Science.gov

Sample records for modal vehicle emission

  1. HEAVY-DUTY DIESEL VEHICLE MODAL EMISSION MODEL (HDDV-MEM): VOLUME I: MODAL EMISSION MODELING FRAMEWORK; VOLUME II: MODAL COMPONENTS AND OUTPUTS

    EPA Science Inventory

    This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...

  2. Integration of modal vehicle emission models with the TRANSIMS traffic simulation module

    SciTech Connect

    Williams, M.D.

    1997-04-01

    TRANSIMS is a set of integrated analytical and simulation models and supporting data bases. The TRANSIMS methods deal with individual behavioral units and proceed through several steps to estimate travel. TRANSIMS predicts trips for individual households, residents and vehicles rather than for zonal aggregations of households. TRANSIMS also predicts the movement of individual freight loads. A regional microsimulation executes the generated trips on the transportation network, modeling the individual vehicle interactions and predicting the transportation system performance. The purpose of the TRANSIMS environmental module is to translate traveler behavior into consequent air quality, energy consumption, and carbon dioxide emissions. There are four major tasks required to translate traveler behavior into environmental consequences: (1) estimate the emissions, (2) describe the atmospheric conditions into which the contaminants are emitted, (3) describe the local transport and dispersion, and (4) describe the chemical reactions that occur during transport and dispersion of the contaminants.

  3. Collection and evaluation of modal traffic data for determination of vehicle emission rates under certain driving conditions. Final report

    SciTech Connect

    Yu, L.

    1997-08-01

    This report presents a research effort for collecting the on-road vehicle emission data, developing the ONROAD emission estimation model and evaluating existing emission estimation models including the emission factor models MOBILE and EMFAC. The on-road emission data were collected from highway locations in Houston using a Remote Emission Sensor (RES) called Smog Dog, which was developed by the Santa Barbara Research Center (SBRC). The SMOG DOG is used to collect the emission concentrations of CO, HC, and NO{sub x}, as well as to simultaneously record a vehicle`s instantaneous speed value and acceleration/deceleration rates while its emission is detected. During the emission data collection, the ambient temperature and humidity were periodically recorded. The collected emission data are used to develop the ONROAD emission estimation model, which consists of a series of emission estimation equations. In these emission estimation equations, the emission rates are made functions of a vehicle`s instantaneous speed, acceleration/deceleration rate, ambient temperature and humidity. The emission factors that are derived from MOBILE and EMFAC are compared with the collected on-road emission data by emulating the standard FTP driving cycles using the ONROAD emission rates. Efforts are also made to compare the emission estimates in traffic simulation models with the on-road emission data. It is found that traffic simulation models considerably underestimate the on-road emissions, and thus these models are not recommended for use in performing any field vehicle emission analysis.

  4. Collection and evaluation of modal traffic data for determination of vehicle emission rates under certain driving conditions. Research report

    SciTech Connect

    Yu, L.

    1997-09-01

    This report presents a research effort for collecting the on-road vehicle emission data, developing the ONROAD emission estimation model and evaluating existing emission estimation models including the emission factor models MOBILE and EMFAC. The on-road emission data were collected from highway locations in Houston using a Remote Emission Sensor (RES) called Smog Dog, which was developed by the Santa Barbara Research Center (SBRC). The SMOG DOG is used to collect the emission concentrations of CO, HC, and NO{sub x}, as well as to simultaneously record a vehicle`s instantaneous speed value and acceleration/deceleration rates while its emission is detected. During the emission data collection, the ambient temperature and humidity were periodically recorded. The collected emission data are used to develop the ONROAD emission estimation model, which consists of a series of emission estimation equations. In these emission estimation equations, the emission rates are made functions of a vehicle`s instantaneous speed, acceleration/deceleration rate, ambient temperature and humidity. The emission factors that are derived from MOBILE and EMFAC are compared with the collected on-road emission data by emulating the standard FTP driving cycles using the ONROAD emission rates. Efforts are also made to compare the emission estimates in traffic simulation models with the on-road emission data. It is found that traffic simulation models considerably underestimate the on-road emissions, and thus these models are not recommended for use in performing any field vehicle emission analysis.

  5. Modal survey of the Brazilian launch vehicle

    NASA Astrophysics Data System (ADS)

    Carneiro, S. H. S.; Teixeira, H. S., Jr.; Pirk, R.; Arruda, J. R. F.

    This paper describes the Brazilian satellite launch vehicle modal analysis program being currently performed. A full scale mock-up of the solid propellant four-stage launcher will be tested in five different configurations. To simulate free-free boundary conditions, a pneumatic suspension system was developed, and its influence in the mock-up dynamic behavior was investigated. The theoretical FEM models and preliminary results of the modal test are shown, along with theoretical/experimental correlation discussions.

  6. DEPENDENCE OF NITRIC OXIDE EMISSIONS ON VEHICLE LOAD: RESULTS FROM THE GTRP INSTRUMENTED VEHICLE PROGRAM

    EPA Science Inventory

    The presentation discussed the dependence of nitric oxide (NO) emissions on vehicle load, bases on results from an instrumented-vehicle program. The accuracy and feasibility of modal emissions models depend on algorithms to allocate vehicle emissions based on a vehicle operation...

  7. Methane emissions from vehicles.

    PubMed

    Nam, E K; Jensen, T E; Wallington, T J

    2004-04-01

    Methane (CH4) is an important greenhouse gas emitted by vehicles. We report results of a laboratory study of methane emissions using a standard driving cycle for 30 different cars and trucks (1995-1999 model years) from four different manufacturers. We recommend the use of an average emission factor for the U.S. on-road vehicle fleet of (g of CH/g of CO2) = (15 +/- 4) x 10(-5) and estimate that the global vehicle fleet emits 0.45 +/- 0.12 Tg of CH4 yr(-1) (0.34 +/- 0.09 Tg of C yr(-1)), which represents < 0.2% of anthropogenic CH4 emissions. This estimate includes the effects of vehicle aging, cold start, and hot running emissions. The contribution of CH4 emissions from vehicles to radiative forcing of climate change is 0.3-0.4% of that of CO2 emissions from vehicles. The environmental impact of CH4 emissions from vehicles is negligible and is likely to remain so for the foreseeable future. PMID:15112800

  8. EMPIRICAL MODEL OF VEHICLE EMISSIONS

    EPA Science Inventory

    An empirical model that characterizes the relationship between equilibrium vehicle emission distributions and malfunction, repair, and replacement rates by splitting vehicles into two emission categories has been developed. ross emitters and clean vehicles are defined by the magn...

  9. Modal analysis of PATHFINDER unmanned air vehicle

    SciTech Connect

    Woehrle, T.G.; Costerus, B.W.; Lee, C.L.

    1994-10-19

    An experimental modal analysis was performed on PATHFINDER, a 450-lb, 100-ft wing span, flying-wing-design aircraft powered by solar/electric motors. The aircraft was softly suspended and then excited using random input from a long-stroke shaker. Modal data was taken from 92 measurement locations on the aircraft using newly designed, lightweight, tri-axial accelerometers. A conventional PC-based data acquisition system provided data handling. Modal parameters were calculated, and animated mode shapes were produced using SMS STARStruct{trademark} Modal Analysis System software. The modal parameters will be used for validation of finite element models, optimum placement of onboard accelerometers during flight testing, and vibration isolation design of sensor platforms.

  10. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  11. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  12. A modal approach to vehicular emissions and fuel consumption model development.

    PubMed

    Hung, Wing-Tat; Tong, Hing-Yan; Cheung, Chun-Shun

    2005-10-01

    This study reports on the analysis of emissions and fuel consumption from motor vehicles using a modal approach. The four standard driving modes are idling, accelerating, cruising, and decelerating. On-road data were collected using instrumented test vehicles traveling many times through the urban areas of Hong Kong. A model was developed for estimating vehicular fuel consumption and emissions as a function of instantaneous speed and driving mode. Piecewise interpolation functions were proposed for each nonidling driving mode. Idling emission and fuel consumption rates were estimated as negative exponential functions of idling time. Preliminary modeling results showed good agreements for the test vehicles and indicated that the on-road measurements are feasible for the development of modal emission and fuel consumption models. PMID:16295267

  13. OZONE PRECURSOR EMISSIONS FROM ALTERNATIVELY FUELED VEHICLES

    EPA Science Inventory

    Smog chamber tests were conducted using automobile exhaust gas generated during emission tests with a group of alternatively fueled vehicles. he tests were designed to evaluate the photochemical characteristics of organic emissions from vehicles operating on compressed natural ga...

  14. Vehicle emission sensing and evaluation using the Smog Dog in Houston

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Burrier, Stanley W.

    1997-02-01

    The advanced remote vehicle emission sensing equipment, Smog Dog, is a cost-effective infrared technology designed to measure the levels of vehicle exhaust. This paper presents and demonstrates a research effort for using the Smog Dog to conduct the on-road vehicle exhaust emission collection in the city of Houston, develop modal sensitive emission models and evaluate the EPA approved MOBILE5A emission factor model. The vehicle emission data collection is designed in a manner that various vehicle's modal events such as the acceleration and deceleration under the on-road driving conditions are considered. The Smog Dog remote mission sensor can not only collect the emission concentrations of hydrocarbon, carbon monoxide and oxide of nitrogen but also simultaneously detect the vehicles' instantaneous speeds and acceleration rates. Thus a vehicle's emission rates, which are converted from the collected emission concentration levels, can be functions of its instantaneous speed and acceleration rate. In addition, the Federal Test Procedure driving cycles are emulated using the emission versus speed profile relationships and the resulted emission rate for a predetermined average driving speed can then be compared with the emission factors produced by MOBILE5A. Since the emission models, that are developed based on the on-road emission data collected using the Smog Dog, naturally reflect the on-road driving conditions and the vehicle fleet combinations, they can potentially be used to evaluate the vehicle exhaust emission implications of various advanced traffic management strategies.

  15. Emissions from US waste collection vehicles

    SciTech Connect

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ► Life-cycle emissions for alternative fuel technologies. ► Fuel consumption of alternative fuels for waste collection vehicles. ► Actual driving cycle of waste collection vehicles. ► Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  16. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    PubMed

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed. PMID:19924983

  17. Variability of heavy duty vehicle operating mode frequencies for prediction of mobile emissions. Report for March 1995--March 1996

    SciTech Connect

    Grant, C.D.; Guensler, R.; Meyer, M.D.

    1996-01-01

    The paper discusses a new geographic information system (GIS)-based modal emissions model being developed with EPA and Georgia Tech to account for vehicle load conditions that will significantly improve the spatial resolution of emissions estimates. The GIS-based modal research model employs detailed subfleet engine and emissions characteristics and the speed/acceleration profiles for vehicle activity along links in the transportation system. Composition of the vehicle subfleet affects the amount of emissions produced under various operating conditions, dependent upon the load induced by the vehicle and driver, and the physical constraints of the vehicle. The aggregate modal frequencies are compared across vehicle classes to show differences in how heavy duty vehicles are operated.

  18. TRANSIT BUS LOAD-BASED MODAL EMISSION RATE MODEL DEVELOPMENT

    EPA Science Inventory

    Heavy-duty diesel vehicles (HDDVs) operations are a major source of oxides of nitrogen (NOx) and particulate matter (PM) emissions in metropolitan area nationwide. Although HD¬DVs constitute a small portion of the on-road fleet, they typically contribute more than 45% of NOx and ...

  19. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  20. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  1. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel. PMID:27112132

  2. Nitrous oxide emissions from light duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Belisle, Sheri L.; Rieger, Paul

    Nitrous oxide (N 2O) emissions measurements were made on light duty gasoline and light duty diesel vehicles during chassis dynamometer testing conducted at the Environment Canada and California Air Resources Board vehicle emissions laboratories between 2001 and 2007. Per phase and composite FTP emission rates were measured. A subset of vehicles was also tested using other driving cycles to characterize emissions as a function of different driving conditions. Vehicles were both new (<6500 km) and in-use (6500-160,000 km) and were tested on low sulfur gasoline (<30 ppm) or low sulfur diesel (<300 ppm). Measurements from selected published studies were combined with these new measurements to give a test fleet of 467 vehicles meeting both US EPA and California criteria pollutant emissions standards between Tier 0 and Tier 2 Bin 3 or SULEV. Aggregate distance-based and fuel-based emission factors for N 2O are reported for each emission standard and for each of the different test cycles. Results show that the distinction between light duty automobile and light duty truck is not significant for any of the emission standards represented by the test fleet and the distinction between new and aged catalyst is significant for vehicles meeting all emission standards but Tier 2. This is likely due to the relatively low mileage accumulated by the Tier 2 vehicles in this study as compared to the durability requirement of the standard. The FTP composite N 2O emission factors for gasoline vehicles meeting emission standards more stringent than Tier 1 are substantially lower than those currently used by both Canada and the US for the 2005 inventories. N 2O emission factors from test cycles other than the FTP illustrate the variability of emission factors as a function of driving conditions. N 2O emission factors are shown to strongly correlate with NMHC/NMOG emission standards and less strongly with NO X and CO emission standards. A review of several published reports on the effect

  3. Remote vehicle emissions sensing feasibility studies

    SciTech Connect

    Rendahl, C.S.

    1996-12-31

    Previous papers have addressed quality assurance efforts with regard to collecting data of known quality, data validation, and preliminary analysis of Wisconsin`s Remote Vehicle Emissions Sensing (RVES) project conducted in 1993 and 1994. This paper will analyze in greater detail the field data collected over the two years of studies. This analysis included making comparisons of mass emissions of total hydrocarbon emissions with respect to vehicle model year and total contribution to tropospheric ozone forming emissions in Southeastern Wisconsin. A simple analysis of errors of commission and errors of omission as a function of varying RVES cut points will be reviewed. And finally, potential emission reductions gained from the use of remote vehicle sensing will also be explored. 5 figs., 4 tabs.

  4. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  5. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  6. Modal test/analysis correlation for Centaur G Prime launch vehicle

    NASA Technical Reports Server (NTRS)

    Chen, J.; Rose, T.; Trubert, M.; Wada, B.; Shaker, F.

    1986-01-01

    A modal test was performed on the Centaur G Prime launch vehicle for the purpose of verifying the loads analysis model. This paper describes the procedure by which modal parameters obtained in this test were correlated with the corresponding analytical predictions. Based on this correlation the stiffness model of the shuttle trunnion system has been modified. The evolution of the model updating and the final results are described.

  7. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  8. Ares I-X Launch Vehicle Modal Test Measurements and Data Quality Assessments

    NASA Technical Reports Server (NTRS)

    Templeton, Justin D.; Buehrle, Ralph D.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The Ares I-X modal test program consisted of three modal tests conducted at the Vehicle Assembly Building at NASA s Kennedy Space Center. The first test was performed on the 71-foot 53,000-pound top segment of the Ares I-X launch vehicle known as Super Stack 5 and the second test was performed on the 66-foot 146,000- pound middle segment known as Super Stack 1. For these tests, two 250 lb-peak electro-dynamic shakers were used to excite bending and shell modes with the test articles resting on the floor. The third modal test was performed on the 327-foot 1,800,000-pound Ares I-X launch vehicle mounted to the Mobile Launcher Platform. The excitation for this test consisted of four 1000+ lb-peak hydraulic shakers arranged to excite the vehicle s cantilevered bending modes. Because the frequencies of interest for these modal tests ranged from 0.02 to 30 Hz, high sensitivity capacitive accelerometers were used. Excitation techniques included impact, burst random, pure random, and force controlled sine sweep. This paper provides the test details for the companion papers covering the Ares I-X finite element model calibration process. Topics to be discussed include test setups, procedures, measurements, data quality assessments, and consistency of modal parameter estimates.

  9. Large-deformation modal coordinates for nonrigid vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Fleischer, G. E.

    1972-01-01

    The derivation of minimum-dimension sets of discrete-coordinate and hybrid-coordinate equations of motion of a system consisting of an arbitrary number of hinge-connected rigid bodies assembled in tree topology is presented. These equations are useful for the simulation of dynamical systems that can be idealized as tree-like arrangements of substructures, with each substructure consisting of either a rigid body or a collection of elastically interconnected rigid bodies restricted to small relative rotations at each connection. Thus, some of the substructures represent elastic bodies subjected to small strains or local deformations, but possibly large gross deformations, in the hybrid formulation, distributed coordinates referred to herein as large-deformation modal coordinates, are used for the deformations of these substructures. The equations are in a form suitable for incorporation into one or more computer programs to be used as multipurpose tools in the simulation of spacecraft and other complex electromechanical systems.

