Sample records for model farm recirculating

  1. Freshwater Institute: Focused on improving recirculating aquaculture system technology

    USDA-ARS?s Scientific Manuscript database

    Recirculating aquaculture system (RAS) technologies help to overcome barriers to domestic aquaculture expansion and enhance the sustainability of the modern fish farming industry through reduction in environmental impacts. With RAS, fish farm expansion is no longer highly constrained by competition ...

  2. Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi

    2016-12-01

    Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.

  3. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  4. Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian

    2017-10-01

    Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.

  5. Preoperational test report, recirculation ventilation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  6. Calculation of recirculating flow behind flame-holders

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sheng, Y.; Zhou, Q.

    1985-10-01

    Adoptability of standard K-epsilon turbulence model for numerical calculation of recirculating flow is discussed. Many computations of recirculating flows behind bluff-bodies used as flame-holders in afterburner of aeroengine have been completed. Blocking-off method to treat the incline walls of the flame-holder gives good results. In isothermal recirculating flows the flame-holder wall is assumed to be isolated. Therefore, it is possible to remove the inactive zone from the calculation domain in programming to save computer time. The computation for a V-shaped flame-holder exhibits an interesting phenomenon that the recirculation zone extends to the cavity of the flame-holder.

  7. The impact of recirculating industrial air on aircraft painting operations.

    PubMed

    LaPuma, P T; Bolch, W E

    1999-10-01

    The 1990 Clean Air Act Amendments resulted in new environmental regulations for hazardous air pollutants. Industries such as painting facilities may have to treat large volumes of air, which increases the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. The authors of this study developed a computer model written in Microsoft Excel 97 to analyze the impact of recirculation on worker safety and compliance costs. The model has a chemical database with over 1300 chemicals. The model will predict indoor air concentrations using mass balance calculations and results are compared to occupational exposure limits. A case study is performed on a C-130 aircraft painting facility at Hill Air Force Base, Utah. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the exposure limit. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered during recirculation. The next highest chemical, hexamethylene diisocyanate, increases from 2.6 to 10.5 times the exposure limit at 0 percent and 75 percent recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75 percent of the air. The initial cost of an air control system is $4.5 million with no recirculation and $1.8 million at 75 percent recirculation. The model is an excellent tool to evaluate air control options with a focus on worker safety. In the case study, the model highlights strontium chromate primers as good candidates for substitution. The model shows that recirculating 75 percent of the air at the Hill painting facility has a negligible impact on safety and could save $2.7 million on the initial expenses of a thermal treatment system.

  8. Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity.

    PubMed

    Degueurce, Axelle; Trémier, Anne; Peu, Pascal

    2016-09-01

    Performances of batch mode solid state anaerobic digestion (SSAD) were investigated through several leachate recirculation strategies. Three parameters were shown to particularly influence methane production rates (MPR) and methane yields: the length of the interval between two recirculation events, the leachate to substrate (L:S) ratio and the volume of leachate recirculated. A central composite factor design was used to determine the influence of each parameter on methane production. Results showed that lengthening the interval between two recirculation events reduced methane yield. This effect can be counteracted by recirculating a large volume of leachate at a low L:S ratio. Steady methane production can be obtained by recirculating small amounts of leachate, and by lengthening the interval between two recirculations, regardless of the L:S ratio. However, several combinations of these parameters led to similar performances meaning that leachate recirculation practices can be modified as required by the specific constraints SSAD plants configurations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Performance model of a recirculating stack nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1994-01-01

    A theoretical model of the nickel hydrogen battery cell has been utilized to describe the chemical and physical changes during charge and overcharge in a recirculating stack nickel hydrogen cell. In particular, the movement of gas and electrolyte have been examined as a function of the amount of electrolyte put into the cell stack during cell activation, and as a function of flooding in regions of the gas screen in this cell design. Additionally, a two-dimensional variation on this model has been utilized to describe the effects of non-uniform loading in the nickel-electrode on the movement of gas and electrolyte within the recirculating stack nickel hydrogen cell. The type of nonuniform loading that has been examined here is that associated with higher than average loading near the surface of the sintered nickel electrode, a condition present to some degree in many nickel electrodes made by electrochemical impregnation methods. The effects of high surface loading were examined primarily under conditions of overcharge, since the movement of gas and electrolyte in the overcharging condition was typically where the greatest effects of non-uniform loading were found. The results indicate that significant changes in the capillary forces between cell components occur as the percentage of free volume in the stack filled by electrolyte becomes very high. These changes create large gradients in gas-filled space and oxygen concentrations near the boundary between the separator and the hydrogen electrode when the electrolyte fill is much greater than about 95 percent of the stack free volume. At lower electrolyte fill levels, these gaseous and electrolyte gradients become less extreme, and shift through the separator towards the nickel electrode. Similarly, flooding of areas in the gas screen cause higher concentrations of oxygen gas to approach the platinum/hydrogen electrode that is opposite the back side of the nickel electrode. These results illustrate the need for

  10. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  11. Turbulent transport modeling of shear flows around an aerodynamic wing. Development of turbulent near-wall model and its application to recirculating flows

    NASA Technical Reports Server (NTRS)

    Amano, R. S.

    1982-01-01

    Progress in implementing and refining two near-wall turbulence models in which the near-wall region is divided into either two or three zones is outlined. These models were successfully applied to the computation of recirculating flows. The research was further extended to obtaining experimental results of two different recirculating flow conditions in order to check the validity of the present models. Two different experimental apparatuses were set up: axisymmetric turbulent impinging jets on a flat plate, and turbulent flows in a circular pipe with a abrupt pipe expansion. It is shown that generally better results are obtained by using the present near-wall models, and among the models the three-zone model is superior to the two-zone model.

  12. Research on large-scale wind farm modeling

    NASA Astrophysics Data System (ADS)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  13. Case study of controlled recirculation at a Wyoming trona mine

    PubMed Central

    Pritchard, C.; Scott, D.; Frey, G.

    2015-01-01

    Controlled recirculation has been used in the metal/nonmetal mining industry for energy savings when heating and cooling air, in undersea mining and for increasing airflow to mining areas. For safe and effective use of controlled district recirculation, adequate airflow to dilute contaminants must exist prior to implementation, ventilation circuit parameters must be accurately quantified, ventilation network modeling must be up to date, emergency planning scenarios must be performed and effective monitoring and control systems must be installed and used. Safety and health issues that must be considered and may be improved through the use of controlled district recirculation include blasting fumes, dust, diesel emissions, radon and contaminants from mine fires. Controlled recirculation methods are expected to become more widely used as mines reach greater working depths, requiring that these health and safety issues be well understood. The U.S. National Institute for Occupational Safety and Health (NIOSH) conducted two controlled recirculation tests over three days at a Wyoming trona mine, utilizing an inline booster fan to improve airflow to a remote and difficult-to-ventilate development section. Test results were used to determine the effect that recirculation had on air qualities and quantities measured in that section and in other adjacent areas. Pre-test conditions, including ventilation quantities and pressures, were modeled using VnetPC. During each test, ventilation quantities and pressures were measured, as well as levels of total dust. Sulfur hexafluoride (SF6) tracer gas was used to simulate a mine contaminant to monitor recirculation wave cycles. Results showed good correlation between the model results and measured values for airflows, pressure differentials, tracer gas arrival times, mine gasses and dust levels. PMID:26251567

  14. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  15. DairyWise, a whole-farm dairy model.

    PubMed

    Schils, R L M; de Haan, M H A; Hemmer, J G A; van den Pol-van Dasselaar, A; de Boer, J A; Evers, A G; Holshof, G; van Middelkoop, J C; Zom, R L G

    2007-11-01

    A whole-farm dairy model was developed and evaluated. The DairyWise model is an empirical model that simulated technical, environmental, and financial processes on a dairy farm. The central component is the FeedSupply model that balanced the herd requirements, as generated by the DairyHerd model, and the supply of homegrown feeds, as generated by the crop models for grassland and corn silage. The output of the FeedSupply model was used as input for several technical, environmental, and economic submodels. The submodels simulated a range of farm aspects such as nitrogen and phosphorus cycling, nitrate leaching, ammonia emissions, greenhouse gas emissions, energy use, and a financial farm budget. The final output was a farm plan describing all material and nutrient flows and the consequences on the environment and economy. Evaluation of DairyWise was performed with 2 data sets consisting of 29 dairy farms. The evaluation showed that DairyWise was able to simulate gross margin, concentrate intake, nitrogen surplus, nitrate concentration in ground water, and crop yields. The variance accounted for ranged from 37 to 84%, and the mean differences between modeled and observed values varied between -5 to +3% per set of farms. We conclude that DairyWise is a powerful tool for integrated scenario development and evaluation for scientists, policy makers, extension workers, teachers and farmers.

  16. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  17. High ratio recirculating gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  18. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  19. Modeling greenhouse gas emissions from dairy farms.

    PubMed

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  20. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  1. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    NASA Astrophysics Data System (ADS)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  2. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    PubMed

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu

  3. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  4. Empirical Analysis of Farm Credit Risk under the Structure Model

    ERIC Educational Resources Information Center

    Yan, Yan

    2009-01-01

    The study measures farm credit risk by using farm records collected by Farm Business Farm Management (FBFM) during the period 1995-2004. The study addresses the following questions: (1) whether farm's financial position is fully described by the structure model, (2) what are the determinants of farm capital structure under the structure model, (3)…

  5. Mathematical Modeling Reveals Kinetics of Lymphocyte Recirculation in the Whole Organism

    PubMed Central

    Ganusov, Vitaly V.; Auerbach, Jeremy

    2014-01-01

    The kinetics of recirculation of naive lymphocytes in the body has important implications for the speed at which local infections are detected and controlled by immune responses. With a help of a novel mathematical model, we analyze experimental data on migration of 51Cr-labeled thoracic duct lymphocytes (TDLs) via major lymphoid and nonlymphoid tissues of rats in the absence of systemic antigenic stimulation. We show that at any point of time, 95% of lymphocytes in the blood travel via capillaries in the lung or sinusoids of the liver and only 5% migrate to secondary lymphoid tissues such as lymph nodes, Peyer's patches, or the spleen. Interestingly, our analysis suggests that lymphocytes travel via lung capillaries and liver sinusoids at an extremely rapid rate with the average residence time in these tissues being less than 1 minute. The model also predicts a relatively short average residence time of TDLs in the spleen (2.5 hours) and a longer average residence time of TDLs in major lymph nodes and Peyer's patches (10 hours). Surprisingly, we find that the average residence time of lymphocytes is similar in lymph nodes draining the skin (subcutaneous LNs) or the gut (mesenteric LNs) or in Peyer's patches. Applying our model to an additional dataset on lymphocyte migration via resting and antigen-stimulated lymph nodes we find that enlargement of antigen-stimulated lymph nodes occurs mainly due to increased entrance rate of TDLs into the nodes and not due to decreased exit rate as has been suggested in some studies. Taken together, our analysis for the first time provides a comprehensive, systems view of recirculation kinetics of thoracic duct lymphocytes in the whole organism. PMID:24830705

  6. Investigation of induced recirculation during planned ventilation system maintenance

    PubMed Central

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862

  7. Thermophysical fundamentals of cyclonic recirculating heating devices

    NASA Astrophysics Data System (ADS)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  8. Recirculating Aquaculture (4th edition)

    USDA-ARS?s Scientific Manuscript database

    Typically recirculating (closed) aquatic production systems have higher capital and operating costs than many of the extensive systems such as cage culture in natural waters and raceway and/or pond culture systems. However, when the control provided by recirculating systems and the benefits this env...

  9. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less

  10. Modeling livestock population structure: a geospatial database for Ontario swine farms.

    PubMed

    Khan, Salah Uddin; O'Sullivan, Terri L; Poljak, Zvonimir; Alsop, Janet; Greer, Amy L

    2018-01-30

    Infectious diseases in farmed animals have economic, social, and health consequences. Foreign animal diseases (FAD) of swine are of significant concern. Mathematical and simulation models are often used to simulate FAD outbreaks and best practices for control. However, simulation outcomes are sensitive to the population structure used. Within Canada, access to individual swine farm population data with which to parameterize models is a challenge because of privacy concerns. Our objective was to develop a methodology to model the farmed swine population in Ontario, Canada that could represent the existing population structure and improve the efficacy of simulation models. We developed a swine population model based on the factors such as facilities supporting farm infrastructure, land availability, zoning and local regulations, and natural geographic barriers that could affect swine farming in Ontario. Assigned farm locations were equal to the swine farm density described in the 2011 Canadian Census of Agriculture. Farms were then randomly assigned to farm types proportional to the existing swine herd types. We compared the swine population models with a known database of swine farm locations in Ontario and found that the modeled population was representative of farm locations with a high accuracy (AUC: 0.91, Standard deviation: 0.02) suggesting that our algorithm generated a reasonable approximation of farm locations in Ontario. In the absence of a readily accessible dataset providing details of the relative locations of swine farms in Ontario, development of a model livestock population that captures key characteristics of the true population structure while protecting privacy concerns is an important methodological advancement. This methodology will be useful for individuals interested in modeling the spread of pathogens between farms across a landscape and using these models to evaluate disease control strategies.

  11. Impact of capillary rise and recirculation on simulated crop yields

    NASA Astrophysics Data System (ADS)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  12. The effects of long-term 20 mg/L carbon dioxide exposure on the health and performance of Atlantic salmon Salmo salar post-smolts in water recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems...

  13. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    PubMed

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of

  14. In Situ Biotreatment of TBA with Recirculation/Oxygenation

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537

  15. In Situ Biotreatment of TBA with Recirculation/Oxygenation.

    PubMed

    North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M

    2012-01-01

    The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.

  16. Evaluation model of wind energy resources and utilization efficiency of wind farm

    NASA Astrophysics Data System (ADS)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  17. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical recirculating air cleaner. 880.5045 Section 880.5045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating...

  18. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical recirculating air cleaner. 880.5045 Section 880.5045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating...

  19. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device may...

  20. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device may...

  1. 21 CFR 880.5045 - Medical recirculating air cleaner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical recirculating air cleaner. 880.5045... Therapeutic Devices § 880.5045 Medical recirculating air cleaner. (a) Identification. A medical recirculating air cleaner is a device used to remove particles from the air for medical purposes. The device may...

  2. Prediction of recirculation zones in isothermal coaxial jet flows relevant to combustors

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1987-01-01

    The characteristics of the recirculation zones in confined coaxial turbulent jets are investigated numerically employing the kappa - epsilon turbulence model. The geometrical arrangement corresponds to the experimental study of Owen (AIAA J. 1976) and the investigation is undertaken to provide information for isothermal flow relevant to combustor flows. For the first time, the shape, size, and location of the recirculation zones for the above experimental configuration are correctly predicted. The processes leading to the observed results are explained. Detailed comparisons of the prediction with measurements are made. It is shown that the recirculation zones are very sensitive to the central jet exit configuration and the velocity ratio of the jets.

  3. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  4. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  5. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).

    PubMed

    Besson, M; Komen, H; Aubin, J; de Boer, I J M; Poelman, M; Quillet, E; Vancoillie, C; Vandeputte, M; van Arendonk, J A M

    2014-12-01

    In fish farming, economic values (EV) of breeding goal traits are lacking, even though they are key parameters when defining selection objectives. The aim of this study was to develop a bioeconomic model to estimate EV of 2 traits representing production performances in fish farming: the thermal growth coefficient (TGC) and the feed conversion ratio (FCR). This approach was applied to a farm producing African catfish (Clarias gariepinus) in a recirculating aquaculture system (RAS). In the RAS, 2 factors could limit production level: the nitrogen treatment capacity of the biofilter or the fish density in rearing tanks at harvest. Profit calculation includes revenue from fish sales, cost of juveniles, cost of feed, cost of waste water treatment, and fixed costs. In the reference scenario, profit was modeled to zero. EV were calculated as the difference in profit per kilogram of fish between the current population mean for both traits (µt) and the next generation of selective breeding (µt+Δt) for either TGC or FCR. EV of TGC and FCR were calculated for three generations of hypothetical selection on either TGC or FCR (respectively 6.8% and 7.6% improvement per generation). The results show that changes in TGC and FCR can affect both the number of fish that can be stocked (number of batches per year and number of fish per batch) and the factor limiting production. The EV of TGC and FCR vary and depend on the limiting factors. When dissolved NH3-N is the limiting factor for both µt and µt+Δt, increasing TGC decreases the number of fish that can be stocked but increases the number of batches that can be grown. As a result, profit remains constant and EVTGC is zero. Increasing FCR, however, increases the number of fish stocked and the ratio of fish produced per kilogram of feed consumed ("economic efficiency"). The EVFCR is 0.14 €/kg of fish, and profit per kilogram of fish increases by about 10%. When density is the limiting factor for both µt and µt+Δt, the

  6. Using a whole farm model to determine the impacts of mating management on the profitability of pasture-based dairy farms.

    PubMed

    Beukes, P C; Burke, C R; Levy, G; Tiddy, R M

    2010-08-01

    An approach to assessing likely impacts of altering reproductive performance on productivity and profitability in pasture-based dairy farms is described. The basis is the development of a whole farm model (WFM) that simulates the entire farm system and holistically links multiple physical performance factors to profitability. The WFM consists of a framework that links a mechanistic cow model, a pasture model, a crop model, management policies and climate. It simulates individual cows and paddocks, and runs on a day time-step. The WFM was upgraded to include reproductive modeling capability using reference tables and empirical equations describing published relationships between cow factors, physiology and mating management. It predicts reproductive status at any time point for individual cows within a modeled herd. The performance of six commercial pasture-based dairy farms was simulated for the period of 12 months beginning 1 June 2005 (05/06 year) to evaluate the accuracy of the model by comparison with actual outcomes. The model predicted most key performance indicators within an acceptable range of error (residual<10% of observed). The evaluated WFM was then used for the six farms to estimate the profitability of changes in farm "set-up" (farm conditions at the start of the farming year on 1 June) and mating management from 05/06 to 06/07 year. Among the six farms simulated, the 4-week calving rate emerged as an important set-up factor influencing profitability, while reproductive performance during natural bull mating was identified as an area with the greatest opportunity for improvement. The WFM presents utility to explore alternative management strategies to predict likely outcomes to proposed changes to a pasture-based farm system. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.

    1984-01-01

    Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.

  8. Novel recirculating loop reactor for studies on model catalysts: CO oxidation on Pt/TiO2(110)

    NASA Astrophysics Data System (ADS)

    Tenney, Samuel A.; Xie, Kangmin; Monnier, John R.; Rodriguez, Abraham; Galhenage, Randima P.; Duke, Audrey S.; Chen, Donna A.

    2013-10-01

    A novel recirculating loop microreactor coupled to an ultrahigh vacuum (UHV) chamber has been constructed for the kinetic evaluation of model catalysts, which can be fully characterized by UHV surface science techniques. The challenge for this reactor design is to attain sufficient sensitivity to detect reactions on model single-crystal surfaces, which have a low number of active sites compared to conventional catalysts of equivalent mass. To this end, the total dead volume of the reactor system is minimized (32 cm3), and the system is operated in recirculation mode so that product concentrations build up to detectable levels over time. The injection of gas samples into the gas chromatography column and the refilling of the recirculation loop with fresh feed gas are achieved with computer-controlled, automated switching valves. In this manner, product concentrations can be followed over short time intervals (15 min) for extended periods of time (24 h). A proof of principle study in this reactor for CO oxidation at 145-165 °C on Pt clusters supported on a rutile TiO2(110) single crystal yields kinetic parameters that are comparable to those reported in the literature for CO oxidation on Pt clusters on powdered oxide supports, as well as on Pt(100). The calculated activation energy is 16.4 ± 0.7 kcal/mol, the turnover frequency is 0.03-0.06 molecules/(site.s) over the entire temperature range, and the reaction orders in O2 and CO at 160 °C are 0.9 ± 0.2 and -0.82 ± 0.03, respectively.

  9. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  10. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  11. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  12. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  13. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  14. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  15. Using mushroom farm and anaerobic digestion wastewaters as supplemental fertilizer sources for growing container nursery stock in a closed system.

    PubMed

    Chong, C; Purvis, P; Lumis, G; Holbein, B E; Voroney, R P; Zhou, H; Liu, H-W; Alam, M Z

    2008-04-01

    Wastewaters from farm and composting operations are often rich in select nutrients that potentially can be reutilized in crop production. Liners of silverleaf dogwood (Cornus alba L. 'Argenteo-marginata'), common ninebark [Physocarpus opulifolius (L.) Maxim.], and Anthony Waterer spirea (Spiraeaxbumalda Burvénich 'Anthony Waterer') were grown in 6L containers filled with a bark-based commercial mix. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: (1) a stock (control) solution with complete macro- and micro-nutrients, electrical conductivity (EC) 2.2 dS m(-1); (2) wastewater from a mushroom farm; and (3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense and recirculate nutrients based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17-5-12 (17N-2P-10K) plus micro-nutrients topdressed at a rate of 39 g/plant, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth with the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. Throughout the study, the EC measured in wastewater-derived nutrient solutions, and also in the container substrate, were similar or close to those of the control treatment, although there were small to large differences among individual major nutrients. There was no sign of nutrient deficiency or toxicity symptoms to the plants. Small to moderate excesses in concentrations of SO(4), Na, and/or Cl were physiologically tolerable to the species.

  16. Ammonia emission model for whole farm evaluation of dairy production systems.

    PubMed

    Rotz, C Alan; Montes, Felipe; Hafner, Sasha D; Heber, Albert J; Grant, Richard H

    2014-07-01

    Ammonia (NH) emissions vary considerably among farms as influenced by climate and management. Because emission measurement is difficult and expensive, process-based models provide an alternative for estimating whole farm emissions. A model that simulates the processes of NH formation, speciation, aqueous-gas partitioning, and mass transfer was developed and incorporated in a whole farm simulation model (the Integrated Farm System Model). Farm sources included manure on the floor of the housing facility, manure in storage (if used), field-applied manure, and deposits on pasture (if grazing is used). In a comprehensive evaluation of the model, simulated daily, seasonal, and annual emissions compared well with data measured over 2 yr for five free stall barns and two manure storages on dairy farms in the eastern United States. In a further comparison with published data, simulated and measured barn emissions were similar over differing barn designs, protein feeding levels, and seasons of the year. Simulated emissions from manure storage were also highly correlated with published emission data across locations, seasons, and different storage covers. For field applied manure, the range in simulated annual emissions normally bounded reported mean values for different manure dry matter contents and application methods. Emissions from pastures measured in northern Europe across seasons and fertilization levels were also represented well by the model. After this evaluation, simulations of a representative dairy farm in Pennsylvania illustrated the effects of animal housing and manure management on whole farm emissions and their interactions with greenhouse gas emissions, nitrate leaching, production costs, and farm profitability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Altmann, Bettina; Truyen, Uwe

    2018-01-01

    Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure. PMID:29558482

  18. Four-Nozzle Benchmark Wind Tunnel Model USA Code Solutions for Simulation of Multiple Rocket Base Flow Recirculation at 145,000 Feet Altitude

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Johnson, S. L.

    1993-01-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  19. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    are modeled by various types of wake models. In the EERA DTOC project the model suite consists of engineering models (Ainslie, DWM, GLC, PARK, WASP/NOJ), simplified CFD models (FUGA, FarmFlow), full CFD models (CRES-flowNS, RANS), mesoscale model (SKIRON, WRF) and coupled meso-scale and microscale models. The comparison analysis between the satellite wind wake and model results will be presented and discussed. It is first time a comprehensive analysis is performed on this subject. The topic gains increasing importance because there is a growing need to precisely model also mid- and far-field wind farms wakes for development and planning of offshore wind farm clusters.

  20. Engine with pulse-suppressed dedicated exhaust gas recirculation

    DOEpatents

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  1. Biofouling reduction in recirculating cooling systems through biofiltration of process water.

    PubMed

    Meesters, K P H; Van Groenestijn, J W; Gerritse, J

    2003-02-01

    Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.

  2. Usefulness of thermographic analysis to control temperature homogeneity in the development and implementation of a closed recirculating CO2 chemohyperthermia model.

    PubMed

    Padilla-Valverde, David; Sanchez-Garcia, Susana; García-Santos, Esther; Marcote-Ibañez, Carlos; Molina-Robles, Mercedes; Martín-Fernández, Jesús; Villarejo-Campos, Pedro

    2016-09-30

    To determine the effectiveness of thermography to control the distribution of abdominal temperature in the development of a closed chemohyperthermia model. For thermographic analysis, we divided the abdominopelvic cavity into nine regions according to a modification of carcinomatosis peritoneal index. A difference of 2.5 °C between and within the quadrants, and thermographic colours, were used as asymmetric criteria. Preclinical study:· Rats Model: Six athymic nude rats, male, rnu/rnu. They were treated with closed technique and open technique. Porcine Model: 12 female large white pigs. Four were treated with open technique and eight with closed recirculation CO 2 technique. Clinical Pilot Study, EUDRACT 2011-006319-69: 18 patients with ovarian cancer were treated with cytoreductive surgery and hyperthermia intraperitoneal chemotherapy, HIPEC, with a closed recirculating CO 2 system. Thermographic control and intra-abdominal temperature assessment was performed at the baseline, when outflow temperature reached 41 °C, and at 30´. The thermographic images showed a higher homogeneity of the intra-abdominal temperature in the closed model respect to the open technique. The thermogram showed a temperature distribution homogeneity when starting the circulation of chemotherapy. There was correlation between the temperature thermographic map in the closed porcine model and pilot study, and reached inflow and outflow temperatures, at half time of HIPEC, of 42/41.4 °C and 42 ± 0.2/41 ± 0.8 °C, respectively. There was no significant impact to the core temperature of patients after reaching the homogeneous temperature distribution. To control homogeneity of temperature distribution is feasible using infra-red digital images in a closed HIPEC with CO 2 recirculation.

  3. Wind farm density and harvested power in very large wind farms: A low-order model

    NASA Astrophysics Data System (ADS)

    Cortina, G.; Sharma, V.; Calaf, M.

    2017-07-01

    In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.

  4. Modeling greenhouse gas emissions from dairy farms

    USDA-ARS?s Scientific Manuscript database

    Evaluation and mitigation of greenhouse gas emissions from dairy farms requires a comprehensive approach that integrates the impacts and interactions of all important sources and sinks. This approach requires some form of modeling. Types of models commonly used include empirical emission factors, pr...

  5. Modeling velocity space-time correlations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2016-11-01

    Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.

  6. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  7. Numerical and Experimental Modeling of the Recirculating Melt Flow Inside an Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger

    2018-06-01

    In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.

