Science.gov

Sample records for mode-coupling theory predictions

  1. Mode-coupling theory of self-diffusion in diblock copolymers I. General derivation and qualitative predictions

    SciTech Connect

    Guenza, M.; Tang, H.; Schweizer, K.S.

    1998-01-01

    A microscopic theory of self-diffusion in diblock copolymer melts and solutions has been developed based on polymeric mode-coupling methods formulated at the level of the time and space correlated interchain excluded volume and chi-parameter forces. Equilibrium structural correlations are determined via microscopic liquid state integral equation or coarse-grained field theoretic methods. The specific dynamical consequences of self-assembly are predicted to depend rather sensitively on temperature, degree of polymerization, copolymer composition and concentration, and local block friction coefficients. The dominant physical effect for entangled diblocks is the retardation of the relaxation time of the interchain excluded volume forces due to the thermodynamically-driven segregation of blocks into microdomains, resulting in suppression of translational motion. Analytic analysis in the long chain limit allows the derivation of new scaling laws relating the self-diffusion constant and chain degree of polymerization and solution concentration. Potential limitations for real copolymer materials associated with the structurally and dynamically isotropic description adopted by the theory are discussed. {copyright} {ital 1998 American Institute of Physics.}

  2. An elementary mode coupling theory of random heteropolymer dynamics.

    PubMed

    Takada, S; Portman, J J; Wolynes, P G

    1997-03-18

    The Langevin dynamics of a random heteropolymer and its dynamic glass transition are studied using elementary mode coupling theory. Contrary to recent reports using a similar framework, a discontinuous ergodic-nonergodic phase transition is predicted for all Rouse modes at a finite temperature T(A). For sufficiently long chains, T(A) is almost independent of chain length and is in good agreement with the value previously estimated by a static replica theory. PMID:9122192

  3. Mode-coupling theory for heteropolymers.

    PubMed

    Pitard, E; Shakhnovich, E I

    2001-04-01

    We study the Langevin dynamics of a heteropolymer by means of a mode-coupling approximation scheme, giving rise to a set of coupled integro-differential equations relating the response and correlation functions. The analysis shows that there is a regime at low temperature characterized by out-of-equilibrium dynamics, with violation of time-translational invariance and of the fluctuation-dissipation theorem. The onset of aging dynamics at low temperatures gives insight into the nature of the slow dynamics of a disordered polymer. We also introduce a renormalization-group treatment of our mode-coupling equations, which supports our analysis, and might be applicable to other systems. PMID:11308842

  4. Glass rheology: From mode-coupling theory to a dynamical yield criterion

    PubMed Central

    Brader, Joseph M.; Voigtmann, Thomas; Fuchs, Matthias; Larson, Ronald G.; Cates, Michael E.

    2009-01-01

    The mode coupling theory (MCT) of glasses, while offering an incomplete description of glass transition physics, represents the only established route to first-principles prediction of rheological behavior in nonergodic materials such as colloidal glasses. However, the constitutive equations derivable from MCT are somewhat intractable, hindering their practical use and also their interpretation. Here, we present a schematic (single-mode) MCT model which incorporates the tensorial structure of the full theory. Using it, we calculate the dynamic yield surface for a large class of flows. PMID:19706475

  5. Equilibrium dynamics of the Dean-Kawasaki equation: Mode-coupling theory and its extension

    NASA Astrophysics Data System (ADS)

    Kim, Bongsoo; Kawasaki, Kyozi; Jacquin, Hugo; van Wijland, Frédéric

    2014-01-01

    We extend a previously proposed field-theoretic self-consistent perturbation approach for the equilibrium dynamics of the Dean-Kawasaki equation presented in [Kim and Kawasaki, J. Stat. Mech. (2008) P02004, 10.1088/1742-5468/2008/02/P02004]. By taking terms missing in the latter analysis into account we arrive at a set of three new equations for correlation functions of the system. These correlations involve the density and its logarithm as local observables. Our new one-loop equations, which must carefully deal with the noninteracting Brownian gas theory, are more general than the historic mode-coupling one in that a further approximation corresponding to Gaussian density fluctuations leads back to the original mode-coupling equation for the density correlations alone. However, without performing any further approximation step, our set of three equations does not feature any ergodic-nonergodic transition, as opposed to the historical mode-coupling approach.

  6. Long-wavelength anomalies in the asymptotic behavior of mode-coupling theory.

    PubMed

    Schnyder, S K; Höfling, F; Franosch, T; Voigtmann, Th

    2011-06-15

    We discuss the dynamic behavior of a tagged particle close to a classical localization transition in the framework of the mode-coupling theory of the glass transition. Asymptotic results are derived for the order parameter as well as the dynamic correlation functions and the mean-squared displacement close to the transition. The influence of an infrared cutoff is discussed. PMID:21613710

  7. QUANTUM MODE-COUPLING THEORY: Formulation and Applications to Normal and Supercooled Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rabani, Eran; Reichman, David R.

    2005-05-01

    We review our recent efforts to formulate and study a mode-coupling approach to real-time dynamic fluctuations in quantum liquids. Comparison is made between the theory and recent neutron scattering experiments performed on liquid ortho-deuterium and para-hydrogen. We discuss extensions of the theory to supercooled and glassy states where quantum fluctuations compete with thermal fluctuations. Experimental scenarios for quantum glassy liquids are briefly discussed.

  8. Various velocity correlations functions in a Lorentz gas - simulation and mode coupling theory

    NASA Astrophysics Data System (ADS)

    Lowe, C. P.; Masters, A. J.

    1995-02-01

    We present computer simulation results for several types of velocity correlation function in the two dimensional, overlapping Lorentz gas. Only the normal velocity autocorrelation function, whose integral gives the diffusion constant, shows obvious anomalous behaviour at the percolation transition. The other functions are fairly well approximated by the Lorentz-Boltzmann equation, even for densities at which the travelling particle is trapped. We do, however, at a sub-percolation density, examine the long time behaviour of the autocorrelation function corresponding to the second rank, irreducible tensor of the velocity, and find an algebraic decay with an exponent of 3.0 ± 0.1, consistent with the theoretically expected value of 3. With these observations in mind we re-examine the mode coupling theory of Götze, Leutheusser and Yip (Phys. Rev. A 23 (1981) 2634,) replacing their one (frequency dependent) relaxation time approximation to a kinetic operator by a two (frequency dependent) relaxation time model. We find that this leads to a significantly better estimate of the diffusions constant at low density. Furthermore the theory correctly predicts no striking anomalous behaviour in the types of velocity correlation function that are unrelated to diffusion as the percolation threshold is crossed.

  9. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    NASA Astrophysics Data System (ADS)

    Amann, Christian P.; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-01

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  10. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    SciTech Connect

    Amann, Christian P. Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  11. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    PubMed

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses. PMID:26203034

  12. Mass dependence of shear viscosity in a binary fluid mixture: mode-coupling theory.

    PubMed

    Ali, Sk Musharaf; Samanta, Alok; Choudhury, Niharendu; Ghosh, Swapan K

    2006-11-01

    An expression for the shear viscosity of a binary fluid mixture is derived using mode-coupling theory in order to study the mass dependence. The calculated results on shear viscosity for a binary isotopic Lennard-Jones fluid mixture show good agreement with results from molecular dynamics simulation carried out over a wide range of mass ratio at different composition. Also proposed is a new generalized Stokes-Einstein relation connecting the individual diffusivities to shear viscosity. PMID:17279895

  13. Theory of mode coupling in spin torque oscillators coupled to a thermal bath of magnons

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zhang, Shulei; Li, Dong; Heinonen, Olle

    Recently, numerous experimental investigations have shown that the dynamics of a single spin torque oscillator (STO) exhibits complex behavior stemming from interactions between two or more modes of the oscillator. Examples are the observed mode-hopping and mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In this work, we rigorously derive such a theory starting with the generalized Landau-Lifshitz-Gilbert equation in the presence of the current-driven spin transfer torques. We will first show, in general, that how a linear mode coupling would arise through the coupling of the system to a thermal bath of magnons, which implies that the manifold of orbits and fixed points may shift with temperature. We then apply our theory to two experimentally interesting systems: 1) a STO patterned into nano-pillar with circular or elliptical cross-sections and 2) a nano-contact STO. For both cases, we found that in order to get mode coupling, it would be necessary to have either a finite in-plane component of the external field or an Oersted field. We will also discuss the temperature dependence of the linear mode coupling. Y. Zhou acknowledges the support by the Seed Funding Program for Basic Research from the University of Hong Kong, and University Grants Committee of Hong Kong (Contract No. AoE/P-04/08).

  14. Nonlinear mode coupling theory of the lower-hybrid-drift instability

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Guzdar, P. N.; Hassam, A. B.; Huba, J. D.

    1984-01-01

    A nonlinear mode coupling theory of the lower-hybrid-drift instability is presented. A two-dimensional nonlinear wave equation is derived which describes lower-hybrid drift wave turbulence in the plane transverse to B (k.B = 0), and which is valid for finite beta, collisional and collisionless plasmas. The instability saturates by transferring energy from growing, long wavelength modes to damped, short wavelength modes. Detailed numerical results are presented which compare favorably to both recent computer simulations and experimental observations. Applications of this theory to space plasmas, the earth's magnetotail and the equatorial F region ionosphere, are discussed. Previously announced in STAR as N84-17734

  15. Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Khairy, Y.; Alvarez, F.; Arbe, A.; Colmenero, J.

    2013-10-01

    The applicability of Mode Coupling Theory (MCT) to the glass-forming polymer polyisobutylene (PIB) has been explored by using fully atomistic molecular dynamics simulations. MCT predictions for the so-called asymptotic regime have been successfully tested on the dynamic structure factor and the self-correlation function of PIB main-chain carbons calculated from the simulated cell. The factorization theorem and the time-temperature superposition principle are satisfied. A consistent fitting procedure of the simulation data to the MCT asymptotic power-laws predicted for the α-relaxation regime has delivered the dynamic exponents of the theory—in particular, the exponent parameter λ—the critical non-ergodicity parameters, and the critical temperature Tc. The obtained values of λ and Tc agree, within the uncertainties involved in both studies, with those deduced from depolarized light scattering experiments [A. Kisliuk , J. Polym. Sci. Part B: Polym. Phys.JPBPEM0887-626610.1002/1099-0488(20001101)38:21<2785::AID-POLB70>3.0.CO;2-S 38, 2785 (2000)]. Both, λ and Tc/Tg values found for PIB are unusually large with respect to those commonly obtained in low molecular weight systems. Moreover, the high Tc/Tg value is compatible with a certain correlation of this parameter with the fragility in Angell's classification. Conversely, the value of λ is close to that reported for real polymers, simulated “realistic” polymers and simple polymer models with intramolecular barriers. In the framework of the MCT, such finding should be the signature of two different mechanisms for the glass-transition in real polymers: intermolecular packing and intramolecular barriers combined with chain connectivity.

  16. Light-scattering spectroscopy of the liquid-glass transition in CaKNO[sub 3] and in the molecular glass Salol: Extended-mode-coupling-theory analysis

    SciTech Connect

    Cummins, H.Z.; Du, W.M. ); Fuchs, M.; Goetze, W.; Hildebrand, S.; Latz, A. ); Li, G.; Tao, N.J. )

    1993-06-01

    Recently reported light-scattering studies of CaKNO[sub 3] and Salol are reanalyzed, using the extended version of the mode-coupling theory of the liquid-glass transition including activated transport or hopping effects. Problems found in the original fits due to the neglect of hopping terms are largely corrected, and quantitative predictions for the susceptibility minimum below the crossover temperature [ital T][sub [ital c

  17. Non-monotonic size dependence of diffusion and levitation effect: A mode-coupling theory analysis

    NASA Astrophysics Data System (ADS)

    Nandi, Manoj Kumar; Banerjee, Atreyee; Bhattacharyya, Sarika Maitra

    2013-03-01

    We present a study of diffusion of small tagged particles in a solvent, using mode coupling theory (MCT) analysis and computer simulations. The study is carried out for various interaction potentials. For the first time, using MCT, it is shown that only for strongly attractive interaction potential with allowing interpenetration between the solute-solvent pair the diffusion exhibits a non-monotonic solute size dependence which has earlier been reported in simulation studies [P. K. Ghorai and S. Yashonath, J. Phys. Chem. B 109, 5824-5835 (2005), 10.1021/jp046312w]. For weak attractive and repulsive potential the solute size dependence of diffusion shows monotonic behaviour. It is also found that for systems where the interaction potential does not allow solute-solvent interpenetration, the solute cannot explore the neck of the solvent cage. Thus these systems even with strong attractive interaction will never show any non-monotonic size dependence of diffusion. This non-monotonic size dependence of diffusion has earlier been connected to levitation effect [S. Yashonath and P. Santikary, J. Phys. Chem. 98, 6368 (1994), 10.1021/j100076a022]. We also show that although levitation is a dynamic phenomena, the effect of levitation can be obtained in the static radial distribution function.

  18. Boson peak in supercooled liquids: Time domain observations and mode coupling theory

    NASA Astrophysics Data System (ADS)

    Cang, Hu; Li, Jie; Andersen, Hans C.; Fayer, M. D.

    2005-08-01

    Optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments are presented for the supercooled liquid acetylsalicylic acid (aspirin - ASP). The ASP data and previously published OHD-OKE data on supercooled dibutylphthalate (DBP) display highly damped oscillations with a periods of ˜2ps as the temperature is reduced to and below the mode coupling theory (MCT) temperature TC. The oscillations become more pronounced below TC. The oscillations can be interpreted as the time domain signature of the boson peak. Recently a schematic MCT model, the Sjögren model, was used to describe the OHD-OKE data for a number of supercooled liquids by Götze and Sperl [W. Götze and M. Sperl, Phys. Rev. E 92, 105701 (2004)], but the short-time and low-temperature behaviors were not addressed. Franosch et al. [T. Franosch, W. Gotze, M. R. Mayr, and A. P. Singh, Phys. Rev. E 55, 3183 (1997)] found that the Sjögren model could describe the boson peak observed by depolarized light-scattering (DLS) experiments on glycerol. The OHD-OKE experiment measures a susceptibility that is a time domain equivalent of the spectrum measured in DLS. Here we present a detailed analysis of the ASP and DBP data over a broad range of times and temperatures using the Sjögren model. The MCT schematic model is able to describe the data very well at all temperatures and relevant time scales. The trajectory of MCT parameters that fit the high-temperature data (no short-time oscillations) when continued below TC results in calculations that reproduce the oscillations seen in the data. The results indicate that increasing translational-rotational coupling is responsible for the appearance of the boson peak as the temperature approaches and drops below TC.

  19. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-01

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times—the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  20. A mode coupling theory description of the short- and long-time dynamics of nematogens in the isotropic phase

    NASA Astrophysics Data System (ADS)

    Li, Jie; Cang, Hu; Andersen, Hans C.; Fayer, M. D.

    2006-01-01

    Optical heterodyne-detected optical Kerr effect (OHD-OKE) experimental data are pre-sented on nematogens 4-(trans-4'-n-octylcyclohexyl)isothiocyanatobenzene (8-CHBT), and 4-(4'-pentyl-cyclohexyl)-benzonitrile (5-PCH) in the isotropic phase. The 8-CHBT and 5-PCH data and previously published data on 4'-pentyl-4-biphenylcarbonitrile (5-CB) are analyzed using a modification of a schematic mode coupling theory (MCT) that has been successful in describing the dynamics of supercooled liquids. At long time, the OHD-OKE data (orientational relaxation) are well described with the standard Landau-de Gennes (LdG) theory. The data decay as a single exponential. The decay time diverges as the isotropic to nematic phase transition is approached from above. Previously there has been no theory that can describe the complex dynamics that occur at times short compared to the LdG exponential decay. Earlier, it has been noted that the short-time nematogen dynamics, which consist of several power laws, have a functional form identical to that observed for the short time behavior of the orientational relaxation of supercooled liquids. The temperature-dependent orientational dynamics of supercooled liquids have recently been successfully described using a schematic mode coupling theory. The schematic MCT theory that fits the supercooled liquid data does not reproduce the nematogen data within experimental error. The similarities of the nematogen data to the supercooled liquid data are the motivation for applying a modification of the successful MCT theory to nematogen dynamics in the isotropic phase. The results presented below show that the new schematic MCT theory does an excellent job of reproducing the nematogen isotropic phase OHD-OKE data on all time scales and at all temperatures.

  1. Bond formation and slow heterogeneous dynamics in adhesive spheres with long-ranged repulsion: quantitative test of mode coupling theory.

    PubMed

    Henrich, O; Puertas, A M; Sperl, M; Baschnagel, J; Fuchs, M

    2007-09-01

    A colloidal system of spheres interacting with both a deep and narrow attractive potential and a shallow long-ranged barrier exhibits a prepeak in the static structure factor. This peak can be related to an additional mesoscopic length scale of clusters and/or voids in the system. Simulation studies of this system have revealed that it vitrifies upon increasing the attraction into a gel-like solid at intermediate densities. The dynamics at the mesoscopic length scale corresponding to the prepeak represents the slowest mode in the system. Using mode coupling theory with all input directly taken from simulations, we reveal the mechanism for glassy arrest in the system at 40% packing fraction. The effects of the low-q peak and of polydispersity are considered in detail. We demonstrate that the local formation of physical bonds is the process whose slowing down causes arrest. It remains largely unaffected by the large-scale heterogeneities, and sets the clock for the slow cluster mode. Results from mode-coupling theory without adjustable parameters agree semiquantitatively with the local density correlators but overestimate the lifetime of the mesoscopic structure (voids). PMID:17930244

  2. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid.

    PubMed

    Papenkort, S; Voigtmann, Th

    2015-11-28

    We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions. PMID:26627963

  3. On the Bauschinger effect in supercooled melts under shear: Results from mode coupling theory and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Frahsa, Fabian; Bhattacharjee, Amit Kumar; Horbach, Jürgen; Fuchs, Matthias; Voigtmann, Thomas

    2013-03-01

    We study the nonlinear rheology of a glass-forming binary mixture under the reversal of shear flow using molecular dynamics simulations and a schematic model of the mode-coupling theory of the glass transition (MCT). Memory effects lead to a history-dependent response, as exemplified by the vanishing of a stress-overshoot phenomenon in the stress-strain curves of the sheared liquid, and a change in the apparent elastic coefficients around states with zero stress. We investigate the various retarded contributions to the stress response at a given time schematically within MCT. The connection of this macroscopic response to single-particle motion is demonstrated using molecular-dynamics simulation.

  4. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.

    PubMed

    Frahsa, Fabian; Bhattacharjee, Amit Kumar; Horbach, Jürgen; Fuchs, Matthias; Voigtmann, Thomas

    2013-03-28

    We study the nonlinear rheology of a glass-forming binary mixture under the reversal of shear flow using molecular dynamics simulations and a schematic model of the mode-coupling theory of the glass transition (MCT). Memory effects lead to a history-dependent response, as exemplified by the vanishing of a stress-overshoot phenomenon in the stress-strain curves of the sheared liquid, and a change in the apparent elastic coefficients around states with zero stress. We investigate the various retarded contributions to the stress response at a given time schematically within MCT. The connection of this macroscopic response to single-particle motion is demonstrated using molecular-dynamics simulation. PMID:23556764

  5. Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory.

    PubMed

    Capponi, S; Arbe, A; Alvarez, F; Colmenero, J; Frick, B; Embs, J P

    2009-11-28

    Quasielastic neutron scattering experiments (time-of-flight, neutron spin echo, and backscattering) on protonated poly(vinyl methyl ether) (PVME) have revealed the hydrogen dynamics above the glass-transition temperature. Fully atomistic molecular dynamics simulations properly validated with the neutron scattering results have allowed further characterization of the atomic motions accessing the correlation functions directly in real space. Deviations from Gaussian behavior are found in the high-momentum transfer range, which are compatible with the predictions of mode coupling theory (MCT). We have applied the MCT phenomenological version to the self-correlation functions of PVME atoms calculated from our simulation data, obtaining consistent results. The unusually large value found for the lambda-exponent parameter is close to that recently reported for polybutadiene and simple polymer models with intramolecular barriers. PMID:19947703

  6. The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory.

    PubMed

    Bernabei, Marco; Moreno, Angel J; Colmenero, Juan

    2009-11-28

    We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT lambda-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large lambda-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature. PMID:19947689

  7. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.