  10. [Emission Factors of Vehicle Exhaust in Beijing].

    PubMed

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Qu, Song

    2015-07-01

    Based on the investigation of basic data such as vehicle type composition, driving conditions, ambient temperature and oil quality, etc., emission factors of vehicle exhaust pollutants including carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) and particulate matter(PM) were calculated using COPERT IV model. Emission factors of typical gasoline passenger cars and diesel trucks were measured using on-board measurement system on actual road. The measured and modeled emission factors were compared and the results showed that: the measured emission factors of CO, NOx and HC were 0. 96, 0. 64 and 4. 89 times of the modeled data for passenger cars conforming to the national IV emission standard. For the light, medium and heavy diesel trucks conforming to the national III emission standard, the measured data of CO emission factors were 1.61, 1. 07 and 1.76 times of the modeled data, respectively, the measured data of NOx emission factors were 1. 04, 1. 21 and 1. 18 times of the modeled data, and the measured data of HC emission factors were 3. 75, 1. 84 and 1. 47 times of the modeled data, while the model data of PM emission factors were 1. 31, 3. 42 and 6. 42 times of the measured data, respectively. PMID:26489301

  11. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  12. 40 CFR 205.52 - Vehicle noise emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured...

  13. 40 CFR 205.52 - Vehicle noise emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured...

  14. Sound Emission Limits for Rail Vehicles

    NASA Astrophysics Data System (ADS)

    KURZE, U. J.; DIEHL, R. J.; WEIßENBERGER, W.

    2000-03-01

    The statistical evaluation of measured sound emission levels from individual rail vehicles enables a clear distinction to be made between disc-braked passenger vehicles with and without wheel absorbers and tread-braked vehicles equipped with cast-iron brake blocks. A retrofit programme for replacement of cast-iron blocks by composite (K-, L- or LL-) blocks seems feasible within the next five years. The performance and durability of the new brake blocks provides a substantial noise reduction at no or limited additional costs, depending on the need for new wheels. Additional wheel damping is desirable but not readily available at sufficiently low cost. Based on the experience from an experimental train equipped with a quiet locomotive, bogie shrouds and matching low-profile barriers along the track, sound emission limits are proposed which are described in two steps.

  15. EFFECT OF VEHICLE CHARACTERISTICS ON UNPAVED ROAD DUST EMISSIONS

    EPA Science Inventory

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road.

  16. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission data vehicle selection. 86...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1828-01 Emission data vehicle selection. (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected...

  17. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Emission data vehicle selection. 86...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1828-01 Emission data vehicle selection. (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected...

  18. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission data vehicle selection. 86...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1828-01 Emission data vehicle selection. (a) FTP and SFTP testing. Within each test group, the vehicle configuration shall be selected...

  19. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Motor vehicle emissions budgets. 52.244... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.244 Motor vehicle emissions budgets. (a) Approval of the motor vehicle emissions budgets for the following ozone rate-of-progress...

  20. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  1. Development of the smooth orthogonal decomposition method to derive the modal parameters of vehicle suspension system

    NASA Astrophysics Data System (ADS)

    Rezaee, Mousa; Shaterian-Alghalandis, Vahid; Banan-Nojavani, Ali

    2013-04-01

    In this paper, the smooth orthogonal decomposition (SOD) method is developed to the light damped systems in which the inputs are time shifted functions of one or more random processes. An example of such practical cases is the vehicle suspension system in which the random inputs due to the road roughness applied to the rear wheels are the shifted functions of the same random inputs on the front wheels with a time lag depending on the vehicle wheelbase as well as its velocity. The developed SOD method is applied to determine the natural frequencies and mode shapes of a certain vehicle suspension system and the results are compared with the true values obtained by the structural eigenvalue problem. The consistency of the results indicates that the SOD method can be applied with a high degree of accuracy to calculate the modal parameters of vibrating systems in which the system inputs are shifted functions of one or more random processes.

  2. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  3. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    EPA Science Inventory

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  4. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  5. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) West Virginia § 52.2532 Motor vehicle emissions budgets. (a) EPA approves the following revised 2009 and 2018 motor vehicle...

  6. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Motor vehicle emissions budgets. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) West Virginia § 52.2532 Motor vehicle emissions budgets. (a) EPA approves the following revised 2009 and 2018 motor vehicle...

  7. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission data vehicle selection. 86... Light-Duty Trucks § 86.1724-01 Emission data vehicle selection. (a) (b) The provisions of § 86.1828-01... on any vehicles within the engine family, the selection of engine codes will be limited...

  8. 40 CFR 86.1828-10 - Emission data vehicle selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission data vehicle selection. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles,...

  9. VEEP - Vehicle Economy, Emissions, and Performance program

    NASA Technical Reports Server (NTRS)

    Heimburger, D. A.; Metcalfe, M. A.

    1977-01-01

    VEEP is a general-purpose discrete event simulation program being developed to study the performance, fuel economy, and exhaust emissions of a vehicle modeled as a collection of its separate components. It is written in SIMSCRIPT II.5. The purpose of this paper is to present the design methodology, describe the simulation model and its components, and summarize the preliminary results. Topics include chief programmer team concepts, the SDDL design language, program portability, user-oriented design, the program's user command syntax, the simulation procedure, and model validation.

  10. Development and preliminary evaluation of a particulate matter emission factor model for European motor vehicles.

    PubMed

    Singh, R B; Colls, J J

    2000-10-01

    Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 microns, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM2.5, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict

  11. 40 CFR 205.52 - Vehicle noise emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle... of a new motor vehicle subject to the standards prescribed in this paragraph shall, prior to...

  12. 40 CFR 86.1724-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles certified to the SFTP exhaust emission standards, if air conditioning is projected to be available... which have air conditioning available and would require that any vehicle selected under this section has air conditioning installed and operational....

  13. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  14. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    PubMed

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city. PMID:19143403

  15. A low emission vehicle procurement approach for Washington state

    NASA Astrophysics Data System (ADS)

    McCoy, G. A.; Lyons, J. K.; Ware, G.

    1992-06-01

    The Clean Air Washington Act of 1991 directs the Department of Ecology to establish a clean-fuel vehicle standard. The Department of General Administration shall purchase vehicles based on this standard beginning in the Fall of 1992. The following summarizes the major issues effecting vehicle emissions and their regulation, and present a methodology for procuring clean-fuel vehicles for the State of Washington. Washington State's air quality problems are much less severe than in other parts of the country such as California, the East Coast and parts of the Mid West. Ozone, which is arguably the dominant air quality problem in the US, is a recent and relatively minor issue in Washington. Carbon monoxide (CO) represents a more immediate problem in Washington, with most of the state's urban areas exceeding national CO air quality standards. Since the mid-1960's, vehicle tailpipe hydrocarbon and carbon monoxide emissions have been reduced by 96 percent relative to precontrol vehicles. Nitrogen oxide emissions have been reduced by 76 percent. Emissions from currently available vehicles are quite low with respect to in-place exhaust emission standards. Cold-start emissions constitute about 75 percent of the total emissions measured with the Federal Test Procedure used to certify motor vehicles. There is no currently available 'inherently clean burning fuel'. In 1991, 3052 vehicles were purchased under Washington State contract. Provided that the same number are acquired in 1993, the state will need to purchase 915 vehicles which meet the definition of a 'clean-fueled vehicle'.

  16. Calculators for Estimating Greenhouse Gas Emissions from Public Transit Agency Vehicle Fleet Operations

    SciTech Connect

    Weigel, Brent; Southworth, Frank; Meyer, Michael D

    2010-01-01

    This paper reviews calculation tools available for quantifying the greenhouse gas emissions associated with different types of public transit service, and their usefulness in helping a transit agency to reduce its carbon footprint through informed vehicle and fuel procurement decisions. Available calculators fall into two categories: registry/inventory based calculators most suitable for standardized voluntary reporting, carbon trading, and regulatory compliance; and multi-modal life cycle analysis calculators that seek comprehensive coverage of all direct and indirect emissions. Despite significant progress in calculator development, no single calculator as yet contains all of the information needed by transit agencies to develop a truly comprehensive, life cycle analysis-based accounting of the emissions produced by its vehicle fleet operations, and for a wide range of vehicle/fuel technology options.

  17. A GIS-BASED MODAL MODEL OF AUTOMOBILE EXHAUST EMISSIONS

    EPA Science Inventory

    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation s...

  18. Achieving Acceptable Air Quality: Some Reflections on Controlling Vehicle Emissions

    NASA Astrophysics Data System (ADS)

    Calvert, J. G.; Heywood, J. B.; Sawyer, R. F.; Seinfeld, J. H.

    1993-07-01

    Motor vehicle emissions have been and are being controlled in an effort to abate urban air pollution. This article addresses the question: Will the vehicle exhaust emission control and fuel requirements in the 1990 Clean Air Act Amendments and the California Air Resources Board regulations on vehicles and fuels have a significant impact? The effective control of in-use vehicle emissions is the key to a solution to the motor vehicle part of the urban air pollution problem for the next decade or so. It is not necessary, except perhaps in Southern California, to implement extremely low new car emission standards before the end of the 20th century. Some of the proposed gasoline volatility and composition changes in reformulated gasoline will produce significant reductions in vehicle emissions (for example, reduced vapor pressure, sulfur, and light olefin and improved high end volatility), whereas others (such as substantial oxygenate addition and aromatics reduction) will not.

  19. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. PMID:23434127

  20. A vehicle-specific power approach to speed- and facility-specific emissions estimates for diesel transit buses.

    PubMed

    Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M

    2008-11-01

    Emissions during a trip often depend on transient vehicle dynamics that influence the instantaneous engine load. Vehicle specific power (VSP) is a proxy variable for engine load that has been shown to be highly correlated with emissions. This study estimates roadway link average emission rates for diesel-fueled transit buses based on link mean speeds, using newly defined VSP modes from data gathered by a portable emissions monitoring system. Speed profiles were categorized by facility type and mean travel speed, and stratified into discrete VSP modes. VSP modal average emission rates and the time spent in the corresponding VSP modes were then used to make aggregate estimates of total and average emission rates for a road link. The average emission rates were sensitive to link mean speed, but not to facility type. A recommendation is made regarding the implementation of link average emission rates in conjunction with transportation models for the purpose of estimating regional emissions for diesel transit buses. PMID:19031891

  1. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    EPA Science Inventory

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  2. CONTROL OF MOTOR VEHICLE EMISSIONS - THE U.S. EXPERIENCE

    EPA Science Inventory

    An historical overview of the U.S. experience with controlling emissions from highway motor vehicles is presented. he evolution of new motor vehicle emissions certification practice, end-of-assembly-line inspection, in-use surveillance and recall, inspection and maintenance, and ...

  3. Exposure to motor vehicle emissions: An intake fraction approach

    SciTech Connect

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  4. Modal identities for elastic bodies, with application to vehicle dynamics and control

    NASA Technical Reports Server (NTRS)

    Hughes, P. C.

    1980-01-01

    It is a standard procedure to analyze a flexible vehicle in terms of its vibration frequencies and mode shapes. However, the entire mode shape is not needed per se, but two integrals of the mode shape, pi and hi, which correspond to the momentum and angular momentum in Mode i. Together with the natural frequencies omega-i, these modal parameters satisfy several important identities, 25 of which are derived in this paper. Expansions in terms of both constrained and unconstrained modes are considered. A simple illustrative example is included. The paper concludes with some remarks on the theoretical and practical utility of these results, and several potential extensions to the theory are suggested.

  5. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated

  6. Non-exhaust PM emissions from electric vehicles

    NASA Astrophysics Data System (ADS)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  7. The importance of high vehicle power for passenger car emissions

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  8. Light duty diesel vehicle emissions at high altitude

    SciTech Connect

    Hollman, T.W.; Gallagher, J.L.

    1983-06-01

    Twenty 1981-82 light-duty diesel vehicles were randomly selected from Denver metropolitan vehicle registration lists for Federal Test Procedure (FTP) emissions testing. Opacity levels were monitored during the entire FTP and during various ''short tests'', which were designed to detect FTP failures and/or excessively high opacity levels under loaded driving conditions. Regulated emissions from this fleet of vehicles were lower than an earlier study conducted in Denver of 1978-80 light-duty diesel vehicles. Five vehicles which exceeded current federal emissions standards received restorative maintenance, i.e., high altitude adjustments and kits, air filter changes, and fuel injection system maintenance (as needed). Following restorative maintenance these vehicles were retested under the third phase of the FTP (Hot transient section) to evaluate the effect of the adjustment on emissions and opacity. Both increases and decreases were seen on emissions and opacity as a result of these procedures. Hydrocarbons, carbon monoxide and particulate emissions averaged decreases as a result of the adjustment maintenance, while oxides of nitrogen and mean opacity averaged increases. Mean opacity values of FTP opacity levels were calculated on all 20 vehicles. Mean opacity was used only to compare individual vehicles and groups of vehicles. The ''passed'' fleet (based on FTP regulated emissions standards) did show a lower mean opacity than the ''failed'' fleet. The restorative maintenance procedures increased mean opacity levels on four of the five ''failed'' vehicles. Initial review of the short tests did not show any incriminating evidence for detecting FTP failures. However, further analysis is on-going as of this writing to determine the value of individual short tests in detecting FTP failures and/or excessive smoke levels from light-duty diesel vehicles.

  9. Enhancing Laser Induced Plasma Emissions using Various Excitation Modalities

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Akpovo, Charlemagne; Gebreegziabher, Samson; Martinez, Jorge, Jr.

    2008-11-01

    Detection of hazardous materials with Laser Induced Breakdown Spectroscopy (LIBS) requires a detailed understanding of the sample matrix as well as the surrounding environment. We report on our efforts to understand and manipulate the continuum and atmospheric levels while enhancing surface and substrate material identifications. Comparisons are made between: single pulse (SP) nanosecond (ns); SP femtosecond (fs); SP fs-self-channeled (fs-sc); Dual pulse (DP) ns; DP ns -- fs; and DP ns fs-sc; and multi--pulse Continuous Wave (CW) plasmas formed on the sample surface. Plasma emission spectra from atmospheric oxygen and nitrogen, as well as aluminum and Copper substrates, and hazardous oxygen and nitrogen rich materials residues are analyzed.

  10. 40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emissions standards for Inherently Low-Emission Vehicles. 88.311-93 Section 88.311-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions standards for Inherently...

  11. Multivariate analysis between driving condition and vehicle emission for light duty gasoline vehicles during rush hours

    NASA Astrophysics Data System (ADS)

    Qu, Liang; Li, Mengliang; Chen, Dong; Lu, Kaibo; Jin, Taosheng; Xu, Xiaohong

    2015-06-01

    Fourteen light-duty gasoline vehicles were tested by an OBS-2200 portable emission measurement system (PEMS). Vehicle speed, acceleration and emission rates of HC, CO, NOx and CO2 were recorded during rush hours (7:00-9:00 and 16:30-18:30 local time) in Tianjin, China. The emission factors of HC, CO and NOx for carbureted vehicles were 10, 4, 3 times higher than those with MPI (multi-points injection) and TWC (three-way catalytic converter), respectively. The emission factors of CO2 for carburetor car were 29% lower than those with MPI and TWC. For both types of vehicles, the Pearson correlation coefficients, between speed and CO2 emission in the mode of accelerating as well as between VSP (vehicle specific power) and CO2 emission when VSP > 0, remained relatively high (r > 0.5, p < 0.001) and stable. This high repeatability of correlation was also found for NOx in carburetor vehicles. Linear trends between emission rates and VSP (bin-averaged data) were observed for NOx and CO2 from MPI vehicles, and HC, NOx and CO2 from carburetor vehicles.

  12. New Approaches for Estimating Motor Vehicle Emissions in Megacities

    NASA Astrophysics Data System (ADS)

    Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.

    2007-12-01

    The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.

  13. VEEP: A Vehicle Economy, Emissions, and Performance simulation program

    NASA Technical Reports Server (NTRS)

    Klose, G. J.

    1978-01-01

    The purpose of the VEEP simulation program was to: (1) predict vehicle fuel economy and relative emissions over any specified driving cycle; (2) calculate various measures of vehicle performance (acceleration, passing manuevers, gradeability, top speed), and (3) give information on the various categories of energy dissipation (rolling friction, aerodynamics, accessories, inertial effects, component inefficiences, etc.). The vehicle is described based on detailed subsystem information and numerical parameters characterizing the components of a wide variety of self-propelled vehicles. Conventionally arranged heat engine powered automobiles were emphasized, but with consideration in the design toward the requirement of other types of vehicles.

