Science.gov

Sample records for model based separator

  1. Analysis of an RNG based turbulence model for separated flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; Thangam, S.

    1992-01-01

    A two-equation turbulence model of the K-epsilon type was recently derived by using Renormalization Group (RNG) methods. It was later reported that this RNG based model yields substantially better predictions than the standard K-epsilon model for turbulent flow over a backward facing step - a standard test case used to benchmark the performance of turbulence models in separated flows. The improvements obtained from the RNG K-epsilon model were attributed to the better treatment of near wall turbulence effects. In contrast to these earlier claims, it is shown in this paper that the original version of the RNG K-epsilon model substantially underpredicts the reattachment point in the backstep problem. This is a deficiency that is traced to the modeling of the production of dissipation term. However, with the most recent improvements in the RNG K-epsilon model, excellent results for the backstep problem are now obtained.

  2. Stage Separation Failure: Model Based Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  3. Risk-Based Causal Modeling of Airborne Loss of Separation

    NASA Technical Reports Server (NTRS)

    Geuther, Steven C.; Shih, Ann T.

    2015-01-01

    Maintaining safe separation between aircraft remains one of the key aviation challenges as the Next Generation Air Transportation System (NextGen) emerges. The goals of the NextGen are to increase capacity and reduce flight delays to meet the aviation demand growth through the 2025 time frame while maintaining safety and efficiency. The envisioned NextGen is expected to enable high air traffic density, diverse fleet operations in the airspace, and a decrease in separation distance. All of these factors contribute to the potential for Loss of Separation (LOS) between aircraft. LOS is a precursor to a potential mid-air collision (MAC). The NASA Airspace Operations and Safety Program (AOSP) is committed to developing aircraft separation assurance concepts and technologies to mitigate LOS instances, therefore, preventing MAC. This paper focuses on the analysis of causal and contributing factors of LOS accidents and incidents leading to MAC occurrences. Mid-air collisions among large commercial aircraft are rare in the past decade, therefore, the LOS instances in this study are for general aviation using visual flight rules in the years 2000-2010. The study includes the investigation of causal paths leading to LOS, and the development of the Airborne Loss of Separation Analysis Model (ALOSAM) using Bayesian Belief Networks (BBN) to capture the multi-dependent relations of causal factors. The ALOSAM is currently a qualitative model, although further development could lead to a quantitative model. ALOSAM could then be used to perform impact analysis of concepts and technologies in the AOSP portfolio on the reduction of LOS risk.

  4. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    NASA Technical Reports Server (NTRS)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  5. An incentive-based source separation model for sustainable municipal solid waste management in China.

    PubMed

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. PMID:25819930

  6. A simple model for solute-solvent separation through nanopores based on core-softened potentials

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, Cláudia K. B.; Batista, Ronaldo J. C.; da Rocha Régis, McGlennon; Manhabosco, Taíse M.; de Oliveira, Alan B.

    2016-07-01

    We propose an effective model for solute separation from fluids through reverse osmosis based on core-softened potentials. Such potentials have been used to investigate anomalous fluids in several situations under a great variety of approaches. Due to their simplicity, computational simulations become faster and mathematical treatments are possible. Our model aims to mimic water desalination through nano-membranes through reverse osmosis, for which we have found reasonable qualitative results when confronted against all-atoms simulations found in the literature. The purpose of this work is not to replace any fully atomistic simulation at this stage, but instead to pave the first steps towards coarse-grained models for water desalination processes. This may help to approach problems in larger scales, in size and time, and perhaps make analytical theories more viable.

  7. Comparison of background ozone estimates over the western United States based on two separate model methodologies

    NASA Astrophysics Data System (ADS)

    Dolwick, Pat; Akhtar, Farhan; Baker, Kirk R.; Possiel, Norm; Simon, Heather; Tonnesen, Gail

    2015-05-01

    Two separate air quality model methodologies for estimating background ozone levels over the western U.S. are compared in this analysis. The first approach is a direct sensitivity modeling approach that considers the ozone levels that would remain after certain emissions are entirely removed (i.e., zero-out modeling). The second approach is based on an instrumented air quality model which tracks the formation of ozone within the simulation and assigns the source of that ozone to pre-identified categories (i.e., source apportionment modeling). This analysis focuses on a definition of background referred to as U.S. background (USB) which is designed to represent the influence of all sources other than U.S. anthropogenic emissions. Two separate modeling simulations were completed for an April-October 2007 period, both focused on isolating the influence of sources other than domestic manmade emissions. The zero-out modeling was conducted with the Community Multiscale Air Quality (CMAQ) model and the source apportionment modeling was completed with the Comprehensive Air Quality Model with Extensions (CAMx). Our analysis shows that the zero-out and source apportionment techniques provide relatively similar estimates of the magnitude of seasonal mean daily 8-h maximum U.S. background ozone at locations in the western U.S. when base case model ozone biases are considered. The largest differences between the two sets of USB estimates occur in urban areas where interactions with local NOx emissions can be important, especially when ozone levels are relatively low. Both methodologies conclude that seasonal mean daily 8-h maximum U.S. background ozone levels can be as high as 40-45 ppb over rural portions of the western U.S. Background fractions tend to decrease as modeled total ozone concentrations increase, with typical fractions of 75-100 percent on the lowest ozone days (<25 ppb) and typical fractions between 30 and 50% on days with ozone above 75 ppb. The finding that

  8. Calculation of asymmetric vortex separation on cones and tangent ogives based on a discrete vortex model

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward; Gainer, Thomas G.

    1989-01-01

    The boundary value problem for vortex separation at zero sideslip on cones and tangent ogives is set up by means of a discrete vortex model. The nonlinear algebraic equations for the boundary value problem admit multiple, physically feasible solutions, including the symmetric and asymmetric vortex solutions. Multiple solutions are proposed as an alternative explanation of the existence of asymmetric vortex separation at zero sideslip.

  9. Physics-based preconditioners for two-fluid electrostatic and electromagnetic models with charge separation

    NASA Astrophysics Data System (ADS)

    Leibs, C.; Chacon, L.; Knoll, D. A.

    2013-10-01

    Recently, fluid acceleration of a fully implicit kinetic particle-in-cell (PIC) simulation has been successfully demonstrated. Central to these algorithms is robust preconditioning of the fluid system. In the context of kinetic simulations, the fluid system features conservation equations for both ions and electrons, plus field evolution equations, and must allow for charge separation effects. In this work, we concern ourselves with electrostatic and electromagnetic two-fluid models in multiple dimensions. Electromagnetic fields are prescribed via the Darwin approximation to project out spurious light-wave time scales. Disparate time scales remain among the abundance of supported plasma waves. The resulting nonlinear, stiff hyperbolic PDE systems are effectively preconditioned using physics-based preconditioning ideas, whereby their linearized form is transformed into parabolic PDEs that target the fast wave behavior. These elliptic systems can be efficiently inverted by multigrid methods. We will demonstrate the effectiveness of the approach via numerical experiments. Work funded by LANL LDRD program.

  10. Automated Separation of Stars and Normal Galaxies Based on Statistical Mixture Modeling with RBF Neural Networks

    NASA Astrophysics Data System (ADS)

    Qin, Dong-Mei; Guo, Ping; Hu, Zhan-Yi; Zhao, Yong-Heng

    2003-06-01

    For LAMOST, the largest sky survey program in China, the solution of the problem of automatic discrimination of stars from galaxies by spectra has shown that the results of the PSF test can be significantly refined. However, the problem is made worse when the redshifts of galaxies are not available. We present a new automatic method of star/(normal) galaxy separation, which is based on Statistical Mixture Modeling with Radial Basis Function Neural Networks (SMM-RBFNN). This work is a continuation of our previous one, where active and non-active celestial objects were successfully segregated. By combining the method in this paper and the previous one, stars can now be effectively separated from galaxies and AGNs by their spectra---a major goal of LAMOST, and an indispensable step in any automatic spectrum classification system. In our work, the training set includes standard stellar spectra from Jacoby's spectrum library and simulated galaxy spectra of E0, S0, Sa, Sb types with redshift ranging from 0 to 1.2, and the test set of stellar spectra from Pickles' atlas and SDSS spectra of normal galaxies with SNR of 13. Experiments show that our SMM-RBFNN is more efficient in both the training and testing stages than the BPNN (back propagation neural networks), and more importantly, it can achieve a good classification accuracy of 99.22% and 96.52%, respectively for stars and normal galaxies.

  11. Separability of Perturbations Within a Superposition-Based Lattice Physics Model

    SciTech Connect

    Maldonado, G. Ivan; Zheng, Jie; Guo, Tong

    1999-06-06

    A linear superposition model (LSM) was recently implemented within the FORMOSA-L code for the speedy estimation of lattice physics parameters during within-lattice loading optimization. The FORMOSA-L code is essentially a simulated annealing optimization driver that has been coupled to a lattice physics code for the evaluation of objectives and constraints. To date, proof-of-principle research studies have coupled FORMOSA-L to the CPM-2 code; nevertheless future studies are expected to employ more modern lattice physics software. This study specifically focuses on the issue of separability of spatial (i.e., pin movement) and material (i.e., pin loading) perturbations within the context of the LSM and optimization framework within FORMOSA-L. Clearly, the motivation to treat physical shuffles and material perturbations separately is directly related to preserving the accuracy of the LSM evaluations.

  12. Data base for separations chemistry

    SciTech Connect

    McDowell, W.J.; Roddy, J.W.; Michelson, D.C.

    1981-01-01

    Computer retrieval of information related to hydrometallurgical separations from most data bases is limited and is also complicated because the terms solvent extraction, ion exchange, chromatography, etc. have widespread use in a variety of disciplines and widely varying meanings in each. A data base called Separations Science Data Base, designed specifically for retrieval of information needed in chemical separations problems, has been assembled. The indexing is structured in such a way as to allow accommodation of a variety of separations methods (distillation, precipitation, flotation, etc.), but liquid-liquid (solvent) extraction and solid-liquid ion exchange are being emphasized initially. The reference material can be retrieved not only in terms of the standard author, title, source, and date-of-publication entries, but also in terms of the substance separated (both those recovered and those rejected), the separations system and the separation agent used, the matrix from which the separation is effected, and the type of information in the reference. 4 figures.

  13. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept

    SciTech Connect

    Show, Milton S; Menikoff, Ralph

    2010-01-01

    In the formulation of a reactive burn model for shock initiation, we endeavor to incorporate a number of effects based on the underlying physical concept of hot spot ignition followed by the growth of reaction due to diverging deflagration fronts. The passage of a shock front sets the initial condition for reaction, leading to a fraction of the hot spots that completely burn while others will quench. The form of the rate model is chosen to incorporate approximations based on the physical picture. In particular, the approximations imply scaling relations that are then used to mathematically separate various contributions. That is, the model is modular and refinements can be applied separately without changing the other contributions. For example, the effect of initial temperature, porosity, etc. predominantly enter the characterization of the non-quenching hot spot distribution. A large collection of velocity gauge data is shown to be well represented by the model with a very small number of parameters.

  14. Spatial location priors for Gaussian model based reverberant audio source separation

    NASA Astrophysics Data System (ADS)

    Duong, Ngoc QK; Vincent, Emmanuel; Gribonval, Rémi

    2013-12-01

    We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.

  15. Separations and safeguards model integration.

    SciTech Connect

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  16. Evidence-Based Structural Model of the Staphylococcal Repressor Protein: Separation of Functions into Different Domains

    PubMed Central

    Nyíri, Kinga; Kőhegyi, Bianka; Micsonai, András; Kardos, József; Vertessy, Beata G.

    2015-01-01

    Horizontal transfer of mobile genetic elements within Staphylococci is of high biomedical significance as such elements are frequently responsible for virulence and toxic effects. Staphylococcus-encoded repressor proteins regulate the replication of these mobile genetic elements that are located within the so-called pathogenicity islands. Here, we report structural and functional characterization of one such repressor protein, namely the Stl protein encoded by the pathogenicity island SaPIbov1. We create a 3D structural model and based on this prediction, we investigate the different functionalities of truncated and point mutant constructs. Results suggest that a helix-turn-helix motif governs the interaction of the Stl protein with its cognate DNA site: point mutations within this motif drastically decrease DNA-binding ability, whereas the interaction with the Stl-binding partner protein dUTPase is unperturbed by these point mutations. The 3D model also suggested the potential independent folding of a carboxy-terminal domain. This suggestion was fully verified by independent experiments revealing that the carboxy-terminal domain does not bind to DNA but is still capable of binding to and inhibiting dUTPase. A general model is proposed, which suggests that among the several structurally different repressor superfamilies Stl-like Staphylococcal repressor proteins belong to the helix-turn-helix transcription factor group and the HTH motif is suggested to reside within N-terminal segment. PMID:26414067

  17. Turbulence modeling for separated flow

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1994-01-01

    Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.

  18. Ab initio-based fracture toughness estimates and transgranular traction-separation modelling of zirconium hydrides

    NASA Astrophysics Data System (ADS)

    Olsson, P. A. T.; Kese, K.; Kroon, M.; Alvarez Holston, A.-M.

    2015-06-01

    In this work we report the results of an ab initio study of the transgranular fracture toughness and cleavage of brittle zirconium hydrides. We use the Griffith-Irwin relation to assess the fracture toughness using calculated surface energy and estimated isotropic Voigt-Reuss-Hill averages of the elastic constants. The calculated fracture toughness values are found to concur well with experimental data, which implies that fracture is dominated by cleavage failure. To investigate the cleavage energetics, we model the decohesion process. To describe the interplanar interaction we adopt Rose’s universal binding energy relation, which is found to reproduce the behaviour accurately. The modelling shows that the work of fracture and ductility decreases with increasing hydrogen content.

  19. Optimization of IC Separation Based on Isocratic-to-Gradient Retention Modeling in Combination with Sequential Searching or Evolutionary Algorithm

    PubMed Central

    Rogošić, Marko; Šimović, Ena; Tišler, Vesna; Bolanča, Tomislav

    2013-01-01

    Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose, N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm with the isocratic-to-gradient retention modeling. Both the simplex and genetic algorithms provided well separated chromatograms in a similar analysis time. However, the simplex methodology showed severe drawbacks when dealing with local minima. Thus the genetic algorithm methodology proved as a method of choice for gradient optimization in this case. All the calculated/predicted chromatograms were compared with the real sample data, showing more than a satisfactory agreement. PMID:24349824

  20. Modeling and Global Optimization of DNA separation

    PubMed Central

    Fahrenkopf, Max A.; Ydstie, B. Erik; Mukherjee, Tamal; Schneider, James W.

    2014-01-01

    We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606

  1. Modeling and Global Optimization of DNA separation.

    PubMed

    Fahrenkopf, Max A; Ydstie, B Erik; Mukherjee, Tamal; Schneider, James W

    2014-05-01

    We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606

  2. Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2015-09-01

    Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models from the full wavefield, which includes diving waves, post-critical reflections and short-spread reflections. Most successful applications of FWI are driven by the information carried by diving waves and post-critical reflections to build the long-to-intermediate wavelengths of the velocity structure. Alternative approaches, referred to as reflection waveform inversion (RWI), have been recently revisited to retrieve these long-to-intermediate wavelengths from short-spread reflections by using some prior knowledge of the reflectivity and a scale separation between the velocity macromodel and the reflectivity. This study presents a unified formalism of FWI, named as Joint FWI, whose aim is to efficiently combine the diving and reflected waves for velocity model building. The two key ingredients of Joint FWI are, on the data side, the explicit separation between the short-spread reflections and the wide-angle arrivals and, on the model side, the scale separation between the velocity macromodel and the short-scale impedance model. The velocity model and the impedance model are updated in an alternate way by Joint FWI and waveform inversion of the reflection data (least-squares migration), respectively. Starting from a crude velocity model, Joint FWI is applied to the streamer seismic data computed in the synthetic Valhall model. While the conventional FWI is stuck into a local minimum due to cycle skipping, Joint FWI succeeds in building a reliable velocity macromodel. Compared with RWI, the use of diving waves in Joint FWI improves the reconstruction of shallow velocities, which translates into an improved imaging at deeper depths. The smooth velocity model built by Joint FWI can be subsequently used as a reliable initial model for conventional FWI to increase the high-wavenumber content of the velocity model.

  3. Thermodynamic modeling of phase separation in manganites

    NASA Astrophysics Data System (ADS)

    Sacanell, J.; Parisi, F.; Campoy, J. C. P.; Ghivelder, L.

    2006-01-01

    We present a phenomenological model based on the thermodynamics of the phase separated state of manganites, accounting for its static and dynamic properties. Through calorimetric measurements on La0.225Pr0.4Ca0.375MnO3 the low temperature free energies of the coexisting ferromagnetic and charge ordered phases are evaluated. The phase separated state is modeled by free energy densities uniformly spread over the sample volume. The calculations contemplate the out of equilibrium features of the coexisting phase regime, to allow a comparison between magnetic measurements and the predictions of the model. A phase diagram including the static and dynamic properties of the system is constructed, showing the existence of blocked and unblocked regimes which are characteristics of the phase separated state in manganites.

  4. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  5. Separators - Technology review: Ceramic based separators for secondary batteries

    SciTech Connect

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C.; Schilm, Jochen; Leisegang, Tilmann

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  6. NMR-Based Metabolomics Separates the Distinct Stages of Disease in a Chronic Relapsing Model of Multiple Sclerosis.

    PubMed

    Dickens, Alex M; Larkin, James R; Davis, Benjamin G; Griffin, Julian L; Claridge, Timothy D W; Sibson, Nicola R; Anthony, Daniel C

    2015-09-01

    Relapsing experimental allergic encephalomyelitis (Cr-EAE) is commonly used to explore the pathogenesis and efficacy of new therapies for MS, but it is unclear whether the metabolome of Cr-EAE is comparable to human multiple sclerosis (MS). For MS, the diagnosis and staging can be achieved by metabolomics on blood using a combination of magnetic resonance spectroscopy and partial least squares discriminant analysis (PLS-DA). Here, we sought to discover whether this approach could be used to differentiate between sequential disease states in Cr-EAE and whether the same metabolites would be discriminatory. Urine and plasma samples were obtained at different time-points from a clinically relevant model of MS. Using PLS-DA modelling for the urine samples furnished some predictive models, but could not discriminate between all disease states. However, PLS-DA modelling of the plasma samples was able to distinguish between animals with clinically silent disease (day 10, 28) and animals with active disease (day 14, 38). We were also able to distinguish Cr-EAE mice from naive mice at all-time points and control mice, treated with complete Freund's adjuvant alone, at day 14 and 38. Key metabolites that underpin these models included fatty acids, glucose and taurine. Two of these metabolites, fatty acids and glucose, were also key metabolites in separating relapsing-remitting MS from secondary-progressive MS in the human study. These results demonstrate the sensitivity of this metabolomics approach for distinguishing between different disease states. Furthermore, some, but not all, of the changes in metabolites were conserved in humans and the mouse model, which could be useful for future drug development. PMID:26155956

  7. Finger Vein Segmentation from Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding.

    PubMed

    Vlachos, Marios; Dermatas, Evangelos

    2015-01-01

    A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern. PMID:26120357

  8. Finger Vein Segmentation from Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding

    PubMed Central

    Vlachos, Marios; Dermatas, Evangelos

    2015-01-01

    A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern. PMID:26120357

  9. Multi-modal data fusion using source separation: Two effective models based on ICA and IVA and their properties

    PubMed Central

    Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2015-01-01

    Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830

  10. Separations Science Data Base: an abstractor's manual

    SciTech Connect

    Roddy, J.W.; McDowell, W.J.; Michelson, D.C.