  8. Modelling potential production of macroalgae farms in UK and Dutch coastal waters

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Ruardij, Piet; Mooney, Karen; Kerrison, Philip; O'Connor, Nessa E.; Gorman, Emma; Timmermans, Klaas; Wright, Serena; Kelly, Maeve; Hughes, Adam D.; Capuzzo, Elisa

    2018-02-01

    There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction for biofuel production. This study uses a 3-D numerical model of hydrodynamics and biogeochemistry to investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (north-west Scotland) and in the Rhine plume (the Netherlands), as well as a hypothetical large-scale farm off the UK north Norfolk coast. The model could not detect significant changes in biogeochemistry and plankton dynamics at any of the farm sites averaged over the farming season. The results showed a range of macroalgae growth behaviours in response to simulated environmental conditions. These were then compared with in situ observations where available, showing good correspondence for some farms and less good correspondence for others. At the most basic level, macroalgae production depended on prevailing nutrient concentrations and light conditions, with higher levels of both resulting in higher macroalgae production. It is shown that under non-elevated and interannually varying winter nutrient conditions, farming success was modulated by the timings of the onset of increasing nutrient concentrations in autumn and nutrient drawdown in spring. Macroalgae carbohydrate content also depended on nutrient concentrations, with higher nutrient concentrations leading to lower carbohydrate content at harvest. This will reduce the energy density of the crop and thus affect its suitability for conversion into biofuel. For the hypothetical large-scale macroalgae farm off the UK north Norfolk coast, the model suggested high, stable farm yields of macroalgae from year to year with substantial carbohydrate content and limited environmental effects.

  9. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  10. A control-oriented dynamic wind farm flow model: “WFSim”

    NASA Astrophysics Data System (ADS)

    Boersma, S.; Gebraad, P. M. O.; Vali, M.; Doekemeijer, B. M.; van Wingerden, J. W.

    2016-09-01

    In this paper, we present and extend the dynamic medium fidelity control-oriented Wind Farm Simulator (WFSim) model. WFSim resolves flow fields in wind farms in a horizontal, two dimensional plane. It is based on the spatially and temporally discretised two dimensional Navier-Stokes equations and the continuity equation and solves for a predefined grid and wind farm topology. The force on the flow field generated by turbines is modelled using actuator disk theory. Sparsity in system matrices is exploited in WFSim, which enables a relatively fast flow field computation. The extensions to WFSim we present in this paper are the inclusion of a wake redirection model, a turbulence model and a linearisation of the nonlinear WFSim model equations. The first is important because it allows us to carry out wake redirection control and simulate situations with an inflow that is misaligned with the rotor plane. The wake redirection model is validated against a theoretical wake centreline known from literature. The second extension makes WFSim more realistic because it accounts for wake recovery. The amount of recovery is validated using a high fidelity simulation model Simulator fOr Wind Farm Applications (SOWFA) for a two turbine test case. Finally, a linearisation is important since it allows the application of more standard analysis, observer and control techniques.

  11. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    PubMed

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Modelling the Wind-Borne Spread of Highly Pathogenic Avian Influenza Virus between Farms

    PubMed Central

    Ssematimba, Amos; Hagenaars, Thomas J.; de Jong, Mart C. M.

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km. PMID:22348042

  13. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km.

  14. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air

    PubMed Central

    Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.

    2017-01-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50–75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants’ exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation. PMID:28781568

  15. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    PubMed

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  16. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air

    NASA Astrophysics Data System (ADS)

    Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation.

  17. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    PubMed Central

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E.; Feldman, Mark; Forstner, Michael R. J.

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  18. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    PubMed

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  19. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NO x ) reduction technology by combustion modification which has economic benefits as a method of controlling NO x emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NO x reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NO x in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N 2 ), carbon dioxide (CO 2 ) and steam (H 2 O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NO x concentration greatly. We investigated the influence of factors determining the nitrogen oxides (NO x ) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NO x emissions the most.

  20. Assessing the impact of marine wind farms on birds through movement modelling

    PubMed Central

    Masden, Elizabeth A.; Reeve, Richard; Desholm, Mark; Fox, Anthony D.; Furness, Robert W.; Haydon, Daniel T.

    2012-01-01

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were  collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage. PMID:22552921

  1. Assessing the impact of marine wind farms on birds through movement modelling.

    PubMed

    Masden, Elizabeth A; Reeve, Richard; Desholm, Mark; Fox, Anthony D; Furness, Robert W; Haydon, Daniel T

    2012-09-07

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage.

  2. Contribution of seawater recirculation to submarine groundwater discharge and related nutrient fluxes in two tropical bays

    NASA Astrophysics Data System (ADS)

    Vautier, Camille; Dulaiova, Henrietta

    2017-04-01

    Hawaiian coastal waters suffer from excess terrestrial nutrient loading, most of which comes from submarine groundwater discharge (SGD). This study quantifies and distinguishes the role of the fresh terrestrial and tidally pumped salt water components of SGD into the nearshore zone of two reefs on the island of Oahu: Maunalua Bay and Kāneohe Bay. The two components of SGD are characterized using isotopic techniques, and the study mainly focuses on the less understood recirculation component. A two-step approach is implemented: first, a conceptual model of groundwater circulation is established; second, nutrient fluxes associated with seawater recirculation are quantified. Groundwater circulation through the beach berm is quantified and characterized using 222Rn and 224Ra activity measurements. Nutrient fluxes are obtained by coupling nutrient concentration measurements and discharge estimates. The isotopic signatures inform us about the influence of the tidal cycle on groundwater circulation. 222Rn, 224Ra, and δ18O isotopes are used to derive apparent ages of the infiltrated seawater and allow us to quantify recirculation rates. The method is also complemented with the use of silicate concentration as tracers of the recirculation process. The trends in apparent ages observed in pore water in Maunalua match previously published conceptual groundwater circulation models and show a sequentially aging pore water circulation loop. However, the ages obtained in Kāneohe suggest a different tidal pumping dynamic that lacks a circulation loop, perhaps resulting from the absence of freshwater discharge. Derived nutrient fluxes show that the autochthonous production of inorganic nitrogen and phosphorus that occurs during seawater recirculation has a significant impact on nutrient cycles in the nearshore areas of the bays. This result suggests that seawater recirculation should be taken into account in biogeochemical studies of coastal areas.

  3. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety coliform count....127 Safety coliform count: Recirculating devices. Thirty-eight of forty samples of flush fluid from a recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be...

  4. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.

    PubMed

    Del Prado, A; Mas, K; Pardo, G; Gallejones, P

    2013-11-01

    There is world-wide concern for the contribution of dairy farming to global warming. However, there is still a need to improve the quantification of the C-footprint of dairy farming systems under different production systems and locations since most of the studies (e.g. at farm-scale or using LCA) have been carried out using too simplistic and generalised approaches. A modelling approach integrating existing and new sub-models has been developed and used to simulate the C and N flows and to predict the GHG burden of milk production (from the cradle to the farm gate) from 17 commercial confinement dairy farms in the Basque Country (northern Spain). We studied the relationship between their GHG emissions, and their management and economic performance. Additionally, we explored some of the effects on the GHG results of the modelling methodology choice. The GHG burden values resulting from this study (0.84-2.07 kg CO2-eq kg(-l) milk ECM), although variable, were within the range of values of existing studies. It was evidenced, however, that the methodology choice used for prediction had a large effect on the results. Methane from the rumen and manures, and N2O emissions from soils comprised most of the GHG emissions for milk production. Diet was the strongest factor explaining differences in GHG emissions from milk production. Moreover, the proportion of feed from the total cattle diet that could have directly been used to feed humans (e.g. cereals) was a good indicator to predict the C-footprint of milk. Not only were some other indicators, such as those in relation with farm N use efficiency, good proxies to estimate GHG emissions per ha or per kg milk ECM (C-footprint of milk) but they were also positively linked with farm economic performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Numerical analysis of biomass torrefaction reactor with recirculation of heat carrier

    NASA Astrophysics Data System (ADS)

    Director, L. B.; Ivanin, O. A.; Sinelshchikov, V. A.

    2018-01-01

    In this paper, results of numerical analysis of the energy-technological complex consisting of the gas piston power plant, the torrefaction reactor with recirculation of gaseous heat carrier and the heat recovery boiler are presented. Calculations of the reactor without recirculation and with recirculation of the heat carrier in torrefaction zone at different frequencies of unloading of torrefied biomass were held. It was shown that in recirculation mode the power of the gas piston power plant, required for providing given reactor productivity, is reduced several times and the consumption of fuel gas, needed for combustion of volatile torrefaction products in the heat recovery boiler, is reduced by an order.

  6. Sensitivity of bandpass filters using recirculating delay-line structures

    NASA Astrophysics Data System (ADS)

    Heyde, Eric C.

    1996-12-01

    Recirculating delay lines have value notably as sensors and optical signal processors. Most useful applications depend on a high-finesse response from a network. A proof that, with given response parameters, more complex systems can produce behavior that is more stable to the effects of nonidealities than a single recirculating loop is presented.

  7. Simulating forage crop production in a northern climate with the Integrated Farm System Model

    USDA-ARS?s Scientific Manuscript database

    Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...

  8. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  9. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  10. Integrative modeling and novel particle swarm-based optimal design of wind farms

    NASA Astrophysics Data System (ADS)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  11. Linear microbunching analysis for recirculation machines

    DOE PAGES

    Tsai, C. -Y.; Douglas, D.; Li, R.; ...

    2016-11-28

    Microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy-recovery-linac machines. To quantify MBI for a recirculating machine and for more systematic analyses, we have recently developed a linear Vlasov solver and incorporated relevant collective effects into the code, including the longitudinal space charge, coherent synchrotron radiation, and linac geometric impedances, with extension of the existing formulation to include beam acceleration. In our code, we semianalytically solve the linearized Vlasov equation for microbunching amplification factor formore » an arbitrary linear lattice. In this study we apply our code to beam line lattices of two comparative isochronous recirculation arcs and one arc lattice preceded by a linac section. The resultant microbunching gain functions and spectral responses are presented, with some results compared to particle tracking simulation by elegant (M. Borland, APS Light Source Note No. LS-287, 2002). These results demonstrate clearly the impact of arc lattice design on the microbunching development. Lastly, the underlying physics with inclusion of those collective effects is elucidated and the limitation of the existing formulation is also discussed.« less

  12. Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

    PubMed Central

    Rogers, Luke A.; Peacock, Stephanie J.; McKenzie, Peter; DeDominicis, Sharon; Jones, Simon R. M.; Chandler, Peter; Foreman, Michael G. G.; Revie, Crawford W.; Krkošek, Martin

    2013-01-01

    Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions. PMID:23577082

  13. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  14. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2013-02-01

    A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous

  15. Canadian Whole-Farm Model Holos - Development, Stakeholder Involvement, and Model Application

    NASA Astrophysics Data System (ADS)

    Kroebel, R.; Janzen, H.; Beauchemin, K. A.

    2017-12-01

    Agriculture and Agri-Food Canada's Holos model, based mostly on emission factors, aims to explore the effect of management on Canadian whole-farm greenhouse gas emissions. The model includes 27 commonly grown annual and perennial crops, summer fallow, grassland, and 8 types of tree plantings, along with beef, dairy, sheep, swine and other livestock or poultry operations. Model outputs encompass net emissions of CO2, CH4, and N2O (in CO2 equivalents), calculated for various farm components. Where possible, algorithms are drawn from peer-reviewed publications. For consistency, Holos is aligned with the Canadian sustainability indicator and national greenhouse gas inventory objectives. Although primarily an exploratory tool for research, the model's design makes it accessible and instructive also to agricultural producers, educators, and policy makers. Model development, therefore, proceeds iteratively, with extensive stakeholder feedback from training sessions or annual workshops. To make the model accessible to diverse users, the team developed a multi-layered interface, with general farming scenarios for general use, but giving access to detailed coefficients and assumptions to researchers. The model relies on extensive climate, soil, and agronomic databases to populate regionally-applicable default values thereby minimizing keyboard entries. In an initial application, the model was used to assess greenhouse gas emissions from the Canadian beef production system; it showed that enteric methane accounted for 63% of total GHG emissions and that 84% of emissions originated from the cow-calf herd. The model further showed that GHG emission intensity per kg beef, nationally, declined by 14% from 1981 to 2011, owing to gains in production efficiency. Holos is now being used to consider further potential advances through improved rations or other management options. We are now aiming to expand into questions of grazing management, and are developing a novel carbon

  16. Heat recirculating cooler for fluid stream pollutant removal

    DOEpatents

    Richards, George A.; Berry, David A.

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  17. Characterisation of recirculation zones in complex terrain using multi-lidar measurements

    NASA Astrophysics Data System (ADS)

    Menke, R.; Mann, J.; Vasiljevic, N.

    2017-12-01

    Wind fields in complex terrain show a higher complexity compared to sites with simpler geometries. It is imperative to understand well the characteristics of complex flows to account for them during the site validation to ensure the wind turbines can withstand the local flow conditions. This study focuses on the description of recirculation zones occurring on lee sides of hills. The flow recirculation can have a significant impact on the success of wind energy projects since it represents one of the main contributors to the turbulence generation. An extensive dataset of observation of flow over complex terrain is available from the Perdigão 2017 field campaign (https://www.nature.com/news/world-s-largest-wind-mapping-project-spins-up-in-portugal-1.21481). A setup of 8 long-range WindScanners (Vasiljević et al., 2016), scanning lidars deployed by DTU performed RHI scans at several positions along two parallel ridges probing the flow field in two vertical planes, in addition data from several meteorological masts is available. With the above-mentioned lidar setup we achieved simultaneous dual-Doppler scans of the recirculation zone at three positions and simultaneous observations of recirculation behind two parallel ridges. Methods are developed to identify and define the extent of recirculation bubbles. Different parameters are defined to characterise the dimensions of the recirculation zone. The change of these parameters along the ridges is studied. In particular, the impact of atmospheric stability and the changes of the wind field at the position of the downwind ridge are investigated. Furthermore, the geometry of the recirculation zone for different wind directions and in connection to the upstream wind conditions is investigated.

  18. Estimating Phosphorus Loss at the Whole-Farm Scale with User-Friendly Models

    NASA Astrophysics Data System (ADS)

    Vadas, P.; Powell, M.; Brink, G.; Busch, D.; Good, L.

    2014-12-01

    Phosphorus (P) loss from agricultural fields and delivery to surface waters persists as a water quality impairment issue. For dairy farms, P can be lost from cropland, pastures, barnyards, and open-air cattle lots; and all these sources must be evaluated to determine which ones are a priority for P loss remediation. We used interview surveys to document land use, cattle herd characteristics, and manure management for four grazing-based dairy farms in Wisconsin, USA. We then used the APLE and Snap-Plus models to estimate annual P loss from all areas on these farms and determine their relative contribution to whole-farm P loss. At the whole-farm level, average annual P loss (kg ha-1) from grazing-based dairy farms was low (0.6 to 1.8 kg ha-1), generally because a significant portion of land was in permanently vegetated pastures or hay and had low erosion. However, there were areas on the farms that represented sources of significant P loss. For cropland, the greatest P loss was from areas with exposed soil, typically for corn production, and especially on steeper sloping land. The farm areas with the greatest P loss had concentrated animal housing, including barnyards, and over-wintering and young-stock lots. These areas can represent from about 5% to almost 30% of total farm P loss, depending on lot management and P loss from other land uses. Our project builds on research to show that producer surveys can provide reliable management information to assess whole-farm P loss. It also shows that we can use models like RUSLE2, Snap-Plus, and APLE to rapidly, reliably, and quantitatively estimate P loss in runoff from all areas on a dairy farm and identify areas in greatest need of alternative management to reduce P loss.

  19. Multiregional input-output model for China's farm land and water use.

    PubMed

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-06

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.

  20. Open-RAC: Open-Design, Recirculating and Auto-Cleaning Zebrafish Maintenance System.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2017-08-01

    Zebrafish is a vertebrate animal model. Their maintenance in large number under laboratory conditions is a daunting task. Commercially available recirculating zebrafish maintenance systems are used to efficiently handle the tasks of automatic sediment cleaning from zebrafish tanks with minimal waste of water. Due to their compact nature, they also ensure the maximal use of available lab space. However, the high costs of commercial systems present a limitation to researchers with limited funds. A cost-effective zebrafish maintenance system with major features offered by commercially available systems is highly desirable. Here, we describe a compact and recirculating zebrafish maintenance system. Our system is composed of cost-effective components, which are available in local markets and/or can be procured via online vendors. Depending on the expertise of end users, the system can be assembled in 2 days. The system is completely customizable as it offers geometry independent zebrafish tanks that are capable of auto-cleaning the sediments. Due to these features, we called our setup as Open-RAC (Open-design, Recirculating and Auto-Cleaning zebrafish maintenance system). Open-RAC is a cost-effective and viable alternative to the currently available zebrafish maintenance systems. Thus, we believe that the use of Open-RAC could promote the zebrafish research by removing the cost barrier for researchers.

  1. Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Cheng

    general linear beamline lattice including horizontal and vertical transport bending elements, and beam acceleration or deceleration. These featured generalizations are required for MBI analysis in recirculation accelerators. (2) Construction of CSR impedance models In addition to the steady-state CSR interaction, it has been found that the exit transient effect (or CSR drift) can even result in more serious MBI in high-brightness recirculation arcs. The onedimensional free-space CSR impedances, especially the exit transients, are derived. The steady-state CSR impedance is also extended to non-ultrarelativistic beam energy for MBI analysis of low-energy merger sections in recirculating accelerators. (3) Numerical implementation of the derived semi-analytical formulation This includes the development of a semi-analytical Vlasov solver for MBI analysis, and also benchmarking of the solver against massive particle tracking simulations. (4) Exploration of multistage amplification behavior of CSR microbunching development The CSR-induced MBI acts as an amplifier, which amplifies the sub-bunch modulation of a beam. The amplification is commonly quantified by the amplification gain. A beam transport system can be considered as a cascaded amplifier. Unlike the two-stage amplification of four-dipole bunch compressor chicanes employed in linacs, the recirculation arcs, which are usually constituted by several tens of bending magnets, show a distinguishing feature of up to six-stage microbunching amplification for our example arc lattices. That is, the maximal CSR amplification gain can be proportional to the peak bunch current up to sixth power. A method to compare lattice performance has been developed in terms of gain coefficients, which nearly depend on the lattice properties only. This method has also proven to be an effective way to quantify the current dependence of the maximal (5) Control of CSR MBI in multibend transport or recirculation arcs The existing mitigation schemes

  2. Integrating Agent Models of Subsistence Farming With Dynamic Models of Water Distribution

    NASA Astrophysics Data System (ADS)

    Bithell, M.; Brasington, J.

    2004-12-01

    Subsistence farming communities are dependent on the landscape to provide the resource base upon which their societies can be built. A key component of this is the role of climate, and the feedback between rainfall, crop growth and land clearance, and their coupling to the hydrological cycle. Temporal fluctuations in rainfall on timescales from annual through to decadal and longer, and the associated changes in in the spatial distribution of water availability mediated by the soil-type, slope and landcover determine the locations within the landscape that can support agriculture, and control sustainability of farming practices. We seek to make an integrated modelling system to represent land use change by coupling an agent based model of subsistence farming, and the associated exploitation of natural resources, to a realistic representation of the hydrology at the catchment scale, using TOPMODEL to map the spatial distribution of crop water stress for given time-series of rainfall. In this way we can, for example, investigate how demographic changes and associated removal of forest cover influence the possibilities for field locations within the catchment, through changes in ground water availability. The framework for this modelling exercise will be presented and preliminary results from this system will be discussed.

  3. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  4. Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan.

    PubMed

    Huang, Fu-Shih; Hung, Jui-Min; Lu, Chih-Jen

    2012-08-01

    This study focused on the treatment of municipal solid waste (MSW) by modification and recirculation of leachate from a simulated landfill bioreactor. Hydrogen peroxide was added to recirculated leachate to maintain a constant oxygen concentration as the leachate passed again through the simulated landfill bioreactor. The results showed that leachate recirculation increased the dissolved oxygen concentration in the test landfill bioreactor. Over a period of 405 days, the biochemical oxygen demand (BOD(5)) in the collected leachate reduced by 99.7%, whereas the chemical oxygen demand (COD) reduced by 96%. The BOD(5)/COD ratio at the initial stage of 0.9 improved to 0.09 under aerobic conditions (leachate recirculation with added hydrogen peroxide) compared with the anaerobic test cell 0.11 (leachate recirculation alone without hydrogen peroxide). The pH increased from 5.5 to 7.6, and the degradation rate of organic carbon was 93%. Leachate recirculation brings about the biodegradation of MSW comparatively faster than the conventional landfill operation. The addition of a constant concentration of hydrogen peroxide was found to further increase the biodegradation. This increased biodegradation rate ultimately enables an MSW landfill to reach a stable state sooner and free up the land for further reuse.

  5. Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater 1. Dynamics of a recirculating well system

    NASA Astrophysics Data System (ADS)

    Gandhi, Rahul K.; Hopkins, Gary D.; Goltz, Mark N.; Gorelick, Steven M.; McCarty, Perry L.

    2002-04-01

    Recirculating well systems provide an engine for the in situ treatment of subsurface contaminants. Although numerous recirculating wells have been installed in the field, for such systems, there is a paucity of comprehensive monitoring data and models constrained to data appearing in the research literature. Here we present an extensive data set combined with detailed inverse and simulation analyses for a two-well groundwater recirculation system used for in situ bioremediation at Edwards Air Force Base in southern California. The ``conveyor belt'' flow system, which was established for in situ treatment of trichloroethylene (TCE) in two bioactive zones, was created by pumping water upward in one well and downward in another well, each well being screened in both the upper and lower aquifers. A bromide tracer test was conducted and extensively monitored for 60 days. Combined inverse analysis was conducted on hydraulic heads from 38 monitoring wells, 32 bromide concentration histories, and a constraint on the degree of recirculation that was based on TCE concentration data. Four different formulations involving alternative weighting schemes used in a nonlinear weighted least squares simulation-regression analysis were explored. The best formulation provided parameter estimates with tight bounds on estimated covariances, suggesting that the model provides a reasonable description of the hydrogeologic system. Our investigation indicates the geometry of the recirculation zone and the degree of recirculation under two different sets of operating conditions. Surprisingly, our analysis suggests that the effects of aquifer heterogeneity are not significant at this site under the conditions of forced recirculation. Furthermore, anomalous flow through an open monitoring well created significant vertical short-circuiting between the generally insulated aquifers. Flow through this small open conduit was equivalent to as much as 33% of the flow through the pumping wells. Using

  6. Integrated Farm System Model Version 4.3 and Dairy Gas Emissions Model Version 3.3 Software development and distribution

    USDA-ARS?s Scientific Manuscript database

    Modeling routines of the Integrated Farm System Model (IFSM version 4.2) and Dairy Gas Emission Model (DairyGEM version 3.2), two whole-farm simulation models developed and maintained by USDA-ARS, were revised with new components for: (1) simulation of ammonia (NH3) and greenhouse gas emissions gene...

  7. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  8. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  9. The benefits of flue gas recirculation in waste incineration.

    PubMed

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  10. Monitoring, modeling and mitigating impacts of wind farms on local meteorology

    NASA Astrophysics Data System (ADS)

    Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil

    2010-05-01

    Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the

  11. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    PubMed

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modelling farm vulnerability to flooding: A step toward vulnerability mitigation policies appraisal

    NASA Astrophysics Data System (ADS)

    Brémond, P.; Abrami, G.; Blanc, C.; Grelot, F.

    2009-04-01

    flood. In the case of farm activities, vulnerability mitigation consists in implementing measures which can be: physical (equipment or electric power system elevation), organizational (emergency or recovery plan) or financial (insurance). These measures aim at decreasing the total damage incurred by farmers in case of flooding. For instance, if equipment is elevated, it will not suffer direct damage such as degradation. As a consequence, equipment will be available to continue production or recovery tasks, thus, avoiding indirect damage such as delays, indebtedness… The effects of these policies on farms, in particular vulnerability mitigation cannot be appraised using current methodologies mainly because they do not consider farm as a whole and focus on direct damage at the land plot scale (loss of yield). Moreover, since vulnerability mitigation policies are quite recent, few examples of implementation exist and no feedback experience can be processed. Meanwhile, decision makers and financial actors require more justification of the efficiency of public fund by economic appraisal of the projects. On the Rhône River, decision makers asked for an economic evaluation of the program of farm vulnerability mitigation they plan to implement. This implies to identify the effects of the measures to mitigate farm vulnerability, and to classify them by comparing their efficacy (avoided damage) and their cost of implementation. In this presentation, we propose and discuss a conceptual model of vulnerability at the farm scale. The modelling, in Unified Modelling Language, enabled to represent the ties between spatial, organizational and temporal dimensions, which are central to understanding of farm vulnerability and resilience to flooding. Through this modelling, we encompass three goals: To improve the comprehension of farm vulnerability and create a framework that allow discussion with experts of different disciplines as well as with local farmers; To identify data which

  13. Integrated Farm System Model Version 4.1 and Dairy Gas Emissions Model Version 3.1 software release and distribution

    USDA-ARS?s Scientific Manuscript database

    Animal facilities are significant contributors of gaseous emissions including ammonia (NH3) and nitrous oxide (N2O). Previous versions of the Integrated Farm System Model (IFSM version 4.0) and Dairy Gas Emissions Model (DairyGEM version 3.0), two whole-farm simulation models developed by USDA-ARS, ...

  14. A mechanistic model for electricity consumption on dairy farms: definition, validation, and demonstration.

    PubMed

    Upton, J; Murphy, M; Shalloo, L; Groot Koerkamp, P W G; De Boer, I J M

    2014-01-01

    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical data of 1yr on commercial spring calving, grass-based dairy farms with 45, 88, and 195 milking cows; and (3) demonstrated the functionality of the model by applying 2 electricity tariffs to the electricity consumption data and examining the effect on total dairy farm electricity costs. The MECD was developed using a mechanistic modeling approach and required the key inputs of milk production, cow number, and details relating to the milk-cooling system, milking machine system, water-heating system, lighting systems, water pump systems, and the winter housing facilities as well as details relating to the management of the farm (e.g., season of calving). Model validation showed an overall relative prediction error (RPE) of less than 10% for total electricity consumption. More than 87% of the mean square prediction error of total electricity consumption was accounted for by random variation. The RPE values of the milk-cooling systems, water-heating systems, and milking machine systems were less than 20%. The RPE values for automatic scraper systems, lighting systems, and water pump systems varied from 18 to 113%, indicating a poor prediction for these metrics. However, automatic scrapers, lighting, and water pumps made up only 14% of total electricity consumption across all farms, reducing the overall impact of these poor predictions. Demonstration of the model showed that total farm electricity costs increased by between 29 and 38% by moving from a day and night tariff to a flat

  15. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  16. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Astrophysics Data System (ADS)

    Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid

  17. A process-based emission model of volatile organic compounds from silage sources on farms

    NASA Astrophysics Data System (ADS)

    Bonifacio, H. F.; Rotz, C. A.; Hafner, S. D.; Montes, F.; Cohen, M.; Mitloehner, F. M.