    PubMed

    Aburto, Claudio Contreras; Nägele, Gerhard

    2013-10-01

    On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar. PMID:24116555

  8. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes

    NASA Astrophysics Data System (ADS)

    Aburto, Claudio Contreras; Nägele, Gerhard

    2013-10-01

    On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar.

  9. Time-convolutionless mode-coupling theory near the glass transition-A recursion formula and its asymptotic solutions

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio

    2015-07-01

    The time-convolutionless mode-coupling theory (TMCT) equation for the intermediate scattering function fα(q , t) derived recently by the present author is analyzed mathematically and numerically, where α = c stands for a collective case and α = s for a self case. All the mathematical formulations discussed by Götze for the MCT equation are then shown to be directly applicable to the TMCT equation. Firstly, it is shown that similarly to MCT, there exists an ergodic to non-ergodic transition at a critical point, above which the long-time solution fα(q , t = ∞) , that is, the so-called Debye-Waller factor fα(q) , reduces to a non-zero value. The critical point is then shown to be definitely different from that of MCT. Secondly, it is also shown that there is a two-step relaxation process in a β stage near the critical point, which is described by the same two different power-law decays as those obtained in MCT. In order to discuss the asymptotic solutions, the TMCT equation is then transformed into a recursion formula for a cumulant function Kα(q , t) (= - ln [fα(q , t) ]) . By employing the same simplified model as that proposed by MCT, the simplified asymptotic recursion formula is then numerically solved for different temperatures under the initial conditions obtained from the simulations. Thus, it is discussed how the TMCT equation can describe the simulation results within the simplified model.

  10. A unifying mode-coupling theory for transport properties of electrolyte solutions. I. General scheme and limiting laws

    NASA Astrophysics Data System (ADS)

    Contreras Aburto, Claudio; Nägele, Gerhard

    2013-10-01

    We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)].

  11. A unifying mode-coupling theory for transport properties of electrolyte solutions. I. General scheme and limiting laws.

    PubMed

    Contreras Aburto, Claudio; Nägele, Gerhard

    2013-10-01

    We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)]. PMID:24116554

  12. Distance fluctuation of a single molecule in Lennard-Jones liquid based on generalized Langevin equation and mode coupling theory

    NASA Astrophysics Data System (ADS)

    Li, Ping; Dong, Yunhong; Zhao, Nanrong; Hou, Zhonghuai

    2014-04-01

    Distance fluctuation of a single molecule, modeled as an idealized bead-spring chain, dissolved in a Lennard-Jones liquid is studied by using a multidimensional generalized Langevin equation, where the friction kernel ζ(t) is calculated from the kinetic mode coupling theory (MCT). Temporal behavior of the distance autocorrelation function shows three typical regimes of time dependence, starting with a constant, followed by a power law of t-α, and finally an exponential decay. Particular attentions are paid to the time span of the power law regime, which corresponds to anomalous subdiffusion behavior, and the MCT framework enables us to investigate thoroughly how this regime depends on microscopic details such as the bead-to-solvent mass ratio MR, chain spring frequency ω, and the chain length N. Interestingly, the exponent α is robust to be 1/2 against the change of these parameters, although the friction kernel ζ(t) shows nontrivial dependence on time. In addition, we find that the starting time of the power-law region t1 scales with Γ-1, with Γ = 4ω2/ζ0 where ζ0 is the zero-frequency friction which decreases rapidly with increasing bead mass. On the other hand, the ending time t2 is not sensitive to varying ω or ζ0, but it increases with N rapidly before it reaches a constant for N larger than some threshold value. Our work may provide a unified strategy starting from the microscopic level to understand the anomalous subdiffusive behavior regarding large scale conformational change of polymers or proteins.

  13. Mode-coupling analysis of residual stresses in colloidal glasses.

    PubMed

    Fritschi, S; Fuchs, M; Voigtmann, Th

    2014-07-21

    We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory. PMID:24841537

  14. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers.

    PubMed

    Xiao, Yuzhe; Essiambre, René-Jean; Desgroseilliers, Marc; Tulino, Antonia M; Ryf, Roland; Mumtaz, Sami; Agrawal, Govind P

    2014-12-29

    We study intermodal four-wave mixing (FWM) in few-mode fibers in the presence of birefringence fluctuations and random linear mode coupling. Two different intermodal FWM processes are investigated by including all nonlinear contributions to the phase-matching condition and FWM bandwidth. We find that one of the FWM processes has a much larger bandwidth than the other. We include random linear mode coupling among fiber modes using three different models based on an analysis of the impact of random coupling on differences of propagation constants between modes. We find that random coupling always reduces the FWM efficiency relative to its vale in the absence of linear coupling. The reduction factor is relatively small (about 3 dB) when only a few modes are linearly coupled but can become very large (> 40 dB) when all modes couple strongly. In the limit of a coupling length much shorter than the nonlinear length, intermodal FWM efficiency becomes vanishingly small. These results should prove useful in the context of space-division multiplexing with few-mode and multimode fibers. PMID:25607171

  15. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680

  16. Mode-coupling mechanisms in nanocontact spin-torque oscillators

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Dürrenfeld, Philipp; Heinonen, Olle; Åkerman, Johan; Dumas, Randy K.

    2015-03-01

    Spin-torque oscillators (STOs) are devices that allow for the excitation of a variety of magnetodynamical modes at the nanoscale. Depending on both external conditions and intrinsic magnetic properties, STOs can exhibit regimes of mode hopping and even mode coexistence. Whereas mode hopping has been extensively studied in STOs patterned as nanopillars, coexistence has been only recently observed for localized modes in nanocontact STOs (NC-STOs), where the current is confined to flow through a NC fabricated on an extended pseudo spin valve. By means of electrical characterization and a multimode STO theory, we investigate the physical origin of the mode-coupling mechanisms favoring coexistence. Two coupling mechanisms are identified: (i) magnon-mediated scattering and (ii) intermode interactions. These mechanisms can be physically disentangled by fabricating devices where the NCs have an elliptical cross section. The generation power and linewidth from such devices are found to be in good qualitative agreement with the theoretical predictions, as well as provide evidence of the dominant mode-coupling mechanisms.

  17. Mode coupling in spin torque oscillators

    NASA Astrophysics Data System (ADS)

    Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle

    2016-09-01

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau-Lifshitz-Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.

  18. Transverse mode coupling in RHIC

    SciTech Connect

    Raka, E.

    1990-02-21

    In the Proceedings of the Workshop on the RHIC Performance, it was stated that the transverse mode coupling instability, posed a potential intensity limitation for protons. This was based on the expression I{sub b} = 4(E{sub t}/qe) Q{sub s} 4 {radical}{pi} {sigma} {ell}/(Im (Z{sub {perpendicular}}) < {beta}{sub {perpendicular}} > R 3) where E{sub t} is the total energy, q the charge state, Q{sub s} the synchrotron tune, < {beta}{sub {perpendicular}} > the average beta function, R the machine radius, and {sigma}{sub {ell}} the rms bunch length of a Gaussian distribution in longitudinal phase space. For a < {beta}{sub {perpendicular}} > of 55 m and 10{sup 11} protons/bunch, the allowed impedance Z{sub {perpendicular}} for protons at injection, where Q{sub s} = 0.11 {times} 10{sup {minus}3}, would be less than 1.2 M{Omega}/m. The purpose of this report is to discuss the consequences of two factors that were omitted in this equation, which comes from the ZAP program, to RHIC. These are the space charge impedance and the incoherent tune spread of the beam.

  19. Mode-Coupling Instability in a Fluid Two-Dimensional Complex Plasma

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Zhdanov, S. K.; Lampe, M.; Morfill, G. E.

    2014-09-01

    A theory of the mode-coupling instability (MCI) in a fluid two-dimensional complex plasma is developed. In analogy to the point-wake model of the wake-mediated interactions commonly used to describe MCI in two-dimensional crystals, the layer-wake model is employed for fluids. It is demonstrated that the wake-induced coupling of wave modes occurs in both crystalline and fluid complex plasmas, but the confinement-density threshold, which determines the MCI onset in crystals, virtually disappears in fluids. The theory shows excellent qualitative agreement with available experiments and provides certain predictions to be verified.

  20. Predictive Game Theory

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

  1. Mode coupling and fragile to strong transition in supercooled TIP4P water

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.

    2012-10-01

    We consider one of the most used model for water, the rigid four site TIP4P potential, and we study by molecular dynamics simulation the dynamical properties of the liquid upon supercooling. In the previous studies of the thermodynamics of the TIP4P model a liquid-liquid critical point (LLCP) located at the end of the coexistence between the low density liquid (LDL) and the high density liquid (HDL) of water was found. We present here the analysis of the self intermediate scattering functions in a large range of temperatures and densities and we show that the structural relaxation in the region of mild supercooling is in agreement with the predictions of the mode coupling theory. In the more deep supercooled region we observe that the α-relaxation time deviates from the mode coupling theory (MCT) trend and a crossover takes place from a fragile to a strong behavior upon crossing the Widom line emanating from the LLCP. The HDL and the LDL phases are associated with the fragile and the strong behavior, respectively.

  2. Dynamic mode coupling in terahertz metamaterials

    PubMed Central

    Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili

    2015-01-01

    The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057

  3. Dynamic mode coupling in terahertz metamaterials.

    PubMed

    Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili

    2015-01-01

    The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057

  4. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    SciTech Connect

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-11-15

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m={+-}2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  5. Observations of mode coupling in the solar corona and bipolar noise storms

    NASA Technical Reports Server (NTRS)

    White, S. M.; Thejappa, G.; Kundu, M. R.

    1992-01-01

    High-spatial-resolution observations of the sun which reflect on the role of mode coupling in the solar corona, and a number of new observations are presented. It is shown that typically, polarization inversion is seen at 5 GHz in active region sources near the solar limb, but not at 1.5 GHz. Although this is apparently in contradiction to the simplest form of mode coupling theory, it remains consistent with current models for the active region emission. Microwave bursts show no strong evidence for polarization inversion. Bipolar noise storm continuum emission is discussed in some detail, utilizing recent VLA observations at 327 MHz. It is shown that bipolar sources are common at 327 MHz. Further, the trailing component of the bipole is frequently stronger than the leading component, in apparent conflict with the 'leading-spot' hypothesis. The observations indicate that, at 327 MHz, mode coupling is apparently strong at all mode-coupling layers in the solar corona. The 327 MHz observations require a much weaker magnetic field strength in the solar corona to explain this result than did earlier lower-frequency observations: maximum fields are 0.2 G. This is a much weaker field than is consistent with current coronal models.

  6. Cosmic variance of the spectral index from mode coupling

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Kumar, Jason; Nelson, Elliot; Shandera, Sarah

    2013-11-01

    We demonstrate that local, scale-dependent non-Gaussianity can generate cosmic variance uncertainty in the observed spectral index of primordial curvature perturbations. In a universe much larger than our current Hubble volume, locally unobservable long wavelength modes can induce a scale-dependence in the power spectrum of typical subvolumes, so that the observed spectral index varies at a cosmologically significant level (|Δns| ~ Script O(0.04)). Similarly, we show that the observed bispectrum can have an induced scale dependence that varies about the global shape. If tensor modes are coupled to long wavelength modes of a second field, the locally observed tensor power and spectral index can also vary. All of these effects, which can be introduced in models where the observed non-Gaussianity is consistent with bounds from the Planck satellite, loosen the constraints that observations place on the parameters of theories of inflation with mode coupling. We suggest observational constraints that future measurements could aim for to close this window of cosmic variance uncertainty.

  7. Cosmic variance of the spectral index from mode coupling

    SciTech Connect

    Bramante, Joseph; Kumar, Jason; Nelson, Elliot; Shandera, Sarah E-mail: jkumar@hawaii.edu E-mail: shandera@gravity.psu.edu

    2013-11-01

    We demonstrate that local, scale-dependent non-Gaussianity can generate cosmic variance uncertainty in the observed spectral index of primordial curvature perturbations. In a universe much larger than our current Hubble volume, locally unobservable long wavelength modes can induce a scale-dependence in the power spectrum of typical subvolumes, so that the observed spectral index varies at a cosmologically significant level (|Δn{sub s}| ∼ O(0.04)). Similarly, we show that the observed bispectrum can have an induced scale dependence that varies about the global shape. If tensor modes are coupled to long wavelength modes of a second field, the locally observed tensor power and spectral index can also vary. All of these effects, which can be introduced in models where the observed non-Gaussianity is consistent with bounds from the Planck satellite, loosen the constraints that observations place on the parameters of theories of inflation with mode coupling. We suggest observational constraints that future measurements could aim for to close this window of cosmic variance uncertainty.

  8. Wave mode coupling due to plasma wakes in two-dimensional plasma crystals: In-depth view

    SciTech Connect

    Coueedel, L.

    2011-08-15

    Experiments with two-dimensional (2D) plasma crystals are usually carried out in rf plasma sheaths, where the interparticle interactions are modified due to the presence of plasma wakes. The wake-mediated interactions result in the coupling between wave modes in 2D crystals, which can trigger the mode-coupling instability and cause melting. The theory predicts a number of distinct fingerprints to be observed upon the instability onset, such as the emergence of a new hybrid mode, a critical angular dependence, a mixed polarization, and distinct thresholds. In this paper we summarize these key features and provide their detailed discussion, analyze the critical dependence on experimental parameters, and highlight the outstanding issues.

  9. Evidence of Resonant Mode Coupling and the Relationship between Low and High Frequencies in a Rapidly Rotating a Star

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.

    2014-03-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day-1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of "normal" combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day-1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  10. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    SciTech Connect

    Breger, M.; Montgomery, M. H.

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  11. Fiber pressure sensors based on periodical mode coupling effects

    NASA Astrophysics Data System (ADS)

    Lotem, Haim; Wang, Wen C.; Wang, Michael; Schaafsma, David; Skolnick, Bob; Grebel, Haim

    2005-05-01

    Fiber optic sensor technology offers the possibility of implementing low weight, high performance and cost effective health and damage assessment for infrastructure elements. Common fiber sensors are based on the effect of external action on the spectral response of a Fabry-Perot or a Bragg grating section, or on the modal dynamics in multimode (MM) fiber. In the latter case, the fiber itself acts as the sensor, giving it the potential for large range coverage. We were interested in this type of sensor because of its cost advantage in monitoring structural health. In the course of the research, a new type of a rugged modal filter device, based on off-center splicing, was developed. This device, in combination with a MM fiber, was found to be a potential single point-pressure sensing device. Additionally, by translating the pressing point along a MM sensing fiber with a constant load and speed, a sinusoidal intensity modulation was observed. This harmonic behavior, during load translation, is explained by the theory of mode coupling and dispersion. The oscillation period, L~0.43. mm, obtained at 980 nm in a Corning SMF-28 fiber, corresponds to the wavevector difference, Db, between the two-coupled modes, by L = 2p/Db. An additional outcome of the present research is the observation that the response of the loaded MM fiber is strongly dependent on the polarization state of the light traveling along the MM fiber due to different response of the modes to polarization active elements. Our main conclusions are that in MM fiber optic sensor design, special cautions need to be taken in order to stabilize the system, and that the sensitivity along a MM fiber sensor is periodic with a period of ~ 0.4 - 0.5 mm, depending on various fiber parameters and excited modes.

  12. Effective dipole moment for the mode coupling instability: Mapping of self-consistent wake models

    SciTech Connect

    Roecker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Morfill, G. E.; Lampe, M.; Joyce, G.

    2012-07-15

    The theory of the mode coupling instability operating in two-dimensional plasma crystals is generalized, by employing the linear plasma response formalism to describe the interparticle interactions self-consistently. In this approach, the underlying ion distribution function is calculated from first principles. Subthermal and suprathermal regimes of the ion flow are considered. A mapping procedure is proposed, which relates the self-consistent coupling coefficients to the effective dipole moment of the wake-the parameter which characterizes the mode coupling in the framework of the conventionally used Yukawa/point-wake model. The importance of the self-consistent approach is demonstrated by comparing the theoretically obtained dipole moments with the values deduced from experiments.

  13. Ray-based description of mode coupling by sound speed fluctuations in the ocean.

    PubMed

    Virovlyansky, A L

    2015-04-01

    A traditional approach to the analysis of mode coupling in a fluctuating underwater waveguide is based on solving the system of coupled equations for the second statistical moments of mode amplitudes derived in the Markov approximation [D. B. Creamer, J. Acoust. Soc. Am. 99, 2825-2838 (1996)]. In the present work, an alternative approach is considered. It is based on an analytic solution of the mode coupling equation derived in the high frequency approximation [A. L. Virovlyanskii and A. G. Kosterin, Sov. Phys. Acoust. 35, 138-142 (1987)]. This solution, representing the mode amplitude as a sum of contributions from two geometrical rays, is convenient for statistical averaging. It allows one to easily derive analytical expressions for any statistical moments of mode amplitudes. The applicability of this approach is demonstrated by comparing its predictions for a deep water acoustic waveguide with results of a full wave numerical simulation carried out using the method of wide angle parabolic equation. PMID:25920863

  14. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    SciTech Connect

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S.; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory and we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.

  15. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE PAGESBeta

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S.; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  16. Transverse Mode-Coupling Instability in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Métral, E.; Arduini, G.; Benedetto, E.; Burkhardt, H.; Shaposhnikova, E.; Rumolo, G.

    2005-06-01

    A vertical single-bunch instability has been observed in 2003 right after injection at 26 GeV/c in the CERN Super Proton Synchrotron (SPS). High-intensity proton bunches (˜1.2 1011 p/b) with low longitudinal emittance (˜0.2 eVs) are affected by heavy losses after less than one synchrotron period. Such phenomenon has already been observed with leptons in many machines, e.g. in the SPS, or with protons at transition, e.g. in the CERN Proton Synchrotron (PS). However, to the authors' knowledge, it is the first time with protons far from transition. The absence of transverse mode-coupling instability in hadron machines is generally explained by three mechanisms: (i) the intensity threshold for the longitudinal microwave instability is generally lower than for the transverse mode-coupling instability, (ii) the intensity threshold due to mode-coupling between the two lowest azimuthal modes increases with space charge, and (iii) the intensity threshold increases with bunch length (in the long-bunch regime). In this talk measurements performed in the SPS are compared to analytical and simulation predictions.

  17. Mode-coupling instability of monolayer complex (dusty) plasmas

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Ivlev, Alexei; Morfill, Gregor

    2010-05-01

    Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems at the most detailed kinetic (atomistic) level. On the other hand, there is certain peculiarity of the interparticle interactions in complex plasmas. This can be easily understood if we divide the complete set of elementary charges in complex plasmas into two distinct categories - a subsystem of charges bound to the microparticles, and a subsystem of free plasma charges in the surrounding wakes. Plasma wakes play the role of a "third body" in the mutual particle-particle interaction and, hence, make the pair interaction nonreciprocal. We carried out rigorous theoretical investigation of the DL wave mode coupling occurring in 2D complex plasmas due to particle-wake interactions. The analysis of the mode coupling shows that if the strength of the vertical confinement is below a certain critical value, then resonance coupling between the longitudinal in-plane mode and out-of-plane mode sets in. This results in the emergence of a hybrid mode and drives the mode-coupling instability. The universal dependence of the critical confinement frequency on plasma parameters is calculated, which allows us to specify the conditions when stable 2D highly ordered complex plasma can be formed in experiments.

  18. Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2015-11-01

    Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  19. Direct Observation of Mode-Coupling Instability in Two-Dimensional Plasma Crystals

    SciTech Connect

    Coueedel, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.

    2010-05-14

    Dedicated experiments on melting of two-dimensional plasma crystals were carried out. The melting was always accompanied by spontaneous growth of the particle kinetic energy, suggesting a universal plasma-driven mechanism underlying the process. By measuring three principal dust-lattice wave modes simultaneously, it is unambiguously demonstrated that the melting occurs due to the resonance coupling between two of the dust-lattice modes. The variation of the wave modes with the experimental conditions, including the emergence of the resonant (hybrid) branch, reveals exceptionally good agreement with the theory of mode-coupling instability.