  14. High-resolution mapping of motor vehicle carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of ~5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  15. Hydrogen cyanide exhaust emissions from in-use motor vehicles.

    PubMed

    Baum, Marc M; Moss, John A; Pastel, Stephen H; Poskrebyshev, Gregory A

    2007-02-01

    Motor vehicle exhaust emissions are known to contain hydrogen cyanide (HCN), but emission rate data are scarce and, in the case of idling vehicles, date back over 20 years. For the first time, vehicular HCN exhaust emissions from a modern, in-use fleet at idle have been measured. The 14 tested light duty motor vehicles were operating at idle as these conditions are associated with the highest risk exposure scenarios (i.e., enclosed spaces). Vehicular HCN was detected in 89% of the sampled exhaust streams and did not correlate with instantaneous air-fuel-ratio or with any single, coemitted pollutant. However, a moderate correlation between HCN emissions and the product of carbon monoxide and nitric oxide emissions was observed under cold-start conditions. Fleet average, cold-start, undiluted HCN emissions were 105 +/- 97 ppbV (maximum: 278 ppbV), whereas corresponding emissions from vehicles operating under stabilized conditions were 79 +/- 71 ppbV (maximum: 245 ppbV); mean idle fleet HCN emission rates were 39 +/- 35 and 21 +/- 18 microg-min(-1) for cold-start and stabilized vehicles, respectively. The significance of these results is discussed in terms of HCN emissions inventories in the South Coast Air Basin of California and of health risks due to exposure to vehicular HCN. PMID:17328194

  16. Evaluation of Long-Term Trends in Motor Vehicle Emissions

    NASA Astrophysics Data System (ADS)

    Harley, R. A.; McDonald, B. C.

    2012-12-01

    Motor vehicles are a major source of air pollution. Vehicle emissions have changed dramatically over time due to increases in the number of vehicles on the road and the amount they are driven, and due to advances in emission control technology. This paper assesses trends in motor vehicle emissions of carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) over a 20-year time period from 1990-2010. Emission estimates are based on taxable sales of gasoline and diesel fuel and on-road measurements of vehicle emissions from tunnel and roadside remote sensing studies. The relative importance of on-road diesel engines varies by pollutant: diesel engines make the largest contribution to NOx and smallest contribution to CO. Uncertainties in emission estimates vary by pollutant, ranked from most to least certain as follows: CO2, NOx, CO, HC. Additional uncertainties in spatial distribution of vehicle activity and emissions arise at spatial scales finer than the state level for which fuel sales data are readily available. Illustrative examples of these findings are provided at state (California) and urban (Los Angeles) scales, including comparisons with predictions from the California Air Resources Board EMFAC model and with trends in ambient pollutant concentrations.

  17. Unregulated emissions from light-duty hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  18. Real-World Vehicle Emissions: A Summary of the 18th Coordinating Research Council On-Road Vehicle Emissions Workshop

    SciTech Connect

    Cadle, S. H.; Ayala, A.; Black, K. N.; Graze, R. R.; Koupal, J.; Minassian, F.; Murray, H. B.; Natarajan, M.; Tennant, C. J.; Lawson, D. R.

    2009-02-01

    The Coordinating Research Council (CRC) convened its 18th On-Road Vehicle Emissions Workshop March 31-April 2, 2008, with 104 presentations describing the most recent mobile source-related emissions research. In this paper we summarize the presentations from researchers whose efforts are improving our understanding of the contribution of mobile sources to air quality. Participants in the workshop discussed emission models and emissions inventories, results from gas- and particle-phase emissions studies from spark-ignition and diesel-powered vehicles (with an emphasis in this workshop on particle emissions), effects of fuels on emissions, evaluation of in-use emission-control programs, and efforts to improve our capabilities in performing on-board emissions measurements, as well as topics for future research.

  19. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dioxide maintenance SIP will apply for transportation conformity purposes only until new budgets based on..., 1997. (2) (c) Approval of the motor vehicle emissions budgets for the following carbon...

  20. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dioxide maintenance SIP will apply for transportation conformity purposes only until new budgets based on..., 1997. (2) (c) Approval of the motor vehicle emissions budgets for the following carbon...

  1. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dioxide maintenance SIP will apply for transportation conformity purposes only until new budgets based on..., 1997. (2) (c) Approval of the motor vehicle emissions budgets for the following carbon...

  2. 40 CFR 52.244 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dioxide maintenance SIP will apply for transportation conformity purposes only until new budgets based on..., 1997. (2) (c) Approval of the motor vehicle emissions budgets for the following carbon...

  3. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Cold CO testing. For cold temperature CO exhaust emission compliance for each durability group, the... of vehicles under this section. (g) Cold temperature NMHC testing. For cold temperature NMHC exhaust... paragraph (a) of this section. When the expected worst-case cold temperature NMHC vehicle is also...

  4. CO2 emission benefit of diesel (versus gasoline) powered vehicles.

    PubMed

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J

    2004-06-15

    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015. PMID:15260316

  5. 40 CFR 86.1828-01 - Emission data vehicle selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., considering all exhaust emission constituents, all exhaust test procedures, and the potential impact of air conditioning on test results. The selected vehicle will include an air conditioning engine code unless the worst-case vehicle configuration selected is not available with air conditioning. This...

  6. Factors affecting heavy-duty diesel vehicle emissions.

    PubMed

    Clark, Nigel N; Kern, Justin M; Atkinson, Christopher M; Nine, Ralph D

    2002-01-01

    Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines. PMID:15152668

  7. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing.

    PubMed

    Lau, Jason; Hung, W T; Cheung, C S

    2012-04-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. PMID:22325426

  8. Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.; Streets, David G.

    2011-09-01

    We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels. We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission

  9. Trends in on-road vehicle emissions of ammonia

    SciTech Connect

    Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M. M.

    2008-07-15

    Motor vehicle emissions of ammonia have been measured at a California highway tunnel in the San Francisco Bay area. Between 1999 and 2006, light-duty vehicle ammonia emissions decreased by 38 {+-} 6%, from 640 {+-} 40 to 400 {+-} 20 mg kg{sup -1}. High time resolution measurements of ammonia made in summer 2001 at the same location indicate a minimum in ammonia emissions correlated with slower-speed driving conditions. Variations in ammonia emission rates track changes in carbon monoxide more closely than changes in nitrogen oxides, especially during later evening hours when traffic speeds are highest. Analysis of remote sensing data of Burgard et al. (Environ Sci. Technol. 2006, 40, 7018-7022) indicates relationships between ammonia and vehicle model year, nitrogen oxides, and carbon monoxide. Ammonia emission rates from diesel trucks were difficult to measure in the tunnel setting due to the large contribution to ammonia concentrations in a mixed-traffic bore that were assigned to light-duty vehicle emissions. Nevertheless, it is clear that heavy-duty diesel trucks are a minor source of ammonia emissions compared to light-duty gasoline vehicles.

  10. Vehicle Real Driving Emissions of Nitrogen Oxides in an Urban Area from a large Vehicle Fleet

    NASA Astrophysics Data System (ADS)

    Pöhler, Denis; Horbanski, Martin; Oesterle, Tobias; Adler, Tim; Reh, Miriam; Tirpitz, Lukas; Kanatschnig, Florian; Lampel, Joahnnes; Platt, Ulrich

    2016-04-01

    Nitrogen Oxide (NOx=NO +NO2) emissions by road vehicles are the major contributor for poor air quality in urban areas. High NOx concentrations, and especially NO2, are typically the most problematic pollution in cities. However, emissions vary significantly depending on the type of vehicle, its engine, the age, condition of the vehicle, driving properties, modifications and many more. Even if official NOx emission data of the manufacturer exist, they are only valid for new vehicles and the current vehicle emission scandal shows clearly that these data are often wrong. Thus, real driving emissions (RDE) of the current vehicle fleet is required. With such data the contribution of individual vehicles to the NO2 and NOx levels in urban areas can be estimated. Significant reduction of NOx concentrations can be achieved by identifying the strong emitting vehicles and excluding, replace or modify them. We developed a precise and fast ICAD (Iterative CAvity DOAS) NO2 instrument which can measure the concentration within the emission plume of vehicles under real driving conditions. The sampling was performed with an inlet at the front of a car which was following the investigated vehicles. The instrument measure NO2 and additionally CO2 with a time resolution of 2 seconds. With the observed NO2 values already strong emitters can easily be identified. With the use of known CO2 emissions, more reliable emissions for NO2 can be calculated for each vehicle. Currently the system is expanded with a NOx channel to derive the total nitrogen oxide emissions. The system was successfully applied in several studies over the last two years to investigate NO2 RDE. More than thousand vehicles were investigated. We observed that several vehicles from various brands show much higher emissions than allowed (more than a factor of 5). Highest emissions correlate for trucks and busses typically to older vehicles, what is not the case for cars. A large variability between different cars was

  11. Modal Acoustic Emission of Damage Accumulation in Woven SiC/SiC at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Morscher, G. N.

    1998-01-01

    Ceramic matrix composites exhibit significant nonlinear stress-strain behavior that makes them attractive as potential materials for many high temperature applications. The mechanisms for this nonlinear stress-strain behavior are all associated with various types of damage in the composites, e.g. transverse matrix cracks and individual fiber failures. Modal acoustic emission has been employed to aid in discerning the damage accumulation that occurs during elevated temperature tensile stress-rupture of woven Hi-Nicalon fiber, BN interphase, SiC matrix composites. It is shown that modal acoustic emission is an effective monitor of the relative damage accumulation in the composites and locator of the damage and failure events as a function of strain (stress), time at temperature, and temperature gradients along the length of the elevated temperature test specimen.

  12. Have vehicle emissions of primary NO2 peaked?

    PubMed

    Carslaw, David C; Murrells, Tim P; Andersson, Jon; Keenan, Matthew

    2016-07-18

    Reducing ambient concentrations of nitrogen dioxide (NO2) remains a key challenge across many European urban areas, particularly close to roads. This challenge mostly relates to the lack of reduction in emissions of oxides of nitrogen (NOx) from diesel road vehicles relative to the reductions expected through increasingly stringent vehicle emissions legislation. However, a key component of near-road concentrations of NO2 derives from directly emitted (primary) NO2 from diesel vehicles. It is well-established that the proportion of NO2 (i.e. the NO2/NOx ratio) in vehicle exhaust has increased over the past decade as a result of vehicle after-treatment technologies that oxidise carbon monoxide and hydrocarbons and generate NO2 to aid the emissions control of diesel particulate. In this work we bring together an analysis of ambient NOx and NO2 measurements with comprehensive vehicle emission remote sensing data obtained in London to better understand recent trends in the NO2/NOx ratio from road vehicles. We show that there is evidence that NO2 concentrations have decreased since around 2010 despite less evidence of a reduction in total NOx. The decrease is shown to be driven by relatively large reductions in the amount of NO2 directly emitted by vehicles; from around 25 vol% in 2010 to 15 vol% in 2014 in inner London, for example. The analysis of NOx and NO2 vehicle emission remote sensing data shows that these reductions have been mostly driven by reduced NO2/NOx emission ratios from heavy duty vehicles and buses rather than light duty vehicles. However, there is also evidence from the analysis of Euro 4 and 5 diesel passenger cars that as vehicles age the NO2/NOx ratio decreases. For example the NO2/NOx ratio decreased from 29.5 ± 2.0% in Euro 5 diesel cars up to one year old to 22.7 ± 2.5% for four-year old vehicles. At some roadside locations the reductions in primary NO2 have had a large effect on reducing both the annual mean and number of hourly exceedances

  13. EMISSIONS OF METALS ASSOCIATED WITH MOTOR VEHICLE ROADWAYS

    EPA Science Inventory

    Emissions of metals and other particle-phase species from on-road motor vehicles were measured in two tunnels in Milwaukee, WI during the summer of 2000 and winter of 2001. Emission factors were calculated from measurements

    of fine (PM2.5) and coarse (PM10<...

  14. COLD TEMPERATURE MOTOR VEHICLE EMISSIONS TESTING IN ALASKA

    EPA Science Inventory

    A motor vehicle emissions testing study was conducted in Anchorage and Fairbanks during the winter of 1998-99 to collect actual measurements of initial idle emission rates. The study was performed for a sample of 111 automobiles and light-duty trucks under cold wintertime ambient...

  15. 40 CFR 205.52 - Vehicle noise emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Vehicle noise emission standards. 205.52 Section 205.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52...

  16. 40 CFR 205.52 - Vehicle noise emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Vehicle noise emission standards. 205.52 Section 205.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52...

  17. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  18. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Pollutant Mass Emissions Calculation... Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles Equipped With...-Fueled Vehicle Pollutant Mass Emission Calculation Procedure. (1) For all TLEVs, LEVs, and ULEVs,...

  19. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Pollutant Mass Emissions Calculation... Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles Equipped With...-Fueled Vehicle Pollutant Mass Emission Calculation Procedure. (1) For all TLEVs, LEVs, and ULEVs,...

  20. Greenhouse gas emissions from heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Rideout, Greg; Rosenblatt, Deborah; Hendren, Jill

    This paper summarizes greenhouse gas (GHG) emissions measurements obtained during several recent studies conducted by Environment Canada, Emissions Research and Measurement Division (ERMD). A variety of heavy-duty vehicles and engines operating on a range of different fuels including diesel, biodiesel, compressed natural gas (CNG), hythane (20% hydrogen, 80% CNG), and liquefied natural gas (LNG), and with different advanced aftertreatment technologies were studied by chassis dynamometer testing, engine dynamometer testing or on-road testing. Distance-based emission rates of CO 2, CH 4, and N 2O are reported. Fuel consumption calculated by carbon balance from measured emissions is also reported. The measurement results show, for heavy-duty diesel vehicles without aftertreatment, that while CO 2 emissions dominate, CH 4 emissions account for between 0% and 0.11% and N 2O emissions account for between 0.16% and 0.27% of the CO 2-equivalent GHG emissions. Both of the aftertreatment technologies (diesel oxidation catalyst and active regeneration diesel particle filter) studied increased N 2O emissions compared to engine out emissions while CH 4 emissions remain essentially unchanged. No effect on tailpipe GHG emissions was found with the use of up to 20% biodiesel when the engine was equipped with an oxidation catalyst. Biodiesel use did show some reductions in tailpipe GHG emissions as compared to ULSD without aftertreatment and with the use of a diesel particle filter. Natural gas and hythane also offer decreased GHG emissions (10-20%) at the tailpipe when compared with diesel. Emission factors (g L -1 fuel) for CH 4 and N 2O are suggested for heavy-duty vehicles fueled with diesel-based fuels and natural gas. These emission factors are substantially lower than those recommended for use by IPCC methodologies for developing national inventories.

  1. The impact of congestion charging on vehicle speed and its implications for assessing vehicle emissions

    NASA Astrophysics Data System (ADS)

    Beevers, Sean D.; Carslaw, David C.