    1981-07-01

    The Separations Science Data Base, designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. The procedure for entering records into the data base is given. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separations process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization performing and/or sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractor's initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the article was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed on the input form. Definitions are provided for the 39 information terms.

  11. Advances in inline quantification of co-eluting proteins in chromatography: Process-data-based model calibration and application towards real-life separation issues.

    PubMed

    Brestrich, Nina; Sanden, Adrian; Kraft, Axel; McCann, Karl; Bertolini, Joseph; Hubbuch, Jürgen

    2015-07-01

    Pooling decisions in preparative liquid chromatography for protein purification are usually based on univariate UV absorption measurements that are not able to differentiate between product and co-eluting contaminants. This can result in inconsistent pool purities or yields, if there is a batch-to-batch variability of the feedstock. To overcome this analytical bottleneck, a tool for selective inline quantification of co-eluting model proteins using mid-UV absorption spectra and Partial Least Squares Regression (PLS) was presented in a previous study and applied for real-time pooling decisions. In this paper, a process-data-based method for the PLS model calibration will be introduced that allows the application of the tool towards chromatography steps of real-life processes. The process-data-based calibration method uses recorded inline mid-UV absorption spectra that are correlated with offline fraction analytics to calibrate PLS models. In order to generate average spectra from the inline data, a Visual Basic for Application macro was successfully developed. The process-data-based model calibration was established using a ternary model protein system. Afterwards, it was successfully demonstrated in two case studies that the calibration method is applicable towards real-life separation issues. The calibrated PLS models allowed a successful quantification of the co-eluting species in a cation-exchange-based aggregate and fraction removal during the purification of monoclonal antibodies and of co-eluting serum proteins in an anion-exchange-based purification of Cohn supernatant I. Consequently, the presented process-data-based PLS model calibration in combination with the tool for selective inline quantification has a great potential for the monitoring of future chromatography steps and may contribute to manage batch-to-batch variability by real-time pooling decisions. PMID:25683378

  12. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  13. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  14. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-01

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation. PMID:25818557

  15. Thermoresponsive Agarose Based Microparticles for Antibody Separation.

    PubMed

    Ooi, Huey Wen; Ketterer, Benedikt; Trouillet, Vanessa; Franzreb, Matthias; Barner-Kowollik, Christopher

    2016-01-11

    We report the development of thermoresponsive 4-mercaptoethylpyridine (MEP)-based chromatographic microsphere based resins for antibody separation that show switchable release abilities by adsorbing immunoglobulins at 40 °C and releasing the proteins at 5 °C. The thermoswitchable release properties were introduced to the porous resins by the grafting of linear poly(N-isopropylacrylamide) (PNIPAM) chains synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, which were modified to possess MEP end functionalities. Adsorption of γ-globulins as a model antibody on the shortest PNIPAM-MEP (3 kDa) grafted microparticles display binding capacities of up to 20 g L(-1) at 40 °C and a significant decrease in binding capacity to less than 2.5 g L(-1) at 5 °C. By switching the temperature to 5 °C, the release of bound γ-globulins is shown to be as high as 90%. The effects of polymer chain length on the binding capacity are studied in detail and found to be critical as they influence the density of MEP functionalities on the particle surfaces. PMID:26626821

  16. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  17. Analytical model of batch magnetophoretic separation

    NASA Astrophysics Data System (ADS)

    Kashevsky, S. B.; Kashevsky, B. E.

    2013-06-01

    Magnetophoresis (the motion of magnetic particles driven by the nonuniform magnetic field), that for a long time has been used for extracting magnetically susceptible objects in diverse industries, now attracts interest to develop more sophisticated microfluidic and batch techniques for separation and manipulation of biological particles, and magnetically assisted absorption and catalysis in organic chemistry, biochemistry, and petrochemistry. A deficiency of magnetic separation science is the lack of simple analytical models imitating real processes of magnetic separation. We have studied the motion of superparamagnetic (generally, soft magnetic) particles in liquid in the three-dimensional field of the diametrically polarized permanent cylindrical magnet; this geometry is basically representative of the batch separation mode. In the limit of the infinite-length magnet, we found the particle magnetophoresis proceeds independently of the magnet polarization direction, following the simple analytical relation incorporating all the relevant physical and geometrical parameters of the particle-magnet system. In experiments with a finite-length magnet we have shown applicability of the developed theory as to analyze the performance of the real batch separation systems in the noncooperative mode, and finally, we have presented an example of such analysis for the case of immunomagnetic cell separation and developed a criterion of the model limitation imposed by the magnetic aggregation of particles.

  18. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    NASA Astrophysics Data System (ADS)

    Barminova, H. Y.; Saratovskyh, M. S.

    2016-02-01

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 1010 ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  19. The Separate Spheres Model of Gendered Inequality

    PubMed Central

    Miller, Andrea L.; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  20. The Separate Spheres Model of Gendered Inequality.

    PubMed

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  1. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  2. Model-free data analysis for source separation based on Non-Negative Matrix Factorization and k-means clustering (NMFk)

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Alexandrov, B.

    2014-12-01

    The identification of the physical sources causing spatial and temporal fluctuations of state variables such as river stage levels and aquifer hydraulic heads is challenging. The fluctuations can be caused by variations in natural and anthropogenic sources such as precipitation events, infiltration, groundwater pumping, barometric pressures, etc. The source identification and separation can be crucial for conceptualization of the hydrological conditions and characterization of system properties. If the original signals that cause the observed state-variable transients can be successfully "unmixed", decoupled physics models may then be applied to analyze the propagation of each signal independently. We propose a new model-free inverse analysis of transient data based on Non-negative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the system. A classical BSS conundrum is the so-called "cocktail-party" problem where several microphones are recording the sounds in a ballroom (music, conversations, noise, etc.). Each of the microphones is recording a mixture of the sounds. The goal of BSS is to "unmix'" and reconstruct the original sounds from the microphone records. Similarly to the "cocktail-party" problem, our model-freee analysis only requires information about state-variable transients at a number of observation points, m, where m > r, and r is the number of unknown unique sources causing the observed fluctuations. We apply the analysis on a dataset from the Los Alamos National Laboratory (LANL) site. We identify and estimate the impact and sources are barometric pressure and water-supply pumping effects. We also estimate the

  3. Alternative separation evaluations in model rechargeable silver-zinc cells

    NASA Astrophysics Data System (ADS)

    Lewis, Harlan L.; Danko, Thomas; Himy, Albert; Johnson, William

    Several varieties of standard and reinforced, cellulose-based, sausage casing films derived from wood pulp have been evaluated in model (nominal 28 A h) rechargeable silver-zinc cells. The cell performance data for both cycle life and wet stand life have been compared with cells equipped with conventional 1 mil (0.025 mm) cellophane. Although shorting was the most common failure mode in the cells with sausage casing separation, remarkably good cycle and wet life were obtained when the separation wrap also included PVA film. This paper reports the cycle and wet life comparison data for these substitute separators, with respect to conventional cellophane separation, as well as separation physical property data and silver migration rates in the cells as a function of cell life.

  4. Separated transonic airfoil flow calculations with a nonequilibrium turbulence model

    NASA Technical Reports Server (NTRS)

    King, L. S.; Johnson, D. A.

    1985-01-01

    Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.

  5. Adsorption and Separation Modeling of Porous Networks

    NASA Astrophysics Data System (ADS)

    Malanoski, Anthony; van Swol, Frank

    2001-03-01

    With the advent of self-assembly techniques has come the potential to tailor materials for adsorption and separation applications. For example, using surfactants as templating agents it is now feasible to finely control both the three-dimensional (3D) porosity as well as the surface chemistry. With an eye on assisting the emerging materials design we have embarked on a program that focuses on modeling adsorption/desorption, reactions and permeation phenomena in such structures. What makes the modeling particularly challenging is the coupling of length scales. The role of the atomic length scale features such as surface reactions and surface structure must be captured as well as the role of the network connectivity and other larger length scales. The latter include the pore shape and length, and the presence of external surfaces. This paper reports on how we employ refineable lattice models to tackle the modeling problems. We use both equilibrium and non-equilibrium Monte Carlo (MC) and 3D density functional theory (DFT) techniques to study the equilibrium and transport behavior in nanostructured porous materials. We will present 1) results of both adsorption/desorption hysteresis in large regular and random networks and 2) the results of using reactive sites in separation membranes, and compare these with experiments.

  6. A Separable, Dynamically Local Ontological Model of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pienaar, Jacques

    2016-01-01

    A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.

  7. Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds.

    PubMed

    Grecsó, Nóra; Kohout, Michal; Carotti, Andrea; Sardella, Roccaldo; Natalini, Benedetto; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal; Ilisz, István

    2016-05-30

    The enantiomers of trans-paroxetine were separated on four chiral stationary phases (CSPs) based on chiral zwitterionic Cinchona alkaloids fused with (R,R)- or (S,S)-trans-2-aminocyclohexanesulfonic acid. The enantioseparations were carried out in polar-ionic or in hydro-organic mobile phases with MeOH/THF, MeCN/THF, MeCN/THF/H2O and MeOH/MeCN/THF containing organic acid and base additives, in the temperature range 0-50°C. The effects of the mobile phase composition, the natures and concentrations of the additives and temperature on the separations were investigated. Thermodynamic parameters were calculated from plots of ln α vs 1/T. Δ(ΔH°) ranged between -3.0 and +1.5kJmol(-1), and Δ(ΔS°) between -8.8 and +5.9Jmol(-1)K(-1). The enantioseparation was generally enthalpically controlled, the retention factor and separation factor decreasing with increasing temperature, but entropically controlled separation was also observed. The elution sequences of the paroxetine enantiomers on the two pairs of pseudo-enantiomeric CSPs were investigated, and an attempt was made to explain the observed anomalies in silico in order to gain an insight into the underlying molecular recognition events between the four chiral selectors and the analyte enantiomers. PMID:26955754

  8. Dendrite-separator interactions in lithium-based batteries

    NASA Astrophysics Data System (ADS)

    Jana, Aniruddha; Ely, David R.; García, R. Edwin

    2015-02-01

    The effect of separator pore size on lithium dendrite growth is assessed through the use of the phase field method (PFM). Dendrites are found to undergo concurrent electrodeposition and electrodissolution that define their local growth or shrinkage. Moreover, dendrites are observed to detach due to localized electrodissolution and generate metallic debris that is detrimental to battery performance. A critical current density exists below which dendrites are fully suppressed. An analytical model based on the performed PFM simulations allows to formulate the critical current density as a function of separator morphology and pore radius. Four distinct regimes of dendrite growth are identified: (i) the suppression regime, where dendrite growth is thermodynamically unfavorable; (ii) the permeable regime, where dendrite growth is prohibited beyond the first layer of the separator; (iii) the penetration regime, in which dendrites are stable within the channels of the separator; and (iv) the short circuit regime, where dendrites penetrate the entire width of the separator causing a short circuit. The identification of these regimes serve as a guideline to design improved separators.

  9. Nonparametric statistical modeling of binary star separations

    NASA Astrophysics Data System (ADS)

    Heacox, William D.; Gathright, John

    1994-09-01

    We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a-1 for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.

  10. Nonparametric statistical modeling of binary star separations

    NASA Technical Reports Server (NTRS)

    Heacox, William D.; Gathright, John

    1994-01-01

    We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.

  11. Dynamic Absorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-07-01

    Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.

  12. A computationally efficient modelling of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Dini, Paolo; Maughmer, Mark D.

    1989-10-01

    In order to predict the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is necessary to accurately account for the effects of laminar (transitional) separation bubbles. Generally, the greatest difficulty comes about when attempting to determine the increase in profile drag that results from the presence of separation bubbles. While a number of empirically based separation bubble models have been introduced in the past, the majority assume that the bubble development is fully predictable from upstream conditions. One way of accounting for laminar separation bubbles in airfoil design is the bubble analog used in the design and analysis program of Eppler and Somers. A locally interactive separation bubble model was developed and incorporated into the Eppler and Somers program. Although unable to account for strong interactions such as the large reduction in suction peak sometimes caused by leading edge bubbles, it is able to predict the increase in drag and the local alteration of the airfoil pressure distribution that is caused by bubbles occurring in the operational range which is of most interest.

  13. A computationally efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Dini, Paolo; Maughmer, Mark D.

    1989-01-01

    In order to predict the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is necessary to accurately account for the effects of laminar (transitional) separation bubbles. Generally, the greatest difficulty comes about when attempting to determine the increase in profile drag that results from the presence of separation bubbles. While a number of empirically based separation bubble models have been introduced in the past, the majority assume that the bubble development is fully predictable from upstream conditions. One way of accounting for laminar separation bubbles in airfoil design is the bubble analog used in the design and analysis program of Eppler and Somers. A locally interactive separation bubble model was developed and incorporated into the Eppler and Somers program. Although unable to account for strong interactions such as the large reduction in suction peak sometimes caused by leading edge bubbles, it is able to predict the increase in drag and the local alteration of the airfoil pressure distribution that is caused by bubbles occurring in the operational range which is of most interest.

  14. Numerical modeling of active separation control by synthetic jets

    NASA Astrophysics Data System (ADS)

    Aram, Shawn

    Zero-Net Mass-Flux (ZNMF) actuators or synthetic jet actuators are versatile micro scale devices with numerous applications in the field of fluid mechanics. The primary focus of the current work is to use time-accurate simulations to study the interaction of these jets with cross flows and to optimize their performance for the control of boundary layer separation. This study consists of four parts. In the first part, a class of phenomenology-based models is proposed to reproduce the flow associated with synthetic jets in grazing flows and simplify the task of ZNMF-based flow control simulations. The proposed models have a non-uniform jet velocity profile with only two spatial degrees of freedom and a uniform slip velocity on the slot-flow boundary. A comparison of key integral quantities associated with the momentum, energy and vorticity fluxes shows that the models with a non-uniform jet velocity during the expulsion phase and uniform jet velocity during the ingestion phase can predict these quantities with good accuracy, whereas a simple plug flow model with a zero slip and uniform jet velocity under-predicts these three quantities during the expulsion phase. Based on our initial analysis, three of the simplest models are selected for further study, including an assessment of their performance for a canonical separated flow at different forcing frequencies. A key finding is that a simple plug-flow type model can predict incorrect trends for separation reduction with the jet frequency. A preliminary attempt is also made to provide empirical closure to these models. The effect of synthetic jets orientation on its interaction with a zero pressure gradient laminar boundary layer is explored in the second part. A rectangular slot is chosen in this study and streamwise and spanwise orientations of this slot are examined. The orientation of the slot is found to have a significant impact on its interaction with the boundary layer. The dominant feature in the streamwise

  15. Steam separator modeling for various nuclear reactor transients

    SciTech Connect

    Paik, C Y; Mullen, G; Knoess, C; Griffith, P

    1987-06-01

    In a pressurized water reactor steam generator, a moisture separator is used to separate steam and liquid and to insure that essentially dry steam is supplied to the turbine. During a steam line break or combined steam line break plus tube rupture, a number of phenomena can occur in the separator which have no counterparts during steady-state operation. How the separator will perform under these circumstances is important for two reasons, it affects the carry-over of radioactive iodine and the water inventory in the secondary side. This study has as its goal the development of a simple separator model which can be applied to a variety of steam generator for off-design conditions. Experiments were performed using air and water on three different types of centrifugal separators: a cyclone as a generic separator, a Combustion Engineering type stationary swirl vane separator, and a Westinghouse type separator. The cyclone separator system has three stages of separation: first the cyclone, then a gravity separator, and finally a chevron plate separator. The other systems have only a centrifugal separator to isolate the effect of the primary separator. Experiments were also done in MIT blowdown rig, with and without a separator, using steam and water. The separators appear to perform well at flow rates well above the design values as long as the downcomer water level is not high. High downcomer water level rather than high flow rates appear to be the primary cause of degraded performance. Appreciable carry-over from the separator section of a steam generator occurs when the drain lines from three stages of separation are unable to carry off the liquid flow. Failure scenarios of the separator for extreme range of conditions from the quasi-steady state transient to the fast transients are presented. A general model structure and simple separator models are provided.

  16. Simulation of turbulent supersonic separated base flows using enhanced turbulence modeling techniques with application to an X-33 aerospike rocket nozzle system

    NASA Astrophysics Data System (ADS)

    Papp, John Laszlo

    2000-10-01

    The successful application of CFD and turbulence modeling methods to an aerospike nozzle system first involves the successful simulation of its key flow components. This report addresses the task using the Chien low-Re k-epsilon and the Yakhot et al. high-Re RNG k-epsilon turbulence models. An improved implicit axis of symmetry boundary condition is also developed to increase stability and lower artificial dissipation. Grid adaptation through the SAGE post-processing package is used throughout the study. The RNG model, after low-Re modifications, and the Chien low-Re k-epsilon model are applied to the supersonic axisymmetric base flow problem. Both models predict a peak recirculation velocity almost twice as large as experiment. The RNG model predicts a flatter base pressure and lower recirculation velocity more consistent with experimental data using less grid points than a comparable Chien model solution. The turbulent quantities predicted by both models are typical of other numerical results and generally under predict peak values obtained in experiment suggesting that too little turbulent eddy viscosity is produced. After several test cases, the full 3-D aerospike nozzle is simulated using both the Chien and modified RNG low-Re models. The Chien model outperforms the RNG model in all circumstances. The surface pressure predicted by the Chien model along the nozzle center-plane is very near experiment while mid-plane results are not as close but useful for design purposes. The lack of a thick boundary layer along the nozzle surface in RNG simulations is the cause of poor surface pressure comparisons. Although initial base flow comparisons between the model predictions and experiment are poor, the profiles are relatively flat. To accelerate the progress to a steady-state solution, a process involving the artificial lowering of the base pressure and subsequent iteration to a new steady state is undertaken. After several of these steps, the resulting steady

  17. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  18. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  19. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  20. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  1. 5 CFR 831.503 - Retirement based on involuntary separation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... separation. 831.503 Section 831.503 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL... involuntary separation. (a) General. An employee who would otherwise be eligible for retirement based on involuntary separation from the service is not entitled to an annuity under section 8336(d)(1) of title...