  20. Dynamo theory prediction of solar activity

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.

  1. Comparing theories' performance in predicting violence.

    PubMed

    Haas, Henriette; Cusson, Maurice

    2015-01-01

    The stakes of choosing the best theory as a basis for violence prevention and offender rehabilitation are high. However, no single theory of violence has ever been universally accepted by a majority of established researchers. Psychiatry, psychology and sociology are each subdivided into different schools relying upon different premises. All theories can produce empirical evidence for their validity, some of them stating the opposite of each other. Calculating different models with multivariate logistic regression on a dataset of N = 21,312 observations and ninety-two influences allowed a direct comparison of the performance of operationalizations of some of the most important schools. The psychopathology model ranked as the best model in terms of predicting violence right after the comprehensive interdisciplinary model. Next came the rational choice and lifestyle model and third the differential association and learning theory model. Other models namely the control theory model, the childhood-trauma model and the social conflict and reaction model turned out to have low sensitivities for predicting violence. Nevertheless, all models produced acceptable results in predictions of a non-violent outcome. PMID:25637261

  2. Understanding Hypotheses, Predictions, Laws, and Theories

    ERIC Educational Resources Information Center

    Eastwell, Peter

    2014-01-01

    This paper discusses the relationships between the terms "hypothesis," "prediction," "theory," and "law." In so doing, it addresses some misconceptions found in the literature and suggests that the only interpretation of the term "hypothesis" needed is that of a causal hypothesis. A more valid…

  3. Nongyrotropy as a source of instability and mode coupling

    SciTech Connect

    Brinca, A.L.; Borda de Agua, L. ); Winske, D. )

    1992-12-24

    Nongyrotropic particle populations can bring about linear mode coupling in homogeneous media among the three eigenmodes of parallel propagation in gyrotropic magnetoplasmas. These interactions stimulate, in general, wave activity that does not occur in corresponding (random gyrophase) gyrotropic ambients. Solutions of the dispersion equation illustrate that simple introduction of gyrophase organization can (1) excite electrostatic (and electromagnetic) perturbations in media whose free energy sources are solely electromagnetic, and (2) drive hybrid (both electrostatic and electromagnetic) wave growth in thoroughly stable Maxwellian plasmas. 12 refs., 4 figs.

  4. Metabolic theory predicts whole-ecosystem properties.

    PubMed

    Schramski, John R; Dell, Anthony I; Grady, John M; Sibly, Richard M; Brown, James H

    2015-02-24

    Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude-from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers-as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere. PMID:25624499

  5. Metabolic theory predicts whole-ecosystem properties

    PubMed Central

    Schramski, John R.; Dell, Anthony I.; Grady, John M.; Sibly, Richard M.; Brown, James H.

    2015-01-01

    Understanding the effects of individual organisms on material cycles and energy fluxes within ecosystems is central to predicting the impacts of human-caused changes on climate, land use, and biodiversity. Here we present a theory that integrates metabolic (organism-based bottom-up) and systems (ecosystem-based top-down) approaches to characterize how the metabolism of individuals affects the flows and stores of materials and energy in ecosystems. The theory predicts how the average residence time of carbon molecules, total system throughflow (TST), and amount of recycling vary with the body size and temperature of the organisms and with trophic organization. We evaluate the theory by comparing theoretical predictions with outputs of numerical models designed to simulate diverse ecosystem types and with empirical data for real ecosystems. Although residence times within different ecosystems vary by orders of magnitude—from weeks in warm pelagic oceans with minute phytoplankton producers to centuries in cold forests with large tree producers—as predicted, all ecosystems fall along a single line: residence time increases linearly with slope = 1.0 with the ratio of whole-ecosystem biomass to primary productivity (B/P). TST was affected predominantly by primary productivity and recycling by the transfer of energy from microbial decomposers to animal consumers. The theory provides a robust basis for estimating the flux and storage of energy, carbon, and other materials in terrestrial, marine, and freshwater ecosystems and for quantifying the roles of different kinds of organisms and environments at scales from local ecosystems to the biosphere. PMID:25624499

  6. Ko Displacement Theory for Structural Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2010-01-01

    The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.

  7. Finite and Gauge-Yukawa unified theories: Theory and predictions

    SciTech Connect

    Kobayashi, T.; Kubo, J.; Mondragon, M.; Zoupanos, G.

    1999-10-25

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the {beta}- functions in certain N=1 supersymmetric GUTS even to all orders. Recent developments in the soft supersymmetry breaking (SSB) sector of N=1 GUTs and FUTs lead to exact RGI relations also in this sector of the theories. Of particular interest is a RGI sum rule for the soft scalar masses holding to all orders. The characteristic features of SU(5) models that have been constructed based on the above tools are: a) the old agreement of the top quark prediction with the measured value remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV.

  8. Transverse Mode Coupling Instability with chromaticity and space charge

    SciTech Connect

    Balbekov, V.

    2014-10-29

    Transverse mode coupling instability is considered in the paper at different bunch and wake shapes. Exact solution for “hollow” bunch is arrived at and used to develop a proper technique for more realistic distributions. The three-modes approach is proposed for arbitrary bunch with chromaticity included. It is shown that the TMCI threshold and rate depend only slightly on the bunch model used being rather sensitive to the wake shape. Resistive wall wake is considered in detail, and a comparison of the TMCI and collective mode instability with this wake is performed. Space charge tune shift of arbitrary value is included in the consideration providing a firm bridge between the known cases of absent and dominating space charge

  9. Mode coupling mechanism for late-time Kerr tails

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Khanna, Gaurav

    2014-03-01

    We consider the decay rate for scalar fields in Kerr spacetime. We consider pure initial multipoles l', and focus attention in the decay rate of the multipole l. We use an iterative method proposed by Gleiser, Price, and Pullin, and identify the mode coupling mechanism that gives rise to a decay rate formula recently proposed by Zenginoğlu, Khanna, and Burko through the iterations in powers of the square of the Kerr black hole's specific angular momentum. We also show that one may identify the dominant channel of mode excitation, and obtain approximate results for the mode of interest by studying the dominant channel. The results of the dominant channel approximation approach the full-mode results at late times, and their difference approaches zero quadratically in inverse time.

  10. Asymmetric excitation of surface plasmons by dark mode coupling.

    PubMed

    Zhang, Xueqian; Xu, Quan; Li, Quan; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Liu, Yongmin; Zhang, Shuang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-02-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities. PMID:26989777

  11. Asymmetric excitation of surface plasmons by dark mode coupling

    PubMed Central

    Zhang, Xueqian; Xu, Quan; Li, Quan; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Liu, Yongmin; Zhang, Shuang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities. PMID:26989777

  12. Does Biot's theory have predictive power?

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor A.

    2016-08-01

    Biot's theory of elastic waves in fluid-saturated porous solids has two free parameters: the tortuosity α, characterizing the dynamic coupling between the solid and the fluid, and the structural factor δ, representing the geometric properties of the porous space. The meaning and significance of these parameters have not been sufficiently understood. The tortuosity has the physical meaning of the normalized mean square of the velocity of the pore fluid relative to the solid wall; it has a low-frequency but no high-frequency limits. The analytical calculation of the tortuosity for Biot's slit-like pore provides its range of variability from approximately 1-100 in the frequency range of practical interest. The tortuosity has a significant effect on the properties of the Biot waves of the second kind in the high-frequency range. On the other hand, in realistically complex pore geometries, the values of the tortuosity are virtually unpredictable. This limits the usefulness of the Biot theory in predicting the wave propagation at high frequencies. At all frequencies, the effect of the structural factor is insignificant relative to the effect of the tortuosity. The conventional compressional wave (the wave of the first kind) is insensitive to both parameters at all frequencies. The frequencies of interest to seismic exploration are also free of the uncertainty imposed by the lack of constraints on the tortuosity as the only free parameter in Biot's theory.

  13. Does Biot's Theory Have Predictive Power?

    NASA Astrophysics Data System (ADS)

    Beresnev, I. A.

    2013-12-01

    Biot's theory of elastic waves in fluid-saturated porous solids has two free parameters: the tortuosity α, characterizing the dynamic coupling between the solid and the fluid, and the structural factor δ, representing the geometric properties of the porous space. The meaning and significance of these parameters have not been sufficiently understood. Tortuosity has the physical meaning of the normalized mean square of the velocity of the pore fluid relative to the solid wall; it has no low- and high-frequency limits. The analytical calculation of the tortuosity for Biot's slit-like pore provides its range of variability from approximately 1 to 100 in the frequency range of practical interest. The tortuosity has a significant effect on the properties of the Biot waves of the second kind in the high-frequency range. On the other hand, in realistically complex pore geometries, the values of the tortuosity are virtually unpredictable. This limits the usefulness of the Biot theory in predicting the wave propagation at high frequencies. At all frequencies, the effect of the structural factor is insignificant relative to the effect of the tortuosity. The conventional compressional wave (the wave of the first kind) is insensitive to both parameters at all frequencies. The frequencies of interest to seismic exploration are also free of the uncertainty imposed by the lack of constraints on the tortuosity as the only free parameter in Biot's theory.

  14. Prediction in ungauged estuaries: An integrated theory

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.

    2015-04-01

    Many estuaries in the world are ungauged. The International Association of Hydrological Sciences completed its science decade on Prediction in Ungauged Basins (PUB) in 2012 (Hrachowitz et al.). Prediction on the basis of limited data is a challenge in hydrology, but not less so in estuaries, where data on fundamental processes are often lacking. In this paper, relatively simple, but science-based, methods are presented that allow researchers, engineers, and water managers to obtain first-order estimates of essential process parameters in estuaries, such as the estuary depth, the tidal amplitude, the tidal excursion, the phase lag, and the salt water intrusion, on the basis of readily obtainable information, such as topographical maps and tidal tables. These apparently simple relationships are assumed to result from the capacity of freely erodible water bodies to adjust themselves to external drivers and to dissipate the free energy from these drivers as efficiently as possible. Thus, it is assumed that these systems operate close to their thermodynamic limit, resulting in predictable patterns that can be described by relatively simple equations. Although still much has to be done to develop an overall physics-based theory, this does not prevent us from making use of the empirical "laws" that we observe in alluvial estuaries.

  15. Mode couplings and resonance instabilities in dust clusters.

    PubMed

    Qiao, Ke; Kong, Jie; Oeveren, Eric Van; Matthews, Lorin S; Hyde, Truell W

    2013-10-01

    The normal modes for three to seven particle two-dimensional (2D) dust clusters in a complex plasma are investigated using an N-body simulation. The ion wakefield downstream of each particle is shown to induce coupling between horizontal and vertical modes. The rules of mode coupling are investigated by classifying the mode eigenvectors employing the Bessel and trigonometric functions indexed by order integers (m, n). It is shown that coupling only occurs between two modes with the same m and that horizontal modes having a higher shear contribution exhibit weaker coupling. Three types of resonances are shown to occur when two coupled modes have the same frequency. Discrete instabilities caused by both the first and third type of resonances are verified and instabilities caused by the third type of resonance are found to induce melting. The melting procedure is observed to go through a two-step process with the solid-liquid transition closely obeying the Lindemann criterion. PMID:24229289

  16. Mode-coupling mechanisms of resonant transmission filters.

    PubMed

    Niraula, Manoj; Yoon, Jae Woong; Magnusson, Robert

    2014-10-20

    We study theoretically modal properties and parametric dependence of guided-mode resonance bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. The three device classes show high-performance bandpass filter profiles with broad, flat low-transmission sidebands accommodating sharp transmission peaks with their efficiencies approaching 100% with appropriate blending of multiple guided modes. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. These modal compositions produce various widths of sidebands ranging from ~30 nm to ~2100 nm and transmission peak-linewidths ranging from ~1 pm to ~10 nm. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. The design principle is applicable to various optical elements such as high-power optical filters, low-noise label-free biochemical sensor templates, and high-density display pixels. PMID:25401615

  17. Mode coupling mechanism for late-time Kerr tails

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.; Khanna, Gaurav

    2014-02-01

    We consider the decay rate for scalar fields in Kerr spacetime. We consider pure initial (azimuthal) multipoles ℓ' with respect to the class that includes Boyer-Lindquist coordinates, and focus attention on the decay rate of the multipole ℓ. We use an iterative method proposed by Gleiser, Price, and Pullin, and identify the mode-coupling mechanism through the iterations in powers of the square of the Kerr black hole's specific angular momentum that gives rise to a decay rate formula recently proposed by Zenginoğlu, Khanna, and Burko. Modes ℓ may be excited through different channels, each leading to its own decay rate. The asymptotic decay rate of the mode ℓ is the slowest of the decay rate of the various channels. In some cases, more than one channel leads to the same decay rate, and then the amplitude of the mode is the sum of the amplitudes of the partial fields generated by the individual channels. We also show that one may identify the asymptotically dominant channel of mode excitations and obtain approximate results for the mode of interest by studying the dominant channel. The results of the dominant channel approximation approach the full-mode results at late times, and their difference approaches zero quadratically in inverse time.

  18. Critical evidence for the prediction error theory in associative learning

    PubMed Central

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-01-01

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an “auto-blocking”, which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning. PMID:25754125

  19. Critical evidence for the prediction error theory in associative learning.

    PubMed

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-01-01

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning. PMID:25754125

  20. How important is mode-coupling in global surface wave tomography?

    NASA Astrophysics Data System (ADS)

    Mikesell, Dylan; Nolet, Guust; Voronin, Sergey; Ritsema, Jeroen; Van Heijst, Hendrik-Jan

    2016-04-01

    To investigate the influence of mode coupling for fundamental mode Rayleigh waves with periods between 64 and 174s, we analysed 3,505,902 phase measurements obtained along minor arc trajectories as well as 2,163,474 phases along major arcs. This is a selection of five frequency bands from the data set of Van Heijst and Woodhouse, extended with more recent earthquakes, that served to define upper mantle S velocity in model S40RTS. Since accurate estimation of the misfits (as represented by χ2) is essential, we used the method of Voronin et al. (GJI 199:276, 2014) to obtain objective estimates of the standard errors in this data set. We adapted Voronin's method slightly to avoid that systematic errors along clusters of raypaths can be accommodated by source corrections. This was done by simultaneously analysing multiple clusters of raypaths originating from the same group of earthquakes but traveling in different directions. For the minor arc data, phase errors at the one sigma level range from 0.26 rad at a period of 174s to 0.89 rad at 64s. For the major arcs, these errors are roughly twice as high (0.40 and 2.09 rad, respectively). In the subsequent inversion we removed any outliers that could not be fitted at the 3 sigma level in an almost undamped inversion. Using these error estimates and the theory of finite-frequency tomography to include the effects of scattering, we solved for models with χ2 = N (the number of data) both including and excluding the effect of mode coupling between Love and Rayleigh waves. We shall present some dramatic differences between the two models, notably near ocean-continent boundaries (e.g. California) where mode conversions are likely to be largest. But a sharpening of other features, such as cratons and high-velocity blobs in the oceanic domain, is also observed when mode coupling is taken into account. An investigation of the influence of coupling on azimuthal anisotropy is still under way at the time of writing of this

  1. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2013-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg- Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application.

  2. Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector

    NASA Astrophysics Data System (ADS)

    Liu, Guo; Luo, Yong; Wang, Jian-Xun; Shu, Guo-Xiang

    2015-11-01

    Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam backward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit. Project supported by the National Natural Science Foundation of China (Grant No. G0501040161101040).

  3. Transverse multibunch modes for non-rigid bunches, including mode coupling

    SciTech Connect

    Bert, J.S.; Ruth, R.D.

    1995-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold.

  4. Cultural Differences in Equity Theory Predictions of Relational Maintenance Strategies

    ERIC Educational Resources Information Center

    Yum, Young-ok; Canary, Daniel J.

    2009-01-01

    This study examined whether the theoretic role of equity in predicting relational maintenance strategies is modified by participant country and culture. Research on equity theory in relationships has been conducted primarily in the United States and Western Europe. We argue that equity theory predictions regarding relational communication probably…

  5. Pressure dependence viscosity study of Salol and OTP: Comparison between free-volume and mode-coupling data treatment

    NASA Astrophysics Data System (ADS)

    Schug, Kai-Uwe; King, Hubert E.; Cummins, Herman Z.; Sillescu, Hans

    1996-03-01

    Glass-forming by supercooling the van-der-Waals-liquids Salol (salicylic acid phenyl ester) and OTP (ortho-terphenyl) has been studied over many years with a wide range of techniques. Mode-coupling and free-volume theories are very often used to describe the molecular behavior in the liquid and the supercooled state. To investigate such theories we used pressure as a new parameter. This allows one to change the density at constant temperature. We will present viscosity measurements in an diamond anvil cell done with the rolling ball technique. We superpressed the liquids at constant temperatures and have measured viscosities up to 10^8 cP in the temperature range from 30 to 130 Celsius with pressures up to 10 kBar. We will show free-volume and mode-coupling fits of the data and discuss the results. Based on a modified Angell-plot we will scale liquids with a different fragility and show the influence of pressure / temperature on the fragility.

  6. Mode-coupling theoretical study on the roles of heterogeneous structure in rheology of ionic liquids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi

    2016-03-01

    Theoretical calculations of the rheological properties of coarse-grained model ionic liquids were performed using mode-coupling theory. The nonpolar part of the cation was systematically increased in order to clarify the effects of the heterogeneous structure on shear viscosity. The shear viscosity showed a minimum as the function of the size of the nonpolar part, as had been reported in literatures. The minimum was ascribed to the interplay between the increase in the shear relaxation time and the decrease in the high-frequency shear modulus with increasing the size of the nonpolar part of the cation. The ionic liquids with symmetric charge distribution of cations were less viscous than those with asymmetric cations, which is also in harmony with experiments. The theoretical analysis demonstrated that there are two mechanisms for the higher viscosity of the asymmetric model. The first one is the direct coupling between the domain dynamics and the shear stress. The second one is that the microscopic dynamics within the polar domain is retarded due to the nonlinear coupling with the heterogeneous structure.

  7. The Argumentative Theory: Predictions and Empirical Evidence.

    PubMed

    Mercier, Hugo

    2016-09-01

    The argumentative theory of reasoning suggests that the main function of reasoning is to exchange arguments with others. This theory explains key properties of reasoning. When reasoners produce arguments, they are biased and lazy, as can be expected if reasoning is a mechanism that aims at convincing others in interactive contexts. By contrast, reasoners are more objective and demanding when they evaluate arguments provided by others. This fundamental asymmetry between production and evaluation explains the effects of reasoning in different contexts: the more debate and conflict between opinions there is, the more argument evaluation prevails over argument production, resulting in better outcomes. Here I review how the argumentative theory of reasoning helps integrate a wide range of empirical findings in reasoning research. PMID:27450708

  8. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles.

    PubMed

    Bakhti, Saïd; Tishchenko, Alexandre V; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D; Schuck, P James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  9. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    PubMed Central

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Dhuey, Scott D.; Schuck, P. James; Cabrini, Stefano; Alayoglu, Selim; Destouches, Nathalie

    2016-01-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and to interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations. PMID:27580515

  10. Against matching theory: predictions of an evolutionary theory of behavior dynamics.

    PubMed

    McDowell, J J; Calvin, Nicholas T

    2015-05-01

    A selectionist theory of adaptive behavior dynamics instantiates the idea that behavior evolves in response to selection pressure from the environment in the form of resource acquisition or threat escape or avoidance. The theory is implemented by a computer program that creates an artificial organism and animates it with a population of potential behaviors. The population undergoes selection, recombination, and mutation across generations, or ticks of time, which produces a continuous stream of behavior that can be studied as if it were the behavior of a live organism. Novel predictions of the evolutionary theory can be compared to predictions of matching theory in a critical experiment that arranges concurrent schedules with reinforcer magnitudes that vary across conditions in one component of the schedules but not the other. Matching theory and the evolutionary theory make conflicting predictions about the outcome of this critical experiment, such that the results must disconfirm at least one of the theories. PMID:25680328

  11. No extension of quantum theory can have improved predictive power.

    PubMed

    Colbeck, Roger; Renner, Renato

    2011-01-01

    According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory that removes this indeterminism, as suspected by Einstein, Podolsky and Rosen. Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography. PMID:21811240

  12. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-11-21

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices.