    Previous analysis of London's congestion charging scheme (CCS) has shown that changes in vehicle speed are an important factor in reducing vehicle emissions. Therefore, a detailed investigation of network average vehicle speed in both central and inner London has been undertaken using a combination of the non-parametric Wilcoxon sign ranks test and a method for calculating the cumulative difference between mean speeds pre- and post-CCS, or cumulative sum (CUSUM) analysis. Within the charging zone (CZ), the Wilcoxon test has shown that the difference in speed between pre- and post-CCS periods has increased on average by 2.1 km h -1 and that these changes are significant at the p=0.05 level. The CUSUM analysis has provided evidence of the timing of this change in mean speed in the CZ and this agrees well with the introduction of the CCS on the 17 February 2003. In combination, these results provide compelling evidence that the introduction of congestion charging has significantly increased vehicle speed in the CZ and by comparison with the results in inner London, that these changes are not part of a wider trend. To examine one impact of this change we used an instantaneous emissions model, the Vehicle Transient Emissions Simulation Software, to undertake a comparison between the change in vehicle emissions associated with changing driving characteristics, between pre- and post-charging periods, and those associated with a change in average speed. The analysis was limited to three vehicle types: a Euro II LGV, a Euro III diesel car and a Euro IV petrol car, but showed that driving characteristics in central London have a relatively small effect on emissions of NO X and CO 2 compared with the average vehicle speed. However, for PM 10 emissions from the Euro II LGV the opposite was found and for this vehicle the driving characteristics were more important than the average speed in estimating exhaust emissions. For this vehicle, emissions increased between pre- and post

  2. Evolution of on-road vehicle exhaust emissions in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  3. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect

    1995-12-01

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  4. Historical evaluation of vehicle emission control in Guangzhou based on a multi-year emission inventory

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Liu, Huan; Wu, Xiaomeng; Zhou, Yu; Yao, Zhiliang; Fu, Lixin; He, Kebin; Hao, Jiming

    2013-09-01

    The Guangzhou government adopted many vehicle emission control policies and strategies during the five-year preparation (2005-2009) to host the 2010 Asian Games. This study established a multi-year emission inventory for vehicles in Guangzhou during 2005-2009 and estimated the uncertainty in total vehicle emissions by taking the assumed uncertainties in fleet-average emission factors and annual mileage into account. In 2009, the estimated total vehicle emissions in Guangzhou were 313 000 (242 000-387 000) tons of CO, 60 900 (54 000-70 200) tons of THC, 65 600 (56 800-74 100) tons of NOx and 2740 (2100-3400) tons of PM10. Vehicle emissions within the urban area of Guangzhou were estimated to be responsible for ˜40% of total gaseous pollutants and ˜25% of total PM10 in the entire city. Although vehicle use intensity increased rapidly in Guangzhou during 2005-2009, vehicle emissions were estimated to have been reduced by 12% for CO, 21% for THC and 20% for PM10 relative to those in 2005. NOx emissions were estimated to have remained almost constant during this period. Compared to the "without control" scenario, 19% (15%-23%) of CO, 20% (18%-23%) of THC, 9% (8%-10%) of NOx and 16% (12%-20%) of PM10 were estimated to have been mitigated from a combination of the implementation of Euro III standards for light-duty vehicles (LDVs) and heavy-duty diesel vehicles and improvement of fuel quality. This study also evaluated several enhanced vehicle emission control actions taken recently. For example, the enhanced I/M program for LDVs was estimated to reduce 11% (9%-14%) of CO, 9% (8%-10%) of THC and 2% (2%-3%) of NOx relative to total vehicle emissions in 2009. Total emission reductions by temporary traffic controls for the Asian Games were estimated equivalent to 9% (7%-11%) of CO, 9% (8%-10%) of THC, 5% (5%-6%) of NOx and 10% (8%-13%) of PM10 estimated total vehicle emissions in 2009. Those controls are essential to further vehicle emission mitigation in Guangzhou

  5. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  6. Non-methane hydrocarbon emissions from vehicle fuel caps

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart A.; Yu, Yungdae; Jia, Chunrong; Godwin, Christopher

    Vehicles emit non-methane hydrocarbons (NMHCs) from a number of sources, including missing, worn or improperly tightened fuel caps. Inspection and maintenance programs and the On-Board Diagnostic (OBD) system will detect some of these deficiencies, however, even properly tightened caps will emit NMHCs due to permeation, diffusion, cracks and gaps in seals, and failures of pressure-relief mechanisms. These emissions have not been previously quantified. In this study, in-use emissions from fuel caps were measured in 213 tests on vehicles of varying age and condition over several seasons, including cold and warm temperatures. Diffusion/permeation models are presented to complement the experimental work. NMHC emissions from fuel caps were detected from all vehicles, of which benzene constituted 2.5%. Emissions averaged 2.0 mg h -1 (median=0.5 mg h -1), and the distribution of emission rates was highly skewed by a small number of vehicles with much higher emissions, e.g., the 90th, 95th and maximum percentile values were 2.7, 5.0, and 62.7 mg h -1, respectively. Emission rates increased substantially if the fuel cap was loose, in hot weather, and with vehicle age and mileage. Overall, emissions from properly functioning caps are small relative to running and refueling losses, though they may be significant if the gas cap is defective or loose. Further reductions in emissions may be achieved by using new low-torque cap designs, improved elastomers, properly tightening fuel caps, and replacing old caps.

  7. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL

    EPA Science Inventory

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest...

  8. HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE

    SciTech Connect

    Nylund, N; Ikonen, M; Laurikko, J

    2003-08-24

    Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable, how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological

  9. Physical parameter identification method based on modal analysis for two-axis on-road vehicles: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Minyi; Zhang, Bangji; Zhang, Jie; Zhang, Nong

    2016-03-01

    Physical parameters are very important for vehicle dynamic modeling and analysis. However, most of physical parameter identification methods are assuming some physical parameters of vehicle are known, and the other unknown parameters can be identified. In order to identify physical parameters of vehicle in the case that all physical parameters are unknown, a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented. The modal parameters of the vehicle are identified by the SVM, furthermore, the physical parameters of the vehicle are estimated by least squares method. In numerical simulations, physical parameters of Ford Granada are chosen as parameters of vehicle model, and half-sine bump function is chosen to simulate tire stimulated by impulse excitation. The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%; and the effect of the errors of additional mass, structural parameter and measurement noise are discussed in the following simulations, the results shows that when signal contains 30 dB noise, the largest absolute value of percentage error of the identification is 3.78%. These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles. The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.

  10. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  11. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  12. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

    NASA Astrophysics Data System (ADS)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  13. CRITERIA AND AIR TOXIC EMISSIONS FROM IN-USE, LOW EMISSION VEHICLES (LEVS)

    EPA Science Inventory

    The U.S. Environmental Protection Agency implemented a program to identify tailpipe emissions of criteria and air toxic contaminants from in-use, light-duty Low Emission Vehicles (LEVs). EPA recruited twenty-five LEVs in 2002, and measured emissions on a chassis dynamometer usin...

  14. Remote monitoring of emissions using on-vehicle sensing and vehicle to roadside communications

    SciTech Connect

    Davis, D.T.

    1995-06-01

    Recent developments in on-vehicle electronics makes practical remote monitoring of vehicle emissions compliance with CARB and EPA regulations. A system consisting of emission controls malfunction sensors, an on-board computer (OBC), and vehicle-to-roadside communications (VRC) would enable enforcement officials to remotely and automatically detect vehicle out-of-compliance status. Remote sensing could be accomplished at highway speeds as vehicles pass a roadside RF antenna and reader unit which would interrogate the on- vehicle monitoring and recording system. This paper will focus on the hardware system components require to achieve this goal with special attention to the VRC; a key element for remote monitoring. this remote sensing concept piggybacks on the development of inexpensive VRC equipment for automatic vehicle identification for electronic toll collection and intelligent transportation applications. Employing an RF transponder with appropriate interface to the OBC and malfunction sensors, a practical monitoring system can be developed with potentially important impact on air quality and enforcement. With such a system in place, the current -- and costly and ineffective -- emission control strategy of periodic smog checking could be replaced or modified.

  15. [Unregulated emissions from the gasoline vehicle].

    PubMed

    You, Qiu-Wen; Ge, Ytun-Shan; You, Ke-Wei; Wang, Jun-Fang; He, Chao

    2009-02-15

    Based on the emission test cycle of China National Regulation Stage III, the aldehyde and alkone emissions and VOCs emissions of three typical gasoline cars were studied with HPLC and TD-GC/MS and the exhausted particulates number and mass concentration were researched using ELPI. The results indicate that the unregulated emissions of different cars is diverse changed, the brake specific emission of the carbonyls in three cars are 36.44, 16.71 and 10.43 mg/km respectively and TVOC are 155.39, 103.75 and 42.29 mg/km respectively. Formaldehyde, acetaldehyde, acrolein, acetone and cyclohexanone are the main compounds in gasoline cars exhaust, which accounted for 77.9%-89.7% of total carbonyl compounds. Aromatic hydrocarbons and alkane are the main part of VOCs, the detected number of which is occupied 31.6%-39.2% and 23.1%-27.9% of VOCs. Toluene, xylene and benzene have high concentration, which are occupied 16.68%, 16.87% and 5.23% of TVOC in average. Ultra-fine particles (< 100 nm) dominate the particulates emission. Exhausted particulate number of high speeds is higher than that of slow and medium speeds. PMID:19402478

  16. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-04-01

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies. PMID:25807584

  17. Fuel composition effects on natural gas vehicle emissions

    SciTech Connect

    Blazek, C.F.; Grimes, J.; Freeman, P.; Bailey, B.K.; Colucci, C.

    1994-09-01

    Under a contract from DOE`s National Renewable Energy Laboratory (NREL) and support from Brooklyn Union Gas Company (BUG), Northern Illinois Gas Co., the Institute of Gas Technology (IGT) evaluated four state-of-the-art, electronic, closed-loop natural gas vehicle (NGV) conversion systems. The systems included an Impco electronic closed-loop system, Mogas electronic closed-loop system, Stewart and Stevenson`s GFI system, and an Automotive Natural Gas Inc. (ANGI) Level 1 electronic closed-loop conversion system. Conversion system evaluation included emission testing per 40 CFR Part 86, and driveability. All testing was performed with a 1993 Chevy Lumina equipped with a 3.1 liter MPFI V6 engine. Each system was emission tested using three different certified compositions of natural gas, representing the 10th, mean and 90th percentile gas compositions distributed in the United States. Emission testing on indolene was performed prior to conversion kit testing to establish a base emission value. Indolene testing was also performed at the end of the project when the vehicle was converted to its OEM configuration to ensure that the vehicle`s emissions were not altered during testing. The results of these tests will be presented.

  18. Emissions from vehicles, tailpipe and vehicle re-entrained road dust

    NASA Astrophysics Data System (ADS)

    Zhu, Dongzi

    Emissions from transportation are some of the largest sources of urban air pollution. Transportation emissions originate from both the engine-through combustion processes and non-tailpipe re-suspended road dust emissions induced by vehicle travel on unpaved and paved roads. Gaseous and particulate emissions from transportation sources have negative impacts on human health, visibility and may influence the global radiation balance. Fugitive dust emissions originating from vehicle travel on paved and unpaved roads constitute a significant fraction of the PM10 in many areas of the western US impacting their attainment status of National Ambient Air Quality Standards. The research used three novel instrument platforms developed at the Desert Research Institute. The In-Plume Emissions Test Stand (IPETS) was designed to provide characterization of exhaust emissions from in-use individual vehicles or engines by analyzing air as close as 1 m from the exhaust port. Real-world emission factors can be quantified by in-plume measurements and provide more realistic measures for emission inventories, source modeling, and receptor modeling than certification measurements. The Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) provides an effective alternate approach to the EPA AP-42 road dust emissions estimation techniques by sampling 1000s of km of roads versus isolated 3 m sections. The Portable Deposition Monitoring Platform (PDMP incorporates PM and meteorological instruments to characterize the downwind change in particle concentrations to define depositional losses in different environments. The research outcome provides important knowledge for understanding diesel engine emissions, road dust emissions and aerosol deposition process near road sources.

  19. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACO: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR CO EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  20. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  1. Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Nima; Mandelis, Andreas; Amaechi, Bennett T.

    2011-04-01

    One major problem of frequency-domain photothermal radiometry, or alternatively in two-dimensional lock-in thermography, is the compromise one has to make between dynamic range (probing depth) and depth resolution. The thermal-wave radar incorporates chirped excitation through matched filtering to maintain good resolution and depth range inside a sample. This letter experimentally demonstrates the advantages of chirped modulation and introduces a thermophotonic modality of thermal-wave radar based on an emissivity-normalized, higher-dynamic-range contrast parameter known as cross-correlation phase. Finally, comparisons made on a biological (dental) sample show potential applications of the method.

  2. Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1996-12-10

    In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a series hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.

  3. 40 CFR 52.2532 - Motor vehicle emissions budgets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) West Virginia § 52.2532 Motor... budgets (MVEBs) for the Charleston, West Virginia 8-hour ozone maintenance area submitted by the Secretary... 2018 motor vehicle emissions budgets (MVEBs) for the Huntington, West Virginia 8-hour ozone...

  4. Future Emissions Impact On Off-Road Vehicles

    SciTech Connect

    Kirby Baumgard; Steve Ephraim

    2001-04-18

    Summaries of paper: Emission requirements dictate vehicle update cycles; Packaging, performance and cost impacted; Styling updates can be integrated; Opportunity to integrate features and performance; Non-uniform regulations challenge resources; and Customers won't expect to pay more or receive less.

  5. CENTRAL CAROLINA VEHICLE PARTICULATE EMISSION STUDY (FINAL REPORT)

    EPA Science Inventory

    A study to characterize the exhaust emissions from a light-duty fleet of in-use vehicles representative of central North Carolina was conducted in 1999 during both a winter phase (February) and a summer phase (June - July). Summer temperatures averaged 78 F, while the winter te...

  6. Through-tunnel estimates of vehicle fleet emission factors

    NASA Astrophysics Data System (ADS)

    Brimblecombe, Peter; Townsend, Thomas; Lau, Chui Fong; Rakowska, Agata; Chan, Tat Leung; Močnik, Griša; Ning, Zhi

    2015-12-01

    On-road measurements of traffic-related gas and particle pollutant concentrations in three tunnels in Hong Kong and high resolution pollutant concentration profiles obtained while driving through the tunnels were used to derive the individual pollutant gradients using parametric and non-parametric (Sen-Thiel) slopes and compared with the commonly used entrance-exit two points calculation. The fuel based emission factors of measured pollutants for individual tunnels at different times of day were derived from gradients using a new method based on fuel carbon balance principle. Combined with the tunnel traffic volume and composition, the average tunnel emission factors were analyzed by linear regression to derive the diesel fleet emission factors. Average nitrogen oxides (NOx) and black carbon (BC) emission factor for diesel fleets are 29.3 ± 11.0 gNO2 kg-1 and 1.28 ± 0.76 g kg-1 of fuel, respectively. The results from the study were compared with the emission data from vehicle chasing approaches and the literature, showing reasonable agreement. Practical limitations and future direction for improvement of our method were also discussed. The method presented in this study provides a convenient drive-through approach for fast determination of tunnel and individual vehicle fleet emission factors. It can be used as an effective and fast approach to validate the emission inventory and to evaluate the effectiveness of policy intervention on the traffic emissions.

  7. Through-tunnel estimates of vehicle fleet emission factors

    NASA Astrophysics Data System (ADS)

    Brimblecombe, Peter; Townsend, Thomas; Lau, Chui Fong; Rakowska, Agata; Chan, Tat Leung; Močnik, Griša; Ning, Zhi

    2015-12-01

    On-road measurements of traffic-related gas and particle pollutant concentrations in three tunnels in Hong Kong and high resolution pollutant concentration profiles obtained while driving through the tunnels were used to derive the individual pollutant gradients using parametric and non-parametric (Sen-Thiel) slopes and compared with the commonly used entrance-exit two points calculation. The fuel based emission factors of measured pollutants for individual tunnels at different times of day were derived from gradients using a new method based on fuel carbon balance principle. Combined with the tunnel traffic volume and composition, the average tunnel emission factors were analyzed by linear regression to derive the diesel fleet emission factors. Average nitrogen oxides (NOx) and black carbon (BC) emission factor for diesel fleets are 29.3 ± 11.0 gNO2 kg-1 and 1.28 ± 0.76 g kg-1 of fuel, respectively. The results from the study were compared with the emission data from vehicle chasing approaches and the literature, showing reasonable agreement. Practical limitations and future direction for improvement of our method were also discussed. The method presented in this study provides a convenient drive-through approach for fast determination of tunnel and individual vehicle fleet emission factors. It can be used as an effective and fast approach to validate the emission inventory and to evaluate the effectiveness of policy intervention on the traffic emissions.