  2. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  3. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  4. Optimal separable bases and molecular collisions

    SciTech Connect

    Poirier, L W

    1997-12-01

    A new methodology is proposed for the efficient determination of Green`s functions and eigenstates for quantum systems of two or more dimensions. For a given Hamiltonian, the best possible separable approximation is obtained from the set of all Hilbert space operators. It is shown that this determination itself, as well as the solution of the resultant approximation, are problems of reduced dimensionality for most systems of physical interest. Moreover, the approximate eigenstates constitute the optimal separable basis, in the sense of self-consistent field theory. These distorted waves give rise to a Born series with optimized convergence properties. Analytical results are presented for an application of the method to the two-dimensional shifted harmonic oscillator system. The primary interest however, is quantum reactive scattering in molecular systems. For numerical calculations, the use of distorted waves corresponds to numerical preconditioning. The new methodology therefore gives rise to an optimized preconditioning scheme for the efficient calculation of reactive and inelastic scattering amplitudes, especially at intermediate energies. This scheme is particularly suited to discrete variable representations (DVR`s) and iterative sparse matrix methods commonly employed in such calculations. State to state and cumulative reactive scattering results obtained via the optimized preconditioner are presented for the two-dimensional collinear H + H{sub 2} {yields} H{sub 2} + H system. Computational time and memory requirements for this system are drastically reduced in comparison with other methods, and results are obtained for previously prohibitive energy regimes.

  5. Hand posture recognizer based on separator wavelet networks

    NASA Astrophysics Data System (ADS)

    Bouchrika, Tahani; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    This paper presents a novel hand posture recognizer based on separator wavelet networks (SWNs). Aiming at creating a robust and rapid hand posture recognizer, we have contributed by proposing a new training algorithm for the wavelet network classifier based on fast wavelet transform (FWN). So, the contribution resides in reducing the number of WNs modeling training data. To make that, inspiring from the adaboost feature selection method, we thought to create SWNs (n-1 WNs for n classes) instead of modeling each training sample by its wavelet network (WN). By proposing the new training algorithm, the recognition phase will be positively influenced. It will be more rapid thanks to the reduction of the number of comparisons between test images WNs and training WNs. Comparisons with other works, employing universal hand posture datasets are presented and discussed. Obtained results have shown that the new hand posture recognizer is comparable to previously established ones.

  6. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  7. Phase-separation models for swimming enhancement in complex fluids

    NASA Astrophysics Data System (ADS)

    Man, Yi; Lauga, Eric

    2015-08-01

    Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that microstructured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers, which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensional filament, we show that phase-separation systematically increases the locomotion speeds, possibly by orders of magnitude. We close by confronting our predictions with recent experimental results.

  8. Phase-separation models for swimming enhancement in complex fluids.

    PubMed

    Man, Yi; Lauga, Eric

    2015-08-01

    Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that microstructured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers, which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensional filament, we show that phase-separation systematically increases the locomotion speeds, possibly by orders of magnitude. We close by confronting our predictions with recent experimental results. PMID:26382500

  9. Separability of Item and Person Parameters in Response Time Models.

    ERIC Educational Resources Information Center

    Van Breukelen, Gerard J. P.

    1997-01-01

    Discusses two forms of separability of item and person parameters in the context of response time models. The first is "separate sufficiency," and the second is "ranking independence." For each form a theorem stating sufficient conditions is proved. The two forms are shown to include several cases of models from psychometric and biometric…

  10. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  11. Digital microfluidic magnetic separation for particle-based immunoassays.

    PubMed

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes. PMID:23013543

  12. Matched filtering method for separating magnetic anomaly using fractal model

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming; Zhang, Henglei

    2016-05-01

    Fractal/scaling distribution of magnetization in the crust has found with growing body of evidences from spectral analysis of borehole susceptibility logs and magnetic field data, and fractal properties of magnetic sources have already been considered in processing magnetic data such as the Spector and Grant method for depth determination. In this study, the fractal-based matched filtering method is presented for separating magnetic anomalies caused by fractal sources. We argue the benefits of considering fractal natures of source distribution for data processing in magnetic exploration: the first is that the depth determination can be improved by using multiscaling model to interpret the magnetic data power spectrum; the second is that the matched filtering can be reconstructed by employing the difference in scaling exponent together with the corrected depth and amplitude estimates. In the application of synthetic data obtained from fractal modeling and real aeromagnetic data from the Qikou district of China, the proposed fractal-based matched filtering method obtains more reliable depth estimations as well as improved separation between local anomalies (caused by volcanic rocks) and regional field (crystalline basement) in comparison with the conventional matched filtering method.

  13. Application of a Reynolds stress model to separating boundary layers

    NASA Technical Reports Server (NTRS)

    Ko, Sung HO

    1993-01-01

    Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.

  14. Interactive Tooth Separation from Dental Model Using Segmentation Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  15. Interactive Tooth Separation from Dental Model Using Segmentation Field

    PubMed Central

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  16. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance.

    PubMed

    Jones, Paul V; Huey, Shannon; Davis, Paige; Yanashima, Ryan; McLemore, Ryan; McLaren, Alex; Hayes, Mark A

    2015-08-01

    Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 10(9) V m(-2) for the resistant strain, versus 9.2 ± 0.4 × 10(9) V m(-2) for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains. PMID:26086047

  17. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance

    PubMed Central

    Jones, Paul V.; Huey, Shannon; Davis, Paige; McLemore, Ryan; McLaren, Alex

    2015-01-01

    Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 109 V m–2 for the resistant strain, versus 9.2 ± 0.4 × 109 V m–2 for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains. PMID:26086047

  18. Limitations of Adjoint-Based Optimization for Separated Flows

    NASA Astrophysics Data System (ADS)

    Otero, J. Javier; Sharma, Ati; Sandberg, Richard

    2015-11-01

    Cabin noise is generated by the transmission of turbulent pressure fluctuations through a vibrating panel and can lead to fatigue. In the present study, we model this problem by using DNS to simulate the flow separating off a backward facing step and interacting with a plate downstream of the step. An adjoint formulation of the full compressible Navier-Stokes equations with varying viscosity is used to calculate the optimal control required to minimize the fluid-structure-acoustic interaction with the plate. To achieve noise reduction, a cost function in wavenumber space is chosen to minimize the excitation of the lower structural modes of the structure. To ensure the validity of time-averaged cost functions, it is essential that the time horizon is long enough to be a representative sample of the statistical behaviour of the flow field. The results from the current study show how this scenario is not always feasible for separated flows, because the chaotic behaviour of turbulence surpasses the ability of adjoint-based methods to compute time-dependent sensitivities of the flow.

  19. Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy

    NASA Astrophysics Data System (ADS)

    Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara

    2016-04-01

    In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and

  20. Near-wall turbulence modeling for boundary layers with separation

    NASA Astrophysics Data System (ADS)

    Ko, S. H.

    1991-12-01

    As a turbulent boundary layer undergoes a strong adverse pressure gradient, the flow may separate from the wall, and the use of empirical wall functions is inappropriate. The turbulence transport equations as well as the momentum equations must be solved through the laminar sublayer to the wall. The laminar sublayer encompasses a region where viscous effects become increasingly important. For the past two decades, many proposals for near-wall turbulence models of the kappa-epsilon type have been presented for calculating near-wall flows. A thorough review and a systematic evaluation of these models was previously given. It was found that some of the models tested failed to reproduce even the simple flat-plate boundary layer flow. Overall, the authors concluded that the near-wall turbulence models needed further refinement if they were to be used with confidence to calculate near-wall flows. Recently, the use of a direct numerical simulation (DNS) data base has provided new insight and data for development and testing of near-wall turbulence models.

  1. Separations systems data base: a users' manual. Revision I

    SciTech Connect

    Roddy, J.W.; McDowell, W.J.

    1981-01-01

    A separations systems data base (SEPSYS), designed specifically for the retrieval of information needed in chemical separations problems (i.e., how to perform a given separation under given conditions), is described. Included are descriptions of the basic methods of searching and retrieving information from the data base, the procedure for entering records into the data base, a listing of additional references concerning the computer information process, and an example of a typical record. The initial entries are concerned primarily with liquid-liquid extraction and liquid-solid ion exchange methods for metal ions and salts; however, the data base is constructed so that almost any separation process can be accommodated. Each record is indexed with information provided under the following fields: author; title; publication source; date of publication; organization sponsoring the work; brief abstract of the work; abstract number if the work has been so referenced, and/or abstractors initials; type of separation system used (e.g., flotation); specific or generic name of the separation agent used (e.g., acetylacetone); list of substances separated (e.g., gold, copper); qualitative description of the supporting medium or matrix containing the substances before separation (e.g., nitrate); type of literature where the record was printed (e.g., book); and type of information that the article contains. Each of these fields may be searched independently of the others (or in combination), and the last six fields contain specific key words that are listed in the report. Definitions are provided for the 36 information terms.

  2. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  3. Advanced vehicle separation apparatus. [automatic positioning of models for studies involving separation of aerodynamic shapes

    NASA Technical Reports Server (NTRS)

    Ospring, M. J.; Mancini, R. E.

    1979-01-01

    A method of obtaining test data from two independent models or bodies in a conventional wind tunnel is described. The system makes efficient use of wind tunnel test time with computer control performing complex coordinate transformations necessary for model positioning. The apparatus is designed to be used in any of the three Unitary Wind Tunnels at NASA-Ames Research Center. Mechanical design details and a brief description of the control system for the separation apparatus are presented.

  4. Drop Size Distribution - Based Separation of Stratiform and Convective Rain

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Williams, Christopher

    2014-01-01

    For applications in hydrology and meteorology, it is often desirable to separate regions of stratiform and convective rain from meteorological radar observations, both from ground-based polarimetric radars and from space-based dual frequency radars. In a previous study by Bringi et al. (2009), dual frequency profiler and dual polarization radar (C-POL) observations in Darwin, Australia, had shown that stratiform and convective rain could be separated in the log10(Nw) versus Do domain, where Do is the mean volume diameter and Nw is the scaling parameter which is proportional to the ratio of water content to the mass weighted mean diameter. Note, Nw and Do are two of the main drop size distribution (DSD) parameters. In a later study, Thurai et al (2010) confirmed that both the dual-frequency profiler based stratiform-convective rain separation and the C-POL radar based separation were consistent with each other. In this paper, we test this separation method using DSD measurements from a ground based 2D video disdrometer (2DVD), along with simultaneous observations from a collocated, vertically-pointing, X-band profiling radar (XPR). The measurements were made in Huntsville, Alabama. One-minute DSDs from 2DVD are used as input to an appropriate gamma fitting procedure to determine Nw and Do. The fitted parameters - after averaging over 3-minutes - are plotted against each other and compared with a predefined separation line. An index is used to determine how far the points lie from the separation line (as described in Thurai et al. 2010). Negative index values indicate stratiform rain and positive index indicate convective rain, and, moreover, points which lie somewhat close to the separation line are considered 'mixed' or 'transition' type precipitation. The XPR observations are used to evaluate/test the 2DVD data-based classification. A 'bright-band' detection algorithm was used to classify each vertical reflectivity profile as either stratiform or convective

  5. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  6. Mathematical modeling and remote monitoring of ion-exchange separation of transplutonium elements

    SciTech Connect

    Tselishchev, I.V.; Elesin, A.A.

    1988-07-01

    A mathematical model and calculational algorithms for the elution curves for ion-exchange separation of transplutonium elements (TPE) and the limits of optimal fractionation of the substances being separated, based on indicators of the process (yield, purification), are presented. The calculational programs are part of the programming provision of a small informational-calculational system based on the microcomputer Elektronika DZ-28, intended for remote monitoring of TPE separation. The elaborated programs can be implemented in the preliminary choice of necessary conditions of the TPE separation process, and also during and after the separation process for comparison of calculated results with the results of continuous, on-line remote monitoring and with the results of laboratory sample analysis. The possible application of the programs has been checked in the instance of the separation of curium and americium, and einsteinium and californium, the results of which are in satisfactory agreement with the results of remote and laboratory-analytical monitoring.

  7. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  8. Tunable electrophoretic separations using a scalable, fabric-based platform.

    PubMed

    Narahari, Tanya; Dendukuri, Dhananjaya; Murthy, Shashi K

    2015-02-17

    There is a rising need for low-cost and scalable platforms for sensitive medical diagnostic testing. Fabric weaving is a mature, scalable manufacturing technology and can be used as a platform to manufacture microfluidic diagnostic tests with controlled, tunable flow. Given its scalability, low manufacturing cost (<$0.25 per device), and potential for patterning multiplexed channel geometries, fabric is a viable platform for the development of analytical devices. In this paper, we describe a fabric-based electrophoretic platform for protein separation. Appropriate yarns were selected for each region of the device and weaved into straight channel electrophoretic chips in a single step. A wide dynamic range of analyte molecules ranging from small molecule dyes (<1 kDa) to macromolecule proteins (67-150 kDa) were separated in the device. Individual yarns behave as a chromatographic medium for electrophoresis. We therefore explored the effect of yarn and fabric parameters on separation resolution. Separation speed and resolution were enhanced by increasing the number of yarns per unit area of fabric and decreasing yarn hydrophilicity. However, for protein analytes that often require hydrophilic, passivated surfaces, these effects need to be properly tuned to achieve well-resolved separations. A fabric device tuned for protein separations was built and demonstrated. As an analytical output parameter for this device, the electrophoretic mobility of a sedimentation marker, Naphthol Blue Black bovine albumin in glycine-NaOH buffer, pH 8.58 was estimated and found to be -2.7 × 10(-8) m(2) V(-1) s(-1). The ability to tune separation may be used to predefine regions in the fabric for successive preconcentrations and separations. The device may then be applied for the multiplexed detection of low abundance proteins from complex biological samples such as serum and cell lysate. PMID:25582166

  9. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  10. Improved Separability Criteria Based on Bloch Representation of Density Matrices.

    PubMed

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  11. Groundwater Flow Model of the General Separations Area Using PORFLOW

    SciTech Connect

    FLACH, GREGORY

    2004-07-15

    The E Area PA (McDowell-Boyer et al. 2000) includes a steady-state simulation of groundwater flow in the General Separations Area as a prerequisite for saturated zone contaminant transport analyses. The groundwater flow simulations are based on the FACT code (Hamm and Aleman2000). The FACT-based GSA model was selected during preparation of the original PA to take advantage of an existing model developed for environmental restoration applications at the SRS (Flach and Harris 1997, 1999; Flach 1999). The existing GSA/FACT model was then slightly modified for PA use, as described in the PA document. FACT is a finite-element code utilizing deformed brick elements. Material properties are defined at element centers, and state variables such as hydraulic head are located at element vertices. The PORFLOW code (Analytic and Computational Research, Inc. 2000) was selected for performing saturated zone transport simulations of source zone radionuclides and their progeny. PORFLOW utilizes control volume discretization and the nodal point integration method, with all properties and state variables being defined at the center of an interior grid cell. The groundwater flow calculation includes translating the Darcy velocity field computed by FACT into a form compatible for input to PORFLOW. The FACT velocity field is defined at element vertices, whereas PORFLOW requires flux across cell faces. For the present PA, PORFLOW cell face flux is computed in a two-step process. An initial face flux is computed from FACT as an average of the normal components of Darcy velocity at the four corners. The derived flux field approximately conserves mass, but not rigorously. Thus, the flux field is subsequently perturbed to force rigorous mass conservation on a cell-by-cell basis. The undocumented process used is non-unique and can introduce significant artifacts into the final flux field.

  12. Multiscale modeling of blood-plasma separation in bifurcations

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Popel, Aleksander; Karniadakis, George

    2011-11-01

    Motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a low-dimensional RBC validated 3D model based on dissipative particle dynamics. No-slip wall boundary and adaptive boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging microfluidic channels. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations, including the size of cell-free layer on the daughter channels. The results show that the flowrate ratio of the daughter channels and the feed hematocrit level have considerable influence on blood-plasma separation. Compared with the particle recovery efficiencies of healthy RBCs, malaria-infected RBCs (iRBCs) have a tendency to travel into the low flowrate daughter channels because of the increased stiffness of iRBCs. The simulation results are consistent with previous experimental results and theoretical predictions. This work was suporrted by the National Institute of Health (NIH), Grant R01Hl094270 and the National Science Foundation (NSF) Grant CBET-0852948.

  13. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  14. Mathematical model for multicomponent separations on the continuous annular chromatograph

    SciTech Connect

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  15. Application of Satellite Based Augmentation Systems to Altitude Separation

    NASA Astrophysics Data System (ADS)

    Magny, Jean Pierre

    This paper presents the application of GNSS1, or more precisely of Satellite Based Augmentation Systems (SBAS), to vertical separation for en-route, approach and landing operations. Potential improvements in terms of operational benefit and of safety are described for two main applications. First, vertical separation between en-route aircraft, which requires a system available across wide areas. SBAS (EGNOS, WAAS, and MSAS) are very well suited for this purpose before GNSS2 becomes available. And secondly, vertical separation from the ground during approach and landing, for which preliminary design principles of instrument approach procedures and safety issues are presented. Approach and landing phases are the subject of discussions within ICAO GNSS-P. En-route phases have been listed as GNSS-P future work and by RTCA for development of new equipments.

  16. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-03-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  17. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-06-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  18. Separating Stars and Galaxies Probabilistically Based on Color

    NASA Astrophysics Data System (ADS)

    Strait, Victoria

    2015-01-01

    Using photometric data from the Deep Lens Survey (DLS) we develop a star-galaxy separation algorithm based on objects' colors in six bands (B,V,R,z,J,K). Using a training set selected from a catalog of stars classified via their DLS shapes, we fit a third order polynomial to the filtered color-color data to approximate the stellar locus. Our algorithm produces a weighted probability of an object being a star. Based on each object's distance from the stellar locus in color-color space, we fit the resulting histogram as the sum of two Gaussians. We find that near-infrared information (J and K) provide the best separation, but explore using optical information alone to determine the classification as well. Our results demonstrate that the use of color information in a probabilistic algorithm has the potential to dramatically improve star-galaxy classification when used in conjunction with existing shape-based algorithms.​

  19. Measurement of flow separation in a human vocal folds model

    NASA Astrophysics Data System (ADS)

    Šidlof, Petr; Doaré, Olivier; Cadot, Olivier; Chaigne, Antoine

    2011-07-01

    The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.

