristics of Bi 2Se 3 thin films grown by MOCVD system

    NASA Astrophysics Data System (ADS)

    Al Bayaz, A.; Giani, A.; Artaud, M. C.; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2002-06-01

    Bi 2Se 3 thin films were grown by metal organic chemical vapour deposition (MOCVD) on pyrex substrate in an horizontal reactor using Trimethylbismuth (TMBi) and Diethylselinium (DESe) as metal-organic sources. The effect of the growth parameters such as substrate temperature, Tg, and TMBi partial pressure, PTMBi, on the structural, electrical and thermoelectrical properties of Bi 2Se 3 films, has been investigated. We noticed that a high growth temperature is very important for a good orientation of crystallites, which can be directly related to the best values of Hall mobility and Seebeck coefficient found. Therefore, a large stability of the reactions over the substrates with following growth conditions: 455°C⩽ Tg⩽485°C,0.5×10 -4⩽ PTMBi⩽1×10 -4 atm and a total hydrogen flow rate DT=3 slm, is achieved. In these optimal growth conditions, we found a better crystalline structure of Bi 2Se 3 thin films using X-ray diffraction. Thus, these layers always displayed n-type conduction using Hall effect, with carrier concentration close to 2×10 19 cm -3 and maximum values of Hall mobility and Seebeck coefficient of μ=247 cm 2/V s and | α|=120 μV/K respectively. Then, these films appear to be very promising for thermoelectric applications.

  14. MOCVD of high quality YBa 2Cu 3O 7-δ thin films using a fluorinated barium precursor

    NASA Astrophysics Data System (ADS)

    Richards, B. C.; Cook, S. L.; Pinch, D. L.; Andrews, G. W.; Lengeling, G.; Schulte, B.; Jürgensen, H.; Shen, Y. Q.; Vase, P.; Freltoft, T.; Spee, C. I. M. A.; Linden, J. L.; Hitchman, M. L.; Shamlian, S. H.; Brown, A.

    1995-02-01

    MOCVD of superconducting YBa 2Cu 3O 7δ thin films using the novel fluorinated barium β-diketonate complex [Ba(TDFND) 2·tetraglyme] 1 in combination with [Y(TMHD) 3] 2 and [Cu(TMHD) 2] is reported. The Ba complex has a low melting point (72°C), is thermally stable to 200°C and allows reproducible and reliable film deposition even when maintained at 145°C for several weeks. Conversion of the fluoride to the oxide is achieved by in situ hydrolysis. Films deposited on SrTiO 3 (100) were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, rocking curve, ac susceptibility and secondary ion mass spectrometry. Homogeneous layers of YBa 2Cu 3O 7-δ, ≈ 0.25 μm thick, were grown at ≈ 0.13 μm h -1. The films are epitaxial with good c axis orientation. Critical temperatures Tc are typically 91 K and critical current densities c (at 77 K) of ≈ 5 MA cm -2 are reported. SIMS results showing levels of residual fluorine do not exceed 250 ppm.

  15. Manufacture of YBCO Superconducting Flexible Tapes from Nanoparticle Films Derived from Sedimentation and by Flame Deposition of Nanoparticles from Solution

    SciTech Connect

    Wiesmann, Harold

    2008-02-24

    The objective of this CRADA was to develop the experimental and theoretical basis of a technology to produce yttrium barium copper oxide (YBCO) superconducting flexible tapes derived from nanoparticle metal oxide sols. The CRADA was a joint effort between Oxford Superconducting Technology, Brookhaven National Laboratory and Karpov Institute of Physical Chemistry. The effort was divided into three main tasks, the synthesis of a heteroepitaxial oxide buffer layer, and the manufacture of a flexible biaxially textured metallic substrate and the synthesis of a heteroepitaxial crystalline YBCO layer. The formation of a heteroepitaxial buffer layer was implemented using technology developed at the Karpov Institute of Physical Chemistry for the synthesis, stabilization and deposition of polymer stabilized nanoparticle metal oxide sols. Using this technology, flexible oriented RABiTS nickel tapes, manufactured and supplied by the CRADA partner, Oxford Superconducting Technology, Carteret, New Jersey, were coated with a film of metal oxide nanoparticles. After coating the RABiTS nickel tapes with the nanoparticle sols the nickel tape/nanoparticle composite structure was sintered in order to form a dense crystalline heteroepitaxial oxide layer on the surface of the tape, also known as a ‘buffer’ layer. The final phase of the research was the formation of a heteroepitaxial YBCO layer, grown on top of the metal oxide buffer layer. This work was scheduled to follow the development of the heteroepitaxial oxide buffer layer as described above. Three different polymer stabilized sols, yttrium hydroxide, Y(OH){sub 3}, copper hydroxide, Cu(OH){sub 2}, and barium fluoride, BaF{sub 2}, were synthesized and combined in the appropriate stoichiometric ratio. This metal oxide sol was then be deposited onto the buffer layer and reacted to form a crystalline heteroepitaxial YBCO film ranging from 1–5 microns thick.

  16. Thickness-Dependent Properties of YBCO Films Grown on GZO/CLO-Buffered NiW Substrates

    NASA Astrophysics Data System (ADS)

    Malmivirta, M.; Huhtinen, H.; Zhao, Y.; Grivel, J.-C.; Paturi, P.

    2016-07-01

    To study the role of novel Gd_2 Zr_2 O_7 /Ce_{0.9} La_{0.1} O_2 buffer layer structure on a biaxially textured NiW substrate, a set of YBa_2 Cu_3 O_{7-δ } (YBCO) films with different thicknesses were prepared by pulsed laser deposition (PLD). Interface imperfections as well as thickness-dependent structural properties were observed in the YBCO thin films. The structure is also reflected into the improved superconducting properties with the highest critical current densities in films with intermediate thicknesses. Therefore, it can be concluded that the existing buffer layers need more optimization before they can be successfully used for films with various thicknesses. This issue is linked to the extremely susceptible growth method of PLD when compared to the commonly used chemical deposition methods. Nevertheless, PLD-grown films can give a hint on what to concentrate to be able to further improve the buffer layer structures for future coated conductor technologies.

  17. Anomalous current-voltage characteristics along the c-axis in YBaCuO thin films prepared by MOCVD and AFM lithography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shuu'ichirou; Kawaguchi, Atsushi; Oda, Shunri

    1997-12-01

    We have proposed a fabrication process of intrinsic Josephson junctions (IJJs) using AFM lithography and successfully obtained IJJs in YBaCuO thin films deposited by MOCVD. A sample shows clear hysteresis and 23 voltage steps related to IJJs in the I- V curve. The maximum width of a step is about 2 mV at 5 K. We discuss the I- V characteristics and estimate the order of the parameters for the IJJ.

  18. BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films

    NASA Astrophysics Data System (ADS)

    Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.

    2015-11-01

    Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7-x (REBCO; RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, J c, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm-2 with J c values of up to 5.0 MA cm-2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field J c measurements demonstrate high pinning force maxima of around 4 GN m-3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent J c measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.

  19. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  20. Preparation of ZnO:CeO{sub 2-x} thin films by AP-MOCVD: Structural and optical properties

    SciTech Connect

    Torres-Huerta, A.M.; Dominguez-Crespo, M.A.; Brachetti-Sibaja, S.B.; Dorantes-Rosales, H.; Hernandez-Perez, M.A.; Lois-Correa, J.A.

    2010-09-15

    The growth of columnar CeO{sub 2}, ZnO and ZnO:CeO{sub 2-x} films on quartz and AA6066 aluminum alloy substrates by economic atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) is reported. A novel and efficient combination of metal acetylacetonate precursors as well as mild operating conditions were used in the deposition process. The correlation among crystallinity, surface morphology and optical properties of the as-prepared films was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The synthesized films showed different crystallographic orientations depending on the ZnO and CeO{sub 2} lattice mismatch, cerium content and growth rate. The CeO{sub 2} films synthesized in this work showed plate-like compact structures as a result of the growth process typical of CVD. Both pure and ZnO:CeO{sub 2-x} films were obtained with a hexagonal structure and highly preferred orientation with the c-axis perpendicular to both substrates under the optimal deposition conditions. The microstructure was modified from dense, short round columns to round structures with cavities ('rose-flower-like' structures) and the typical ZnO morphology by controlling the cerium doping the film and substrate nature. High optical transmittance (>87%) was observed in the pure ZnO films. As for the ZnO:CeO{sub 2-x} films, the optical transmission was decreased and the UV absorption increased, which subsequently was affected by an increase in cerium content. This paper assesses the feasibility of using ZnO:CeO{sub 2-x} thin films as UV-absorbers in industrial applications. - Graphical abstract: TEM micrographs and their corresponding SAED pattern obtained for the as-deposited ZnO-CeO{sub 2-x} thin films for a Zn/Ce metallic ratio 16:9.

  1. Studies of proximity-effect and tunneling in YBCO/metal layered films

    NASA Astrophysics Data System (ADS)

    Greene, L. H.; Barner, J. B.; Feldmann, W. L.; Farrow, L. A.; Miceli, P. F.; Ramesh, R.; Wilkens, B. J.; Bagley, B. G.; Tarascon, J. M.; Wernick, J. H.; Giroud, M.; Rowell, J. M.

    1989-12-01

    The short coherence length of the high-T c superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to “draw out” Cooper pairs. Our goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. Such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed.

  2. Magnetic Pinning in Nb and YBCO Thin Films by Co/Pt Multilayers with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, X. M.; Zhu, L. Y.; Chien, C. L.; Cieplak, Marta Z.; Adamus, Z.; Abal'Oshev, A.; Berkowski, M.

    2006-03-01

    Magnetic pinning of vortices has the advantage over intrinsic pinning in that the superconducting critical current can be reversibly tuned by the magnetic field (H). Magnetic pinning by Co/Pt multilayers with perpendicular magnetic anisotropy has been studied in two ferromagnetic/superconducting bilayers of Nb and YBCO with different superconducting properties (e.g. penetration depth λ). Magnetic force microscopy reveals similar magnetization (M) reversal process in the two cases, both exhibiting a large density of narrow residual domains but with different domain width w at the final reversal stage. However, the magnetic pinning, revealed by the M-H loop shape in the superconducting state, is different. The Nb film exhibits an enhancement of M with the strongest effect during the final reversal stage, while the YBCO film shows a suppression of M in the vicinity of central M peak and an enhancement of M in large magnetic fields. These different behaviors are related to the different λ/w ratio in the two cases.

  3. Fabrication of Tunnel Barriers on YBCO Thin Films by Chemical Surface Modification

    NASA Astrophysics Data System (ADS)

    Hentges, P. J.; Pugel, D. E.; Greene, L. H.; Westwood, G.; Pafford, M. M.; Klemperer, W. G.

    2000-03-01

    In the past, information obtained from planar tunneling into YBCO has been limited by superconducting (SC) counter-electrode density of states effects and interface damage. Traditional fabrication methods such as SC Pb deposition [1] and more recent attempts using organic ligand barriers with non-SC Cu counter electrodes [2] lead to an altered YBCO surface. New molecular technology has produced the molecule Zr_13O_8(OPr^n)_24(OH)_12 which binds to the YBCO surface. XPS analysis shows that successive hydrolysis and condensation reactions increases the molecular density on the surface of YBCO, potentially forming a robust ZrO tunneling barrier which allows the deposition of non-SC counter electrodes. Preliminary results on tunnel junctions will be discussed. This work is supported by the Materials Research Laboratory through the Department of Energy DEFG02-ER-45439. P.J.H. and L.H.G. acknowledge support by ONR N00014-97-1-0682. 1. J. M. Valles et al, Phys. Rev. B 44, 11986 (1991) 2. M. Covington et al., Phys. Rev. Lett. 79, 277 (1997)

  4. Preparation of Sr2AlTaO6 Insulating Films on YBa2Cu3O7-δ by Metalorganic Chemical Vapor Deposition with Purified Sr Source

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshihiro; Zama, Hideaki; Ishimaru, Yoshihiro; Inoue, Nobuyoshi; Wu, Yuan; Morishita, Tadataka; Tanabe, Keiichi

    2002-02-01

    200-nm-thick Sr2AlTaO6 (SAT) insulating films were prepared on 10-μm-thick superconducting YBa2Cu3O7-δ (YBCO) films by metalorganic chemical vapor deposition (MOCVD). By employing a purified Sr(thd)2 metalorganic source, instead of Sr(thd)2-2tetraene, and a higher evaporation temperature, we could reproducibly obtain stoichiometric SAT films with high crystallinity as revealed by the full-width at half maximum value of the SAT (004) X-ray rocking curve which was as small as 0.2°. Moreover, a 200-nm-thick c-axis-oriented YBCO film with a Tc of 90 K and a Jc higher than 107 A/cm2 below 60 K could be grown on the SAT film. These results confirm that the SAT films prepared by MOCVD are suitable for use as insulating layers in high-Tc multilayer electronic devices.

  5. MOCVD of ceramic and metallic films on porous substrates for dense membrane applications

    NASA Astrophysics Data System (ADS)

    Xia, Changfeng

    Fabrication of thin, dense films on porous substrates is of interest for gas separation membranes, membrane reactor, gas sensors and solid oxide fuel cells. In this study, Chemical Vapor Deposition (CVD) was used to deposit CeOsb2-doped Ysb2Osb3-stabilized ZrOsb2, perovskite SrCosb1-xFesbxOsb{3-delta} and copper films on porous substrates for the purposes of fabricating dense inorganic membranes and studying membrane fabrication process. Aerosol-assisted precursor delivery was employed to overcome the drawbacks of conventional precursor delivery and to provide better control in film composition of multicomponent membrane materials. Thin membrane films of CeOsb2-doped Ysb2Osb3-stabilized ZrOsb2 were grown under atmospheric and reduced pressures from the toluene solutions of the precursors of Zr, Y and Ce 2,2,6,6-tetramethyl-3,5-heptanedionate (tmhd). The effects of system pressure on film morphology, structure and gas-tightness were investigated. The film composition was controlled by selecting the right ratios of precursors in the solutions. Thin membrane films of perovskite SrCosb1-xFesbxOsb{3-delta} were grown under atmospheric pressure and reduced pressure from Sr, Co and Fe tmhd precursors. The relationship between film composition and the composition of precursor solution was developed. The effects of deposition pressure on film morphology, structure and gas-tightness were also studied. The influence of phase purity of SrCosb1-xFesbxOsb{3-delta} films by the system total pressure was also studied. Copper films were deposited on porous substrates for the purpose of investigating the membrane fabrication process using Cu as a model material. The film morphology, microstructure, gas-tightness and other physical properties were characterized in a systematic manner. The copper deposition rates were investigated at different precursor concentrations and the deposition temperatures by using Aerosol-Assisted CVD (AACVD) of toluenen solutions of Cu(hfac)sb2 (hfac

  6. Trade-offs of the opto-electrical properties of a-Si:H solar cells based on MOCVD BZO films.

    PubMed

    Chen, Ze; Zhang, Xiao-dan; Liang, Jun-hui; Fang, Jia; Liang, Xue-jiao; Sun, Jian; Zhang, De-kun; Chen, Xin-liang; Huang, Qian; Zhao, Ying

    2015-01-01

    Boron-doped zinc oxide (BZO) films, deposited by metal-organic chemical vapor deposition (MOCVD), have been widely used as front electrodes in thin-film solar cells due to their native pyramidal surface structure, which results in efficient light trapping. This light trapping effect can enhance the short-circuit current density (Jsc) of solar cells. However, nanocracks or voids in the silicon active layer may form when the surface morphology of the BZO is too sharp; this usually leads to degraded electrical properties of the cells, such as open-circuit voltage (Voc) and the fill factor (FF), which in turn decreases efficiency (Eff) [Bailat et al., Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on. IEEE, 2006, vol. 2, pp. 1533-1536]. In this paper, an etching and coating method was proposed to modify the sharp "pyramids" on the surface of the BZO films. As a result, an evident enhancement was achieved for these modified, BZO-based cells' Voc, FF, and Eff, although the Jsc exhibited a small decrease. In order to increase the Jsc and maintain the improved electrical properties (Voc, FF) of the cell, a thin BZO coating, deposited by MOCVD, was introduced to coat the sputtering-treated BZO film. Finally, we optimized the trade-off among the Voc, FF, and Jsc, that is, we identified a regime with an increase of the Jsc as well as a further improvement of the other electrical properties. PMID:25407724

  7. Microstructures and improved J c-H characteristics of Cl-containing YBCO thin films prepared by the fluorine-free MOD method

    NASA Astrophysics Data System (ADS)

    Motoki, Takanori; Shimoyama, Jun-ichi; Ogino, Hiraku; Kishio, Kohji; Roh, Jiyoung; Tohei, Tetsuya; Ikuhara, Yuichi; Horii, Shigeru; Doi, Toshiya; Honda, Genki; Nagaishi, Tatsuoki

    2016-01-01

    Undoped, Cl-doped, (Cl, Hf) co-doped and (Cl, Sn) co-doped YBa2Cu3O y (YBCO) thin films have been prepared by the fluorine-free metal-organic decomposition (FF-MOD) method on SrTiO3(100) single-crystalline substrates. Cross-sectional microstructures of these films were investigated in detail using scanning transmission electron microscopy (STEM). Rectangular-shaped oxychloride precipitates (Ba2Cu3O4Cl2) and fine particles (BaSnO3) were clearly observed in the (Cl, Sn) co-doped films. The magnetic angular dependence of the critical current density (J c-H-θ) of these films was evaluated. The existence of c-axis-correlated type pinning centers was suggested in Cl-containing YBCO films, whereas this type of pinning is not common in MOD-processed films. J c values were enhanced by Cl doping and further by (Cl, Sn) co-doping in all magnetic field directions at 77 K. This improved J c-H-θ property with c-axis-correlated pinning sites is the first report in FF-MOD-processed YBCO films.