  8. Electric vehicles in China: emissions and health impacts.

    PubMed

    Ji, Shuguang; Cherry, Christopher R; J Bechle, Matthew; Wu, Ye; Marshall, Julian D

    2012-02-21

    E-bikes in China are the single largest adoption of alternative fuel vehicles in history, with more than 100 million e-bikes purchased in the past decade and vehicle ownership about 2× larger for e-bikes as for conventional cars; e-car sales, too, are rapidly growing. We compare emissions (CO(2), PM(2.5), NO(X), HC) and environmental health impacts (primary PM(2.5)) from the use of conventional vehicles (CVs) and electric vehicles (EVs) in 34 major cities in China. CO(2) emissions (g km(-1)) vary and are an order of magnitude greater for e-cars (135-274) and CVs (150-180) than for e-bikes (14-27). PM(2.5) emission factors generally are lower for CVs (gasoline or diesel) than comparable EVs. However, intake fraction is often greater for CVs than for EVs because combustion emissions are generally closer to population centers for CVs (tailpipe emissions) than for EVs (power plant emissions). For most cities, the net result is that primary PM(2.5) environmental health impacts per passenger-km are greater for e-cars than for gasoline cars (3.6× on average), lower than for diesel cars (2.5× on average), and equal to diesel buses. In contrast, e-bikes yield lower environmental health impacts per passenger-km than the three CVs investigated: gasoline cars (2×), diesel cars (10×), and diesel buses (5×). Our findings highlight the importance of considering exposures, and especially the proximity of emissions to people, when evaluating environmental health impacts for EVs. PMID:22201325

  9. Costs, emissions reductions, and vehicle repair: evidence from Arizona.

    PubMed

    Ando, A; McConnell, V; Harrington, W

    2000-04-01

    The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars. This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first. PMID:10786002

  10. Historic and future trends of vehicle emissions in Beijing, 1998-2020: A policy assessment for the most stringent vehicle emission control program in China

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Wu, Xiaomeng; Li, Mengliang; Ge, Yunshan; Liang, Bin; Xu, Yueyun; Zhou, Yu; Liu, Huan; Fu, Lixin; Hao, Jiming

    2014-06-01

    As a pioneer in controlling vehicle emissions within China, Beijing released the Clean Air Action Plan 2013-2017 document in August 2013 to improve its urban air quality. It has put forward this plan containing the most stringent emission control policies and strategies to be adopted for on-road vehicles of Beijing. This paper estimates the historic and future trends and uncertainties in vehicle emissions of Beijing from 1998 to 2020 by applying a new emission factor model for the Beijing vehicle fleet (EMBEV). Our updated results show that total emissions of CO, THC, NOx and PM2.5 from the Beijing vehicle fleet are 507 (395-819) kt, 59.1 (41.2-90.5) kt, 74.7 (54.9-103.9) kt and 2.69 (1.91-4.17) kt, respectively, at a 95% confidence level. This represents significant reductions of 58%, 59%, 31% and 62%, respectively, relative to the total vehicle emissions in 1998. The past trends clearly posed a challenge to NOx emission mitigation for the Beijing vehicle fleet, especially in light of those increasing NOx emissions from heavy-duty diesel vehicles (HDDVs) which have partly offset the reduction benefit from light-duty gasoline vehicles (LDGVs). Because of recently announced vehicle emission controls to be adopted in Beijing, including tighter emissions standards, limitations on vehicle growth by more stringent license control, promotion of alternative fuel technologies (e.g., natural gas) and the scrappage of older vehicles, estimated vehicle emissions in Beijing will continue to be mitigated by 74% of CO, 68% of THC, 56% of NOx and 72% of PM2.5 in 2020 compared to 2010 levels. Considering that many of the megacities in China are facing tremendous pressures to mitigate emissions from on-road vehicles, our assessment will provide a timely case study of significance for policy-makers in China.

  11. Characterization of heavy-duty diesel vehicle emissions

    NASA Astrophysics Data System (ADS)

    Lowenthal, Douglas H.; Zielinska, Barbara; Chow, Judith C.; Watson, John G.; Gautam, Mridul; Ferguson, Donald H.; Neuroth, Gary R.; Stevens, Kathy D.

    Emissions of heavy duty diesel-powered vehicles were measured at the Phoenix Transit Yard in South Phoenix between 31 March 1992 and 25 April 1992 using the West Virginia University Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Mobile Lab). Thirteen heavy-duty trucks and buses were tested over this period. The vehicles were operated with diesel No. 2 and Jet A fuels, with and without a fuel additive, and with and without particulate control traps. The chassis dynamometer Mobile Lab tested vehicles over the Central Business District (CBD) driving cycle. Particulate matter in the diluted exhaust was sampled proportionally from a total-exhaust dilution tunnel. Emission rates and compositions of PM 2.5 particulate mass, elements, ions, bulk organic and elemental carbon, and gaseous and particulate polycyclic aromatic hydrocarbons were averaged for various classes of fuels and particulate matter control. Emission rates for PM 2.5 mass averaged 0.2 and 1 g mile -1 for trucks and buses with and without particulate traps, respectively. Emission rates for elemental carbon averaged 0.02 and 0.5 g mile -1 for trucks and buses with and without particulate traps, respectively. Diesel particulate exhaust was comprised mainly of organic and elemental carbon (80-90%) and sulfate (up to 14%). The new diesel source composition profiles are similar to one determined earlier in Phoenix. Polycyclic aromatic hydrocarbons comprised no more than a few percent of the particulate organic carbon but their relative abundances may be useful for distinguishing diesel emissions from those of other combustion sources.

  12. CHARACTERIZATION OF EMISSIONS FROM VEHICLES USING METHANOL AND METHANOL-GASOLINE BLENDED FUELS

    EPA Science Inventory

    Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operati...

  13. On technical line and policy in emission control for vehicles with petrol engines in China

    SciTech Connect

    Nai-Yang, S.

    1989-01-01

    The Chinese National Standard for Emission from Vehicles was published in 1983. The most important one is Emission Standards for Pollutants at Idle Speed from Road Vehicles with Petrol Engines. This paper discusses experiences gained and lessons learned since publication.

  14. 40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Test Procedure (FTP), modified for ILEV certification, from 40 CFR part 86, subpart B for LDVs and LDTs and from 40 CFR part 86, subpart M for HDVs. (A) After disabling any and all auxiliary emission... CFR part 86). (B) Conventional Federal Test Procedure. A vehicle with no evaporative emissions...

  15. Emissions of fuel metals content from a diesel vehicle engine

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Fen; Huang, Kuo-Lin; Li, Chun-Teh; Mi, Hsiao-Hsuan; Luo, Jih-Haur; Tsai, Perng-Jy

    This study was set out to assess the characteristics and significance of metal contents emitted from diesel engines. We found that the emitted concentrations of crust elements (including Al, Ca, Fe, Mg, and Si) were much higher than those of anthropogenic elements (including Ag, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr, Ti, V, and Zn) from diesel vehicle engine exhausts under the transient-cycle condition. The emission concentrations of particulate matters from diesel vehicle engine were inversely proportional to the specified engine speeds. To the contrary, the increase of engine speeds resulted in increase of fractions of metal contents in particulate matters. We conducted simple linear regression analysis to relate the emission rates of the metal contents in vehicle exhaust to the consumption rates of metal contents in diesel fuel. This study yielded R2=0.999 which suggests that the emission of the metal contents in vehicle exhaust could be fully explained by the consumption of metal contents in diesel fuel. For illustration, we found that the annual emission rates of both crust and anthropogenic elements from all diesel engine vehicles (=269 000 and 58 700 kg yr -1, respectively) were significantly higher than those from the coal power plant, electrical arc furnace, and coke oven (=90 100 and 1660 kg yr -1, 2060 and 173 kg yr -1, and 60 500 and 3740 kg yr -1, respectively) in Taiwan area. The relatively high amount of metal contents emitted from diesel engines strongly suggests that the measurement on the control of metal contents in diesel fuel should be taken in the future.

  16. A zinc-air battery and flywheel zero emission vehicle

    SciTech Connect

    Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

    1995-10-03

    In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

  17. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  18. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    PubMed

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs. PMID:27026933

  19. Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles

    EPA Science Inventory

    The Kansas City Light-Duty Vehicle Emissions study measured exhaust emissions of regulated and unregulated pollutants from over 500 vehicles randomly recruited in the Kansas City metropolitan area in 2004 and 2005. Vehicle emissions testing occurred during the summer and winter, ...

  20. Inherently low-emission vehicle program, estimated emission benefits and impact on high-occupancy vehicle lanes. Technical report

    SciTech Connect

    Wyborny, L.

    1992-10-01

    According to the detailed analysis in the report, ILEVs would provide substantial emission reductions compared to LEVs and other conventional vehicles. The evaporative and refueling emissions (vapor emissions) from ILEVs are estimated to be near zero. With the near-elimination of vapor emissions, ILEVs are expected to emit about one-half the volatile organic compound emissions as other LEVs. The report also concludes that ILEVs are expected to result in little or no detrimental effect on traffic flow in HOV lanes. This conclusion was derived from studying the HOV lanes in Los Angeles, Houston, the District of Columbia, and Seattle. Overall, the report concludes that widespread and rapid introduction of ILEVs would generally offer significant air quality benefits to society wherever they are used, and that the prudent use of TCM exemptions and incentives could encourage these purchases without significant impact on the effectiveness of the other programs.

  1. Electric vehicles - an alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventionally fuelled vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well. This report discusses electric powered vehicles as an alternative fuels vehicle.

  2. Vehicle emission unit risk factors for transportation risk assessments

    SciTech Connect

    Biwer, B.M.; Butler, J.P.

    1999-12-01

    When the transportation risk posed by shipments of hazardous chemical and radioactive materials is being assessed, it is necessary to evaluate the risks associated with both vehicle emissions and cargo-related risks. Diesel exhaust and fugitive dust emissions from vehicles transporting hazardous shipments lead to increased air pollution, which increases the risk of latent fatalities in the affected population along the transport route. The estimated risk from these vehicle-related sources can often by as large or larger than the estimated risk associated with the material being transported. In this paper, data from the US Environmental Protection Agency's Motor Vehicle-Related Air Toxics Study are first used to develop latent cancer fatality estimates per kilometer of travel in rural and urban areas for all diesel truck classes. These unit risk factors are based on studies investigating the carcinogenic nature of diesel exhaust. With the same methodology, the current per=kilometer latent fatality risk factor used in transportation risk assessment for heavy diesel trucks in urban areas is revised and the analysis expanded to provide risk factors for rural areas and all diesel truck classes. These latter fatality estimates may include, but are not limited to, cancer fatalities and are based primarily on the most recent epidemiological data available on mortality rates associated with ambient air PM-10 concentrations.

  3. Vehicle emission unit risk factors for transportation risk assessments.

    PubMed

    Biwer, B M; Butler, J P

    1999-12-01

    When the transportation risk posed by shipments of hazardous chemical and radioactive materials is being assessed, it is necessary to evaluate the risks associated with both vehicle emissions and cargo-related risks. Diesel exhaust and fugitive dust emissions from vehicles transporting hazardous shipments lead to increased air pollution, which increases the risk of latent fatalities in the affected population along the transport route. The estimated risk from these vehicle-related sources can often be as large or larger than the estimated risk associated with the material being transported. In this paper, data from the U.S. Environmental Protection Agency's Motor Vehicle-Related Air Toxics Study are first used to develop latent cancer fatality estimates per kilometer of travel in rural and urban areas for all diesel truck classes. These unit risk factors are based on studies investigating the carcinogenic nature of diesel exhaust. With the same methodology, the current per-kilometer latent fatality risk factor used in transportation risk assessments for heavy diesel trucks in urban areas is revised and the analysis expanded to provide risk factors for rural areas and all diesel truck classes. These latter fatality estimates may include, but are not limited to, cancer fatalities and are based primarily on the most recent epidemiological data available on mortality rates associated with ambient air PM-10 concentrations. PMID:10765454

  4. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    SciTech Connect

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  5. Light vehicle regulated and unregulated emissions from different biodiesels.

    PubMed

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-05-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NO(x) emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NO(x) emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO(2) emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels. PMID:19269679

  6. Toxicity and health effects of vehicle emissions in Shanghai

    NASA Astrophysics Data System (ADS)

    Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  7. 40 CFR 86.1811-04 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... noted. Additionally, this section contains provisions applicable to hybrid electric vehicles (HEVs) and... to the requirements of § 86.1810(p). (n) Hybrid electric vehicle (HEV) and Zero Emission Vehicle (ZEV... Subsequent Model Zero-Emission Vehicles and 2001 and Subsequent Model Hybrid Electric Vehicles, in...

  8. 40 CFR 86.1811-04 - Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... noted. Additionally, this section contains provisions applicable to hybrid electric vehicles (HEVs) and... to the requirements of § 86.1810(p). (n) Hybrid electric vehicle (HEV) and Zero Emission Vehicle (ZEV... Subsequent Model Zero-Emission Vehicles and 2001 and Subsequent Model Hybrid Electric Vehicles, in...

  9. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, T. L.; Ning, Z.

    In the present study, the real world on-road diesel vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitric oxide (NO) were investigated at nine sites in Hong Kong. A regression analysis approach based on the measured vehicle emission data was used to estimate the on-road diesel vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the diesel vehicle model years, engine sizes, vehicle types and driving patterns have a strong correlation with their emission factors. A comparison was made between the average diesel and petrol vehicle emissions factors in Hong Kong. The deviation of the average emission factors of aggregate diesel vehicles reflects the variability of local road condition, vehicle traffic fleet and volume, driving pattern, fuel composition and ambient condition etc. Finally, a unique database of the correlation of diesel vehicle emission factors (i.e., g km -1 and g l -1) on different model years and vehicle types for urban driving patterns in Hong Kong was established.

  10. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  11. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Chan, T. L.; Ning, Z.; Leung, C. W.; Cheung, C. S.; Hung, W. T.; Dong, G.

    In the present study, the real world on-road petrol vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitric oxide (NO) were investigated at nine sites in Hong Kong. A regression analysis approach based on the measured petrol vehicle emission data was also used to estimate the on-road petrol vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the petrol vehicle model years, engine sizes and driving patterns have a strong correlation on their emission factors. A comparison of average petrol vehicle emission factors in different engine sizes and European vehicle emission standards was also presented. The deviation of the average emission factors of aggregate petrol vehicle reflects on the variability of local road condition, vehicle traffic fleet and volume, driving pattern, fuel composition and ambient condition etc. Finally, a unique database of the correlation of petrol vehicle emission factors on different model years and engine sizes for urban driving patterns in Hong Kong was established.

  12. Lubricating oil dominates primary organic aerosol emissions from motor vehicles.

    PubMed

    Worton, David R; Isaacman, Gabriel; Gentner, Drew R; Dallmann, Timothy R; Chan, Arthur W H; Ruehl, Christopher; Kirchstetter, Thomas W; Wilson, Kevin R; Harley, Robert A; Goldstein, Allen H

    2014-04-01

    Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline. PMID:24621254

  13. Influence of bio-fuels on passenger car vehicle emissions

    NASA Astrophysics Data System (ADS)

    Petrea, M.; Kapernaum, M.; Wahl, C.

    2009-04-01

    In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed

  14. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Criteria and procedures: Motor vehicle... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions...

  15. On-road emissions of light-duty vehicles in europe.

    PubMed

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry. PMID:21815612

  16. Summary of remote vehicle emissions sensing studies conducted in Wisconsin

    SciTech Connect

    Rendahl, C.S.

    1996-10-01

    The State of Wisconsin received Congestion Mitigation & Air Quality Improvement (CMAQ) grants to conduct studies during the summers of 1993 and 1994 to determine the effectiveness of using a remote sensing device (RSD) to fulfill the {open_quotes}On-Road{close_quotes} emissions testing requirements of the Clean Air Act Amendments (CAAA) of 1990. The RSD used in the Wisconsin studies was designed and patented by Dr. Donald H. Stedman of the University of Denver, and was produced by Remote Sensing Technologies, Inc. (RSTi) of Tucson, AZ. This paper will summarize sampling activities, intercomparison results with the existing Basic vehicle inspection/maintenance (IM) centralized test facilities, and look at the results of data collected on close to 200,000 vehicles tested in the two year period.

  17. The significance of vehicle emissions standards for levels of exhaust pollution from light vehicles in an urban area

    NASA Astrophysics Data System (ADS)

    Rhys-Tyler, G. A.; Legassick, W.; Bell, M. C.

    2011-06-01

    This paper addresses the research question "Are more stringent exhaust emissions standards, as applied to light vehicle type approval, resulting in reduced vehicle pollution in an urban area?" The exhaust emissions of a sample of over fifty thousand road vehicles operating in London were measured using roadside remote sensing absorption spectroscopy techniques (infrared and ultraviolet), combined with Automatic Number Plate Recognition for vehicle identification. Levels of carbon monoxide (CO), hydrocarbons (HC), nitric oxide (NO), and smoke (particulate) exhaust emissions are reported by vehicle class, fuel type, and Euro emissions standard. Emissions from petrol cars of each pollutant were all observed to display a statistically significant reduction with the introduction of each successive Euro emissions standard from Euro 1 onwards. However, Euro 2 diesel cars were observed to emit statistically higher rates of NO than either Euro 1 or Euro 3 standard diesel cars. The study also confirms the continuing 'dieselisation' of the UK passenger car fleet. Mean NO emissions from Euro 4 diesel cars were found to be 6 times higher than Euro 4 petrol cars, highlighting the need to develop a sound understanding of the current and future 'in-use' emissions characteristics of diesel vehicles, and their influence on local air quality. Smoke emissions from TXII London taxis (black cabs) were found to be statistically higher than either earlier TX1 or later TX4 model variants, with possible implications for local air quality policy interventions such as maximum age limits for taxis.