  20. Protein crystals on phase-separating model membranes

    NASA Astrophysics Data System (ADS)

    Manley, Suliana; Horton, Margaret; Leszczynski, Szymon; Gast, Alice

    2006-03-01

    We study the interplay between the crystallization of proteins tethered to membranes and separation within the membranes of giant unilamellar vesicles (GUVs) composed of DOPC, sphingomyelin (SM), and cholesterol. These model membranes phase separate into coexisting liquid domains below a miscibility transition temperature. This phase separation captures some aspects of the formation of lipid rafts in cell membranes and demonstrates the influence of membrane composition on raft formation. Real cell membranes have a much more complicated structure. There are additional physical constraints present in cell membranes, such as their attachment to the cytoskeleton and the presence of membrane bound proteins. The self-association of membrane proteins can influence the membrane phase behavior. We begin to investigate these effects on model tethered protein- loaded membranes by incorporating a small amount of biotin-X- DPPE into our GUVs. The biotinylated lipid partitions into a cholesterol-poor phase; thus, streptavidin binds preferentially to one of the membrane phases. As streptavidin assembles to form crystalline domains, it restricts the membrane mobility. We examine the effect of this protein association on lipid phase separation, as well as the effect of the lipid phase separation on the crystallization of the tethered proteins.

  1. A computationally efficient modelling of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Dini, Paolo; Maughmer, Mark D.

    1989-02-01

    The goal is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. Toward this end, a computational model of the separation bubble was developed and incorporated into the Eppler and Somers airfoil design and analysis program. Thus far, the focus of the research was limited to the development of a model which can accurately predict situations in which the interaction between the bubble and the inviscid velocity distribution is weak, the so-called short bubble. A summary of the research performed in the past nine months is presented. The bubble model in its present form is then described. Lastly, the performance of this model in predicting bubble characteristics is shown for a few cases.

  2. A computationally efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Dini, Paolo; Maughmer, Mark D.

    1989-01-01

    The goal is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. Toward this end, a computational model of the separation bubble was developed and incorporated into the Eppler and Somers airfoil design and analysis program. Thus far, the focus of the research was limited to the development of a model which can accurately predict situations in which the interaction between the bubble and the inviscid velocity distribution is weak, the so-called short bubble. A summary of the research performed in the past nine months is presented. The bubble model in its present form is then described. Lastly, the performance of this model in predicting bubble characteristics is shown for a few cases.

  3. Ion separations based on electrical potentials nanoporous and microporous membranes

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    This dissertation examines several types of ion separations in nanometer to micrometer pores in membranes. Membranes provide an attractive platform for ion separations, primarily because they operate continuously (i.e. not in a batch mode), and small pores offer the potential for ion separation based on charge and electrophoretic mobility differences. Initial studies employed charged, nanoporous membranes to separate monovalent and divalent ions. Adsorption of polyelectrolyte multilayers in nanoporous membranes afforded control over the surface charge and pore radii in track-etched membranes, and electrostatic ion-exclusion, particularly for divalent ions, occurred in these membranes because the electrical double layer filled the entire nanopore. Initial experiments employed adsorption of (PSS/PAH) multilayers in the 50-nm diameter pores of PCTE membranes to give a K+/Mg2+ selectivity of ~10 in pressure-driven dead-end filtration. Adsorption of (PSS/PAH) 1 films in 30-nm pores gave a similar K+/Mg2+ selectivity with a simpler modification procedure. Separations utilizing (PSS/PAH)1 films in 30-nm pores showed the lowest ion rejections with high ion concentrations, consistent with enhanced screening of the electrical double layer at high ionic strength. However, solutions with < 5 mM ionic strength exhibited essentially 100% Mg2+ rejections (the Mg2+ concentration in the permeate was below the method detection limit). Moreover, K+ rejections increased in the presence of Mg2+, which may stem from Mg2+-adsorption within the PEM and increased surface charge. Finally, separation of Br- and SO42- with a PSS1-modified, 30-nm PCTE membrane validated the exclusion mechanism for anions. The average Br-/SO42- selectivity was 3.4 +/- 0.8 for a solution containing 0.5 mM NaBr and 0.5 mM Na2SO4. The low selectivity in this case likely stems from a relatively large pore. The membranes used for the separation of monovalent and divalent ions also facilitated separation of

  4. Mode separation of Lamb waves based on dispersion compensation method.

    PubMed

    Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi

    2012-04-01

    Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions. PMID:22501050

  5. Modeling of turbulent separated flows for aerodynamic applications

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1983-01-01

    Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.

  6. Separation of Doppler radar-based respiratory signatures.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings. PMID:26358241

  7. Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation.

    PubMed

    Heinonen, Jari; Kukkonen, Saku; Sainio, Tuomo

    2014-09-01

    Performance characteristics of two advanced multi-column chromatographic separation processes with discontinuous feed, Multi-Column Recycling Chromatogrphy (MCRC) and Japan Organo (JO), were investigated for a ternary separation using multi-objective optimization with an evolutionary algorithm. Conventional batch process was used as a reference. Fractionation of a concentrated acid hydrolysate of wood biomass into sulfuric acid, monosaccharide, and acetic acid fractions was used as a model system. Comparison of the separation processes was based on selected performance parameters in their optimized states. Flow rates and step durations were taken as decision variables whereas the column configuration and dimensions were fixed. The MCRC process was found to be considerably more efficient than the other processes with respect to eluent consumption. The batch process gave the highest productivity and the JO process the lowest. Both of the multi-column processes gave significantly higher monosaccharide yield than the batch process. When eluent consumption and monosaccharide yield are taken into account together with productivity, the MCRC process was found to be the most efficient in the studied case. PMID:25060000

  8. Citrate based ``TALSPEAK`` lanthanide-actinide separation process

    SciTech Connect

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

  9. Comparative study of hybrid RANS-LES models for separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Lakshmanan, S. K.; Gopalan, H.; De, A.

    2016-06-01

    Hybrid RANS-LES models are proven to be capable of predicting massively separated flows with reasonable computation cost. In this paper, Spalart-Allmaras (S-A) based detached eddy simulation (DES) model and three SST based hybrid models with different RANS to LES switching criteriaare investigated. The flow over periodic hill at Re = 10,595 is chosen as the benchmark for comparing the performance of the different models due to the complex flow physics and reasonablecomputational cost. The model performances are evaluated based on their prediction capabilities of velocity and stress profiles, and separation and reattachment point. The simulated results are validatedagainst experimental and numerical results available in literature. The S-A DES model predicted separation bubble accurately at the top of the hill, as reported earlier in experiments and other numerical results. This model also correctly predicted velocity and stress profiles in recirculation region. However, the performance of this model was poor in the post reattachment region. On the other hand, the k-ω SST based hybrid models performed poorly in recirculation region, but it fairly predicted stress profiles in post reattachment region.

  10. Dehumidification via membrane separation for space-based applications

    NASA Technical Reports Server (NTRS)

    Gienger, Jane Kucera; Ray, Roderick J.; Chullen, Cinda

    1988-01-01

    The paper describes the development of a membrane-based dehumidification process for space-based applications, such as spacecraft cabins and EVA space suits. Results presented are from: (1) screening tests conducted to determine the efficacy of various membranes to separate water vapor from air, and (2) parametric and long-term tests of membranes operated at conditions that simulate the range of environmental conditions (e.g., temperature and relative humidity) expected in the planned Space Station. Also included in this paper is a discussion of preliminary designs of membrane-based dehumidification processes for the Space Station and EVA space suits. These designs result in compact and energy-efficient systems that offer significant advantages over conventional dehumidification processes.

  11. Simulation of Separated Flows with the K-Epsilon Model

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana; Iaccarino, Gianluca

    2001-11-01

    The standard k-ɛ model is widely use in industrial applications even if its limits and disadvantages are well known. It was shown in a previous work^*, that with the standard k and ɛ transport equations and an appropriate modeling of the coefficients, it is possible to predict correctly free shear flows and equilibrium boundary layers under different pressure gradient. In the present work the same approach has been used to simulate separated flows in a planar diffuser and backstep, an axi-symmetric combustion chamber and a channel with wavy-walls. The computations are in good agreement with the experimental data for both the mean velocity and shear stress profiles. In addition, they are comparable with results obtained with the more complex v^2-f-model^**. Simulations have been carried out using a commercial CFD code (Fluent). ^* Poroseva, S.V. & Bezard, H., On ability of standard k-ɛ model to simulate aerodynamic turbulent flows, CFD Journal, 2001, v.9, N 1, pp. 464-470 ^** Durbin, P.A. Separated Flow Computations Using the v^2-f Model, AIAA J., 1995

  12. Hydrate-based heavy metal separation from aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  13. DNA based electrolyte/separator for lithium battery application

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Ouchen, Fahima; Smarra, Devin A.; Subramanyam, Guru; Grote, James G.

    2015-09-01

    In this study, we demonstrated the use of DNA-CTMA (DC) in combination with PolyVinylidene Fluoride (PVDF) as a host matrix or separator for Lithium based electrolyte to form solid polymer/gel like electrolyte for potential application in Li-ion batteries. The addition of DC provided a better thermal stability of the composite electrolyte as shown by the thermos-gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel electrolyte had no effect on the overall ionic conductivity of the composite. The obtained films are flexible with high mechanical stretch-ability as compared to the gel type electrolytes only.

  14. Separations of Short DNA in Agarose Gels: What Model Applies?

    NASA Astrophysics Data System (ADS)

    Beheshti, Afshin

    2000-03-01

    Gel Electrophoresis is used ubiquitously for separating proteins and DNA fragments from mixtures into individual components. Molecules separate because their mobilities, μ = v / E, depend on their effective charge and effective friction imposed by the gel. Models describing the dependence of μ on molecular parameters are inadequate. For example, the reptation theory as applied in other studies suggests μ proportional to (1/L). We asked whether the relationship (1/μ) proportional to AL + B, where A and B are independent parameters, would better describe electrophoretic separations of DNA fragments over a wide range of fragment lengths. A series of DNA ladders were electrophoresed in Seakem and in Metaphor agarose and mobilities studied as a function of their DNA length. In the Metaphor agarose a range of 10 bp to 1500 bp DNA fragments were observed. While in the Seakem agarose the study was done with DNA fragments ranging from 100 bp to 10 kbp. Results of the fits for μ vs. L indicate the dependence is more complex than these simple models suggest. Supported by NSF BES 9521381 and NSF Research Training Grant Fellowship 130362022.

  15. SASSE MODELING OF A URANIUM MOLYBDENUM SEPARATION FLOWSHEET

    SciTech Connect

    Laurinat, J

    2007-05-31

    H-Canyon Engineering (HCE) is evaluating the feasibility of processing material from the Super Kukla Prompt Burst Reactor, which operated at the Nevada Test Site from 1964 to 1978. This material is comprised of 90 wt % uranium (U) (at approximately 20% 235U enrichment) alloyed with 10 wt % molybdenum (Mo). The objective is to dissolve the material in nitric acid (HNO{sub 3}) in the H-Canyon dissolvers and then to process the dissolved material through H-Canyon First and Second Cycle solvent extraction. The U product from Second Cycle will be sent to the highly enriched uranium (HEU) blend down program. In the blend down program, enriched U from the 1EU product stream will be blended with natural U at a ratio of 1 part enriched U per 3.5 parts natural U to meet a reactor fuel specification of 4.95% 235U before being shipped for use by the Tennessee Valley Authority (TVA) in its nuclear plants. The TVA specification calls for <200 mg Mo/g U (200 ppm). Since natural U has about 10 mg Mo/g U, the required purity of the 1EU product prior to blending is about 800 mg Mo/g U, allowing for uncertainties. HCE requested that the Savannah River National Laboratory (SRNL) define a flowsheet for the safe and efficient processing of the U-10Mo material. This report presents a computational model of the solvent extraction portion of the proposed flowsheet. The two main objectives of the computational model are to demonstrate that the Mo impurity requirement can be met and to show that the solvent feed rates in the proposed flowsheet, in particular to 1A and 1D Banks, are adequate to prevent refluxing of U and thereby ensure nuclear criticality safety. SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction), a Microsoft Excel spreadsheet that supports Argonne National Laboratory's proprietary AMUSE (Argonne Model for Universal Solvent Extraction) code, was selected to model the U/Mo separation flowsheet. SASSE spreadsheet models of H-Canyon First and Second Cycle solvent

  16. A phase-separation kinetic model for coke formation

    SciTech Connect

    Wiehe, I.A. . Corporate Research Lab.)

    1993-11-01

    Coke formation during the thermolysis of petroleum residua is postulated to occur by a mechanism that involves the liquid-liquid phase separation of reacted asphaltenes to form a phase that is lean in abstractable hydrogen. This mechanism provides the basis of a model that quantitatively describes the kinetics for the thermolysis of Cold Lake vacuum residuum and its deasphalted oil in an open-tube reactor at 400 C. The previously unreacted asphaltenes were found to be the fraction with the highest rate of thermal reaction but with the least extent of reaction. This not only described the appearance and disappearance of asphaltenes but also quantitatively described the variation in molecular weight and hydrogen content of the asphaltenes with reaction time. Further evidence of the liquid-liquid phase separation was the observation of spherical particles of liquid crystalline coke and the preferential conversion of the most associated asphaltenes to coke.

  17. A phase separation kinetic model for coke formation

    SciTech Connect

    Wiehe, I.A.

    1993-12-31

    Coke formation during the thermolysis of petroleum residua is postulated to occur by a mechanism that involves the liquid-liquid phase separation of reacted asphaltenes to form a phase that is lean in abstractable hydrogen. This mechanism provides the basis of a model the quantitatively describes the kinetics for the thermolysis of Cold Lake vacuum residuum and its deasphalted oil in an open tube reactor at 400{degrees}C. The previously unreacted asphaltenes were found to be the fraction with the highest rate of thermal reaction but with the least extent of reaction. Further evidence of the liquid-liquid phase separation was the observation of spherical particles of liquid crystalline coke and the preferential conversion of the most associated asphaltenes to coke.

  18. Kinematic Modeling of Separation Compression for Paired Approaches to Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2014-01-01

    In a simultaneous paired approach to closely-spaced parallel runways, a pair of aircraft flies in close proximity on parallel approach paths. The longitudinal separation between the aircraft must be maintained within a range that avoids wake encounters and, if one of the aircraft blunders, avoids collision. To increase operational availability, the approach procedure must accommodate a mixture of aircraft sizes and, consequently, approach speeds. In these procedures, the slower aircraft is placed in the lead position. The faster aircraft maintains separation from the slow aircraft in a dependent operation until final approach and flies independently afterward. Due to the higher approach speed of the fast aircraft, longitudinal separation will decrease during final approach. Therefore, the fast aircraft must position itself before the final approach so that it will remain within the safe range of separation as separation decreases. Given the approach geometry and speed schedule for each aircraft, one can use kinematics to estimate the separation loss between a pair of aircraft. A kinematic model can complement fast-time Monte-Carlo simulations of the approach by enabling a tailored reduction in the variation of starting position for the fast aircraft. One could also implement the kinematic model in ground-based or on-board decision support tools to compute the optimal initial separation for a given pair of aircraft. To better match the auto-coupled flight of real aircraft, the paper derives a kinematic model where the speed schedule is flown using equivalent airspeed. The predicted time of flight using the equivalent airspeed kinematic model compares well against a high-fidelity aircraft simulation performing the same approach. This model also demonstrates a modest increase in the predicted loss of separation when contrasted against a kinematic model that assumes the scheduled speed is true airspeed.

  19. Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    The separation of DNA molecules according to their size represents a fundamental bioanalytical procedure. Here, we report the development of a chip-sized device, consisting of micrometer-sized fence structures fabricated in a microchannel, for the separation of large DNA molecules (over 10 kbp) based on the principle of size exclusion chromatography (SEC). In order to achieve separation, two approaches were utilized: first, the DNA samples were concentrated immediately prior to separation using nanoslit structures, with the aim of improving the resolution. Second, a theoretical model of SEC-based separation was established and applied in order to predict the optimal voltage range for separation. In this study, we achieved separation of λ DNA (48.5 kbp) and T4 DNA (166 kbp) using the present SEC-based microchip.

  20. Uplink User Signal Separation for OFDMA-Based Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Şahin, MustafaE; Guvenc, Ismail; Arslan, Hüseyin

    2009-12-01

    Spectrum awareness of orthogonal frequency division multiple access- (OFDMA-) based cognitive radios (CRs) can be improved by enabling them to separate the primary user signals in the uplink (UL). Assuming availability of information about the basic parameters of the primary system as well as time synchronization to the first arriving user signal, two algorithms are proposed in this paper. The first one targets estimating the size of the frequency allocation block of the primary system. The performance of this algorithm is compared with the results of a Gaussian approximation-based approach that aims to determine the probability of correct block size estimation theoretically. The second one is a semiblind user separation algorithm, which estimates the carrier frequency offsets and time delays of each block by exploiting the cross-correlations over pilot subcarriers. A two-dimensional clustering method is then employed to group the estimates, where each group belongs to a different user. It is shown that the proposed algorithms can improve the spectrum opportunity detection of cognitive radios. Feasibility of the algorithms is proved through practical simulations.

  1. Separation of Fission Products Based on Ionic Liquids: Anion Effect

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V.

    2004-03-28

    The applications of ionic liquids (ILs) as new separation media have been actively investigated recently. The most commonly studied class of ILs for such applications is based on dialkyl imidazolium cations. In comparison with conventional molecular solvents, ILs exhibit enhanced distribution coefficients for a number of complexing neutral ligands in extraction of metal ions from aqueous solutions. The effect of the alkyl chain length of imidazolium cations on the distribution coefficients of solvent extraction using crown ethers was the subject of a number of the previous investigations. The distribution coefficients have been found to decrease with the alkyl chain length of the IL cations. This observation implies that the extraction process also involves the exchange of the IL cations with metal ions. The longer the alkyl chain lengths of the IL cations are, the more hydrophobic the IL cations are and the more difficult to be transported into aqueous phases via ion exchange. Accordingly, the ion-exchange process is another unique property of IL-based extractions involving charged species. Here, we report the investigation about the effect of the variation of IL anions on the solvent extraction of metal ions using crown ethers as extractants. The elucidation of different solvation effects involved in ionic liquids could lead to optimized separation media for these novel solvents.