    2017-03-01

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources such as those from dairy farms. A process-based model for predicting VOC emissions from silage was developed and incorporated into the Integrated Farm System Model (IFSM, v. 4.3), a whole-farm simulation of crop, dairy, and beef production systems. The performance of the IFSM silage VOC emission model was evaluated using ethanol and methanol emissions measured from conventional silage piles (CSP), silage bags (SB), total mixed rations (TMR), and loose corn silage (LCS) at a commercial dairy farm in central California. With transport coefficients for ethanol refined using experimental data from our previous studies, the model performed well in simulating ethanol emission from CSP, TMR, and LCS; its lower performance for SB could be attributed to possible changes in face conditions of SB after silage removal that are not represented in the current model. For methanol emission, lack of experimental data for refinement likely caused the underprediction for CSP and SB whereas the overprediction observed for TMR can be explained as uncertainty in measurements. Despite these limitations, the model is a valuable tool for comparing silage management options and evaluating their relative effects on the overall performance, economics, and environmental impacts of farm production. As a component of IFSM, the silage VOC emission model was used to simulate a representative dairy farm in central California. The simulation showed most silage VOC emissions were from feed lying in feed lanes and not from the exposed face of silage storages. This suggests that mitigation efforts, particularly in areas prone to ozone non-attainment status, should focus on reducing emissions during feeding. For

  18. Modeling and simulation of offshore wind farm O&M processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joschko, Philip, E-mail: joschko@informatik.uni-hamburg.de; Widok, Andi H., E-mail: a.widok@htw-berlin.de; Appel, Susanne, E-mail: susanne.appel@hs-bremen.de

    2015-04-15

    This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new processmore » interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.« less

  19. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alex Bogacz; Valeri Lebedev

    2001-10-21

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resultingmore » arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  20. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeri Lebedev; S. Bogacz

    2001-10-25

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice designmore » choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  1. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resourcemore » areas in the U.S. and are representative of typical wind farms found in their respective areas.« less

  2. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-Ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Building a stakeholder's vision of an offshore wind-farm project: A group modeling approach.

    PubMed

    Château, Pierre-Alexandre; Chang, Yang-Chi; Chen, Hsin; Ko, Tsung-Ting

    2012-03-15

    This paper describes a Group Model Building (GMB) initiative that was designed to discuss the various potential effects that an offshore wind-farm may have on its local ecology and socioeconomic development. The representatives of various organizations in the study area, Lu-Kang, Taiwan, have held several meetings, and structured debates have been organized to promote the emergence of a consensual view on the main issues and their implications. A System Dynamics (SD) model has been built and corrected iteratively with the participants through the GMB process. The diverse interests within the group led the process toward the design of multifunctional wind-farms with different modalities. The scenario analyses, using the SD model under various policies, including no wind-farm policy, objectively articulates the vision of the local stakeholders. The results of the SD simulations show that the multifunctional wind-farms may have superior economic effects and the larger wind-farms with bird corridors could reduce ecological impact. However, the participants of the modeling process did not appreciate any type of offshore wind-farm development when considering all of the identified key factors of social acceptance. The insight gained from the study can provide valuable information to actualize feasible strategies for the green energy technique to meet local expectations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Model for wind resource analysis and for wind farm planning

    NASA Astrophysics Data System (ADS)

    Rozsavolgyi, K.

    2008-12-01

    Due to the ever increasing anthropogenic environmental pollution and the worldwide energy demand, the research and exploitation of environment-friendly renewable energy sources like wind, solar, geothermal, biomass become more and more important. During the last decade wind energy utilization has developed dynamically with big steps. Over just the past seven years, annual worldwide growth in installed wind capacity is near 30 %. Over 94 000 MW installed currently all over the world. Besides important economic incentives, the most extensive and most accurate scientific results are required in order to provide beneficial help for regional planning of wind farms to find appropriate sites for optimal exploitation of this renewable energy source. This research is on the spatial allocation of possible wind energy usage for wind farms. In order to carry this out a new model (CMPAM = Complex Multifactoral Polygenetic Adaptive Model) is being developed, which basically is a wind climate-oriented system, but other kind of factors are also considered. With this model those areas and terrains can be located where construction of large wind farms would be reasonable under the given conditions. This model consist of different sub- modules such as wind field modeling sub module (CMPAM/W) that is in high focus in this model development procedure. The wind field modeling core of CMPAM is mainly based on sGs (sequential Gaussian simulation) hence geostatistics, but atmospheric physics and GIS are used as well. For the application developed for the test area (Hungary) WAsP visualization results were used from 10 m height as input data. This data was geocorrected (GIS geometric correction) before it was used for further calculations. Using optimized variography and sequential Gaussian simulation, results were applied for the test area (Hungary) at different heights. Simulation results were produced and summarized for different heights. Furthermore an exponential regressive function

  5. Low-head saltwater recirculating aquaculture systems utilized for juvenile red drum production

    USDA-ARS?s Scientific Manuscript database

    Recirculating aquaculture systems reuse water with mechanical and biological treatment between each use and thus require wastewater treatment techniques for continuous waste removal. However, the traditional techniques and equipment utilized in recirculating aquaculture systems are expensive. The d...

  6. Production of cobia in recirculating systems

    USDA-ARS?s Scientific Manuscript database

    Only limited information exists with respect to rearing juvenile cobia Rachycentron canadum to stocker and marketable sizes using recirculating aquaculture systems (RAS). To investigate this topic, two rearing trials were conducted using commercial scale RAS. In Trial 1, juvenile cobia (29 g) we...

  7. Modeling the Transmission of Piscirickettsia salmonis in Farmed Salmon

    NASA Astrophysics Data System (ADS)

    Cisternas, Jaime; Moreno, Adolfo

    2007-05-01

    Farming Atlantic salmon is an economic activity of growing relevance in the southern regions of Chile. The need to increase efficiency and reach production goals, as well as restrictions on the use of water resources, had led in recent years to certain practices that proved prone to bacterial infections among the fish. Our study focuses on the impact of rickettsial bacteria in farmed salmon, and the possibility of controlling its incidence once it is established along the salmon life cicle. We used compartmental models to separate fish in their maturation stages and health status. The mathematical analysis will involve differential equations with and without delays, and linear stability principles. Our goal was to build a simple model that explains the basic mechanisms at work and provides predictions on the outcome of different control strategies.

  8. How do farm models compare when estimating greenhouse gas emissions from dairy cattle production?

    PubMed

    Hutchings, N J; Özkan Gülzari, Ş; de Haan, M; Sandars, D

    2018-01-09

    The European Union Effort Sharing Regulation (ESR) will require a 30% reduction in greenhouse gas (GHG) emissions by 2030 compared with 2005 from the sectors not included in the European Emissions Trading Scheme, including agriculture. This will require the estimation of current and future emissions from agriculture, including dairy cattle production systems. Using a farm-scale model as part of a Tier 3 method for farm to national scales provides a more holistic and informative approach than IPCC (2006) Tier 2 but requires independent quality control. Comparing the results of using models to simulate a range of scenarios that explore an appropriate range of biophysical and management situations can support this process by providing a framework for placing model results in context. To assess the variation between models and the process of understanding differences, estimates of GHG emissions from four farm-scale models (DairyWise, FarmAC, HolosNor and SFARMMOD) were calculated for eight dairy farming scenarios within a factorial design consisting of two climates (cool/dry and warm/wet)×two soil types (sandy and clayey)×two feeding systems (grass only and grass/maize). The milk yield per cow, follower:cow ratio, manure management system, nitrogen (N) fertilisation and land area were standardised for all scenarios in order to associate the differences in the results with the model structure and function. Potential yield and application of available N in fertiliser and manure were specified separately for grass and maize. Significant differences between models were found in GHG emissions at the farm-scale and for most contributory sources, although there was no difference in the ranking of source magnitudes. The farm-scale GHG emissions, averaged over the four models, was 10.6 t carbon dioxide equivalents (CO2e)/ha per year, with a range of 1.9 t CO2e/ha per year. Even though key production characteristics were specified in the scenarios, there were still significant

  9. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  10. Numerical modelling of organic waste dispersion from fjord located fish farms

    NASA Astrophysics Data System (ADS)

    Ali, Alfatih; Thiem, Øyvind; Berntsen, Jarle

    2011-07-01

    In this study, a three-dimensional particle tracking model coupled to a terrain following ocean model is used to investigate the dispersion and the deposition of fish farm particulate matter (uneaten food and fish faeces) on the seabed due to tidal currents. The particle tracking model uses the computed local flow field for advection of the particles and random movement to simulate the turbulent diffusion. Each particle is given a settling velocity which may be drawn from a probability distribution according to settling velocity measurements of faecal and feed pellets. The results show that the maximum concentration of organic waste for fast sinking particles is found under the fish cage and continue monotonically decreasing away from the cage area. The maximum can split into two maximum peaks located at both sides of the centre of the fish cage area in the current direction. This process depends on the sinking time (time needed for a particle to settle at the bottom), the tidal velocity and the fish cage size. If the sinking time is close to a multiple of the tidal period, the maximum concentration point will be under the fish cage irrespective of the tide strength. This is due to the nature of the tidal current first propagating the particles away and then bringing them back when the tide reverses. Increasing the cage size increases the likelihood for a maximum waste accumulation beneath the fish farm, and larger farms usually means larger biomasses which can make the local pollution even more severe. The model is validated by using an analytical model which uses an exact harmonic representation of the tidal current, and the results show an excellent agreement. This study shows that the coupled ocean and particle model can be used in more realistic applications to help estimating the local environmental impact due to fish farms.

  11. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  12. Farm-Level Effects of Soil Conservation and Commodity Policy Alternatives: Model and Data Documentation.

    ERIC Educational Resources Information Center

    Sutton, John D.

    This report documents a profit-maximizing linear programming (LP) model of a farm typical of a major corn-soybean producing area in the Southern Michigan-Northern Indiana Drift Plain. Following an introduction, a complete description of the farm is provided. The next section presents the LP model, which is structured to help analyze after-tax…

  13. Recirculation of the Canary Current in fall 2014

    NASA Astrophysics Data System (ADS)

    Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis

    2017-10-01

    Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.

  14. The effects of the pulsatile period on the size of recirculation bubble in the vicinity of stent struts

    NASA Astrophysics Data System (ADS)

    Jiang, B.; Thondapu, V.; Barlis, P.; Poon, E. K. W.; Ooi, A. S. H.

    2017-04-01

    Incomplete stent apposition (ISA) is sometimes found in stent deployment at complex lesions, and it is considered to be one of the causes of post-stenting complications, such as late stent thrombosis and restenosis. The presence of ISA leads to large recirculation bubbles behind the stent struts, which can reduce shear stress at the arterial wall that retards neointimal formation process and thus lead to complications. Computational fluid dynamics (CFD) simulations are performed on simplified two-dimensional axisymmetric arterial models with stents struts of square and circular cross-sectional shapes at a malapposition distance of 120 μm from the arterial wall. To investigate the effects of pulsatile flow period on the dynamics of the recirculation bubbles, high fidelity simulations are carried out with pulsatile flows of period 0.4 s and 0.8 s. Under the condition of the same flow rate, both square and circular strut cases show that shorter period provides greater flow deceleration, leading to the formation of a larger recirculation bubble. With the same thickness, circular strut has a significant improvement over the square strut in terms of the size of the recirculation bubble, and therefore less likely to lead to complications.

  15. Verification and Calibration of a Reduced Order Wind Farm Model by Wind Tunnel Experiments

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Nanos, E. M.; Campagnolo, F.; Bottasso, C. L.

    2017-05-01

    In this paper an adaptation of the FLORIS approach is considered that models the wind flow and power production within a wind farm. In preparation to the use of this model for wind farm control, this paper considers the problem of its calibration and validation with the use of experimental observations. The model parameters are first identified based on measurements performed on an isolated scaled wind turbine operated in a boundary layer wind tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with results of experimental tests conducted on three interacting scaled wind turbines. Although some differences in the estimated absolute power are observed, the model appears to be capable of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the wake, lead to maximum power for the investigated layouts.

  16. Creating a model to detect dairy cattle farms with poor welfare using a national database.

    PubMed

    Krug, C; Haskell, M J; Nunes, T; Stilwell, G

    2015-12-01

    The objective of this study was to determine whether dairy farms with poor cow welfare could be identified using a national database for bovine identification and registration that monitors cattle deaths and movements. The welfare of dairy cattle was assessed using the Welfare Quality(®) protocol (WQ) on 24 Portuguese dairy farms and on 1930 animals. Five farms were classified as having poor welfare and the other 19 were classified as having good welfare. Fourteen million records from the national cattle database were analysed to identify potential welfare indicators for dairy farms. Fifteen potential national welfare indicators were calculated based on that database, and the link between the results on the WQ evaluation and the national cattle database was made using the identification code of each farm. Within the potential national welfare indicators, only two were significantly different between farms with good welfare and poor welfare, 'proportion of on-farm deaths' (p<0.01) and 'female/male birth ratio' (p<0.05). To determine whether the database welfare indicators could be used to distinguish farms with good welfare from farms with poor welfare, we created a model using the classifier J48 of Waikato Environment for Knowledge Analysis. The model was a decision tree based on two variables, 'proportion of on-farm deaths' and 'calving-to-calving interval', and it was able to correctly identify 70% and 79% of the farms classified as having poor and good welfare, respectively. The national cattle database analysis could be useful in helping official veterinary services in detecting farms that have poor welfare and also in determining which welfare indicators are poor on each particular farm. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.

    2008-01-01

    This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.

  18. Modeling small-scale dairy farms in central Mexico using multi-criteria programming.

    PubMed

    Val-Arreola, D; Kebreab, E; France, J

    2006-05-01

    Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multi-criteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, ryegrass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.

  19. Real time wind farm emulation using SimWindFarm toolbox

    NASA Astrophysics Data System (ADS)

    Topor, Marcel

    2016-06-01

    This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.

  20. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.

  1. Flow field in the wake of a bluff body driven through a steady recirculating flow

    NASA Astrophysics Data System (ADS)

    Poussou, Stephane B.; Plesniak, Michael W.

    2015-02-01

    The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, , and width, , such that the aspect ratio, AR = H/ D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, , such that . Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.

  2. Evaluation of a whole-farm model for pasture-based dairy systems.

    PubMed

    Beukes, P C; Palliser, C C; Macdonald, K A; Lancaster, J A S; Levy, G; Thorrold, B S; Wastney, M E

    2008-06-01

    In the temperate climate of New Zealand, animals can be grazed outdoors all year round. The pasture is supplemented with conserved feed, with the amount being determined by seasonal pasture growth, genetics of the herd, and stocking rate. The large number of factors that affect production makes it impractical and expensive to use field trials to explore all the farm system options. A model of an in situ-grazed pasture system has been developed to provide a tool for developing and testing novel farm systems; for example, different levels of bought-in supplements and different levels of nitrogen fertilizer application, to maintain sustainability or environmental integrity and profitability. It consists of a software framework that links climate information, on a daily basis, with dynamic, mechanistic component-models for pasture growth and animal metabolism, as well as management policies. A unique feature is that the component models were developed and published by other groups, and are retained in their original software language. The aim of this study was to compare the model, called the whole-farm model (WFM) with a farm trial that was conducted over 3 yr and in which data were collected specifically for evaluating the WFM. Data were used from the first year to develop the WFM and data from the second and third year to evaluate the model. The model predicted annual pasture production, end-of-season cow liveweight, cow body condition score, and pasture cover across season with relative prediction error <20%. Milk yield and milksolids (fat + protein) were overpredicted by approximately 30% even though both annual and monthly pasture and supplement intake were predicted with acceptable accuracy, suggesting that the metabolic conversion of feed to fat, protein, and lactose in the mammary gland needs to be refined. Because feed growth and intake predictions were acceptable, economic predictions can be made using the WFM, with an adjustment for milk yield, to test

  3. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  4. A recirculating stream aquarium for ecological studies.

    Treesearch

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  5. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  6. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    NASA Astrophysics Data System (ADS)

    von Paris, P.; Gratier, P.; Bordé, P.; Selsis, F.

    2016-03-01

    Context. Basic atmospheric properties, such as albedo and heat redistribution between day- and nightsides, have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. Aims: We model previously published phase curves of CoRoT-1b, TrES-2b, and HAT-P-7b, and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. Methods: We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations, and Doppler boosting, into account. Results: CoRoT-1b shows a non-negligible scattering albedo (0.11 < AS < 0.3 at 95% confidence) as well as small day-night temperature contrasts, which are indicative of moderate to high re-distribution of energy between dayside and nightside. These values are contrary to previous secondary eclipse and phase curve analyses. In the case of HAT-P-7b, model results suggest a relatively high scattering albedo (AS ≈ 0.3). This confirms previous phase curve analysis; however, it is in slight contradiction to values inferred from secondary eclipse data. For TrES-2b, both approaches yield very similar estimates of albedo and heat recirculation. Discrepancies between recirculation and albedo values as inferred from secondary eclipse and optical phase curve analyses might be interpreted as a hint that optical and IR observations probe different atmospheric layers, hence temperatures.

  7. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    NASA Astrophysics Data System (ADS)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  8. Trade-offs between pasture production and farmland bird conservation: exploration of options using a dynamic farm model.

    PubMed

    Sabatier, R; Teillard, F; Rossing, W A H; Doyen, L; Tichit, M

    2015-05-01

    In European grassland landscapes, grazing and mowing play a key role for the maintenance of high-quality habitats that host important bird populations. As grasslands are also key resources for cattle feeding, there is a need to develop management strategies that achieve the double objective of production and biodiversity conservation. The objective of this study was to use a modelling approach to generate recognisable patterns of bird dynamics in farms composed of different land use proportions, and to compare their production and ecological dimensions. We developed a dynamic model, which linked grassland management to bird population dynamics at the field and farm levels. The model was parameterised for two types of suckling farms corresponding to contrasting levels of grassland intensification and for two bird species of high conservation value. A viability algorithm was used to define and assess viable management strategies for production and ecological performance so as to draw the shape of the relationship between both types of performances for the two types of farms. Our results indicated that, at the farm level, there was a farming system effect with a negative and non-linear relationship linking performance. Improving bird population maintenance was less costly in extensive farms compared with intensive farms. At the field level, the model predicted the timing and intensity of land use, maximising either production or ecological performance. The results suggested that multi-objective grassland management would benefit from public policies that consider levels of organisation higher than the field level, such as the farm or the landscape.

  9. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less

  10. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  11. Better Management Practices for Recirculating Aquaculture Systems

    USDA-ARS?s Scientific Manuscript database

    Under the 2004 federal aquaculture effluent limitation guidelines (Federal Register 2004), recirculating aquaculture systems with an annual production exceeding 45,454 kg (100,000 pounds) are classified as concentrated aquatic animal production (CAAP) facilities and are required to obtain a National...

  12. Effect of recirculation on organic matter removal in a hybrid constructed wetland system.

    PubMed

    Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C

    2011-01-01

    This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

  13. Impacts of coronary artery eccentricity on macro-recirculation and pressure drops using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Poon, Eric; Thondapu, Vikas; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Coronary artery disease remains a major cause of mortality in developed countries, and is most often due to a localized flow-limiting stenosis, or narrowing, of coronary arteries. Patients often undergo invasive procedures such as X-ray angiography and fractional flow reserve to diagnose flow-limiting lesions. Even though such diagnostic techniques are well-developed, the effects of diseased coronary segments on local flow are still poorly understood. Therefore, this study investigated the effect of irregular geometries of diseased coronary segments on the macro-recirculation and local pressure minimum regions. We employed an idealized coronary artery model with a diameter of stenosis of 75%. By systematically adjusting the eccentricity and the asymmetry of the coronary stenosis, we uncovered an increase in macro-recirculation size. Most importantly, the presence of this macro-recirculation signifies a local pressure minimum (identified by λ2 vortex identification method). This local pressure minimum has a profound effect on the pressure drops in both longitudinal and planar directions, which has implications for diagnosis and treatment of coronary artery disease. Supported by Australian Research Council LP150100233 and National Computational Infrastructure m45.

  14. Review of Recent Development of Dynamic Wind Farm Equivalent Models Based on Big Data Mining

    NASA Astrophysics Data System (ADS)

    Wang, Chenggen; Zhou, Qian; Han, Mingzhe; Lv, Zhan’ao; Hou, Xiao; Zhao, Haoran; Bu, Jing

    2018-04-01

    Recently, the big data mining method has been applied in dynamic wind farm equivalent modeling. In this paper, its recent development with present research both domestic and overseas is reviewed. Firstly, the studies of wind speed prediction, equivalence and its distribution in the wind farm are concluded. Secondly, two typical approaches used in the big data mining method is introduced, respectively. For single wind turbine equivalent modeling, it focuses on how to choose and identify equivalent parameters. For multiple wind turbine equivalent modeling, the following three aspects are concentrated, i.e. aggregation of different wind turbine clusters, the parameters in the same cluster, and equivalence of collector system. Thirdly, an outlook on the development of dynamic wind farm equivalent models in the future is discussed.

  15. A portable gas recirculation unit for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  16. Pilot-scale study of powdered activated carbon recirculation for micropollutant removal.

    PubMed

    Meinel, F; Sperlich, A; Jekel, M

    Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation. Coagulation with Fe(3+) was carried out simultaneously to adsorption. Extensive OMP measurements showed that recirculation significantly increased OMP eliminations. Thus, significant PAC savings were feasible. The PAC concentration in the contact reactor proved to be an important operating parameter that can be surrogated by the easily measurable total suspended solids (TSS) concentration. OMP eliminations increased with increasing TSS concentrations. At 20 mg PAC L(-1) and 2.8 g TSS L(-1) in the contact reactor, well-adsorbable carbamazepine was eliminated by 97%, moderately adsorbable diclofenac was eliminated by 92% and poorly-adsorbable acesulfame was eliminated by 54% in comparison to 49%, 35% and 18%, respectively, without recirculation. The recirculation system represents an efficient technique, as the PAC's adsorption capacity is practically completely used. Small PAC dosages yield high OMP eliminations. Poorly-adsorbable gabapentin was eliminated to an unexpectedly high degree. A laboratory-scale biomass inhibition study showed that aerobic biodegradation removed gabapentin in addition to adsorption.

  17. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  18. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    PubMed Central

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2–4) in agreement with experiments. The virtual solute concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241–251), computations predict that 60–80% of the pumped flux stems from serosal bath in agreement with the experimental estimate of the recirculation flux. Robust solutions are obtained with realistic concentrations and pressures of lis, and with the following features. Rate of fluid absorption is governed by the solute permeability of mucosal membrane. Maximum fluid flow is governed by density of pumps on lis-membranes. Energetic efficiency increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux of water through cells exceeds inward water flux between cells. Molecules moving along the paracellular pathway are driven by a translateral flow of water, i.e., the model

  19. Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free Recirculation Zones

    DTIC Science & Technology

    1997-08-01

    NUMBERS Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free F6170896W0291 Recirculation Zones 6. AUTHOR(S) Dr...stabilization in supersonic flow using free recirculation zones Special contract (SPC-96-4043) with Air Force Office of Scientific Research (AFMC), USA, EOARD...of three quarterly reports and presents experimental results on self-ignition and combustion stabilization in supersonic flow using free

  20. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  1. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a

  2. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  3. Effects of aeration and leachate recirculation on methyl mercaptan emissions from landfill.

    PubMed

    Zhang, Siyuan; Long, Yuyang; Fang, Yuan; Du, Yao; Liu, Weijia; Shen, Dongsheng

    2017-10-01

    The issue of odorous volatile organic sulfur compound methyl mercaptan (MM) released from landfill sites cannot be ignored for its extremely low odor threshold and high toxicity. In this study, we focused on the formation and emission of MM in four lab-scaled simulated landfill reactors running in different operation modes, namely, R1 and R2, without leachate recirculation, running under anaerobic and semi-aerobic atmosphere, R3 and R4, with leachate recirculation, running under anaerobic and semi-aerobic atmosphere, respectively. From the perspective of odor abatement, the semi-aerobic operation mode can efficiently lower the emitted MM concentration by 87.4-94.9%, relative to the semi-aerobic operation mode. Furthermore, under semi-aerobic conditions, leachate recirculation substantially shortened the period of MM influence by 12.7%, thus reducing the risk of affecting the surrounding atmospheric environment. The formation of MM was dependent on the characteristics such as the volatile fatty acid concentration and chemical oxygen demand in the leachate and sulfide concentration of the refuse. Overall, MM release can be effectively controlled with semi-aerobic operation mode and leachate recirculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transport and recirculation of aerosols off Southern Africa—macroscale plume structure

    NASA Astrophysics Data System (ADS)

    Tyson, P. D.; D'Abreton, P. C.

    A pall of aerosols and trace gases frequently occurs over southern Africa to a depth of ˜500 hPa, blanketing vast areas, particularly in the austral winter and spring. Large-scale offshore transport of these aerosols and trace gases in extremely large plumes from interior continental areas of the subcontinent to the Indian and Atlantic Oceans is a common occurrence. The nature of the transport plumes, their climatology, chemical composition and morphology are discussed. In the vertically integrated, surface-to-500 hPa layer, poleward of about 15° S, transport into the Indian Ocean is shown to be about 60% greater into the Indian Ocean than into the Atlantic Ocean. Recirculation of atmospheric constituents is considered and estimates of aerosol mass fluxes over central southern Africa are presented. Of the total of about 50 Mt yr -1 of aerosols being transported at the central meridian, 44% is shown to be recirculated material. The rest exits the subcontinent directly without recirculation. Preferred plume corridors of exit and entry are postulated for different localities on the east and west coasts. Two case studies of east- and west-coast plumes apparently flowing uniformly out of southern Africa are examined. The illusion of uniformity in plume structure is shown to be misleading. Both plumes are shown to be above and separated from the marine boundary layer. Each is over 1500 km in width and 3-5 km deep. Likewise, both are capped by absolutely stable layers at ˜500 hPa and exhibit a complex structure of both outflowing aerosols and trace gases and inflowing, recycled and recirculated material. Indications of the composition of the recirculated material are given and implications of the plume transports are considered.

  5. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Le; MacDonald, Erin

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under twomore » land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.« less

  6. Experimental investigation of a local recirculation photobioreactor for mass cultures of photosynthetic microorganisms.

    PubMed

    Moroni, Monica; Cicci, Agnese; Bravi, Marco

    2014-04-01

    The present work deals with the experimental fluid mechanics analysis of a wavy-bottomed cascade photobioreactor, to characterize the extent and period of recirculatory and straight-flowing streams establishing therein as a function of reactor inclination and liquid flow rate. The substream characterization via Feature Tracking (FT) showed that a local recirculation zone establishes in each vane only at inclinations ≤6° and that its location changes from the lower (≤3°) to the upper part of each vane (6°). A straight-flowing stream flows opposite (above or below) the local recirculation stream. The recirculation time ranges from 0.86 s to 0.23 s, corresponding, respectively, to the minimum flow rate at the minimum inclination and to the maximum flow rate at the maximum inclination where recirculation was observed. The increase of photosynthetic activity, resulting from the entailed "flash effect", was estimated to range between 102 and 113% with respect to equivalent tubular and bubble column photobioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    2017-01-01

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  8. The economic efficiency of conservation measures for amphibians in organic farming--results from bio-economic modelling.

    PubMed

    Schuler, Johannes; Sattler, Claudia; Helmecke, Angela; Zander, Peter; Uthes, Sandra; Bachinger, Johann; Stein-Bachinger, Karin

    2013-01-15

    This paper presents a whole farm bio-economic modelling approach for the assessment and optimisation of amphibian conservation conditions applied at the example of a large scale organic farm in North-Eastern Germany. The assessment focuses mainly on the habitat quality as affected by conservation measures such as through specific adapted crop production activities (CPA) and in-field buffer strips for the European tree frog (Hyla arborea), considering also interrelations with other amphibian species (i.e. common spadefoot toad (Pelobates fuscus), fire-bellied toad (Bombina bombina)). The aim of the approach is to understand, analyse and optimize the relationships between the ecological and economic performance of an organic farming system, based on the expectation that amphibians are differently impacted by different CPAs. The modelling system consists of a set of different sub-models that generate a farm model on the basis of environmentally evaluated CPAs. A crop-rotation sub-model provides a set of agronomically sustainable crop rotations that ensures overall sufficient nitrogen supply and controls weed, pest and disease infestations. An economic sub-model calculates the gross margins for each possible CPA including costs of inputs such as labour and machinery. The conservation effects of the CPAs are assessed with an ecological sub-model evaluates the potential negative or positive effect that each work step of a CPA has on amphibians. A mathematical programming sub-model calculates the optimal farm organization taking into account the limited factors of the farm (e.g. labour, land) as well as ecological improvements. In sequential model runs, the habitat quality is to be improved by the model, while the highest possible gross margin is still to be achieved. The results indicate that the model can be used to show the scope of action that a farmer has to improve habitat quality by reducing damage to amphibian population on its land during agricultural activities

  9. A sample theory-based logic model to improve program development, implementation, and sustainability of Farm to School programs.