  18. CHARACTERIZATION OF EMISSIONS FROM MOTOR VEHICLES DESIGNED FOR LOW N0X EMISSIONS

    EPA Science Inventory

    Tailpipe emissions were characterized for four advanced low NOx catalyst equipped passenger cars under a variety of cyclic driving conditions. All of the vehicles had three-way catalysts, three with feedback carburetors and exhaust gas recirculation, and two with oxidation cataly...

  19. 40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... Test Procedure (FTP), modified for ILEV certification, from 40 CFR part 86, subpart B for LDVs and LDTs and from 40 CFR part 86, subpart M for HDVs. (A) After disabling any and all auxiliary...

  20. 40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... Test Procedure (FTP), modified for ILEV certification, from 40 CFR part 86, subpart B for LDVs and LDTs and from 40 CFR part 86, subpart M for HDVs. (A) After disabling any and all auxiliary...

  1. 40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... Test Procedure (FTP), modified for ILEV certification, from 40 CFR part 86, subpart B for LDVs and LDTs and from 40 CFR part 86, subpart M for HDVs. (A) After disabling any and all auxiliary...

  2. Emission projection and uncertainty analysis of exhaust emissions from global and Asian on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T.; Streets, D. G.

    2009-12-01

    Two of the most notable impacts from emissions of air pollutants are climate change and hemispheric or intercontinental transport. Global emission projections are identified as critical elements in understanding these large-scale impacts. Such projections are required to understand the net response of climate to combined emissions of greenhouse gases, aerosols, and other trace species in the next 30 to 50 years. Emissions from vehicles vary with introduction of advanced technology and implementation of stringent environmental regulations. We present global emission projections of primary particulate matter emissions including the aerosol components black and organic carbon, from on-road vehicles from 2010 to 2050. These projections are based on a new model of technology that responds to socioeconomic conditions in different economic and mitigation scenarios. The model contains detail about technology stock, such as vintage, and applies exogenous data from economic scenarios to choose new technologies and retire old ones. The driving factors involved in the transitions of technology decision-making include consumption growth rates, retirement rates, timing of emission standards, and generation of superemitters. Asia is a significant contributor to global emissions and its growth rate is expected to be high, so we emphasize the trajectories in this region. Before 2030, the tradeoff between decreasing emission intensity and increasing fuel consumption results in relatively lower rates of increase of PM emissions, although emissions are still increasing. After 2030, we expect that standards will have cleaned up normal vehicles, so emission projections are highly dependent on the behavior of “superemitters.” Changes of technology and policy in the future are uncertain, and their relationship with socioeconomic variables is not well known. This lack of knowledge raises the question: What can be known about future emissions and air quality? We also present sensitivity

  3. Robotic vehicle mobility and task performance: A flexible control modality for manned systems

    NASA Technical Reports Server (NTRS)

    Eldredge, Frederick

    1994-01-01

    In the early 1980's, a number of concepts were developed for applying robotics to ground systems. The majority of these early application concepts envisioned robotics technology embedded in dedicated unmanned systems; i.e., unmanned systems with no provision for direct manned control of the platform. Although these concepts offered advantages peculiar to platforms designed from the outset exclusively for unmanned operation--i.e., no crew compartment--their findings would require costs and support for a new class of unmanned systems. The current era of reduced budgets and increasing focus on rapid force projection has created new opportunities to examine the value of an alternative concept: the use of existing manned platforms with an ability to quickly shift from normal manned operation to unmanned should a particularly harzardous situation arise. The author of this paper addresses the evolution of robotic vehicle concepts and technology testbeds from exclusively unmanned systems to a variety of 'optionally manned' systems which have been designed with minimum intrusion actuator and control equipment to minimize degradation of vehicle performance in manned modes of operation.

  4. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implication for vehicle emission control policy

    NASA Astrophysics Data System (ADS)

    Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Sheng, G.; Fu, J.

    2014-11-01

    Vehicle emission is a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce the vehicle emission. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emission in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicles emission, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang Tunnel of Guangzhou, the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC, and WSOC were 92.4, 16.7, 16.4, and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~4.17 (Cl-) mg vehicle-1 km-1, totally contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of the PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, PAHs, hopanes, and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was measured and it was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared with a previous study in Zhujiang Tunnel in year 2004, emission factors of PM2.5 mass, EC, OC, WSII except Cl-, and organic compounds decreased by 16.0-93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle condition. There are no mandatory national standards to limit metal content from vehicle emission, which should be a concern of the government. A snapshot of the 2013 characteristic

  5. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy

    NASA Astrophysics Data System (ADS)

    Dai, S.; Bi, X.; Chan, L. Y.; He, J.; Wang, B.; Wang, X.; Peng, P.; Sheng, G.; Fu, J.

    2015-03-01

    Vehicle emissions are a major source of urban air pollution. In recent decade, the Chinese government has introduced a range of policies to reduce vehicle emissions. In order to understand the chemical characteristics of PM2.5 from on-road vehicle emissions in the Pearl River Delta (PRD) region and to evaluate the effectiveness of control policies on vehicle emissions, the emission factors of PM2.5 mass, elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC), water-soluble inorganic ions (WSII), metal elements, organic compounds and stable carbon isotopic composition were measured in the Zhujiang tunnel of Guangzhou, in the PRD region of China in 2013. Emission factors of PM2.5 mass, OC, EC and WSOC were 92.4, 16.7, 16.4 and 1.31 mg vehicle-1 km-1 respectively. Emission factors of WSII were 0.016 (F-) ~ 4.17 (Cl-) mg vehicle-1 km-1, contributing about 9.8% to the PM2.5 emissions. The sum of 27 measured metal elements accounted for 15.2% of PM2.5 emissions. Fe was the most abundant metal element, with an emission factor of 3.91 mg vehicle-1 km-1. Emission factors of organic compounds including n-alkanes, polycyclic aromatic hydrocarbons, hopanes and steranes were 91.9, 5.02, 32.0 and 7.59 μg vehicle-1 km-1, respectively. Stable carbon isotopic composition δ13C value was -25.0‰ on average. An isotopic fractionation of 3.2‰ was found during fuel combustion. Compared to a previous study in Zhujiang tunnel in 2004, emission factors of PM2.5mass, EC, OC, WSII except Cl- and organic compounds decreased by 16.0 ~ 93.4%, which could be attributed to emission control policy from 2004 to 2013. However, emission factors of most of the metal elements increased significantly, which could be partially attributed to the changes in motor oil additives and vehicle conditions. There are no mandatory national standards to limit metal content from vehicle emissions, which should be a concern of the government. A snapshot of the 2013 characteristic

  6. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold...

  7. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Where: Ywm = Weighted mass emissions of each pollutant, i.e., HC, CO, NOX or CO , in grams per vehicle mile. Yct = Mass emissions as calculated from the “transient” phase of the cold start test, in grams... grams per test phase. Ys = Mass emissions as calculated from the “stabilized” phase of the cold...

  8. Development of database of real-world diesel vehicle emission factors for China.

    PubMed

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. PMID:25968276

  9. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  10. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  11. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  12. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission...

  13. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  14. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements (40 CFR Part 51, Subpart A) requires submission of on-road mobile source emissions inventories, as... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions...

  15. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements (40 CFR part 51, subpart A) requires submission of on-road mobile source emissions inventories, as... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions...

  16. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission

    PubMed Central

    Fatemi, Mostafa; Greenleaf, James F.

    1999-01-01

    We describe theoretical principles of an imaging modality that uses the acoustic response of an object to a highly localized dynamic radiation force of an ultrasound field. In this method, named ultrasound-stimulated vibro-acoustography (USVA), ultrasound is used to exert a low-frequency (in kHz range) force on the object. In response, a portion of the object vibrates sinusoidally in a pattern determined by its viscoelastic properties. The acoustic emission field resulting from object vibration is detected and used to form an image that represents both the ultrasonic and low-frequency (kHz range) mechanical characteristics of the object. We report the relation between the emitted acoustic field and the incident ultrasonic pressure field in terms of object parameters. Also, we present the point-spread function of the imaging system. The experimental images in this report have a resolution of about 700 μm, high contrast, and high signal-to-noise ratio. USVA is sensitive enough to detect object motions on the order of nanometers. Possible applications include medical imaging and material evaluation. PMID:10359758

  17. Secondary organic aerosol formation from road vehicle emissions

    NASA Astrophysics Data System (ADS)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  18. Health effects of occupational exposures to vehicle emissions in Shanghai.

    PubMed

    Zhou, W; Yuan, D; Ye, S; Qi, P; Fu, C; Christiani, D C

    2001-01-01

    The authors investigated the health effects of occupational exposures to vehicle emissions in 745 bus drivers, conductors, and taxi drivers, compared with 532 unexposed controls, in Shanghai. Logistic regression and general linear models were used to examine the relationship between exposure and respiratory illness. Results showed that the prevalences of some respiratory symptoms and chronic respiratory diseases were significantly higher (p < 0.05) in the exposed group than in the controls. The adjusted odds ratios for throat pain, phlegm, chronic rhinitis, and chronic pharyngitis were 1.95 (95% CI 1.55-2.46), 3.90 (95% CI 2.61-5.81), 1.96 (95% CI 1.11-3.46), and 4.19 (95% CI 2.49-7.06), respectively. Also, there were exposure time response relationships for the prevalences of phlegm and chronic respiratory disease. Pulmonary function and blood lead levels were not significantly correlated with exposure status. The results suggest that occupational exposure to vehicle emissions may induce detectable adverse health effects. PMID:11210009

  19. Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam.

    PubMed

    Tung, H D; Tong, H Y; Hung, W T; Anh, N T N

    2011-06-15

    This paper reports on a 2-year emissions monitoring program launched by the Centre for Environmental Monitoring of the Vietnam Environment Administration which aimed at determining emission factors and emission inventories for two typical types of vehicle in Hanoi, Vietnam. The program involves four major activities. A database for motorcycles and light duty vehicles (LDV) in Hanoi was first compiled through a questionnaire survey. Then, two typical driving cycles were developed for the first time for motorcycles and LDVs in Hanoi. Based on this database and the developed driving cycles for Hanoi, a sample of 12 representative test vehicles were selected to determine vehicle specific fuel consumption and emission factors (CO, HC, NOx and CO(2)). This set of emission factors were developed for the first time in Hanoi with due considerations of local driving characteristics. In particular, it was found that the emission factors derived from Economic Commission for Europe (ECE) driving cycles and adopted in some previous studies were generally overestimated. Eventually, emission inventories for motorcycles and LDVs were derived by combining the vehicle population data, the developed vehicle specific emission factors and vehicle kilometre travelled (VKT) information from the survey. The inventory suggested that motorcycles contributed most to CO, HC and NOx emissions while LDVs appeared to be more fuel consuming. PMID:21549413

  20. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  1. High-resolution mapping of vehicle emissions in China in 2008

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2014-09-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  2. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  3. Contribution of evaporative emissions from gasoline vehicles toward total VOC emissions in Japan.

    PubMed

    Yamada, Hiroyuki

    2013-04-01

    The features of evaporative emissions from gasoline vehicles were examined. One potential source of evaporative emissions is mainly the so-called sigh of a fuel tank, which is a function of the daily temperature change and the volume not occupied by fuel. A theoretical equation was proposed for estimating the fuel vapor generation. It reproduced observed features well but underestimated the absolute values obtained in the experimental results. The widely used semi-empirical Reddy equation overestimates the results. The performance of a carbon canister was also evaluated. More than 95% of fuel vapor generation was trapped by the carbon canister. However, the canister worked for only one day because it adsorbed more VOC than that contained in the sigh alone. To estimate the evaporative emissions in the real world, the fuel tank temperature change while a car was parked in an outside car park was monitored and was found to be almost the same as the change in ambient air temperature; no other weather conditions had any effect. According to the findings in this study and data on frequency of car use, the annual amount of evaporative emissions from gasoline vehicles in Japan was estimated to be 4.6% of the total VOC emissions in Japan, making it the 6th-highest source of VOC. PMID:23422493

  4. INFLUENCE OF AMBIENT TEMPERATURE ON TAILPIPE EMISSIONS FROM LATE MODEL LIGHT-DUTY GASOLINE MOTOR VEHICLES

    EPA Science Inventory

    Motor vehicle emissions are sensitive to a number of variables including ambient temperature, driving schedule (speed vs time), and fuel composition. ydrocarbon, aldehyde, carbon monoxide, and oxides of nitrogen emissions were examined with nine recent technology 4-cylinder gasol...

  5. On-road remote sensing of liquefied petroleum gas (LPG) vehicle emissions measurement and emission factors estimation

    NASA Astrophysics Data System (ADS)

    Ning, Z.; Chan, T. L.

    In the present study, the real-world on-road liquefied petroleum gas (LPG) vehicle/taxi emissions of carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NO) were investigated. A regression analysis approach based on the measured LPG vehicle emission data was also used to estimate the on-road LPG vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the LPG vehicle model years and driving patterns have a strong correlation to their emission factors. A unique correlation of LPG vehicle emission factors (i.e., g km -1 and g l -1) on different model years for urban driving patterns has been established. Finally, a comparison was made between the average LPG, and petrol [Chan, T.L., Ning, Z., Leung, C.W., Cheung, C.S., Hung, W.T., Dong, G., 2004. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 38, 2055-2066 and 3541] and diesel [Chan, T.L., Ning, Z., 2005. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 39, 6843-6856] vehicle emission factors. It has shown that the introduction of the replacement of diesel taxis to LPG taxis has alleviated effectively the urban street air pollution. However, it has demonstrated that proper maintenance on the aged LPG taxis should also be taken into consideration.

  6. Zero-emission vehicle technology assessment. Final report

    SciTech Connect

    Woods, T.

    1995-08-01

    This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

  7. Roadside nanoparticles corresponding to vehicle emissions during one signal cycle

    NASA Astrophysics Data System (ADS)

    Minoura, Hiroaki; Takekawa, Hideto; Terada, Shigeo

    The behavior of nanoparticles (NPs) in the roadside atmosphere has not been clarified because it involves unstable volatile components. It was thought that the number concentration (NC) and NP size distribution change due to variations in traffic conditions (e.g., traffic volume [TV], velocity, acceleration, etc.) near the intersection, but the SMPS (Scanning Mobility Particle Sizer) lacks the temporal resolution required for rapid, transient measurements. Using a fast-response aerosol spectrometer capable of providing near-instantaneous particle NC measurements in real time, the behavior of NPs during one signal cycle became clear, and it was understood that the effect of condensation/evaporation processes is important, in addition to coagulation. As for the relation of the NC in proportion to the TV, this did not show a constant line but rather a hysteresis curve during the signal cycle, because the gas-particle equilibrium state at the roadside atmosphere was variable. Using two points of simultaneous measurement and on-board measurement, the behavior of NPs could be confirmed in response to the characteristics of automotive exhaust, which varied due to the on-road driving state, engine conditions, vehicle position, or traffic light timing, at the intersection. The on-board measurement of NP size distribution in the exhaust plume from a diesel vehicle was carried out as a reference for direct particle emissions, compared with the roadside NPs. The coagulation/deposition model simulation using the direct particle emissions underestimated the NCs compared with the observed values. The gas-particle equilibrium model could explain the underestimated portion caused by the condensation of ambient VOC (Volatile Organic Compounds) onto the particles. If this hypothesis is correct, the condensable VOC amount in the roadside atmosphere is suggested to be very large.

  8. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    PubMed

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management. PMID:23323399

  9. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  10. [Evaluation on the Effectiveness of Vehicle Exhaust Emission Control Measures During the APEC Conference in Beijing].

    PubMed

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Guo, Jin-jin

    2016-01-15

    Vehicle emission is one of the primary factors affecting the quality of atmospheric environment in Beijing. In order to improve the air quality during APEC conference, strict control measures including vehicle emission control were taken in Beijing during APEC meeting. Based on the activity level data of traffic volume, vehicle speed and vehicle types, the inventory of motor vehicle emissions in Beijing was developed following bottom-up methodology to assess the effectiveness of the control measures. The results showed that the traffic volume of Beijing road network during the APEC meeting decreased significantly, the vehicle speed increased obviously, and the largest decline of traffic volume was car. CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 15.1%, 22.4%, 18.4% and 21.8% for freeways, 29.9%, 36.4%, 32.7% and 35.8% for major arterial, 35.7%, 41.7%, 38.4% and 41.2% for minor arterial, 40.8%, 46.5%, 43.1% and 46.0% for collectors, respectively. The vehicles exhaust emissions inventory before and during APEC conference was developed based on bottom-up emissions inventory method. The results indicated that CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 37.5%, 43.4%, 39.9% and 42.9% in the study area, respectively. PMID:27078943

  11. Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure.