  2. A computationally efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.

    1988-01-01

    The goal of this research is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. To this end, a model of the bubble is under development and will be incorporated in the analysis section of the Eppler and Somers program. As a first step in this direction, an existing bubble model was inserted into the program. It was decided to address the problem of the short bubble before attempting the prediction of the long bubble. In the second place, an integral boundary-layer method is believed more desirable than a finite difference approach. While these two methods achieve similar prediction accuracy, finite-difference methods tend to involve significantly longer computer run times than the integral methods. Finally, as the boundary-layer analysis in the Eppler and Somers program employs the momentum and kinetic energy integral equations, a short-bubble model compatible with these equations is most preferable.

  3. A computationally efficient modelling of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Maughmer, Mark D.

    1988-02-01

    The goal of this research is to accurately predict the characteristics of the laminar separation bubble and its effects on airfoil performance. To this end, a model of the bubble is under development and will be incorporated in the analysis section of the Eppler and Somers program. As a first step in this direction, an existing bubble model was inserted into the program. It was decided to address the problem of the short bubble before attempting the prediction of the long bubble. In the second place, an integral boundary-layer method is believed more desirable than a finite difference approach. While these two methods achieve similar prediction accuracy, finite-difference methods tend to involve significantly longer computer run times than the integral methods. Finally, as the boundary-layer analysis in the Eppler and Somers program employs the momentum and kinetic energy integral equations, a short-bubble model compatible with these equations is most preferable.

  4. A computational efficient modelling of laminar separation bubbles

    NASA Technical Reports Server (NTRS)

    Dini, Paolo; Maughmer, Mark D.

    1990-01-01

    In predicting the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is often important to account for the effects of laminar (transitional) separation bubbles. Previous approaches to the modelling of this viscous phenomenon range from fast but sometimes unreliable empirical correlations for the length of the bubble and the associated increase in momentum thickness, to more accurate but significantly slower displacement-thickness iteration methods employing inverse boundary-layer formulations in the separated regions. Since the penalty in computational time associated with the more general methods is unacceptable for airfoil design applications, use of an accurate yet computationally efficient model is highly desirable. To this end, a semi-empirical bubble model was developed and incorporated into the Eppler and Somers airfoil design and analysis program. The generality and the efficiency was achieved by successfully approximating the local viscous/inviscid interaction, the transition location, and the turbulent reattachment process within the framework of an integral boundary-layer method. Comparisons of the predicted aerodynamic characteristics with experimental measurements for several airfoils show excellent and consistent agreement for Reynolds numbers from 2,000,000 down to 100,000.

  5. A computational efficient modelling of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Dini, Paolo; Maughmer, Mark D.

    1990-07-01

    In predicting the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is often important to account for the effects of laminar (transitional) separation bubbles. Previous approaches to the modelling of this viscous phenomenon range from fast but sometimes unreliable empirical correlations for the length of the bubble and the associated increase in momentum thickness, to more accurate but significantly slower displacement-thickness iteration methods employing inverse boundary-layer formulations in the separated regions. Since the penalty in computational time associated with the more general methods is unacceptable for airfoil design applications, use of an accurate yet computationally efficient model is highly desirable. To this end, a semi-empirical bubble model was developed and incorporated into the Eppler and Somers airfoil design and analysis program. The generality and the efficiency was achieved by successfully approximating the local viscous/inviscid interaction, the transition location, and the turbulent reattachment process within the framework of an integral boundary-layer method. Comparisons of the predicted aerodynamic characteristics with experimental measurements for several airfoils show excellent and consistent agreement for Reynolds numbers from 2,000,000 down to 100,000.

  6. A computationally efficient modelling of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Dini, Paolo

    1990-08-01

    In predicting the aerodynamic characteristics of airfoils operating at low Reynolds numbers, it is often important to account for the effects of laminar (transitional) separation bubbles. Previous approaches to the modeling of this viscous phenomenon range from fast by sometimes unreliable empirical correlations for the length of the bubble and the associated increase in momentum thickness, to more accurate but significantly slower displacement thickness iteration methods employing inverse boundary layer formulations in the separated regions. Since the penalty in computational time associated with the more general methods is unacceptable for airfoil design applications, use of an accurate yet computationally efficient model is highly desirable. To this end, a semi-empirical bubble model was developed and incorporated into the Eppler and Somers airfoil design and analysis program. The generality and the efficiency were achieved by successfully approximating the local viscous/inviscid interaction, the transition location, and the turbulent reattachment process within the framework of an integral boundary-layer method. Comparisons of the predicted aerodynamic characteristics with experimental measurements for several airfoils show excellent and consistent agreement for Reynolds numbers from 2,000,000 down to 100,000.

  7. Characterization and Modeling of Materials for Kr-Xe Separations

    SciTech Connect

    Forster, Paul; Naduvalath, Balakrishnan; Czerwinski, Ken

    2015-11-16

    We sought to identify practical adsorbents for the separation of Kr from Xe through pressure swing adsorption. We spent appreciable efforts on two categories of materials: metal-organic frameworks (MOFs) and zeolites. MOFs represent a new and exciting sorbent with numerous new framework topologies and surface chemistries. Zeolites are widely used and available commercial adsorbents. We have employed a combination of gas sorption analysis to analyze gas – surface interactions, computational modelling to both aid in interpreting experimental results and to predict practical adsorbents, and in-situ crystallographic studies to confirm specific experimental results.

  8. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  9. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  10. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES. PMID:17981393

  11. Hydrate-based heavy metal separation from aqueous solution

    PubMed Central

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  12. A model for a liquid membrane separation stage

    SciTech Connect

    1997-02-01

    The coupled mixer-settlers having a common settling zone suggested for use to extract fission products from a conversion reactor blanket are analogues of membrane apparatuses and at a first glance in terms of hydrodynamics do not differ from conventional mixer-settlers. However, the common settling zone complicates both the design solutions and their modelling. For example, different emulsion types can result in mixers and it is not known how this fact will affect phenomena such as separation rates, disperse phase entrainment under conditions close to flooding. For initial studies of the feasibility of the process in principle and the primary optimization of the structure of the transfer scheme one needs to have a model and a program to calculate the statics of a multistage membrane facility of this type.

  13. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling.

    PubMed

    Yu, Huanzhou; Shimakawa, Ann; McKenzie, Charles A; Brodsky, Ethan; Brittain, Jean H; Reeder, Scott B

    2008-11-01

    Multiecho chemical shift-based water-fat separation methods are seeing increasing clinical use due to their ability to estimate and correct for field inhomogeneities. Previous chemical shift-based water-fat separation methods used a relatively simple signal model that assumes both water and fat have a single resonant frequency. However, it is well known that fat has several spectral peaks. This inaccuracy in the signal model results in two undesired effects. First, water and fat are incompletely separated. Second, methods designed to estimate T(2) (*) in the presence of fat incorrectly estimate the T(2) (*) decay in tissues containing fat. In this work, a more accurate multifrequency model of fat is included in the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) water-fat separation and simultaneous T(2) (*) estimation techniques. The fat spectrum can be assumed to be constant in all subjects and measured a priori using MR spectroscopy. Alternatively, the fat spectrum can be estimated directly from the data using novel spectrum self-calibration algorithms. The improvement in water-fat separation and T(2) (*) estimation is demonstrated in a variety of in vivo applications, including knee, ankle, spine, breast, and abdominal scans. PMID:18956464

  14. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  15. Novel Perfluorinated Polymer-Based Pervaporation Membranes for Separation of Solvent/Water Mixtures

    PubMed Central

    Smuleac, V.; Wu, J.; Nemser, S.; Majumdar, S.; Bhattacharyya, D.

    2012-01-01

    Traditionally, the pervaporation of water-solvent mixtures where the solvent is the major component is performed using hydrophilic membranes (such as PVA or zeolites). In the present paper a new type of pervaporation membrane (amorphous perfluorinated polymer, hydrophobic) was studied for separation of water-solvent mixtures. This membrane has high free volume and is inert for all solvents, and has a remarkable mechanical, chemical and thermal stability. The water is transported by solution diffusion model and the separation of solvent is primarily based on molecular sieving (size exclusion) principles. The membrane shows a high stability for operation over a broad range of feed concentrations without swelling; the operating temperature does not have a significant effect on membrane separation performance. Separation factors as high as 349 and 500 for water-ethanol and water-IPA mixtures (2-98 % wt water-solvent) and fluxes of 0.15 and 0.05 kg/m2h, respectively were obtained at 22 °C. The permeance-based selectivities were also calculated, and the selectivity is approximately constant for a wide range of feed concentrations. The pervaporation of more complex (ternary) mixtures of water-ethanol-ethyl acetate showed that this system could be successfully applied for solute separation based on size exclusion. PMID:22879688

  16. Phase Separation of Model Segmented Poly(Carbonate Urethanes)

    NASA Astrophysics Data System (ADS)

    Hernandez, Rebeca; Hung, Elena; Runt, James

    2006-03-01

    The present paper focuses on the phase separated morphology and segment demixing of model poly(carbonate urethanes) [PCU] with hard segment contents ranging from 30 -- 65% and soft segments composed of 1,6 poly(hexamethylene carbonate) [MW = 1K]. Hard segments were formed from 4,4'-methylenediphenyl diisocyanate and 1,4 butanediol. This family of materials represents a recent approach in the development of polyurethanes with improved long-term biostability, and is under clinical investigation in a number of biomedical devices. Only a single glass transition temperature was observed for each copolymer, increasing in temperature with increasing hard segment content. However, loss spectra from dynamic mechanical analysis showed clear evidence of two mixed phases. The results of small-angle X-ray scattering and tapping mode AFM experiments were consistent with these observations and will be discussed. Finally, these results will be compared with initial findings on phase separation in another family of polyurethane copolymers of current interest as blood-contact materials in biomedical devices having mixed poly(dimethylsiloxane) -- poly(hexamethyleneoxide) soft segments.

  17. Modeling of piezoelectric plates with variables separation for static analysis

    NASA Astrophysics Data System (ADS)

    Vidal, P.; Gallimard, L.; Polit, O.

    2016-05-01

    In this work, the modeling of laminated composite plates with embedded piezoelectric layers is addressed through a variables separation approach. Both the displacement and electric potential fields are approximated as a sum of separated functions of the in-plane coordinates x, y and the transverse coordinate z. This choice yields to a nonlinear problem that can be solved by an iterative process. That consists of solving a 2D and 1D problem successively at each iteration. In the thickness direction, a fourth and second-order expansion in each layer is considered for the displacements and the electric potential, respectively. For the in-plane description, classical eight-node quadrilateral finite element is used. Numerical examples involving several representative laminates are addressed to show the accuracy of the present LayerWise (LW) method. It is shown that it can provide quasi-3D results less costly than classical LW computations. In particular, the estimation of the transverse stresses which is of major importance for damage analysis is very good.

  18. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  19. Audio visual speech source separation via improved context dependent association model

    NASA Astrophysics Data System (ADS)

    Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz

    2014-12-01

    In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.

  20. Fully automated objective-based method for master recession curve separation.

    PubMed

    Posavec, Kristijan; Parlov, Jelena; Nakić, Zoran

    2010-01-01

    The fully automated objective-based method for master recession curve (MRC) separation was developed by using Microsoft Excel spreadsheet and Visual Basic for Applications (VBA) code. The core of the program code is used to construct an MRC by using the adapted matching strip method (Posavec et al. 2006). Criteria for separating the MRC into two or three segments are determined from the flow-duration curve and are represented as the probable range of percent of flow rate duration. Successive separations are performed automatically on two and three MRCs using sets of percent of flow rate duration from selected ranges and an optimal separation model scenario, having the highest average coefficient of determination R(2), is selected as the most appropriate one. The resulting separated master recession curves are presented graphically, whereas the statistics are presented numerically, all in separate sheets. Examples of field data obtained from two springs in Istria, Croatia, are used to illustrate its application. The freely available Excel spreadsheet and VBA program ensures the ease of use and applicability for larger data sets. PMID:20100291

  1. Modeling the influence of bubble pressure on grain boundary separation and fission gas release

    SciTech Connect

    Pritam Chakraborty; Michael R. Tonks; Giovanni Pastore

    2014-09-01

    Grain boundary (GB) separation as a mechanism for fission gas release (FGR), complementary to gas bubble interlinkage, has been experimentally observed in irradiated light water reactor fuel. However there has been limited effort to develop physics-based models incorporating this mechanism for the analysis of FGR. In this work, a computational study is carried out to investigate GB separation in UO2 fuel under the effect of gas bubble pressure and hydrostatic stress. A non-dimensional stress intensity factor formula is obtained through 2D axisymmetric analyses considering lenticular bubbles and Mode-I crack growth. The obtained functional form can be used in higher length-scale models to estimate the contribution of GB separation to FGR.

  2. Coupling a transient solvent extraction module with the separations and safeguards performance model.

    SciTech Connect

    DePaoli, David W.; Birdwell, Joseph F.; Gauld, Ian C.; Cipiti, Benjamin B.; de Almeida, Valmor F.

    2009-10-01

    A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  3. Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model

    SciTech Connect

    de Almeida, Valmor F; Birdwell Jr, Joseph F; DePaoli, David W; Gauld, Ian C

    2009-10-01

    A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  4. Modeling high gradient magnetic separation from biological fluids.

    SciTech Connect

    Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

    2006-01-01

    A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

  5. Separation of CARS image contributions with a Gaussian mixture model.

    PubMed

    Vogler, Nadine; Bocklitz, Thomas; Mariani, Melissa; Deckert, Volker; Markova, Aneta; Schelkens, Peter; Rösch, Petra; Akimov, Denis; Dietzek, Benjamin; Popp, Jürgen

    2010-06-01

    Coherent anti-Stokes Raman scattering (CARS) gained a lot of importance in chemical imaging. This is due to the fast image acquisition time, the high spatial resolution, the non-invasiveness, and the molecular sensitivity of this method. By using the single-line CARS in contrast to the multiplex CARS, different signal contributions stemming from resonant and non-resonant light-matter interactions are indistinguishable. Here a numerical method is presented in order to extract more information from univariate CARS images: vibrational composition, morphological information, and contributions from index-of-refraction steps can be separated from single-line CARS images. The image processing algorithm is based on the physical properties of CARS process as reflected in the shape of the intensity histogram of univariate CARS images. Because of this the comparability of individual CARS images recorded with different experimental parameters is achieved. The latter is important for a quantitative evaluation of CARS images. PMID:20508705

  6. Modeling and separation of rare earth elements by countercurrent electromigration: A new separation column

    SciTech Connect

    Correa, S.M. |; Arbilla, G.; Carvalho, M.S.

    1998-07-01

    The separation of a samarium (90%) and europium (10%) mixture in {alpha}-hydroxy isobutyric acid was performed in a new countercurrent electromigration system. The mobilities of these elements were estimated, and samarium of better than 99.9% purity was obtained. The equilibrium of multicoordinate complexes of these elements with {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) plays an important role in the separation process. The equilibrium concentrations of the involved species were calculated by a computational procedure, and a kinetic study of the complexation reaction was also performed.

  7. Self-operated blood plasma separation using micropump in polymer-based microfluidic device

    NASA Astrophysics Data System (ADS)

    Jang, Won Ick; Chung, Kwang Hyo; Pyo, Hyeon Bong; Park, Seon Hee

    2006-12-01

    The blood is one of the best indicators of health because blood circulates all body tissues and collects information. The COC(Cyclo Olefin Copolymer) has better various properties than PMMA(Polymethy Mechacrylate) and PC(Polycarbonate) that are widely used in biotechnology field. This paper presents a new method of plasma separation on the COC in terms of surface modification for the development of a disposable protein chip. The blood plasma separation device was composed of a whole blood inlet, microchannel with filtration region of micropillars, micropump with microheater, and a blood cell outlet. Micropump with microheater was designed by ANSYS and flow model in the microchannel was designed by CFD-ACE + simulators. We successfully fabricated a polymer based microfluidic device for blood plasma separation by MEMS(Micro Electro Mechanical System) technology. By using this device, cell-free plasma was successfully obtained through the filtration from a drop of whole blood without external force of a syringe pump.

  8. Evidence-Based Practice: Separating Science From Pseudoscience.

    PubMed

    Lee, Catherine M; Hunsley, John

    2015-12-01

    Evidence-based practice (EBP) requires that clinicians be guided by the best available evidence. In this article, we address the impact of science and pseudoscience on psychotherapy in psychiatric practice. We describe the key principles of evidence-based intervention. We describe pseudoscience and provide illustrative examples of popular intervention practices that have not been abandoned, despite evidence that they are not efficacious and may be harmful. We distinguish efficacy from effectiveness, and describe modular approaches to treatment. Reasons for the persistence of practices that are not evidence based are examined at both the individual and the professional system level. Finally, we offer suggestions for the promotion of EBP through clinical practice guidelines, modelling of scientific decision making, and training in core skills. PMID:26720821

  9. Evidence-Based Practice: Separating Science From Pseudoscience

    PubMed Central

    Lee, Catherine M; Hunsley, John

    2015-01-01

    Evidence-based practice (EBP) requires that clinicians be guided by the best available evidence. In this article, we address the impact of science and pseudoscience on psychotherapy in psychiatric practice. We describe the key principles of evidence-based intervention. We describe pseudoscience and provide illustrative examples of popular intervention practices that have not been abandoned, despite evidence that they are not efficacious and may be harmful. We distinguish efficacy from effectiveness, and describe modular approaches to treatment. Reasons for the persistence of practices that are not evidence based are examined at both the individual and the professional system level. Finally, we offer suggestions for the promotion of EBP through clinical practice guidelines, modelling of scientific decision making, and training in core skills. PMID:26720821

  10. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    SciTech Connect

    Huang, Kai-Jian; Qin, S.-J. Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  11. Species separation in rocket exhaust plumes and analytic plume flow models

    NASA Astrophysics Data System (ADS)

    Koppenwallner, G.