    PubMed

    Ratcliffe, Michelle M

    2012-08-01

    Farm to School programs hold promise to address childhood obesity. These programs may increase students’ access to healthier foods, increase students’ knowledge of and desire to eat these foods, and increase their consumption of them. Implementing Farm to School programs requires the involvement of multiple people, including nutrition services, educators, and food producers. Because these groups have not traditionally worked together and each has different goals, it is important to demonstrate how Farm to School programs that are designed to decrease childhood obesity may also address others’ objectives, such as academic achievement and economic development. A logic model is an effective tool to help articulate a shared vision for how Farm to School programs may work to accomplish multiple goals. Furthermore, there is evidence that programs based on theory are more likely to be effective at changing individuals’ behaviors. Logic models based on theory may help to explain how a program works, aid in efficient and sustained implementation, and support the development of a coherent evaluation plan. This article presents a sample theory-based logic model for Farm to School programs. The presented logic model is informed by the polytheoretical model for food and garden-based education in school settings (PMFGBE). The logic model has been applied to multiple settings, including Farm to School program development and evaluation in urban and rural school districts. This article also includes a brief discussion on the development of the PMFGBE, a detailed explanation of how Farm to School programs may enhance the curricular, physical, and social learning environments of schools, and suggestions for the applicability of the logic model for practitioners, researchers, and policy makers.

  10. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  11. Modelling Infectious Hematopoietic Necrosis Virus Dispersion from Marine Salmon Farms in the Discovery Islands, British Columbia, Canada.

    PubMed

    Foreman, Michael G G; Guo, Ming; Garver, Kyle A; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren

    2015-01-01

    Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed.

  12. Modelling Infectious Hematopoietic Necrosis Virus Dispersion from Marine Salmon Farms in the Discovery Islands, British Columbia, Canada

    PubMed Central

    Foreman, Michael G. G.; Guo, Ming; Garver, Kyle A.; Stucchi, Dario; Chandler, Peter; Wan, Di; Morrison, John; Tuele, Darren

    2015-01-01

    Finite volume ocean circulation and particle tracking models are used to simulate water-borne transmission of infectious hematopoietic necrosis virus (IHNV) among Atlantic salmon (Salmo salar) farms in the Discovery Islands region of British Columbia, Canada. Historical simulations for April and July 2010 are carried out to demonstrate the seasonal impact of river discharge, wind, ultra-violet (UV) radiation, and heat flux conditions on near-surface currents, viral dispersion and survival. Numerical particles released from infected farm fish in accordance with IHNV shedding rates estimated through laboratory experiments are dispersed by model oceanic flows. Viral particles are inactivated by ambient UV radiation levels and by the natural microbial community at rates derived through laboratory studies. Viral concentration maps showing temporal and spatial changes are produced and combined with lab-determined minimum infectious dosages to estimate the infective connectivity among farms. Results demonstrate that neighbouring naïve farms can become exposed to IHNV via water-borne transport from an IHNV diseased farm, with a higher risk in April than July, and that many events in the sequence of farm outbreaks in 2001-2002 are consistent with higher risks in our farm connectivity matrix. Applications to other diseases, transfers between farmed and wild fish, and the effect of vaccinations are also discussed. PMID:26114643

  13. A generic bio-economic farm model for environmental and economic assessment of agricultural systems.

    PubMed

    Janssen, Sander; Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K

    2010-12-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models.

  14. A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    PubMed Central

    Louhichi, Kamel; Kanellopoulos, Argyris; Zander, Peter; Flichman, Guillermo; Hengsdijk, Huib; Meuter, Eelco; Andersen, Erling; Belhouchette, Hatem; Blanco, Maria; Borkowski, Nina; Heckelei, Thomas; Hecker, Martin; Li, Hongtao; Oude Lansink, Alfons; Stokstad, Grete; Thorne, Peter; van Keulen, Herman; van Ittersum, Martin K.

    2010-01-01

    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models. PMID:21113782

  15. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  16. Modeling greenhouse gas emissions from dairy farms

    USDA-ARS?s Scientific Manuscript database

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric methane (CH4) from the animals, CH4 and nitrous oxide (N2O) from manure in housing facilities, during long-term storage and during field application, and N2O from...

  17. Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon.

    PubMed

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10-15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to

  18. Evaluation of average daily gain predictions by the integrated farm system model for forage-finished beef steers

    USDA-ARS?s Scientific Manuscript database

    Representing the performance of cattle finished on an all forage diet in process-based whole farm system models has presented a challenge. To address this challenge, a study was done to evaluate average daily gain (ADG) predictions of the Integrated Farm System Model (IFSM) for steers consuming all-...

  19. Dedicated exhaust gas recirculation control systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGRmore » valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.« less

  20. Effect of self recirculation casing treatment on the performance of a turbocharger centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu

    Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred

  1. Validation of Individual-Based Markov-Like Stochastic Process Model of Insect Behavior and a "Virtual Farm" Concept for Enhancement of Site-Specific IPM.

    PubMed

    Lux, Slawomir A; Wnuk, Andrzej; Vogt, Heidrun; Belien, Tim; Spornberger, Andreas; Studnicki, Marcin

    2016-01-01

    The paper reports application of a Markov-like stochastic process agent-based model and a "virtual farm" concept for enhancement of site-specific Integrated Pest Management. Conceptually, the model represents a "bottom-up ethological" approach and emulates behavior of the "primary IPM actors"-large cohorts of individual insects-within seasonally changing mosaics of spatiotemporally complex faming landscape, under the challenge of the local IPM actions. Algorithms of the proprietary PESTonFARM model were adjusted to reflect behavior and ecology of R. cerasi. Model parametrization was based on compiled published information about R. cerasi and the results of auxiliary on-farm experiments. The experiments were conducted on sweet cherry farms located in Austria, Germany, and Belgium. For each farm, a customized model-module was prepared, reflecting its spatiotemporal features. Historical data about pest monitoring, IPM treatments and fruit infestation were used to specify the model assumptions and calibrate it further. Finally, for each of the farms, virtual IPM experiments were simulated and the model-generated results were compared with the results of the real experiments conducted on the same farms. Implications of the findings for broader applicability of the model and the "virtual farm" approach-were discussed.

  2. The farm apprentice: agricultural college students recollections of learning to farm "safely".

    PubMed

    Sanderson, L L; Dukeshire, S R; Rangel, C; Garbes, R

    2010-10-01

    A consistent message in the farm safety literature is the need to develop effective interventions to manage the unacceptably high rate of injury and death among farm children. To better understand the influence of childhood farm experiences on safety beliefs, attitudes, and practices, semi-structured interviews were conducted with 24 farm youth attending the Nova Scotia Agricultural College. The interviews were designed to elicit information pertaining to participants' earliest memories of involvement in farm activities, the decision-making processes that led them to assume work-related responsibilities, and the roles that their parents played in their safety training. A common theme of experiencing childhood as a "farm apprentice" emerged across all narratives whereby farm activities were learned primarily through observational learning and modeling of parents and then mastered through repetition. As "farm apprentices," the youths' involvement in dangerous activities such as tractor driving and livestock handling began at early ages, with very little formal training and supervision. Although participants clearly described themselves as being exposed to dangerous activities, they believed that they had the capacity to control the risks and farm safely. Based on our findings, the concept of the "farm apprentice" appears to be integral to the social context of the farming community and should be considered in the design of interventions to reduce child injury and death.

  3. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    PubMed Central

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103− and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103− TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGFβ and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin− T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  4. NREL Leads Wind Farm Modeling Research - Continuum Magazine | NREL

    Science.gov Websites

    ten 2-MW Bonus wind turbines. Photo provided by HC Sorensen, Middelgrunden Wind Turbine Cooperative ) has created complex computer modeling tools to improve wind turbine design and overall wind farm activity surrounding a multi-megawatt wind turbine. In addition to its work with Doppler LIDAR, the

  5. Recirculating, passive micromixer with a novel sawtooth structure.

    PubMed

    Nichols, Kevin P; Ferullo, Julia R; Baeumner, Antje J

    2006-02-01

    A microfluidic device capable of recirculating nano to microlitre volumes in order to efficiently mix solutions is described. The device consists of molded polydimethyl siloxane (PDMS) channels with pressure inlet and outlet holes sealed by a glass lid. Recirculation is accomplished by a repeatedly reciprocated flow over an iterated sawtooth structure. The sawtooth structure serves to change the fluid velocity of individual streamlines differently depending on whether the fluid is flowing backwards or forward over the structure. Thus, individual streamlines can be accelerated or decelerated relative to the other streamlines to allow sections of the fluid to interact that would normally be linearly separated. Low Reynolds numbers imply that the process is reversible, neglecting diffusion. Computer simulations were carried out using FLUENT. Subsequently, fluorescent indicators were employed to experimentally verify these numerical simulations of the recirculation principal. Finally, mixing of a carboxyfluorescein labeled DMSO plug with an unlabeled DMSO plug across an immiscible hydrocarbon plug was investigated. At cycling rates of 1 Hz across five sawtooth units, the time was recorded to reach steady state in the channels, i.e. until both DMSO plugs had the same fluorescence intensity. In the case of the sawtooth structures, steady state was reached five times faster than in channels without sawtooth structures, which verified what would be expected based on numerical simulations. The microfluidic mixer is unique due to its versatility with respect to scaling, its potential to also mix solutions containing small particles such as beads and cells, and its ease of fabrication and use.

  6. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    NASA Astrophysics Data System (ADS)

    Fadeyi, M. O.; Weschler, C. J.; Tham, K. W.

    This study examined the impact of recirculation rates (7 and 14 h -1), ventilation rates (1 and 2 h -1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m 3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h -1 were significantly smaller than at a recirculation rate of 7 h -1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.

  7. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  8. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOEpatents

    Kolb, Gregory J [Albuquerque, NM

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  9. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems

    PubMed Central

    Schmidt, Victor; Davidson, John; Summerfelt, Steven

    2016-01-01

    ABSTRACT Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless

  10. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.

    PubMed

    Schmidt, Victor; Amaral-Zettler, Linda; Davidson, John; Summerfelt, Steven; Good, Christopher

    2016-08-01

    Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e

  11. Stochastic bio-economic modeling of mastitis in Ethiopian dairy farms.

    PubMed

    Getaneh, Abraham Mekibeb; Mekonnen, Sefinew Alemu; Hogeveen, Henk

    2017-03-01

    Mastitis is an inflammation of the mammary gland that is considered to be one of the most frequent and costly diseases in the dairy industry. Also in Ethiopia, bovine mastitis is one of the most frequently encountered diseases of dairy cows. However, there was no study, so far, regarding the costs of clinical mastitis and only two studies were reported on costs of subclinical mastitis. Presenting an appropriate and complete study of the costs of mastitis will help farmers in making management decisions for mastitis control. The objective of this study was to estimate the economic effects of mastitis on Ethiopian market-oriented dairy farms. Market-oriented dairy farming is driven by making profits through selling milk in the market on a regular basis. A dynamic stochastic Monte-Carlo simulation model (bio-economic model) was developed taking into account both clinical and subclinical mastitis. Production losses, culling, veterinarian costs, treatment, discarded milk, and labour were the main cost factors which were modeled in this study. The annual incidence of clinical mastitis varied from 0 to 50% with a mean annual incidence of 21.6%, whereas the mean annual incidence of subclinical mastitis was 36.2% which varied between 0 and 75%. The total costs due to mastitis for a default farm size of 8 lactating cows were 6,709 ETB per year (838 ETB per cow per year). The costs varied considerably, with 5th and 95th percentiles of 109 ETB and 22,009 ETB, respectively. The factor most contributing to the total annual cost of mastitis was culling. On average a clinical case costs 3,631 ETB, varying from 0 to 12,401, whereas a sub clinical case costs 147 ETB, varying from 0 to 412. The sensitivity analysis showed that the total costs at the farm level were most sensitive for variation in the probability of occurrence of clinical mastitis and the probability of culling. This study helps farmers to raise awareness about the actual costs of mastitis and motivate them to timely

  12. Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2016-04-01

    A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Measuring wind turbine wakes and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Meneveau, Charles; Meyers, Johan

    2014-11-01

    Very large wind farms, approximating the ``infinite'' asymptotic limit, are often studied with LES using periodic boundary conditions. In order to create an experimental realization of such large wind-turbine arrays in a wind tunnel experiment including over 100 turbines, a very small-scale turbine model based on a 3 cm diameter porous disk is designed. The porous disc matches a realistic thrust coefficient between 0.75--0.85, and the far wake flow characteristics of a rotating wind turbine. As a first step, we characterize the properties of a single model turbine. Hot-wire measurements are performed for uniform inflow conditions with different background turbulence intensity levels. Strain gage measurements are used to measure the mean value and power spectra of the thrust force, power output and wind velocity in front of the turbine. The dynamics of the wind turbine are modeled making it possible to measure force spectra at least up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow and the vortex shedding signatures of an upstream obstruction. An array with a large number of these instrumented model turbines is placed in JHU's Corrsin wind tunnel, to study effects of farm layout on total power output and turbine loading. Work supported by ERC (ActiveWindFarms, Grant No: 306471), and by NSF (CBET-113380 and IIA-1243482).

  14. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Hou, Y.; Zhu, Z.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  15. Picosecond Pulse Recirculation for High Average Brightness Thomson Scattering-based Gamma-ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, V. A.

    2009-06-12

    Pulse recirculation has been successfully demonstrated with the interaction laser system of LLNL's Thomson-Radiated Extreme X-ray (T-REX) source. The recirculation increased twenty-eight times the intensity of the light coming out of the laser system, demonstrating the capability of increasing the gamma-ray flux emitted by T-REX. The technical approach demonstrated could conceivably increase the average gamma-ray flux output by up to a hundred times.

  16. Water use on nonirrigated pasture-based dairy farms: Combining detailed monitoring and modeling to set benchmarks.

    PubMed

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-01-01

    Water use in intensively managed, confinement dairy systems has been widely studied, but few reports exist regarding water use on pasture-based dairy farms. The objective of this study was to quantify the seasonal pattern of water use to develop a prediction model of water use for pasture-based dairy farms. Stock drinking, milking parlor, and total water use was measured on 35 pasture-based, seasonal calving dairy farms in New Zealand over 2 yr. Average stock drinking water was 60 L/cow per day, with peak use in summer. We estimated that, on average, 26% of stock drinking water was lost through leakage from water-distribution systems. Average corrected stock drinking water (equivalent to voluntary water intake) was 36 L/cow per day, and peak water consumption was 72 L/cow per day in summer. Milking parlor water use increased sharply at the start of lactation (July) and plateaued (August) until summer (February), after which it decreased with decreasing milk production. Average milking parlor water use was 58 L/cow per day (between September and February). Water requirements were affected by parlor type, with rotary milking parlor water use greater than herringbone parlor water use. Regression models were developed to predict stock drinking and milking parlor water use. The models included a range of climate, farm, and milk production variables. The main drivers of stock drinking water use were maximum daily temperature, potential evapotranspiration, radiation, and yield of milk and milk components. The main drivers for milking parlor water use were average per cow milk production and milking frequency. These models of water use are similar to those used in confinement dairy systems, where milk yield is commonly used as a variable. The models presented fit the measured data more accurately than other published models and are easier to use on pasture-based dairy farms, as they do not include feed and variables that are difficult to measure on pasture-based farms

  17. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers with United Space Alliance remove Shuttle Discovery's dented main propulsion system liquid hydrogen recirculation line. From left are James Stickley, George Atkins, and Todd Biddle. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  18. Wind Farm Flow Modeling using an Input-Output Reduced-Order Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter

    Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less

  19. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  20. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells.

    PubMed

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L; Teague, Jessica E; Schlapbach, Christoph; Elco, Christopher P; Huang, Victor; Matos, Tiago R; Kupper, Thomas S; Clark, Rachael A

    2015-03-18

    The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. Copyright © 2015, American Association for the Advancement of Science.

  1. Recirculation cells for granular flow in cylindrical rotating tumblers

    NASA Astrophysics Data System (ADS)

    D'Ortona, Umberto; Thomas, Nathalie; Lueptow, Richard M.

    2018-05-01

    To better understand the velocity field and flowing layer structure, we have performed a detailed discrete element method study of the flow of monodisperse particles in a partially filled three-dimensional cylindrical rotating tumblers. Similar to what occurs near the poles in spherical and conical tumblers, recirculation cells (secondary flows) develop near the flat endwalls of a cylindrical tumbler in which particles near the surface drift axially toward the endwall, while particles deeper in the flowing layer drift axially toward the midlength of the tumbler. Another recirculation cell with the opposite sense develops next to each endwall recirculation cell, extending to the midlength of the tumbler. For a long enough tumbler, each endwall cell is about one quarter of the tumbler diameter in length. Endwall cells are insensitive to tumbler length and relatively insensitive to rotation speed (so long as the flowing layer remains flat and continuously flowing) or fill level (from 25% to 50% full). However, for shorter tumblers (0.5 to 1.0 length/diameter aspect ratio) the endwall cell size does not change much, while center cells reduce their size and eventually disappear for the shortest tumblers. For longer tumblers (length/diameter aspect ratio larger than 2), a stagnation zone appears in between the central cells. These results provide insight into the mixing of monodisperse particles in rotating cylindrical tumblers as well as the frictional effects of the tumbler endwalls.

  2. Metrics and methods for characterizing dairy farm intensification using farm survey data.

    PubMed

    Gonzalez-Mejia, Alejandra; Styles, David; Wilson, Paul; Gibbons, James

    2018-01-01

    Evaluation of agricultural intensification requires comprehensive analysis of trends in farm performance across physical and socio-economic aspects, which may diverge across farm types. Typical reporting of economic indicators at sectorial or the "average farm" level does not represent farm diversity and provides limited insight into the sustainability of specific intensification pathways. Using farm business data from a total of 7281 farm survey observations of English and Welsh dairy farms over a 14-year period we calculate a time series of 16 key performance indicators (KPIs) pertinent to farm structure, environmental and socio-economic aspects of sustainability. We then apply principle component analysis and model-based clustering analysis to identify statistically the number of distinct dairy farm typologies for each year of study, and link these clusters through time using multidimensional scaling. Between 2001 and 2014, dairy farms have largely consolidated and specialized into two distinct clusters: more extensive farms relying predominantly on grass, with lower milk yields but higher labour intensity, and more intensive farms producing more milk per cow with more concentrate and more maize, but lower labour intensity. There is some indication that these clusters are converging as the extensive cluster is intensifying slightly faster than the intensive cluster, in terms of milk yield per cow and use of concentrate feed. In 2014, annual milk yields were 6,835 and 7,500 l/cow for extensive and intensive farm types, respectively, whilst annual concentrate feed use was 1.3 and 1.5 tonnes per cow. For several KPIs such as milk yield the mean trend across all farms differed substantially from the extensive and intensive typologies mean. The indicators and analysis methodology developed allows identification of distinct farm types and industry trends using readily available survey data. The identified groups allow the accurate evaluation of the consequences of the

  3. Research on leachate recirculation from different types of landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi; Matsufuji, Yasushi; Dong Lu

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr}more » over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.« less

  4. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non

  5. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    PubMed Central

    Glithero, N.J.; Ramsden, S.J.; Wilson, P.

    2012-01-01

    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with

  6. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  7. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A spare four-inch diameter LH2 recirculation line (shown in photo) will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  8. A simple rule based model for scheduling farm management operations in SWAT

    NASA Astrophysics Data System (ADS)

    Schürz, Christoph; Mehdi, Bano; Schulz, Karsten

    2016-04-01

    For many interdisciplinary questions at the watershed scale, the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) has become an accepted and widely used tool. Despite its flexibility, the model is highly demanding when it comes to input data. At SWAT's core the water balance and the modeled nutrient cycles are plant growth driven (implemented with the EPIC crop growth model). Therefore, land use and crop data with high spatial and thematic resolution, as well as detailed information on cultivation and farm management practices are required. For many applications of the model however, these data are unavailable. In order to meet these requirements, SWAT offers the option to trigger scheduled farm management operations by applying the Potential Heat Unit (PHU) concept. The PHU concept solely takes into account the accumulation of daily mean temperature for management scheduling. Hence, it contradicts several farming strategies that take place in reality; such as: i) Planting and harvesting dates are set much too early or too late, as the PHU concept is strongly sensitivity to inter-annual temperature fluctuations; ii) The timing of fertilizer application, in SWAT this often occurs simultaneously on the same date in in each field; iii) and can also coincide with precipitation events. Particularly, the latter two can lead to strong peaks in modeled nutrient loads. To cope with these shortcomings we propose a simple rule based model (RBM) to schedule management operations according to realistic farmer management practices in SWAT. The RBM involves simple strategies requiring only data that are input into the SWAT model initially, such as temperature and precipitation data. The user provides boundaries of time periods for operation schedules to take place for all crops in the model. These data are readily available from the literature or from crop variety trials. The RBM applies the dates by complying with the following rules: i) Operations scheduled in the

  9. Metrics and methods for characterizing dairy farm intensification using farm survey data

    PubMed Central

    Gonzalez-Mejia, Alejandra; Styles, David; Wilson, Paul

    2018-01-01

    Evaluation of agricultural intensification requires comprehensive analysis of trends in farm performance across physical and socio-economic aspects, which may diverge across farm types. Typical reporting of economic indicators at sectorial or the “average farm” level does not represent farm diversity and provides limited insight into the sustainability of specific intensification pathways. Using farm business data from a total of 7281 farm survey observations of English and Welsh dairy farms over a 14-year period we calculate a time series of 16 key performance indicators (KPIs) pertinent to farm structure, environmental and socio-economic aspects of sustainability. We then apply principle component analysis and model-based clustering analysis to identify statistically the number of distinct dairy farm typologies for each year of study, and link these clusters through time using multidimensional scaling. Between 2001 and 2014, dairy farms have largely consolidated and specialized into two distinct clusters: more extensive farms relying predominantly on grass, with lower milk yields but higher labour intensity, and more intensive farms producing more milk per cow with more concentrate and more maize, but lower labour intensity. There is some indication that these clusters are converging as the extensive cluster is intensifying slightly faster than the intensive cluster, in terms of milk yield per cow and use of concentrate feed. In 2014, annual milk yields were 6,835 and 7,500 l/cow for extensive and intensive farm types, respectively, whilst annual concentrate feed use was 1.3 and 1.5 tonnes per cow. For several KPIs such as milk yield the mean trend across all farms differed substantially from the extensive and intensive typologies mean. The indicators and analysis methodology developed allows identification of distinct farm types and industry trends using readily available survey data. The identified groups allow the accurate evaluation of the consequences of

  10. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  11. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  12. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  13. 77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0249] Water Sources for Long-Term Recirculation Cooling... Regulatory Guide (RG) 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant... regarding the sumps and suppression pools that provide water sources for emergency core cooling, containment...

  14. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallec, G.; Bureau, C.; Peu, P.

    2009-07-15

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effectmore » on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.« less

  15. A Workstation Farm Optimized for Monte Carlo Shell Model Calculations : Alphleet

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Shimizu, N.; Haruyama, S.; Honma, M.; Mizusaki, T.; Taketani, A.; Utsuno, Y.; Otsuka, T.

    We have built a workstation farm named ``Alphleet" which consists of 140 COMPAQ's Alpha 21264 CPUs, for Monte Carlo Shell Model (MCSM) calculations. It has achieved more than 90 % scalable performance with 140 CPUs when the MCSM calculation with PVM and 61.2 Gflops of LINPACK.

  16. Recirculating Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A. (Inventor); Fahey, Molly E. (Inventor); Krainak, Michael A. (Inventor)

    2017-01-01

    Systems, methods, and devices may provide an optical scheme that achieves simultaneous wavelength channels and maintains the resolution and luminosity of an etalon. Various embodiments may provide a method to optically recirculate the light reflected from the etalon back through the same etalon at new angles. Various embodiments create an etalon spectrometer based on angular dispersion without moving parts and without losing the light that is not initially transmitted. Various embodiments may provide a spectrally-resolved receiver and/or transmitter. Various embodiments may provide a system including a retro-reflector, a detector or transmitter array, and an etalon disposed between the retro-reflector and the detector or transmitter array, wherein the retro-reflector is configured to redirect light reflected by the etalon back to the etalon at a different angle of incidence than an original angle of incidence on the etalon of the light reflected by the etalon.

  17. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  18. The study of recirculating aquaculture system in pond and its purification effect

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Zhang, Qingjing; Jia, Chengxia; Liu, Pan; Yang, Mu

    2017-05-01

    In this paper, a recirculating aquaculture purification system (RAPS) was designed to solve the problems of aquaculture pollution and shortage of freshwater resource according to the characteristic of northern freshwater ponds of China. The system were arranged in series and composed of high density culture pond, deposit pond, floating and submerged plant pond, ecological floating bed pond and biofilm filtrate pond. At the fish density of 20~30kg/m3 in the high density culture pond, the water quality parameters were monitored seasonally. The results indicated that the removal rate of total nitrogen, total phosphorus, ammonia nitrogen and nitrite nitrogen in the recirculating aquaculture system were 69.59%, 77.89%, 72.54% and 68.68%, respectively. The floating and submerged plant pond and ecological floating bed pond can remove TN and TP obviously, and increase dissolved oxygen and transparency significantly. And the biofilm filtrate pond has good effect of removing ammonium nitrogen and nitrite nitrogen, meanwhile, the microbial communities in the recirculating aquaculture system regulate on the water quality. Therefore, the RAPS show significant effects on water saving and pollution emission reducing.

  19. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  20. Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling.

    PubMed

    Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel

    2016-09-15

    Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of recirculation rate on methane production and SEBAR system performance using active stage digester.

    PubMed

    Tubtong, Cheevanuch; Towprayoon, Sirintornthep; Connor, Michael Anthony; Chaiprasert, Pawinee; Nopharatana, Annop

    2010-09-01

    A project was undertaken to examine the feasibility of treating organic wastes from Thai fruit and vegetable markets using the sequential batch anaerobic digester (SEBAR) approach. A key feature of the SEBAR system is the regular interchanging, or recirculation, of portions of leachate between each freshly filled digester and a support digester to which it is coupled until it is ready to operate independently. Leachate transfer from this support digester to the fresh waste digester provides additional alkalinity to help counteract the effects of early high acid release rates; it also helps build a balanced microbial population in the fresh waste digester. To optimize the leachate recirculation process, the effect of varying the quantities of leachate interchanged between freshly filled waste digesters and the still highly active support digesters to which they were coupled was studied. It was found that increasing the recirculation rate accelerated the onset of both waste degradation and methane production. The increasing of recirculation rate from 10% to 20% and 10% to 30% could reduce the SEBAR cycle period by approximately 7% and 22% without significant reduction in the amount of methane obtained from the systems. The methane yields were 0.0063, 0.0068 and 0.0077 l g(-1) VS added in the NEW digester per day using leachate recirculation rates of 10%, 20% and 30%, respectively. This finding has potentially important practical and economic implications for those using the SEBAR system to add value to market waste.