  8. Electroluminescent ZnS:Mn films prepared by an MOCVD method based on dithiocarbamate precursors

    NASA Astrophysics Data System (ADS)

    Zavyalova, L. V.; Beletski, A. I.; Svechnikov, G. S.

    1999-05-01

    It is shown that electroluminescent ZnS:Mn films with luminance more than 0268-1242/14/5/013/img6 and luminous efficiency 0268-1242/14/5/013/img7 can be obtained by low-temperature deposition from Mn and Zn dithiocarbamates; subsequent thermal treatment of these films is not necessary. Starting materials were deposited on the substrate heated to a temperature of 220-0268-1242/14/5/013/img8C by spraying organic solution in air at atmospheric pressure. As a result homogeneous polycrystalline layers of ZnS:Mn with a growth rate of 60-0268-1242/14/5/013/img9 have been obtained. The electroluminescent characteristics of the thin films and structures based on various preparation and excitation conditions are presented. The possibility of application of these films as a planar light source is discussed.

  9. Effects of Target-to-Substrate Angle on Off-Axis Sputter Deposition and EPR Studies of Near-Surface Magnetic Properties of YBCO Thin Films

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Xia, Y.-M.; Salamon, M. B.; Greene, L. H.

    2000-11-01

    We have determined the dependence of target-to-substrate angle on the elemental concentration of c-axis YBCO thin films. Away from the standard off-axis position, energy distributions of sputtered elements vary spatially within the sputter plume due to the angular dependence of thermalization. Standard materials characterization techniques and angle-dependent Rutherford Backscattering Spectrometry (RBS) demonstrate that films grown away from the standard off-axis geometry produce bulk Y(123) with modified surface morphology and deposition rate. Several thin film planar tunneling experiments are consistent with a broken-time-reversal symmetry (BTRS) state. To compliment tunneling measurements, we measure electron paramagnetic resonance (EPR) of the near-surface region of YBCO thin films. Preliminary data are consistent with the spontaneous formation of magnetic moments at low temperature.

  10. Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films

    SciTech Connect

    Zhang, Fei; Xiong, Jie Liu, Xin; Zhao, Ruipeng; Zhao, Xiaohui; Tao, Bowan; Li, Yanrong

    2014-07-01

    Two-micrometer thick YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) films have been successfully deposited on both sides of LaAlO{sub 3} single crystalline substrates by using a home-made reel-to-reel metal-organic chemical vapor deposition (MOCVD) system, which has two opposite symmetrical shower heads and a special-designed heater. This technique can simultaneously fabricate double-sided films with high deposition rate up to 500 nm/min, and lead to doubling current carrying capability of YBCO, especially for coated conductors (CCs). X-ray diffraction analysis showed that YBCO films were well crystallized and highly epitaxial with the full width at half maximum values of 0.2° ∼ 0.3° for the rocking curves of (005) YBCO and 1.0° for Φ-scans of (103) YBCO. Scanning electron microscope revealed dense, crack-free, slightly rough surface with Ba-Cu-O precipitates. The films showed critical current density (J{sub c}, 77 K, 0 T) of about 1 MA/cm{sup 2}, and overall critical current of 400 A/cm, ascribed to the double-sided structure. Our results also demonstrated that the temperature and composition in the deposition zone were uniform, which made MOCVD preparation of low cost and high performance double-sided YBCO CCs more promising for industrialization.

  11. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  12. Pressure dependence of the photoluminescence from γ-In2Se3 thin films prepared using MOCVD with a single-source precursor

    NASA Astrophysics Data System (ADS)

    Choi, In Hwan; Park, Hyeon Jeong

    2014-05-01

    Single γ-phase In2Se3 films were prepared by using metal-organic chemical-vapor deposition(MOCVD) with a single-source precursor [(Me)2In( μ-SeMe)]2. The basic physical properties of the grown films were examined by using X-ray diffraction, Raman spectroscopy, and photoluminescence spectroscopy at room temperature. The pressure dependence of the photoluminescence spectrum of the In2Se3 films was measured at room temperature. At 1 atm, 2 PL peaks were observed, one at 1.88 eV due to a bound exciton transition and the other at 1.50 eV due to a bound-to-free transition. While the pressure coefficients, at pressures below 1.4 GPa were nearly zero, the pressure coefficients of both PL peaks at pressures above 1.4 GPa were -25 meV/GPa.

  13. Control of carbon content in amorphous GeTe films deposited by plasma enhanced chemical vapor deposition (PE-MOCVD) for phase-change random access memory applications

    NASA Astrophysics Data System (ADS)

    Aoukar, M.; Szkutnik, P. D.; Jourde, D.; Pelissier, B.; Michallon, P.; Noé, P.; Vallée, C.

    2015-07-01

    Amorphous and smooth GeTe thin films are deposited on 200 mm silicon substrates by plasma enhanced—metal organic chemical vapor deposition (PE-MOCVD) using the commercial organometallic precursors TDMAGe and DIPTe as Ge and Te precursors, respectively. X-ray photoelectron spectroscopy (XPS) measurements show a stoichiometric composition of the deposited GeTe films but with high carbon contamination. Using information collected by Optical Emission Spectroscopy (OES) and XPS, the origin of carbon contamination is determined and the dissociation mechanisms of Ge and Te precursors in H2 + Ar plasma are proposed. As a result, carbon level is properly controlled by varying operating parameters such as plasma radio frequency power, pressure and H2 rate. Finally, GeTe films with carbon level as low as 5 at. % are obtained.

  14. Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection

    NASA Astrophysics Data System (ADS)

    Tokunaga, H.; Waki, I.; Yamaguchi, A.; Akutsu, N.; Matsumoto, K.

    1998-06-01

    We developed a novel atmospheric pressure horizontal MOCVD system (SR2000) for the growth of III-nitride film. This system was designed for high-speed gas flow in order to suppress thermal convection and undesirable reactant gas reaction. We have grown Mg-doped GaN films using SR2000. We studied the bis-cyclopentadienyl magnesium (Cp 2Mg) flow rate dependence and growth temperature ( Tg) dependence of Mg-doped GaN. As a result, we have obtained p-type GaN film with hole carrier density of 8×10 17 cm -3 with a mobility of 7.5 cm 2/(V s) at the growth condition with Cp 2Mg flow rate of 0.1 μmol/min at Tg of 1025°C.

  15. Growth parameters effect on the thermoelectric characteristics of Bi 2Se 3 thin films grown by MOCVD system using Ditertiarybutylselenide as a precursor

    NASA Astrophysics Data System (ADS)

    Bayaz, A. Al; Giani, A.; Khalfioui, M. Al; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2003-10-01

    The growth of Bi 2Se 3 thin films by metalorganic chemical vapour deposition (MOCVD) using Trimethylbismuth (TMBi) and a novel Se-precursor: Ditertiarybutylselenide (DTBSe) as bismuth and selenium sources, respectively, is investigated on pyrex substrates. The effect of the growth parameters such as substrate temperature, Tg, and TMBi partial pressure, PTMBi, on the structural, electrical and thermoelectrical properties for the following growth conditions: 440°C⩽ Tg⩽475°C, 0.5×10 -4 atm⩽ PTMBi⩽1×10 -4 atm and a total hydrogen flow rate DT=3 l/mn, of Bi 2Se 3 films has been investigated. The crystallinity versus growth condition ( Tg, PTMBi) using X-ray diffraction was studied and a typical preferential c-orientation was observed. Thus, these layers always displayed n-type conduction using Hall effect measurement. The best electric and thermoelectric characteristics under the optimal growth conditions have been found; μ>250 cm 2/V s, ρ⩽11.8 μΩ m and α=-163.7 μV/K Then, These initial results suggest a significant potential for the MOCVD method to produce good thermoelectrical materials using DTBSe as Se-precursor.

  16. The magnetisation profiles and ac magnetisation losses in a single layer YBCO thin film caused by travelling magnetic field waves

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Timothy

    2015-05-01

    This paper studies the magnetisation and ac magnetisation losses caused by a travelling magnetic wave on a single-layer YBCO thin film. This work provides thorough investigations on how the critical magnetic field gradient has been changed by the application of a travelling wave. Several conditions were studied such as zero-field cooling (ZFC), field cooling (FC) and a delta-shaped trapped field. It was found that the travelling wave tends to attenuate the existing critical magnetic field gradients in all these conditions. This interesting magnetic behaviour can be well predicted by the finite element (FEM) software with the E-J power law and Maxwell’s equations. The numerical simulations show that the existing critical current density has been compromised after applying the travelling wave. The magnetisation profile caused by the travelling wave is very different from the standing wave, while the magnetisation based on the standing wave can be interpreted by the Bean model and constant current density assumption. Based on the numerical method, which has reliability that has been solidly proven in the study, we have extended the study to the ac magnetisation losses. Comparisons were made between the travelling wave and the standing wave for this specific YBCO sample. It was found that by applying the magnetic wave of the same amplitude, the ac magnetisation loss caused by the travelling wave is about 1/3 of that caused by the standing wave. These results are helpful in understanding the general magnetism problems and ac magnetisation loss in the travelling magnetic wave conditions such as inside a high temperature superconducting (HTS) rotating machine, etc.

  17. Progress in fabrication of large magnetic sheilds by using extended YBCO thick films sprayed on stainless steel with the HVOF technique

    SciTech Connect

    Pavese, F.; Bergadano, E.; Ferri, D.

    1997-06-01

    Fabricating a full box-type magnetic shield, by spraying a thick film of commercial YBCO powder on stainless steel with the oxygen-fuel high-velocity technique (HVOF, also referred to as {open_quotes}continuous detonation spray{close_quotes} (CDS)), requires the solution of several specific problems since the design stage of the project. The design problems of this type of shield are examined and the results obtained in the early stages of the realization are discussed.

  18. Properties variation with composition of single-crystal Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} thin films prepared by MOCVD

    SciTech Connect

    Foster, C.M.; Bai, G.R.; Li, Z.; Jammy, R.; Wills, L.A.; Hiskes, R.

    1995-12-01

    Single-crystal thin films covering the full range of PZT 0{le}x{le}1 have been deposited by metal-organic chemical vapor deposition (MOCVD). The films were grown on epitaxial, RF-sputter-deposited SrRuO{sub 3} thin film electrodes on (001) SrTiO{sub 3} substrates. X-ray diffraction, energy-dispersive electron spectroscopy and optical waveguiding were used to characterize the crystalline structure, composition, refractive index, and film thickness. We found that the PZT films were single-crystalline for all compositions exhibiting cube-on-cube epitaxy with the substrate with very high degrees of crystallinity and orientation. We report the systematic variations in the optical, dielectric, polarization, and transport properties as a function of composition and the epitaxy-induced modifications in the solid-solution phase diagram of this system. These films exhibited electronic properties which showed clear systematic variations with composition. High values of remnant polarization (30--55 {mu}C/cm{sup 2}) were observed at all ferroelectric compositions. Unlike previous studies, the dielectric constant exhibited a clear dependence on composition with values ranging from 225--650. Coercive fields decreased with increasing Zr concentration to a minimum of 20 kV/cm at the (70/30) composition. In addition, these films exhibited both high resistivity and dielectric-breakdown strength ({approximately}10{sup 13} {Omega}-cm at 100 kV/cm and >300 kV/cm, respectively) without any compensative doping.

  19. EXAFS study on yttrium oxide thin films deposited by RF plasma enhanced MOCVD under the influence of varying RF self-bias

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Patil, D. S.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) and atomic force microscopy (AFM) studies are carried out on yttrium oxide (Y2O3) thin films deposited by radio frequency plasma assisted metalorganic chemical vapor deposition (MOCVD) process at different RF self-bias (-50 V to -175 V with a step of -25 V) on silicon substrates. A (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor is used in a plasma of argon and oxygen gases at a substrate temperature of 350 °C for deposition. To gain profound understanding about influence of RF self-bias on the properties of the deposited Y2O3 thin films, the films are characterized by EXAFS and AFM measurements. From the EXAFS measurements it is observed that oxygen co-ordination is high for the film deposited at the lowest self bias (-50 V) which is due to presence of higher amount of hydroxyl group in the sample. Oxygen coordination however decrease to lower values for the films deposited at self bias of -75 V. Ysbnd O bond length decreases gradually with increase in self bias indicating reduction in hydroxyl content. However there is reduction in bond length for the film deposited at -100 V as compared to other films resulting from structural changes. The disorder factor obtained from EXAFS measurement increases for films deposited at voltages beyond -125 V due to degradation in crystallinity of the films caused by increased bombardment by incident ions. From AFM measurements, it is observed that the surface morphology of the films also change with self bias. The root mean square roughness value and the entropy factor are found to be low for films deposited at lower bias values and increase for films deposited at bias voltages above -100 V.

  20. Chemical Solution Based Epitaxial Oxide Filmes on Biaxially Textured Ni-W Substrates with Improved Out-of-Plane Texture for YBCO Coated Conductors

    SciTech Connect

    Bhuiyan, Md S; Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan

    2007-01-01

    Epitaxial films of rare-earth (RE) niobates (where the rare earth includes La, Ce, and Nd) and lanthanum tantalate with pyrochlore structures were grown directly on biaxially textured nickel-3 at.% tungsten (Ni-W) substrates using a chemical solution deposition (CSD) process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis revealed the surface morphology of the films to be smooth and homogeneous. Detailed X-ray diffraction analysis showed that the films of pyrochlore RE niobate and La-tantalate are highly textured with cube-on-cube epitaxy. The overall texture quality of the films was investigated by measuring the full-width half-maximum (FWHM) of the (004) and (222) rocking curves. We observed a sharper texture for both lanthanum niobate (La{sub 3}NbO{sub 7}) and lanthanum tantalate (La{sub 3}TaO{sub 7}) films compared to the underlying Ni-W substrate, though they have a larger lattice misfit with the Ni-W substrates. These results were comparable to the texture improvement observed in vacuum-deposited Y{sub 2}O{sub 3} seed layers. Texture improvement in the seed layer is the key towards obtaining YBCO films with a higher critical current density. Hence, solution-deposited La{sub 3}NbO{sub 7} and La{sub 3}TaO{sub 7} films can be used as a seed layer towards developing all metalorganic-deposited (MOD) buffer/YBCO architectures.

  1. Structural and optical properties of Ga{sub 2}O{sub 3}:In films deposited on MgO (1 0 0) substrates by MOCVD

    SciTech Connect

    Kong Lingyi; Ma Jin; Luan Caina; Zhu Zhen

    2011-08-15

    Ga{sub 2}O{sub 3}:In films with different indium (In) content x [x=In/(Ga+In) atomic ratio] have been deposited on MgO (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). Structural analyses revealed that the film deposited with actual In content (x') of 0.09 was an epitaxial film and the films with x'=0.18 and 0.37 had mixed-phase structures of monoclinic Ga{sub 2}O{sub 3} and bixbyite In{sub 2}O{sub 3}. The absolute average transmittance of the obtained films in the visible region exceeded 95%, and the band gap was in the range of 4.74-4.87 eV. Photoluminescence (PL) measurements were performed at room temperature, in which the visible luminescences were strong and could be seen by the naked eye. The strong emissions in the visible light region were proposed to originate from the gallium vacancies, oxygen deficiencies and other defects in these films. - Graphical abstract: Low magnification XTEM (a), HRTEM (b) and SAED (c) micrographs of the interface area between Ga{sub 1.82}In{sub 0.18}O{sub 3} film and MgO substrate have showed the Ga{sub 1.82}In{sub 0.18}O{sub 3} is an epitaxial film. Highlights: > Ga{sub 1.82}In{sub 0.18}O{sub 3} epitaxial film was deposited on MgO(1 0 0) substrate. > The transmittance of the Ga{sub 2}O{sub 3}:In films in the visible region exceeded 95%. > Strong emissions were observed in the photoluminescence measurements of the films.

  2. YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2010-01-01

    Since the discovery of high-temperature superconductors (HTS) in 1986, both (Bi,Pb)2Sr2Ca2Cu3O10 (BSCCO or 2223 with a critical temperature, Tc of 110 K) and YBa2Cu3O7- (YBCO or 123 with a Tc of 91 K) have emerged as the leading candidate materials for the first generation (1G) and second generation (2G) high temperature superconductor wires or tapes that will carry high critical current density in liquid nitrogen temperatures [1-7]. The crystal structures and detailed fundamental properties of BSCCO and YBCO superconductors have been reviewed by Matsumoto in a separate chapter in this book. The U.S. Department of Energy s target price for the conductor is close to the current copper wire cost of $10-50/kA-meter, i.e. a meter of copper type conductor carrying 1000 A current costs ~ $ 50 [8]. The long-term goal for the DOE, Office of Electricity, Advanced Conductors and Cables program is to achieve HTS wire in 1000 meters long with current carrying capacity of 1000 A/cm [8]. Robust, high-performance HTS wire will certainly revolutionize the electric power grid and various other electric power equipments as well. Sumitomo Electric Power (Japan) has been widely recognized as the world leader in manufacturing the first-generation HTS wires based on BSCCO materials using the Oxide-Powder-In-Tube (OPIT) over-pressure process [9]. Typically, 1G HTS wires carry critical currents, Ic, of over 200 Amperes (A) in piece lengths of one kilometer lengths at the standard 4 mm width and ~ 200 m thickness. However, due to the higher cost of 1G wire, mainly because of the cost of Ag alloy sheath, the researchers shifted their effort towards the development of YBCO (second generation 2G) tapes in the last fifteen years [1-7]. One of the main obstacles to the ability to carry high critical currents in YBCO films has been the phenomenon of weak links, i.e., grain boundaries formed by the misalignment of neighboring YBCO grains are known to form obstacles to current flow [10]. By

  3. Advanced high temperature superconductor film-based process using RABiTS

    SciTech Connect

    Goyal, A.; Hawsey, R.A.; Hack, J.; Moon, D.