  13. Nonlinear regime of the mode-coupling instability in 2D plasma crystals

    NASA Astrophysics Data System (ADS)

    Röcker, T. B.; Couëdel, L.; Zhdanov, S. K.; Nosenko, V.; Ivlev, A. V.; Thomas, H. M.; Morfill, G. E.

    2014-05-01

    The transition between linear and nonlinear regimes of the mode-coupling instability (MCI) operating in a monolayer plasma crystal is studied. The mode coupling is triggered at the centre of the crystal and a melting front is formed, which travels through the crystal. At the nonlinear stage, the mode coupling results in synchronisation of the particle motion and the kinetic temperature of the particles grows exponentially. After melting of the crystalline structure, the mean kinetic energy of the particles continued to grow further, preventing recrystallisation of the melted phase. The anomalous kinetic temperature obtained in the experiments could not be reproduced in simulations employing a simple point-like wake model. This shows that at the nonlinear stage of the MCI a more careful analysis is necessary.

  14. Mode-coupling effects in anisotropic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Heinz, Ulrich; Liu, Jia

    2016-06-01

    Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.

  15. Friction-induced noise of gear system with lead screw and nut: Mode-coupling instability

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyoung

    2015-11-01

    The mode-coupling instability in the gear system with a lead screw and nut is investigated. The actual gear geometry and the contact kinematics are developed in analytical the model. The complete set of vibration modes including axial, torsion and transverse displacements is applied to seek the solution of the linearized gear system. From the linear stability analysis, the bending mode pair as well as the torsion and axial mode pair have the strong tendency towards the mode-coupling instability. It points out that squeak noise in the lead screw system can occur even for a constant friction coefficient without the negative-friction velocity slope. The closed-form solution and numerical calculation also show that the rotating direction can drastically change the onset of mode-coupling instability.

  16. Psychoanalysis and dynamical systems theory: prediction and self similarity.

    PubMed

    Galatzer-Levy, R M

    1995-01-01

    The theory of dynamical systems (sometimes called chaos theory) has emerged in the past two decades as a powerful tool for understanding the evolution of complex systems. Attempts to develop psychoanalysis along the lines of nineteenth century physical science have proven unsatisfactory. The theory of dynamical systems provides another route for development. It suggests that prediction should aim at describing the overall evolution of systems and that the possibilities for such evolution are broader than classical theory suggested. It also shows that complex systems often involve structures that repeat basic features on several different levels of observation. This suggests a method for systematically exploring the overly rich data of psychoanalysis. PMID:8926326

  17. Acoustic mode coupling due to subaqueous sand dunes in the South China Sea.

    PubMed

    Chiu, Linus Y S; Reeder, D Benjamin

    2013-08-01

    The large subaqueous sand dunes on the upper continental slope of the South China Sea are expected to couple acoustic propagating normal modes. In this letter, the criterion of adiabatic invariance is extended to the case of a waveguide possessing bedforms. Using the extended criterion to examine mode propagation over the bedforms observed in the sand dune field in 2012, results demonstrate that bedforms increase mode coupling strength such that the criterion for adiabatic propagation is exceeded for waveguides with small bedform amplitude to water depth ratios; increasing bedform amplitude enhances mode coupling. Numerical simulations confirm the extended criterion parameterization. PMID:23927225

  18. Prediction and Theory Evaluation: The Case of Light Bending

    NASA Astrophysics Data System (ADS)

    Brush, Stephen G.

    1989-12-01

    Is a theory that makes successful predictions of new facts better than one that does not? Does a fact provide better evidence for a theory if it was not known before being deduced from the theory? These questions can be answered by analyzing historical cases. Einstein's successful prediction of gravitational light bending from his general theory of relativity has been presented as an important example of how ``real'' science works (in contrast to alleged pseudosciences like psychoanalysis). But, while this success gained favorable publicity for the theory, most scientists did not give it any more weight than the deduction of the advance of Mercury's perihelion (a phenomenon known for several decades). The fact that scientists often use the word ``prediction'' to describe the deduction of such previously known facts suggests that novelty may be of little importance in evaluating theories. It may even detract from the evidential value of a fact, until it is clear that competing theories cannot account for the new fact.

  19. The evolution of genomic imprinting: theories, predictions and empirical tests

    PubMed Central

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-01-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal–offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal–offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  20. The evolution of genomic imprinting: theories, predictions and empirical tests.

    PubMed

    Patten, M M; Ross, L; Curley, J P; Queller, D C; Bonduriansky, R; Wolf, J B

    2014-08-01

    The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted. PMID:24755983

  1. Evidence of amplitude modulation due to resonant mode coupling in the δ Scuti star KIC 5892969. A particular or a general case?

    NASA Astrophysics Data System (ADS)

    Barceló Forteza, S.; Michel, E.; Roca Cortés, T.; García, R. A.

    2015-07-01

    A study of the star KIC 5892969 observed by the Kepler satellite is presented. Its three highest amplitude modes present a strong amplitude modulation. The aim of this work is to investigate amplitude variations in this star and their possible cause. Using the 4 years-long observations available, we obtained the frequency content of the full light curve. Then, we studied the amplitude and phase variations with time using shorter time stamps. The results obtained are compared with the predicted ones for resonant mode coupling of an unstable mode with lower frequency stable modes. Our conclusion is that resonant mode coupling is consistent as an amplitude limitation mechanism in several modes of KIC 5892969 and we discuss to which extent it might play an important role for other δ Scuti stars.

  2. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  3. Prediction of Absenteeism in College Students Using Social Learning Theory.

    ERIC Educational Resources Information Center

    McCutcheon, Lynn

    1989-01-01

    Describes a study which used scales based on Rotter's social learning theories to predict absenteeism among community college students. Only two variables were significantly related to avoidable absences: high concern for grades was related to high absenteeism and belief in the importance of attendance for learning was related to low absenteeism.…

  4. An evaluation of the seismic- window theory for earthquake prediction.

    USGS Publications Warehouse

    McNutt, M.; Heaton, T.H.

    1981-01-01

    Reports studies designed to determine whether earthquakes in the San Francisco Bay area respond to a fortnightly fluctuation in tidal amplitude. It does not appear that the tide is capable of triggering earthquakes, and in particular the seismic window theory fails as a relevant method of earthquake prediction. -J.Clayton

  5. Predicting Career Indecision: A Self-Determination Theory Perspective

    ERIC Educational Resources Information Center

    Guay, Frederic; Senecal, Caroline; Gauthier, Lysanne; Fernet, Claude

    2003-01-01

    The purpose of this study was to propose and test a model of career indecision based on self-determination theory (E. L. Deci & R. M. Ryan, 1985). This model posits that peer and parental styles predicted career indecision through perceived self-efficacy and autonomy. Participants were 834 college students (236 men, 581 women, 17 without gender…

  6. Volunteering for Job Enrichment: A Test of Expectancy Theory Predictions

    ERIC Educational Resources Information Center

    Giles, William F.

    1977-01-01

    In order to test predictions derived from an expectancy theory model developed by E. E. Lawler, measures of higher-order need satisfaction, locus of control, and intrinsic motivation were obtained from 252 female assembly line workers. Implications of the results for placement of individuals in enriched jobs are discussed. (Editor/RK)

  7. DNA sequencing and predictions of the cosmic theory of life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. Chandra

    2013-01-01

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  8. Experimental bound on the maximum predictive power of physical theories.

    PubMed

    Stuart, Terence E; Slater, Joshua A; Colbeck, Roger; Renner, Renato; Tittel, Wolfgang

    2012-07-13

    The question of whether the probabilistic nature of quantum mechanical predictions can be alleviated by supplementing the wave function with additional information has received a lot of attention during the past century. A few specific models have been suggested and subsequently falsified. Here we give a more general answer to this question: We provide experimental data that, as well as falsifying these models, cannot be explained within any alternative theory that could predict the outcomes of measurements on maximally entangled particles with significantly higher probability than quantum theory. Our conclusion is based on the assumptions that all measurement settings have been chosen freely (within a causal structure compatible with relativity theory), and that the presence of the detection loophole did not affect the measurement outcomes. PMID:23030132

  9. Observant, Nonaggressive Temperament Predicts Theory of Mind Development

    PubMed Central

    Wellman, Henry M.; Lane, Jonathan D.; LaBounty, Jennifer; Olson, Sheryl L.

    2010-01-01

    Temperament dimensions influence children’s approach to and participation in social interactive experiences which reflect and impact children’s social understandings. Therefore, temperament differences might substantially impact theory of mind development in early childhood. Using longitudinal data, we report that certain early temperament characteristics (at age 3) – lack of aggressiveness, a shy-withdrawn stance to social interaction, and social-perceptual sensitivity – predict children’s more advanced theory-of-mind understanding two years later. The findings contribute to our understanding of how theory of mind develops in the formative preschool period; they may also inform debates as to the evolutionary origins of theory of mind. PMID:21499499

  10. The Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Deng, B. H.; Almagri, A. F.; Craig, D.; Fiksel, G.; Mirnov, V.; Prager, S. C.; Sarff, J. S.; Svidzinski, V.

    2006-11-15

    During magnetic reconnection associated with sawtooth activity in a reversed field pinch, we observe a large fluctuation-induced Hall electromotive force, <{delta}Jx{delta}B>/n{sub e}e, which is capable of modifying the equilibrium current. This Hall dynamo effect is determined in the hot plasma core by laser Faraday rotation which measures equilibrium and fluctuating magnetic field and current density. We find that the Hall dynamo is strongest when nonlinear mode coupling between three spatial Fourier modes of the resistive tearing instability is present. Mode coupling alters the phase relation between magnetic and current density fluctuations for individual Fourier modes leading to a finite Hall effect. Detailed measurements of the spatial and temporal dynamics for the dominant core resonant mode under various plasma configurations are described providing evidence regarding the origin of the Hall dynamo.

  11. The stability of tidally deformed neutron stars to three- and four-mode coupling

    SciTech Connect

    Venumadhav, Tejaswi; Zimmerman, Aaron; Hirata, Christopher M.

    2014-01-20

    It has recently been suggested that the tidal deformation of a neutron star excites daughter p- and g-modes to large amplitudes via a quasi-static instability. This would remove energy from the tidal bulge, resulting in dissipation and possibly affecting the phase evolution of inspiralling binary neutron stars and hence the extraction of binary parameters from gravitational wave observations. This instability appears to arise because of a large three-mode interaction among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We show that additional four-mode interactions enter into the analysis at the same order as the three-mode terms previously considered. We compute these four-mode couplings by finding a volume-preserving coordinate transformation that relates the energy of a tidally deformed star to that of a radially perturbed spherical star. Using this method, we relate the four-mode coupling to three-mode couplings and show that there is a near-exact cancellation between the destabilizing effect of the three-mode interactions and the stabilizing effect of the four-mode interaction. We then show that the equilibrium tide is stable against the quasi-static decay into daughter p- and g-modes to leading order. The leading deviation from the quasi-static approximation due to orbital motion of the binary is considered; while it may slightly spoil the near-cancellation, any resulting instability timescale is at least of order the gravitational wave inspiral time. We conclude that the p-/g-mode coupling does not lead to a quasi-static instability, and does not impact the phase evolution of gravitational waves from binary neutron stars.

  12. Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber.

    PubMed

    Zhao, Yanshuang; Sun, Bo; Liu, Yanlei; Ren, Jing; Zhang, Jianzhong; Yang, Jun; Canning, John; Peng, G D; Yuan, Libo

    2016-01-11

    Polarization mode coupling (PMC) and related effects from writing fiber Bragg gratings in polarization maintaining fiber (FBGs-in-PMF) are observed experimentally for the first time by optical fiber coherence domain polarimetry (OCDP) using a broadband light source. PMC is another useful aspect of FBG-in-PMF besides Bragg wavelength and its possible potential is evaluated and discussed. A localized and long range temperature measurement based on the PMC and Bragg wavelength is given as an example. PMID:26832291

  13. Vibrationally highly excited molecules and intramolecular mode coupling through high-overtone spectroscopy

    SciTech Connect

    Wong, J.S.; Moore, C.B.

    1981-08-01

    High overtone spectra of organic molecules can be interpreted using the local mode model for absorptions by the inequivalent C-H bonds. The spectra can be assigned using either observed C-H bond lengths or isolated fundamental frequencies. The spectra of trihalomethanes indicate that the dominant intramolecular mode coupling for the C-H stretching overtones is Fermi resonance with combination states with one less C-H stretching quantum plus two quanta of the C-H bending vibrations.

  14. Towards a predictive theory for genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  15. Review of sonic-boom generation theory and prediction methods.

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Maglieri, D. J.

    1972-01-01

    The prediction techniques reviedi he present paper permit the calculation of sonic booms produced by rather complex conventional supersonic aircraft designs performing level nonaccelerated flight in a quiet atmosphere. Basic concepts of supersonic flow analysis, for representation of an airplane as a linear distribution of disturbances and for determination of the resultant pressure field complete with shocks, are outlined. Numerical techniques for implementation of the theory are discussed briefly, and examples of the correlation of theory with experimental data from wind tunnel and flight tests are presented. Special attention is given to presentation of a simplified method for rapid 'first-cut' estimation of farfield bow-shock overpressure. Finally, some problems encountered in attempts at applying the prediction techniques for the nearfield at high supersonic Mach numbers are recognized, and the need for further refinement of present techniques or the development of new systems is discussed.

  16. Predictability of magnetic hysteresis and thermoremanent magnetization using Preisach theory

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2014-12-01

    Preisach theory is a phenomenological model of hysteresis that is the basis for FORC analysis in rock magnetism. In FORC analysis, a system is characterized using first-order reversal curves (FORCs), each of which is a magnetization curve after a reversal in the direction of change of the magnetic field. Preisach theory uses the same curves to predict the magnetic response to changes in the magnetic field. In rock magnetism, the Preisach model has been adapted to predict general properties of thermoremanent magnetization (TRM), and even to inferpaleointensity from room-temperature FORCs. Preisach theory represents hysteresis by a collection of hysteresis units called hysterons; the distribution of hysterons is inferred from FORC measurements. Each hysteron represents a two-state system. This is similar to a single-domain (SD) magnet, but the first-order theory cannot represent the magnetism of a simple system of randomly oriented SD magnets. Such a system can be represented by a second-order Preisach theory, which requires the measurement of magnetization curves after two reversals of the direction of change. One can generalize this process to higher order reversal curves, although each increase in the number of reversals greatly increases the number of measurements that are needed. The magnetic hysteresis of systems of interacting SD magnets is calculated using numerical homotopy, a method that can find all the solutions of the equilibrium equations for such a system. The hysteresis frequently has features that cannot be represented by any order of Preisach theory. Furthermore, there are stable magnetic states that are not reachable during isothermal hysteresis unless thermal fluctuations are large enough. Such states would not be visible at room temperature but would contribute to TRM.

  17. Forward and Backward Digit Span Interaction with Race and IQ: Predictions from Jensen's Theory.

    ERIC Educational Resources Information Center

    Jensen, Arthur R.; Figueroa, Richard A.

    The study sought to use Jensen's two-level theory of mental abilities to predict some hitherto unknown or unnoticed phenomena--facts about which the theory should yield clear-cut predictions and which are not as clearly predictable from other theories, though they may receive ad hoc explanations after the fact. From the two-level theory of mental…

  18. Experimental study of the Timoshenko beam theory predictions: Further results

    NASA Astrophysics Data System (ADS)

    Monsivais, G.; Díaz-de-Anda, A.; Flores, J.; Gutiérrez, L.; Morales, A.

    2016-08-01

    In a previous paper (2012) we presented experimental results proving that the critical frequency fC predicted by Timoshenko beam theory indeed exists. We also showed that for frequencies f smaller than fC the spectrum is formed by almost equally spaced levels whereas for f >fC the spectrum consists of pairs of eigenvalues very close to each other as predicted by numerical solutions of Timoshenko's equation: we shall refer to them as Timoshenko doublets. In this work we measure for the first time experimental dispersion relations. For this purpose it was necessary to obtain normal-mode amplitudes with a high precision, which was done with a new experimental setup developed by us. We found that experimental dispersion relations coincide very well with theoretical predictions. Furthermore, we provide an explanation of Timoshenko doublets.

  19. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    NASA Astrophysics Data System (ADS)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  20. Free-floating planets from core accretion theory: microlensing predictions

    NASA Astrophysics Data System (ADS)

    Ma, Sizheng; Mao, Shude; Ida, Shigeru; Zhu, Wei; Lin, Douglas N. C.

    2016-09-01

    We calculate the microlensing event rate and typical time-scales for the free-floating planet (FFP) population that is predicted by the core accretion theory of planet formation. The event rate is found to be ˜1.8 × 10-3 of that for the stellar population. While the stellar microlensing event time-scale peaks at around 20 d, the median time-scale for FFP events (˜0.1 d) is much shorter. Our values for the event rate and the median time-scale are significantly smaller than those required to explain the Sumi et al. result, by factors of ˜13 and ˜16, respectively. The inclusion of planets at wide separations does not change the results significantly. This discrepancy may be too significant for standard versions of both the core accretion theory and the gravitational instability model to explain satisfactorily. Therefore, either a modification to the planet formation theory is required or other explanations to the excess of short-time-scale microlensing events are needed. Our predictions can be tested by ongoing microlensing experiment such as Korean Microlensing Telescope Network, and by future satellite missions such as WFIRST and Euclid.

  1. Age-Related Differences in Goals: Testing Predictions from Selection, Optimization, and Compensation Theory and Socioemotional Selectivity Theory

    ERIC Educational Resources Information Center

    Penningroth, Suzanna L.; Scott, Walter D.

    2012-01-01

    Two prominent theories of lifespan development, socioemotional selectivity theory and selection, optimization, and compensation theory, make similar predictions for differences in the goal representations of younger and older adults. Our purpose was to test whether the goals of younger and older adults differed in ways predicted by these two…

  2. Prediction of negative dispersion by a nonlocal poroelastic theory.

    PubMed

    Chakraborty, Abir

    2008-01-01

    The objective of this work is to show that the negative dispersion of ultrasonic waves propagating in cancellous bone can be explained by a nonlocal version of Biot's theory of poroelasticity. The nonlocal poroelastic formulation is presented in this work and the exact solutions for one- and two-dimensional systems are obtained by the method of Fourier transform. The nonlocal phase speeds for solid- and fluid-borne waves show the desired negative dispersion where the magnitude of dispersion is strongly dependent on the nonlocal parameters and porosity. Dependence of the phase speed and attenuation is studied for both porosity and frequency variation. It is shown that the nonlocal parameter can be easily estimated by comparing the theoretical dispersion rate with experimental observations. It is also shown that the modes of Lamb waves show similar negative dispersion when predicted by the nonlocal poroelastic theory. PMID:18177138

  3. Infant attention to intentional action predicts preschool theory of mind.

    PubMed

    Wellman, Henry M; Lopez-Duran, Sarah; LaBounty, Jennifer; Hamilton, Betsy

    2008-03-01

    This research examines whether there are continuities between infant social attention and later theory of mind. Forty-five children were studied as infants and then again as 4-year-olds. Measures of infant social attention (decrement of attention during habituation to displays of intentional action) significantly predicted later theory of mind (false-belief understanding). Possibly, this longitudinal association could have been explained by more general developments in IQ, verbal competence, or executive function (rather than continuities in the realm of social cognition). However, the association remained significant and undiminished even when IQ, verbal competence, and executive function were controlled. The findings thus provide strong support for an important continuity in social cognition separable from continuities in more general information processing. PMID:18331149

  4. Attachment theory and theory of planned behavior: an integrative model predicting underage drinking.

    PubMed

    Lac, Andrew; Crano, William D; Berger, Dale E; Alvaro, Eusebio M

    2013-08-01

    Research indicates that peer and maternal bonds play important but sometimes contrasting roles in the outcomes of children. Less is known about attachment bonds to these 2 reference groups in young adults. Using a sample of 351 participants (18 to 20 years of age), the research integrated two theoretical traditions: attachment theory and theory of planned behavior (TPB). The predictive contribution of both theories was examined in the context of underage adult alcohol use. Using full structural equation modeling, results substantiated the hypotheses that secure peer attachment positively predicted norms and behavioral control toward alcohol, but secure maternal attachment inversely predicted attitudes and behavioral control toward alcohol. Alcohol attitudes, norms, and behavioral control each uniquely explained alcohol intentions, which anticipated an increase in alcohol behavior 1 month later. The hypothesized processes were statistically corroborated by tests of indirect and total effects. These findings support recommendations for programs designed to curtail risky levels of underage drinking using the tenets of attachment theory and TPB. PMID:23127300

  5. Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR.