    PubMed

    Marotta, Alessandro; Pavlovic, Jelica; Ciuffo, Biagio; Serra, Simone; Fontaras, Georgios

    2015-07-21

    The Worldwide Harmonized Light Duty Test Procedure (WLTP), recently issued as GTR15 by UNECE-WP29, is designed to check the pollutant emission compliance of Light Duty Vehicles (LDVs) around the world and to establish the reference vehicle fuel consumption and CO2 performance. In the course of the development of WLTP, the Joint Research Center (JRC) of the European Commission has tested gaseous emissions of twenty-one Euro 4-6 gasoline and diesel vehicles, on both the current European type approval test procedure (NEDC) and the progressive versions of the WLTP. The results, which should be regarded just as an initial and qualitative indication of the trends, demonstrated minimal average differences between CO2 emissions over the NEDC and WLTP. On the other hand, CO2 emissions measured at JRC on the NEDC were on average 9% higher than the respective type approval values, therefore suggesting that for the tested vehicles, CO2 emissions over WLTP were almost 10% higher than the respective NEDC type approval values. That difference is likely to increase with application of the full WLTP test procedure. Measured THC emissions from most vehicles stayed below the legal emission limits and in general were lower under the WLTP compared to NEDC. Moving from NEDC to WLTP did not have much impact on NOx from gasoline vehicles and CO from diesel vehicles. On the contrary, NOx from diesel vehicles and CO from low-powered gasoline vehicles were significantly higher over the more dynamic WLTP and in several cases exceeded the emission limits. Results from this study can be considered indicative of emission patterns of modern technology vehicles and useful to both policy makers and vehicle manufacturers in developing future emission policy/technology strategies. PMID:26111353

  12. Emissions from a vehicle fitted to operate on either petrol or compressed natural gas.

    PubMed

    Ristovski, Z; Morawska, L; Ayoko, G A; Johnson, G; Gilbert, D; Greenaway, C

    2004-05-01

    The purpose of this work was to evaluate the physical and chemical properties of emission products from a six-cylinder sedan car under a variety of operating conditions, before and after it has been converted to compressed natural gas (CNG) fuel. The specific focus of the measurements was on emission levels and characteristics of ultra fine particles and the emission levels together with the emissions of gaseous pollutants for a range of operating conditions before and up to 3 months after the vehicle was converted are presented and discussed in the paper. The investigations showed that converting a petrol operating vehicle to CNG has the potential of reducing some of the emissions and thus risks, while it does not appear to have an impact on others. In particular there was no statistically significant change in the emission of particles for the vehicle operating on petrol, before the conversion, compared to the emissions for the vehicle operating on CNG, after the conversion. There was a significant lowering of emissions of total polycyclic aromatic hydrocarbons and formaldehyde when the vehicle was operated on CNG, and a reduction of global warming potential was also observed when the vehicle was run on CNG, but the later gain is only at high vehicle speeds/loads, and would thus have to be considered in view of traffic and transport models for the region (in these models vehicle speed is an important parameter). PMID:15081726

  13. DYNAMOMETER TESTING OF ON-ROAD VEHICLES FROM THE LOS ANGELES IN-USE EMISSIONS STUDY

    EPA Science Inventory

    One part of the CARB/EPA coordinated In-Use Automobile Emissions field study of 1991 carried out in the Los Angeles area was to examine the operation and emissions characteristics of vehicles emitting high quantities of Carbon Monoxide (CO) and Hydrocarbon (HC) vehicles. n-use, c...

  14. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions budget... TIP has already been determined by DOT using the budget(s), the conformity determination will...

  15. 40 CFR 93.118 - Criteria and procedures: Motor vehicle emissions budget.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures: Motor vehicle emissions budget. (a) The transportation plan, TIP, and project not from a conforming transportation plan and TIP must be consistent with the motor vehicle emissions budget... TIP has already been determined by DOT using the budget(s), the conformity determination will...

  16. CHARACTERIZATION OF EXHAUST EMISSIONS FROM LIGHT-DUTY GAS VEHICLES IN THE KANSAS CITY METROPOLITAN AREA

    EPA Science Inventory

    This research program on light duty vehicle emissions is being performed under an interagency agreement. It will provide current information on particulate matter emissions and distributions from light-duty vehicles, an area where more and better data are necessary to meet the n...

  17. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1811-01 Emission standards... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Emission standards for...

  18. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1811-01 Emission standards... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission standards for...

  19. 40 CFR 86.1811-01 - Emission standards for light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1811-01 Emission standards... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Emission standards for...

  20. 78 FR 34911 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Low Emission Vehicle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ...EPA is approving State Implementation Plan (SIP) revisions submitted by the State of Maryland on December 20, 2007, November 12, 2010, and June 22, 2011, as amended March 22, 2013. These SIP revisions pertain to adoption by Maryland of a Low Emission Vehicle (LEV) program, which incorporates by reference California's second generation Low Emission Vehicle (LEVII) program regulations.......

  1. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  2. Sampling of vehicle emissions for chemical analysis and biological testing.

    PubMed Central

    Schuetzle, D

    1983-01-01

    Representative dilution tube sampling techniques for particulate and gas phase vehicle emissions are described using Teflon filter media and XAD-2 resin. More than 90% of the total gas (C8-C18) and particulate direct acting Ames assay mutagenicity (TA 98) was found in the particulate phase. The gas and particulate phase material was fractionated by HPLC into nonpolar, moderately polar and highly polar chemical fractions. The moderately polar chemical fraction of the particulates contained more than 50% of the direct acting Ames assay mutagenicity for the total extract. The concentration of oxygenated polynuclear aromatic hydrocarbons (oxy-PAH) and nitrated PAH (nitro-PAH) identified in the moderately polar particulate fractions are given. Nitro-PAH account for most of the direct-acting (TA 98) Ames assay mutagenicity in these moderately polar fractions. Reactions and kinetic expressions for chemical conversion of PAH are presented. Chemical conversion of PAH to nitro-PAH during dilution tube sampling of particulates on Teflon filters and gases on XAD-2 resin is a minor problem (representing 10-20%, on the average, of the 1-nitropyrene found in extracts) at short (46 min) sampling times, at low sampling temperatures (42 degrees C), and in diluted exhaust containing 3 ppm NO2. Particulate emissions collected from dilution tubes on filter media appear to be representative of what is emitted in the environment as based upon a comparison of highway and laboratory studies. PMID:6186484

  3. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  4. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project is to develop improved methods for modeling the source through...

  5. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) National Exposure Research Laboratory (NERL) has initiated a project to improve the methodology for modeling human exposure to motor vehicle emission. The overall project goal is to develop improved methods for modeling...

  6. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR CO (MICROFACCO) FOR PREDICTING REAL-TIME VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  7. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  8. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL-TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    The United States Environmental Protection Agency's National Exposure Research Laboratory has initiated a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source t...

  9. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  10. Assessment of vehicle emission programs in China during 1998-2013: Achievement, challenges and implications.

    PubMed

    Wu, Xiaomeng; Wu, Ye; Zhang, Shaojun; Liu, Huan; Fu, Lixin; Hao, Jiming

    2016-07-01

    China has been embracing rapid motorization since the 1990s, and vehicles have become one of the major sources of air pollution problems. Since the late 1990s, thanks to the international experience, China has adopted comprehensive control measures to mitigate vehicle emissions. This study employs a local emission model (EMBEV) to assess China's first fifteen-year (1998-2013) efforts in controlling vehicles emissions. Our results show that China's total annual vehicle emissions in 2013 were 4.16 million tons (Mt) of HC, 27.4 Mt of CO, 7.72 Mt of NOX, and 0.37 Mt of PM2.5, respectively. Although vehicle emissions are substantially reduced relative to the without control scenarios, we still observe significantly higher emission density in East China than in developed countries with longer histories of vehicle emission control. This study further informs China's policy-makers of the prominent challenges to control vehicle emissions in the future. First, unlike other major air pollutants, total NOX emissions have rapidly increased due to a surge of diesel trucks and the postponed China IV standard nationwide. Simultaneous implementation of fuel quality improvements and vehicle-engine emission standards will be of great importance to alleviate NOX emissions for diesel fleets. Second, the enforcement of increasingly stringent standards should include strict oversight of type-approval conformity, in-use complacence and durability, which would help reduce gross emitters of PM2.5 that are considerable among in-use diesel fleets at the present. Third, this study reveals higher HC emissions than previous results and indicates evaporative emissions may have been underestimated. Considering that China's overall vehicle ownership is far from saturation, persistent efforts are required through economic tools, traffic management and emissions regulations to lower vehicle-use intensity and limit both exhaust and evaporative emissions. Furthermore, in light of the complex

  11. Application of a microscale emission factor model for particulate matter to calculate vehicle-generated contributions to fine particulate emissions.

    PubMed

    Singh, Rakesh B; Desloges, Catherine; Sloan, James J

    2006-01-01

    This paper discusses the evaluation and application of a new generation of particulate matter (PM) emission factor model (MicroFacPM). MicroFacPM that was evaluated in Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA shows good agreement between measured and modeled emissions. MicroFacPM application is presented to the vehicle traffic on the main approach road to the Ambassador Bridge, which is one of the most important international border entry points in North America, connecting Detroit, MI, with Windsor, Ontario, Canada. An increase in border security has forced heavy-duty diesel vehicles to line up for several kilometers through the city of Windsor causing concern about elevated concentrations of ambient PM. MicroFacPM has been developed to model vehicle-generated PM (fine [PM2.5] and coarse < or = 10 microm [PM10]) from the on-road vehicle fleet, which in this case includes traffic at very low speeds (10 km/h). The Windsor case study gives vehicle generated PM2.5 sources and their breakdown by vehicle age and class. It shows that the primary sources of vehicle-generated PM2.5 emissions are the late-model heavy-duty diesel vehicles. We also applied CALINE4 and AERMOD in conjunction with MicroFacPM, using Canadian traffic and climate conditions, to describe the vehicle-generated PM2.5 dispersion near this roadway during the month of May in 2003. PMID:16499145

  12. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Brady, J.; Crisp, T. A.; Collier, S.; Kuwayama, T.; Zhang, Q.; Kleeman, M.; Bertram, T. H.

    2013-12-01

    Recent work has demonstrated the potential for vehicle based anthropogenic sources of the carcinogen isocyanic acid (HNCO) in urban environments. Although emission factors for HNCO have recently been measured for light duty diesel vehicles, light duty gasoline vehicles are not well characterized. Here we will present real-time emission factor measurements of HNCO for light duty gasoline vehicles measured at the California Air Resource Board's Haagen-Smit Laboratory in September of 2011 driven on a chassis dynamometer using the California Unified Driving Cycle. Emission factors for HNCO were determined for eight light duty gasoline vehicles utilizing a fast response chemical ionization time-of-flight mass spectrometer and simultaneous real-time measurements of CO, CO2, and NOx. We will discuss the potential production mechanism for HNCO by light duty gasoline vehicles as well as the potential drive cycle dependency of HNCO production.

  13. Effect of interactions between vehicles and pedestrians on fuel consumption and emissions

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Sun, Jian-Qiao

    2014-12-01

    This paper presents a study of variations of fuel consumption and emissions of vehicles due to random street crossings of pedestrians. The pedestrian and vehicle movement models as well as the interaction model between the two entities are presented. Extensive numerical simulations of single and multiple cars are carried out to investigate the traffic flow rate, vehicle average speed, fuel consumption, CO, HC and NOx emissions. Generally more noncompliant road-crossings of pedestrians lead to higher level of fuel consumptions and emissions of vehicles, and the traffic situation can be improved by imposing higher vehicle speed limit to some extent. Different traffic characteristics in low and high vehicle density regions are studied. The traffic flow is more influenced by crossing pedestrians in the low vehicle density region, while in the high vehicle density region, the interactions among vehicles dominate. The main contribution of this paper lies in the qualitative analysis of the impact of the interactions between pedestrians and vehicles on the traffic, its energy economy and emissions.

  14. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  15. [Impact of heavy-duty diesel vehicles on air quality and control of their emissions].

    PubMed

    Zhou, Lei; Wang, Bo-Guang; Tang, Da-Gang

    2011-08-01

    Through an analysis of the characteristics of diesel vehicle emissions and motor vehicle emissions inventories, this paper examines the impact of heavy-duty diesel vehicles on air quality in China as well as issues related to the control of their emissions. Heavy-duty diesel vehicles emit large amounts of nitrogen oxides and particulate matter. Nitrogen oxides is one of the important precursors for the formation of secondary particles and ozone in the atmosphere, causing regional haze. Diesel particulate matter is a major toxic air pollutant with adverse effect on human health, and in particular, the ultrafine particles in 30-100 nm size range can pose great health risks because of its extremely small sizes. Motor vehicles have become a major source of air pollution in many metropolitan areas and city cluster in China, and among them the heavy-duty diesel vehicles are a dominant contributor of nitrogen oxides and particulate matter emissions. Hence, controlling heavy-duty diesel vehicle emissions should be a key component of an effective air quality management plan, and a number of issues related to heavy-duty diesel vehicle emissions need to be addressed. PMID:22619934

  16. Emissions from heavy-duty vehicles under actual on-road driving conditions

    NASA Astrophysics Data System (ADS)

    Durbin, Thomas D.; Johnson, Kent; Miller, J. Wayne; Maldonado, Hector; Chernich, Don

    Emission measurements of five 1996-2005 heavy-duty diesel vehicles (HDDVs), representing three engine certification levels, were made using a Mobile Emissions Laboratory under actual on-road driving conditions on surface streets and highways. The results show that emissions depend on the emission component, the age/certification of vehicle/engine, as well as driving condition. For NO x emissions, there was a trend of decreasing emissions in going from older to newer model years and certification standards. Some vehicles showed a tendency toward higher NO x emissions per mile for the higher speed events (⩾55 mph) as compared to the 40 mph cruise and the other surface street driving, while others did not show large differences between different types of driving. For particulate matter (PM), the three oldest trucks had the highest emissions for surface street driving, while the two newest trucks had the highest PM emissions for highway driving. For total hydrocarbons (THC) emissions, some vehicles showed a tendency for higher emissions for the surface street segments compared to the steady-state segments, while others showed a tendency for higher emissions for the 40 mph cruise segments compared to the highway cruise segments. CO emissions under steady-state driving conditions were relatively low (1-3 g mile -1).

  17. 40 CFR 93.124 - Using the motor vehicle emissions budget in the applicable implementation plan (or implementation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Using the motor vehicle emissions... U.S.C. or the Federal Transit Laws § 93.124 Using the motor vehicle emissions budget in the... implementation plan (or implementation plan submission) with respect to its motor vehicle emissions...

  18. 40 CFR 93.124 - Using the motor vehicle emissions budget in the applicable implementation plan (or implementation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Using the motor vehicle emissions... U.S.C. or the Federal Transit Laws § 93.124 Using the motor vehicle emissions budget in the... implementation plan (or implementation plan submission) with respect to its motor vehicle emissions...

  19. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  20. Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

    SciTech Connect

    Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

    2010-06-01

    Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

  1. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  2. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  3. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: gasoline vehicles.

    PubMed

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2002-01-15

    Scanning mobility and electrical low-pressure impactor particle size measurements conducted during chassis dynamometer testing reveal that neither the catalytic converter nor the fuel sulfur content has a significant effect on gasoline vehicle tailpipe particulate matter (PM) emissions. For current technology, port fuel injection, gasoline engines, particle number emissions are < or = 2 times higher from vehicles equipped with blank monoliths as compared to active catalysts, insignificant in contrast to the 90+% removal of hydrocarbons. PM mass emission rates derived from the size distributions are equal within the experimental uncertainty of 50-100%. Gravimetric measurements exhibit a 3-10-fold PM mass increase when the active catalyst is omitted, which is attributed to gaseous hydrocarbons adsorbing onto the filter medium. Both particle number and gravimetric measurements show that gasoline vehicle tailpipe PM emissions are independent (within 2 mg/mi) of fuel sulfur content over the 30-990 ppm concentration range. Nuclei mode sulfate aerosol is not observed in either test cell measurements or during wind tunnel testing. For three-way catalyst equipped vehicles, the principal sulfur emission is SO2; however a sulfur balance is not obtained over the drive cycle. Instead, sulfur is stored on the catalyst during moderate driving and then partially removed during high speed/load operation. PMID:11827063

  4. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    PubMed

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further. PMID:19320180

  5. Evaluation of On-Road Vehicle Emission Trends in the United States

    NASA Astrophysics Data System (ADS)

    Harley, R. A.; Dallmann, T. R.; Kirchstetter, T.