    2000-01-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (Contractor), Managing contractor for Oak Ridge National Laboratory (ORNL) and Midwest Superconductivity, Inc. (MSI) and Westinghouse Science and Electric Company (WEC) was to develop the basis for a commercial process for the manufacturing of superconducting tape based on the RABiTS technology developed at ORNL. The chosen method for deposition of YBCO films on RABiTS was Metal Organic chemical Vapor Deposition (MOCVD).

  4. Systematic approach to MOCVD processing chemistry for epitaxial Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} thin films

    SciTech Connect

    Foster, C.M.; Jammy, R.; Bai, G.R.

    1996-12-31

    We have developed a simplified and systematic strategy to the MOCVD synthesis of single crystal thin films of Pb(Ti{sub x}Zr{sub 1-x})O{sub 3} for 0.1 {le}x{le}1. The films were prepared on epitaxial SrRuO{sub 3} buffered on SrTiO{sub 3} substrates by using tetraethyl lead, Pb(C{sub 2}H{sub 5}){sub 4}, zirconium t-butoxide, Zr(OC(CH{sub 3}){sub 3}){sub 4} and titanium isopropoxide, Ti(OCH(CH{sub 3}){sub 2}){sub 4} as metal-organic precursors. The synthesis of these single-crystalline films provided excellent model films to study the systematic variations in the optical, dielectric, polarization, and transport properties as a function of composition and the epitaxy induced modifications in the solid solution phase diagram of this system. High values of remnant polarization (30-55 {mu}C/cm{sup 2}) were observed at all ferroelectric compositions. The remnant polarization, coercive fields, and dielectric constant exhibited a clear dependence on composition. These films exhibited both high resistivity and dielectric strength ({approximately} 10{sup 13} {Omega}-cm at 100 kV/cm and >300 kV/cm, respectively).

  5. MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes.

    PubMed

    Ni, Jun; Yan, He; Wang, Anchuang; Yang, Yu; Stern, Charlotte L; Metz, Andrew W; Jin, Shu; Wang, Lian; Marks, Tobin J; Ireland, John R; Kannewurf, Carl R

    2005-04-20

    Four diamine adducts of bis(hexafluoroacetylacetonato)zinc [Zn(hfa)(2).(diamine)] can be synthesized in a single-step reaction. Single crystal X-ray diffraction studies reveal monomeric, six-coordinate structures. The thermal stabilities and vapor phase transport properties of these new complexes are considerably greater than those of conventional solid zinc metal-organic chemical vapor deposition (MOCVD) precursors. One of the complexes in the series, bis(1,1,1,5,5,5-hexafluoro-2,4-pentadionato)(N,N'-diethylethylenediamine)zinc, is particularly effective in the growth of thin films of the transparent conducting oxide Zn-In-Sn-O (ZITO) because of its superior volatility and low melting point of 64 degrees C. ZITO thin films with In contents ranging from 40 to 70 cation % (a metastable phase) were grown by low-pressure MOCVD. These films exhibit conductivity as high as 2900 S/cm and optical transparency comparable to or greater than that of commercial Sn-doped indium oxide (ITO) films. ZITO films with the nominal composition of ZnIn(2.0)Sn(1.5)O(z)() were used in fabrication of polymer light-emitting diodes. These devices exhibit light outputs and current efficiencies almost 70% greater than those of ITO-based control devices. PMID:15826201

  6. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Fisher, B. L.; Balachandran, U.

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ≈3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 °C during deposition. RMS roughness of ≈3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. An ≈10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 °C before YBCO films were ablated by pulsed laser deposition at 780 °C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ≈ 7° was observed in YBCO films. Tc = 90 K, with sharp transition, and transport Jc of ≈2.2 × 106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field.

  7. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    NASA Technical Reports Server (NTRS)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  8. Temperature dependence of the critical current density in proton irradiated YBCO films by magneto-optical analysis

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Botta, D.; Cherubini, R.; Chiodoni, A.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Minetti, B.; Mezzetti, E.

    2004-07-01

    In this paper we present a magneto-optical analysis of local current densities in YBCO films, before and after 3.5 MeV proton irradiation. The main issue consists into measuring and interpreting the temperature dependence of the critical current density (Jc) in samples with different, increasing defect density. Proton irradiation adds more point defects into the as-grown films. The new defect density as well as the related strain-induced modifications of the order parameter are pushed in our experiment up to temperature-modulated damage thresholds. First of all model-independent Jc data were analysed in the framework of different pinning models, all of them based on mechanisms related to the temperature induced change of the effective pinning centre distribution as well as to the shape of single pinning wells. It turns out that in such a framework the fit parameters are, generally speaking, not suitable to interpret the changes of the pinning landscape across the whole investigated temperature range. Then a model based on a vortex distribution across the whole sample, resulting in a current density that mirrors the current through a defect-modulated average short Josephson junction (JJ) row, is successfully tried. The Jc dependence in the whole temperature range and for all the considered defect densities is accounted for by means of a coherent set of fit parameters. It turns out that the chief quantity that allows applying the JJ formalism to a vortex distribution across the defected matrix is a suitably defined temperature-dependent magnetic thickness of the junctions, which substitutes the usual magnetic penetration in JJs.

  9. Electron microscopy study of MOCVD-grown TiO sub 2 thin films and TiO sub 2 /Al sub 2 O sub 3 interfaces

    SciTech Connect

    Gao, Y.; Merkle, K.L.; Chang, H.L.M.; Zhang, T.J.; Lam, D. J.

    1990-11-01

    TiO{sub 2} thin films grown on (11{bar 2}0) sapphire at 800{degree}C by the MOCVD technique have been characterized by transmission electron microscopy. The TiO{sub 2} thin films are single crystalline and have the rutile structure. The epitaxial orientation relationship between the TiO{sub 2} thin films (R) and the substrate (S) has been found to be: (101)(0{bar 1}0){sub R}{parallel}(11{bar 2}0)(0001){sub S}. Growth twins in the films are commonly observed with the twin plane {l brace}101{r brace} and twinning direction {l angle}011{r angle}. Detailed atomic structures of the twin boundaries and TiO{sub 2}/{alpha}-Al{sub 2}O{sub 3} interfaces have been investigated by high-resolution electron microscopy (HREM). When the interfaces are viewed in the direction of (0{bar 1}0){sub R}/(0001){sub S}, the interfaces are found to be structurally coherent in the direction of ({bar 1}01){sub R}/(1{bar 1}00){sub S}, in which the lattice mismatch at the interfaces is about 0.5%. 8 refs., 4 figs.

  10. A low-fluorine solution with a 2:1 F/Ba mole ratio for the fabrication of YBCO films

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Feng, Feng; Zhao, Yue; Tang, Xiao; Xue, Yunran; Shi, Kai; Huang, Rongxia; Qu, Timing; Wang, Xiaohao; Han, Zhenghe; Grivel, Jean-Claude

    2014-03-01

    In previously reported low-fluorine MOD-YBCO studies, the lowest F/Ba mole ratio of the precursor solution was 4.5. Further lowering the F/Ba ratio would bring benefits for the environment, thick film deposition, and an understanding of the heat treatment process. On the other hand, the F/Ba ratio must be at least 2 for full conversion of the Ba-precursor to BaF2 to avoid the formation of BaCO3, which is detrimental to the superconducting performance of YBCO films. In this study, a solution with a 2:1 F/Ba mole ratio was developed, and the fluorine content of this solution was approximately only 10.3% of that used in the conventional TFA-MOD method. Attenuated total reflectance-Fourier transform-infrared spectra (ATR-FT-IR) revealed that BaCO3 was remarkably suppressed in the as-pyrolyzed film—and eliminated at 700 °C. Thus, YBCO films with a critical current density (Jc) of over 5 MA cm-2 (77 K, 0 T, 200 nm thickness) could be obtained on lanthanum aluminate single-crystal substrates. In situ FT-IR spectra showed that no obvious fluorinated gaseous by-products were detected in the pyrolysis step, which indicated that all F atoms might remain in the film as fluorides. X-ray diffraction θ/2θ scans showed the presence of BaF2—but not of Y F3 or CuF2—in films quenched at 400-800 °C. The formation priority of BaF2 over Y F3 and CuF2 was interpreted by examining the chemical equilibrium of the potential reactions. Our study could enlarge the synthesis window of precursor solutions for MOD-YBCO fabrication, and serve as a foundation for continuously and systematically studying the influence of fluorine content in the precursor solutions.

  11. Novel Neo-Pentoxide Precursors for MOCVD Thin Films of TiO(2) and ZrO(2).[1

    SciTech Connect

    Boyle, Timothy J.; Francisco, Laila P.; Gallegos, Jesus J.; Rodriguez, Mark A.; Ward, Timothy L.

    1999-07-14

    Two novel Group IV precursors, titanium (IV) neo-pentoxide, [Ti({mu}-ONep)(ONep){sub 3}]{sub 2} (l), and zirconium (IV) neo-pentoxide, [Zr({mu}-ONep)(ONep){sub 3}]{sub 2} (2), were reported to possess relatively high volatility at low temperatures. These compounds were therefore investigated as MOCVD precursors using a lamp-heated cold-wall CVD reactor and direct sublimation without carrier gas. The ONep derivatives proved to be competitive precursors for the production of thin films of the appropriate MO{sub 2} (M = Ti or Zr) materials in comparison to other metallo-organic precursors. Compound 1 was found to sublime at 120 C with a deposition rate of {approximately}0.350 {mu}m/min onto a substrate at 330 C forming the anatase phase with < 1% residual C found in the final film. Compound 2 was found to sublime at 160 C and deposited as crystalline material at 300 C with < 1% residual C found in the final film. A comparison to standard alkoxide and {beta}-diketonates is presented where appropriate.

  12. Pulsed Laser Deposition of Thin YBCO Films on Faceted YSZ Single Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Snigirev, O.; Chukharkin, M.; Porokhov, N.; Rusanov, S. Y.; Kashin, V. V.; Tsvetkov, V. B.; Kalabukhov, A.; Winkler, D.

    2014-05-01

    Flexible rods of single crystals of 9% Y2O3-stabilized ZrO2 (YSZ) were used as substrates for deposition of high-critical temperature superconducting (HTS) thin films. YSZ fibers were prepared by mini-pedestal method with laser heating and had average diameter of 300 micrometers and 30 mm length. X-ray diffraction analysis demonstrated high crystalline quality of obtained fibers and also indicated the presence of 15° deviation of the fiber axis from the [001] YSZ direction. Thin YBa2Cu3O7-x films were grown by pulsed laser deposition on YSZ rods using CeO2 buffer layer. Films have shown high critical temperature of 90 K with sharp superconducting transition. Critical current density was estimated to about 3×104 A/cm2 at 80 K. Temperature dependence of critical current density suggests granular structure of films with grain size about several microns. Our results demonstrate feasibility of flexible YSZ fibers coated by HTS thin films for practical use.

  13. Photodetectors of slit and sandwich types based on CdS and CdS1-xSex films obtained using MOCVD method from dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Zavyalova, Ludmila V.; Svechnikov, Sergey V.; Tchoni, Vladimir G.

    1997-04-01

    Here we report the results of working out an original, simple in control and not requiring expensive equipment MOCVD-method for depositing films of semiconductor compounds A2B6. Dithiocarbamates (DTC) are used as starting materials. The compounds are stable, easily synthesized, cheap and low toxic. Atoms of metal and sulfur in the DTC are strongly bonded. The DTC could be easily dissolved in various organic solvents. The experimental unit for film deposition comprises a spraying apparatus, a substrate heater, and a quartz cylinder for separation of a reaction zone from ambience. The process of film deposition is carried out in air conditions. Films of CdS, bright-yellow, transparent, having mirror smooth surface at thickness less than 2 mkm and rough surface at thickness 8-12 mkm, were deposited by spraying cadmium dithiocarbamate, that is DTC with radical C2H5, solution in pyridine on substrates heated to 240-280 degrees C. Deposition rate was 60-90 nm/min. Films obtained were of hexagonal modification, polycrystalline, textured, with low, at the level of centipercents content of oxygen and carbon. Slit type photodetectors based on CdS and CdS1-xSex of 1.0 mkm thickness have dark conductivity (sigma) d equals 10-9 divided by 10-8 Ohm-1cm-1 and photoconductivity (sigma) ph equals 10-2 divided by 10-1 Ohm-1cm-1 at 200 lux. Industrially suitable technology for production of photopotentiometer on the base of these films was developed. Sandwich-type photodetectors In2S3 - CdS: Cu, Cl - In with 8-12 mkm thickness have the same value of photoconductivity and the light-to-dark ratio is 106 divided by 107. Based on sandwich-type photodetectors, a hybrid structure of pyroelectric-photodetector as a resonant-type coordinate-sensitive detector was developed.

  14. Nanoplough-constrictions on thin YBCO films made with atomic force microscopy.

    PubMed

    Elkaseh, A A O; Büttner, U; Meincken, M; Hardie, G L; Srinivasu, V V; Perold, W J

    2007-09-01

    Utilizing atomic force microscope (AFM) with a diamond tip, we were able to successfully plough nano-constrictions on epitaxially grown YBa2Cu3O(7-x) thin films deposited on MgO substrates. The thickness, width, and length of the obtained constrictions were in the range of a few 100 nm. Furthermore, we managed to produce a new S-type constriction, of which the dimensions are easier to control than for conventional constrictions. PMID:18019174

  15. Peculiarities in magnetron sputtering of YBCO epitaxial films for applications in superconductor electronics devices

    NASA Astrophysics Data System (ADS)

    Drozdov, Yu. N.; Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.; Yunin, P. A.

    2015-11-01

    We consider the main factors determining the growth of YBa2Cu3O7-δ high- T c superconductor films during magnetron sputtering in the planar axial geometry. Special attention is paid to the increase of the growth rate of the films suitable for superconductor electronics devices. Magnetron sputtering is used for obtaining YBa2Cu3O7-δ films with high structural and electrophysical characteristics for a growth rate up to 200 nm/h, which were used in constructing microwave disk resonators and long Josephson junctions on bicrystal substrates. The unloaded Q factor of cavities exceeds 80000 at a frequency of 7.1 GHz at a temperature of 77 K, which corresponds to the best results in this field. Josephson junction of length 50-350 μm are characterized by critical current density j c = 12-33 kA/cm2 at T = 77 K and j c = 93-230 kA/cm2 at T = 6 K in zero magnetic field. The characteristic voltage I c R n is 0.8-1.96 mV.

  16. Compact spherical neutron polarimeter using high-T(c) YBCO films.

    PubMed

    Wang, T; Parnell, S R; Hamilton, W A; Li, F; Washington, A L; Baxter, D V; Pynn, R

    2016-03-01

    We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-T(c) superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device's field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field. PMID:27036785

  17. Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Addonizio, M. L.; Spadoni, A.; Antonaia, A.

    2013-12-01

    Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.

  18. Nanopatterning and Hot Spot Modeling of YBCO Ultrathin Film Constrictions for THz Mixers

    NASA Astrophysics Data System (ADS)

    Ladret, Romain G.; Degardin, Annick F.; Kreisler, Alain J.

    2013-06-01

    High-TC hot electron bolometers (HEB) are promising THz mixers due to their expected wide bandwidth, large mixing gain, and low intrinsic noise. To achieve this goal, 0.6-μm-size constrictions were patterned on YBaCuO-based, 10-40-nm-thick films grown on (100) MgO substrates, which as previously reported, exhibited good DC superconducting properties. In this paper, we have simulated the DC and mixer characteristics of YBaCuO HEBs with a hot spot model usually dedicated to low-TC devices. For a 100 nm × 100 nm × 10 nm constriction, the expected double sideband noise temperature TN is 2000 K for 5 μW local oscillator (LO) power (G = -13.5 dB conversion gain). For a larger (but more realistic according to YBaCuO aging effects) 600 nm × 1000 nm × 35 nm constriction, TN = 1300 K at 200 μW LO power (G = -12 dB). This approach is expected to allow optimizing the operation of the HEB constriction coupled to a THz planar antenna.

  19. On the reliability of heteronuclear precursors-ligand effects in the Li-MOCVD synthesis of SrTiO3 films.

    PubMed

    Seisenbaeva, Gulaim A; Gohil, Suresh; Kessler, Vadim G; Andrieux, Michel; Legros, Corinne; Ribot, Patrick; Brunet, Magali

    2011-09-01

    Strontium titanate SrTiO3 thin films are highly perspective as gate dielectric material. Difference in volatility of the common homometallic precursors-strontium beta-diketonates and titanium alkoxides remains major hinder for preparation of high quality coatings based on this phase. An attractive alternative in its synthesis by MOCVD is provided by application of heterometallic mixed-ligand complexes, Sr2Ti2(beta-diket)4(OR)8(ROH)x. Mass-spectrometric study reveals, however, that none of these species can be considered a true single-source precursor. The relative stability of the molecules in solution and the congruence of in-situ release of homometallic species on evaporation are, on the other hand, crucial for the quality of the produced films and are strongly influenced by the nature of alkoxide ligands, OR. The historically first discovered representative of this heterometallic family, a sec-alkoxide derivative Sr2Ti2(thd)4(O(i)Pr)8, is in fact unexpectedly unstable, transforming in solution into Sr2Ti(thd)4(O(i)Pr)4((i)PrOH), which explains difficulties in keeping the correct stoichiometry using isopropoxide precursor. The primary alkoxide complexes, Sr2Ti2(thd)4(OR)8(ROH)2, R = Et, (n)Pr are also unstable yielding Sr4Ti2(thd)4(OR)8(ROH)2 on decomposition. The best solution stability and most uniform evaporation was observed for the iso-derivative, Sr2Ti2(thd)4(O(i)Bu)8, permitting to apply it in long term experiments under industrial process conditions. Present contribution provides detailed experimental comparison between and sec-and iso-alkoxide derivatives and sheds light on the influence of the ligand on molecular stability of a precursor and how it influences the quality of the derived oxide film, especially in relation to its electrophysical properties. PMID:22097573

  20. Electron Spin Resonance (ESR) Detection of Broken Time-Reversal Symmetry (BTRS) at Surfaces of YBa_2Cu_3O_7-x (YBCO) Thin Films

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.