    PubMed

    Nakazawa, Masataka; Yoshida, Masato; Hirooka, Toshihiko

    2014-12-15

    We describe the nondestructive measurement of mode coupling along a few-mode fiber using a synchronous multi-channel optical time-domain reflectometer (OTDR). By installing a few-mode fiber (FMF) coupler made with a phase mask method, we excite the LP01 mode in an FMF under the test as an input mode, and then we detect backward Rayleigh scattered LP11a or LP11b modes, which were generated as a result of the mode coupling through the coupler. The mode coupling distribution between the LP01 and LP11a,b modes along the test FMF was successfully measured with a 10-m spatial resolution by obtaining the ratio between the backscattered LP01 mode and LP11a or LP11b. The value of the mode coupling obtained with the present method agreed well with that obtained with the conventional transmission method. PMID:25607078

  6. Synchronization of particle motion induced by mode coupling in a two-dimensional plasma crystal.

    PubMed

    Couëdel, L; Zhdanov, S; Nosenko, V; Ivlev, A V; Thomas, H M; Morfill, G E

    2014-05-01

    The kinematics of dust particles during the early stage of mode-coupling induced melting of a two-dimensional plasma crystal is explored. It is found that the formation of the hybrid mode causes the particle vibrations to partially synchronize at the hybrid frequency. Phase- and frequency-locked hybrid particle motion in both vertical and horizontal directions (hybrid mode) is observed. The system self-organizes in a rhythmic pattern of alternating in-phase and antiphase oscillating chains of particles. The spatial orientation of the synchronization pattern correlates well with the directions of the maximal increment of the shear-free hybrid mode. PMID:25353905

  7. Evidence of Resonant Mode Coupling in the Hot B Subdwarf Star KIC 10139564

    NASA Astrophysics Data System (ADS)

    Zong, W.; Charpinet, S.; Vauclair, G.

    2015-09-01

    The Kepler spacecraft provides new opportinuties to observe long term frequency and amplitude modulations of oscillation modes in pulsating stars. We analyzed more than three years of uninterrupted data obtained with this instrument on the hot B subdwarf (sdB) star KIC 10139564 and found clear signatures of nonlinear resonant mode coupling affecting several multiplets. The observed periodic frequency and amplitude modulations may allow for new asteroseismic diagnostics, providing in particular ways to measure linear growth rates of pulsation modes in hot subdwarf stars for the first time.

  8. Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    A simple technique was developed to account for the higher order mode coupling between adjacent coupling slots in the feed waveguide of a planar slot array. The method uses an equation relating the slot impedance to the slot voltage and a reaction integral involving the equivalent magnetic current of the slot aperture and the magnetic field coupled from an adjacent slot. In the proposed method, one uses the Elliott s design technique to determine tilt angles and lengths of the coupling slots. The radiating slots are modeled as shunt admittances, and the coupling slots are modeled as series impedances.

  9. Nongyrotropy as a source of instability and mode coupling. [in magnetoplasmas

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.; De Agua, L. B.; Winske, D.

    1992-01-01

    Nongyrotropic particle populations can bring about linear mode coupling in homogeneous media among the three eigen-modes of parallel propagation in gyrotropic magnetoplasmas. These interactions stimulate, in general, wave activity that does not occur in corresponding (random gyrophase) gyrotropic ambients. Solutions of the dispersion equation illustrate that simple introduction of gyrophase organization can (1) excite electrostatic (and electromagnetic) perturbations in media whose free energy sources are solely electromagnetic, and (3) drive hybrid (both electrostatic and electromagnetic) wave growth in thoroughly stable Maxwellian plasmas.

  10. Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level

    NASA Astrophysics Data System (ADS)

    Zoccante, Alberto; Seidler, Peter; Christiansen, Ove

    2011-04-01

    In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed solving iteratively a single linear set of equations. Sample calculations are presented which show that the resulting algorithm scales only with the third power of the number of modes, therefore making large systems accessible. Moreover, we present applications to water, pyrrole, and para-nitroaniline.

  11. Low-power all-optical tunable plasmonic-mode coupling in nonlinear metamaterials

    SciTech Connect

    Zhang, Fan; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-03-31

    All-optical tunable plasmonic-mode coupling is realized in a nonlinear photonic metamaterial consisting of periodic arrays of gold asymmetrically split ring resonators, covered with a poly[(methyl methacrylate)-co-(disperse red 13 acrylate)] azobenzene polymer layer. The third-order optical nonlinearity of the azobenzene polymer is enormously enhanced by using resonant excitation. Under excitation with a 17-kW/cm{sup 2}, 532-nm pump light, plasmonic modes shift by 51 nm and the mode interval is enlarged by 30 nm. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while extremely large tunability is maintained.

  12. Spatiotemporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Ambichl, Philipp; Bromberg, Yaron; Redding, Brandon; Rotter, Stefan; Cao, Hui

    2016-07-01

    We experimentally generate and characterize eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable global control of temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that well-defined delay times of the eigenstates are formed by multipath interference, which can be effectively manipulated by spatial degrees of freedom of input wave fronts. This study is essential to controlling dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.

  13. Computational predictions of energy materials using density functional theory

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.

    2016-01-01

    In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.

  14. Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber

    NASA Astrophysics Data System (ADS)

    Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter

    2015-05-01

    Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.

  15. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  16. Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N.

    2012-05-01

    A mode-coupling theory (MCT) version (called hMCT thereafter) of a recently presented theory [Farago, Meyer, and Semenov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.178301 107, 178301 (2011)] is developed to describe the diffusional properties of a tagged polymer in a melt. The hMCT accounts for the effect of viscoelastic hydrodynamic interactions (VHIs), that is, a physical mechanism distinct from the density-based MCT (dMCT) described in the first paper of this series. The two versions of the MCT yield two different contributions to the asymptotic behavior of the center-of-mass velocity autocorrelation function (c.m. VAF). We show that in most cases the VHI mechanism is dominant; for long chains and prediffusive times it yields a negative tail ∝-N-1/2t-3/2 for the c.m. VAF. The case of non-momentum-conserving dynamics (Langevin or Monte Carlo) is discussed as well. It generally displays a distinctive behavior with two successive relaxation stages: first -N-1t-5/4 (as in the dMCT approach), then -N-1/2t-3/2. Both the amplitude and the duration of the first t-5/4 stage crucially depend on the Langevin friction parameter γ. All results are also relevant for the early time regime of entangled melts. These slow relaxations of the c.m. VAF, thus account for the anomalous subdiffusive regime of the c.m. mean square displacement widely observed in numerical and experimental works.

  17. Understanding predicted shifts in diazotroph biogeography using resource competition theory

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, S.; Ward, B. A.; Scott, J. R.; Follows, M. J.

    2014-10-01

    We examine the sensitivity of the biogeography of nitrogen fixers to a warming climate and increased aeolian iron deposition in the context of a global earth system model. We employ concepts from the resource-ratio theory to provide a simplifying and transparent interpretation of the results. First we demonstrate that a set of clearly defined, easily diagnosed provinces are consistent with the theory. Using this framework we show that the regions most vulnerable to province shifts and changes in diazotroph biogeography are the equatorial and South Pacific, and central Atlantic. Warmer and dustier climates favor diazotrophs due to an increase in the ratio of supply rate of iron to fixed nitrogen. We suggest that the emergent provinces could be a standard diagnostic for global change models, allowing for rapid and transparent interpretation and comparison of model predictions and the underlying mechanisms. The analysis suggests that monitoring of real world province boundaries, indicated by transitions in surface nutrient concentrations, would provide a clear and easily interpreted indicator of ongoing global change.

  18. Transition-state theory predicts clogging at the microscale

    PubMed Central

    Laar, T. van de; Klooster, S. ten; Schroën, K.; Sprakel, J.

    2016-01-01

    Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging to explore the influence of pore geometry and particle interactions on suspension clogging in constrictions, two crucial factors which remain relatively unexplored. We find a distinct dependence of the clogging rate on the entrance angle to a membrane pore which we explain quantitatively by deriving a model, based on transition-state theory, which describes the effect of viscous forces on the rate with which particles accumulate at the channel walls. With the same model we can also predict the effect of the particle interaction potential on the clogging rate. In both cases we find excellent agreement between our experimental data and theory. A better understanding of these clogging mechanisms and the influence of design parameters could form a stepping stone to delay or prevent clogging by rational membrane design. PMID:27328715

  19. Understanding predicted shifts in diazotroph biogeography using resource competition theory

    DOE PAGESBeta

    Dutkiewicz, S.; Ward, B. A.; Scott, J. R.; Follows, M. J.

    2014-05-19

    We examine the sensitivity of the biogeography of nitrogen fixers to a warming climate and increased aeolian iron deposition in the context of a global Earth System Model. We employ concepts from Resource Ratio Theory to provide a simplifying and transparent interpretation of the results. First we demonstrate that a set of clearly defined, easily diagnosed provinces are consistent with the theory. Using the framework we show that the regions most vulnerable to province shifts and changes in diazotroph biogeography are the Equatorial and South Pacific, and central Atlantic. Warmer and dustier climates favor diazotrophs due to an increase inmore » the ratio of supply rate of iron to fixed nitrogen. The analysis suggests that monitoring of real world province boundaries, indicated by transitions in surface nutrient concentrations, would provide a clear and easily interpreted indicator of ongoing global change. We suggest that the emergent provinces could be a standard diagnostic for global change models, allowing for rapid and transparent interpretation and comparison of model predictions and the underlying mechanisms.« less

  20. Understanding predicted shifts in diazotroph biogeography using resource competition theory

    DOE PAGESBeta

    Dutkiewicz, S.; Ward, B. A.; Scott, J. R.; Follows, M. J.

    2014-10-08

    We examine the sensitivity of the biogeography of nitrogen fixers to a warming climate and increased aeolian iron deposition in the context of a global earth system model. We employ concepts from the resource-ratio theory to provide a simplifying and transparent interpretation of the results. First we demonstrate that a set of clearly defined, easily diagnosed provinces are consistent with the theory. Using this framework we show that the regions most vulnerable to province shifts and changes in diazotroph biogeography are the equatorial and South Pacific, and central Atlantic. Warmer and dustier climates favor diazotrophs due to an increase inmore » the ratio of supply rate of iron to fixed nitrogen. We suggest that the emergent provinces could be a standard diagnostic for global change models, allowing for rapid and transparent interpretation and comparison of model predictions and the underlying mechanisms. The analysis suggests that monitoring of real world province boundaries, indicated by transitions in surface nutrient concentrations, would provide a clear and easily interpreted indicator of ongoing global change.« less

  1. Transition-state theory predicts clogging at the microscale.

    PubMed

    Laar, T van de; Klooster, S Ten; Schroën, K; Sprakel, J

    2016-01-01

    Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging to explore the influence of pore geometry and particle interactions on suspension clogging in constrictions, two crucial factors which remain relatively unexplored. We find a distinct dependence of the clogging rate on the entrance angle to a membrane pore which we explain quantitatively by deriving a model, based on transition-state theory, which describes the effect of viscous forces on the rate with which particles accumulate at the channel walls. With the same model we can also predict the effect of the particle interaction potential on the clogging rate. In both cases we find excellent agreement between our experimental data and theory. A better understanding of these clogging mechanisms and the influence of design parameters could form a stepping stone to delay or prevent clogging by rational membrane design. PMID:27328715

  2. Transition-state theory predicts clogging at the microscale

    NASA Astrophysics Data System (ADS)

    Laar, T. Van De; Klooster, S. Ten; Schroën, K.; Sprakel, J.

    2016-06-01

    Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging to explore the influence of pore geometry and particle interactions on suspension clogging in constrictions, two crucial factors which remain relatively unexplored. We find a distinct dependence of the clogging rate on the entrance angle to a membrane pore which we explain quantitatively by deriving a model, based on transition-state theory, which describes the effect of viscous forces on the rate with which particles accumulate at the channel walls. With the same model we can also predict the effect of the particle interaction potential on the clogging rate. In both cases we find excellent agreement between our experimental data and theory. A better understanding of these clogging mechanisms and the influence of design parameters could form a stepping stone to delay or prevent clogging by rational membrane design.

  3. Singular perturbation theory for predicting extravasation of Brownian particles

    PubMed Central

    Shah, Preyas; Fitzgibbon, Sean; Narsimhan, Vivek; Shaqfeh, Eric S. G.

    2013-01-01

    Motivated by recent studies on tumor treatments using the drug delivery of nanoparticles, we provide a singular perturbation theory and perform Brownian dynamics simulations to quantify the extravasation rate of Brownian particles in a shear flow over a circular pore with a lumped mass transfer resistance. The analytic theory we present is an expansion in the limit of a vanishing Péclet number (P), which is the ratio of convective fluxes to diffusive fluxes on the length scale of the pore. We state the concentration of particles near the pore and the extravasation rate (Sherwood number) to O(P1/2). This model improves upon previous studies because the results are valid for all values of the particle mass transfer coefficient across the pore, as modeled by the Damköhler number (κ), which is the ratio of the reaction rate to the diffusive mass transfer rate at the boundary. Previous studies focused on the adsorption-dominated regime (i.e., κ → ∞). Specifically, our work provides a theoretical basis and an interpolation-based approximate method for calculating the Sherwood number (a measure of the extravasation rate) for the case of finite resistance [κ ~ O(1)] at small Péclet numbers, which are physiologically important in the extravasation of nanoparticles. We compare the predictions of our theory and an approximate method to Brownian dynamics simulations with reflection–reaction boundary conditions as modeled by κ. They are found to agree well at small P and for the κ ≪ 1 and κ ≫ 1 asymptotic limits representing the diffusion-dominated and adsorption-dominated regimes, respectively. Although this model neglects the finite size effects of the particles, it provides an important first step toward understanding the physics of extravasation in the tumor vasculature. PMID:24563548

  4. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  5. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  6. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGESBeta

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  7. Commodity predictability analysis with a permutation information theory approach

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano; Pérez, Darío G.; Rosso, Osvaldo A.

    2011-03-01

    It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable.

  8. Endosymbiont evolution: predictions from theory and surprises from genomes.

    PubMed

    Wernegreen, Jennifer J

    2015-12-01

    Genome data have created new opportunities to untangle evolutionary processes shaping microbial variation. Among bacteria, long-term mutualists of insects represent the smallest and (typically) most AT-rich genomes. Evolutionary theory provides a context to predict how an endosymbiotic lifestyle may alter fundamental evolutionary processes--mutation, selection, genetic drift, and recombination--and thus contribute to extreme genomic outcomes. These predictions can then be explored by comparing evolutionary rates, genome size and stability, and base compositional biases across endosymbiotic and free-living bacteria. Recent surprises from such comparisons include genome reduction among uncultured, free-living species. Some studies suggest that selection generally drives this streamlining, while drift drives genome reduction in endosymbionts; however, this remains an hypothesis requiring additional data. Unexpected evidence of selection acting on endosymbiont GC content hints that even weak selection may be effective in some long-term mutualists. Moving forward, intraspecific analysis offers a promising approach to distinguish underlying mechanisms, by testing the null hypothesis of neutrality and by quantifying mutational spectra. Such analyses may clarify whether endosymbionts and free-living bacteria occupy distinct evolutionary trajectories or, alternatively, represent varied outcomes of similar underlying forces. PMID:25866055

  9. Predicting stability constants for uranyl complexes using density functional theory.

    PubMed

    Vukovic, Sinisa; Hay, Benjamin P; Bryantsev, Vyacheslav S

    2015-04-20

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl/ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We use density functional theory (B3LYP) and the integral equation formalism polarizable continuum model (IEF-PCM) to compute aqueous stability constants for UO2(2+) complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root-mean-square deviation from experiment <1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono- and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelating capability to uranyl. PMID:25835578

  10. Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural Flight-Life Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Chen, Tony

    2007-01-01

    The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural components.

  11. Coronal loop seismology using damping of standing kink oscillations by mode coupling

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.

  12. Why hydrological predictions should be evaluated using information theory

    NASA Astrophysics Data System (ADS)

    Weijs, S. V.; Schoups, G.; van de Giesen, N.

    2010-12-01

    Probabilistic predictions are becoming increasingly popular in hydrology. Equally important are methods to test such predictions, given the topical debate on uncertainty analysis in hydrology. Also in the special case of hydrological forecasting, there is still discussion about which scores to use for their evaluation. In this paper, we propose to use information theory as the central framework to evaluate predictions. From this perspective, we hope to shed some light on what verification scores measure and should measure. We start from the ''divergence score'', a relative entropy measure that was recently found to be an appropriate measure for forecast quality. An interpretation of a decomposition of this measure provides insight in additive relations between climatological uncertainty, correct information, wrong information and remaining uncertainty. When the score is applied to deterministic forecasts, it follows that these increase uncertainty to infinity. In practice, however, deterministic forecasts tend to be judged far more mildly and are widely used. We resolve this paradoxical result by proposing that deterministic forecasts either are implicitly probabilistic or are implicitly evaluated with an underlying decision problem or utility in mind. We further propose that calibration of models representing a hydrological system should be the based on information-theoretical scores, because this allows extracting all information from the observations and avoids learning from information that is not there. Calibration based on maximizing utility for society trains an implicit decision model rather than the forecasting system itself. This inevitably results in a loss or distortion of information in the data and more risk of overfitting, possibly leading to less valuable and informative forecasts. We also show this in an example. The final conclusion is that models should preferably be explicitly probabilistic and calibrated to maximize the information they provide.

  13. Solar Activity Predictions Based on Solar Dynamo Theories

    NASA Astrophysics Data System (ADS)

    Schatten, Kenneth H.

    2009-05-01

    We review solar activity prediction methods, statistical, precursor, and recently the Dikpati and the Choudhury groups’ use of numerical flux-dynamo methods. Outlining various methods, we compare precursor techniques with weather forecasting. Precursors involve events prior to a solar cycle. First started by the Russian geomagnetician Ohl, and then Brown and Williams; the Earth's field variations near solar minimum was used to predict the next solar cycle, with a correlation of 0.95. From the standpoint of causality, as well as energetically, these relationships were somewhat bizarre. One index used was the "number of anomalous quiet days,” an antiquated, subjective index. Scientific progress cannot be made without some suspension of disbelief; otherwise old paradigms become tautologies. So, with youthful naïveté, Svalgaard, Scherrer, Wilcox and I viewed the results through rose-colored glasses and pressed ahead searching for understanding. We eventually fumbled our way to explaining how the Sun could broadcast the state of its internal dynamo to Earth. We noted one key aspect of the Babcock-Leighton Flux Dynamo theory: the polar field at the end of a cycle serves as a seed for the next cycle's growth. Near solar minimum this field usually bathes the Earth, and thereby affects geomagnetic indices then. We found support by examining 8 previous solar cycles. Using our solar precursor technique we successfully predicted cycles 21, 22 and 23 using WSO and MWSO data. Pesnell and I improved the method using a SODA (SOlar Dynamo Amplitude) Index. In 2005, nearing cycle 23's minimum, Svalgaard and I noted an unusually weak polar field, and forecasted a small cycle 24. We discuss future advances: the flux-dynamo methods. As far as future solar activity, I shall let the Sun decide; it will do so anyhow.

  14. Observational attachment theory-based parenting measures predict children's attachment narratives independently from social learning theory-based measures.