  2. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.

    PubMed

    Masden, Elizabeth A; Haydon, Daniel T; Fox, Anthony D; Furness, Robert W

    2010-07-01

    Proposals for wind farms in areas of known importance for breeding seabirds highlight the need to understand the impacts of these structures. Using an energetic modelling approach, we examine the effects of wind farms as barriers to movement on seabirds of differing morphology. Additional costs, expressed in relation to typical daily energetic expenditures, were highest per unit flight for seabirds with high wing loadings, such as cormorants. Taking species-specific differences into account, costs were relatively higher in terns, due to the high daily frequency of foraging flights. For all species, costs of extra flight to avoid a wind farm appear much less than those imposed by low food abundance or adverse weather, although such costs will be additive to these. We conclude that adopting a species-specific approach is essential when assessing the impacts of wind farms on breeding seabird populations, to fully anticipate the effects of avoidance flights. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159...

  4. Analytical Model for Mean Flow and Fluxes of Momentum and Energy in Very Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2018-01-01

    As wind-turbine arrays continue to be installed and the array size continues to grow, there is an increasing need to represent very large wind-turbine arrays in numerical weather prediction models, for wind-farm optimization, and for environmental assessment. We propose a simple analytical model for boundary-layer flow in fully-developed wind-turbine arrays, based on the concept of sparsely-obstructed shear flows. In describing the vertical distribution of the mean wind speed and shear stress within wind farms, our model estimates the mean kinetic energy harvested from the atmospheric boundary layer, and determines the partitioning between the wind power captured by the wind turbines and that absorbed by the underlying land or water. A length scale based on the turbine geometry, spacing, and performance characteristics, is able to estimate the asymptotic limit for the fully-developed flow through wind-turbine arrays, and thereby determine if the wind-farm flow is fully developed for very large turbine arrays. Our model is validated using data collected in controlled wind-tunnel experiments, and its usefulness for the prediction of wind-farm performance and optimization of turbine-array spacing are described. Our model may also be useful for assessing the extent to which the extraction of wind power affects the land-atmosphere coupling or air-water exchange of momentum, with implications for the transport of heat, moisture, trace gases such as carbon dioxide, methane, and nitrous oxide, and ecologically important oxygen.

  5. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  6. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Gary Hamilton (left) and James Stickley, both with United Space Alliance, check out a spare four-inch diameter LH2 recirculation line that will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  7. A replacement LH2 recirculation line before installation in Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    James Stickley (left) and Derry Dilby (right), who are with United Space Alliance, check over a spare four-inch diameter LH2 recirculation line that will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  8. A dented LH2 recirculation line is removed from Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  9. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    NASA Astrophysics Data System (ADS)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  10. Recurrent amoebic gill infestation in rainbow trout cultured in a semiclosed water recirculation system

    USGS Publications Warehouse

    Noble, A.C.; Herman, R.L.; Noga, E.J.; Bullock, G.L.

    1997-01-01

    Five lots of commercially purchased juvenile rainbow trout Oncorhynchus mykiss (17-44 g) stocked in a continuous-production water recirculation system became infested with gilt amoebae. The amoebae were introduced into the recirculation system, as evidenced by their presence on gills of fish held in quarantine tanks. Based on their morphology, as seen in histological sections and by electron microscopy, the amoebae appeared to be more closely related to the family Cochliopodiidae than to other taxa of free living amoebae. Attempts to culture the amoebae in different media, at different temperatures of incubation, and in fish cell culture were not successful. Initial treatment of the recirculation system with formalin at 167 parts per million (ppm) for 1 h eliminated amoebae from the gills. Subsequent treatments of the entire system with formalin at 50-167 ppm reduced the intensity of further infestations.

  11. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  12. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation.

    PubMed

    Breton, S-P; Sumner, J; Sørensen, J N; Hansen, K S; Sarmast, S; Ivanell, S

    2017-04-13

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  13. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    PubMed Central

    Sumner, J.; Sørensen, J. N.; Hansen, K. S.; Sarmast, S.; Ivanell, S.

    2017-01-01

    Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple wake situations is also supplied. Some typical results for wind turbine and wind farm flows are presented to illustrate best practices for carrying out high-fidelity LES of wind farms under various atmospheric and terrain conditions. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265021

  14. Assessing manure management strategies through small-plot research and whole-farm modeling

    USGS Publications Warehouse

    Garcia, A.M.; Veith, T.L.; Kleinman, P.J.A.; Rotz, C.A.; Saporito, L.S.

    2008-01-01

    Plot-scale experimentation can provide valuable insight into the effects of manure management practices on phosphorus (P) runoff, but whole-farm evaluation is needed for complete assessment of potential trade offs. Artificially-applied rainfall experimentation on small field plots and event-based and long-term simulation modeling were used to compare P loss in runoff related to two dairy manure application methods (surface application with and without incorporation by tillage) on contrasting Pennsylvania soils previously under no-till management. Results of single-event rainfall experiments indicated that average dissolved reactive P losses in runoff from manured plots decreased by up to 90% with manure incorporation while total P losses did not change significantly. Longer-term whole farm simulation modeling indicated that average dissolved reactive P losses would decrease by 8% with manure incorporation while total P losses would increase by 77% due to greater erosion from fields previously under no-till. Differences in the two methods of inference point to the need for caution in extrapolating research findings. Single-event rainfall experiments conducted shortly after manure application simulate incidental transfers of dissolved P in manure to runoff, resulting in greater losses of dissolved reactive P. However, the transfer of dissolved P in applied manure diminishes with time. Over the annual time frame simulated by whole farm modeling, erosion processes become more important to runoff P losses. Results of this study highlight the need to consider the potential for increased erosion and total P losses caused by soil disturbance during incorporation. This study emphasizes the ability of modeling to estimate management practice effectiveness at the larger scales when experimental data is not available.

  15. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable

  16. Leininger's model for discoveries at The Farm and midwifery services to the Amish.

    PubMed

    Finn, J

    1995-01-01

    This paper is a descriptive report and analysis of a transcultural nurse's experiences immersed in a hippie subculture at The Farm near Summertown, Tennessee. This subcultural group initially was established over 20 years ago as a community with a unique worldview which included pacifistic, vegetarian, and collective values and beliefs. This community prefers health care provided by their own community members who serve as generic care providers and also as folk midwives for home births. Leininger's (1991) Theory of Culture Care Diversity and Universality and her Sunrise Model provided the framework for discovering and understanding this unique subcultural group. The major components of Leininger's Sunrise Model including worldview, cultural values, and lifeways were used in the analysis. The important social structure factors discovered included environmental context, technological factors, religious and philosophical factors, political and legal factors, economic factors, and educational factors. The Farm community's culture care expressions, patterns and practices for health and well being were discovered including generic and folk systems of care. The farm midwives provide primary care and home birthing care to a nearby Old Order Amish community. The Amish culture and health care seeking patterns are discussed including their selective use of generic, folk, and professional care systems. The discoveries that resulted from the application of Leininger's Sunrise Model are presented including implications for transcultural nurse caregiving.

  17. Generation and Maintenance of Recirculations by Gulf Stream Instabilities

    DTIC Science & Technology

    1999-02-01

    Francois Primeau for endless discus- sions of various scientific problems, Kirill Pankratov for useful advice on the numerical methods in fluid...recirculation. J. Phys. Oceanogr., 18, 662-682. [7] Davis C. A. and K. A. Emanuel, 1991 : Potential vorticity diagnostics of cyclo- genesis. Mon. Weather. Rev

  18. Mathematical Modeling of Influenza A Virus Dynamics within Swine Farms and the Effects of Vaccination

    PubMed Central

    Reynolds, Jennifer J. H.; Torremorell, Montserrat; Craft, Meggan E.

    2014-01-01

    Influenza A virus infections are widespread in swine herds across the world. Influenza negatively affects swine health and production, and represents a significant threat to public health due to the risk of zoonotic infections. Swine herds can act as reservoirs for potentially pandemic influenza strains. In this study, we develop mathematical models based on experimental data, representing typical breeding and wean-to-finish swine farms. These models are used to explore and describe the dynamics of influenza infection at the farm level, which are at present not well understood. In addition, we use the models to assess the effectiveness of vaccination strategies currently employed by swine producers, testing both homologous and heterologous vaccines. An important finding is that following an influenza outbreak in a breeding herd, our model predicts a persistently high level of infectious piglets. Sensitivity analysis indicates that this finding is robust to changes in both transmission rates and farm size. Vaccination does not eliminate influenza throughout the breeding farm population. In the wean-to-finish herd, influenza infection may persist in the population only if recovered individuals become susceptible to infection again. A homologous vaccine administered to the entire wean-to-finish population after the loss of maternal antibodies eliminates influenza, but a vaccine that only induces partial protection (heterologous vaccine) has little effect on influenza infection levels. Our results have important implications for the control of influenza in swine herds, which is crucial in order to reduce both losses for swine producers and the risk to public health. PMID:25162536

  19. Leachate pre-treatment strategies before recirculation in landfill bioreactors.

    PubMed

    Vigneron, V; Bouchez, T; Bureau, C; Mailly, N; Mazeas, L; Duquennoi, C; Audic, J M; Hébé, L; Bernet, N

    2005-01-01

    Nitrified leachate recirculation represents a promising strategy for a more sustainable landfill management. Our objective was to determine the reactions involved in nitrate reduction in municipal solid waste batch biodegradation tests. Anaerobic digestion of waste in the three control reactors showed a good reproducibility. In two test reactors, nitrate was added at various moments of the waste degradation process. We observed that: (1) H2S concentration controlled the nitrate reduction pathway: above a certain threshold of H2S, dissimilatory nitrate reduction to ammonium (DNRA) replaced denitrification. (2) N2O/N2 ratio varied with the organic carbon concentration: the lower the easily biodegradable carbon concentration, the higher the N2O/N2 ratio. (3) N2 was consumed after denitrification. The possibility of a nitrogen fixation reaction in the presence of NH4 is discussed. Nitrified leachate recirculation during acidogenesis should be avoided because of higher H2S production which could induce DNRA.

  20. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2002-01-01

    A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.

  1. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  2. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  3. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  4. Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, sewage sludge and marine sediment.

    PubMed

    Chan, G Y S; Chu, L M; Wong, M H

    2002-01-01

    Leachate recirculation is an emerging technology associated with the management of landfill. The impact of leachate recirculation on the co-disposal of three major wastes (municipal solid waste, sewage sludge and sediment dredgings) was investigated using a laboratory column study. Chemical parameters (pH, COD, ammoniacal-N, total-P) and gas production (total gas volume, production rates and concentrations of CH4 and CO2) were monitored for 11 weeks. Leachate recirculation reduced waste-stabilization time and was effective in enhancing gas production and improving leachate quality, especially in terms of COD. The results also indicated that leachate recirculation could maximize the efficiency and waste volume reduction rate of landfill sites.

  5. Using heterogeneity in the population structure of U.S. swine farms to compare transmission models for porcine epidemic diarrhoea

    PubMed Central

    O’Dea, Eamon B.; Snelson, Harry; Bansal, Shweta

    2016-01-01

    In 2013, U.S. swine producers were confronted with the disruptive emergence of porcine epidemic diarrhoea (PED). Movement of animals among farms is hypothesised to have played a role in the spread of PED among farms. Via this or other mechanisms, the rate of spread may also depend on the geographic density of farms and climate. To evaluate such effects on a large scale, we analyse state-level counts of outbreaks with variables describing the distribution of farm sizes and types, aggregate flows of animals among farms, and an index of climate. Our first main finding is that it is possible for a correlation analysis to be sensitive to transmission model parameters. This finding is based on a global sensitivity analysis of correlations on simulated data that included a biased and noisy observation model based on the available PED data. Our second main finding is that flows are significantly associated with the reports of PED outbreaks. This finding is based on correlations of pairwise relationships and regression modeling of total and weekly outbreak counts. These findings illustrate how variation in population structure may be employed along with observational data to improve understanding of disease spread. PMID:26947420

  6. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    DOEpatents

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  7. Improving Environmental Management on Small-scale Farms: Perspectives of Extension Educators and Horse Farm Operators

    NASA Astrophysics Data System (ADS)

    Rebecca, Perry-Hill; Linda, Prokopy

    2015-01-01

    Although the number of small-scale farms is increasing in North America and Europe, few studies have been conducted to better understand environmental management in this sector. We investigate this issue by examining environmental management on horse farms from both the perspective of the "expert" extension educator and horse farm operator. We conducted a Delphi survey and follow-up interviews with extension educators in Indiana and Kentucky. We also conducted interviews and farm assessments with 15 horse farm operators in the two states. Our results suggest a disconnection between the perceptions of extension educators and horse farm operators. Extension educators believed that operators of small horse farms are unfamiliar with conservation practices and their environmental benefits and they found it difficult to target outreach to this audience. In the interviews with horse farm operators, we found that the majority were somewhat familiar with conservation practices like rotational grazing, soil testing, heavy use area protection, and manure composting. It was not common, however, for practices to be implemented to generally recognized standards. The horse farm respondents perceived these practices as interrelated parts of a system of farm management that has developed over time to best deal with the physical features of the property, needs of the horses, and available resources. Because conservation practices must be incorporated into a complex farm management system, traditional models of extension (i.e., diffusion of innovations) may be inappropriate for promoting better environmental management on horse farms.

  8. Improving environmental management on small-scale farms: perspectives of extension educators and horse farm operators.

    PubMed

    Rebecca, Perry-Hill; Linda, Prokopy

    2015-01-01

    Although the number of small-scale farms is increasing in North America and Europe, few studies have been conducted to better understand environmental management in this sector. We investigate this issue by examining environmental management on horse farms from both the perspective of the "expert" extension educator and horse farm operator. We conducted a Delphi survey and follow-up interviews with extension educators in Indiana and Kentucky. We also conducted interviews and farm assessments with 15 horse farm operators in the two states. Our results suggest a disconnection between the perceptions of extension educators and horse farm operators. Extension educators believed that operators of small horse farms are unfamiliar with conservation practices and their environmental benefits and they found it difficult to target outreach to this audience. In the interviews with horse farm operators, we found that the majority were somewhat familiar with conservation practices like rotational grazing, soil testing, heavy use area protection, and manure composting. It was not common, however, for practices to be implemented to generally recognized standards. The horse farm respondents perceived these practices as interrelated parts of a system of farm management that has developed over time to best deal with the physical features of the property, needs of the horses, and available resources. Because conservation practices must be incorporated into a complex farm management system, traditional models of extension (i.e., diffusion of innovations) may be inappropriate for promoting better environmental management on horse farms.

  9. Gis-Based Wind Farm Site Selection Model Offshore Abu Dhabi Emirate, Uae

    NASA Astrophysics Data System (ADS)

    Saleous, N.; Issa, S.; Mazrouei, J. Al

    2016-06-01

    The United Arab Emirates (UAE) government has declared the increased use of alternative energy a strategic goal and has invested in identifying and developing various sources of such energy. This study aimed at assessing the viability of establishing wind farms offshore the Emirate of Abu Dhabi, UAE and to identify favourable sites for such farms using Geographic Information Systems (GIS) procedures and algorithms. Based on previous studies and on local requirements, a set of suitability criteria was developed including ocean currents, reserved areas, seabed topography, and wind speed. GIS layers were created and a weighted overlay GIS model based on the above mentioned criteria was built to identify suitable sites for hosting a new offshore wind energy farm. Results showed that most of Abu Dhabi offshore areas were unsuitable, largely due to the presence of restricted zones (marine protected areas, oil extraction platforms and oil pipelines in particular). However, some suitable sites could be identified, especially around Delma Island and North of Jabal Barakah in the Western Region. The environmental impact of potential wind farm locations and associated cables on the marine ecology was examined to ensure minimal disturbance to marine life. Further research is needed to specify wind mills characteristics that suit the study area especially with the presence of heavy traffic due to many oil production and shipping activities in the Arabian Gulf most of the year.

  10. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms.

    PubMed

    Mur, L; Sánchez-Vizcaíno, J M; Fernández-Carrión, E; Jurado, C; Rolesu, S; Feliziani, F; Laddomada, A; Martínez-López, B

    2018-02-01

    African swine fever virus (ASFV) has been endemic in Sardinia since 1978, resulting in severe losses for local pig producers and creating important problems for the island's veterinary authorities. This study used a spatially explicit stochastic transmission model followed by two regression models to investigate the dynamics of ASFV spread amongst domestic pig farms, to identify geographic areas at highest risk and determine the role of different susceptible pig populations (registered domestic pigs, non-registered domestic pigs [brado] and wild boar) in ASF occurrence. We simulated transmission within and between farms using an adapted version of the previously described model known as Be-FAST. Results from the model revealed a generally low diffusion of ASF in Sardinia, with only 24% of the simulations resulting in disease spread, and for each simulated outbreak on average only four farms and 66 pigs were affected. Overall, local spread (indirect transmission between farms within a 2 km radius through fomites) was the most common route of transmission, being responsible for 98.6% of secondary cases. The risk of ASF occurrence for each domestic pig farm was estimated from the spread model results and integrated in two regression models together with available data for brado and wild boar populations. There was a significant association between the density of all three populations (domestic pigs, brado, and wild boar) and ASF occurrence in Sardinia. The most significant risk factors were the high densities of brado (OR = 2.2) and wild boar (OR = 2.1). The results of both analyses demonstrated that ASF epidemiology and infection dynamics in Sardinia create a complex and multifactorial disease situation, where all susceptible populations play an important role. To stop ASF transmission in Sardinia, three main factors (improving biosecurity on domestic pig farms, eliminating brado practices and better management of wild boars) need to be addressed. © 2017

  11. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  12. Offshore wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Elkinton, Christopher Neil

    Offshore wind energy technology is maturing in Europe and is poised to make a significant contribution to the U.S. energy production portfolio. Building on the knowledge the wind industry has gained to date, this dissertation investigates the influences of different site conditions on offshore wind farm micrositing---the layout of individual turbines within the boundaries of a wind farm. For offshore wind farms, these conditions include, among others, the wind and wave climates, water depths, and soil conditions at the site. An analysis tool has been developed that is capable of estimating the cost of energy (COE) from offshore wind farms. For this analysis, the COE has been divided into several modeled components: major costs (e.g. turbines, electrical interconnection, maintenance, etc.), energy production, and energy losses. By treating these component models as functions of site-dependent parameters, the analysis tool can investigate the influence of these parameters on the COE. Some parameters result in simultaneous increases of both energy and cost. In these cases, the analysis tool was used to determine the value of the parameter that yielded the lowest COE and, thus, the best balance of cost and energy. The models have been validated and generally compare favorably with existing offshore wind farm data. The analysis technique was then paired with optimization algorithms to form a tool with which to design offshore wind farm layouts for which the COE was minimized. Greedy heuristic and genetic optimization algorithms have been tuned and implemented. The use of these two algorithms in series has been shown to produce the best, most consistent solutions. The influences of site conditions on the COE have been studied further by applying the analysis and optimization tools to the initial design of a small offshore wind farm near the town of Hull, Massachusetts. The results of an initial full-site analysis and optimization were used to constrain the boundaries of

  13. Recirculation, stagnation and ventilation: The 2014 legionella episode

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Soares, Pedro M. M.; Gouveia, Célia M.; Cardoso, Rita M.; Trigo, Ricardo M.

    2017-04-01

    Legionella transmission through the atmosphere is unusual, but not unprecedented. A scientific paper published in 2006 reports a surge in Pas-de-Calais, France, in which 86 people have been infected by bacteria released by a cooling tower more than 6 km away [3]. Similarly, in Norway, in 2005, there was another case where contamination spread beyond 10 km, although more concentrated within a radius of 1 km from an industrial unit [2]. An unprecedented large Legionella outbreak occurred in November 2014 nearby Lisbon, Portugal. As of 7 November 2014, 375 individuals become hill and 12 died infected by the Legionella pneumophila bacteria, contracted by inhalation of steam droplets of contaminated water (aerosols). These droplets are so small that can carry the bacteria directly to the lungs, depositing it in the alveoli. One way of studying the propagation of legionella episodes is through the use of aerosol dispersion models. However, such approaches often require detailed 3D high resolution wind data over the region, which isn't often available for long periods. The likely impact of wind on legionella transmission can also be understood based on the analysis of special types of flow conditions such as stagnation, recirculation and ventilation [1, 4]. The Allwine and Whiteman (AW) approach constitutes a straightforward method to assess the assimilative and dispersal capacities of different airsheds [1,4], as it only requires hourly wind components. Thus, it has the advantage of not needing surface and upper air meteorological observations and a previous knowledge of the atmospheric transport and dispersion conditions. The objective of this study is to analyze if the legionella outbreak event which took place in November 2014 had extreme potential recirculation and/or stagnation characteristics. In order to accomplish the proposed objective, the AW approach was applied for a hindcast time-series covering the affected area (1989-2007) and then for an independent

  14. Using models to establish the financially optimum strategy for Irish dairy farms.

    PubMed

    Ruelle, E; Delaby, L; Wallace, M; Shalloo, L

    2018-01-01

    Determining the effect of a change in management on farm with differing characteristics is a significant challenge in the evaluation of dairy systems due to the interacting components of complex biological systems. In Ireland, milk production is increasing substantially following the abolition of the European Union milk quota regime in 2015. There are 2 main ways to increase the milk production on farm (within a fixed land base): either increase the number of animals (thus increasing the stocking rate) or increase the milk production per animal through increased feeding or increased lactation length. In this study, the effect of increased concentrate feeding or an increase in grazing intensity was simulated to determine the effect on the farm system and its economic performance. Four stocking rates (2.3, 2.6, 2.9, and 3.2 cow/ha) and 5 different concentrate supplementation strategies (0, 180, 360, 600, and 900 kg of dry matter/lactation) resulting in 20 different scenarios were evaluated across different milk, concentrate, and silage purchase prices. Each simulation was run across 10 yr of meteorological data, which had been recorded over the period 2004 to 2013. Three models-the Moorepark and St Gilles grass growth model, the pasture-based herd dynamic milk model, and the Moorepark dairy systems model-were integrated and applied to simulate the different scenarios. Overall, this study has demonstrated that the most profitable scenario was a stocking rate of 2.6 cow/ha with a concentrate supplementation of 600 kg of dry matter/cow. The factor that had the greatest influence on profitability was variability of milk price. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  15. Un formalisme de systemes a sauts pour la recirculation optimale des casses dans une machine a papier

    NASA Astrophysics Data System (ADS)

    Khanbaghi, Maryam

    Increasing closure of white water circuits is making mill productivity and quality of paper produced increasingly affected by the occurrence of paper breaks. In this thesis the main objective is the development of white water and broke recirculation policies. The thesis consists of three main parts, respectively corresponding to the synthesis of a statistical model of paper breaks in a paper mill, the basic mathematical setup for the formulation of white water and broke recirculation policies in the mill as a jump linear quadratic regulation problem, and finally the tuning of the control law based on first passage-time theory, and its extension to the case of control sensitive paper break rates. More specifically, in the first part a statistical model of paper machine breaks is developed. We start from the hypothesis that the breaks process is a Markov chain with three states: the first state is the operational one, while the two others are associated with the general types of paper-breaks that can take place in the mill (wet breaks and dry breaks). The Markovian hypothesis is empirically validated. We also establish how paper-break rates are correlated with machine speed and broke recirculation ratio. Subsequently, we show how the obtained Markov chain model of paper-breaks can be used to formulate a machine operating speed parameter optimization problem. In the second part, upon recognizing that paper breaks can be modelled as a Markov chain type of process which, when interacting with the continuous mill dynamics, yields a jump Markov model, jump linear theory is proposed as a means of constructing white water and broke recirculation strategies which minimize process variability. Reduced process variability comes at the expense of relatively large swings in white water and broke tanks level. Since the linear design does not specifically account for constraints on the state-space, under the resulting law, damaging events of tank overflow or emptiness can occur. A

  16. Demonstration of Split-Flow Ventilation and Recirculation as Flow- Reduction Methods in an Air Force Paint Spray Booth. Volume 1

    DTIC Science & Technology

    1994-07-27

    of the split-flow and recirculation modifications in typical Air Force painting operations; itwas a proof-of- concept study only. It is recognized...recirculating ventilation. 4 To Implement this flow-reduction concept , it must first be established that recirculation does not cause an accumulation of toxic...ventilation concept . The concentration gradient is determined by height and direction of paint application. If the concentration in the top portion is

  17. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    NASA Astrophysics Data System (ADS)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  18. Data Farming and Defense Applications

    NASA Technical Reports Server (NTRS)

    Horne, Gary; Meyer, Ted

    2011-01-01

    .Data farm,ing uses simulation modeling, high performance computing, experimental design and analysis to examine questions of interest with large possibility spaces. This methodology allows for the examination of whole landscapes of potential outcomes and provides the capability of executing enough experiments so that outliers might be captured and examined for insights. It can be used to conduct sensitivity studies, to support validation and verification of models, to iteratively optimize outputs using heuristic search and discovery, and as an aid to decision-makers in understanding complex relationships of factors. In this paper we describe efforts at the Naval Postgraduate School in developing these new and emerging tools. We also discuss data farming in the context of application to questions inherent in military decision-making. The particular application we illustrate here is social network modeling to support the countering of improvised explosive devices.

  19. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    NASA Astrophysics Data System (ADS)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  20. CFD analysis of a rotary kiln using for plaster production and discussion of the effects of flue gas recirculation application

    NASA Astrophysics Data System (ADS)

    Gürtürk, Mert; Oztop, Hakan F.; Pambudi, Nugroho Agung

    2018-04-01

    In this study, the CFD analysis of the rotary kiln is carried out for examining effects of various parameters on energy consumption and efficiency of the rotary kiln. The flue gas recirculation using in many applications is a useful method for combusting of fuel unburned in the flue gas. Also, effects of flue gas recirculation on the combusting of fuel, operating temperature and efficiency of the rotary kiln are discussed in this study. The rotary kiln, which is considered in this study, is used in plaster plant. Two different CFD models were created and these models are compared according to many parameters such as temperature distribution, mixture fraction, the mass fraction of O2, CO, CO and CH4 in the combustion chamber. It is found that the plaster plant has a great potential for an increase in energy efficiency. Results obtained for producers of rotary kiln and burner will be useful for determining better design parameters.