    2001-03-01

    High-Tc cuprate surfaces that break the reflection symmetry of the d-wave order parameter support bound excitations at the Fermi energy. The low-temperature (T ~0.1T_c)behavior of these bound excitations, measured as changes in the density of states, has been interpreted as a transition into a BTRS state(M. Covington et al)., Phys. Rev. Lett. 79, 277 (1997)(R. Krupke & G. Deutscher, Phys. Rev. Lett. 83, 4634 (1999).)(L. H. Greene et al)., Physica B, 280, 159 (2000).. A definitive determination of surface BTRS requires a direct measurement of a spontaneous magnetic field. We adapt traditional X-band ( ~9GHz) ESR to directly search for BTRS at surfaces of optimally-doped,oriented YBCO thin films. This technique allows for spatially localized (<50nm), time-resolved (10-11s) measurements of surface magnetic fields. Organic spin probe crystallites, reduced to nanometer-scale diameters, are applied to (110),(103),(001) YBCO, non-superconducting cuprate isostructure (110) PrBa_2Cu_3O_7, and (100),(110) SrTiO3 surfaces. The resonance response of different spin probes on these surfaces is measured as a function of temperature and applied magnetic field direction. Temperature dependence of ESR spectra for these coated surfaces shows an additional magnetic field source appearing below ~10K for only those YBCO surfaces which break reflection symmetry. The transition is independent of applied field direction, indicating an additional field source that is spontaneous in origin. Results indicate a domain structure whose net magnetization points along [001](D. E. Pugel, Y.-M. Xia, M. B. Salamon, & L. H. Greene, Physica C 341-348, 2003 (2000))(D. E. Pugel, M. B. Salamon, M. B. Weissman, & L. H. Greene, Preprint (2000).).

  1. Fabrication and characterization of hybrid Nb-YBCO dc SQUIDs

    SciTech Connect

    Frack, E.K.; Drake, R.E.; Patt, R.; Radparvar, M. )

    1991-03-01

    This paper reports on the fabrication of hybrid low T{sub c}/high T{sub c} dc SQUIDs of two flavors. The first kind utilizes niobium tunnel junctions and a YBCO film strip as the most inductive portion of the SQUID loop. This configuration allows a direct measurement of the inductance of the YBCO microstrip from which the effective penetration depth can be calculated. The successful fabrication of these SQUIDs has required 1. superconducting Nb-to-YBCO contacts, 2. deposition and patterning of an SiO{sub 2} insulation layer over YBCO, and 3. selective patterning of niobium and SiO{sub 2} relative to YBCO. All these process steps are pertinent to the eventual use of YBCO thin films in electronic devices.

  2. Metal-Organic Chemical Vapor Deposition (MOCVD) Synthesis of Heteroepitaxial Pr0.7Ca0.3MnO3 Films: Effects of Processing Conditions on Structural/Morphological and Functional Properties.

    PubMed

    Catalano, Maria R; Cucinotta, Giuseppe; Schilirò, Emanuela; Mannini, Matteo; Caneschi, Andrea; Lo Nigro, Raffaella; Smecca, Emanuele; Condorelli, Guglielmo G; Malandrino, Graziella

    2015-08-01

    Calcium-doped praseodymium manganite films (Pr0.7Ca0.3MnO3, PCMO) were prepared by metal-organic chemical vapor deposition (MOCVD) on SrTiO3 (001) and SrTiO3 (110) single-crystal substrates. Structural characterization through X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) analyses confirmed the formation of epitaxial PCMO phase films. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) characterization was used to confirm lateral and vertical composition and the purity of the deposited films. Magnetic measurements, obtained in zero-field-cooling (ZFC) and field-cooling (FC) modes, provided evidence of the presence of a ferromagnetic (FM) transition temperature, which was correlated to the transport properties of the film. The functional properties of the deposited films, combined with the structural and chemical characterization collected data, indicate that the MOCVD approach represents a suitable route for the growth of pure, good quality PCMO for the fabrication of novel spintronic devices. PMID:26478849

  3. Metal-Organic Chemical Vapor Deposition (MOCVD) Synthesis of Heteroepitaxial Pr0.7Ca0.3MnO3 Films: Effects of Processing Conditions on Structural/Morphological and Functional Properties

    PubMed Central

    Catalano, Maria R; Cucinotta, Giuseppe; Schilirò, Emanuela; Mannini, Matteo; Caneschi, Andrea; Lo Nigro, Raffaella; Smecca, Emanuele; Condorelli, Guglielmo G; Malandrino, Graziella

    2015-01-01

    Calcium-doped praseodymium manganite films (Pr0.7Ca0.3MnO3, PCMO) were prepared by metal-organic chemical vapor deposition (MOCVD) on SrTiO3 (001) and SrTiO3 (110) single-crystal substrates. Structural characterization through X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) analyses confirmed the formation of epitaxial PCMO phase films. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) characterization was used to confirm lateral and vertical composition and the purity of the deposited films. Magnetic measurements, obtained in zero-field-cooling (ZFC) and field-cooling (FC) modes, provided evidence of the presence of a ferromagnetic (FM) transition temperature, which was correlated to the transport properties of the film. The functional properties of the deposited films, combined with the structural and chemical characterization collected data, indicate that the MOCVD approach represents a suitable route for the growth of pure, good quality PCMO for the fabrication of novel spintronic devices. PMID:26478849

  4. ECR plasma enhanced MOCVD system and the plasma role in film epitaxial growth of GaN and AlN

    NASA Astrophysics Data System (ADS)

    Xu, Yin; Gu, Biao

    2002-11-01

    The development of low-dimension structure materials that are very promising for application of electronic device and optoelectronic device depend on the improvement of the technologies of epitaxial growth and characterization. The film growth technology with noninvasive, in situ, real time monitoring is becoming increasingly important as materials structure become more and more complex. A ECR plasma enhanced MOCVD (PEMOCVD) equipment (ESPU-U) with reflection high-energy electron diffraction (RHEED) for the first time has been developed. Multi-cusp Cavity-coupling ECR plasma source was adopted to provide reactive precursors in ESPD-U therefore the growth temperature was decreased and the working pressure was decreased down to the region less than 1Pa,which makes RHEED in situ monitoring possible. In this paper, the structure, key technologies and unique functions of ESPD-U will be introduced systematically. The epitaxial growth of the large lattice mismatch hetero-junction, GaN/ (0001) Al2O3 and AlN/ Al2O3 (0001), by PEMOCVD in the equipment with in situ RHEED monitoring and the important role of plasma in epitaxial growth were investigated. To remove the native oxidation layer producing a fresh substrate surface with atomic level flatness and to establish a template for the epitaxial growth H2(orH2/N2)-plasma cleaning in situ at 550-650¡A~¦ for 2min- 20 min and N2 ¨Cplasma nitriding at 450-550¡A~¦ for 1 min -30min after the cleaning for the surface of (0001) Al2O3 were investigated. Then the epitaxial growth was started by a two-step process including GaN buffer layer growth at low temperature 500¡A~¦- 650¡A~¦ for 20nm and subsequent film growth of GaN and AlN at high temperature 650¡A~¦-700¡A~¦. The films of GaN and AlN were characterized by the RHEED, XRD, AFM. The FWHM of GaN (0002) diffraction peak from 0.5µm thick GaN film was 18 min and the FWHM of AlN (0002) diffraction peak from 0.3µm thick AlN film was 12 min. The details of

  5. Magnetorefractive effect in the La1-xKxMnO3 thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Bessonov, V. D.; Gan'shina, E. A.; Kaul', A. R.; Korsakov, I. E.; Perov, N. S.; Fetisov, L. Yu.; Yurasov, A. N.

    2014-10-01

    Thin epitaxial La1-хKхMnO3 films were grown using two-stage procedure. Influence of substitution of La3+ ions with K+ ions on the optical and electrical properties of La1-xKxMnO3 films (х=0.05, 0.10, 0.15 и 0.18) has been studied in detail. A noticeable magnetorefractive effect in the films under study was detected in the infrared range. Magnetorefractive effect as well as transverse magneto-optical Kerr effect and magnetoresistance have the maximum in optimally doped sample with x=0.18 corresponding to the highest Curie temperature. The experimental data for compositions close to optimally doped films are in good agreement with the data calculated in the framework of a theory developed for manganites. The resonance-like contribution to magnetoreflection spectra of manganite films has been observed in the vicinity of the phonon bands. It is shown that magnetic and charge inhomogeneities strongly influence on the magneto-optical effects in films. Thin films of La1-xKxMnO3 with the large values of Kerr and magnetorefractive effect are promising magneto-optical material in the infrared range.

  6. Three-Dimensional Bi2Te3 Nanocrystallites Embedded in 2D Bi2Te3 Films Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    You, HyunWoo; Baek, Seung Hyub; Kim, Chang Kyo; Lyeo, Ho-Ki; Park, Chan; Kim, Jin-Sang

    2012-06-01

    Two- (2D) and three-dimensional (3D) growth of nanostructured Bi2Te3 films was performed on 4° tilt (100) GaAs substrates using a metalorganic chemical vapor deposition system. To obtain 3D Bi2Te3 crystallites embedded in 2D planar film, we alternately changed the gas flow rate in the reactor. By repeating two steps, 3D Bi2Te3 crystallites embedded in 2D planar Bi2Te3 film were obtained. The thermoelectric properties in terms of the thermal conductivity, electrical conductivity, and Seebeck coefficient were investigated at room temperature. The thermal conductivities of the nanostructured Bi2Te3 films were from 0.63 W/(m K) to 0.94 W/(m K) at room temperature, which are low compared with that of film without nanostructure [1.62 W/(m K)]. The thermal conductivity of the film was effectively decreased with the decrease of size and increase of density of 3D crystallites. The results of this study open up a new method to fabricate nanostructured thermoelectric films with high thermoelectric figure of merit.

  7. Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD

    PubMed Central

    2014-01-01

    Indium gallium nitride (InGaN) samples with single heterojunction (SH) and double heterojunction (DH) were prepared using metal-organic chemical vapor deposition. SH has a layer of InGaN thin film (thicknesses, 25, 50, 100, and 200 nm) grown on an uGaN film (thickness, 2 μm). The DH samples are distinguished by DH uGaN film (thickness, 120 nm) grown on the InGaN layer. Reciprocal space mapping measurements reveal that the DH samples are fully strained with different thicknesses, whereas the strain in the SH samples are significantly relaxed with the increasing thickness of the InGaN film. Scanning electron microscopy results show that the surface roughness of the sample increases when the sample is relaxed. High-resolution transmission electron microscopy images of the structure of indium droplets in the DH sample indicate that the thickness of the InGaN layer decreases with the density of indium droplets. The formation of these droplets is attributed to the insufficient kinetic energy of indium atom to react with the elements of group V, resulting to aggregation. The gallium atoms in the GaN thin film will not be uniformly replaced by indium atoms; the InGaN thin film has an uneven distribution of indium atoms and the quality of the epitaxial layer is degraded. PMID:25024692

  8. Preparation and characterization of Al{sub 2x}In{sub 2−2x}O{sub 3} films deposited on MgO (1 0 0) by MOCVD

    SciTech Connect

    Li, Zhao; Ma, Jin Zhao, Cansong; Du, Xuejian; Mi, Wei; Luan, Caina; Feng, Xianjin

    2015-07-15

    Highlights: • Ternary Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films were deposited on MgO (1 0 0) by MOCVD. • The microstructure of the Al{sub 2x}In{sub 2−2x}O{sub 3} films were studied upon HRTEM. • Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films exhibited great optical transparency in the visible wavelength range. • The band gap of the Al{sub 2x}In{sub 2−2x}O{sub 3} films can be modulated by controlling the Al contents in the samples. - Abstract: The ternary Al{sub 2x}In{sub 2−2x}O{sub 3} films with different compositions x[Al/(Al + In) atomic ratio] have been fabricated on the MgO (1 0 0) substrates by the metal organic chemical vapor deposition (MOCVD) method. The influence of different Al contents on the structural, optical and electrical properties of Al{sub 2x}In{sub 2−2x}O{sub 3} films has been studied. The structural studies reveal a change from single crystalline structure of cubic In{sub 2}O{sub 3} to amorphous as the Al content increases. The average transmittances of all samples in the visible range are over 80%. The optical band gap is observed to increase monotonically from 3.67 to 5.38 eV as the Al content increases from 0.1 to 0.9.

  9. Synthesis of TiO{sub 2} thin films using single molecular precursors by MOCVD method for dye-sensitized solar cells application and study on film growth mechanism

    SciTech Connect

    Nam, Sang Hun; Hyun, Jae-Sung; Boo, Jin-Hyo

    2012-10-15

    For dye-sensitized solar cells application, in this study, we have synthesized TiO{sub 2} thin films at deposition temperature in the range of 300–750 °C by metalorganic chemical vapor deposition (MOCVD) method. Titanium(IV) isopropoxide, (TIP, Ti(O{sup i}Pr){sub 4}) and Bis(dimethylamido)titanium diisopropoxide, (BTDIP, (Me{sub 2}N){sub 2}Ti(O{sup i}Pr){sub 2}) were used as single source precursors that contain Ti and O atoms in the same molecule, respectively. Crack-free, highly oriented TiO{sub 2} polycrystalline thin films with anatase phase were deposited on Si(1 0 0) with TIP at temperature as low as 450 °C. XRD and TED data showed that below 500 °C, the TiO{sub 2} thin films were dominantly grown in the [2 1 1] direction on Si(1 0 0), whereas with increasing the deposition temperature to 700 °C, the main film growth direction was changed to [2 0 0]. Above 700 °C, however, rutile phase TiO{sub 2} thin films have only been obtained. In the case of BTDIP, on the other hand, only amorphous film was grown on Si(1 0 0) below 450 °C while a highly oriented anatase TiO{sub 2} film in the [2 0 0] direction was obtained at 500 °C. With further increasing deposition temperatures over 600 °C, the main film growth direction shows a sequential change from rutile [1 0 1] to rutile [4 0 0], indicating a possibility of getting single crystalline TiO{sub 2} film with rutile phase. This means that the precursor together with deposition temperature can be one of important parameters to influence film growth direction, crystallinity as well as crystal structure. To investigate the CVD mechanism of both precursors in detail, temperature dependence of growth rate was also carried out, and we then obtained different activation energy of deposition to be 77.9 and 55.4 kJ/mol for TIP and BTDIP, respectively. Also, we are tested some TiO{sub 2} film synthesized with BTDIP precursor to apply dye-sensitized solar cell.

  10. The growth and characterization of GaN films on cone-shaped patterned sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Hongling, Xiao; Xiaoliang, Wang; Cuimei, Wang; Qingwen, Deng; Zhidong, Li; Jieqin, Ding; Zhanguo, Wang; Xun, Hou

    2013-11-01

    GaN films are grown on cone-shaped patterned sapphire substrates (CPSSs) by metal-organic chemical vapor deposition, and the influence of the temperature during the middle stage of GaN growth on the threading dislocation (TD) density of GaN is investigated. High-resolution X-ray diffraction (XRD) and cathode-luminescence (CL) were used to characterize the GaN films. The XRD results showed that the edge-type dislocation density of GaN grown on CPSS is remarkably reduced compared to that of GaN grown on conventional sapphire substrates (CSSs). Furthermore, when the growth temperature in the middle stage of GaN grown on CPSS decreases, the full width at half maximum of the asymmetry (102) plane of GaN is reduced. This reduction is attributed to the enhancement of vertical growth in the middle stage with a more triangular-like shape and the bending of TDs. The CL intensity spatial mapping results also showed the superior optical properties of GaN grown on CPSS to those of GaN on CSS, and that the density of dark spots of GaN grown on CPSS induced by nonradiative recombination is reduced when the growth temperature in the middle stage decreases.

  11. Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, F.; Chen, P.; Zhao, D. G.; Jiang, D. S.; Zhao, Z. J.; Liu, Z. S.; Zhu, J. J.; Yang, J.; Liu, W.; He, X. G.; Li, X. J.; Li, X.; Liu, S. T.; Yang, H.; Liu, J. P.; Zhang, L. Q.; Zhang, Y. T.; Du, G. T.

    2016-09-01

    Photoelectron spectroscopy has been employed to analyze the content and chemical states of the elements on the surface of AlN films with different thickness, which are synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates under low pressure. It is found that, besides the carbon and gallium on the AlN surface, the atom percentage of surface oxygen increases from 4.9 to 8.4, and the electron affinity also increases from 0.36 to 0.97 eV, when the thickness of AlN films increase from 50 to 400 nm. Furthermore, accompanying with the high-resolution XPS spectra of the O 1s, it is speculated that surface oxygen may be the major influence on the electron affinity, where the surface oxygen changes the surface chemical states through replacing N to form Al-O bond and Ga-O bond, although there are also a few of Ga and C contaminations in the chemical sate of Ga-O and C-C, respectively.

  12. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa2Cu3O6+δ films: Correlation of structure and chemistry with flux pinning performance

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M.

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa2Cu3O6+δ (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (Jc) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field Jc or applied-field Jc performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in Jc for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in either self-field or applied-field Jc performance

  13. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa{sub 2}Cu{sub 3}O{sub 3+{delta} }films : correlation of structure and chemistry with flux pinning performance.