    2001-08-01

    Species separation in the exhaust plume of control thrusters of satellites is of main importance for the contamination analysis. Contamination concerns mainly scientific instruments or sensitive surfaces.. In continuum fluid dynamics a multi- component gas mixture can be treated as mixture with mean properties and with a flow field independent composition. This basic feature of continuum flow ceases to be valid in the rarefied flow regimes. In this regime there are two main mechanism which cause a separation of species in the flow field. a. Strong velocity gradients or streamline curvature. Strong stream line curvatures with large centrifugal forces exist close to the nozzle throat of sonic free jets [Sherman] or at the nozzle lip. Heavy gas constituents will not be able to follow these strong stream line curvatures. b. Different thermal velocity or thermal diffusivity of heavy and light gas constituents The transition from continuum to free molecular plume expansion can approximately be described by the sudden freeze model of Bird. At the freezing point molecular collisions suddenly cease and the further expansion is given by the velocity vector of the individual molecules at this freezing point. As light molecules have a larger thermal speed c than the heavy ones their spreading potential is also higher. This mechanism will also produce an enrichment of the plume boundary with light molecules. The approaches to model species separation in exhaust plumes as result of the above mechanism will be reviewed. To gain more insight into the separation the following cases are analyzed in detail: [B ]The free molecular supersonic expansion from a freezing plane. □ The various analytic plume flow models and their capability to predict the lateral spreading at the plume boundary (e.g. Simmons, Boynton, Brook, DLR) □ DSMC test case calculations of single and two-species plumes with mass separation. (M. Ivanov, ITAM) Based on this analysis a new 3 region model for species

  12. A TRUEX-based separation of americium from the lanthanides

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt; Mary E. Case

    2011-03-01

    Abstract: The inextractability of the actinide AnO2+ ions in the TRUEX process suggests the possibility of a separation of americium from the lanthanides using oxidation to Am(V). The only current method for the direct oxidation of americium to Am(V) in strongly acidic media is with sodium bismuthate. We prepared Am(V) over a wide range of nitric acid concentrations and investigated its solvent extraction behavior for comparison to europium. While a separation is achievable in principal, the presence of macro amounts of cerium competes for the sparingly soluble oxidant and the oxidant itself competes for CMPO complexation. These factors conspire to reduce the Eu/Am separation factor from ~40 using tracer solutions to ~5 for extractions from first cycle raffinate simulant solution. To separate pentavalent americium directly from the lanthanides using the TRUEX process, an alternative oxidizing agent will be necessary.

  13. A simple separation method with a microfluidic channel based on alternating current potential modulation.

    PubMed

    Noh, Hui-Bog; Chandra, Pranjal; Kim, You-Jeong; Shim, Yoon-Bo

    2012-11-20

    A simple separation and detection system based on an electrochemical potential modulated microchannel (EPMM) device was developed for the first time. The application of alternating current (AC) potential to the microfluidic separation channel walls, which were composed of screen printed carbon electrodes, resulted in the oscillation and fluctuation of analytes and in the formation of a perfect flat flow front. These events resulted in an increase in the effective concentration and in the fine separation of samples. The performance of the EPMM device was examined through the analysis of endocrine disruptors (EDs) and heavy metal ions (HMIs) as model compounds. The analytical parameters that affected the separation and detection of EDs and HMIs were studied in terms of AC amplitude, AC frequency, flow rate, buffer concentration, pH, detection potential, and temperature. The separation efficiency was evaluated through measurements of the theoretical plate number (N), the retention time, and the half-peak width. Linear calibration plots for the detection of EDs and HMIs were obtained between 0.15 and 250.0 nM (detection limit 86.4 ± 2.9 pM) and between 0.01 and 10.0 nM (detection limit 9.5 ± 0.3 pM), respectively. The new device was successfully demonstrated with authentic and real samples. PMID:23075295

  14. 5 CFR 843.311 - Annuity based on death of a separated employee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Annuity based on death of a separated... Current and Former Spouse Benefits § 843.311 Annuity based on death of a separated employee. (a) Except as provided in § 843.312, if a separated employee who has completed at least 10 years of service dies...

  15. The Baldwin-Lomax model for separated and wake flows using the entropy envelope concept

    NASA Technical Reports Server (NTRS)

    Brock, J. S.; Ng, W. F.

    1992-01-01

    Implementation of the Baldwin-Lomax algebraic turbulence model is difficult and ambiguous within flows characterized by strong viscous-inviscid interactions and flow separations. A new method of implementation is proposed which uses an entropy envelope concept and is demonstrated to ensure the proper evaluation of modeling parameters. The method is simple, computationally fast, and applicable to both wake and boundary layer flows. The method is general, making it applicable to any turbulence model which requires the automated determination of the proper maxima of a vorticity-based function. The new method is evalulated within two test cases involving strong viscous-inviscid interaction.

  16. Reynolds stress modeling of separated turbulent flows over helicopters

    NASA Astrophysics Data System (ADS)

    Alpman, Emre

    A numerical investigation of inviscid and viscous flows around three-dimensional complex bodies is made using unstructured meshes. Inviscid flow solutions around an RAH-66 Comanche helicopter fuselage are performed to analyze the aerodynamics of ducted tail rotors in low-power, near-edgewise flow conditions. A numerical solution of the Euler Equations is obtained for the flow over the Comanche fuselage with a uniform actuator disk and blade element models for the FANTAIL(TM); the main rotor is excluded in this study. The solutions are obtained by running the PUMA2 computational fluid dynamics code with an unstructured grid with 2.8 million tetrahedral cells. PUMA2 is an in-house computer code written in ANSI C++. Excellent correlation between the calculations and a variety of static test data are presented and discussed. The dynamic relationship between the antitorque thrust moment and applied collective pitch angle is studied by changing the pitch angle input by five degrees at a rate of 144 degrees per second. Dynamic fan thrust and moment response to applied collective pitch in hover and forward flight are presented and discussed. In order to remove the deficiency of the Euler equations in predicting separated flows, which is mostly the case in helicopter fuselage aerodynamics, a concurrent study is performed to simulate turbulent flows around three-dimensional bodies. Most of the turbulence models in the literature contain simplified assumptions which make them computationally cheap but of limited accuracy. Dramatic improvements in the computer processing speed and parallel processing made it possible to use more complete models, such as Reynolds Stress Models, for turbulent flow simulations around complex geometries, which is the focus of this work. The Reynolds Stress Model consists of coupling Reynolds transport equations with the Favre-Reynolds averaged Navier-Stokes equations, which results in a system of 12 coupled nonlinear partial differential equations

  17. Discrete phase model representation of particulate matter (PM) for simulating PM separation by hydrodynamic unit operations.

    PubMed

    Dickenson, Joshua A; Sansalone, John J

    2009-11-01

    Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy. PMID:19924947

  18. Separation of crack extension modes in orthotropic delamination models

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L.

    1995-01-01

    In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.

  19. Compressed sensing for chemical shift-based water-fat separation.

    PubMed

    Doneva, Mariya; Börnert, Peter; Eggers, Holger; Mertins, Alfred; Pauly, John; Lustig, Michael

    2010-12-01

    Multi echo chemical shift-based water-fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water-fat separation from undersampled data (CS-WF), which combines compressed sensing and chemical shift-based water-fat separation. Undersampling was applied in the k-space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS-WF reconstruction to improve the water-fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three-echo water-fat imaging. The method is demonstrated on knee and abdominal in vivo data. PMID:20859998

  20. Evaporation-based Ge/.sup.68 Ga Separation

    DOEpatents

    Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  1. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model

    USGS Publications Warehouse

    Long, A.J.

    2009-01-01

    Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.

  2. Modeling Separate and Combined Atmospheres in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Finn, Cory; Kwauk, Xianmin; Blackwell, Charles; Luna, Bernadette (Technical Monitor)

    2000-01-01

    We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. Incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing storage and control is needed if more food is grown.

  3. Modeling Separate and Combined Atmospheres in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Finn, Cory; Kwauk, Xian-Min; Blackwell, Charles; Luna, Bernadette (Technical Monitor)

    2000-01-01

    We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing, storage, and control is needed if more food is grown.

  4. Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation

    NASA Technical Reports Server (NTRS)

    Fraire, Usbaldo, Jr.; Anderson, Keith; Cuthbert, Peter A.

    2013-01-01

    Carlo analysis to provide the maximum expected range of the state variables at programmer deployment to be used as ICs in DSS. Extensive comparisons were made with Decelerator System Simulation Application (DSSA) to validate the mated portion of the ADAMS extraction trajectory. Results of the comparisons improved the fidelity of ADAMS with a ramp pitch profile update from DSSA. Post-test reconstructions resulted in improvements to extraction parachute drag area knock-down factors, extraction line modeling, and the inclusion of ball-to-socket attachments used as a release mechanism on the PTV. Modeling of two Extraction parachutes was based on United States Air Force (USAF) tow test data and integrated into ADAMS for nominal and Monte Carlo trajectory assessments. Video overlay of ADAMS animations and actual C-12 chase plane test videos supported analysis and observation efforts of extraction and separation events. The COTS ADAMS simulation has been integrated with NASA based simulations to provide complete end to end trajectories with a focus on the extraction, separation, and programmer deployment sequence. The flexibility of modifying ADAMS inputs has proven useful for sensitivity studies and extraction/separation modeling efforts. 1

  5. Current status of ceramic-based membranes for oxygen separation from air.

    PubMed

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. PMID:20813344

  6. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  7. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  8. Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Roithmayr, Carlos M.; Toniolo, Matthew D.; Karlgaard, Christopher D.; Pamadi, Bandu N.

    2011-01-01

    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories

  9. Three dimensional separation trap based on dielectrophoresis and use thereof

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-05-04

    An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.

  10. Some Remarks on the Riccati Equation Expansion Method for Variable Separation of Nonlinear Models

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Peng; Dai, Chao-Qing

    2015-10-01

    Based on the Riccati equation expansion method, 11 kinds of variable separation solutions with different forms of (2+1)-dimensional modified Korteweg-de Vries equation are obtained. The following two remarks on the Riccati equation expansion method for variable separation are made: (i) a remark on the equivalence of different solutions constructed by the Riccati equation expansion method. From analysis, we find that these seemly independent solutions with different forms actually depend on each other, and they can transform from one to another via some relations. We should avoid arbitrarily asserting so-called "new" solutions; (ii) a remark on the construction of localised excitation based on variable separation solutions. For two or multi-component systems, we must be careful with excitation structures constructed by all components for the same model lest the appearance of some un-physical structures. We hope that these results are helpful to deeply study exact solutions of nonlinear models in physical, engineering and biophysical contexts.

  11. Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria

    PubMed Central

    Chen, Xiaolin; Xu, Jie

    2015-01-01

    Circulating tumor cells (CTCs) separation technology has made positive impacts on cancer science in many aspects. The ability of detecting and separating CTCs can play a key role in early cancer detection and treatment. In recent years, there has been growing interest in using deformability-based CTC separation microfilters due to their simplicity and low cost. Most of the previous studies in this area are mainly based on experimental work. Although experimental research provides useful insights in designing CTC separation devices, there is still a lack of design guidelines based on fundamental understandings of the cell separation process in the filters. While experimental efforts face challenges, especially microfabrication difficulties, we adopt numerical simulation here to study conical-shaped microfilters using deformability difference between CTCs and blood cells for the separation process. We use the liquid drop model for modeling a CTC passing through such microfilters. The accuracy of the model in predicting the pressure signature of the system is validated by comparing it with previous experiments. Pressure-deformability analysis of the cell going through the channel is then carried out in detail in order to better understand how a CTC behaves throughout the filtration process. Different system design criteria such as system throughput and unclogging of the system are discussed. Specifically, pressure behavior under different system throughput is analyzed. Regarding the unclogging issue, we define pressure ratio as a key parameter representing the ability to overcome clogging in such CTC separation devices and investigate the effect of conical angle on the optimum pressure ratio. Finally, the effect of unclogging applied pressure on the system performance is examined. Our study provides detailed understandings of the cell separation process and its characteristics, which can be used for developing more efficient CTC separation devices. PMID:26064193

  12. On the Prediction of Separation Bubbles Using a Modified Chen-Thyson Model

    NASA Technical Reports Server (NTRS)

    Platzer, Max F.; Ekaterinaris, John A.; Chandrasekhara, M. S.

    2007-01-01

    The prediction of separation bubbles on NACA 65-213 and NACA 0012 using a modified Chen-Thyson transition model is presented. The contents include: 1) Background; 2) Analysis of NACA 65-213 separation bubble using cebeci's viscous-inviscid interaction method; 3) Analysis of NACA 0012 separation bubble using navier-stokes method; and 4) Comparison with experiment.

  13. Hartree-Fock Mean-Field Models Using Separable Interactions

    SciTech Connect

    Stevenson, P.; Stone, J.R.; Strayer, M.R.

    1999-06-28

    An effective two-body nuclear interaction is presented which is a sum of terms separable in coordinate space. Calculations are made using this interaction of some doubly closed-shell spherical nuclei using many-body perturbation theory with the Hartree-Fock state as a reference state. It is demonstrated that the interaction gives good bulk properties in finite nuclei.

  14. Base Flow Model Validation

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John

    2011-01-01

    A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.

  15. PMOG: the projected mixture of Gaussians model with application to blind source separation.

    PubMed

    Pendse, Gautam V

    2012-04-01

    We extend the mixtures of Gaussians (MOG) model to the projected mixture of Gaussians (PMOG) model. In the PMOG model, we assume that q dimensional input data points z(i) are projected by a q dimensional vector w into 1-D variables u(i). The projected variables u(i) are assumed to follow a 1-D MOG model. In the PMOG model, we maximize the likelihood of observing u(i) to find both the model parameters for the 1-D MOG as well as the projection vector w. First, we derive an EM algorithm for estimating the PMOG model. Next, we show how the PMOG model can be applied to the problem of blind source separation (BSS). In contrast to conventional BSS where an objective function based on an approximation to differential entropy is minimized, PMOG based BSS simply minimizes the differential entropy of projected sources by fitting a flexible MOG model in the projected 1-D space while simultaneously optimizing the projection vector w. The advantage of PMOG over conventional BSS algorithms is the more flexible fitting of non-Gaussian source densities without assuming near-Gaussianity (as in conventional BSS) and still retaining computational feasibility. PMID:22391233

  16. Magnetic separation of iron-based nanosorbents from watery solutions

    NASA Astrophysics Data System (ADS)

    Medvedeva, Irina; Bakhteeva, Iuliia; Zhakov, Sergey; Baerner, Klaus

    2016-04-01

    Iron and iron oxide magnetic nanoparticles (MNP) both naked and with chemically modified surface are promising agents for different environmental applications, in particular for water purification and for analytical control of water and soil pollution. The MNP can be used as sorbents with selective abilities due to designed surface functionalization. While a lot of research has been devoted to the impurity sorption processes, the second part, that is the efficient removal of the MNP sorbents from the watery solution, has not been sufficiently studied so far. For that particles with magnetic cores are especially attractive due to the possibility of their subsequent magnetic separation from water without using coagulants, i.e. without a secondary water pollution, just by applying external magnetic fields B. In order to remove magnetic sorbent nanoparticles ( 10-100 nm) effectively from the water solution gradient magnetic fields are required. Depending on the MNP size, the magnetic moment, the chemical properties of the solution, the water purification conditions , either the low gradient magnetic separation (LGMS) with dB/dz < 100 T/m or the high gradient magnetic separation (HGMS) with dB/dz > 100 T/m is used. The gradient magnetic field is provided by permanent magnets or electromagnets of different configuration. In this work the sedimentation dynamics of naked Fe3O4 and Fe3O4@SiO2 nanoparticles (10-30 nm) in water was studied in a vertical gradient magnetic field (B1 ≤ 0.3T, dB/dz ≤ 0.13 T/cm). By this LGMS , the sedimentation time of the naked Fe3O4 NP is reduced down from several days to several minutes. The sedimentation time for Fe3O4@SiO2 decreases from several weeks to several hours and to several minutes when salts Na2SO4, CaCl2, NaH2PO4 are added to the solution. The results are interpreted in terms of MNP aggregate formation caused by electrostatic, steric and magnetic inter-particle interactions in the watery solution. ACKNOWLEDGMENTS The work was

  17. Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel

    2008-01-01

    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.

  18. Base flow separation: A comparison of analytical and mass balance methods

    NASA Astrophysics Data System (ADS)

    Lott, Darline A.; Stewart, Mark T.

    2016-04-01

    Base flow is the ground water contribution to stream flow. Many activities, such as water resource management, calibrating hydrological and climate models, and studies of basin hydrology, require good estimates of base flow. The base flow component of stream flow is usually determined by separating a stream hydrograph into two components, base flow and runoff. Analytical methods, mathematical functions or algorithms used to calculate base flow directly from discharge, are the most widely used base flow separation methods and are often used without calibration to basin or gage-specific parameters other than basin area. In this study, six analytical methods are compared to a mass balance method, the conductivity mass-balance (CMB) method. The base flow index (BFI) values for 35 stream gages are obtained from each of the seven methods with each gage having at least two consecutive years of specific conductance data and 30 years of continuous discharge data. BFI is cumulative base flow divided by cumulative total discharge over the period of record of analysis. The BFI value is dimensionless, and always varies from 0 to 1. Areas of basins used in this study range from 27 km2 to 68,117 km2. BFI was first determined for the uncalibrated analytical methods. The parameters of each analytical method were then calibrated to produce BFI values as close to the CMB derived BFI values as possible. One of the methods, the power function (aQb + cQ) method, is inherently calibrated and was not recalibrated. The uncalibrated analytical methods have an average correlation coefficient of 0.43 when compared to CMB-derived values, and an average correlation coefficient of 0.93 when calibrated with the CMB method. Once calibrated, the analytical methods can closely reproduce the base flow values of a mass balance method. Therefore, it is recommended that analytical methods be calibrated against tracer or mass balance methods.

  19. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  20. A point vortex model for the formation of ocean eddies by flow separation

    NASA Astrophysics Data System (ADS)

    Southwick, O. R.; Johnson, E. R.; McDonald, N. R.

    2015-01-01

    A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

  1. Prediction of flow separation from aircraft tails using a RSM turbulence model

    NASA Astrophysics Data System (ADS)

    Masi, Andrea; Benton, Jeremy; Tucker, Paul G.

    2014-11-01

    Enhancing engineers' capability to predict flow separation would generate important benefits in aircraft design. In this study the attention is focused on the vertical tail plane (VTP), which consists of a fixed part (the fin) and a moveable control surface (the rudder). For standard two-engine aircraft configurations, the size of the VTP is driven by the condition of loss of an engine during takeoff and low speed climb: in this condition the fin and the rudder have to be sufficient in size to balance the aircraft. Due to uncertainties in prediction of VTP effectiveness, aircraft designers keep to a conservative approach, risking specifying a larger size for the VTP than it is probably necessary. Uncertainties come from difficulties in predicting the separation of the flow from the surfaces of the aircraft using current CFD techniques, which are based on the use of RANS equations with eddy viscosity turbulence models. The CFD simulations presented in this study investigate the use of a RSM turbulence model with RANS and URANS. The introduction of a time-dependency gives benefits in the accuracy of the flow solution in presence of massive flow separation. This leads to the investigation of hybrid RANS/LES techniques with the aim of improving the solution of the detached flow. EU FP7 project ANADE (Grant Agreement Number 289428).