  1. Engine with exhaust gas recirculation system and variable geometry turbocharger

    DOEpatents

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  2. CFD Study of the Performance of an Operational Wind Farm and its Impact on the Local Climate: CFD sensitivity to forestry modelling

    NASA Astrophysics Data System (ADS)

    Wylie, Scott; Watson, Simon

    2013-04-01

    Any past, current or projected future wind farm developments are highly dependent on localised climatic conditions. For example the mean wind speed, one of the main factors in assessing the economic feasibility of a wind farm, can vary significantly over length scales no greater than the size of a typical wind farm. Any additional heterogeneity at a potential site, such as forestry, can affect the wind resource further not accounting for the additional difficulty of installation. If a wind farm is sited in an environmentally sensitive area then the ability to predict the wind farm performance and possible impacts on the important localised climatic conditions are of increased importance. Siting of wind farms in environmentally sensitive areas is not uncommon, such as areas of peat-land as in this example. Areas of peat-land are important sinks for carbon in the atmosphere but their ability to sequester carbon is highly dependent on the local climatic conditions. An operational wind farm's impact on such an area was investigated using CFD. Validation of the model outputs were carried out using field measurements from three automatic weather stations (AWS) located throughout the site. The study focuses on validation of both wind speed and turbulence measurement, whilst also assessing the models ability to predict wind farm performance. The use of CFD to model the variation in wind speed over heterogeneous terrain, including wind turbines effects, is increasing in popularity. Encouraging results have increased confidence in the ability of CFD performance in complex terrain with features such as steep slopes and forests, which are not well modelled by the widely used linear models such as WAsP and MS-Micro. Using concurrent measurements from three stationary AWS across the wind farm will allow detailed validation of the model predicted flow characteristics, whilst aggregated power output information will allow an assessment of how accurate the model setup can predict

  3. Dispersive stresses in wind farms

    NASA Astrophysics Data System (ADS)

    Segalini, Antonio; Braunbehrens, Robert; Hyvarinen, Ann

    2017-11-01

    One of the most famous models of wind farms is provided by the assumption that the farm can be approximated as a horizontally-homogeneous forest canopy with vertically-varying force intensity. By means of this approximation, the flow-motion equations become drastically simpler, as many of the three-dimensional effects are gone. However, the application of the horizontal average operator to the RANS equations leads to the appearance of new transport terms (called dispersive stresses) originating from the horizontal (small-scale) variation of the mean velocity field. Since these terms are related to the individual turbine signature, they are expected to vanish outside the roughness sublayer, providing a definition for the latter. In the present work, an assessment of the dispersive stresses is performed by means of a wake-model approach and through the linearised code ORFEUS developed at KTH. Both approaches are very fast and enable the characterization of a large number of wind-farm layouts. The dispersive stress tensor and its effect on the turbulence closure models are investigated, providing guidelines for those simulations where it is impossible to resolve the farm at a turbine scale due to grid requirements (as, for instance, mesoscale simulations).

  4. Land Use Change on Household Farms in the Ecuadorian Amazon: Design and Implementation of an Agent-Based Model.

    PubMed

    Mena, Carlos F; Walsh, Stephen J; Frizzelle, Brian G; Xiaozheng, Yao; Malanson, George P

    2011-01-01

    This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways.

  5. Land Use Change on Household Farms in the Ecuadorian Amazon: Design and Implementation of an Agent-Based Model

    PubMed Central

    Mena, Carlos F.; Walsh, Stephen J.; Frizzelle, Brian G.; Xiaozheng, Yao; Malanson, George P.

    2010-01-01

    This paper describes the design and implementation of an Agent-Based Model (ABM) used to simulate land use change on household farms in the Northern Ecuadorian Amazon (NEA). The ABM simulates decision-making processes at the household level that is examined through a longitudinal, socio-economic and demographic survey that was conducted in 1990 and 1999. Geographic Information Systems (GIS) are used to establish spatial relationships between farms and their environment, while classified Landsat Thematic Mapper (TM) imagery is used to set initial land use/land cover conditions for the spatial simulation, assess from-to land use/land cover change patterns, and describe trajectories of land use change at the farm and landscape levels. Results from prior studies in the NEA provide insights into the key social and ecological variables, describe human behavioral functions, and examine population-environment interactions that are linked to deforestation and agricultural extensification, population migration, and demographic change. Within the architecture of the model, agents are classified as active or passive. The model comprises four modules, i.e., initialization, demography, agriculture, and migration that operate individually, but are linked through key household processes. The main outputs of the model include a spatially-explicit representation of the land use/land cover on survey and non-survey farms and at the landscape level for each annual time-step, as well as simulated socio-economic and demographic characteristics of households and communities. The work describes the design and implementation of the model and how population-environment interactions can be addressed in a frontier setting. The paper contributes to land change science by examining important pattern-process relations, advocating a spatial modeling approach that is capable of synthesizing fundamental relationships at the farm level, and links people and environment in complex ways. PMID:24436501

  6. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  7. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model.

    PubMed

    Thakur, Krishna K; Revie, Crawford W; Hurnik, Daniel; Poljak, Zvonimir; Sanchez, Javier

    2015-03-01

    Porcine reproductive and respiratory syndrome (PRRS), a viral disease of swine, has major economic impacts on the swine industry. The North American Animal Disease Spread Model (NAADSM) is a spatial, stochastic, farm level state-transition modeling framework originally developed to simulate highly contagious and foreign livestock diseases. The objectives of this study were to develop a model to simulate between-farm spread of a homologous strain of PRRS virus in Ontario swine farms via direct (animal movement) and indirect (sharing of trucks between farms) contacts using the NAADSM and to compare the patterns and extent of outbreak under different simulated conditions. A total of 2552 swine farms in Ontario province were allocated to each census division of Ontario and geo-locations of the farms were randomly generated within the agriculture land of each Census Division. Contact rates among different production types were obtained using pig movement information from four regions in Canada. A total of 24 scenarios were developed involving various direct (movement of infected animals) and indirect (pig transportation trucks) contact parameters in combination with alternating the production type of the farm in which the infection was seeded. Outbreaks were simulated for one year with 1000 replications. The median number of farms infected, proportion of farms with multiple outbreaks and time to reach the peak epidemic were used to compare the size, progression and extent of outbreaks. Scenarios involving spread only by direct contact between farms resulted in outbreaks where the median percentage of infected farms ranged from 31.5 to 37% of all farms. In scenarios with both direct and indirect contact, the median percentage of infected farms increased to a range from 41.6 to 48.6%. Furthermore, scenarios with both direct and indirect contact resulted in a 44% increase in median epidemic size when compared to the direct contact scenarios. Incorporation of both animal

  8. The relation between modeled odor exposure from livestock farming and odor annoyance among neighboring residents.

    PubMed

    Boers, D; Geelen, L; Erbrink, H; Smit, L A M; Heederik, D; Hooiveld, M; Yzermans, C J; Huijbregts, M; Wouters, I M

    2016-04-01

    Odor annoyance is an important environmental stressor for neighboring residents of livestock farms and may affect their quality of life and health. However, little is known about the relation between odor exposure due to livestock farming and odor annoyance. Even more, the relation between odor exposure and odor annoyance is rather complicated due to variable responses among individuals to comparable exposure levels and a large number of factors (such as age, gender, education) that may affect the relation. In this study, we (1) investigated the relation between modeled odor exposure and odor annoyance; (2) investigated whether other factors can affect this relation; and (3) compared our dose-response relation to a dose-response relation established in a previous study carried out in the Netherlands, more than 10 years ago, in order to investigate changes in odor perception and appreciation over time. We used data from 582 respondents who participated in a questionnaire survey among neighboring residents of livestock farms in the south of the Netherlands. Odor annoyance was established by two close-ended questions in a questionnaire; odor exposure was estimated using the Stacks dispersion model. The results of our study indicate a statistically significant and positive relation between modeled odor exposure and reported odor annoyance from livestock farming (OR 1.92; 95 % CI 1.53-2.41). Furthermore, age, asthma, education and perceived air pollution in the environment are all related to odor annoyance, although they hardly affect the relation between estimated livestock odor exposure and reported odor annoyance. We also found relatively more odor annoyance reported among neighboring residents than in a previous study conducted in the Netherlands. We found a strong relation between modeled odor exposure and odor annoyance. However, due to some uncertainties and small number of studies on this topic, further research and replication of results is recommended.

  9. The Development of a Model Design to Assess Instruction in Farm Management in Terms of Economic Returns and the Understanding of Economic Principles.

    ERIC Educational Resources Information Center

    Rolloff, John August

    The records of 27 farm operators participating in farm business analysis programs in 5 Ohio schools were studied to develop and test a model for determining the influence of the farm business analysis phase of vocational agriculture instruction in farm management. Economic returns were measured as ratios between 1965 program inputs and outputs…

  10. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  11. Investigation of hydrocarbon oil transformation by gliding arc discharge: comparison of batch and recirculated configurations

    NASA Astrophysics Data System (ADS)

    Whitehead, J. Christopher; Prantsidou, Maria

    2016-04-01

    The degradation of liquid dodecane was studied in a gliding arc discharge (GAD) of humid argon or nitrogen. A batch or recirculating configuration was used. The products in the gaseous and liquid phase were analysed by infrared and chromatography and optical emission spectroscopy was used to identify the excited species in the discharge. The best degradation performance comes from the use of humid N2 but a GAD of humid argon produces fewer gas-phase products but more liquid-phase end-products. A wide range of products such as heavier saturated or unsaturated hydrocarbons both aliphatic and aromatic, and oxidation products mainly alcohols, but also aldehydes, ketones and esters are produced in the liquid-phase. The recirculating treatment mode is more effective than the batch mode increasing the reactivity and changing the product selectivities. Overall, the study shows promising results for the organic liquid waste treatment, especially in the recirculating mode.

  12. e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems.

    PubMed

    Baudracco, J; Lopez-Villalobos, N; Holmes, C W; Comeron, E A; Macdonald, K A; Barry, T N

    2013-05-01

    A whole-farm, stochastic and dynamic simulation model was developed to predict biophysical and economic performance of grazing dairy systems. Several whole-farm models simulate grazing dairy systems, but most of them work at a herd level. This model, named e-Dairy, differs from the few models that work at an animal level, because it allows stochastic behaviour of the genetic merit of individual cows for several traits, namely, yields of milk, fat and protein, live weight (LW) and body condition score (BCS) within a whole-farm model. This model accounts for genetic differences between cows, is sensitive to genotype × environment interactions at an animal level and allows pasture growth, milk and supplements price to behave stochastically. The model includes an energy-based animal module that predicts intake at grazing, mammary gland functioning and body lipid change. This whole-farm model simulates a 365-day period for individual cows within a herd, with cow parameters randomly generated on the basis of the mean parameter values, defined as input and variance and co-variances from experimental data sets. The main inputs of e-Dairy are farm area, use of land, type of pasture, type of crops, monthly pasture growth rate, supplements offered, nutritional quality of feeds, herd description including herd size, age structure, calving pattern, BCS and LW at calving, probabilities of pregnancy, average genetic merit and economic values for items of income and costs. The model allows to set management policies to define: dry-off cows (ceasing of lactation), target pre- and post-grazing herbage mass and feed supplementation. The main outputs are herbage dry matter intake, annual pasture utilisation, milk yield, changes in BCS and LW, economic farm profit and return on assets. The model showed satisfactory accuracy of prediction when validated against two data sets from farmlet system experiments. Relative prediction errors were <10% for all variables, and concordance

  13. Simulation of a 7.7 MW onshore wind farm with the Actuator Line Model

    NASA Astrophysics Data System (ADS)

    Guggeri, A.; Draper, M.; Usera, G.

    2017-05-01

    Recently, the Actuator Line Model (ALM) has been evaluated with coarser resolution and larger time steps than what is generally recommended, taking into account an atmospheric sheared and turbulent inflow condition. The aim of the present paper is to continue these studies, assessing the capability of the ALM to represent the wind turbines’ interactions in an onshore wind farm. The ‘Libertad’ wind farm, which consists of four 1.9MW Vestas V100 wind turbines, was simulated considering different wind directions, and the results were compared with the wind farm SCADA data, finding good agreement between them. A sensitivity analysis was performed to evaluate the influence of the spatial resolution, finding acceptable agreement, although some differences were found. It is believed that these differences are due to the characteristics of the different Atmospheric Boundary Layer (ABL) simulations taken as inflow condition (precursor simulations).

  14. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  15. Cluster formation and drag reduction-proposed mechanism of particle recirculation within the partition column of the bottom spray fluid-bed coater.

    PubMed

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-04-01

    Bottom spray fluid-bed coating is a common technique for coating multiparticulates. Under the quality-by-design framework, particle recirculation within the partition column is one of the main variability sources affecting particle coating and coat uniformity. However, the occurrence and mechanism of particle recirculation within the partition column of the coater are not well understood. The purpose of this study was to visualize and define particle recirculation within the partition column. Based on different combinations of partition gap setting, air accelerator insert diameter, and particle size fraction, particle movements within the partition column were captured using a high-speed video camera. The particle recirculation probability and voidage information were mapped using a visiometric process analyzer. High-speed images showed that particles contributing to the recirculation phenomenon were behaving as clustered colonies. Fluid dynamics analysis indicated that particle recirculation within the partition column may be attributed to the combined effect of cluster formation and drag reduction. Both visiometric process analysis and particle coating experiments showed that smaller particles had greater propensity toward cluster formation than larger particles. The influence of cluster formation on coating performance and possible solutions to cluster formation were further discussed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Recirculation of the Canary Current in Fall

    NASA Astrophysics Data System (ADS)

    Hernandez-Guerra, A.; Espino-Falcón, E.; Vélez-Belchí, P.; Pérez-Hernández, M. D.; Martínez, A.; Cana, L.

    2015-12-01

    CTD and LADCP data measured in October 2014 are used to describe water masses, geostrophic circulation and mass transport in the Eastern Boundary of the North Atlantic Subtropical Gyre. Initial geostrophic velocities are adjusted to velocities from the LADCP data to estimate an initial velocity at the reference layer. Final reference velocities and consequently circulation is estimated from an inverse box model applied to an ocean divided into 12 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport derived from the Weather Research and Forecasting (WRF) model is added to the first layer and adjusted with the inverse model. The Canary Current (CC) transports southward a net mass of 3.8±0.7 Sv (1 Sv=106 m3/s≈109 kg/s) of North Atlantic Central Water (NACW) at the thermocline layers (~0-700 m) and 1.9±0.6 Sv of a mixture of Mediterranean Water (MW) and Antarctic Intermediate Water (AAIW) at intermediate layers (~800-1400 m). The CC recirculates northward at a rate of 4.8±0.8 Sv at the thermocline layers between the Lanzarote Island and the African coast (Lanzarote Passage) on this occasion. Separately, at intermediate layers, AAIW flows northward at a rate of 2.4±0.6 Sv through the Lanzarote Passage transported by the Intermediate Poleward Undercurrent (IPUC).

  17. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as "bootstrap analysis" that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most

  18. Low head oxygenator performance characterization for marine recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effect of temperature (20 and 25 ºC), salinity (10, 15, and 20 ppt), and dissolved oxygen levels within low head oxygenator (LHO) outlet water on oxygen transfer efficiency (OTE) of LHOs for a planned marine recirculating aquaculture system (RAS). Test results indicated tha...

  19. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production.

    PubMed

    Frank, R R; Davies, S; Wagland, S T; Villa, R; Trois, C; Coulon, F

    2016-09-01

    The effect of leachate recirculation with cellulase augmentation on municipal solid waste (MSW) biostabilisation and landfill gas production was investigated using batch bioreactors to determine the optimal conditions of moisture content, temperature and nutrients. Experimentation was thereafter scaled-up in 7L bioreactors. Three conditions were tested including (1) leachate recirculation only, (2) leachate recirculation with enzyme augmentation and (3) no leachate recirculation (control). Cumulative biogas production of the batch tests indicated that there was little difference between the leachate and control test conditions, producing on average 0.043m(3)biogaskg(-1) waste. However the addition of cellulase at 15×10(6)Utonne(-1) waste doubled the biogas production (0.074m(3)biogaskg(-1) waste). Similar trend was observed with the bioreactors. Cellulase addition also resulted in the highest COD reduction in both the waste and the leachate samples (47% and 42% COD reduction, respectively). In both cases, the quantity of biogas produced was closer to the lower value of theoretical and data-based biogas prediction indicators (0.05-0.4m(3)biogaskg(-1) waste). This was likely due to a high concentration of heavy metals present in the leachate, in particular Cr and Mn, which are known to be toxic to methanogens. The cost-benefit analysis (CBA) based on the settings of the study (cellulase concentration of 15×10(6)Utonne(-1) waste) showed that leachate bioaugmentation using cellulase is economically viable, with a net benefit of approximately €12.1million on a 5Mt mixed waste landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Turbulent flow and scalar transport in a large wind farm

    NASA Astrophysics Data System (ADS)

    Porte-Agel, F.; Markfort, C. D.; Zhang, W.

    2012-12-01

    Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface

  1. Are large farms more efficient? Tenure security, farm size and farm efficiency: evidence from northeast China

    NASA Astrophysics Data System (ADS)

    Zhou, Yuepeng; Ma, Xianlei; Shi, Xiaoping

    2017-04-01

    How to increase production efficiency, guarantee grain security, and increase farmers' income using the limited farmland is a great challenge that China is facing. Although theory predicts that secure property rights and moderate scale management of farmland can increase land productivity, reduce farm-related costs, and raise farmer's income, empirical studies on the size and magnitude of these effects are scarce. A number of studies have examined the impacts of land tenure or farm size on productivity or efficiency, respectively. There are also a few studies linking farm size, land tenure and efficiency together. However, to our best knowledge, there are no studies considering tenure security and farm efficiency together for different farm scales in China. In addition, there is little study analyzing the profit frontier. In this study, we particularly focus on the impacts of land tenure security and farm size on farm profit efficiency, using farm level data collected from 23 villages, 811 households in Liaoning in 2015. 7 different farm scales have been identified to further represent small farms, median farms, moderate-scale farms, and large farms. Technical efficiency is analyzed with stochastic frontier production function. The profit efficiency is regressed on a set of explanatory variables which includes farm size dummies, land tenure security indexes, and household characteristics. We found that: 1) The technical efficiency scores for production efficiency (average score = 0.998) indicate that it is already very close to the production frontier, and thus there is little room to improve production efficiency. However, there is larger space to raise profit efficiency (average score = 0.768) by investing more on farm size expansion, seed, hired labor, pesticide, and irrigation. 2) Farms between 50-80 mu are most efficient from the viewpoint of profit efficiency. The so-called moderate-scale farms (100-150 mu) according to the governmental guideline show no

  2. AGRO-2014: A time dependent model for assessing the fate and food-web bioaccumulation of organic pesticides in farm ponds: Model testing and performance analysis.

    PubMed

    Gobas, Frank A P C; Lai, Hao-Feng; Mackay, Donald; Padilla, Lauren E; Goetz, Andy; Jackson, Scott H

    2018-10-15

    A time-dependent environmental fate and food-web bioaccumulation model is developed to improve the evaluation of the behaviour of non-ionic hydrophobic organic pesticides in farm ponds. The performance of the model was tested by simulating the behaviour of 3 hydrophobic organic pesticides, i.e., metaflumizone (CAS Number: 139968-49-3), kresoxim-methyl (CAS Number: 144167-04-4) and pyraclostrobin (CAS Number: 175013-18-0), in microcosm studies and a Bluegill bioconcentration study for metaflumizone. In general, model-calculated concentrations of the pesticides were in reasonable agreement with the observed concentrations. Also, calculated bioaccumulation metrics were in good agreement with observed values. The model's application to simulate concentrations of organic pesticides in water, sediment and biota of farm ponds after episodic pesticide applications is illustrated. It is further shown that the time dependent model has substantially better accuracy in simulating the concentrations of pesticides in farm ponds resulting from episodic pesticide application than corresponding steady-state models. The time dependent model is particularly useful in describing the behaviour of highly hydrophobic pesticides that have a potential to biomagnify in aquatic food-webs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect

  4. Wind Farm Layout Optimization through a Crossover-Elitist Evolutionary Algorithm performed over a High Performing Analytical Wake Model

    NASA Astrophysics Data System (ADS)

    Kirchner-Bossi, Nicolas; Porté-Agel, Fernando

    2017-04-01

    Wind turbine wakes can significantly disrupt the performance of further downstream turbines in a wind farm, thus seriously limiting the overall wind farm power output. Such effect makes the layout design of a wind farm to play a crucial role on the whole performance of the project. An accurate definition of the wake interactions added to a computationally compromised layout optimization strategy can result in an efficient resource when addressing the problem. This work presents a novel soft-computing approach to optimize the wind farm layout by minimizing the overall wake effects that the installed turbines exert on one another. An evolutionary algorithm with an elitist sub-optimization crossover routine and an unconstrained (continuous) turbine positioning set up is developed and tested over an 80-turbine offshore wind farm over the North Sea off Denmark (Horns Rev I). Within every generation of the evolution, the wind power output (cost function) is computed through a recently developed and validated analytical wake model with a Gaussian profile velocity deficit [1], which has shown to outperform the traditionally employed wake models through different LES simulations and wind tunnel experiments. Two schemes with slightly different perimeter constraint conditions (full or partial) are tested. Results show, compared to the baseline, gridded layout, a wind power output increase between 5.5% and 7.7%. In addition, it is observed that the electric cable length at the facilities is reduced by up to 21%. [1] Bastankhah, Majid, and Fernando Porté-Agel. "A new analytical model for wind-turbine wakes." Renewable Energy 70 (2014): 116-123.

  5. Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2016-08-01

    Maintenance of large number of zebrafish in captive conditions is a daunting task. This can be eased by the use of recirculating racks with self-cleaning zebrafish tanks. Commercially available systems are costly, and compatibility of intercompany products has never been investigated. Although various cost-effective designs and methods of construction of custom-made recirculating zebrafish racks are available in literature, the design of self-cleaning zebrafish tanks is still not available. In this study, we report the design and method of construction of the self-cleaning unit, which can be fitted in any zebrafish tank. We validated the design by investigating sediment cleaning process in rectangular and cylindrical tank geometries using time lapse imaging. Our results suggest that for both tank geometries, the tanks fitted with self-cleaning unit provided superior sediment cleaning than the tanks fitted with overflow-drain unit. Although the self-cleaning unit could clean the sediment completely from both geometries over prolonged period, the cleaning of sediments was faster in the cylindrical tank than the rectangular tank. In conclusion, cost and efforts of zebrafish maintenance could be significantly reduced through the installation of our self-cleaning unit in any custom-made zebrafish tank.

  6. Diffusion of a Sustainable Farming Technique in Sri Lanka: An Agent-Based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Jacobi, J. H.; Gilligan, J. M.; Carrico, A. R.; Truelove, H. B.; Hornberger, G.

    2012-12-01

    We live in a changing world - anthropogenic climate change is disrupting historic climate patterns and social structures are shifting as large scale population growth and massive migrations place unprecedented strain on natural and social resources. Agriculture in many countries is affected by these changes in the social and natural environments. In Sri Lanka, rice farmers in the Mahaweli River watershed have seen increases in temperature and decreases in precipitation. In addition, a government led resettlement project has altered the demographics and social practices in villages throughout the watershed. These changes have the potential to impact rice yields in a country where self-sufficiency in rice production is a point of national pride. Studies of the climate can elucidate physical effects on rice production, while research on social behaviors can illuminate the influence of community dynamics on agricultural practices. Only an integrated approach, however, can capture the combined and interactive impacts of these global changes on Sri Lankan agricultural. As part of an interdisciplinary team, we present an agent-based modeling (ABM) approach to studying the effects of physical and social changes on farmers in Sri Lanka. In our research, the diffusion of a sustainable farming technique, the system of rice intensification (SRI), throughout a farming community is modeled to identify factors that either inhibit or promote the spread of a more sustainable approach to rice farming. Inputs into the ABM are both physical and social and include temperature, precipitation, the Palmer Drought Severity Index (PDSI), community trust, and social networks. Outputs from the ABM demonstrate the importance of meteorology and social structure on the diffusion of SRI throughout a farming community.

  7. Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking

    NASA Astrophysics Data System (ADS)

    Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice

    2017-11-01

    Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.

  8. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  9. The Integrated Farm System Model: A Tool for Whole Farm Nutrient Management Analysis

    USDA-ARS?s Scientific Manuscript database

    With tighter profit margins and increasing environmental constraints, strategic planning of farm production systems is becoming both more important and more difficult. This is especially true for integrated crop and animal production systems. Animal production is complex with a number of interacting...

  10. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.

  11. Disinfection of water in recirculating aquaculture systems with peracetic acid (PAA)

    USDA-ARS?s Scientific Manuscript database

    The disinfection behaviour of peracetic acid (PAA) in recirculating aquaculture systems (RAS) was investigated. Peracetic acid is a strong oxidizing agent found in various concentrations in different products. Three Wofasteril PAA products (E400 (c), Lspecical; AC 150) were tested in vitro for the...

  12. An evaluation of a micro programmable logic controller for oxygen monitoring and control in tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Control of dissolved gases, especially oxygen is an essential component of recirculating aquaculture systems. The use of pure oxygen in a recirculating aquaculture system creates supersaturated concentrations of dissolved oxygen and can reduce fish production costs by supporting greater fish and fee...

  13. White meat-Green farm: case study of Brinson Farms

    USDA-ARS?s Scientific Manuscript database

    Comprehensive on-farm resource utilization and renewable energy generation at the farm scale are not new concepts. However, truly encompassing implementation of these ideals is lacking. Brinson Farms operates 10 commercial broiler houses. The farm generates heat for its houses using biomass boile...

  14. Recirculating planar magnetrons: simulations and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzi, Matthew; Gilgenbach, Ronald; French, David

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventionalmore » magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.« less

  15. Certified safe farm: identifying and removing hazards on the farm.

    PubMed

    Rautiainen, R H; Grafft, L J; Kline, A K; Madsen, M D; Lange, J L; Donham, K J

    2010-04-01

    This article describes the development of the Certified Safe Farm (CSF) on-farm safety review tools, characterizes the safety improvements among participating farms during the study period, and evaluates differences in background variables between low and high scoring farms. Average farm review scores on 185 study farms improved from 82 to 96 during the five-year study (0-100 scale, 85 required for CSF certification). A total of 1292 safety improvements were reported at an estimated cost of $650 per farm. A wide range of improvements were made, including adding 9 rollover protective structures (ROPS), 59 power take-off (PTO) master shields, and 207 slow-moving vehicle (SMV) emblems; improving lighting on 72 machines: placing 171 warning decals on machinery; shielding 77 moving parts; locking up 17 chemical storage areas, adding 83 lockout/tagout improvements; and making general housekeeping upgrades in 62 farm buildings. The local, trained farm reviewers and the CSF review process overall were well received by participating farmers. In addition to our earlier findings where higher farm review scores were associated with lower self-reported health outcome costs, we found that those with higher farm work hours, younger age, pork production in confinement, beef production, poultry production, and reported exposure to agrichemicals had higher farm review scores than those who did not have these characteristics. Overall, the farm review process functioned as expected. encouraging physical improvements in the farm environment, and contributing to the multi-faceted CSF intervention program.

  16. An approach to holistically assess (dairy) farm eco-efficiency by combining Life Cycle Analysis with Data Envelopment Analysis models and methodologies.