    SciTech Connect

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M.

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (J{sub c}) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field J{sub c} or applied-field J{sub c} performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in J{sub c} for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in

  14. YBCO coated conductors on highly textured Pd-buffered Ni-W tape

    NASA Astrophysics Data System (ADS)

    Celentano, G.; Galluzzi, V.; Mancini, A.; Rufoloni, A.; Vannozzi, A.; Augieri, A.; Petrisor, T.; Ciontea, L.; Gambardella, U.

    2006-06-01

    High critical current density YBa2Cu3O7-x (YBCO) coated conductors were obtained on cube textured Ni-W. The use of a Pd transient layer as a first buffer led to a sharp out-of-plane grains alignment of the CeO2/YSZ/CeO2 buffer layer. YBCO films grown on this template exhibit an out-of-plane orientation with a full width at half maximum of about 3°, less than 50% of the respective starting Ni-W value. Despite the complete interdiffusion between Ni-W and Pd after the YBCO film deposition, the coated conductors exhibit good film adherence as well as a crack free and smooth surface of the YBCO film. YBCO thin films show critical temperature values above than 88 K and a critical current density of 2.1 MA/cm2 at 77 K and self field.

  15. Reel-to-reel fabrication of meter-long YBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, H.; Wang, S. M.; Lin, C. G.; Shi, D. Q.; Dou, S. X.

    2011-04-01

    YBa 2Cu 3O 7-δ (YBCO) superconductors were coated on the CeO 2/YSZ/Y 2O 3 buffered Ni-5at%W tapes by a reel-to-reel pulsed laser deposition (PLD). The process of a multi-layer deposition of YBCO film was explored. X-ray diffraction texture measurements showed good both in-plane and out of plane crystalline orientations in YBCO films. The average values calculated at a full width at half maximum (FWHM) of the peaks from phi-scans ( φ) and omega ( ω) scans for one meter-long YBCO tape were 7.49° and 4.71°, respectively. The critical current ( Ic) was over 200 A/cm-width at 77 K and under self-field for meter-long YBCO tape. The critical transition temperature of the YBCO tape was typically as 90.1 K with 0.5 K transition widths.

  16. Effect of Co-doping on Microstructural, Crystal Structure and Optical Properties of Ti1-xCOxO2 Thin films Deposited on Si Substrate by MOCVD Method

    NASA Astrophysics Data System (ADS)

    Supriyanto, E.; Sutanto, H.; Subagio, A.; Saragih, H.; Budiman, M.; Arifin, P.; Sukirno, Barmawi, M.

    2008-03-01

    Ti1-xCOxO2 thin films have been grown on n-type Si(100) substrates by metal organic vapor deposition (MOCVD) using titanium (IV) isopropoxide (TTIP) and tris (2,2,6,6-tetramethyl-3, 5-heptanedionato) cobalt (III) as metal organic precursors. The parameter deposition, such as: bubbler temperature of TTIP Tb(Ti) = 50 °C; substrate temperature Ts = 450 °C; bubbler pressure Pb(Ti) = 260 Torr; flow rate of Ar gas through TTIP precursor Ar(Ti) = 100 sccm (standard cubic centimeters per minute) and flow rate of oxygen gas O2 = 60 sccm were found as optimal deposition parameters. The thin films deposited were have rutile (002) crystal plane, whereas those deposited at other parameter were mixing of anatase and rutile phases. Co dopant with concentration of up to 5.77% was not changes the structure of TiO2. Increase of Co incorporated in thin films was decreasing of band-gap energy.

  17. Hysteretic Dependence of Magnetic Flux Density on Primary AC Current in Flat-Type Inductive Fault Current Limiter with YBCO Thin Film Discs

    NASA Astrophysics Data System (ADS)

    Harada, Masayuki; Yokomizu, Yasunobu; Matsumura, Toshiro

    2014-05-01

    This paper focuses on a flat-type inductive superconducting FCL (FIS-FCL) consisting of a pancake coil and a YBCO thin layer disc. AC current injection experiments and magnetic field analysis were carried out for two kinds of FIS-FCL, single-disc model and double-discs model. In the former, the pancake coil was putted on the YBCO disc. In the latter, the pancake coil was sandwiched with two YBCO discs. The double-discs model cancels out the magnetic flux density more effectively than the single-disc model. In the double-discs model, the superconducting state period is longer than in the single-disc model. Thus, it may be concluded that the double-discs model is considered to be suitable for FIS-FCL.

  18. Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC

    NASA Astrophysics Data System (ADS)

    Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.

    The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.

  19. Crystal growth of YBCO coated conductors by TFA MOD method

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M.; Nakanishi, T.; Matsuda, J.; Nakaoka, K.; Sutoh, Y.; Izumi, T.; Shiohara, Y.

    2008-09-01

    The crystal growth mechanism of TFA (trifluoroacetates)-MOD (metal organic deposition) derived YBa 2Cu 3O y has been investigated to understand the process for higher production rates of the conversion process. YBCO films were prepared by TFA-MOD on CeO 2/Gd 2Zr 2O 7/Hastelloy C276 substrates. The growth rates of YBCO derived from Y:Ba:Cu = 1:2:3 and 1:1.5:3 starting solutions were investigated by XRD and TEM analyses. YBCO growth proceeds in two steps of the epitaxial one from the substrate and solid state reaction. The overall growth rate estimated from the residual amounts of BaF 2 with time measured by XRD is proportional to a square root of P(H 2O). The trend was independent of the composition of starting solutions, however, the growth rate obtained from the 1:1.5:3 starting solutions was high as twice as that of 1:2:3, which could not be explained by the composition of BaF 2 included in the precursor films. On the other hand, the growth rate measured from the thickness of the YBCO quenched film at the same process time showed no difference between the samples of 1:2:3 and 1:1.5:3. The epitaxial growth rate of 1:1.5:3 was also the same as the overall growth rate of that, which means there was no solid state reaction to form YBCO after the epitaxial growth. The YBCO growth mechanism was found to be as follows; YBCO crystals nucleate at the surface of the substrate and epitaxially grow into the precursor by layer-by-layer by a manner with trapping unreacted particles. The amounts of YBCO and the unreacted particles trapped in the YBCO film are independent of the composition of the starting solution in this step. Unreacted particles react with each other to form YBCO and pores by solid state reaction as long as there is BaF 2 left in the film. The Ba-poor starting solution gives little BaF 2 left in the film and so the solid state reaction is completed within a short time, resulting in the fast overall growth rate.

  20. MOCVD deposition of YSZ on stainless steels

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  1. Development of YBCO-coated conductors for electric power applications

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Li, M.; Koritala, R. E.; Fisher, B. F.; Ma, B.

    2002-08-01

    Biaxially textured MgO template films have been fabricated on a Ni-based alloy substrate (Hastelloy C276) by inclined-substrate deposition (ISD), using electron beam evaporation, at the high deposition rate of 120-300 nm/min. Buffer films were subsequently deposited on these template films, and YBCO films were finally deposited by pulsed laser deposition (PLD). Crystal textures of the YBCO films were examined by X-ray pole figure, φ- and ω-scans analysis. Good in-plane and out-of-plane textures were observed, with MgO(0 0 2) φ-scan full-width-at-half-maximum (FWHM) of 10.0° and ω-scan FWHM of 5.5°, for a film deposited with an incline angle of 55°. YBCO films were epitaxially grown on ISD MgO-buffered Hastelloy C276 substrates by PLD. Tc of 90 K with sharp transition and transport Jc of ≈1.4×10 5 A/cm 2 were obtained on a 0.5-μm-thick YBCO film at 77 K in zero field.

  2. Grain morphology of YBCO coated superconductors prepared by spin process on Ni substrate

    NASA Astrophysics Data System (ADS)

    Liu, C. F.; Du, S. J.; Yan, G.; Xi, W.; Wu, X.; Pang, Y.; Wang, F. Y.; Liu, X. H.; Feng, Y.; Zhang, P. X.; Wu, X. Z.; Zhou, L.

    2003-04-01

    The YBCO thick films with c-axis preferred orientation were prepared by spin and printing processes on Ni substrates (including cold rolling Ni, cube textured Ni, and cube textured Ni+ self-oxided NiO ). The results show that the chrysanthemum (or spherulite) and polygon morphology grains dominate the microstructure of YBCO films. The chrysanthemum size is about 0.2-0.5 mm range, some reaches 1 mm, and polygon grains normally are placed in the center of the chrysanthemum grains. No chrysanthemum grains appear in the thick films prepared on the substrate with Ag or YBCO intermediate layers.

  3. Oxygen and cation diffusion in YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Tsukui, S.; Koritala, R. E.; Li, M.; Goretta, K. C.; Adachi, M.; Baker, J. E.; Routbort, J. L.

    2003-10-01

    Biaxially textured YBa 2Cu 3O x (YBCO) films 0.3 μm thick were deposited on single-crystal LaAlO 3 and buffered Hastelloy C276 substrates. After annealing in 18O at 400 °C, secondary-ion mass spectrometry was used to determine oxygen-diffusion profiles and several cation-diffusion profiles within the various layers of the conductors. Oxygenation in the YBCO/LaAlO 3 specimen was relatively slow and hours would be required for full oxygenation of the YBCO. Oxygen diffusion was rapid in the coated conductor. It was dominated by diffusion along a- b planes and full oxygenation of a 0.3-μm-thick YBCO layer was achieved in several minutes. Cation interdiffusion was limited in the YBCO/LaAlO 3 specimen, but was significant within the coated conductor. Although Cu diffused out of the superconductor, an SrTiO 3 layer between textured MgO and YBCO limited diffusion of cations from the various substrate layers into the superconductor.

  4. Influence of Al content on the properties of ternary Al{sub 2x}In{sub 2−2x}O{sub 3} alloy films prepared on YSZ (1 1 1) substrates by MOCVD

    SciTech Connect

    Feng, Xianjin; Zhao, Cansong; Li, Zhao; Luo, Yi; Ma, Jin

    2015-10-15

    Highlights: • Al{sub 2x}In{sub 2−2x}O{sub 3} films were prepared on the Y-stabilized ZrO{sub 2} (1 1 1) substrates by MOCVD at 700 °C. • A phase transition from the bixbyite In{sub 2}O{sub 3} structure to the amorphous structure was observed. • The lowest resistivity of 4.7 × 10{sup −3} Ω cm was obtained for the Al{sub 0.4}In{sub 1.6}O{sub 3} film. • Tunable optical band gap from 3.7 to 4.8 eV was obtained. - Abstract: The ternary Al{sub 2x}In{sub 2−2x}O{sub 3} films with different Al contents of x [Al/(Al + In) atomic ratio] have been fabricated on the Y-stabilized ZrO{sub 2} (1 1 1) substrates by metal organic chemical vapor deposition at 700 °C. The structural, electrical and optical properties of the films as a result of different Al contents (x = 0.1–0.9) were investigated in detail. With the increase of Al content from 10% to 90%, a phase transition from the bixbyite In{sub 2}O{sub 3} structure with a single orientation along (1 1 1) to the amorphous structure was observed. The minimum resistivity of 4.7 × 10{sup −3} Ω cm, a carrier concentration of 1.4 × 10{sup 20} cm{sup −3} and a Hall mobility of 9.8 cm{sup 2} v{sup −1} s{sup −1} were obtained for the sample with x = 0.2. The average transmittances for the Al{sub 2x}In{sub 2−2x}O{sub 3} films in the visible range were all over 78% and the optical band gap of the films could be tuned from 3.7 to 4.8 eV.

  5. Characterization of ZnO thin film grown on c-plane substrates by MO-CVD: Effect of substrate annealing temperature, vicinal-cut angle and miscut direction

    NASA Astrophysics Data System (ADS)

    Boukadhaba, M. A.; Fouzri, A.; Sallet, V.; Hassani, S. S.; Amiri, G.; Lusson, A.; Oumezzine, M.

    2015-09-01

    The annealing effects of c-plane sapphire (α-Al2O3) substrate with a nominally vicinal-cut angle α (α < 0.1°, α = 0.25° toward the m-plane (1 0 1 bar 0) and α = 0.25° toward the a-plane (1 1 2 bar 0)) on the quality of epitaxial ZnO films grown by metal organic chemical vapor deposition (MO-CVD) were studied. The atomic steps formed on sapphire substrate surface by annealing at high temperature were analyzed by atomic force microscopy (AFM). The annealing and the miscut direction of sapphire substrate on the microstructural and optical properties for ZnO films were examined by high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence spectroscopy (PL). Experimental results indicate that the film quality is strongly affected by annealing treatment and miscut direction of the sapphire substrate. X-ray diffraction study revealed that all films exhibit a wurtzite phase and have a c-axis orientation. ZnO films deposited on sapphire substrate (α < 0.1° and α = 0.25° toward the m-plane (1 0 1 bar 0), annealed substrate at 1100 °C), exhibit a low quantity of defects and a quite good vertical and lateral alignment compared to other disorientation plane (α = 0.25° toward the a-plane (1 1 2 bar 0), annealed substrate at 1100 °C). The Lattice parameters a and c slightly decreases for ZnO layer deposited on annealed sapphire substrate with increase the annealing substrate temperature for all samples. AFM image show significant differences between morphologies of samples depending on annealing treatment and miscut direction of substrates but no significant differences on surface roughness have been found. Sapphire annealing at 1100 °C with a nominally vicinal-cut angle α = 0.25° toward the m-plane (1 0 1 bar 0), provides the best optical quality of ZnO film.

  6. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2016-05-01

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  7. AC and DC transport currents in melt-grown YBCO

    SciTech Connect

    Yi, Z.; Ashworth, S.; Becluz, C.; Scurlock, R.G. )

    1991-03-01

    It has been suggested that the transport J{sub c} in multi-grain samples of bulk YBCO are limited by the intergrain links. This paper reports on preliminary measurements of intergrain currents. The intergrain critical currents in melt grown YBCO do not appear to be as sensitive to the precise crystallographic alignment of adjacent grains a has been reported for thin films. The measured critical current of similar grain boundaries varies widely, between 15000 A/cm{sup 2} and 200A/Cm{sub 2} for adjacent boundaries in the same sample.

  8. Deep Level Defect Studies in MOCVD-Grown In(x)Ga(1-x)As(1-y)N(y) Films Lattice-Matched to GaAs

    SciTech Connect

    Allerman, A.A.; Boeckl, J.J.; Jones, E.D.; Kaplar, R.J.; Kurtz, S.R.; Kwon, D.; Ringel, S.A.

    1999-03-04

    Deep level defects in MOCVD-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs were investigated using deep level transient spectroscopy (DLTS) measurements. As-grown p-InGaAsN showed broad DLTS spectra suggesting that there exists a broad distribution of defect states within the band-gap. Moreover, the trap densities exceeded 10{sup 15} cm{sup {minus}3}. Cross sectional transmission electron microscopy (TEM) measurements showed no evidence for threading dislocations within the TEM resolution limit of 10{sup 7} cm{sup {minus}2}. A set of samples was annealed after growth for 1800 seconds at 650 C to investigate the thermal stability of the traps. The DLTS spectra of the annealed samples simplified considerably, revealing three distinct hole trap levels with energy levels of 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge with trap concentrations of 3.5 x 10{sup 14} cm{sup {minus}3}, 3.8 x 10{sup 14} cm {sup {minus}3}, and 8.2 x 10{sup 14} cm{sup {minus}3}, respectively. Comparison of as-grown and annealed DLTS spectra showed that post-growth annealing effectively reduced the total trap concentration by an order of magnitude across the bandgap. However, the concentration of a trap with an energy level of 0.48 eV was not affected by annealing indicating a higher thermal stability for this trap as compared with the overall distribution of shallow and deep traps.

  9. Synthesis and properties of highly c-axis oriented PbTiO3 thin films prepared by and MOCVD method

    NASA Astrophysics Data System (ADS)

    Chen, Xian-Tong; Yamane, Hisanori; Kaya, Kiyoshi

    1992-08-01

    Thin films of PbTiO3 were prepared on MgO(100) substrates by chemical vapor deposition using Pb(C2H5)4 (PbEt) and Ti(OC3H7)4 (TTIP) as sources. With decreasing Pb/Ti molar ratio from 1.2 to 1 the degree of c-axis orientation increased. Highly c-axis oriented PbTiO3 thin films were epitaxially grown at 500°C and 2 kPa. The films were transparent and had a refractive index (n) of 2.64 at 632.8 nm which was about 2% lower than that of a single PbTiO3 crystal (n ≈ 2.7). The films prepared on (100)-oriented Pt electrodes deposited on MgO(100) substrates at 600°C and 2 kPa also showed a prominent c-axis orientation and had a dielectric constant of 90.

  10. Direct deposition of YBCO on polished Ag substrates by pulsed laser deposition.

    SciTech Connect

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Maroni, V. A.; Miller, D. J.; Balachandran, U.

    2002-09-15

    YBCO thin films were directly deposited on mechanically polished nontextured silver (Ag) substrates at elevated temperature by pulsed laser deposition with various inclination angles of 35, 55, and 72. Strong fiber texture, with the c-axis parallel to the substrate normal was detected by X-ray diffraction pole figure analysis. Atomic force microscopy and scanning electron microscopy images revealed that a few a-axis-oriented grains were dispersed on the top surface of the YBCO films. Transmission electron microscopy revealed dense amorphous layer at the interface between the YBCO film and the Ag substrate. Energy dispersive spectrum analysis indicates that the YBCO film deposited on the Ag substrate is slightly Cu-deficient. A YBCO film deposited at 755 C and an inclination angle of 55 exhibited {Tc} = 90 K. Transport critical current density measured by the four-probe method at 77 K in self-field was 2.7 x 10{sup 5}A/cm2. This work demonstrated a simple and inexpensive method to fabricate YBCO-coated conductors with high critical current density.