  2. Separate and combined sewer systems: a long-term modelling approach.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2009-01-01

    Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account. PMID:19657150

  3. Guide to CO{sub 2} separations in imidazolium-based room-temperature ionic liquids

    SciTech Connect

    Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D.

    2009-03-18

    Room-temperature ionic liquids (RTILs) are nonvolatile, tunable solvents. The solubilities of gases, particularly CO{sub 2}, N{sub 2}, and CH{sub 4}, have been studied in a number of RTILs. Process temperature and the chemical structures of the cation and anion have significant impacts on gas solubility and gas pair selectivity. Models based on regular solution theory and group contributions are useful to predict and explain CO{sub 2} solubility and selectivity in imidazolium-based RTILs. In addition to their role as a physical solvent, RTILs might also be used in supported ionic liquid membranes (SILMs) as a highly permeable and selective transport medium. Performance data for SILMs indicates that they exhibit large permeabilities as well as CO{sub 2}/N{sub 2} selectivities that outperform many polymer membranes. Furthermore, the greatest potential of RTILs for CO{sub 2} separations might lie in their ability to chemically capture CO{sub 2} when used in combination with amines. Amines can be tethered to the cation or the anion, or dissolved in RTILs, providing a wide range of chemical solvents for CO{sub 2} capture. However, despite all of their promising features, RTILs do have drawbacks to use in CO{sub 2} separations, which have been overlooked as appropriate comparisons of RTILs to common organic solvents and polymers have not been reported. A thorough summary of the capabilities-and limitations-of imidazolium-based RTILs in CO{sub 2}-based separations with respect to a variety of materials is thus provided.

  4. Simulation of liquid-vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets

    NASA Astrophysics Data System (ADS)

    Biciuşcă, Tonino; Horga, Adrian; Sofonea, Victor

    2015-10-01

    We use a two-dimensional Lattice Boltzmann model to investigate the liquid-vapour phase separation in an isothermal van der Waals fluid. The model is based on the expansion of the distribution function up to the third order in terms of Hermite polynomials. In two dimensions, this model is an off-lattice one and has 16 velocities. The Corner Transport Upwind Scheme is used to evolve the corresponding distribution functions on a square lattice. The resulting code allows one to follow the liquid-vapour phase separation on lattices up to 4096 × 4096 nodes using a Tesla M2090 Graphics Processing Unit.

  5. Measurement and Structural Model Class Separation in Mixture CFA: ML/EM versus MCMC

    ERIC Educational Resources Information Center

    Depaoli, Sarah

    2012-01-01

    Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…

  6. Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region

    NASA Astrophysics Data System (ADS)

    Jeon, Hyungkook; Lee, Horim; Kang, Kwan Hyoung; Lim, Geunbae

    2013-12-01

    We proposed a novel separation method, which is the first report using ion concentration polarization (ICP) to separate particles continuously. We analyzed the electrical forces that cause the repulsion of particles in the depletion region formed by ICP. Using the electrical repulsion, micro- and nano-sized particles were separated based on their electrophoretic mobilities. Because the separation of particles was performed using a strong electric field in the depletion region without the use of internal electrodes, it offers the advantages of simple, low-cost device fabrication and bubble-free operation compared with conventional continuous electrophoretic separation methods, such as miniaturizing free-flow electrophoresis (μ-FFE). This separation device is expected to be a useful tool for separating various biochemical samples, including cells, proteins, DNAs and even ions.

  7. Fractional reactive extraction for symmetrical separation of 4-nitro-D,L-phenylalanine in centrifugal contactor separators: experiments and modeling.

    PubMed

    Tang, Kewen; Wen, Ping; Zhang, Panliang; Huang, Yan

    2015-01-01

    The enantioselective liquid-liquid extraction of 4-nitro-D,L-phenylalanine (D,L-Nphy) using PdCl2 {(s)-BINAP} as extractant in dichloroethane was studied experimentally in a countercurrent cascade of 10 centrifugal contactor separators (CCSs) at 5°C, involving flow ratio, extractant concentration, and Cl(-) concentration. The steady-state enantiomeric excess (ee) in both stream exits was 90.86% at a 93.29% yield. The predicted value was modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee and >99% ee. 14 stages and 16 stages are required for 97% ee and 99% ee for both enantiomers, respectively. PMID:25311896

  8. Microchip separations-based sensors for cellular analysis

    NASA Astrophysics Data System (ADS)

    Manica, Drew Prentice

    The objective of this thesis has been to introduce and develop novel methods for microchip separations for bioanalytical applications. A novel detection scheme is introduced, involving simultaneous dual amperometric and fluorescence detection on a microchip. Dual detection is shown to increase selectivity and throughput, resolve co-migrating species that may be selectively detected, and provide a convenient means to normalize for the irreproducibility of migration times often encountered in CE applications. Such normalization is expected to facilitate the use of microchip CE to monitor biological samples, which are inclined to exacerbate the irreproducibility of migration times. The use of electrochemical detection presents a unique and fundamental challenge. An effective method for reproducibly regenerating a clean surface is demonstrated. The method is optimized and utilized to achieve high sensitivity even for highly adsorptive compounds, such as those released from mast cells. The development of an in-situ electrode-cleaning protocol is an essential step toward reliably monitoring cellular release on a microchip CEEC device. Two novel techniques are presented which are capable of producing disposable microanalytical systems on glass. Electrodes and channels produced with these methods exhibit performance characteristics that are comparable to examples in current literature. These techniques demonstrate the feasibility of manufacturing a disposable glass lab-on-a-chip, which may be used for cellular analysis or as a point-of-use sensor. Increased interest in analyzing biological samples has led to the development of a wide range of derivatizing agents for biological compounds such as amino acids and peptides. A common tag that is both fluorescent and electroactive is naphthalene-2,3-dicarboxaldehyde (NDA). While there has been much discussion regarding the stability of a similar compound, o-phthalaldehyde, there has been no discussion regarding the stability of

  9. Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms

    NASA Astrophysics Data System (ADS)

    Etehadtavakol, Mahnaz; Ng, E. Y. K.; Chandran, Vinod; Rabbani, Hossien

    2013-11-01

    Highly sensitive infrared cameras can produce high-resolution diagnostic images of the temperature and vascular changes of breasts. Wavelet transform based features are suitable in extracting the texture difference information of these images due to their scale-space decomposition. The objective of this study is to investigate the potential of extracted features in differentiating between breast lesions by comparing the two corresponding pectoral regions of two breast thermograms. The pectoral regions of breastsare important because near 50% of all breast cancer is located in this region. In this study, the pectoral region of the left breast is selected. Then the corresponding pectoral region of the right breast is identified. Texture features based on the first and the second sets of statistics are extracted from wavelet decomposed images of the pectoral regions of two breast thermograms. Principal component analysis is used to reduce dimension and an Adaboost classifier to evaluate classification performance. A number of different wavelet features are compared and it is shown that complex non-separable 2D discrete wavelet transform features perform better than their real separable counterparts.

  10. Model system studies with a phase separated membrane bioreactor

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  11. Phase separated membrane bioreactor - Results from model system studies

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  12. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    SciTech Connect

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  13. A Novel Methodology for Metal Ion Separation Based on Molecularly Imprinting

    SciTech Connect

    Zuo, Xiaobin; Mosha, Donnati; Hassan, Mansour M.; Givens, Richard S.; Busch, Daryle H.

    2004-03-31

    The siderophore-based extraction of iron from the soil by bacteria is proposed as a model for a new separation methodology labeled the soil poutice, a molecular device that would selectively retrieve the complex of a targeted metal ion. In this report we described the synthesis and characterization of molecularly imprinted polymers and their application in the specific recognition of macrocyclic metal complexes. The imprinting is based on non-covalent interactions such as hydrogen bonding, electrostatic attractions and minor metal-ligand coordination. Good rebinding capacity for the imprinting metal complex was observed in acetonitrile as well as in water. The polymers are resistant to strong acids and oxidizing agents and showed an increase of rebinding capacity during cycles of reuse. The imprinting procedure, combined with the previously known selective chelation of macrocyclic ligands, supports the feasibility of a new methodology that can be used to extract waste metal ions effectively and selectively from soils and ground water.

  14. Actuator fault tolerant multi-controller scheme using set separation based diagnosis

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.

    2010-11-01

    We present a fault tolerant control strategy based on a new principle for actuator fault diagnosis. The scheme employs a standard bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with distinctive dynamics when an estimator matches the current fault situation of the plant. Based on the information from each observer, a fault detection and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate control law from a bank of controllers, each of them designed to stabilise and achieve reference tracking for one of the given fault models. The main contribution of this article is to propose a new FDI principle which exploits the separation of sets that characterise healthy system operation from sets that characterise transitions from healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-controller scheme.

  15. Rapid preparation and characterization of methacrylate-based monoliths for chromatographic and electrophoretic separation.

    PubMed

    Fan, Li-Qun; Zhang, Yu-Ping; Gong, Wen-Jun; Qu, Ling-Bo; Lee, Kwang-Pill

    2010-01-01

    Butyl-methacrylate-based porous monoliths were rapidly prepared in the fused-silica capillary with a 10-cm stripe of polyimide removed from its exterior. The photopolymerization could be carried out in 150 s using ethylene glycol dimethacrylate as a cross-linking agent; 1-propanol, 1,4-butanediol, and water as tri-porogenic solvents; and Irgacure 1800 as a photo-initiator. The effect of different morphologies on the efficiency and retention properties was investigated using pressure-assisted CEC (p-CEC), CEC, and low pressure-assisted liquid chromatography modes (LPLC). Baseline separation of the model analytes was respectively achieved including thiourea, toluene, naphthalene, and biphenyl with the lowest theoretical height up to 8.0 microm for thiourea in the mode of p-CEC. Furthermore, the influence of the tri-porogenic solvents on the morphology of methacrylate-based monoliths was systematically studied with mercury intrusion porosimetry and scanning electron microscopy. PMID:20515536

  16. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Weisz, Nathan; Londero, Alain; Schlee, Winnie; Elgoyhen, Ana Belen; Langguth, Berthold

    2014-07-01

    Tinnitus is a considered to be an auditory phantom phenomenon, a persistent conscious percept of a salient memory trace, externally attributed, in the absence of a sound source. It is perceived as a phenomenological unified coherent percept, binding multiple separable clinical characteristics, such as its loudness, the sidedness, the type (pure tone, noise), the associated distress and so on. A theoretical pathophysiological framework capable of explaining all these aspects in one model is highly needed. The model must incorporate both the deafferentation based neurophysiological models and the dysfunctional noise canceling model, and propose a 'tinnitus core' subnetwork. The tinnitus core can be defined as the minimal set of brain areas that needs to be jointly activated (=subnetwork) for tinnitus to be consciously perceived, devoid of its affective components. The brain areas involved in the other separable characteristics of tinnitus can be retrieved by studies on spontaneous resting state magnetic and electrical activity in people with tinnitus, evaluated for the specific aspect investigated and controlled for other factors. By combining these functional imaging studies with neuromodulation techniques some of the correlations are turned into causal relationships. Thereof, a heuristic pathophysiological framework is constructed, integrating the tinnitus perceptual core with the other tinnitus related aspects. This phenomenological unified percept of tinnitus can be considered an emergent property of multiple, parallel, dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. Communication between these different subnetworks is proposed to occur at hubs, brain areas that are involved in multiple subnetworks simultaneously. These hubs can take part in each separable subnetwork at different frequencies. Communication between the subnetworks is proposed to occur at

  17. Theory of electrophoretic separations. I - Formulation of a mathematical model

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Palusinski, O. A.

    1986-01-01

    A generally applicable model of electrophoretic processes is presented. The model describes the chemical reactions, treating the chemical processes as reactions at equilibrium and accounting for convection, conservation, diffusion, and electromigration of individual species as well as the relation between charge and potential. Conservation relations are described and simplified, taking advantage of the speed of the chemical reactions as compared to the transport processes to adapt the model to the electrophoretic processes involving weak electrolytes. As an application example, isotachophoresis in a one-dimensional column is considered in detail.

  18. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption

    SciTech Connect

    Feng, X.; Pan, C.Y.; McMinis, C.W.; Ivory, J.; Ghosh, D.

    1998-07-01

    Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption (PSA) was studied experimentally. The high efficiency of hollow-fiber-based adsorbers for gas separation was illustrated by hydrogen separation using fine-powder-activated carbon and molecular sieve as adsorbents. The adsorption equilibrium and dynamics of the hollow-fiber adsorbers were determined. The pressure drop of the gas flowing through the adsorbers was also examined. The adsorbers were tested for hydrogen separation from nitrogen, carbon dioxide, and a multicomponent gas mixture simulating ammonia synthesis purge gas. The PSA systems using the hollow-fiber adsorbers were very effective for hydrogen purification. The high separation efficiency is derived from the fast mass-transfer rate and low pressure drop, two key features of hollow-fiber-based adsorbers.

  19. Model based manipulator control

    NASA Technical Reports Server (NTRS)

    Petrosky, Lyman J.; Oppenheim, Irving J.

    1989-01-01

    The feasibility of using model based control (MBC) for robotic manipulators was investigated. A double inverted pendulum system was constructed as the experimental system for a general study of dynamically stable manipulation. The original interest in dynamically stable systems was driven by the objective of high vertical reach (balancing), and the planning of inertially favorable trajectories for force and payload demands. The model-based control approach is described and the results of experimental tests are summarized. Results directly demonstrate that MBC can provide stable control at all speeds of operation and support operations requiring dynamic stability such as balancing. The application of MBC to systems with flexible links is also discussed.

  20. Blooms' separation of the final exam of Engineering Mathematics II: Item reliability using Rasch measurement model

    NASA Astrophysics Data System (ADS)

    Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah

    2014-06-01

    In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.

  1. A Nanoscale, Liquid-Phase DNA Separation Device Based on Brownian Ratchets

    NASA Astrophysics Data System (ADS)

    Bader, Joel S.

    1998-03-01

    Realizing the goals of the Human Genome Project depends on the ability to perform size-based separations of DNA molecules. DNA analysis has traditionally required inconvenient gel-based electrophoretic separations. We describe a novel, micromachined, non-electrophoretic device suitable for lab-on-a-chip applications. The device is designed to transport DNA using an asymmetric, periodic potential to rectify Brownian motion. The separation occurs in a homogeneous liquid, avoiding the use of gels or other special media. Experimental results from a working prototype NanoNiagara device validate theoretical predictions of its ability to transport DNA molecules based on size.

  2. 5 CFR 837.801 - Unperfected entitlement to CSRS benefits based on a prior separation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on a prior separation. 837.801 Section 837.801 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) REEMPLOYMENT OF ANNUITANTS Alternative... separation. (a) An employee who meets the age and service requirements for title to a non-disability...

  3. 5 CFR 837.801 - Unperfected entitlement to CSRS benefits based on a prior separation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on a prior separation. 837.801 Section 837.801 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) REEMPLOYMENT OF ANNUITANTS Alternative... separation. (a) An employee who meets the age and service requirements for title to a non-disability...

  4. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  5. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    PubMed

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. PMID:26474034

  6. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  7. Shape-based Particle Separation via Elasto-Inertia Pinched Flow Fractionation (eiPFF)

    NASA Astrophysics Data System (ADS)

    Lu, Xinyu; Xuan, Xiangchun

    2015-11-01

    We report in this talk a continuous-flow shape-based separation of spherical and peanut-shaped rigid particles of equal volume via elasto-inertial pinched flow fractionation (eiPFF). This separation exploits the shape-dependence of the cross-stream particle migration induced by the elaso-inertial lift force in viscoelastic fluids. The parametric effects on this separation are systematically investigated in terms of dimensionless numbers. It is found that this separation is strongly affected by the Reynolds number, Weissenberg number and channel aspect ratio. Interestingly, the elasto-inertial deflection of peanut particles can be either greater or smaller than that of spherical particles.

  8. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis.

    PubMed

    Khashei, Hesamodin; Latifi, Hamid; Seresht, Mohsen Jamshidi; Ghasemi, Amir Hossein Baradaran

    2016-03-01

    The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator-based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage. PMID:26685118

  9. Cluster kinetics model of particle separation in vibrated granular media

    NASA Astrophysics Data System (ADS)

    McCoy, Benjamin J.; Madras, Giridhar

    2006-01-01

    We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime.

  10. Cluster kinetics model of particle separation in vibrated granular media.

    PubMed

    McCoy, Benjamin J; Madras, Giridhar

    2006-01-01

    We model the Brazil-nut effect (BNE) by hypothesizing that granules form clusters that fragment and aggregate. This provides a heterogeneous medium in which the immersed intruder particle rises (BNE) or sinks (reverse BNE) according to relative convection currents and buoyant and drag forces. A simple relationship proposed for viscous drag in terms of the vibrational intensity and the particle to grain density ratio allows simulation of published experimental data for rise and sink times as functions of particle radius, initial depth of the particle, and particle-grain density ratio. The proposed model correctly describes the experimentally observed maximum in risetime. PMID:16486131

  11. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  12. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-04-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  13. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  14. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  15. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  16. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  17. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  18. 38 CFR 21.7045 - Eligibility based on involuntary separation, voluntary separation, or participation in the Post...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... involuntary separation, voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational..., voluntary separation, or participation in the Post-Vietnam Era Veterans' Educational Assistance Program. An.... (Authority: 38 U.S.C. 3018B) (d) Alternate eligibility requirements for participants in the Post-Vietnam...

  19. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    SciTech Connect

    Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  20. Analysis of Extensive Cross-Flow Separation using Higher-Order RANS Closure Models

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Panaras, A. G.; Gatski, T. B.; Georgantopoulos, G. A.

    2003-01-01

    The turbulent flow fields associated with the incompressible flow over a 6:1 prolate spheroid at high angle of attack, and the supersonic flow over an ogive cylinder are studied. Both these flows are characterized by large separation and vortical flow regions and therefore provide a challenging database for comparison of turbulent closure models. Of interest is the ability to predict the effects of separation and associated vortical motion common to both flows. Two turbulent models are investigated that each represent the class of linear eddy-viscosity models (LEVMs) and explicit algebraic stress models (EASMs). Since the EASM accounts for anisotropic effects, the influence of these effects on flow field predictions can be assessed. The EASM model is shown to both improve the separation location prediction and pressure trough under the secondary vortex on the 6:l prolate spheroid at high angle of attack and high Reynolds number, and improve the prediction of the separation location on a supersonic ogive cylinder.