    PubMed

    Matias, Carla; O'Connor, Thomas G; Futh, Annabel; Scott, Stephen

    2014-01-01

    Conceptually and methodologically distinct models exist for assessing quality of parent-child relationships, but few studies contrast competing models or assess their overlap in predicting developmental outcomes. Using observational methodology, the current study examined the distinctiveness of attachment theory-based and social learning theory-based measures of parenting in predicting two key measures of child adjustment: security of attachment narratives and social acceptance in peer nominations. A total of 113 5-6-year-old children from ethnically diverse families participated. Parent-child relationships were rated using standard paradigms. Measures derived from attachment theory included sensitive responding and mutuality; measures derived from social learning theory included positive attending, directives, and criticism. Child outcomes were independently-rated attachment narrative representations and peer nominations. Results indicated that Attachment theory-based and Social Learning theory-based measures were modestly correlated; nonetheless, parent-child mutuality predicted secure child attachment narratives independently of social learning theory-based measures; in contrast, criticism predicted peer-nominated fighting independently of attachment theory-based measures. In young children, there is some evidence that attachment theory-based measures may be particularly predictive of attachment narratives; however, no single model of measuring parent-child relationships is likely to best predict multiple developmental outcomes. Assessment in research and applied settings may benefit from integration of different theoretical and methodological paradigms. PMID:24283669

  15. Implicit Theories Relate to Youth Psychopathology, But How? A Longitudinal Test of Two Predictive Models.

    PubMed

    Schleider, Jessica L; Weisz, John R

    2016-08-01

    Research shows relations between entity theories-i.e., beliefs that traits and abilities are unchangeable-and youth psychopathology. A common interpretation has been that entity theories lead to psychopathology, but another possibility is that psychopathology predicts entity theories. The two models carry different implications for developmental psychopathology and intervention design. We tested each model's plausibility, examining longitudinal associations between entity theories of thoughts, feelings, and behavior and psychopathology in early adolescents across one school year (N = 59, 52 % female, ages 11-14, 0 % attrition). Baseline entity theories did not predict increases in psychopathology; instead, baseline psychopathology predicted increased entity theories over time. When symptom clusters were assessed individually, greater youth internalizing (but not externalizing) problems predicted subsequent increases in entity theories. Findings suggest that the commonly proposed predictive model may not be the only one warranting attention. They suggest that youth psychopathology may contribute to the development of certain kinds of entity theories. PMID:26443503

  16. High pressure electrides: a predictive chemical and physical theory.

    PubMed

    Miao, Mao-Sheng; Hoffmann, Roald

    2014-04-15

    Electrides, in which electrons occupy interstitial regions in the crystal and behave as anions, appear as new phases for many elements (and compounds) under high pressure. We propose a unified theory of high pressure electrides (HPEs) by treating electrons in the interstitial sites as filling the quantized orbitals of the interstitial space enclosed by the surrounding atom cores, generating what we call an interstitial quasi-atom, ISQ. With increasing pressure, the energies of the valence orbitals of atoms increase more significantly than the ISQ levels, due to repulsion, exclusion by the atom cores, effectively giving the valence electrons less room in which to move. At a high enough pressure, which depends on the element and its orbitals, the frontier atomic electron may become higher in energy than the ISQ, resulting in electron transfer to the interstitial space and the formation of an HPE. By using a He lattice model to compress (with minimal orbital interaction at moderate pressures between the surrounding He and the contained atoms or molecules) atoms and an interstitial space, we are able to semiquantitatively explain and predict the propensity of various elements to form HPEs. The slopes in energy of various orbitals with pressure (s > p > d) are essential for identifying trends across the entire Periodic Table. We predict that the elements forming HPEs under 500 GPa will be Li, Na (both already known to do so), Al, and, near the high end of this pressure range, Mg, Si, Tl, In, and Pb. Ferromagnetic electrides for the heavier alkali metals, suggested by Pickard and Needs, potentially compete with transformation to d-group metals. PMID:24702165

  17. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Phase Effect on Mode Coupling in Kelvin-Helmholtz Instability for Two-Dimensional Incompressible Fluid

    NASA Astrophysics Data System (ADS)

    Wang, Li-Feng; Teng, Ai-Ping; Ye, Wen-Hua; Xue, Chuang; Fan, Zheng-Feng; Li, Ying-Jun

    2009-10-01

    This paper studies the phase effect in mode coupling of Kelvin-Helmholtz instability in two-dimensional incompressible fluid. It is found that there is an important growth phenomenon of every mode in the mode coupling process. The growth changes periodically with phase difference and in the condition of our simulation the period is about 0.7π. The period characteristic is apparent in all stage of the mode coupling process, especially in the relatively later stage.

  19. Empirical Predictions from a General Theory of Signs

    ERIC Educational Resources Information Center

    Oller, John W., Jr.; Chen, Liang; Oller, Stephen D.; Pan, Ning

    2005-01-01

    General sign theory (GST) deals with how distinct sign systems are grounded, developed with increasing abstractness over time, and differentiated in efficacies in experience and discourse. GST has 3 components: The theory of true narrative representations (TNR theory) shows that TNRs are unique in being relatively well determined with respect to…

  20. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  1. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  2. Mode coupling in superconducting parallel plate resonator in a cavity with outer conductive enclosure

    SciTech Connect

    Gao, F.; Klein, M.V.; Kruse, J.; Feng, M.

    1996-06-01

    The authors have carefully studied the mode coupling effect from analysis of the measured microwave scattering parameters of superconducting films using a parallel-plate-resonator technique. Due to its high resolution and simplicity, this technique has been widely employed to identify the quality of high-{Tc} superconducting films by measuring the resonance bandwidth, from which the microwave surface resistance is directly derived. To minimize the radiation loss, the resonator is usually housed in a conductive cavity. Using this method, they observe that a number of strong ``cavity`` modes due to the test enclosure fall around the lowest TM mode of the superconducting resonator and that a strong interaction between these two types of resonant modes occurs when their eigenfrequencies are close, causing a significant distortion or a strong antiresonance for the resonator mode. To describe this effect, a coupled harmonic-oscillator model is proposed. They suggest that the interaction arises from a phase interference or a linear coupling among the individual oscillators. The model fits very well the observed Fano-type asymmetric or antiresonant features, and thus can be used to extract the intrinsic Q of the superconducting resonator.

  3. Transverse mode coupling and supermode establishment in a free-electron laser oscillator

    SciTech Connect

    Pinhasi, Y.; Gover, A.

    1995-12-31

    A three-dimensional study of transverse mode evolution in a free-electron laser (FEL) oscillator is presented. The total electromagnetic field circulating in the resonator is represented as a superposition of transverse modes of the cavity. Coupled-mode theory is employed to derive a generalized 3-D steady-state oscillation criterion, from which the oscillator supermode is found analytically. The oscillator supermode keeps its transverse features after each round-trip, and it is the eigenmode solution of the oscillator at steady-state. Relations between the oscillator supermode and the amplifier supermode are discussed. It is shown that they are identical only when the feedback process is entirely non-disperssive and non-discriminating. We employ a 3-D, non-linear simulation code to demonstrate the evolvement of transverse modes in the oscillator towards formation of a supermode. The simulation shows that the resulted supermode is identical to that predicted by the analytical approach.

  4. Comparison of the Modified Biot-Gassmann Theory and the Kuster-Toksoz Theory in Predicting Elastic Velocities of Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities of water-saturated sandstones depend primarily on porosity, effective pressure, and the degree of consolidation. If the dry-frame moduli are known, from either measurements or theoretical calculations, the effect of pore water on velocities can be modeled using the Gassmann theory. Kuster and Toksoz developed a theory based on wave-scattering theory for a variety of inclusion shapes, which provides a means for calculating dry- or wet-frame moduli. In the Kuster-Toksoz theory, elastic wave velocities through different sediments can be predicted by using different aspect ratios of the sediment's pore space. Elastic velocities increase as the pore aspect ratio increases (larger pore aspect ratio describes a more spherical pore). On the basis of the velocity ratio, which is assumed to be a function of (1-0)n, and the Biot-Gassmann theory, Lee developed a semi-empirical equation for predicting elastic velocities, which is referred to as the modified Biot-Gassmann theory of Lee. In this formulation, the exponent n, which depends on the effective pressure and the degree of consolidation, controls elastic velocities; as n increases, elastic velocities decrease. Computationally, the role of exponent n in the modified Biot-Gassmann theory by Lee is similar to the role of pore aspect ratios in the Kuster-Toksoz theory. For consolidated sediments, either theory predicts accurate velocities. However, for unconsolidated sediments, the modified Biot-Gassmann theory by Lee performs better than the Kuster-Toksoz theory, particularly in predicting S-wave velocities.

  5. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.

  6. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  7. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight.

    PubMed Central

    Evans, Matthew R; Rosén, Mikael; Park, Kirsty J; Hedenström, Anders

    2002-01-01

    Birds appear to use their tails during flight, but until recently the aerodynamic role that tails fulfil was largely unknown. In recent years delta-wing theory, devised to predict the aerodynamics of high-performance aircraft, has been applied to the tails of birds and has been successful in providing a model for the aerodynamics of a bird's tail. This theory now provides the conventional explanation for how birds' tails work. A delta-wing theory (slender-wing theory) has been used, as part of a variable-geometry model to predict how tail and wing shape should vary during flight at different airspeeds. We tested these predictions using barn swallows flying in a wind tunnel. We show that the predictions are not quantitatively well supported. This suggests that a new theory or a modified version of delta-wing theory is needed to adequately explain the way in which morphology varies during flight. PMID:12028763

  8. Implicit Theories of Intelligence Predict Achievement across an Adolescent Transition: A Longitudinal Study and an Intervention

    ERIC Educational Resources Information Center

    Blackwell, Lisa S.; Trzesniewski, Kali H.; Dweck, Carol Sorich

    2007-01-01

    Two studies explored the role of implicit theories of intelligence in adolescents' mathematics achievement. In Study 1 with 373 7th graders, the belief that intelligence is malleable (incremental theory) predicted an upward trajectory in grades over the two years of junior high school, while a belief that intelligence is fixed (entity theory)…

  9. The effect of truncating the normal mode coupling equations on synthetic spectra

    NASA Astrophysics Data System (ADS)

    Akbarashrafi, F.; Valentine, A. P.; Al-Attar, D.; Trampert, J.

    2015-12-01

    The free oscillations, or normal modes, of the Earth provide important constraints on the long-wavelength structure of our planet. Calculations using normal modes are also necessary if the effects of gravity are to be fully modeled in seismic waveforms, which becomes important at low frequencies. To implement these calculations, we typically initially compute the normal modes (eigenfunctions) of a spherically-symmetric model such as PREM. These form a complete set of basis functions, which may then be used to describe the seismic response of laterally heterogeneous models. This procedure is known as 'mode coupling'. In order to implement the calculation, it is necessary to select a finite subset of modes (invariably defined by a frequency range) to be considered. This truncation of the infinite-dimensional equations necessarily introduces an error into the results. Here, we consider the fundamental question: if we wish to calculate synthetic spectra in a given frequency range, how many modes must we couple for the resulting spectra to be sufficiently accurate? To investigate this question, we compute spectra in the 3D model S20RTS up to 2mHz, but allowing coupling with all modes up to 5mHz. We then explore how the spectra change as we reduce the upper frequency used in the coupling. We compare this to the effects introduced by altering the 3D density structure of the model. Clearly, if we wish to image Earth's density structure accurately, it is important that the truncation error is small compared to this signal.

  10. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    PubMed

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. PMID:26075793

  11. Measurements of the ponderomotive force including sideband mode coupling effects and damping rates

    SciTech Connect

    Meassick, S.; Intrator, T.; Hershkowitz, N.; Browning, J.; Majeski, R.

    1989-05-01

    Measurements of the interactions of waves in the ion cyclotron range of frequencies (ICRF) with flute interchange modes are presented. Interactions between the applied l = 1 radio frequency (rf) wave and an m = -1 flute mode give rise to sidebands above and below the rf frequency with mode numbers of l = 0 and l = +2, respectively. The contribution of the sideband terms to stability are shown to cancel 40% of the direct ponderomotive contribution. This is less than the 90% predicted by theory (Phys. Fluids 30, 148 (1987)) for an applied l = +1 rf wave above the ion cyclotron frequency with a large separation between the plasma and the vacuum vessel. Measurements of the linear growth and damping rate of the flute instability in the presence of rf are in good agreement with that calculated by considering only the curvature-driven instability and the ponderomotive force. The growth rate of the magnetohydrodynamic mode is consistent with the primary force acting on the plasma being the curvature force. This method allows a determination of the net stabilizing force on the plasma.

  12. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  13. Comparing three attitude-behavior theories for predicting science teachers' intentions

    NASA Astrophysics Data System (ADS)

    Zint, Michaela

    2002-11-01

    Social psychologists' attitude-behavior theories can contribute to understanding science teachers' behaviors. Such understanding can, in turn, be used to improve professional development. This article describes leading attitude-behavior theories and summarizes results from past tests of these theories. A study predicting science teachers' intention to incorporate environmental risk education based on these theories is also reported. Data for that study were collected through a mail questionnaire (n = 1336, radjusted = 80%) and analyzed using confirmatory factor and multiple regression analysis. All determinants of intention to act in the Theory of Reasoned Action and Theory of Planned Behavior and some determinants in the Theory of Trying predicted science teachers' environmental risk education intentions. Given the consistency of results across studies, the Theory of Planned Behavior augmented with past behavior is concluded to provide the best attitude-behavior model for predicting science teachers' intention to act. Thus, science teachers' attitude toward the behavior, perceived behavioral control, and subjective norm need to be enhanced to modify their behavior. Based on the Theory of Trying, improving their attitude toward the process and toward success, and expectations of success may also result in changes. Future research should focus on identifying determinants that can further enhance the ability of these theories to predict and explain science teachers' behaviors.

  14. Observant, Nonaggressive Temperament Predicts Theory-of-Mind Development

    ERIC Educational Resources Information Center

    Wellman, Henry M.; Lane, Jonathan D.; LaBounty, Jennifer; Olson, Sheryl L.

    2011-01-01

    Temperament dimensions influence children's approach to and participation in social interactive experiences which reflect and impact children's social understandings. Therefore, temperament differences might substantially impact theory-of-mind development in early childhood. Using longitudinal data, we report that certain early temperament…

  15. Predictions of nucleation theory applied to Ehrenfest thermodynamic transitions

    NASA Technical Reports Server (NTRS)

    Barker, R. E., Jr.; Campbell, K. W.

    1984-01-01

    A modified nucleation theory is used to determine a critical nucleus size and a critical activation-energy barrier for second-order Ehrenfest thermodynamic transitions as functions of the degree of undercooling, the interfacial energy, the heat-capacity difference, the specific volume of the transformed phase, and the equilibrium transition temperature. The customary approximations of nucleation theory are avoided by expanding the Gibbs free energy in a Maclaurin series and applying analytical thermodynamic expressions to evaluate the expansion coefficients. Nonlinear correction terms for first-order-transition calculations are derived, and numerical results are presented graphically for water and polystyrene as examples of first-order and quasi-second-order transitions, respectively.

  16. Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    Several methods for the prediction of jet noise are described. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy, whereas the other is the jet noise generation model recently proposed by Tam and Auriault. In all of the approaches, some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier-Stokes equation using a kappa-sigma turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach, but instead is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. In conclusion, a proposal is presented for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms, as is a discussion of noise prediction issues that remain to be resolved.

  17. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.; Morris, Philip J.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k-epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  18. The Acoustic Analogy and Alternative Theories for Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Farassat, F.

    2002-01-01

    This paper describes several methods for the prediction of jet noise. All but one of the noise prediction schemes are based on Lighthill's or Lilley's acoustic analogy while the other is the jet noise generation model recently proposed by Tam and Auriault. In all the approaches some assumptions must be made concerning the statistical properties of the turbulent sources. In each case the characteristic scales of the turbulence are obtained from a solution of the Reynolds-averaged Navier Stokes equation using a k - epsilon turbulence model. It is shown that, for the same level of empiricism, Tam and Auriault's model yields better agreement with experimental noise measurements than the acoustic analogy. It is then shown that this result is not because of some fundamental flaw in the acoustic analogy approach: but, is associated with the assumptions made in the approximation of the turbulent source statistics. If consistent assumptions are made, both the acoustic analogy and Tam and Auriault's model yield identical noise predictions. The paper concludes with a proposal for an acoustic analogy that provides a clearer identification of the equivalent source mechanisms and a discussion of noise prediction issues that remain to be resolved.

  19. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    PubMed

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. PMID:26914106

  20. Attachment Theory and Theory of Planned Behavior: An Integrative Model Predicting Underage Drinking

    ERIC Educational Resources Information Center

    Lac, Andrew; Crano, William D.; Berger, Dale E.; Alvaro, Eusebio M.

    2013-01-01

    Research indicates that peer and maternal bonds play important but sometimes contrasting roles in the outcomes of children. Less is known about attachment bonds to these 2 reference groups in young adults. Using a sample of 351 participants (18 to 20 years of age), the research integrated two theoretical traditions: attachment theory and theory of…

  1. Transmission overhaul and replacement predictions using Weibull and renewal theory

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lewicki, D. G.

    1989-01-01

    A method to estimate the frequency of transmission overhauls is presented. This method is based on the two-parameter Weibull statistical distribution for component life. A second method is presented to estimate the number of replacement components needed to support the transmission overhaul pattern. The second method is based on renewal theory. Confidence statistics are applied with both methods to improve the statistical estimate of sample behavior. A transmission example is also presented to illustrate the use of the methods. Transmission overhaul frequency and component replacement calculations are included in the example.

  2. Transmission overhaul and replacement predictions using Weibull and renewel theory

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lewicki, D. G.

    1989-01-01

    A method to estimate the frequency of transmission overhauls is presented. This method is based on the two-parameter Weibull statistical distribution for component life. A second method is presented to estimate the number of replacement components needed to support the transmission overhaul pattern. The second method is based on renewal theory. Confidence statistics are applied with both methods to improve the statistical estimate of sample behavior. A transmission example is also presented to illustrate the use of the methods. Transmission overhaul frequency and component replacement calculations are included in the example.

  3. Field theory and diffusion creep predictions in polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Villani, A.; Busso, E. P.; Forest, S.

    2015-07-01

    In polycrystals, stress-driven vacancy diffusion at high homologous temperatures leads to inelastic deformation. In this work, a novel continuum mechanics framework is proposed to describe the strain fields resulting from such a diffusion-driven process in a polycrystalline aggregate where grains and grain boundaries are explicitly considered. The choice of an anisotropic eigenstrain in the grain boundary region provides the driving force for the diffusive creep processes. The corresponding inelastic strain rate is shown to be related to the gradient of the vacancy flux. Dislocation driven deformation is then introduced as an additional mechanism, through standard crystal plasticity constitutive equations. The fully coupled diffusion-mechanical model is implemented into the finite element method and then used to describe the biaxial creep behaviour of FCC polycrystalline aggregates. The corresponding results revealed for the first time that such a coupled diffusion-stress approach, involving the gradient of the vacancy flux, can accurately predict the well-known macroscopic strain rate dependency on stress and grain size in the diffusion creep regime. They also predict strongly heterogeneous viscoplastic strain fields, especially close to grain boundaries triple junctions. Finally, a smooth transition from Herring and Coble to dislocation creep behaviour is predicted and compared to experimental results for copper.

  4. Phonology and Handedness in Primary School: Predictions of the Right Shift Theory

    ERIC Educational Resources Information Center

    Smythe, Pamela; Annett, Marian

    2006-01-01

    Background: The right shift (RS) theory of handedness suggests that poor phonology may occur in the general population as a risk associated with absence of an agent of left cerebral speech, the hypothesised RS + gene. The theory predicts that poor phonology is associated with reduced bias to right-handedness. Methods: A representative cohort of…

  5. Shear Strength Prediction By Modified Plasticity Theory For SFRC Beams

    SciTech Connect

    Colajanni, Piero; Recupero, Antonino; Spinella, Nino

    2008-07-08

    the plastic Crack Sliding Model (CSM) is extended for derivation of a physical model for the prediction of ultimate shear strength of SFRC beams, by assuming that the critical cracks is modeled by a yield lines. To this aim, the CSM is improved in order to take into account the strength increases due to the arch effect for deep beam. Then, the effectiveness factors for the concrete under biaxial stress are calibrated for fibrous concrete. The proposed model, able to provide the shear strength and the position of the critical cracks, is validate by a large set of test results collected in literature.