  11. Large field emission current from Si-doped AlN film grown by MOCVD on n-type (001) 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liang, F.; Chen, P.; Zhao, D. G.; Jiang, D. S.; Liu, Z. S.; Zhu, J. J.; Yang, J.; Liu, W.; He, X. G.; Li, X. J.; Li, X.; Liu, S. T.; Yang, H.; Zhang, L. Q.; Liu, J. P.; Zhang, Y. T.; Du, G. T.

    2016-05-01

    A large field emission current density of 2.55 A/cm2 at 20.9 V and a low turn-on voltage of 7.28 V is obtained from the Si-doped 50 nm-thick AlN film, synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates, which is the best result reported for AlN film. Accompanying with atomic force surface micro-images, it is found that this current is achieved owing to a blunting process under a high voltage of 95 V, which can lead to a decrease of the root mean square roughness from 4.23 to 1.03 nm.

  12. Equilibrium composition in II?VI telluride MOCVD systems

    NASA Astrophysics Data System (ADS)

    Ben-Dor, L.; Greenberg, J. H.

    1999-03-01

    Thermodynamic calculations, or computer simulation of the equilibrium composition, offer an excellent possibility to reduce drastically the elaborate trial-and-error experimental efforts of finding the optimal preparation conditions for MOCVD processes (temperature T, pressure P, initial composition of the vapors X), to limit them only to the P- T- X field of existence of the solid to be prepared and an acceptable yield of the product. In this communication equilibrium composition was investigated for MOCVD processes of CdTe, ZnTe, HgTe and solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe. A number of volatile organometallic compounds have been used as precursors for MOCVD growth. These are dimethylcadmium (CH 3) 2Cd, DMCd; diethylzinc (C 2H 5) 2Zn, DEZn; diisopropylzinc [CH(CH 3) 2] 2Zn, DiPZn; diethyltellurium (C 2H 5) 2Te, DETe; diisopropyltellurium [CH(CH 3) 2] 2Te, DiPTe; methylallyltellurium CH 3TeCH 2CHCH 2, MATe. A choice of the particular combination of the precursors largely depends on the desired composition of the film to be prepared, especially in cases of solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe where the vapor pressure of the precursors is instrumental for the composition of the vapor in the reaction zone and, ultimately, for the composition x of the solid solution. Equilibrium composition for II-VI telluride MOCVD systems was investigated at temperatures up to 873 K in hydrogen and inert gas atmospheres at pressures up to 1 atm. P- T- X regions of existence were outlined for each of the five materials.

  13. Microwave Absorption Studies on HIGH-Tc Superconductors and Related Materials VII — Esr of Dpph Coated on a Thin BiSrCaCuO Film Fabricated on MgO(100) Substrate

    NASA Astrophysics Data System (ADS)

    Sugawara, K.; Sugimoto, T.; Shiohara, Y.; Tanaka, S.

    ESR of DPPH coated on a Bi-Sr-Ca-Cu-O (BSCCO) film (350 Å thick) fabricated on MgO(100) substrate by MOCVD was studied. Temperature dependence of the ESR peak-to-peak linewidth, ΔHpp, and the effect of applied magnetic field on ΔHpp have been studied below about 100 K. The results were compared with those of ESR of DPPH coated on ceramic Y-Ba-Cu-O samples (powder and bulk) made by the MPMG method. The DPPH ESR for the BSCCO film revealed that ΔHpp was independent of applied magnetic field up to about 9 kG. In addition, no similarity between the temperature dependence of the excess ESR linewidth of the DPPH and that of critical current density was found for the BSCCO film. These results for the BSCCO film are different from those for the MPMG YBCO samples.

  14. Preparation and characterization of YBCO coating on metallic RABiT substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gonal, M. R.; Prajapat, C. L.; Igalwar, P. S.; Maji, B. C.; Singh, M. R.; Krishnan, M.

    2016-05-01

    Superconducting YBCO films are coated on metallic Rolling Assisted Bi-axially Textured Substrates (RABiTS) Ni-5wt % W (NiW) (002) substrate using pulsed laser deposition (PLD) system. Targets of YBa2Cu3O7-δ (YBCO) and buffer layers of Ceria and 8 mole % Yttria Stabilized Zirconia (YSZ) of high density are synthesized. At each stage of deposition coatings are characterized by XRD. Transport studies show superconducting nature of YBCO only when two successive buffer layers of YSZ and CeO2 are used.

  15. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  16. Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150

    SciTech Connect

    Bhattacharya, R.

    2013-03-01

    The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.

  17. Epitaxial Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3}/SrRuO{sub 3} (x = 0, 0.35, 0.65) multilayer thin films on SrTiO{sub 3}(100) and MgO(100) prepared by MOCVD and RF sputtering

    SciTech Connect

    Foster, C.M.; Csencsits, R.; Baldo, P.M.; Bai, G.R.; Li, Z.; Rehn, L.E.; Wills, L.A.; Hiskes, R.

    1995-02-01

    Epitaxial SrRuO{sub 3} thin films were deposited on SrTiO{sub 3}(100) and MgO(100) substrates by RF sputtering for use as bottom electrodes and epitaxial buffer layers. On these conductive substrates, epitaxial Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} (PZT; x = 0.35,0.65) and PbTiO{sub 3} (PT; x = 0) thin films were deposited by metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD), RBS channeling (RBS), transmission electron microscopy (TEM) and optical waveguiding were used to characterize the phase, microstructure, defect structure, refractive index, and film thickness of the deposited films. The PZT and PT films were epitaxial and c-axis oriented. 90{degree} domains, interfacial misfit dislocations and threading dislocations were the primary structural defects, and the films showed as high as a 70% RBS channeling reduction. Ferroelectric hysteresis and dielectric measurements of epitaxial PZT ferroelectric capacitor structures formed using evaporated Ag top electrode showed: a remanent polarization of 46.2 {mu}C/cm{sup 2}, a coercive field of 54.9 kV/cm, a dielectric constant of 410, a bipolar resistivity of {approximately}5.8 {times} 10{sup 9} {Omega}-cm at a field of 275 kV/cm, and a breakdown strength of >400 kV/cm. Cyclic fatigue measurements showed that the remanent polarization was maintained for >10{sup 9} cycles.

  18. Epitaxial Pb(Zr{sub 0.40}Ti{sub 0.60})O{sub 3}/SrRuO{sub 3} and PbTiO{sub 3}/SrRuO{sub 3} multilayer thin films prepared by MOCVD and rf sputtering

    SciTech Connect

    Foster, C.M.; Csencsits, R.; Baldo, P.M.

    1994-12-01

    Epitaxial SrRuO{sub 3} thin films were deposited by RF sputtering on SrTiO{sub 3} or MgO substrates for use as underlying electrodes. On these conductive substrates, epitaxial Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} (PZT) and PbTiO{sub 3} (PT) thin films were, deposited by metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD), RBS channeling (RBS), transmission electron microscopy (TEM) and optical waveguiding were used to characterize phase, microstructure, defect structure, refractive index, and film thickness of the deposited films. The PZT and PT films were epitaxial and c-axis oriented. 90{degree} domains, interfacial misfit dislocations and dislocations and threading dislocations were the primary structural defects, and the films showed a 70% RBS channeling reduction. Hysteresis and dielectric measurements of epitaxial PZT ferroelectric capacitor structures formed using evaporated Ag or ITO glass top electrode showed: a remanent polarization of 46.2 mC/cm{sup 2}, a coercive field of 54.9 KV/cm, a dielectric constant of 410, a bipolar resistivity of {approximately}5.8 {times} 10{sup 9} {Omega}-cm at a field of 275 KV/cm, and a breakdown strength of >400 KV/cm.

  19. Nonvacuum Deposition of Silver Doped YBCO Coated Conductor on %100 Lattice Match Buffered Ni Tapes

    NASA Astrophysics Data System (ADS)

    Arda, L.; Cakiroglu, O.; Keskin, S.; Sacli, O. A.

    2007-04-01

    Silver doped YBa2Cu3O7-δ (YBCO) coated conductors were fabricated on Gd1.624Ho0.376O3 (100 % lattice match with YBCO) textured buffer layers on Ni tape by reel-to-reel sol-gel dip coating system. Sample were prepared with different wt(1-5) % Ag doped ratio. The surface morphologies and microstructure of all sample were characterized by ESEM, EDS and XRD. Pole figure texture analyses have been done to characterize texture of buffer layer and YBCO superconducting film . The critical current Ic measurement was performed using four wire method with the 1 μV/cm criterion. The critical current density, Jc was measured to be 2.2 × 104 A/cm2 at 77 K self field for 1 wt % Ag doped YBCO sample.

  20. Effect of CeO{sub 2} buffer layer thickness on the structures and properties of YBCO coated conductors.

    SciTech Connect

    Li, M.; Zhao, X.; Ma, B.; Dorris, S. E.; Balachandran, U.; Maroni, V. A.; Wuhan Univ.

    2007-01-01

    Biaxially textured YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films were grown on inclined-substrate-deposited (ISD) MgO-textured metal substrates by pulsed laser deposition. CeO{sub 2} was deposited as a buffer layer prior to YBCO growth. CeO{sub 2} layers of different thickness were prepared to evaluate the thickness dependence of the YBCO films. The biaxial alignment features of the films were examined by X-ray diffraction 2{theta}-scans, pole-figure, {phi}-scans and rocking curves of {Omega} angles. The significant influence of the CeO{sub 2} thickness on the structure and properties of the YBCO films were demonstrated and the optimal thickness was found to be about 10 nm. High values of T{sub c} = 91 K and J{sub c} = 5.5 x 10{sup 5} A/cm{sup 2} were obtained on YBCO films with optimal CeO{sub 2} thickness at 77 K in zero field. The possible mechanisms responsible for the dependence of the structure and the properties of the YBCO films on the thickness of the CeO{sub 2} buffer layers are discussed.

  1. Structure and morphology of MgO/YBCO bilayers for biepitaxial junctions

    NASA Astrophysics Data System (ADS)

    Di Chiara, A.; Lombardi, F.; Granozio, F. Miletto; di Uccio, U. Scotti; Valentino, M.; Tafuri, F.; Del Vecchio, A.; De Riccardis, M. F.; Tapfer, L.

    1996-02-01

    (110) MgO thin films have been deposited by RF sputtering on (110) SrTiO 3 and used as buffer layers for YBCO deposition. The MgO films show high morphological quality, as confirmed by X-ray specular reflectivity, and narrow (≈ 1°) X-ray diffraction peaks in the rocking curves measurements. These results are discussed in the framework of an ionic oxide growth model. XRD analyses performed on the bilayer YBCO/MgO (110) confirm the epitaxial growth of the films, with (001) YBCO//(110) MgO. XRD, AFM, SEM measurements are compared with data relative to bilayers deposited on (100) SrTiO 3.

  2. Observation of the nonlinear meissner effect in YBCO thin films: evidence for a D-wave order parameter in the bulk of the cuprate superconductors.

    PubMed

    Oates, D E; Park, S-H; Koren, G

    2004-11-01

    We present experimental evidence for the observation of the nonlinear Meissner effect in high-quality epitaxial yttrium barium copper oxide thin films by measuring their intermodulation distortion at microwave frequencies versus temperature. Most of the films measured show a characteristic increase in nonlinearity at low temperatures as predicted by the nonlinear Meissner effect. We could measure the nonlinear Meissner effect because intermodulation distortion measurements are an extremely sensitive method that can detect changes in the penetration depth of the order of 1 part in 10(5). PMID:15600869

  3. Real-time physico-neural solutions for MOCVD

    SciTech Connect

    Kelkar, A.S.; Mahajan, R.L.; Sani, R.L.

    1995-12-31

    This paper presents an integrated physical neural network approach for the modeling and optimization of a vertical MOCVD reactor. A first-principles physical model for the reactor was solved numerically using the Fluid Dynamics Analysis Package (FIDAP). This transient model included property variation and thermodiffusion effects. Artificial Neural Network (ANN) models were then trained to predict the growth rate profiles within the reactor. The data used to train the network was obtained from FIDAP simulations for combinations of process parameters determined by statistical Design of Experiments (DOE) methodology. It is shown that the trained ANN predicts the behavior of the reactor accurately. Optimum process conditions to obtain a uniform thickness of the deposited film were determined and tested using the ANN model. The results demonstrate the power and robustness of ANNs for obtaining fast on-line responses to changing input conditions. This capability of ANNs is particularly important for implementing run-to-run and on-line control of the MOCVD process.

  4. Soft nanostructuring of YBCO Josephson junctions by phase separation.

    PubMed

    Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F

    2010-12-01

    We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries. PMID:21080664

  5. Control of flux pinning in MOD YBCO coated conductor.

    SciTech Connect

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  6. Photoluminescence of Nitrogen-Doped Zinc Selenide by Photo-Assisted Mocvd.

    NASA Astrophysics Data System (ADS)

    Gillespie, Paul Matthew

    Zinc selenide is a wide band-gap (2.67 eV) II -VI compound semiconductor with potential use as a blue electro-optic device material. Problems with obtaining suitable p-type conductivity have limited device development. Zinc selenide epitaxial films, doped with nitrogen from NH _3, have been grown on gallium arsenide substrates by laser-assisted metal organic chemical vapor deposition (MOCVD). The effect of nitrogen doping was investigated with and without direct surface irradiation incident on the surface from a broad-band light source. Low temperature (8 K) photoluminescence spectroscopy has confirmed the incorporation of nitrogen as a shallow acceptor by the presence of acceptor-bound-excitons and associated donor -acceptor-pair recombination emissions. The MOCVD growth parameters have been optimized based on the presence of characteristic features in the photoluminescence spectra. Growth rate mechanisms have been proposed for both laser-assisted MOCVD and direct-irradiation MOCVD. Simultaneous interaction of the two photo-assisted techniques show that direct irradiation of the surface does not enhance the growth rate under the laser-assisted condition. This confirms that direct surface irradiation growth mechanisms involve the interaction of photo-generated carriers with alkyl groups from the precursors.

  7. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability.

    PubMed

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-06-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  8. A novel MOCVD reactor for growth of high-quality GaN-related LED layers

    NASA Astrophysics Data System (ADS)

    Hu, Shaolin; Liu, Sheng; Zhang, Zhi; Yan, Han; Gan, Zhiyin; Fang, Haisheng

    2015-04-01

    Gallium nitride (GaN), a direct bandgap semiconductor widely used in bright light-emitting diodes (LEDs), is mostly grown by metal-organic chemical vapor deposition (MOCVD) method. A good reactor design is critical for the production of high-quality GaN thin films. In this paper, we presented a novel buffered distributed spray (BDS) MOCVD reactor with vertical gas sprayers and horizontal gas inlets. Experiments based on a 36×2″ BDS reactor were conducted to examine influence of the process parameters, such as the operating pressure and the gas flow rate, on the growth efficiency and on the layer thickness uniformity. Transmission electron microscopy (TEM) and photoluminescence (PL) are further conducted to evaluate quality of the epitaxial layers and to check performance of the reactor. Results show that the proposed novel reactor is of high performance in growing high-quality thin films, including InGaN/GaN multiquantum wells (MQWs) structures.

  9. Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites

    NASA Astrophysics Data System (ADS)

    Rouco, V.; Palau, A.; Guzman, R.; Gazquez, J.; Coll, M.; Obradors, X.; Puig, T.

    2014-12-01

    We study the effect of twin boundaries (TBs) on the critical current density of YBa2Cu3O7-x (YBCO) films and nanocomposites grown on different substrates. Varying both the direction of the current and magnetic field, we show that the TB orientation is a crucial parameter to consider in the optimization of Jc for particular applications. A quantitative and detailed analysis of the role of TBs on vortex dynamics has allowed us to infer that extended TB planes in pristine YBCO films can reduce Jc by 60% at low temperatures due to vortex channeling effects or increase it by a 98% at high temperatures due to directional vortex pinning. Moreover, we demonstrate that TB length and distribution can be strongly modified in YBCO nanocomposites. We observe that TB planes with no vertical coherence are still effective for vortex pinning while are not to create channels for easy vortex flow.

  10. MOCVD for solar cells, a transition towards a chamberless inline process

    NASA Astrophysics Data System (ADS)

    Barrioz, V.; Monir, S.; Kartopu, G.; Lamb, D. A.; Brooks, W.; Siderfin, P.; Jones, S.; Clayton, A. J.; Irvine, S. J. C.

    2015-03-01

    MOCVD has been associated with batch processing of III-V opto-electronic devices for decades, with epitaxial structures deposited on up to 200 mm diameter wafers. Recent development in thin film PV has seen the gap in conversion efficiencies closing in on that of the commonly found multicrystalline Si wafer based PV. To further improve the conversion efficiency of thin film PV towards the theoretical limits of single junction solar cells requires a technique such as MOCVD with scalability potential. Preliminary results on the development of a chamberless inline process are reported for up to 15 cm wide float glass, progressively coating each layer in the CdTe solar cell as the heated substrate passes under each coating head in turn and entirely at atmospheric pressure. Emphasis is made on ensuring that the chamberless coating heads can be operated safely using a combination of nitrogen curtain flows and a balanced exhaust pressure system. Results are also presented on the exclusion of oxygen and moisture from the coating area, achieved using the same gas flow isolation process. This paper also reviews the achievements made to-date in the transfer of the high efficiency batch MOCVD produced CdTe solar cell to the chamberless inline process demonstrating device quality thin films deposition.

  11. Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Molina-Luna, Leopoldo; Egoavil, Ricardo; Turner, Stuart; Thersleff, Thomas; Verbeeck, Jo; Holzapfel, Bernhard; Eibl, Oliver; Van Tendeloo, Gustaaf

    2013-07-01

    The functionality of YBa2Cu3O7-δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)—metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}<001> biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm-2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni-5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.