    2010-12-01

    Mobile sources contribute significantly to emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), and black carbon (BC). These emissions lead to a variety of environmental problems including air pollution and climate change. At present, national and state-level mobile source emission inventories are developed using statistical models to predict emissions from large and diverse populations of vehicles. Activity is measured by total vehicle-km traveled, and pollutant emission factors are predicted based on laboratory testing of individual vehicles. Despite efforts to improve mobile source emission inventories, they continue to have large associated uncertainties. Alternate methods, such as the fuel-based approach used here, are needed to evaluate estimates of mobile source emissions and to help reduce uncertainties. In this study we quantify U.S. national emissions of NOx, CO, PM2.5, and BC from on-road diesel and gasoline vehicles for the years 1990-2010, including effects of a weakened national economy on fuel sales and vehicle travel from 2008-10. Pollutant emissions are estimated by multiplying total amounts of fuel consumed with emission factors expressed per unit of fuel burned. Fuel consumption is used as a measure of vehicle activity, and is based on records of taxable fuel sales. Pollutant emission factors are derived from roadside and tunnel studies, remote sensing measurements, and individual vehicle exhaust plume capture experiments. Emission factors are updated with new results from a summer 2010 field study conducted at the Caldecott tunnel in the San Francisco Bay Area.

  6. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    PubMed

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions. PMID:26125323

  7. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles. PMID:26757000

  8. ANALYSIS OF MOTOR VEHICLE EMISSIONS IN A HOUSTON TUNNEL DURING THE TEXAS AIR QUALITY STUDY 2000

    EPA Science Inventory

    Measurements from a Houston tunnel were used to develop fuel consumption based emission factors for CO, NOx, and Non-Methane Organic Compound (NMOC) for on-road gasoline vehicles. The Houston NOx emission factor was at the low range of emission factors reported in previous (pr...

  9. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    NASA Astrophysics Data System (ADS)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  10. Characterization of on-road CO, HC and NO emissions for petrol vehicle fleet in China city*

    PubMed Central

    Guo, Hui; Zhang, Qing-yu; Shi, Yao; Wang, Da-hui; Ding, Shu-ying; Yan, Sha-sha

    2006-01-01

    Vehicle emissions are a major source of air pollution in urban areas. The impact on urban air quality could be reduced if the trends of vehicle emissions are well understood. In the present study, the real-world emissions of vehicles were measured using a remote sensing system at five sites in Hangzhou, China from February 2004 to August 2005. More than 48000 valid gasoline powered vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured. The results show that petrol vehicle fleet in Hangzhou has considerably high CO emissions, with the average emission concentration of 2.71%±0.02%, while HC and NO emissions are relatively lower, with the average emission concentration of (153.72±1.16)×10−6 and (233.53±1.80)×10−6, respectively. Quintile analysis of both average emission concentration and total amount emissions by model year suggests that in-use emission differences between well maintained and badly maintained vehicles are larger than the age-dependent deterioration of emissions. In addition, relatively new high polluting vehicles are the greatest contributors to fleet emissions with, for example, 46.55% of carbon monoxide fleet emissions being produced by the top quintile high emitting vehicles from model years 2000~2004. Therefore, fleet emissions could be significantly reduced if new highly polluting vehicles were subject to effective emissions testing followed by appropriate remedial action. PMID:16773726

  11. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  12. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  13. Global emission of black carbon from motor vehicles from 1960 to 2006.

    PubMed

    Wang, Rong; Tao, Shu; Shen, Huizhong; Wang, Xilong; Li, Bengang; Shen, Guofeng; Wang, Bin; Li, Wei; Liu, Xiaopeng; Huang, Ye; Zhang, Yanyan; Lu, Yan; Ouyang, Huiling

    2012-01-17

    Black carbon (BC) is a key short-lived climate change forcer. Motor vehicles are important sources of BC in the environment. BC emission factors (EF(BC)), defined as BC emitted per mass of fuel consumed, are critical in the development of BC emission inventories for motor vehicles. However, measured EF(BC) for motor vehicles vary in orders of magnitude, which is one of the major sources of uncertainty in the estimation of emissions. In this study, the main factors affecting EF(BC) for motor vehicles were investigated based on 385 measured EF(BC) collected from the literature. It was found that EF(BC) for motor vehicles of a given year in a particular country can be predicted using gross domestic product per capita (GDP(c)), temperature, and the year a country's GDP(c) reached 3000 USD (Y(3000)). GDP(c) represents technical progress in terms of emission control, while Y(3000) suggest the technical transfer from developed to developing countries. For global BC emission calculations, 87 and 64% of the variation can be eliminated for diesel and gasoline vehicles by using this model. In addition to a reduction in uncertainty, the model can be used to develop a global on-road vehicle BC emission inventory with spatial and temporal resolution. PMID:22185218

  14. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    PubMed

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  15. Emissions of acrolein and other aldehydes from biodiesel-fueled heavy-duty vehicles.

    PubMed

    Cahill, Thomas M; Okamoto, Robert A

    2012-08-01

    Aldehyde emissions were measured from two heavy-duty trucks, namely 2000 and 2008 model year vehicles meeting different EPA emission standards. The tests were conducted on a chassis dynamometer and emissions were collected from a constant volume dilution tunnel. For the 2000 model year vehicle, four different fuels were tested, namely California ultralow sulfur diesel (CARB ULSD), soy biodiesel, animal biodiesel, and renewable diesel. All of the fuels were tested with simulated city and high speed cruise drive cycles. For the 2008 vehicle, only soy biodiesel and CARB ULSD fuels were tested. The research objective was to compare aldehyde emission rates between (1) the test fuels, (2) the drive cycles, and (3) the engine technologies. The results showed that soy biodiesel had the highest acrolein emission rates while the renewable diesel showed the lowest. The drive cycle also affected emission rates with the cruise drive cycle having lower emissions than the urban drive cycle. Lastly, the newer vehicle with the diesel particulate filter had greatly reduced carbonyl emissions compared to the other vehicles, thus demonstrating that the engine technology had a greater influence on emission rates than the fuels. PMID:22746209

  16. Recent evidence concerning higher NO x emissions from passenger cars and light duty vehicles

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Beevers, Sean D.; Tate, James E.; Westmoreland, Emily J.; Williams, Martin L.

    2011-12-01

    Ambient trends in nitrogen oxides (NO x) and nitrogen dioxide (NO 2) for many air pollution monitoring sites in European cities have stabilised in recent years. The lack of a decrease in the concentration of NO x and in particular NO 2 is of concern given European air quality standards are set in law. The lack of decrease in the concentration of NO x and NO 2 is also in clear disagreement with emission inventory estimates and projections. This work undertakes a comprehensive analysis of recent vehicle emissions remote sensing data from seven urban locations across the UK. The large sample size of 84,269 vehicles was carefully cross-referenced to a detailed and comprehensive database of vehicle information. We find that there are significant discrepancies between current UK/European estimates of NO x emissions and those derived from the remote sensing data for several important classes of vehicle. In the case of light duty diesel vehicles it is found that NO x emissions have changed little over 20 years or so over a period when the proportion of directly emitted NO 2 has increased substantially. For diesel cars it is found that absolute emissions of NO x are higher across all legislative classes than suggested by UK and other European emission inventories. Moreover, the analysis shows that more recent technology diesel cars (Euro 3-5) have clear increasing NO x emissions as a function of Vehicle Specific Power, which is absent for older technology vehicles. Under higher engine loads, these newer model diesel cars have a NO x/CO 2 ratio twice that of older model cars, which may be related to the increased use of turbo-charging. Current emissions of NO x from early technology catalyst-equipped petrol cars (Euro 1/2) were also found to be higher than emission inventory estimates - and comparable with NO x emissions from diesel cars. For heavy duty vehicles, it is found that NO x emissions were relatively stable until the introduction of Euro IV technology when

  17. Development of EndoTOFPET-US, a multi-modal endoscope for ultrasound and time of flight positron emission tomography

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.

    2014-02-01

    The EndoTOFPET-US project aims at delevoping a multi-modal imaging device that combines Ultrasound with Time-Of-Flight Positron Emission Tomography into an endoscopic imaging device. The goal is to obtain a coincidence time resolution of about 200 ps FWHM and sub-millimetric spatial resolution for the PET head, integrating the components in a very compact detector suitable for endoscopic use. The scanner will be exploited for the clinical test of new bio-markers especially targeted for prostate and pancreatic cancer as well as for diagnostic and surgical oncology. This paper focuses on the status of the Time-Of-Flight Positron Emission Tomograph under development for the EndoTOFPET-US project.

  18. Influence of oxygenated fuels on the emissions from three pre-1985 light-duty passenger vehicles

    SciTech Connect

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Siudak, P.D.; Snow, R.F.

    1994-06-01

    Tailpipe and evaporative emissions from three pre-1985 passenger motor vehicles operating on an oxygenated blend fuel and on a nonoxgenated base fuel were characterized. Emission data were collected for vehicles operating over the Federal Test Procedure at 40, 75, and 90 F to simulate ambient driving conditions. The two fuels tested were a commercial summer grade regular gasoline (the nonoxgenated base fuel) and an oxygenated fuel containing 9.5 percent methyl ter-butyl ether (MTBE), more olefins, and fewer aromatics than the base fuel. The emissions measured were total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOX), benzene, and 1,3-butadiene. This study showed no pattern of tailpipe regulated emission reduction when oxygenated fuel was used. THC, CO, benzene, and 1,3-butadiene emissions from both fuels and all vehicles, in general, decreased with increasing test temperature, whereas NOX emissions, in general, increased with increasing test temperature.

  19. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524

  20. Assessment for Fuel Consumption and Exhaust Emissions of China's Vehicles: Future Trends and Policy Implications

    PubMed Central

    Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020–2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017–2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524

  1. Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles.

    PubMed

    Rhys-Tyler, Glyn A; Bell, Margaret C

    2012-10-01

    A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models. PMID:22894824

  2. Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Zhang, Bin; Tian, Jian; Wang, Jiaqing; Chong, Yu; Wang, Xin; Deng, Yaoyao; Tang, Minghua; Li, Yonggang; Ge, Cuicui; Pan, Yue; Gu, Hongwei

    2015-02-01

    We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging.We report a facile synthesis of bifunctional Fe3O4-Ag125I heterodimers for use as dual-modality imaging agents in magnetic resonance (MR) and single-photon emission computed tomography (SPECT). We introduced 125I, which is a clinically used radioisotope, as a SPECT reporter, into Fe3O4-Ag heterodimer nanoparticles to provide a new type of bifunctional contrast agent for MRI and SPECT imaging. Electronic supplementary information (ESI) available: Details of general experimental procedures, TEM image. See DOI: 10.1039/c4nr07255c

  3. Characterization, concentrations and emission rates of polycyclic aromatic hydrocarbons in the exhaust emissions from in-service vehicles in Damascus

    NASA Astrophysics Data System (ADS)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2013-02-01

    Motor vehicles are significant sources of polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Improved understanding of PAH emission profiles in mobile sources is the key to determining the viable approach for reducing PAH emissions from motor vehicles. Very limited data is available on the levels of PAH emissions in the urban atmospheres in Syria and no data are currently available on the level of PAH emissions from different combustion sources in the country. The aim of this study was to determine the profile and concentration of PAH in exhaust emissions of light and heavy-duty vehicles running on the roads of Damascus city. Three different types of vehicles (passenger cars, minivans and buses) were selected along with different age groups. Vapor- and particulate-phase PAH were collected from the vehicular exhausts of six in-service vehicles (with/without catalytic converters). High-performance liquid chromatography system, equipped with UV-Visible and fluorescence detectors, was used for the identification and quantification of PAH compounds in the cleaned extracts of the collected samples. The mean concentration of total PAH emissions (sum of 15 compounds) from all types of studied vehicles ranged between 69.28 ± 1.06 μg/m3 for passenger cars equipped with catalytic converters and 2169.41 ± 5.17 μg/m3 for old diesel buses without pollution controls. Values of total benzo(a)pyrene equivalent (∑ B[a]Peq) ranged between 1.868 μg/m3and 37.652 μg/m3. The results obtained in this study showed that the use of catalytic converters resulted into cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained in the absence of catalytic converters.

  4. Particulate emissions from 'in-use' motor vehicles—II. Diesel vehicles

    NASA Astrophysics Data System (ADS)

    Williams, D. J.; Milne, J. W.; Quigley, S. M.; Roberts, D. B.; Kimberlee, M. C.

    A detailed study has been undertaken of the exhaust particulate matter (EPM) emitted by 19 light-duty and 13 heavy-duty diesel vehicles. Eighteen of the light-duty vehicles were of the indirect injection types, whereas the heavy-duty ones were all four stroke. The light-duty vehicles were tested under a standard city drive cycle, the heavy-duty vehicles being subjected to a multi-mode test cycle. Although considerable variability was found in emission rates between individual vehicles of the same make and model, light-duty diesel vehicles emitted 3-6 g EPM kg -1 of fuel consumed, which was six times as much as spark ignition (S.I.) vehicles. The heavy-duty diesel vehicles emitted most EPM, giving rise to >6.6g EPM kg -1 on average. For both classes of diesel vehicles, higher EPM rates were generally associated with higher CO emission rates. Light-duty diesel EPM was found to consist mostly of C, two-thirds of which was in the 'sooty' or elemental (EC) form with the remainder organic (OC). The heavy-duty diesel EPM contained a higher proportion of OC than that from the light-duty diesels. Tests carried out with 13C-labelled lubricating oil indicated a significant oil contribution to EPM from diesel vehicles. In addition to measuring variations in EPM emission rates between different diesel vehicles, the influences of fuel supply, injection timing and fuel quality were also studied, using a light-duty indirect injection engine. Injection timing was found to have the greatest influence, with EPM emissions decreasing on retardation. The influence of injection timing was also assessed using a direct injection vehicle.

  5. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-03-01

    An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg-1 and 7.7 × 1014 kg-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co

  6. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-08-01

    An automated identification and integration method has been developed for in-use vehicle emissions under real-world conditions. This technique was applied to high-time-resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada, during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number; black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline-dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg fuel-1 and 7.5 × 1014 # kg fuel-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25 %) contributed significantly to total fleet emissions: 100, 100, 81, and 77 % for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter; however, regulatory strategies to more efficiently target multi-pollutant mixtures may be better developed by considering the co

  7. MERCURY EMISSIONS FROM BRAKE WEAR ASSOCIATED WITH ON-ROAD VEHICLES

    EPA Science Inventory

    This paper will focus on brake wear emissions of mercury and trace metals collected from 16 in-use light-duty vehicles (14 gasoline and 2 diesel) on a chassis dynamometer over the course of urban drive cycles.

  8. EVALUATION OF THE MUTAGENICITY AND CARCINOGENICITY OF MOTOR VEHICLE EMISSIONS IN SHORT-TERM BIOASSAYS

    EPA Science Inventory

    Incomplete combustion of fuel in motor vehicles results in the emission of submicron carbonaceous particles which, after cooling and dilution, contain varying quantities of extractable organic constituents. These organics are mutagenic in bacteria. Confirmatory bioassays in mamma...

  9. 75 FR 45057 - Adequacy Status of Motor Vehicle Emissions Budgets in Submitted Reasonable Further Progress and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... public that we have found that the motor vehicle emissions budgets for volatile organic compound (VOC..., Intergovernmental relations, Nitrogen dioxide, Ozone, Reporting and recordkeeping requirements, Volatile organic... transportation conformity purposes. The transportation conformity rule requires that the EPA conduct a...

  10. Development of Greenhouse Gas Emissions Model (GEM) for Heavy- & Medium-Duty Vehicle Compliance

    EPA Science Inventory

    A regulatory vehicle simulation program was designed for determining greenhouse gas (GHG) emissions and fuel consumption by estimating the performance of technologies, verifying compliance with the regulatory standards and estimating the overall benefits of the program.