  6. Infant shy temperament predicts preschoolers Theory of Mind.

    PubMed

    Mink, Daniela; Henning, Anne; Aschersleben, Gisa

    2014-02-01

    The aim of this longitudinal study was to investigate the relation between infant temperament at 18 months and early Theory of Mind (ToM) abilities at 3 years of age. Temperament was assessed with the Early Childhood Behavior Questionnaire (ECBQ) and ToM by assessing children's understanding of divergent desires and beliefs, and of knowledge access. Our results are in line with a social-emotional reactivity perspective postulating more sophisticated ToM abilities for children with less reactive more observant temperament. Children with shy temperament at 18 months and at 3 years were better in reasoning about others' mental states at age 3. Language, siblings and parental education had no effect on ToM. Findings indicate that temperament is related to ToM earlier in development than previously found, and that this relation is thus not unique to false-belief understanding. PMID:24463039

  7. Using Social Cognitive Theory to Predict Physical Activity and Fitness in Underserved Middle School Children

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.; McCaughtry, Nate; Flory, Sara; Murphy, Anne; Wisdom, Kimberlydawn

    2011-01-01

    Few researchers have used social cognitive theory and environment-based constructs to predict physical activity (PA) and fitness in underserved middle-school children. Hence, we evaluated social cognitive variables and perceptions of the school environment to predict PA and fitness in middle school children (N = 506, ages 10-14 years). Using…

  8. Nuclear Mass Predictions within the Skyrme HFB Theory

    SciTech Connect

    Samyn, M.; Goriely, S.; Pearson, J.M.

    2005-05-24

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, ... We typically use a 10-parameter Skyrme force and a 4-parameter {delta}-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z {>=} 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.

  9. Nuclear Mass Predictions within the Skyrme HFB Theory

    NASA Astrophysics Data System (ADS)

    Samyn, M.; Goriely, S.; Pearson, J. M.

    2005-05-01

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, … We typically use a 10-parameter Skyrme force and a 4-parameter δ-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z ⩾ 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.

  10. Volcanic processes and landforms on Venus - Theory, predictions, and observations

    NASA Technical Reports Server (NTRS)

    Head, James W., III; Wilson, Lionel

    1986-01-01

    The ascent and eruption of magma on Venus in the current Venusian environment is modeled, taking into account the influence of extreme surface temperatures and pressures. Comparison of present predictions with observations obtained from Pioneer Venus, Arecibo, and Venera data support a picture of regional pyroclastic deposits being very rare, magma contents not usually exceeding about 4 wt pct, and the atmospheric pressure having been about the same as the present value over a time period equivalent to the average age of the northern areas of the northern hemisphere. Data suggest that numerous eruptions had effusion rates exceeding common terrestrial rates, and that shield volcanoes are often wide, but are low relative to those on Mars and earth. Implications of the proposed Venusian reduction of the driving density contrast include dike intrusion being very common, and large minimum magma volumes being required to ensure surface eruptions.

  11. Grid cells and theta as oscillatory interference: theory and predictions.

    PubMed

    Burgess, Neil

    2008-01-01

    The oscillatory interference model [Burgess et al. (2007) Hippocampus 17:801-802] of grid cell firing is reviewed as an algorithmic level description of path integration and as an implementation level description of grid cells and their inputs. New analyses concern the relationships between the variables in the model and the theta rhythm, running speed, and the intrinsic firing frequencies of grid cells. New simulations concern the implementation of velocity-controlled oscillators (VCOs) with different preferred directions in different neurons. To summarize the model, the distance traveled along a specific direction is encoded by the phase of a VCO relative to a baseline frequency. Each VCO is an intrinsic membrane potential oscillation whose frequency increases from baseline as a result of depolarization by synaptic input from speed modulated head-direction cells. Grid cell firing is driven by the VCOs whose preferred directions match the current direction of motion. VCOs are phase-reset by location-specific input from place cells to prevent accumulation of error. The baseline frequency is identified with the local average of VCO frequencies, while EEG theta frequency is identified with the global average VCO frequency and comprises two components: the frequency at zero speed and a linear response to running speed. Quantitative predictions are given for the inter-relationships between a grid cell's intrinsic firing frequency and grid scale, the two components of theta frequency, and the running speed of the animal. Qualitative predictions are given for the properties of the VCOs, and the relationship between environmental novelty, the two components of theta, grid scale and place cell remapping. PMID:19021256

  12. The predictive validity of prospect theory versus expected utility in health utility measurement.

    PubMed

    Abellan-Perpiñan, Jose Maria; Bleichrodt, Han; Pinto-Prades, Jose Luis

    2009-12-01

    Most health care evaluations today still assume expected utility even though the descriptive deficiencies of expected utility are well known. Prospect theory is the dominant descriptive alternative for expected utility. This paper tests whether prospect theory leads to better health evaluations than expected utility. The approach is purely descriptive: we explore how simple measurements together with prospect theory and expected utility predict choices and rankings between more complex stimuli. For decisions involving risk prospect theory is significantly more consistent with rankings and choices than expected utility. This conclusion no longer holds when we use prospect theory utilities and expected utilities to predict intertemporal decisions. The latter finding cautions against the common assumption in health economics that health state utilities are transferable across decision contexts. Our results suggest that the standard gamble and algorithms based on, should not be used to value health. PMID:19833400

  13. Chimpanzee choice rates in competitive games match equilibrium game theory predictions

    PubMed Central

    Martin, Christopher Flynn; Bhui, Rahul; Bossaerts, Peter; Matsuzawa, Tetsuro; Camerer, Colin

    2014-01-01

    The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts. The chimpanzee choices are also closer to the equilibrium prediction, and more responsive to past history and payoff changes, than two samples of human choices from experiments in which humans were also initially uninformed about opponent payoffs and could not communicate verbally. The results are consistent with a tentative interpretation of game theory as explaining evolved behavior, with the additional hypothesis that chimpanzees may retain or practice a specialized capacity to adjust strategy choice during competition to perform at least as well as, or better than, humans have. PMID:24901997

  14. Saturation Dependence of Transport in Porous Media Predicted by Percolation and Effective Medium Theories

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Hunt, Allen G.; Skinner, Thomas E.; Ewing, Robert P.

    2015-02-01

    Accurate prediction of the saturation dependence of different modes of transport in porous media, such as those due to conductivity, air permeability, and diffusion, is of broad interest in engineering and natural resources management. Most current predictions use a "bundle of capillary tubes" concept, which, despite its widespread use, is a severely distorted idealization of natural porous media. In contrast, percolation theory provides a reliable and powerful means to model interconnectivity of disordered networks and porous materials. In this study, we invoke scaling concepts from percolation theory and effective medium theory to predict the saturation dependence of modes of transport — hydraulic and electrical conductivity, air permeability, and gas diffusion — in two disturbed soils. Universal scaling from percolation theory predicts the saturation dependence of air permeability and gas diffusion accurately, even when the percolation threshold for airflow is estimated from the porosity. We also find that the non-universal scaling obtained from the critical path analysis (CPA) of percolation theory can make excellent predictions of hydraulic and electrical conductivity under partially saturated conditions.

  15. Predicting Facebook users' online privacy protection: risk, trust, norm focus theory, and the theory of planned behavior.

    PubMed

    Saeri, Alexander K; Ogilvie, Claudette; La Macchia, Stephen T; Smith, Joanne R; Louis, Winnifred R

    2014-01-01

    The present research adopts an extended theory of the planned behavior model that included descriptive norms, risk, and trust to investigate online privacy protection in Facebook users. Facebook users (N = 119) completed a questionnaire assessing their attitude, subjective injunctive norm, subjective descriptive norm, perceived behavioral control, implicit perceived risk, trust of other Facebook users, and intentions toward protecting their privacy online. Behavior was measured indirectly 2 weeks after the study. The data show partial support for the theory of planned behavior and strong support for the independence of subjective injunctive and descriptive norms. Risk also uniquely predicted intentions over and above the theory of planned behavior, but there were no unique effects of trust on intentions, nor of risk or trust on behavior. Implications are discussed. PMID:25154118

  16. Habitat islands and the equilibrium theory of island biogeography: testing some predictions

    USGS Publications Warehouse

    Brown, M.; Dinsmore, J.J.

    1988-01-01

    Species-area data from a study of marsh birds are used to test five predictions generated by the equilibrium theory of island biogeography. Three predictions are supported: we found a significant species-area relationship, a non-zero level of turnover, and a variance-mean ratio of 0.5. One prediction is rejected: the extinction rates were not greater on small islands. The results of one test are equivocal: the number of species on each island was not always the same. As Gilbert (1980) suggests, a strong species-area relationship alone does not validate the theory. The avian communities we studied were on habitat islands, not true islands, and underwent complete extinction annually. Thus caution must be used before applying the theory to these and other habitat islands.

  17. Synthetic free-oscillation spectra: an appraisal of various mode-coupling methods

    NASA Astrophysics Data System (ADS)

    Yang, Hsin-Ying; Tromp, Jeroen

    2015-11-01

    Normal-mode spectra may be used to investigate large-scale elastic and anelastic heterogeneity throughout the entire Earth. The relevant theory was developed a few decades ago, however-mainly due to computational limitations-several approximations are commonly employed, and thus far the full merits of the complete theory have not been taken advantage of. In this study, we present an exact algebraic form of the theory for an aspherical, anelastic and rotating Earth model in which either complex or real spherical harmonic bases are used. Physical dispersion is incorporated into the quadratic eigenvalue problem by expanding the logarithmic frequency term to second-order. Proper (re)normalization of modes in a 3-D Earth model is fully considered. Using a database of 41 earthquakes and more than 10 000 spectra containing 116 modes with frequencies less than 3 mHz, we carry out numerical experiments to quantitatively evaluate the accuracy of commonly used approximate mode synthetics. We confirm the importance of wideband coupling, that is, fully coupling all modes below a certain frequency. Neither narrowband coupling, in which nearby modes are grouped into isolated clusters, nor self-coupling, that is, incorporating coupling between singlets within the same multiplet, are sufficiently accurate approximations. Furthermore, we find that (1) effects of physical dispersion can be safely approximated based on either a fiducial frequency approximation or a quadratic approximation of the logarithmic dispersion associated with the absorption-band model; (2) neglecting the proper renormalization of the modes of a rotating, anelastic Earth model introduces only minor errors; (3) ignoring the frequency dependence of the Coriolis and kinematic matrices in a wideband coupling scheme can lead to ˜6 per cent errors in mode spectra at the lowest frequencies; notable differences also occur between narrowband coupling and quasi-degenerate perturbation theory, which linearizes the

  18. Sideslip of wing-body combinations. [disturbance theory for predicting aerodynamics of aircraft in sideslip

    NASA Technical Reports Server (NTRS)

    Rubbert, P. E.

    1972-01-01

    A small-disturbance theory is developed for predicting the aerodynamics of an airplane in sideslip. Second-order terms involving the interaction between sideslip angle and angle of attack, sideslip angle and wing camber, etc., are retained. It is found that the second-order terms can produce the dominant sideslip effects when the dihedral of the lifting surfaces is small. Numerical implementation of the theory requires a solution procedure capable of producing accurate velocity gradients in the first-order solution.

  19. Playing off the curve - testing quantitative predictions of skill acquisition theories in development of chess performance

    PubMed Central

    Gaschler, Robert; Progscha, Johanna; Smallbone, Kieran; Ram, Nilam; Bilalić, Merim

    2014-01-01

    Learning curves have been proposed as an adequate description of learning processes, no matter whether the processes manifest within minutes or across years. Different mechanisms underlying skill acquisition can lead to differences in the shape of learning curves. In the current study, we analyze the tournament performance data of 1383 chess players who begin competing at young age and play tournaments for at least 10 years. We analyze the performance development with the goal to test the adequacy of learning curves, and the skill acquisition theories they are based on, for describing and predicting expertise acquisition. On the one hand, we show that the skill acquisition theories implying a negative exponential learning curve do a better job in both describing early performance gains and predicting later trajectories of chess performance than those theories implying a power function learning curve. On the other hand, the learning curves of a large proportion of players show systematic qualitative deviations from the predictions of either type of skill acquisition theory. While skill acquisition theories predict larger performance gains in early years and smaller gains in later years, a substantial number of players begin to show substantial improvements with a delay of several years (and no improvement in the first years), deviations not fully accounted for by quantity of practice. The current work adds to the debate on how learning processes on a small time scale combine to large-scale changes. PMID:25202292

  20. Accuracy of critical-temperature sensitivity coefficients predicted by multilayered composite plate theories

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Burton, Scott

    1992-01-01

    An assessment is made of the accuracy of the critical-temperature sensitivity coefficients of multilayered plates predicted by different modeling approaches, based on two-dimensional shear-deformation theories. The sensitivity coefficients considered measure the sensitivity of the critical temperatures to variations in different lamination and material parameters of the plate. The standard of comparison is taken to be the sensitivity coefficients obtained by the three-dimensional theory of thermoelasticity. Numerical studies are presented showing the effects of variation in the geometric and lamination parameters of the plate on the accuracy of both the sensitivity coefficients and the critical temperatures predicted by the different modeling approaches.

  1. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NASA Astrophysics Data System (ADS)

    Hu, Zhan; Wang, Zheng Bing; Zitman, Tjerk J.; Stive, Marcel J. F.; Bouma, Tjeerd J.

    2015-09-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated tidal flat morphology by assuming that morphological equilibrium is associated with uniform bed shear stress distribution. Many studies based on observation and process-based modeling tend to agree with this analytical model. However, a uniform bed shear stress rarely exists on actual or modeled tidal flats, and the analytical model cannot handle the spatially and temporally varying bed shear stress. In the present study, we develop a model based on the dynamic equilibrium theory and its core assumption. Different from the static analytical model, our model explicitly accounts for the spatiotemporal bed shear stress variations for tidal flat dynamic prediction. To test our model and the embedded theory, we apply the model for both long-term and short-term morphological predictions. The long-term modeling is evaluated qualitatively against previous process-based modeling. The short-term modeling is evaluated quantitatively against high-resolution bed-level monitoring data obtained from a tidal flat in Netherlands. The model results show good performances in both qualitative and quantitative tests, indicating the validity of the dynamic equilibrium theory. Thus, this model provides a valuable tool to enhance our understanding of the tidal flat morphodynamics and to apply the dynamic equilibrium theory for realistic morphological predictions.

  2. Measurement of magnetic turbulence structure and nonlinear mode coupling of tearing fluctuations in the Madison Symmetric Torus reversed field pinch edge

    SciTech Connect

    Assadi, S.

    1994-01-01

    Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ``sawtooth oscillations,`` have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma.

  3. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory.

    PubMed

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns. PMID:25717313

  4. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory

    PubMed Central

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns. PMID:25717313

  5. Dynamical Landau theory of the glass crossover

    NASA Astrophysics Data System (ADS)

    Rizzo, Tommaso

    2016-07-01

    I introduce a dynamical field theory to describe the glassy behavior in supercooled liquids. The mean-field approximation of the theory predicts a dynamical arrest transition, as in the ideal mode-coupling theory and mean-field discontinuous spin-glass models. Instead, beyond the mean-field approximation, the theory predicts that the transition is avoided and transformed into a crossover, as observed in experiments and simulations. To go beyond mean-field, a standard perturbative loop expansion is performed at first. Approaching the ideal critical point this expansion is divergent at all orders and I show that the leading divergent term at any given order is the same as a dynamical stochastic equation, called stochastic-beta relaxation (SBR) in Europhys. Lett. 106, 56003 (2014), 10.1209/0295-5075/106/56003. At variance with the original theory, SBR can be studied beyond mean-field directly, without the need to resort to a perturbative expansion. Thus it provides a qualitative and quantitative description of the dynamical crossover. For consistency reasons, it is important to establish the connection between the dynamical field theory and SBR beyond perturbation theory. This can be done with the help of a stronger result: the dynamical field theory is exactly equivalent to a theory with quenched disorder. Qualitatively, the nonperturbative mechanism leading to the crossover is therefore the same as the mechanism of SBR. Quantitatively, SBR is equivalent to making the mean-field approximation once the quenched disorder has been generated.

  6. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  7. Response facilitation: implications for perceptual theory, psychotherapy, neurophysiology, and earthquake prediction.

    PubMed

    Medici, R G; Frey, A H; Frey, D

    1985-04-01

    There have been numerous naturalistic observations and anecdotal reports of abnormal animal behavior prior to earthquakes. Basic physiological and behavioral data have been brought together with geophysical data to develop a specific explanation to account for how animals could perceive and respond to precursors of impending earthquakes. The behavior predicted provides a reasonable approximation to the reported abnormal behaviors; that is, the behavior appears to be partly reflexive and partly operant. It can best be described as agitated stereotypic behavior. The explanation formulated has substantial implications for perceptual theory, psychotherapy, and neurophysiology, as well as for earthquake prediction. Testable predictions for biology, psychology, and geophysics can be derived from the explanation. PMID:3997385

  8. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization--Maintaining Fiber and Its Identification.

    PubMed

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)-The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations-Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers' pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs. PMID:27011191

  9. Temperature-Independent Fiber Inclinometer Based on Orthogonally Polarized Modes Coupling Using a Polarization-Maintaining Fiber Bragg Grating

    PubMed Central

    Su, Dan; Qiao, Xueguang; Yang, Hangzhou; Rong, Qiangzhou; Bai, Zhengyuan; Wang, Yupeng; Feng, Zhongyao

    2014-01-01

    A reflection fiber inclinometer is proposed and experimentally demonstrated based on two linearly polarized (LP) modes coupling. The configuration consists of a section of polarization-maintaining fiber (PMF) containing a fiber Bragg grating (FBG) splicing with single mode fiber (SMF). Bending the PMF in the upstream of FBG can induce an additional birefringence of PMF, which results in the intensity changes of two LP modes owing to orthogonal polarization coupling. The experimental results represent that the device shows different bending responses at the angle range from 0° to 40°and from 64° to 88°, respectively. Moreover, the temperature change just shifts the wavelengths of LP modes reflected and does not influence their intensities, which effectively avoid the temperature cross-sensitivity and make it a good candidate for measuring inclinometer and temperature simultaneously. PMID:25379814

  10. Temperature-independent fiber inclinometer based on orthogonally polarized modes coupling using a polarization-maintaining fiber bragg grating.

    PubMed

    Su, Dan; Qiao, Xueguang; Yang, Hangzhou; Rong, Qiangzhou; Bai, Zhengyuan; Wang, Yupeng; Feng, Zhongyao

    2014-01-01

    A reflection fiber inclinometer is proposed and experimentally demonstrated based on two linearly polarized (LP) modes coupling. The configuration consists of a section of polarization-maintaining fiber (PMF) containing a fiber Bragg grating (FBG) splicing with single mode fiber (SMF). Bending the PMF in the upstream of FBG can induce an additional birefringence of PMF, which results in the intensity changes of two LP modes owing to orthogonal polarization coupling. The experimental results represent that the device shows different bending responses at the angle range from 0° to 40°and from 64° to 88°, respectively. Moreover, the temperature change just shifts the wavelengths of LP modes reflected and does not influence their intensities, which effectively avoid the temperature cross-sensitivity and make it a good candidate for measuring inclinometer and temperature simultaneously. PMID:25379814

  11. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification

    PubMed Central

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)—The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations—Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers’ pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs. PMID:27011191

  12. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust.