  12. Pd layer on cube-textured substrates for MOD-TFA and PLD YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Mancini, A.; Celentano, G.; Galluzzi, V.; Rufoloni, A.; Vannozzi, A.; Augieri, A.; Ciontea, L.; Petrisor, T.; Gambardella, U.; Longo, G.; Cricenti, A.

    2008-01-01

    Pd films were deposited on rolling assisted biaxially textured substrate (RABiTS) Ni-5 at.% W in order to exploit the Pd effect of the texture sharpening with respect to that of the substrate, for the development of YBa2Cu3O7-x (YBCO) coated conductors. The Pd sharpening effect was relevant in the out-of-plane direction where the reduction for the ω-scans' full width at half maximum (FWHM) ranged from 55 to 65%, depending on the substrate roughness. The obtained minimum values of the FWHM in the transverse rolling direction of the (002) Pd ω-scan and in the (111) Pd phi-scan were of about 2.5° and 5°, respectively. The CeO2/YSZ/CeO2 (YSZ is Y2O3-stabilised ZrO2) heterostructure of the buffer layer was developed by pulsed laser deposition (PLD). In order to transfer the sharp orientation of the Pd film, both the seed CeO2 layer and the YSZ layer were deposited at low temperatures (450 °C), low enough to avoid Pd/Ni-W interdiffusion. The YBCO, films deposited by both PLD and metal-organic deposition (MOD) using metal trifluoroacetate acid (TFA), exhibited rolling direction (005) ω-scan and the (113) phi-scan FWHM values of about 2° and 5°, respectively. In spite of the complete interdiffusion between Ni and Pd during the YBCO film deposition, the coated conductors exhibit good adherence, as well as a smooth and crack-free surface. A zero-resistance critical temperature (TC0) of 90.8 K for the MOD-TFA YBCO films and critical current-density (JC) up to 2.2 MA cm-2 at 77 K and self-field for PLD YBCO films have been obtained.

  13. Fabrication and Characterization of YBCO Coated Conductors by Inclined Substrate Deposition

    SciTech Connect

    Ma, B.; Balachandran, U.; Xu, Y.; Bhattacharya, R.

    2006-03-31

    Inclined substrate deposition (ISD) is an effective method for rapid fabrication of high-quality template layers for YBCO-coated conductors. We have deposited biaxially textured ISD-MgO films on flexible metallic tapes in a reel-to-reel system by electron-beam evaporation at rapid deposition rates, 2-10 nm{center_dot}s-1. Strontium ruthenium oxide (SRO) buffer and YBCO films were grown by pulsed laser deposition (PLD). Pole figure analysis of a meter-long ISD-MgO tape was carried out by X-ray diffraction using a Bruker's D8 DISCOVER equipped with GADDS (general area detection diffraction system). The c-axis of the ISD-MgO film was tilted away from substrate normal. A full-width at half maximum (FWHM) of {approx_equal}10 deg. was observed from the {phi}-scan of the MgO (002) diffraction measured on samples deposited with 35 deg. inclination angle. Surface morphology measured by atomic force microscopy revealed a roof-tile shaped structure for the ISD-MgO films. Through the use of the SRO buffer, biaxial alignment in the YBCO film deposited on the ISD-MgO template was improved. The {phi}-scan FWHM was 5.8 deg. for the YBCO (005) diffraction. We have measured the critical transition temperature Tc = 91 K and transport critical current density Jc >1.6x106 A{center_dot}cm-2 at 77 K in self-field on a SRO-buffered YBCO film grown with ISD-MgO architecture.

  14. MOCVD OF YSZ COATINGS USING ?-DIKETONATE PRECURSORS

    SciTech Connect

    Varanasi, Venu G; Besmann, Theodore M; Hyde, Robin L.; Payzant, E Andrew; Anderson, Timothy J

    2009-01-01

    Metallorganic chemical vapor deposition (MOCVD) was used to fabricate yttria-stabilized zirconia as a thermal barrier coating. The MOCVD precursors were Y(tmhd)3 and Zr(tmhd)4 (tmhd = 2, 2, 6, 6-tetramethyl-3, 5-heptanedianato) and delivered via aerosol assisted liquid delivery (AALD). The maximum tetragonal YSZ coating rate was 14.2 1.3 m h -1 (at 845oC) yielding a layered coating microstructure. The growth was first-order with temperature (T < 827oC) with an apparent activation energy (Ea) of 50.9 4.3 kJ mol -1. Coating efficiency was a maximum of approximately 10% at the highest growth rate.

  15. YBCO superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo

    1991-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  16. Long length oxide template for YBCO coated conductor prepared by surface-oxidation epitaxy method

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomonori; Matsumoto, Kaname; Maeda, Toshihiko; Tanigawa, Toru; Hirabayashi, Izumi

    2001-08-01

    A 50 m long, biaxially textured NiO buffer layer for epitaxial growth ofYBa 2Cu 3O 7- δ (YBCO) film has been fabricated on the long cube textured nickel tape using surface-oxidation epitaxy (SOE) method. The SOE-NiO layers were highly {1 0 0} <0 0 1> textured. The full width at half maximum of 10-14.5° from X-ray φ-scan ( Δφ) was in the range of 10-14.5° through the whole length. The critical current density ( Jc) values exceeding 0.3 MA/cm 2 (77 K, 0 T) have been obtained in short samples of YBCO films on NiO/Ni tapes, by using thin MgO cap layer. Thirty meters long Ni-clad Ni-20wt.%Cr (Ni/NiCr) and Ni-clad austenitic stainless steel (Ni/SS) tapes were also prepared for YBCO coated conductors with higher strength and lower magnetism than those of pure nickel tape. Highly {1 0 0} <0 0 1> textured NiO layers were formed on those textured composite tapes by SOE method as same as on cube textured pure nickel tapes. YBCO films with Jc of 0.1 MA/cm 2 (77 K, 0 T) have been obtained on MgO/SOE-NiO layer of short Ni/NiCr composite tape.

  17. High-rate fabrication of YBCO coated conductors using TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Nakaoka, K.; Yoshizumi, M.; Usui, Y.; Izumi, T.; Shiohara, Y.

    The YBa2Cu3O7-y (YBCO) coated conductors derived from metal-organic deposition (MOD) method using the metal salts of trifluoroacetic acid (TFA) have been developed with high critical current property. The long-length YBCO coated conductors have been fabricated by multi-turn reel-to-reel system. Increasing the thickness per single coating in the multi-turn reel-to-reel system is a cost-effective technique for fabrication of the precursor films in the calcination process. In this work, we have developed a new starting solution consisting of non-fluorine salts of yttrium 4-oxopentanoate and copper 2-ethylhexanoate with focusing on increasing the thickness per single coating for a high-rate fabrication of the YBCO coated conductors by the TFA-MOD method. The critical thickness per single coating of the film fabricated from the new starting solution was 0.54 μm/coat. High critical current of 377 A/cm-width with high critical current density (3.0 MA/cm2) was obtained in the YBCO film fabricated on CeO2 buffered LaMnO3/MgO/Gd2Zr2O-7/HastelloyTM substrates using the new starting solution at the thickness per single coating of 0.42 μm/coat.

  18. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-10-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  19. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors.

    PubMed

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-12-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density (J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions. PMID:26497731

  20. Passivation of Flexible YBCO Superconducting Current Lead With Amorphous SiO2 Layer

    NASA Technical Reports Server (NTRS)

    Johannes, Daniel; Webber, Robert

    2013-01-01

    across a thermal gradient with as little flow of heat as possible to make an efficient current lead. By protecting YBCO on a flexible substrate of low thermal conductivity with SiO2, a thermally efficient and flexible current lead can be fabricated. The technology is also applicable to current leads for 4 K superconducting electronics current biasing. A commercially available thin-film YBCO composite tape conductor is first stripped of its protective silver coating. It is then mounted on a jig that holds the sample flat and acts as a heat sink. Silicon dioxide is then deposited onto the YBCO to a thickness of about 1 micron using PECVD (plasma-enhanced chemical vapor deposition), without heating the YBCO to the point where degradation occurs. Since SiO2 can have good high-frequency electrical properties, it can be used to coat YBCO cable structures used to feed RF signals across temperature gradients. The prime embodiment concerns the conduction of DC current across the cryogenic temperature gradient. The coating is hard and electrically insulating, but flexible.

  1. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    PubMed

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-01

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained. PMID:19065200

  2. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  3. Safety-Enclosure System For MOCVD Process Chamber

    NASA Technical Reports Server (NTRS)

    Singletery, James, Jr.; Velasquez, Hugo; Warner, Joseph

    1995-01-01

    Safety-enclosure system filled with nitrogen surrounds reaction chamber in which metallo-organic chemical vapor deposition (MOCVD) performed. Designed to protect against explosions and/or escaping toxic gases and particulates. Gas-purification subsystem ensures during loading and unloading of process materials, interior of MOCVD chamber exposed to less than 1 ppm of oxygen and less than 5 ppm of water in nitrogen atmosphere. Toxic byproducts of MOCVD process collected within inert atmosphere. Enclosure strong enough to contain any fragments in unlikely event of explosion.

  4. Properties of YBCO on LaMnO3-capped IBAD MgO-templates without Homo-epitaxial MgO layer.

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Kim, Kyunghoon; Zhang, Yifei; Cantoni, Claudia; Zuev, Yuri L; Goyal, Amit; Thompson, James R; Christen, David K

    2009-01-01

    Previously, it has been well established that in an IBAD architecture for coated conductors, (1) LaMnO3 (LMO) buffer layers are structurally and chemically compatible with an underlying homo-epitaxial MgO layer and (2) high current density YBCO films can be grown on these LMO templates. In the present work, the homo-epi MgO layer has been successfully eliminated and a LMO cap layer was grown directly on the IBAD (MgO) template. The performance of the LMO/IBAD (MgO) samples has been qualified by depositing 1 m-thick YBCO coatings by pulsed laser deposition. Electrical transport measurements of YBCO films on the standard (with homo-epi MgO) and simplified (without homo-epi MgO) IBAD architectures were carried out. The angular dependencies of critical current density (Jc) are similar for both IBAD architectures. XRD measurements indicate good, c-axis aligned YBCO films. Transmission electron microscopy (TEM) images reveal that microstructures of YBCO/LMO/IBAD (MgO) and YBCO/LMO/homo-epi MgO/IBAD (MgO) templates are similar. These results demonstrate the strong potential of using LMO as a single cap layer directly on IBAD (MgO) for the development of a simplified IBAD architecture.

  5. A YBCO RF-SQUID magnetometer and its applications

    NASA Technical Reports Server (NTRS)

    Luwei, Zhou; Jingwu, Qiu; Xienfeng, Zhang; Zhiming, Tank; Yongjia, Qian

    1990-01-01

    An applicable RF-superconducting quantum interference detector (SQUID) magnetometer was made using a bulk sintered yttrium barium copper oxide (YBCO). The temperature range of the magnetometer is 77 to 300 K and the field range 0 to 0.1T. At 77 K, the equivalent flux noise of the SQUID is 5 x 10 to minus 4 power theta sub o/square root of Hz at the frequency range of 20 to 200 Hz. The experiments show that the SQUID noise at low-frequency end is mainly from 1/f noise. A coil test shows that the magnetic moment sensitivity delta m is 10 to the minus 6th power emu. The RF-SQUID is shielded in a YBCO cylinder with a shielding ability B sub in/B sub ex of about 10 to the minus 6th power when external dc magnetic field is about a few Oe. The magnetometer is successfully used in characterizing superconducting thin films.

  6. Contact characteristics for YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Sakai, Tomokazu; Sawa, Koichiro; Tomita, Masaru; Murakami, Masato

    2003-10-01

    We have studied the contact characteristics of two resin-impregnated YBCO (a composite of YBa 2Cu 3O y and Y 2BaCuO 5) bulk superconductors in mechanical contact. A switching phenomenon could be observed at a threshold current or a transfer current value in the V- I curves of the YBCO contact. The transfer current exceeded the previous value of 13.5 A at 77 K in the contact when the sample surfaces were carefully polished. The present results suggest that a pair of YBCO blocks might be applicable to the mechanical persistent current switch for superconducting magnetic energy storage and other superconducting systems run in a persistent current mode.

  7. Characterization of superconducting YBCO/polyacrylonitrile composites

    NASA Astrophysics Data System (ADS)

    Schlesinger, Y.; Mogilko, E.

    1994-10-01

    The elasto-mechanical and transport properties of HTSC YBCO/polyacrylonitrile (PAN) composites have been investigated. The results indicate clearly the effect of PAN presence on the porosity, microstructure, crack-stability and toughness, and grain-surface pinning strength. At 35% PAN fraction an extensive bridgelike linking network develops, which results in a dramatic increase of the crack-stability and an increased fluxon mobility. In contrast to other reported SC/polymer systems, the YBCO/ PAN composite exhibits a transport current resistive transition even at relatively high PAN concentration. A comparison of finegrain and coarse-grain YBCO ceramic characteristics allows a better understanding of the role played by the PAN host.

  8. Modified Lanthanum Zirconium Oxide Buffer for Low-Cost, High Performance YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan; Li, Xiaoping; Specht, Eliot D; Wee, Sung Hun; Cantoni, Claudia; Goyal, Amit; Rupich, M. W.

    2010-01-01

    Lanthanum Zirconium Oxide, La2Zr2O7 (LZO) has been developed as a potential replacement barrier layer in the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed/Ni-5W. The main focus of this research is to see (i) whether we can improve further the barrier properties of LZO; (ii) can we widen the LZO composition and still achieve the high performance?; and (iii) is it possible to reduce the number of buffer layers? We report a systematic investigation of the LZO film growth with varying compositions of La:Zr ratio in the La2O3-ZrO2 system. Using metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of LaxZr1-xOy (x = 0.2-0.6) on standard Y2O3 buffered Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial LZO phase without the (111) texture can be achieved in a wider compositional window of x = 0.2-0.6 in LaxZr1-xOy. Both CeO2 cap layers and MOD-YBCO films were grown 2 epitaxially on these modified LZO barriers. Transport property measurements indicate that we can achieve a higher critical current, Ic of 274-292 A/cm at 77 K and self-field on MOD-YBCO films grown on LaxZr1-xOy (x = 0.4-0.6) films. These results indicate that LZO films can be grown with a wider compositional window and still achieve high performance YBCO coated conductors. In addition, epitaxial MOD LaxZr1-xOy (x = 0.25) films were grown directly on biaxially textured Ni-3W substrates. About 3 m thick YBCO films with a Jc of 0.55 MA/cm2 at 77 K and 0.01 T were grown on a single MOD LZO buffered Ni-3W substrate using pulsed laser deposition. This work promises a route for producing simplified buffer architecture for RABiTS based YBCO coated conductors.

  9. Theoretical analysis of a YBCO squirrel-cage type induction motor based on an equivalent circuit

    NASA Astrophysics Data System (ADS)

    Morita, G.; Nakamura, T.; Muta, I.

    2006-06-01

    A HTS induction motor, with a HTS squirrel-cage rotor, is analysed using an electrical equivalent circuit. The squirrel-cage winding in the rotor consists of rotor bars and end rings, and both are considered to be made of YBCO film conductors. A wide range of electric field versus current density in YBCO film is formulated based on the Weibull function, and analysed as a non-linear resistance in the equivalent circuit. It is shown that starting and accelerating torques of the HTS induction motor are improved drastically compared to those of a conventional induction motor. Furthermore, large synchronous torque can also be realized by trapping the magnetic flux in the rotor circuit because of the persistent current mode.

  10. The influence of strain on the dielectric behavior of (Ba, Sr) Ti{sub 1+x}O{sub 3} thin films grown by LS-MOCVD on Pt/SiO{sub 2}/Si.

    SciTech Connect

    Streiffer, S. K.

    1998-10-14

    The strain state and its coupling to dielectric behavior have been investigated for (100) BST thin films deposited on Pt/SiO{sub 2}/Si at 640 C. It is estimated from x-ray diffraction that the in-plane biaxial strain is approximately 0.7%. We postulate that this is of sufficient magnitude to confine any spontaneous polarization to the plane of the film. The thickness-corrected dielectric behavior perpendicular to the substrate for these samples shows evidence of coupling to such an in-plane phase transition at approximately 390K, as manifested by deviation from Curie-Weiss-like behavior at this temperature.

  11. Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.; Smyth, C. C.; Sellai, A.; McCafferty, P. G.; Dawson, P.; Morrow, T.; Graham, W. G.

    1994-02-01

    Surface plasmons have been observed directly in YBCO films in an Otto-geometry attenuated total reflection measurement at a wavelength of 3.392 μm. The laser deposited films are c-axis oriented on an MgO substrate. This observation confirms theoretical deductions from complex dielectric function data. Measured data have been fitted to a theoretical model and are compared with the optical constants determined by Bozovic [1]. The investigations have been extended to films with other orientations to investigate whether material anisotropy is reflected in the results and non-metallic behaviour is found.

  12. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; List III, Frederick Alyious; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2011-01-01

    Abstract The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO cap/YSZ barrier/Y O seed on Ni-5%W metal tape. In the present work, we have identified CeO buffer layer as a potential replacement for Y O seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO (pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO phase with slightly improved out-of-plane texture compared to the texture of the underlying Ni-W substrates can be achieved in pure, undoped CeO samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO seeds using sputtering. Both sputtered CeO cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO /Ni-5W substrates. High critical currents per unit width, of 264 A/cm (critical current density, of 3.3 MA/cm ) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO seeds. These results indicate that CeO films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  13. Development of Solution Buffer Layers for RABiTS Based YBCO Coated Conductors

    SciTech Connect

    Paranthaman, Mariappan Parans; Qiu, Xiaofeng; Kim, Kyunghoon; Shi, D.; Zhang, Yifei; Li, Xiaoping; Sathyamurthy, Srivatsan; Thieme, C. L. H.; Rupich, M. W.