    PubMed

    Soteriades, A D; Faverdin, P; Moreau, S; Charroin, T; Blanchard, M; Stott, A W

    2016-11-01

    Eco-efficiency is a useful guide to dairy farm sustainability analysis aimed at increasing output (physical or value added) and minimizing environmental impacts (EIs). Widely used partial eco-efficiency ratios (EIs per some functional unit, e.g. kg milk) can be problematic because (i) substitution possibilities between EIs are ignored, (ii) multiple ratios can complicate decision making and (iii) EIs are not usually associated with just the functional unit in the ratio's denominator. The objective of this study was to demonstrate a 'global' eco-efficiency modelling framework dealing with issues (i) to (iii) by combining Life Cycle Analysis (LCA) data and the multiple-input, multiple-output production efficiency method Data Envelopment Analysis (DEA). With DEA each dairy farm's outputs and LCA-derived EIs are aggregated into a single, relative, bounded, dimensionless eco-efficiency score, thus overcoming issues (i) to (iii). A novelty of this study is that a model providing a number of additional desirable properties was employed, known as the Range Adjusted Measure (RAM) of inefficiency. These properties altogether make RAM advantageous over other DEA models and are as follows. First, RAM is able to simultaneously minimize EIs and maximize outputs. Second, it indicates which EIs and/or outputs contribute the most to a farm's eco-inefficiency. Third it can be used to rank farms in terms of eco-efficiency scores. Thus, non-parametric rank tests can be employed to test for significant differences in terms of eco-efficiency score ranks between different farm groups. An additional DEA methodology was employed to 'correct' the farms' eco-efficiency scores for inefficiencies attributed to managerial factors. By removing managerial inefficiencies it was possible to detect differences in eco-efficiency between farms solely attributed to uncontrollable factors such as region. Such analysis is lacking in previous dairy studies combining LCA with DEA. RAM and the 'corrective

  17. Continuous hydroponic wheat production using a recirculating system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  18. In situ treatment of VOCs by recirculation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, R.L.; Webb, O.F.; Ally, M.R.

    1993-06-01

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 andmore » subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided.« less

  19. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Tian, Bao-Hu; Su, Yao; Lu, Yu-Lan

    2015-12-01

    With comparison of a traditional landfill, a joint recirculation of concentrated leachate and leachate to landfills with or without a microaerobic reactor for leachate treatment was investigated in this study. The results showed that the joint recirculation of concentrated leachate and leachate with a microaerobic reactor for leachate treatment could not only utilize the microaerobic reactor to buffer the fluctuation of quality and quantity of leachate during landfill stabilization, but also reduce the inhibitory effect of acidic pH and high concentrations of ammonium in recycled liquid on microorganisms and accelerate the degradation of landfilled waste. After 390 days of operation, the discharge of COD and total nitrogen (TN) from the landfill with leachate pretreatment by a microaerobic reactor was 7.4 and 0.9 g, respectively, which accounted for 0.7% and 2.6% of COD, 1.9% and 7.5% of the TN discharge from the landfills without recirculation and directly recirculated with leachate and concentrated leachate, respectively. The degradation of the organic matter and biodegradable matter (BDM) in the landfill reactors could fit well with the first-order kinetics. The highest degradation of the organic matter and BDM was observed in the joint recirculation system with a microaerobic reactor for leachate treatment with the degradation constant of the first-order kinetics of 0.001 and 0.002. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Farming systems and sanitary problems in mountain cattle farms.

    PubMed

    Bernúes, A; Manrique, E; Maza, M T

    1994-01-01

    On the basis of concepts established by ecopathology and the systems theory, certain aspects of the 'Ecosanitary System', which forms part of the 'Farming System', were studied. Multivariant statistical methods were used to analyze and classify 69 mountain cattle farms into different types and to establish relationships between variables relating to pathological problems and others relating to aspects of production and farm structure. Stable mastitis characterized farms with a higher milk production, more intensive farming and greater hygiene measures. The pattern of diarrhoea in the calves was similar. Problems relating to reproduction and calving were more characteristic of traditional, small farms.

  1. Lessons Learned Developing an Extension-Based Training Program for Farm Labor Supervisors

    ERIC Educational Resources Information Center

    Roka, Fritz M.; Thissen, Carlene A.; Monaghan, Paul F.; Morera, Maria C.; Galindo-Gonzalez, Sebastian; Tovar-Aguilar, Jose Antonio

    2017-01-01

    This article outlines a four-step model for developing a training program for farm labor supervisors. The model draws on key lessons learned during the development of the University of Florida Institute of Food and Agricultural Sciences Farm Labor Supervisor Training program. The program is designed to educate farm supervisors on farm labor laws…

  2. Household and farm transitions in environmental context

    PubMed Central

    Deane, Glenn D.; Gutmann, Myron P.

    2010-01-01

    Recent debate in the literature on population, environment, and land use questions the applicability of theory that patterns of farm extensification and intensification correspond to the life course of farmers and to the life cycle of farm families. This paper extends the debate to the agricultural development of the United States Great Plains region, using unique data from 1875 to 1930 that link families to farms over time in 25 environmentally diverse Kansas townships. Results of multilevel statistical modeling indicate that farmer’s age, household size, and household structure are simultaneously related to both the extent of farm operations and the intensity of land use, taking into account local environmental conditions and time trends as Kansas was settled and developed. These findings validate farm- and life cycle theories and offer support for intergenerational motivations for farm development that include both daughters and sons. Environmental variation in aridity was a key driver of farm structure. PMID:21643468

  3. North Carolina farm women: opportunities for support and farm-related education.

    PubMed

    Tutor-Marcom, Robin; Bruce, Jacklyn; Greer, Annette

    2014-01-01

    The stress that farming visits upon male farmers has been acknowledged for decades. Stress- and work-related injuries among nonmigrant farm women is well documented from 1980 through the mid-1990s. A void of literature concerning nonmigrant farm women exists since that time. One possible explanation for this deficit is that United States Department of Agriculture Census of Agriculture data only consider the contributions of women on the farm if they are reported as farm operators. From 2002 to 2007, the number of women farm operators in North Carolina (NC) increased by 3%, and currently 13% of the state's farms are operated by women. These numbers emphasize the importance of understanding the self-perceived needs of women farmers. A qualitative research project was conducted to investigate the social-emotional needs of NC farm women. Semistructured interviews were conducted with 15 women with whom the NC Agromedicine Institute had previously worked in collaboration on farm health and safety. Key themes from interviews were (1) chameleonic, (2) inseparable connectedness, (3) farm sword, (4) women of a feather, and (5) one size doesn't fit all. Participants reported multiple roles, difficulty separating from the farm, preferring the farm over any other place, and viewing themselves as misperceived farm professionals. Participants need opportunities to interact with other farm women for support and sharing farm-management techniques. Future study recommendations include (1) inventory existing programs for farm women; (2) further investigate the support and educational needs of farm women; and (3) examine how farm women are perceived by nonfarm individuals.

  4. Farm to Work: Development of a Modified Community-Supported Agriculture Model at Worksites, 2007-2012.

    PubMed

    Thi, Christina A; Horton, Karissa D; Loyo, Jennifer; Jowers, Esbelle M; Rodgers, Lindsay Faith; Smiley, Andrew W; Leversen, Eric; Hoelscher, Deanna M

    2015-10-22

    The Farm to Work program is a modified community-supported agriculture model at worksites in Texas. The objective of the Farm to Work program is to increase fruit and vegetable intake among employees and their households by decreasing cost, improving convenience, and increasing access while also creating a new market for local farmers at worksites. The objectives of this article were to describe the development, implementation, and outcome of a 5-year participation trend analysis and to describe the community relationships that were formed to enable the successful implementation of the program. The Farm to Work program began in November 2007 as a collaborative effort between the nonprofit Sustainable Food Center, the Texas Department of State Health Services, the Web development company WebChronic Consulting LLC, and Naegelin Farm. The program provides a weekly or biweekly opportunity for employees to order a basket of produce online to be delivered to the worksite by a local farmer. A 5-year participation trend analysis, including seasonal variation and sales trends, was conducted using sales data from November 2007 through December 2012. The total number of baskets delivered from November 2007 through December 2012 was 38,343; of these, 37,466 were sold and 877 were complimentary. The total value of sold and complimentary baskets was $851,035 and $21,925, respectively. Participation in the program increased over time and was highest in 2012. The Farm to Work program increased access to locally grown fruits and vegetables for employees and created a new market for farmers. Increased program participation indicates that Farm to Work can increase employees' fruit and vegetable consumption and thus help prevent chronic diseases in this population.

  5. Technical indicators of economic performance in dairy sheep farming.

    PubMed

    Theodoridis, A; Ragkos, A; Roustemis, D; Arsenos, G; Abas, Z; Sinapis, E

    2014-01-01

    In this study, the level of technical efficiency of 58 sheep farms rearing the Chios breed in Greece was measured through the application of the stochastic frontier analysis method. A Translog stochastic frontier production function was estimated using farm accounting data of Chios sheep farms and the impact of various socio-demographic and biophysical factors on the estimated efficiency of the farms was evaluated. The farms were classified into efficiency groups on the basis of the estimated level of efficiency and a technical and economic descriptive analysis was applied in order to illustrate an indicative picture of their structure and productivity. The results of the stochastic frontier model indicate that there are substantial production inefficiencies among the Chios sheep farms and that these farms could increase their production through the improvement of technical efficiency, whereas the results of the inefficiency effects model reveal that the farm-specific explanatory factors can partly explain the observed efficiency differentials. The measurement of technical inefficiency and the detection of its determinants can be used to form the basis of policy recommendations that could contribute to the development of the sector.

  6. Urban farming model in South Jakarta

    NASA Astrophysics Data System (ADS)

    Indrawati, E.

    2018-01-01

    The development of infrastructure rapidly, large of population and large of urbanization. Meanwhile, agricultural land is decreasing and agricultural production continues to decline. The productive crops is needed for consumption and it is also to improve the environment from oxygen provisioning, antidote to air pollution and to improve soil conditions. The use of yard land for horticultural crops (vegetables, fruits and ornamental plants), spices, medicines, herbs etc. can benefit for the owners of the yard particularly and the general public. The purpose of this research is to identify the model of home yard utilization, mosque yard, office, school, urban park and main road and sub main road, which can improve environmental quality in Pesanggrahan district. The method of analysis used descriptive analysis method by observation. Then analyzed the percentage of the use of yard with productive crops as urban farming. The results showed that the most productive crops were planted in Kelurahan Pesanggrahan 67% which compared with in Kelurahan Ulujami 47%, and in Kelurahan Petukangan Utara 27%. The most types of productive crops were grown as fruit trees and vegetable crops.

  7. Let's put this in perspective: using dynamic simulation modelling to assess the impacts of farm-scale land management change on catchment-scale water quality

    NASA Astrophysics Data System (ADS)

    Rivers, Mark; Clarendon, Simon; Coles, Neil

    2013-04-01

    Natural Resource Management and Agri-industry development groups in Australia have invested considerable resources into the investigation of the economic, social and, particularly, environmental impacts of varying farming activities in a "catchment context". This research has resulted in the development of a much-improved understanding of the likely impacts of changed management practices at the farm-scale as well as the development of a number of conceptual models which place farming within this broader catchment context. The project discussed in this paper transformed a conceptual model of dairy farm phosphorus (P) management and transport processes into a more temporally and spatially dynamic model. This was then loaded with catchment-specific data and used as a "policy support tool" to allow the Australian dairy industry to examine the potential farm and catchment-scale impacts of varying dairy farm management practices within some key dairy farming regions. Models were developed, validated and calibrated using "STELLA©" dynamic modelling software for three catchments in which dairy is perceived as a significant land use. The models describe P movement and cycling within and through dairy farms in great detail and also estimate P transport through major source, sink and flow sectors of the catchments. A series of scenarios were executed for all three catchments which examined three main "groups" of tests: changes to farm P input rates; implementation of perceived environmental "Best Management Practices" (BMPs), and; changes to land use mosaics. Modifications to actual P input rates into dairy farms (not surprisingly) had a major effect on nutrient transport within and from the farms with a significant rise in nutrient loss rates at all scales with increasing fertiliser use. More surprisingly, however, even extensive environmental BMP implementation did not have marked effects on off-farm nutrient loss rates. On and off-farm riparian management implemented

  8. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  9. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. A process-based emission model for volatile organic compounds from silage sources on farms

    USDA-ARS?s Scientific Manuscript database

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources suc...

  11. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  12. Use of a micro programmable logic controller for oxygen monitoring and control in multiple tanks of a recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    In intensive recirculating aquaculture systems the use of supplemental oxygen, specifically pure liquid oxygen, increases the mass of fish that can be supported and eliminates oxygen as a major limiting factor to a system’s carrying capacity. The use of pure oxygen in a recirculating aquaculture sys...

  13. Conditions for coherent-synchrotron-radiation-induced microbunching suppression in multibend beam transport or recirculation arcs

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Di Mitri, S.; Douglas, D.; Li, R.; Tennant, C.

    2017-02-01

    The coherent synchrotron radiation (CSR) of a high-brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in beam phase space degradation. On one hand, CSR can perturb electron transverse motion in dispersive regions along the beam line and possibly cause emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching instability. For transport arcs, several schemes have been proposed to suppress the CSR-induced emittance growth. Correspondingly, a few scenarios have been introduced to suppress CSR-induced microbunching instability, which however mostly aim for linac-based machines. In this paper we provide sufficient conditions for suppression of CSR-induced microbunching instability along transport or recirculation arcs. Examples are presented with the relevant microbunching analyses carried out by our developed semianalytical Vlasov solver [C.-Y. Tsai, D. Douglas, R. Li, and C. Tennant, Linear microbunching analysis for recirculation machines, Phys. Rev. ST Accel. Beams 19, 114401 (2016), 10.1103/PhysRevAccelBeams.19.114401]. The example lattices include low-energy (˜100 MeV ) and high-energy (˜1 GeV ) recirculation arcs, and medium-energy compressor arcs. Our studies show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. Beam current dependences of maximal CSR microbunching gains are also demonstrated, which should help outline a beam line design for different scales of nominal currents. We expect this analysis can shed light on the lattice design approach that aims to control the CSR-induced microbunching.

  14. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    NASA Astrophysics Data System (ADS)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with

  15. Mean shear flow in recirculating turbulent urban convection and the plume-puff eddy structure below stably stratified inversion layers

    NASA Astrophysics Data System (ADS)

    Fan, Yifan; Hunt, Julian; Yin, Shi; Li, Yuguo

    2018-03-01

    The mean and random components of the velocity field at very low wind speeds in a convective boundary layer (CBL) over a wide urban area are dominated by large eddy structures—either turbulent plumes or puffs. In the mixed layer at either side of the edges of urban areas, local mean recirculating flows are generated by sharp horizontal temperature gradients. These recirculation regions also control the mean shear profile and the bent-over plumes across the mixed layer, extending from the edge to the center of the urban area. A simplified physical model was proposed to calculate the mean flow speed at the edges of urban areas. Water tank experiments were carried out to study the mean recirculating flow and turbulent plume structures. The mean speed at urban edges was measured by the particle image velocimetry (PIV), and the plume structures were visualized by the thermalchromic liquid crystal (TLC) sheets. The horizontal velocity calculated by the physical model at the urban edge agrees well with that measured in the water tank experiments, with a root mean square of 0.03. The experiments also show that the pattern of the mean flow over the urban area changes significantly if the shape of the heated area changes or if the form of the heated urban area becomes sub-divided, for example by the creation of nearby but separated "satellite cities." The convective flow over the square urban area is characterized as the diagonal inflow at the lower level and the side outflow at the upper level. The outflow of the small city can be drawn into the inflow region of the large city in the "satellite city" case. A conceptual analysis shows how these changes significantly affect the patterns of dispersion of pollutants in different types of urban areas.

  16. A systems approach to assess farm-scale nutrient and trace element dynamics: a case study at the Ojebyn dairy farm.

    PubMed

    Oborn, Ingrid; Modin-Edman, Anna-Karin; Bengtsson, Helena; Gustafson, Gunnela M; Salomon, Eva; Nilsson, S Ingvar; Holmqvist, Johan; Jonsson, Simon; Sverdrup, Harald

    2005-06-01

    A systems analysis approach was used to assess farmscale nutrient and trace element sustainability by combining full-scale field experiments with specific studies of nutrient release from mineral weathering and trace-element cycling. At the Ojebyn dairy farm in northern Sweden, a farm-scale case study including phosphorus (P), potassium (K), and zinc (Zn) was run to compare organic and conventional agricultural management practices. By combining different element-balance approaches (at farmgate, barn, and field scales) and further adapting these to the FARMFLOW model, we were able to combine mass flows and pools within the subsystems and establish links between subsystems in order to make farm-scale predictions. It was found that internal element flows on the farm are large and that there are farm internal sources (Zn) and loss terms (K). The approaches developed and tested at the Ojebyn farm are promising and considered generally adaptable to any farm.

  17. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection

    PubMed Central

    Szilágyi, András; Szathmáry, Eörs

    2018-01-01

    The origin of mitochondria was a major evolutionary transition leading to eukaryotes, and is a hotly debated issue. It is unknown whether mitochondria were acquired early or late, and whether it was captured via phagocytosis or syntrophic integration. We present dynamical models to directly simulate the emergence of mitochondria in an ecoevolutionary context. Our results show that regulated farming of prey bacteria and delayed digestion can facilitate the establishment of stable endosymbiosis if prey-rich and prey-poor periods alternate. Stable endosymbiosis emerges without assuming any initial metabolic benefit provided by the engulfed partner, in a wide range of parameters, despite that during good periods farming is costly. Our approach lends support to the appearance of mitochondria before any metabolic coupling has emerged, but after the evolution of primitive phagocytosis by the urkaryote. PMID:29382768

  18. Argon purification studies and a novel liquid argon re-circulation system

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.

    2011-08-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.

  19. impacts of alternative farm policies on rural communities

    Treesearch

    J. Michael Bowker; James W. Richardson

    1989-01-01

    The purpose of this study was to describe an LP/IO model for evaluating the economic impacts of alternative farm policies on rural communities and demonstrate its capabilities by analyzing the impacts of three farm policies on a rural community in Texas. Results indicate that in the noncrop sector, two groups of industries are most affected by farm policy. The first...

  20. Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Lamers, M.; Nguyen, N.; Streck, T.

    2012-04-01

    During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion

  1. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  2. Temporal and spatial water use on irrigated and nonirrigated pasture-based dairy farms.

    PubMed

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-08-01

    Robust information for water use on pasture-based dairy farms is critical to farmers' attempts to use water more efficiently and the improved allocation of freshwater resources to dairy farmers. To quantify the water requirements of dairy farms across regions in a practicable manner, it will be necessary to develop predictive models. The objectives of this study were to compare water use on a group of irrigated and nonirrigated farms, validate existing water use models using the data measured on the group of nonirrigated farms, and modify the model so that it can be used to predict water use on irrigated dairy farms. Water use data were collected on a group of irrigated dairy farms located in the Canterbury, New Zealand, region with the largest area under irrigation. The nonirrigated farms were located in the Manawatu region. The amount of water used for irrigation was almost 52-fold greater than the amount of all other forms of water use combined. There were large differences in measured milking parlor water use, stock drinking water, and leakage rates between the irrigated and nonirrigated farms. As expected, stock drinking water was lower on irrigated dairy farms. Irrigation lowers the dry matter percentage of pasture, ensuring that the amount of water ingested from pasture remains high throughout the year, thereby reducing the demand for drinking water. Leakage rates were different between the 2 groups of farms; 47% of stock drinking water was lost as leakage on nonirrigated farms, whereas leakage on the irrigated farms equated to only 13% of stock drinking water. These differences in leakage were thought to be related to regional differences rather than differences in irrigated versus nonirrigated farms. Existing models developed to predict milking parlor, corrected stock drinking water, and total water use on nonirrigated pasture-based dairy farms in a previous related study were tested on the data measured in the present research. As expected, these models

  3. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.

  4. Influence of Permissive Parenting on Youth Farm Risk Behaviors.

    PubMed

    Jinnah, Hamida A; Stoneman, Zolinda

    2016-01-01

    Farm youth continue to experience high rates of injuries and premature deaths as a result of agricultural activities. Increased parental permissiveness is positively associated with many different types of high-risk behaviors in youth. This study explored whether permissive parenting (fathering and mothering) predicts youth unsafe behaviors on the farm. Data were analyzed for 67 youth and their parents. Families were recruited from a statewide farm publication, through youth organizations (i.e., FFA [Future Farmers of America]), local newspapers, farmer referrals, and through the Cooperative Extension Network. Hierarchical multiple regression was completed. Results revealed that fathers and mothers who practiced lax-inconsistent disciplining were more likely to have youth who indulged in unsafe farm behaviors. Key hypotheses confirmed that permissive parenting (lax-inconsistent disciplining) by parents continued to predict youth unsafe farm behaviors, even after youth age, youth gender, youth personality factor of risk-taking, and father's unsafe behaviors (a measure associated with modeling) were all taken into account. A key implication is that parents may play an important role in influencing youth farm safety behaviors. Parents (especially fathers) need to devote time to discuss farm safety with their youth. Farm safety interventions need to involve parents as well as address and respect the culture and values of families. Interventions need to focus not only on safe farm practices, but also promote positive parenting practices, including increased parent-youth communication about safety, consistent disciplining strategies, and increased monitoring and modeling of safe farm behaviors by parents.

  5. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater.

    PubMed

    Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M

    2008-01-01

    The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.

  6. Farm level risk factors for fluoroquinolone resistance in E. coli and thermophilic Campylobacter spp. on poultry farms.

    PubMed

    Taylor, N M; Wales, A D; Ridley, A M; Davies, R H

    2016-10-01

    Data on husbandry practices, performance, disease and drug use were collected during a cross-sectional survey of 89 poultry meat farms in England and Wales to provide information on possible risk factors for the occurrence of fluoroquinolone (FQ)-resistant bacteria. Faeces samples were used to classify farms as "affected" or "not affected" by FQ-resistant (FQr) Escherichia coli or Campylobacter spp. Risk factor analysis identified the use of FQ on the farms as having by far the strongest association, among the factors considered, with the occurrence of FQr bacteria. Resistant E. coli and/or Campylobacter spp. were found on 86% of the farms with a history of FQ use. However, a substantial proportion of farms with no history of FQ use also yielded FQr organisms, suggesting that resistant bacteria may transfer between farms. Further analysis suggested that for Campylobacter spp., on-farm hygiene, cleaning and disinfection between batches of birds and wildlife control were of most significance. By contrast, for E. coli biosecurity from external contamination was of particular importance, although the modelling indicated that other factors were likely to be involved. Detailed studies on a small number of sites showed that FQr E. coli can survive routine cleaning and disinfection. It appears difficult to avoid the occurrence of resistant bacteria when FQ are used on a farm, but the present findings provide evidence to support recommendations to reduce the substantial risk of the incidental acquisition of such resistance by farms where FQ are not used.

  7. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  8. Building America Case Study: Control Retrofits for Multifamily Domestic Hot Water Recirculation Systems, Brooklyn, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  9. Teaching Diversified Organic Crop Production Using the Community Supported Agriculture Farming System Model

    ERIC Educational Resources Information Center

    Falk, Constance L.; Pao, Pauline; Cramer, Christopher S.

    2005-01-01

    An organic garden operated as a community supported agriculture (CSA) venture on the New Mexico State University (NMSU) main campus was begun in January 2002. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to…

  10. Use of low temperature blowers for recirculation of hot gases

    DOEpatents

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  11. Farms, Families, and Markets: New Evidence on Completeness of Markets in Agricultural Settings

    PubMed Central

    LaFave, Daniel; Thomas, Duncan

    2016-01-01

    The farm household model has played a central role in improving the understanding of small-scale agricultural households and non-farm enterprises. Under the assumptions that all current and future markets exist and that farmers treat all prices as given, the model simplifies households’ simultaneous production and consumption decisions into a recursive form in which production can be treated as independent of preferences of household members. These assumptions, which are the foundation of a large literature in labor and development, have been tested and not rejected in several important studies including Benjamin (1992). Using multiple waves of longitudinal survey data from Central Java, Indonesia, this paper tests a key prediction of the recursive model: demand for farm labor is unrelated to the demographic composition of the farm household. The prediction is unambiguously rejected. The rejection cannot be explained by contamination due to unobserved heterogeneity that is fixed at the farm level, local area shocks or farm-specific shocks that affect changes in household composition and farm labor demand. We conclude that the recursive form of the farm household model is not consistent with the data. Developing empirically tractable models of farm households when markets are incomplete remains an important challenge. PMID:27688430

  12. Branching of Atlantic Water within the Greenland-Spitsbergen Passage: An estimate of recirculation

    NASA Astrophysics Data System (ADS)

    Manley, T. O.

    1995-10-01

    Atlantic Water (AW) supplies the largest source of heat, mass, and salt to the Arctic Ocean via Fram Strait (Greenland-Spitsbergen Passage), yet it represents only a fraction of the Atlantic Water that resides in the Greenland, Iceland, Norwegian, and Barents Seas. This is a result of both the branching of the central core of AW along its northward flow and the modification of its T-S signature through air-sea-ice interactions and internal mixing. This paper addresses the quantitative analysis of the three dominant Atlantic Water cores within Fram Strait and north of 76°N using an 11-year (1977 to 1987) hydrographic database. Spatial variations of heat, volume, and salt along its flow path of some 600 km showed that the major core of Atlantic Water that directly enters the Arctic Ocean (Svalbard branch) did not extend past 20°E. Of the 9719 km3 of Atlantic Water existing within the region, one third resided within the Svalbard branch; the remainder, 22% and 45%, were held within the Return Atlantic Current and the Yermak branches, respectively. Restricting the analysis to a southern limit of 79°N effectively removed the Return Atlantic Current and showed a nearly equal split between the two remaining branches. Work completed by Bourke et al. (1988) indicated that the Yermak branch is largely recirculated to the south; if true, this analysis supports Rudels' (1987) model estimate of a 50% recirculation of AW within this region.

  13. Process-based Modeling of Ammonia Emission from Beef Cattle Feedyards with the Integrated Farm Systems Model.

    PubMed

    Waldrip, Heidi M; Rotz, C Alan; Hafner, Sasha D; Todd, Richard W; Cole, N Andy

    2014-07-01

    Ammonia (NH) volatilization from manure in beef cattle feedyards results in loss of agronomically important nitrogen (N) and potentially leads to overfertilization and acidification of aquatic and terrestrial ecosystems. In addition, NH is involved in the formation of atmospheric fine particulate matter (PM), which can affect human health. Process-based models have been developed to estimate NH emissions from various livestock production systems; however, little work has been conducted to assess their accuracy for large, open-lot beef cattle feedyards. This work describes the extension of an existing process-based model, the Integrated Farm Systems Model (IFSM), to include simulation of N dynamics in this type of system. To evaluate the model, IFSM-simulated daily per capita NH emission rates were compared with emissions data collected from two commercial feedyards in the Texas High Plains from 2007 to 2009. Model predictions were in good agreement with observations and were sensitive to variations in air temperature and dietary crude protein concentration. Predicted mean daily NH emission rates for the two feedyards had 71 to 81% agreement with observations. In addition, IFSM estimates of annual feedyard emissions were within 11 to 24% of observations, whereas a constant emission factor currently in use by the USEPA underestimated feedyard emissions by as much as 79%. The results from this study indicate that IFSM can quantify average feedyard NH emissions, assist with emissions reporting, provide accurate information for legislators and policymakers, investigate methods to mitigate NH losses, and evaluate the effects of specific management practices on farm nutrient balances. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  15. Farm Safety Practices and Farm Size in New South Wales.