  1. Effect of Turbulence Models on Two Massively-Separated Benchmark Flow Cases

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2003-01-01

    Two massively-separated flow cases (the 2-D hill and the 3-D Ahmed body) were computed with several different turbulence models in the Reynolds-averaged Navier-Stokes code CFL3D as part of participation in a turbulence modeling workshop held in Poitiers, France in October, 2002. Overall, results were disappointing, but were consistent with results from other RANS codes and other turbulence models at the workshop. For the 2-D hill case, those turbulence models that predicted separation location accurately ended up yielding a too-long separation extent downstream. The one model that predicted a shorter separation extent in better agreement with LES data did so only by coincidence: its prediction of earlier reattachment was due to a too-late prediction of the separation location. For the Ahmed body, two slant angles were computed, and CFD performed fairly well for one of the cases (the larger slant angle). Both turbulence models tested in this case were very similar to each other. For the smaller slant angle, CFD predicted massive separation, whereas the experiment showed reattachment about half-way down the center of the face. These test cases serve as reminders that state- of-the-art CFD is currently not a reliable predictor of massively-separated flow physics, and that further validation studies in this area would be beneficial.

  2. ODP based UPT model

    NASA Astrophysics Data System (ADS)

    Berre, A. J.; Handegard, T.; Loevnes, K.; Skjellaug, B.; Aagedal, J. O.

    1994-01-01

    The report documents the experiments with object oriented modelling of Universal Personal Telecommunication (UPT) in a telecommunication environment based on the basic principles of open distributed processing (ODP). Through the object-oriented analysis and design technique Object Modelling Technique (OMT) the service is modelled as a collection of software objects distributed across multiple network nodes. A software platform provides the mechanisms for application objects to interact. The platform builds on the basic facilities in the native computing and communication environments, but hides the heterogeneity of these environments and provides distribution transparency at the application programmer's interface. The report closes with some thoughts about applying the paradigm of ODP to intelligent networks (IN), and the experience with OMT as a modelling technique for real time distributed applications.

  3. Numerical modeling of separated flows in three-dimensional diffusers and application of synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. Yu.; Pudovikov, D. E.; Torohov, S. A.

    2012-01-01

    Solving the problem of creating an environmentally friendly "green plane" implies development and implementation of several actions aimed at increasing airplane performance and reducing environmental contamination. One possible way to solve this problem is to reduce the powerplant weight, in particular, by decreasing its length. The airplane engine flowpath comprises transition ducts: those between the low- and high-pressure compressors, between the compressor and combustor, and between the high- and low-pressure turbines. In a modern high-bypass turbofan, the flowpath varies in the streamwise direction. Shorter transition ducts have greater curvature. Because of this, intensive separation may occur, which leads to increased losses in the flowpath and to significant growth of nonuniformity of flow parameters. Vast experience of numerical and experimental studies of unsteady separated flows has been accumulated by now. In many cases, however, these investigations are performed in a two-dimensional (2D) formulation, which is primarily caused by the high cost of three-dimensional (3D) unsteady calculations. The numerical and experimental work [1] shows that flows in diffuser ducts can have an essentially unsteady 3D structure. This is valid even for ducts modeling 2D configurations. This paper describes the results of a numerical study of the flow structure and its features in model S-shaped transition ducts, as well as the results of using a synthetic jet generator for flow control and for reduction of total pressure losses. Three-dimensional flows are numerically modeled by the unsteady Reynolds-averaged Navier-Stokes (URANS) / RANS methods. The calculations show that the use of the synthetic jet generator can lead to duct loss reduction by 45%.

  4. Multi-configuration time-dependent density-functional theory based on range separation.

    PubMed

    Fromager, Emmanuel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2013-02-28

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)], the description of both the 1(1)D doubly-excited state in Be and the 1(1)Σu(+) state in the stretched H2 molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals. PMID:23464134

  5. Chip electrochromatographic systems: Novel vertically aligned carbon nanotube and silica monoliths based separations

    NASA Astrophysics Data System (ADS)

    Goswami, Shubhodeep

    2009-12-01

    Miniaturized chemical analysis systems, also know as 'lab-on-a-chip' devices have been rapidly developing over the last decade. Capillary electrochromatography (CEC), a multidimensional separation technique combining capillary electrophoresis (CE) and liquid chromatography (LC) has been of great interest for chip based applications. Preliminary work has been undertaken to develop vertically aligned carbon nanotubes and photopolymerizable silica solgel as novel stationary phase materials for 'chip CEC' separations. Patterned growth of CNTs in a specific location of the channel has been carried out using a solid phase Fe-Al catalyst as well as a vapor deposited ferrocene catalyst. Characterization of the CNT "forests" was achieved using optical microscopy, secondary electron microscopy, high resolution tunneling electron microscopy and Raman spectroscopy. Proof-of-concept applications were demonstrated using reversed phase CEC separations as well as solid phase extraction of a glycosylated protein using concanavilin A immobilized onto the CNT bed. Photopolymerizable silica solgel materials were developed as stationary phase for microfluidic electrochromatographic separations in disposable polydimethylsiloxane (PDMS) chip devices. Effect on morphology and pore size of gels were studied as function of UV and solgel polymerization conditions, porogen, salt additives, geometry and hydrolyzable methoxy-ies. Structural morphologies were studied with Secondary Electron Microscopy (SEM). Pore size and pore volumes were characterized by thermal porometry, nitrogen BET adsorptions and differential scanning calorimetry. Computational fluid dynamics and confocal microscopy tools were employed to study the transport of fluids and model analytes. These investigations were directed towards evolving improved strategies for rinsing of uncrosslinked monomers to form porous monoliths as well as to effect a desired separation under a set of electrochromatograhic conditions

  6. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  7. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  8. Numerical Modeling of Dependence of Separative Power of the Gas Centrifuge on the Length of Rotor

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the rotor is taken to be constant.

  9. Separation of harmonic sounds using multipitch analysis and linear models for the overtone series

    NASA Astrophysics Data System (ADS)

    Virtanen, Tuomas; Klapuri, Anssi

    2002-05-01

    A signal processing method for the separation of concurrent harmonic sounds is described. The method is based on a two-stage approach. First, a multiple fundamental frequency estimator is applied to find initial sound parameters which are reliable, but inaccurate and static. Second, time-varying sinusoidal parameters are estimated in an iterative algorithm. The harmonic structure is retained by keeping the frequency ratio of overtones constant over time. Overlapping harmonic components are resolved using linear models for the overtone series. In practice, the models retain the spectral envelope continuity of natural sounds. Simulation experiments were carried out using generated test signals, which were random mixtures of two to six notes from recorded natural instruments. The system is able to produce meaningful results in all polyphonies, the quality of separated sounds gradually degrading along with the polyphony. Some denoising algorithms were applied to suppress nonstationary noise component, such as drums in real-world music signals. However, the usability of the system for real musical signals is still quite limited.

  10. Conductivity of carbonate- and perfluoropolyether-based electrolytes in porous separators

    NASA Astrophysics Data System (ADS)

    Devaux, Didier; Chang, Yu H.; Villaluenga, Irune; Chen, X. Chelsea; Chintapalli, Mahati; DeSimone, Joseph M.; Balsara, Nitash P.

    2016-08-01

    In lithium batteries, a porous separator filled with an electrolyte is placed in between the electrodes. Properties of the separator such as porosity and wettability strongly influence the conductivity of the electrolyte-separator composite. This study focuses on three commercial separators: a single layer polypropylene (Celgard 2500), a trilayer polypropylene-polyethylene-polypropylene (PP-PE-PP), and a porous polytetrafluoroethylene (PTFE). Electron microscopy was used to characterize the pore structure, and these experiments reveal large differences in pore morphology. The separators were soaked in both carbonate- and perfluoropolyether-based electrolytes. The conductivity of the neat electrolytes (σ0) varied from 6.46 × 10-6 to 1.76 × 10-2 S cm-1. The porosity and wettability of the separator affect the electrolyte uptake that in turn affect the conductivity of electrolyte-separator composites. The conductivity of the electrolyte-separator composites (σ) was found to follow a master equation, σ = 0.51·σ0·ϕc3.2±0.2, where ϕc is the volume fraction of the electrolyte in each separator.

  11. The environmental applications and implications of nanotechnology in membrane-based separations for water treatment

    NASA Astrophysics Data System (ADS)

    Shan, Wenqian

    This dissertation presents results of three related projects focused on the applications of membrane separation technology to water treatment: 1) Experimental design and evaluation of polyelectrolyte multilayer films as regenerable membrane coatings with controllable surface properties; 2) Modeling of the interactions of nanoscale TiO2 and NOM molecules in aqueous solutions of environmentally relevant compositions; 3) Experimental design and preliminary testing of a membrane-based crossflow filtration hydrocyclone process for the separation of oil-in-water dispersions. Chapter 2 describes the design of polyelectrolyte multilayers as nanoscale membrane coatings and their application in nanofiltration of feed waters that contain suspended colloids and dissolved species. Layer-by-layer deposition of anionic and cationic polyelectrolytes was employed to prepare membrane coatings allowing for a fine control over their surface properties. This approach to membrane design also affords a possibility of regenerating coatings after they are fouled by colloids. This project demonstrated, for first time, the possibility of designing nanofiltration membranes with regenerable skin. Chapter 3 describes a study on the mechanisms of natural organic matter (NOM) adsorption onto the surface of titania nanoparticles. Titainia (TiO 2) is often used in the fabrication of ceramic membranes and understanding how NOM interacts with TiO2 can help to better predict ceramic membrane fouling by NOM-containing waters. The combined effect of pH and calcium on the interactions of nonozonated and ozonated NOM with nanoscale TiO 2 was investigated by applying extended Derjaguin --- Landau --- Verwey - Overbeek (XDLVO) modeling. XDLVO surface energy analysis predicted NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of

  12. The research on Virtual Plants Growth Based on DLA Model

    NASA Astrophysics Data System (ADS)

    Zou, YunLan; Chai, Bencheng

    This article summarizes the separated Evolutionary Algorithm in fractal algorithm of Diffusion Limited Aggregation model (i.e. DLA model) and put forward the virtual plant growth realization in computer based on DLA model. The method is carried out in the VB6.0 environment to achieve and verify the plant growth based on DLA model.

  13. High efficiency production and purification of 86Y based on electrochemical separation.

    PubMed

    Lukić, Dragoljub; Tamburella, Claire; Buchegger, Franz; Beyer, Gerd-Jürgen; Comor, Jozef J; Seimbille, Yann

    2009-04-01

    As an intermediate half-life positron emitter (86)Y is an attractive radioisotope for positron emission tomography (PET) studies, particularly for patient specific dosimetry planning of (90)Y-based radiotherapy procedures. It can be conveniently produced by a small-sized cyclotron via the (86)Sr(p,n)(86)Y nuclear reaction. The optimization of the electrochemical separation of (86)Y from the target material and its purification was done by modeling the whole production cycle using (90)Y. The radionuclide was isolated using four electrodes in two electrolytic steps. In the first step two Pt plate anodes and a Pt Winkler cathode were used and the electro-deposition yield was determined in constant current mode of operation. In addition, the influence of pH on the efficiency of this first step was investigated. The second electrolysis, with Winkler electrode as anode and a Pt wire as cathode, was also performed in constant current mode of operation. The kinetics of recovery of the deposited activity on the Pt wire was investigated in acidic solutions. The optimized electrochemical method was then applied for (86)Y separation and purification. This modified procedure was proved to be faster and simpler than the previously proposed electrochemical techniques and is more convenient for automation of the routine production of (86)Y. PMID:19181533

  14. Model-Based Systems

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    2007-01-01

    Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.

  15. A practical implementation of turbulence models for the computation of three-dimensional separated flows

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1991-01-01

    An upwind MUSCL-type implicit scheme for the three-dimensional Navier-Stokes equations is presented and details on the implementation for three-dimensional flows of a 'diagonal' upwind implicit operator are developed. Turbulence models for separated flows are also described with an emphasis on the numerical specificities of the Johnson-King nonequilibrium model. Good predictions of separated two- and three-dimensional flows are demonstrated.

  16. High Temperature Stable Separator for Lithium Batteries Based on SiO₂ and Hydroxypropyl Guar Gum.

    PubMed

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO₂) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO₂ and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  17. Single channel speech separation in modulation frequency domain based on a novel pitch range estimation method

    NASA Astrophysics Data System (ADS)

    Mahmoodzadeh, Azar; Abutalebi, Hamid Reza; Soltanian-Zadeh, Hamid; Sheikhzadeh, Hamid

    2012-12-01

    Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.

  18. Separability Criterion for Arbitrary Multipartite Pure State Based on the Rank of Reduced Density Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu

    2016-09-01

    Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.

  19. Separability Criterion for Arbitrary Multipartite Pure State Based on the Rank of Reduced Density Matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu

    2016-04-01

    Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.

  20. Separated shear-layer instability reproduction by a Reynolds stress model of turbulence

    NASA Astrophysics Data System (ADS)

    Jakirlic, Suad; Maduta, Robert

    2013-11-01

    A boundary layer separating from a solid wall transforms into a `separated shear layer' exhibiting a broader frequency range. Such a highly-unsteady shear layer separating the mean stream from the flow reversal is dominated by the organized, large-scale coherent structures, influencing to a large extent the overall flow behavior. Unlike in the case of a flat-plate boundary layer separating at a fixed point characterizing a backward-facing step geometry, which can be reasonably well captured by a statistical model of turbulence, the separation process pertinent to continuous curved surfaces as well as some fence- or rib-shaped configurations is beyond the reach of any RANS (Reynolds-Averaged Navier Stokes) model independent of the modeling level. The latter issue motivated the present work, dealing with an appropriate extension of a near-wall Second-Moment Closure (SMC) model towards an instability-sensitive formulation. The production term in the corresponding scale-supplying equation is selectively enhanced through introduction of the ratio of the first to the second derivative of the velocity field, the latter representing the integral part of the von Karman length scale, enabling appropriate capturing of the fluctuating turbulence and accordingly the reproduction of the separated shear-layer instability. The analysis is performed by simulating the flow separated from a fence, an axisymmetric hill and a cylinder configuration.

  1. Network-based representation of energy transfer in unsteady separated flow

    NASA Astrophysics Data System (ADS)

    Nair, Aditya; Taira, Kunihiko

    2015-11-01

    We construct a network-based representation of energy pathways in unsteady separated flows using a POD-Galerkin projection model. In this formulation, we regard the POD modes as the network nodes and the energy transfer between the modes as the network edges. Based on the energy transfer analysis performed by Noack et al. (2008), edge weights are characterized on the interaction graph. As an example, we examine the energy transfer within the two-dimensional incompressible flow over a circular cylinder. In particular, we analyze the energy pathways involved in flow transition from the unstable symmetric steady state to periodic shedding cycle. The growth of perturbation energy over the network is examined to highlight key features of flow physics and to determine how the energy transfer can be influenced. Furthermore, we implement closed-loop flow control on the POD-Galerkin model to alter the energy interaction path and modify the global behavior of the wake dynamics. The insights gained will be used to perform further network analysis on fluid flows with added complexity. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  2. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures.

    PubMed

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-03-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications. PMID:24738015

  3. Continuous size-based separation of microparticles in a microchannel with symmetric sharp corner structures

    PubMed Central

    Fan, Liang-Liang; He, Xu-Kun; Han, Yu; Du, Li; Zhao, Liang; Zhe, Jiang

    2014-01-01

    A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications. PMID:24738015

  4. Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    2013-01-01

    The Menter Shear Stress Transport (SST) k . turbulence model is one of the most widely used two-equation Reynolds-averaged Navier-Stokes turbulence models for aerodynamic analyses. The model extends Menter s baseline (BSL) model to include a limiter that prevents the calculated turbulent shear stress from exceeding a prescribed fraction of the turbulent kinetic energy via a proportionality constant, a1, set to 0.31. Compared to other turbulence models, the SST model yields superior predictions of mild adverse pressure gradient flows including those with small separations. In shock - boundary layer interaction regions, the SST model produces separations that are too large while the BSL model is on the other extreme, predicting separations that are too small. In this paper, changing a1 to a value near 0.355 is shown to significantly improve predictions of shock separated flows. Several cases are examined computationally and experimental data is also considered to justify raising the value of a1 used for shock separated flows.

  5. Model Based Definition

    NASA Technical Reports Server (NTRS)

    Rowe, Sidney E.

    2010-01-01

    In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.

  6. Nafion Film Based Micro-nanofluidic Device for Concurrent DNA Preconcentration and Separation in Free Solution

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2014-01-01

    This paper presents a Nafion film based micro-nanofluidic device for concurrent DNA preconcentration and separation. The principle of the device is based on the combination of (a) ion concentration polarization phenomenon at the junction of the microchannel and the nanochannels in the Nafion film to form opposing electrophoretic and electroosmotic forces acting on the DNAs, and (b) end-labeled free solution electrophoresis to harness the charge-to-mass ratio for molecular differentiation. The experiments successfully demonstrated concurrent preconcentration and separation of DNA mixture in free solution within 240s, yielding concentration ratios up to 1,150X and separation resolution of 1.85. The effect of applied electric field on the concentration and separation performance was also investigated. The device can be used as a key sample preparation element in conjunction with micro- or nano-fluidic sensors for microTAS functionality. PMID:25346656

  7. Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations

    NASA Astrophysics Data System (ADS)

    Zhu, Guanghu; Chen, Guanrong; Zhang, Haifeng; Fu, Xinchu

    2015-01-01

    Based on the fact that most human pathogens originate from animals, this paper attempts to illustrate the propagation dynamics of some zoonotic infections, which spread in two separated networks of populations (human network I and animal network II) and cross-species (vectors, or infective media). An epidemic time-evolution model is proposed via mean-field approximation and its global dynamics are investigated. It is found that the basic reproduction number in terms of epidemiological parameters and the network structure is the threshold condition determining the propagation dynamics. Further, the influences of various infection rates and contact patterns are verified. Numerical results show that the heterogeneity in connection patterns and inner infection in network I can easily trigger endemic dynamics, but when a pathogen, such as H7N9, has weak infectivity in humans, the effects of animal-animal interactions and the contacts with vectors tend to induce endemic states and enhance the prevalence in all the populations.

  8. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    SciTech Connect

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  9. Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow

    SciTech Connect

    Rothman, D.H. ); Zaleski, S. )

    1994-10-01

    Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.

  10. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.