    2010-01-01

    The main objective of this research is to find a suitable alternate solution based seed layer for the standard RABiTS three-layer architecture of physical vapor deposited CeO2 cap/YSZ barrier/Y2O3 seed on Ni-5%W metal tape. In the present work, we have identified CeO2 buffer layer as a potential replacement for Y2O3 seeds. Using a metal-organic deposition (MOD) process, we have grown smooth, crack-free, epitaxial thin films of CeO2 (both pure and Zr, Cu and Gd-doped) directly on biaxially textured Ni-5W substrates in short lengths. Detailed XRD studies indicate that a single epitaxial CeO2 phase with slightly improved out-of-plane texture compared to the texture of underlying Ni-W substrates can be achieved in pure, undoped CeO2 samples. We have also demonstrated the growth of YSZ barrier layers on pure CeO2 seeds using sputtering. Both sputtered CeO2 cap layers and MOD-YBCO films were grown epitaxially on these YSZ-buffered MOD-CeO2/Ni-5W substrates. High critical currents per unit width, Ic of 264 A/cm (critical current density, Jc of 3.3 MA/cm2) at 77 K and 0.01 T was achieved for 0.8 m thick MOD-YBCO films grown on MOD-CeO2 seeds. These results indicate that CeO2 films can be grown directly on Ni-5W substrates and still support high performance YBCO coated conductors. This work holds promise for a route for producing low-cost buffer architecture for RABiTS based YBCO coated conductors.

  14. Structural defects in trifluoroacetate derived YBa2Cu3O7 thin films

    NASA Astrophysics Data System (ADS)

    Gazquez, J.; Coll, M.; Roma, N.; Sandiumenge, F.; Puig, T.; Obradors, X.

    2012-06-01

    We present an accurate description of the structural defects occurring within YBa2Cu3O7 (YBCO) films grown by chemical solution deposition (CSD) based on metal trifluoroacetates (TFA). Transmission electron microscopy (TEM) is the essential tool to identify and evaluate the microstructural defects that might act as natural pinning centers. Our study of TFA-YBCO thin films shows that the YBCO thin films contain a variety of extended defects, such as intergrowths, twin boundaries and dislocations, mainly in the basal plane. These extended defects and their interaction make up a rich variety of key microstructural features that play an important role in the YBCO thin films physical properties and performance.

  15. Fast epitaxial growth of a-axis- and c-axis-oriented YBa 2Cu 3O 7- δ films on (1 0 0) LaAlO 3 substrate by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Ito, Akihiko; Tu, Rong; Goto, Takashi

    2011-02-01

    a-axis- and c-axis-oriented YBa2Cu3O7-δ (YBCO) films were epitaxially grown on (1 0 0) LaAlO3 substrates by laser chemical vapor deposition. The preferred orientation in the YBCO film changed from the a-axis to the c-axis with increasing laser powers from 77 to 158 W (the deposition temperatures from 951 to 1087 K). The a-axis-oriented YBCO film showed in-plane epitaxial growth of YBCO [0 0 1]//LAO [0 0 1], and the c-axis-oriented YBCO film showed that of YBCO [0 1 0]//LAO [0 0 1]. A c-axis-oriented YBCO film with a high critical temperature of 90 K was prepared at a deposition rate of 90 μm h-1, about 2-1000 times higher than that of metalorganic chemical vapor deposition.

  16. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  17. Diamondlike carbon films as protective coatings for superconducting YBa2Cu3O7 films

    NASA Technical Reports Server (NTRS)

    Ganapathi, L.; Giles, S.; Rao, Rama

    1993-01-01

    We have investigated the use of diamondlike carbon (DLC) films for protecting superconducting YBCO films against degradation from exposure to moisture and acid. YBCO thin films on single crystal LaAlO3 and MgO substrates were deposited by laser ablation followed by DLC encapsulation. DLC films were deposited at pressures ranging from high vacuum to 0.1 Torr He. Substrate temperature was varied from 20 to 100 C during the deposition of DLC. The process compatibility of laser ablation was found convenient to sequentially deposit YBCO and DLC films from high purity stoichiometric targets. Epitaxial YBCO films on (100)LaAlO3 and (100)MgO substrates showed identical superconducting transitions before and after encapsulation by a DLC layer. The encapsulated films showed no degradation due to acid treatment or aging over a period of 45 days.

  18. Radiative efficiency of MOCVD grown QD lasers

    NASA Astrophysics Data System (ADS)

    Mawst, Luke; Tsvid, Gene; Dudley, Peter; Kirch, Jeremy; Park, J. H.; Kim, N.

    2010-02-01

    The optical spectral gain characteristics and overall radiative efficiency of MOCVD grown InGaAs quantum dot lasers have been evaluated. Single-pass, multi-segmented amplified spontaneous emission measurements are used to obtain the gain, absorption, and spontaneous emission spectra in real units. Integration of the calibrated spontaneous emission spectra then allows for determining the overall radiative efficiency, which gives important insights into the role which nonradiative recombination plays in the active region under study. We use single pass, multi-segmented edge-emitting in which electrically isolated segments allow to vary the length of a pumped region. In this study we used 8 section devices (the size of a segment is 50x300 μm) with only the first 5 segments used for varying the pump length. The remaining unpumped segments and scribed back facet minimize round trip feedback. Measured gain spectra for different pump currents allow for extraction of the peak gain vs. current density, which is fitted to a logarithmic dependence and directly compared to conventional cavity length analysis, (CLA). The extracted spontaneous emission spectrum is calibrated and integrated over all frequencies and modes to obtain total spontaneous radiation current density and radiative efficiency, ηr. We find ηr values of approximately 17% at RT for 5 stack QD active regions. By contrast, high performance InGaAs QW lasers exhibit ηr ~50% at RT.

  19. Improvement of Production Rate of YBCO Coated Conductors Fabricated by TFA-MOD Method

    NASA Astrophysics Data System (ADS)

    Nakaoka, K.; Yoshizumi, M.; Usui, Y.; Izumi, T.; Shiohara, Y.

    The metal-organic deposition (MOD) method using trifluoroacetate (TFA) salts is considered to be an effective method for inexpensively fabricating YBa2Cu3O7-y (YBCO) coated conductors with high critical current density property. The long-length TFA-MOD YBCO coated conductors have been fabricated by multi-turn reel-to-reel system. Increasing the thickness per single coating in the multi-turn reel-to-reel system is a cost-effective technique for fabrication of the precursor films in the calcination process since it reduces the number of coatings and shortens the processing time. In this work, we have developed a new starting solution consisting of non-fluorine salts of yttrium propionate and copper 2-ethylhexanoate with focusing on increasing the thickness per single coating for a high-rate fabrication of the YBCO coated conductors by the TFA-MOD method. The critical thickness per single coating of the precursor film fabricated from the new starting solution was improved to 0.44 μm/coat. Furthermore, the addition of diacetoneacrylamide in the new starting solution increased the critical thickness per single coating to 0.79 μm/coat. High critical current of 791 A/cm-width with high critical current density of 2.7 MA/cm2 was obtained using the new starting solution with diacetoneacrylamide at the thickness per single coating of 0.49 μm/coat.

  20. Study of the Nucleation and Growth of YBCO on Oxide Buffered Metallic Tapes

    SciTech Connect

    Solovyov, Vyacheslav

    2009-04-10

    The CRADA collaboration concentrated on developing the scientific understanding of the factors necessary for commercialization of high temperature superconductors (HTS) based on the YBCO coated conductor technology for electric power applications. The project pursued the following objectives: 1. Establish the correlations between the YBCO nuclei density and the properties of the CeO{sub 2} layer of the RABiTS{trademark} template; 2. Compare the nucleation and growth of e-beam and MOD based precursors on the buffered RABiTS{trademark} templates and clarify the materials science behind the difference; and 3. Explore routes for the optimization of the nucleation and growth of thick film MOD precursors in order to achieve high critical current densities in thick films. The CRADA work proceeded in two steps: 1. Detailed characterization of epitaxial ceria layers on “model” substrates, such as (001) YSZ and on RABiTS tapes; and 2. Study of YBCO nucleation on well-defined substrates and on long-length RABiTS.

  1. Rapid processing method for solution deposited YBa 2Cu 3O 7- δ thin films

    NASA Astrophysics Data System (ADS)

    Dawley, J. T.; Clem, P. G.; Boyle, T. J.; Ottley, L. M.; Overmyer, D. L.; Siegal, M. P.

    2004-02-01

    YBa 2Cu 3O 7- δ (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm 2 current density ( Jc) YBCO films, from multiple hours to ∼20 s in atmospheric pressure air. High quality, ∼0.2 μm thick YBCO films with Jc (77 K) values ⩾2 MA/cm 2 at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO 3. This process has also enabled Jc (77 K)=1.1 MA/cm 2 YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS™ textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable ∼$10/kA m solution deposited YBCO coated conductor wires.

  2. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    SciTech Connect

    Biswas, Pranab; Banerji, P.; Halder, Nripendra N.; Kundu, Souvik; Shripathi, T.; Gupta, M.

    2014-05-15

    The diffusion behavior of arsenic (As) and gallium (Ga) atoms from semi-insulating GaAs (SI-GaAs) into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 10{sup 18} cm{sup −3} and 2.8 × 10{sup 19} cm{sup −3} respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 10{sup 16} cm{sup −3}. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (As{sub Zn}–2V{sub Zn}), by substituting Zn atoms (As{sub Zn}) and thereby creating two zinc vacancies (V{sub Zn}). Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, Ga{sub Zn}. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  3. Self-seeded YBCO welding induced by Ag additives.

    SciTech Connect

    Puig, T.; Rodrigues, P., Jr.; Carrillo, A. E.; Obradors, X.; Zheng, H.; Welp, U.; Chen, L.; Claus, H.; Veal, B. W.; Crabtree, G. W.; Materials Science Division

    2001-11-01

    A new welding procedure for bulk melt-textured YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) superconducting tiles has been developed leading to high quality joints. The welding agent consists of a YBCO-Ag composite, which has a peritectic temperature 40 C lower than YBCO. It is shown that through a proper selection of thermal treatments, the effect of Ag additives can be confined to the immediate welding zone, thus allowing a self-seeded growth process of the YBCO/Ag composite initiated at the adjacent solid YBCO crystals. Local magneto-optical observations, as well as trapped field measurements produced by circulating currents in ring samples, reveal that the critical current across the weld joint is as high as that of bulk melt-textured YBCO.

  4. Superconducting, transition, and normal state photoresponse in YBCO observed at different temperatures

    SciTech Connect

    Bluzer, N. ); Fork, D.K.; Geballe, T.H.; Beasley, M.R.; Reizer, M.Y. . Dept. of Applied Physics); Greenfield, S.R.; Stankus, J.J.; Fayer, M. . Dept. of Chemistry)

    1991-03-01

    This paper reports on photoresponse of YBCO films measured with a new technique between 7 K and 200 K. YBCO was exposed to variable fluence ({le}3 {mu}J) 300 fsec 665 nm 2 KHz laser pulses. Photoinduced impedance changes in the samples biased with a dc current exhibited a transient voltage signal. Typically, the voltage signal had a sharp ({lt}50 psec) rise followed by a more gradual decay. Below T{sub c}, the response did not exhibit a simple exponential relaxation time. Relaxation occurred by a serial combination of fast ({approximately}200-700 psec) and slow ({approx}1 nsec) decay time constants. At T{sub c} the photoresponse was the highest and the relaxation time constant was typically greater than 1 nsec.

  5. Hybrid quantum systems with YBCO coplanar resonators and spin ensembles of organic radicals

    NASA Astrophysics Data System (ADS)

    Ghirri, Alberto; Bonizzoni, Claudio; Troiani, Filippo; Cassinese, Antonio; D'Arienzo, Massimiliano; Beverina, Luca; Affronte, Marco

    We have studied the coherent coupling of microwave photons in a superconducting coplanar resonator with a spin ensemble of stable open-shell organic radicals. We fabricated YBCO/sapphire coplanar resonators that show quality factors ~= 3*104 at 1.8 K, that remain remarkably stable in high magnetic field applied parallel to the YBCO film [QL (7 T) = 90% QL (0 T)]. Spin ensembles of (3,5-Dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl organic radical (PyBTM) show sharp EPR linewidth (8 MHz) due to the effect of the exchange narrowing. The frequency of the spin transition is tuned by means of the external magnetic field. We show the achievement of the strong collective coupling with the resonant photons with coupling rates exceeding 90 MHz at 1.8 K.

  6. Introduction of Artificial Pinning Center into PLD-YBCO Coated Conductor on IBAD and Self-Epitaxial CeO2 Buffered Metal Substrate

    SciTech Connect

    Kobayashi, H.; Yamada, Y.; Ishida, S.; Takahashi, K.; Konishi, M.; Ibi, A.; Miyata, S.; Kato, T.; Hirayama, T.; Shiohara, Y.

    2006-03-31

    In order to fabricate YBa2Cu3O7-x (YBCO) coated conductors with high critical current density Jc in magnetic fields, we fabricated YBCO coated conductors with artificial pinning centers by the pulsed laser deposition (PLD) method on a self epitaxial PLD-CeO2 layer and ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO) buffered Hastelloy tape. Artificial pinning centers were introduced by the PLD deposition using the yttria-stabilized zirconia (YSZ) oxide target (nano-dot method) and YBCO target including YSZ particles (mixed target method). In the experiments using YSZ oxide target, YSZ nano-dots were observed. They were approximately 15 nm in height and 10 nm to 70 nm in diameter. We found that the density of nano-dots was controlled by the number of laser pulses. These samples exhibited higher Jc than YBCO films in magnetic fields. Furthermore, a similar improvement of Jc was observed in the experiments using YBCO target including YSZ particles. TEM observation revealed that columnar nano-structure made of BaZrO3 was formed during YBCO deposition and it was effective for pinning. We call this new epitaxial nano-structure 'bamboo structure' from its anisotropic growth and morphology.

  7. Systematic Evaluation of Jc Decrease in Thick Film Coated Conductors

    SciTech Connect

    Alex Ignatiev; Dr. Amit Goyal

    2006-05-10

    Address both thickness dependence of Jc, in thick film YBCO coated conductors through an application of a suite of new measurement techniques to thick film wire samples produced by commercially viable coated conductor technologies.

  8. MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires

    SciTech Connect

    Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan; Bhuiyan, Md S; Martin, Patrick M; Aytug, Tolga; Kim, Kyunghoon; Fayek, Mostafa; Leonard, Keith J; Li, Jing; Zhang, W.; Rupich, Marty

    2007-01-01

    The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mum YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2Ogamma (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with Ic's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeOs. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an Ic of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

  9. Electrodeposited Biaxially Textured Buffer Layers for YBCO Superconductors

    SciTech Connect

    Bhattacharya, R.; Phok, S.; Zhao, W.; Norman, A.

    2009-06-01

    Non-vacuum electrodeposition (ED) was used to prepare simplified Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} and CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} buffer layers on a Ni-W substrate. Post-annealing conditions of electrodeposited precursor films were optimized to obtain high-quality biaxially textured buffer layers. The buffer layers were characterized by X-ray diffraction, optical profiling, and transmission electron microscopy (TEM). The effect of the cap layer thickness on the surface morphology and texture of the buffers was also studied. The microstructure of CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} was analyzed and compared to Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7}. The high-resolution TEM shows biaxially textured crystalline elctrodeposited Gd{sub 2}O{sub 3} and CeO{sub 2} cap layers on the electrodeposited Gd{sub 2}Zr{sub 2}O{sub 7} layers without any defects. YBa{sub 2}Cu{sub 3}O{sub 7}-delta (YBCO) superconductor was deposited by pulsed laser deposition (PLD) on the simplified ED-Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} and ED-CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} buffers. Transport current density of 3.3 MA/cm{sup 2} at 77 K was obtained for PLD YBCO deposited on ED-Gd{sub 2}O{sub 3}/Gd{sub 2}Zr{sub 2}O{sub 7} buffer layers.

  10. Novel tri-modal defect structure in Nb-doped MOCVD YBa2Cu3O7: A paradigm for pinning landscape control

    SciTech Connect

    Aytug, Tolga; Maroni, Victor A.; Chen, Z; Miller, Dean; Kropft, Jeremy; Zaluzec, Nestor J; Zuev, Yuri L; Specht, Eliot D; Paranthaman, Mariappan Parans

    2012-01-01

    Immobilization of vortices, or flux pinning, is both an enduring scientific issue and one of the most important problems in optimizing high temperature superconductors (HTS) for commercial use. Here, we demonstrate a practical approach to the creation of a multi-modal flux pinning landscape in YBa2Cu3O7 (YBCO) films employing an industrially scalable metal organic chemical vapor deposition technique. Through controlled additions of Nb, we have achieved a novel distribution of crystallographic defects that immobilize (pin) vortices in the YBCO matrix. That is, with only the addition of a single dopant element, a tri-modal defect structure that threads through the YBCO matrix laterally (parallel to the ab planes of YBCO), vertically (parallel to the YBCO c-axis), and isotropically in the form of random spherical defects is induced. For optimally doped samples, the influence of these multi-modal nanocrystalline defect structures on the flux pinning properties manifests itself as a superior improvement in the critical current density (Jc) for all magnetic field orientations. The results demonstrate the possibility of achieving an ideal flux pinning landscape (from an orientation and strength viewpoint), which permits the design of HTS wires with fully-tuneable properties by processes suitable for large-scale manufacturing.