    PubMed

    Wang, Xin; Wang, Ying; Sun, Hongbin

    2016-01-01

    In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651

  13. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust

    PubMed Central

    Wang, Xin; Wang, Ying; Sun, Hongbin

    2016-01-01

    In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651

  14. Expectancy Theory Prediction of the Preference to Remain Employed or to Retire

    ERIC Educational Resources Information Center

    Eran, Mordechai; Jacobson, Dan

    1976-01-01

    Vroom's expectancy theory model to predict older worker's choices between employment or retirement hypothesized that a person's preference would be a function of differences between instrumentality of employment and retirement for attainment of outcomes, multiplied by the valence of each outcome, summed over outcomes. Results supported the…

  15. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    ERIC Educational Resources Information Center

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  16. Using Theory of Planned Behavior to Predict Healthy Eating among Danish Adolescents

    ERIC Educational Resources Information Center

    Gronhoj, Alice; Bech-Larsen, Tino; Chan, Kara; Tsang, Lennon

    2013-01-01

    Purpose: The purpose of the study was to apply the theory of planned behavior to predict Danish adolescents' behavioral intention for healthy eating. Design/methodology/approach: A cluster sample survey of 410 students aged 11 to 16 years studying in Grade 6 to Grade 10 was conducted in Denmark. Findings: Perceived behavioral control followed by…

  17. The Theory of Planned Behavior: Predicting Teachers' Intentions and Behavior during Fitness Testing

    ERIC Educational Resources Information Center

    Stanec, Amanda D. Stewart

    2009-01-01

    The twofold purpose of this study was to develop and validate an instrument that assessed teachers' intentions, attitudes, subjective norm, and perceived behavior control to administer fitness tests effectively, and to determine how well the instrument could predict teachers' intentions and actual behavior based on Ajzen's (1985, 1991) theory of…

  18. Predicting Social Support for Grieving Persons: A Theory of Planned Behavior Perspective

    ERIC Educational Resources Information Center

    Bath, Debra M.

    2009-01-01

    Research has consistently reported that social support from family, friends, and colleagues is an important factor in the bereaved person's ability to cope after the loss of a loved one. This study used a Theory of Planned Behavior framework to identify those factors that predict a person's intention to interact with, and support, a grieving…

  19. Predicting Study Abroad Intentions Based on the Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Schnusenberg, Oliver; de Jong, Pieter; Goel, Lakshmi

    2012-01-01

    The emphasis on study abroad programs is growing in the academic context as U.S. based universities seek to incorporate a global perspective in education. Using a model that has underpinnings in the theory of planned behavior (TPB), we predict students' intention to participate in short-term study abroad program. We use TPB to identify behavioral,…

  20. The Prediction of College Student Academic Performance and Retention: Application of Expectancy and Goal Setting Theories

    ERIC Educational Resources Information Center

    Friedman, Barry A.; Mandel, Rhonda G.

    2010-01-01

    Student retention and performance in higher education are important issues for educators, students, and the nation facing critical professional labor shortages. Expectancy and goal setting theories were used to predict academic performance and college student retention. Students' academic expectancy motivation at the start of the college…

  1. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  2. Adolescents' Implicit Theories Predict Desire for Vengeance after Peer Conflicts: Correlational and Experimental Evidence

    ERIC Educational Resources Information Center

    Yeager, David S.; Trzesniewski, Kali H.; Tirri, Kirsi; Nokelainen, Petri; Dweck, Carol S.

    2011-01-01

    Why do some adolescents respond to interpersonal conflicts vengefully, whereas others seek more positive solutions? Three studies investigated the role of implicit theories of personality in predicting violent or vengeful responses to peer conflicts among adolescents in Grades 9 and 10. They showed that a greater belief that traits are fixed (an…

  3. A Test and Extension of Objectification Theory as It Predicts Disordered Eating: Does Women's Age Matter?

    ERIC Educational Resources Information Center

    Augustus-Horvath, Casey L.; Tylka, Tracy L.

    2009-01-01

    When predicting disordered eating, models incorporating several of objectification theory's (B. L. Fredrickson & T. A. Roberts, 1997) core constructs (i.e., sexual objectification, self-objectification, body shame, poor interoceptive awareness) have been empirically supported with women of traditional undergraduate age who are consistent in age…

  4. Adolescents' implicit theories predict desire for vengeance after peer conflicts: correlational and experimental evidence.

    PubMed

    Yeager, David S; Trzesniewski, Kali H; Tirri, Kirsi; Nokelainen, Petri; Dweck, Carol S

    2011-07-01

    Why do some adolescents respond to interpersonal conflicts vengefully, whereas others seek more positive solutions? Three studies investigated the role of implicit theories of personality in predicting violent or vengeful responses to peer conflicts among adolescents in Grades 9 and 10. They showed that a greater belief that traits are fixed (an entity theory) predicted a stronger desire for revenge after a variety of recalled peer conflicts (Study 1) and after a hypothetical conflict that specifically involved bullying (Study 2). Study 3 experimentally induced a belief in the potential for change (an incremental theory), which resulted in a reduced desire to seek revenge. This effect was mediated by changes in bad-person attributions about the perpetrators, feelings of shame and hatred, and the belief that vengeful ideation is an effective emotion-regulation strategy. Together, the findings illuminate the social-cognitive processes underlying reactions to conflict and suggest potential avenues for reducing violent retaliation in adolescents. PMID:21604865

  5. Function changing mutations in glucocorticoid receptor evolution correlate with their relevance to mode coupling.

    PubMed

    Kav, Batuhan; Öztürk, Murat; Kabakçιoğlu, Alkan

    2016-05-01

    Nonlinear effects in protein dynamics are expected to play role in function, particularly of allosteric nature, by facilitating energy transfer between vibrational modes. A recently proposed method focusing on the non-Gaussian shape of the configurational population near equilibrium projects this information onto real space in order to identify the aminoacids relevant to function. We here apply this method to three ancestral proteins in glucocorticoid receptor (GR) family and show that the mutations that restrict functional activity during GR evolution correlate significantly with locations that are highlighted by the nonlinear contribution to the near-native configurational distribution. Our findings demonstrate that the analysis of nonlinear effects in protein dynamics can be harnessed into a predictive tool for functional site determination. Proteins 2016; 84:655-665. © 2016 Wiley Periodicals, Inc. PMID:26873882

  6. Using the Theory of Planned Behavior to predict intention to comply with a food recall message.

    PubMed

    Freberg, Karen

    2013-01-01

    The Theory of Planned Behavior (TPB) has provided considerable insight into the public's intention to comply with many different health-related messages, but has not been applied previously to intention to comply with food safety recommendations and recalls ( Hallman & Cuite, 2010 ). Because food recalls can differ from other health messages in their urgency, timing, and cessation, the applicability of the TPB in this domain is unknown. The research reported here attempted to address this gap using a nationally representative consumer panel. Results showed that, consistent with the theory's predictions, attitudes and subjective norms were predictive of the intention to comply with a food recall message, with attitudes having a much greater impact on intent to comply than subjective norms. Perceived behavioral control failed to predict intention to comply. Implications of these results for health public relations and crisis communications and recommendations for future research were discussed. PMID:22746283

  7. Asperity contact theories: Do they predict linearity between contact area and load?

    NASA Astrophysics Data System (ADS)

    Carbone, G.; Bottiglione, F.

    During the last few years, the scientific community has been debating about which theory of contact between rough surfaces can be considered as the most accurate. The authors have been attracted by such a discussion and in this paper try to give their personal thought and contribution to this debate. We present a critical analysis of the principal contact theories of rough surfaces. We focus on the multiasperity contact models (which are all based on the original idea of Greenwood and Williamson (GW) [1966. Proc. R. Soc. London A 295, 300]), and also briefly discuss a relatively recent contact theory developed by Persson [2001. J. Chem. Phys. 115, 3840]. For small loads both asperity contact models and Persson's theory predict a linear relation between the area of true contact and the applied external load, but the two theories differ for the constant of proportionality. However, this is not the only difference between the two approaches. Indeed, we show that the fully calculated predictions of asperity contact models very rapidly deviates from the predicted linear relation already for very small and in many cases unrealistic vanishing applied loads and contact areas. Moreover, this deviation becomes more and more important as the PSD breadth parameter α (as defined by Nayak) increases. Therefore, the asymptotic linear relation of multiasperity contact theories turns out to be only an academic result. On the contrary, Persson's theory is not affected by α and shows a linear behavior between contact area and load up to 10-15% of the nominal contact area, i.e. for physical reasonable loads. The authors also prove that, at high separation, all multiasperity contact models, which take into account the influence of summit curvature variation as a function of summit height, necessarily converge to a (slightly) improved version of the GW model, which, therefore, remains one of the most important milestones in the field of contact mechanics of rough surfaces.

  8. Can the theory of planned behaviour predict the physical activity behaviour of individuals?

    PubMed

    Hobbs, Nicola; Dixon, Diane; Johnston, Marie; Howie, Kate

    2013-01-01

    The theory of planned behaviour (TPB) can identify cognitions that predict differences in behaviour between individuals. However, it is not clear whether the TPB can predict the behaviour of an individual person. This study employs a series of n-of-1 studies and time series analyses to examine the ability of the TPB to predict physical activity (PA) behaviours of six individuals. Six n-of-1 studies were conducted, in which TPB cognitions and up to three PA behaviours (walking, gym workout and a personally defined PA) were measured twice daily for six weeks. Walking was measured by pedometer step count, gym attendance by self-report with objective validation of gym entry and the personally defined PA behaviour by self-report. Intra-individual variability in TPB cognitions and PA behaviour was observed in all participants. The TPB showed variable predictive utility within individuals and across behaviours. The TPB predicted at least one PA behaviour for five participants but had no predictive utility for one participant. Thus, n-of-1 designs and time series analyses can be used to test theory in an individual. PMID:22943555

  9. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    PubMed

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. PMID:26609083

  10. Selective mode coupling in microring resonators for single mode semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir

    absorption changes the temperature and material refractive indices. The change in the refractive indices of the core and cladding of a reflective microring changes its reflection peak wavelength and the phase of its reflectivity. Therefore, fluctuations in the laser power lead to fluctuations in the phase of the reflectivity of the reflective microring and can affect the laser linewidth. We theoretically and experimentally studied the dynamics of self-heating in microring resonators and showed that the thermal dynamics can be modeled by a transfer function with two poles and one zero. A small signal model for reflection and transmission of a reflective microring was also derived and was validated by comparing it to measurement data. To predict the characteristics of a semiconductor laser with a reflective microring mirror, we derived the small signal rate equations. These rate equations predict that the laser will be stable when it operates at moderate output powers on the long wavelength side of the reflection peak of a narrowband microring reflector. The modifications of the laser's chirp response and linewidth due to the self-heating effect are also presented. Monolithic fabrication of passive mirrors and gain sections requires an integration platform that provides both active and passive waveguides. We propose a new integration platform which does not involve epilayer regrowth and keeps the confinement factor relatively high in the active sections. Our epilayer design, fabrication process, and characterization results of lasers with passive reflectors fabricated using this platform are presented. Microring resonators by themselves can be used as laser cavities. One of the main issues with their application as a laser cavity is their mode spectra; they have closely spaced modes with very similar quality factors. Furthermore, at each resonant wavelength there are two degenerate modes with the same quality factor. We introduce a novel method to engineer the quality factors

  11. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

    PubMed Central

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter. PMID:26731550

  12. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    PubMed

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning. PMID:26211504

  13. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Richards, W. L.; Tran, Van t.

    2007-01-01

    Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.

  14. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  15. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  16. Ab Initio and Improved Empirical Potentials for the Calculation of the Anharmonic Vibrational States and Intramolecular Mode Coupling of N-Methylacetamide

    NASA Technical Reports Server (NTRS)

    Gregurick, Susan K.; Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochou (Technical Monitor)

    2001-01-01

    The second-order Moller-Plesset ab initio electronic structure method is used to compute points for the anharmonic mode-coupled potential energy surface of N-methylacetamide (NMA) in the trans(sub ct) configuration, including all degrees of freedom. The vibrational states and the spectroscopy are directly computed from this potential surface using the Correlation Corrected Vibrational Self-Consistent Field (CC-VSCF) method. The results are compared with CC-VSCF calculations using both the standard and improved empirical Amber-like force fields and available low temperature experimental matrix data. Analysis of our calculated spectroscopic results show that: (1) The excellent agreement between the ab initio CC-VSCF calculated frequencies and the experimental data suggest that the computed anharmonic potentials for N-methylacetamide are of a very high quality; (2) For most transitions, the vibrational frequencies obtained from the ab initio CC-VSCF method are superior to those obtained using the empirical CC-VSCF methods, when compared with experimental data. However, the improved empirical force field yields better agreement with the experimental frequencies as compared with a standard AMBER-type force field; (3) The empirical force field in particular overestimates anharmonic couplings for the amide-2 mode, the methyl asymmetric bending modes, the out-of-plane methyl bending modes, and the methyl distortions; (4) Disagreement between the ab initio and empirical anharmonic couplings is greater than the disagreement between the frequencies, and thus the anharmonic part of the empirical potential seems to be less accurate than the harmonic contribution;and (5) Both the empirical and ab initio CC-VSCF calculations predict a negligible anharmonic coupling between the amide-1 and other internal modes. The implication of this is that the intramolecular energy flow between the amide-1 and the other internal modes may be smaller than anticipated. These results may have

  17. When do normative beliefs about aggression predict aggressive behavior? An application of I3 theory.

    PubMed

    Li, Jian-Bin; Nie, Yan-Gang; Boardley, Ian D; Dou, Kai; Situ, Qiao-Min

    2015-01-01

    I(3) theory assumes that aggressive behavior is dependent on three orthogonal processes (i.e., Instigator, Impellance, and Inhibition). Previous studies showed that Impellance (trait aggressiveness, retaliation tendencies) better predicted aggression when Instigator was strong and Inhibition was weak. In the current study, we predicted that another Impellance (i.e., normative beliefs about aggression) might predict aggression when Instigator was absent and Inhibition was high (i.e., the perfect calm proposition). In two experiments, participants first completed the normative beliefs about aggression questionnaire. Two weeks later, participants' self-control resources were manipulated either using the Stroop task (study 1, N = 148) or through an "e-crossing" task (study 2, N = 180). Afterwards, with or without being provoked, participants played a game with an ostensible partner where they had a chance to aggress against them. Study 1 found that normative beliefs about aggression negatively and significantly predicted aggressive behavior only when provocation was absent and self-control resources were not depleted. In Study 2, normative beliefs about aggression negatively predicted aggressive behavior at marginal significance level only in the "no-provocation and no-depletion" condition. In conclusion, the current study provides partial support for the perfect calm proposition and I(3) theory. PMID:26075351

  18. Implicit theories about willpower predict self-regulation and grades in everyday life.

    PubMed

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2015-04-01

    Laboratory research shows that when people believe that willpower is an abundant (rather than highly limited) resource they exhibit better self-control after demanding tasks. However, some have questioned whether this "nonlimited" theory leads to squandering of resources and worse outcomes in everyday life when demands on self-regulation are high. To examine this, we conducted a longitudinal study, assessing students' theories about willpower and tracking their self-regulation and academic performance. As hypothesized, a nonlimited theory predicted better self-regulation (better time management and less procrastination, unhealthy eating, and impulsive spending) for students who faced high self-regulatory demands. Moreover, among students taking a heavy course load, those with a nonlimited theory earned higher grades, which was mediated by less procrastination. These findings contradict the idea that a limited theory helps people allocate their resources more effectively; instead, it is people with the nonlimited theory who self-regulate well in the face of high demands. PMID:25844577

  19. The speed of sound through trabecular bone predicted by Biot theory.

    PubMed

    Yoon, Young June; Chung, Jae-Pil; Bae, Chul-Soo; Han, Seog-Young

    2012-02-23

    Cancellous bone is a highly porous material filled with fluid. The mechanical properties of cancellous bone determine whether the bone is normal or osteoporotic. Wave propagation can be used to measure the elastic constants of cancellous bone. Recently, poroelasticity theory has been used to predict the elastic constants of cancellous bone from the wave velocities. In this study, it is shown that the fast wave, predicted by the Biot theory, corresponds to the wave penetrating the trabeculae, while the slow wave is determined by the interaction between the trabeculae and the fluid. The trabecular shape does not affect the wave velocity significantly when using the variable, which is determined by the microstructure, and the slow wave velocity decreases after the porosity reaches 80%. PMID:22244093

  20. Predicting (17)O NMR chemical shifts of polyoxometalates using density functional theory.

    PubMed

    Sharma, Rupali; Zhang, Jie; Ohlin, C André

    2016-03-21

    We have investigated the computation of (17)O NMR chemical shifts of a wide range of polyoxometalates using density functional theory. The effects of basis sets and exchange-correlation functionals are explored, and whereas pure DFT functionals generally predict the chemical shifts of terminal oxygen sites quite well, hybrid functionals are required for the prediction of accurate chemical shifts in conjunction with linear regression. By using PBE0/def2-tzvp//PBE0/cc-pvtz(H-Ar), lanl2dz(K-) we have computed the chemical shifts of 37 polyoxometalates, corresponding to 209 (17)O NMR signals. We also show that at this level of theory the protonation-induced pH dependence of the chemical shift of the triprotic hexaniobate Lindqvist anion, [HxNb6O19]((8-x)), can be reproduced, which suggests that hypotheses regarding loci of protonation can be confidently tested. PMID:26925832

  1. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    SciTech Connect

    Kao, C.-W.; Pasquini, Barbara; Vanderhaeghen, Marc

    2004-12-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering at O(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low-energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the virtual Compton scattering amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double-polarization experiments which allow one to access these spin-flip GPs of the nucleon.

  2. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    SciTech Connect

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-08-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at {Omicron}(p{sup 4}) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon.

  3. Predicting the critical density of topological defects in O(N) scalar field theories

    SciTech Connect

    Antunes, Nuno D.; Bettencourt, Luis M. A.; Yates, Andrew

    2001-09-15

    O(N) symmetric {lambda}{phi}{sup 4} field theories describe many critical phenomena in the laboratory and in the early Universe. Given N and D{<=}3, the spatial dimension, these models exhibit topological defect classical solutions that in some cases fully determine their critical behavior. For N=2 and D=3, it has been observed that the defect density is seemingly a universal quantity at T{sub c}. We prove this conjecture and show how to predict its value based on the universal critical exponents of the field theory. Analogously, for general N and D we predict the universal critical densities of domain walls and monopoles, for which no detailed thermodynamic study exists, to our knowledge. Remarkably this procedure can be inverted, producing an algorithm for generating typical defect networks at criticality, in contrast with the usual procedure [Vachaspati and Vilenkin, Phys. Rev. D 30, 2036 (1984)], which applies only in the unphysical limit of infinite temperature.

  4. Predicting adolescent breakfast consumption in the UK and Australia using an extended theory of planned behaviour.

    PubMed

    Mullan, Barbara; Wong, Cara; Kothe, Emily

    2013-03-01

    The aim of this study was to investigate whether the theory of planned behaviour (TPB) with the addition of risk awareness could predict breakfast consumption in a sample of adolescents from the UK and Australia. It was hypothesised that the TPB variables of attitudes, subjective norm and perceived behavioural control (PBC) would significantly predict intentions, and that inclusion of risk perception would increase the proportion of variance explained. Secondly it was hypothesised that intention and PBC would predict behaviour. Participants were recruited from secondary schools in Australia and the UK. A total of 613 participants completed the study (448 females, 165 males; mean=14years ±1.1). The TPB predicted 42.2% of the variance in intentions to eat breakfast. All variables significantly predicted intention with PBC as the strongest component. The addition of risk made a small but significant contribution to the prediction of intention. Together intention and PBC predicted 57.8% of the variance in breakfast consumption. PMID:23219456

  5. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  6. An integrated theory for predicting the hydrothermomechanical response of advanced composite structural components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    A theory is developed for predicting the hydrothermomechanical response of advanced composite structural components. The combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and of angleplied laminates are also evaluated. The materials investigated consist of neat PR-288 epoxy matrix resin and an AS-type graphite fiber/PR-288 resin unidirectional composite.

  7. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  8. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  9. How well does Preisach Theory predict Pseudo-Single-Domain Behavior?

    NASA Astrophysics Data System (ADS)

    Muxworthy, A. R.

    2015-12-01

    Single-domain Preisach theory has been used to quantify the behaviour of natural systems, for example, it has been used to determine paleointensity estimates from first-order-reversal-curve (FORC) measurements on natural samples, but how well does Presiach theory explain the behavior of the particles dominant in many natural systems: pseudo-single-domain (PSD) grains? Using experimental data collected from synthetic samples I investigate this. The samples were generated by electron beam lithography, and consist of two-dimensional arrays of near-identical particles in the PSD grain size range. To generate a Preisach distribution, I measure a FORC diagram and then compare measured responses, e.g., alternating-field demagnetisation, with those predicted by a single-domain Preisach theory.

  10. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.