    PubMed

    Bailey, Jannine; Dutton, Tegan; Payne, Kristy; Wilson, Ross; Brew, Bronwyn K

    2017-01-01

    There is some evidence to suggest that safety on small-area farms may not be high priority due to economic constraints and lack of knowledge. This has important ramifications for injury and economic burden. The objective of this research was to conduct a pilot study to investigate whether small- to medium-area farms implement fewer safety practices than large-area farms. Farmers were recruited from farm safety training days, field days, and produce stores in rural New South Wales (NSW), Australia. Small- and medium-area farms less than 500 ha (1235 acres) in size were aggregated for analysis and compared with large-area farms (≥500 ha) for survey items, including safety equipment owned and used, safety practices protecting children, barriers to improving safety, and causes of injury. Overall, small/medium-area farms were found to own less safety equipment and to employ less safety practices than large-area farms. In particular, fewer tractors were fitted with rollover protection structures, there was less signage, less hearing protection, and fewer machinery guides. Injury rates were slightly less for small/medium-area farms, particularly involving vehicles. Small- and medium-area farmers were more likely to report lack of skills as barriers to making safety improvements. This pilot study found some evidence that small/medium-area farms implement fewer safety practices than large-area farms. A larger study is warranted to investigate this further, with particular focus on barriers and ways to overcome them. This could have important ramifications for government policies supporting struggling farmers on small/medium-area farms.

  16. Carbon farming economics: What have we learned?

    PubMed

    Tang, Kai; Kragt, Marit E; Hailu, Atakelty; Ma, Chunbo

    2016-05-01

    This study reviewed 62 economic analyses published between 1995 and 2014 on the economic impacts of policies that incentivise agricultural greenhouse (GHG) mitigation. Typically, biophysical models are used to evaluate the changes in GHG mitigation that result from landholders changing their farm and land management practices. The estimated results of biophysical models are then integrated with economic models to simulate the costs of different policy scenarios to production systems. The cost estimates vary between $3 and $130/t CO2 equivalent in 2012 US dollars, depending on the mitigation strategies, spatial locations, and policy scenarios considered. Most studies assessed the consequences of a single, rather than multiple, mitigation strategies, and few considered the co-benefits of carbon farming. These omissions could challenge the reality and robustness of the studies' results. One of the biggest challenges facing agricultural economists is to assess the full extent of the trade-offs involved in carbon farming. We need to improve our biophysical knowledge about carbon farming co-benefits, predict the economic impacts of employing multiple strategies and policy incentives, and develop the associated integrated models, to estimate the full costs and benefits of agricultural GHG mitigation to farmers and the rest of society. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  18. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    PubMed

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  19. Is agritourism eco-friendly? A comparison between agritourisms and other farms in Italy using farm accountancy data network dataset.

    PubMed

    Mastronardi, Luigi; Giaccio, Vincenzo; Giannelli, Agostino; Scardera, Alfonso

    2015-01-01

    This paper presents the results of research regarding the environmental performances of Italian farms with agritourism compared with farms without agritourism. In Italy, agritourism is considered an agricultural activity and can only be performed by a farmer. Moreover, Italian national legislation forces the farmer to dedicate himself mainly to traditional farming, rather than to tourism activities. For this reason, environmental performances have been highlighted by analyzing only features and production systems of the farms. By utilizing the most frequent indicators used in studies regarding sustainability, the authors show how Italian agritourisms tend to develop more environmentally friendly agricultural methods, which have a positive impact on biodiversity, landscape and natural resources. The empirical analysis is based on the Italian FADN (Farm Accountancy Data Network) dataset. The European FADN was created to represent farms' technical and economic operation in the European Union and on which it drafts the agricultural and rural policies. The dichotomous structure of the dependent variable (presence or absence of agritourism at the farm) has a propensity for an assessment method based on Binary Response Model Regression.

  20. An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers' Adaptations.

    PubMed

    Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San

    2017-01-01

    The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers' technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers' technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008-2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4-66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and variability of

  1. An Integrated Method to Analyze Farm Vulnerability to Climatic and Economic Variability According to Farm Configurations and Farmers’ Adaptations

    PubMed Central

    Martin, Guillaume; Magne, Marie-Angélina; Cristobal, Magali San

    2017-01-01

    The need to adapt to decrease farm vulnerability to adverse contextual events has been extensively discussed on a theoretical basis. We developed an integrated and operational method to assess farm vulnerability to multiple and interacting contextual changes and explain how this vulnerability can best be reduced according to farm configurations and farmers’ technical adaptations over time. Our method considers farm vulnerability as a function of the raw measurements of vulnerability variables (e.g., economic efficiency of production), the slope of the linear regression of these measurements over time, and the residuals of this linear regression. The last two are extracted from linear mixed models considering a random regression coefficient (an intercept common to all farms), a global trend (a slope common to all farms), a random deviation from the general mean for each farm, and a random deviation from the general trend for each farm. Among all possible combinations, the lowest farm vulnerability is obtained through a combination of high values of measurements, a stable or increasing trend and low variability for all vulnerability variables considered. Our method enables relating the measurements, trends and residuals of vulnerability variables to explanatory variables that illustrate farm exposure to climatic and economic variability, initial farm configurations and farmers’ technical adaptations over time. We applied our method to 19 cattle (beef, dairy, and mixed) farms over the period 2008–2013. Selected vulnerability variables, i.e., farm productivity and economic efficiency, varied greatly among cattle farms and across years, with means ranging from 43.0 to 270.0 kg protein/ha and 29.4–66.0% efficiency, respectively. No farm had a high level, stable or increasing trend and low residuals for both farm productivity and economic efficiency of production. Thus, the least vulnerable farms represented a compromise among measurement value, trend, and

  2. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection.

    PubMed

    Zachar, István; Szilágyi, András; Számadó, Szabolcs; Szathmáry, Eörs

    2018-02-13

    The origin of mitochondria was a major evolutionary transition leading to eukaryotes, and is a hotly debated issue. It is unknown whether mitochondria were acquired early or late, and whether it was captured via phagocytosis or syntrophic integration. We present dynamical models to directly simulate the emergence of mitochondria in an ecoevolutionary context. Our results show that regulated farming of prey bacteria and delayed digestion can facilitate the establishment of stable endosymbiosis if prey-rich and prey-poor periods alternate. Stable endosymbiosis emerges without assuming any initial metabolic benefit provided by the engulfed partner, in a wide range of parameters, despite that during good periods farming is costly. Our approach lends support to the appearance of mitochondria before any metabolic coupling has emerged, but after the evolution of primitive phagocytosis by the urkaryote. Copyright © 2018 the Author(s). Published by PNAS.

  3. Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms

    PubMed Central

    Garza, Sarah J.; Miller, Ryan S.

    2015-01-01

    Livestock distribution in the United States (U.S.) can only be mapped at a county-level or worse resolution. We developed a spatial microsimulation model called the Farm Location and Agricultural Production Simulator (FLAPS) that simulated the distribution and populations of individual livestock farms throughout the conterminous U.S. Using domestic pigs (Sus scrofa domesticus) as an example species, we customized iterative proportional-fitting algorithms for the hierarchical structure of the U.S. Census of Agriculture and imputed unpublished state- or county-level livestock population totals that were redacted to ensure confidentiality. We used a weighted sampling design to collect data on the presence and absence of farms and used them to develop a national-scale distribution model that predicted the distribution of individual farms at a 100 m resolution. We implemented microsimulation algorithms that simulated the populations and locations of individual farms using output from our imputed Census of Agriculture dataset and distribution model. Approximately 19% of county-level pig population totals were unpublished in the 2012 Census of Agriculture and needed to be imputed. Using aerial photography, we confirmed the presence or absence of livestock farms at 10,238 locations and found livestock farms were correlated with open areas, cropland, and roads, and also areas with cooler temperatures and gentler topography. The distribution of swine farms was highly variable, but cross-validation of our distribution model produced an area under the receiver-operating characteristics curve value of 0.78, which indicated good predictive performance. Verification analyses showed FLAPS accurately imputed and simulated Census of Agriculture data based on absolute percent difference values of < 0.01% at the state-to-national scale, 3.26% for the county-to-state scale, and 0.03% for the individual farm-to-county scale. Our output data have many applications for risk management of

  4. Simulating the Distribution of Individual Livestock Farms and Their Populations in the United States: An Example Using Domestic Swine (Sus scrofa domesticus) Farms.

    PubMed

    Burdett, Christopher L; Kraus, Brian R; Garza, Sarah J; Miller, Ryan S; Bjork, Kathe E

    2015-01-01

    Livestock distribution in the United States (U.S.) can only be mapped at a county-level or worse resolution. We developed a spatial microsimulation model called the Farm Location and Agricultural Production Simulator (FLAPS) that simulated the distribution and populations of individual livestock farms throughout the conterminous U.S. Using domestic pigs (Sus scrofa domesticus) as an example species, we customized iterative proportional-fitting algorithms for the hierarchical structure of the U.S. Census of Agriculture and imputed unpublished state- or county-level livestock population totals that were redacted to ensure confidentiality. We used a weighted sampling design to collect data on the presence and absence of farms and used them to develop a national-scale distribution model that predicted the distribution of individual farms at a 100 m resolution. We implemented microsimulation algorithms that simulated the populations and locations of individual farms using output from our imputed Census of Agriculture dataset and distribution model. Approximately 19% of county-level pig population totals were unpublished in the 2012 Census of Agriculture and needed to be imputed. Using aerial photography, we confirmed the presence or absence of livestock farms at 10,238 locations and found livestock farms were correlated with open areas, cropland, and roads, and also areas with cooler temperatures and gentler topography. The distribution of swine farms was highly variable, but cross-validation of our distribution model produced an area under the receiver-operating characteristics curve value of 0.78, which indicated good predictive performance. Verification analyses showed FLAPS accurately imputed and simulated Census of Agriculture data based on absolute percent difference values of < 0.01% at the state-to-national scale, 3.26% for the county-to-state scale, and 0.03% for the individual farm-to-county scale. Our output data have many applications for risk management of

  5. Improvement of anaerobic digester performance by wastewater recirculation through an aerated membrane.

    USDA-ARS?s Scientific Manuscript database

    Swine wastewater from an anaerobic digester was recirculated through a silicone hose located in an external aeration chamber to determine its effect on wastewater malodorants and biogas composition. The silicone hose acted as a semipermeable membrane for the passage of small molecules. In the first...

  6. The use of nile tilapia ( Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce ( Lactuca sativa L. var. longifolia) in water recirculation system

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wahyuningsih, Sri; Wardiatno, Yusli

    2017-10-01

    In the recirculation aquaponic system (RAS), fish farming waste was utilized as a nutrient for plant, minimizing the water need, reducing the waste disposal into the environment, and producing the fish and plant as well. The study aimed to examine the growth of romaine lettuce ( Lactuca sativa L. var. Longifolia) in aquaponic system without the addition of artificial nutrient. The nutrient relies solely on wastewater of nile tilapia ( Oreochromis niloticus) cultivation circulated continuously on the aquaponic system. The results showed that tilapia weight reached 48.49 ± 3.92 g of T3 (tilapia, romaine lettuce, and inoculated bacteria), followed by T2 (tilapia and romaine lettuce) and T1 (tilapia) of 47.80 ± 1.97 and 45.89 ± 1.10 g after 35 days of experiment. Tilapia best performance in terms of growth and production occurred at T3 of 3.96 ± 0.44 g/day, 12.10 ± 0.63 %/day, 96.11 ± 1.44 % and 1.60 ± 0.07 for GR, SGR, SR, and FCR, respectively. It is also indicated by better water quality characteristic in this treatment. Romaine lettuce harvests of T2 and T3 showed no significant difference, with the final weight of 61.87 ± 5.59 and 57.74 ± 4.35 g. Overall, the integration of tilapia fish farming and romaine lettuce is potentially a promising aquaponic system for sustainable fish and horticulture plant production.

  7. Farm accidents and injuries among farm families and workers. A pilot study.

    PubMed

    Cummings, P H

    1991-09-01

    Farm accident facts traditionally have been difficult to collect because of the wide array of farm family and non-family involvement in farming practices. Areas commonly involved in farm related accidents include farm machinery, tractor overturns, farm animals, farm trucks, hand and power tools, household items, chemicals, and garden equipment. Two purposes of this descriptive study were to examine, over a 1 year period, the demographic features and types, severity, and mechanisms of injury among farm families and their workers in a representative county in South Carolina, and to develop a two part mail-out questionnaire for data collection relative to farm work related accidents. The researcher concluded that farm accidents are sparsely researched; that traditional data collection methods are difficult, expensive, and time consuming; and that mail-out questionnaires are not a very effective method of collecting data relative to farm accidents, since farmers proved very reluctant to report accidents.

  8. Simulation of wake effects between two wind farms

    NASA Astrophysics Data System (ADS)

    Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.

    2015-06-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.

  9. Clostridium botulinum in Scottish fish farms and farmed trout.

    PubMed

    Burns, G F; Williams, H

    1975-02-01

    Rainbow trout and specimens of pond mud were collected from three fish farms and examined for the presence of Clostridium botulinum. Two of the farms were constructed with concrete channels and one was mud-bottomed. Cl. botulinum was isolated only from the mud-bottomed farm (24% of muds), and the isolates were all non-proteolytic type B. The implications of the presence of Cl. botulinum spores in the mud of fish farms is discussed.

  10. Gradient-Based Optimization of Wind Farms with Different Turbine Heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  11. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill.

    PubMed

    Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A

    2006-10-01

    In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering

  12. The STREON Recirculation Chamber: An Advanced Tool to Quantify Stream Ecosystem Metabolism in the Benthic Zone

    NASA Astrophysics Data System (ADS)

    Brock, J. T.; Utz, R.; McLaughlin, B.

    2013-12-01

    The STReam Experimental Observatory Network is a large-scale experimental effort that will investigate the effects of eutrophication and loss of large consumers in stream ecosystems. STREON represents the first experimental effort undertaken and supported by the National Ecological Observatory Network (NEON).Two treatments will be applied at 10 NEON sites and maintained for 10 years in the STREON program: the addition of nitrate and phosphate to enrich concentrations by five times ambient levels and electrical fields that exclude top consumers (i.e., fish or invertebrates) of the food web from the surface of buried sediment baskets. Following a 3-5 week period, the sediment baskets will be extracted and incubated in closed, recirculating metabolic chambers to measure rates of respiration, photosynthesis, and nutrient uptake. All STREON-generated data will be open access and available on the NEON web portal. The recirculation chamber represents a critical infrastructural component of STREON. Although researchers have applied such chambers for metabolic and nutrient uptake measurements in the past, the scope of STREON demands a novel design that addresses multiple processes often neglected by earlier models. The STREON recirculation chamber must be capable of: 1) incorporating hyporheic exchange into the flow field to ensure measurements of respiration include the activity of subsurface biota, 2) operating consistently with heterogeneous sediments from sand to cobble, 3) minimizing heat exchange from the motor and external environment, 4) delivering a reproducible uniform flow field over the surface of the sediment basket, and 5) efficient assembly/disassembly with minimal use of tools. The chamber also required a means of accommodating an optical dissolved oxygen probe and a means to inject/extract water. A prototype STREON chamber has been designed and thoroughly tested. The flow field within the chamber has been mapped using particle imaging velocimetry (PIV

  13. A comparison of methods for assessing power output in non-uniform onshore wind farms

    DOE PAGES

    Staid, Andrea; VerHulst, Claire; Guikema, Seth D.

    2017-10-02

    Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less

  14. A comparison of methods for assessing power output in non-uniform onshore wind farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; VerHulst, Claire; Guikema, Seth D.

    Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshoremore » farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non-uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. In conclusion, we show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.« less

  15. Impact of youth injuries on the uninsured farm family's economic viability.

    PubMed

    Zaloshnja, Eduard; Miller, Ted R

    2012-01-01

    The objective of this study is to estimate the impact of youth injuries on the uninsured farm family's economic viability. Using farm prototypes, we compared farm profits with costs of farm youth injuries. We built profit models for two types of farms, dairy and soybean farms. Then we estimated the cost impact of farm youth injuries of different levels of severity on a farm family with no health insurance. A severe child injury that requires at least 10 days of hospitalisation would cost almost equal to the operating profit of the average dairy farm with no health insurance and would turn the operating profit of the average soybean farm into a severe loss of $99,499. Prevention of child agricultural injuries would significantly improve the financial situation for farm families that lack health insurance.

  16. Directional Migration of Recirculating Lymphocytes through Lymph Nodes via Random Walks

    PubMed Central

    Thomas, Niclas; Matejovicova, Lenka; Srikusalanukul, Wichat; Shawe-Taylor, John; Chain, Benny

    2012-01-01

    Naive T lymphocytes exhibit extensive antigen-independent recirculation between blood and lymph nodes, where they may encounter dendritic cells carrying cognate antigen. We examine how long different T cells may spend in an individual lymph node by examining data from long term cannulation of blood and efferent lymphatics of a single lymph node in the sheep. We determine empirically the distribution of transit times of migrating T cells by applying the Least Absolute Shrinkage & Selection Operator () or regularised to fit experimental data describing the proportion of labelled infused cells in blood and efferent lymphatics over time. The optimal inferred solution reveals a distribution with high variance and strong skew. The mode transit time is typically between 10 and 20 hours, but a significant number of cells spend more than 70 hours before exiting. We complement the empirical machine learning based approach by modelling lymphocyte passage through the lymph node . On the basis of previous two photon analysis of lymphocyte movement, we optimised distributions which describe the transit times (first passage times) of discrete one dimensional and continuous (Brownian) three dimensional random walks with drift. The optimal fit is obtained when drift is small, i.e. the ratio of probabilities of migrating forward and backward within the node is close to one. These distributions are qualitatively similar to the inferred empirical distribution, with high variance and strong skew. In contrast, an optimised normal distribution of transit times (symmetrical around mean) fitted the data poorly. The results demonstrate that the rapid recirculation of lymphocytes observed at a macro level is compatible with predominantly randomised movement within lymph nodes, and significant probabilities of long transit times. We discuss how this pattern of migration may contribute to facilitating interactions between low frequency T cells and antigen presenting cells carrying cognate

  17. A Simple Model to Rank Shellfish Farming Areas Based on the Risk of Disease Introduction and Spread.

    PubMed

    Thrush, M A; Pearce, F M; Gubbins, M J; Oidtmann, B C; Peeler, E J

    2017-08-01

    The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively. © 2016 Crown copyright.

  18. Evaluating the impact of farm scale innovation at catchment scale

    NASA Astrophysics Data System (ADS)

    van Breda, Phelia; De Clercq, Willem; Vlok, Pieter; Querner, Erik

    2014-05-01

    Hydrological modelling lends itself to other disciplines very well, normally as a process based system that acts as a catalogue of events taking place. These hydrological models are spatial-temporal in their design and are generally well suited for what-if situations in other disciplines. Scaling should therefore be a function of the purpose of the modelling. Process is always linked with scale or support but the temporal resolution can affect the results if the spatial scale is not suitable. The use of hydrological response units tends to lump area around physical features but disregards farm boundaries. Farm boundaries are often the more crucial uppermost resolution needed to gain more value from hydrological modelling. In the Letaba Catchment of South Africa, we find a generous portion of landuses, different models of ownership, different farming systems ranging from large commercial farms to small subsistence farming. All of these have the same basic right to water but water distribution in the catchment is somewhat of a problem. Since water quantity is also a problem, the water supply systems need to take into account that valuable production areas not be left without water. Clearly hydrological modelling should therefore be sensitive to specific landuse. As a measure of productivity, a system of small farmer production evaluation was designed. This activity presents a dynamic system outside hydrological modelling that is generally not being considered inside hydrological modelling but depends on hydrological modelling. For sustainable development, a number of important concepts needed to be aligned with activities in this region, and the regulatory actions also need to be adhered to. This study aimed at aligning the activities in a region to the vision and objectives of the regulatory authorities. South Africa's system of socio-economic development planning is complex and mostly ineffective. There are many regulatory authorities involved, often with unclear

  19. Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor)

    2012-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer, and a pilot mixer having an annular housing in which a corner is formed between an aft portion of the housing and a bulkhead wall in which a corner recirculation zone is located to stabilize and anchor the flame of the pilot mixer. The pilot mixer can further include features to cool the annular housing, including in the area of the corner recirculation zone.

  20. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  1. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  2. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  3. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  4. Understanding sources of sea lice for salmon farms in Chile.

    PubMed

    Kristoffersen, A B; Rees, E E; Stryhn, H; Ibarra, R; Campisto, J-L; Revie, C W; St-Hilaire, S

    2013-08-01

    The decline of fisheries over recent decades and a growing human population has coincided with an increase in aquaculture production. As farmed fish densities increase, so have their rates of infectious diseases, as predicted by the theory of density-dependent disease transmission. One of the pathogen that has increased with the growth of salmon farming is sea lice. Effective management of this pathogen requires an understanding of the spatial scale of transmission. We used a two-part multi-scale model to account for the zero-inflated data observed in weekly sea lice abundance levels on rainbow trout and Atlantic salmon farms in Chile, and to assess internal (farm) and external (regional) sources of sea lice infection. We observed that the level of juvenile sea lice was higher on farms that were closer to processing plants with fish holding facilities. Further, evidence for sea lice exposure from the surrounding area was supported by a strong positive correlation between the level of juvenile sea lice on a farm and the number of gravid females on neighboring farms within 30 km two weeks prior. The relationship between external sources of sea lice from neighboring farms and juvenile sea lice on a farm was one of the strongest detected in our multivariable model. Our findings suggest that the management of sea lice should be coordinated between farms and should include all farms and processing plants with holding facilities within a relatively large geographic area. Understanding the contribution of pathogens on a farm from different sources is an important step in developing effective control strategies. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Regenerative agriculture: merging farming and natural resource conservation profitably.

    PubMed

    LaCanne, Claire E; Lundgren, Jonathan G

    2018-01-01

    Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.

  6. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  7. Whole-farm phosphorus loss from grazing-based dairy farms

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) loss from agricultural farms persists as a water quality impairment issue. For dairy farms, P can be lost from cropland, pastures, and open-air lots. We used interview surveys to document land use, cattle herd characteristics, and manure management for four grazing-based dairy farms i...

  8. Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy).

    PubMed

    Rossi, Gianluigi; De Leo, Giulio A; Pongolini, Stefano; Natalini, Silvano; Vincenzi, Simone; Bolzoni, Luca

    2015-06-01

    Assessing the performance of a surveillance system for infectious diseases of domestic animals is a challenging task for health authorities. Therefore, it is important to assess what strategy is the most effective in identifying the onset of an epidemic and in minimizing the number of infected farms. The aim of the present work was to evaluate the performance of the bovine tuberculosis (bTB) surveillance system in the network of dairy farms in the Emilia-Romagna (ER) Region, Italy. A bTB-free Region since 2007, ER implements an integrated surveillance strategy based on three components, namely routine on-farm tuberculin skin-testing performed every 3 years, tuberculin skin-testing of cattle exchanged between farms, and post-mortem inspection at slaughterhouses. We assessed the effectiveness of surveillance by means of a stochastic network model of both within-farm and between-farm bTB dynamics calibrated on data available for ER dairy farms. Epidemic dynamics were simulated for five scenarios: the current ER surveillance system, a no surveillance scenario that we used as the benchmark to characterize epidemic dynamics, three additional scenarios in which one of the surveillance components was removed at a time so as to outline its significance in detecting the infection. For each scenario we ran Monte Carlo simulations of bTB epidemics following the random introduction of an infected individual in the network. System performances were assessed through the comparative analysis of a number of statistics, including the time required for epidemic detection and the total number of infected farms during the epidemic. Our analysis showed that slaughterhouse inspection is the most effective surveillance component in reducing the time for disease detection, while routine surveillance in reducing the number of multi-farms epidemics. On the other hand, testing exchanged cattle improved the performance of the surveillance system only marginally. Copyright © 2015 The Authors

  9. Removal of sodium chloride from human urine via batch recirculation electrodialysis at constant applied voltage

    NASA Technical Reports Server (NTRS)

    Gordils-Striker, Nilda E.; Colon, Guillermo

    2003-01-01

    The removal of sodium chloride (NaCl) from human urine using a six-compartment electrodialysis cell with batch recirculation mode of operation for use in advanced life support systems (ALSS) was studied. From the results obtained, batch recirculation at constant applied voltage yields high values (approximately 94% of NaCl removal. Based on the results, the initial rate of NaCl removal was correlated to a power function of the applied voltage: -r=2.0 x 10(-4)E(3.8). With impedance spectroscopy methods, it was also found that the anion membranes were more affected by fouling with an increase of the ohmic resistance of almost 11% compared with 7.4% for the cationic ones.

  10. Recirculating Molten Metal Supply System And Method

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-07-01

    The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

  11. Employment Decisions of Farm Couples: Full-Time or Part-Time Farming?

    ERIC Educational Resources Information Center

    Wozniak, Patricia J.; Scholl, Kathleen K.

    1988-01-01

    The employment of one farm spouse is positively related to the off-farm employment of the other spouse. Wives' off-farm employment is most closely related to their personal characteristics, whereas husbands' decisions are best predicted by a combination of farm, family, and personal characteristics. (Author)

  12. Involvement of Wives in Farm Tasks as Related to Characteristics of the Farm, the Family and Work Off the Farm.

    ERIC Educational Resources Information Center

    Wilkening, Eugene A.; Ahrens, Nancy

    In an attempt to determine the basis of the farm wife's involvement in farm tasks, hypotheses regarding farm size and type, family cycle and wife's age, off-farm work of husband or wife, and family educational levels were tested in a 1978 random questionnaire survey of 532 Wisconsin farm families. As expected, wives were more involved with farm…

  13. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  14. A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe

    NASA Astrophysics Data System (ADS)

    Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah

    2018-03-01

    We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.

  15. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  16. Short tests to couple N₂O emission mitigation and nitrogen removal strategies for landfill leachate recirculation.

    PubMed

    Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing

    2015-04-15

    Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    PubMed

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Gender differences in use of hearing protection devices among farm operators.

    PubMed

    McCullagh, Marjorie C; Banerjee, Tanima; Yang, James J; Bernick, Janice; Duffy, Sonia; Redman, Richard

    2016-01-01

    Although farm operators have frequent exposure to hazardous noise and high rates of noise-induced hearing loss, they have low use of hearing protection devices (HPDs). Women represent about one-third of farm operators, and their numbers are climbing. However, among published studies examining use of HPDs in this worker group, none have examined gender-related differences. The purpose of this study was to examine gender-related differences in use of hearing protection and related predictors among farm operators. Data previously collected at farm shows and by telephone were analyzed using t-tests and generalized linear model with zero inflated negative binomial (ZINB) distribution. The difference in rate of hearing protector use between men and women farm operators was not significant. There was no difference between men and women in most hearing protector-related attitudes and beliefs. Although men and women farm operators had similar rates of use of hearing protectors when working in high-noise environments, attitudes about HPD use differed. Specifically, interpersonal role modeling was a predictor of HPD use among women, but not for men. This difference suggests that while farm operators of both genders may benefit from interventions designed to reduce barriers to HPD use (e.g., difficulty communicating with co-workers and hearing warning sounds), farm women have unique needs in relation to cognitive-perceptual factors that predict HPD use. Women farm operators may lack role models for use of HPDs (e.g., in peers and advertising), contributing to their less frequent use of protection.

  19. Recirculation bubbler for glass melter apparatus

    DOEpatents

    Guerrero, Hector [Evans, GA; Bickford, Dennis [Folly Beach, SC

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  20. Retrospective analysis of Bluetongue farm risk profile definition, based on biology, farm management practices and climatic data.

    PubMed

    Cappai, Stefano; Loi, Federica; Coccollone, Annamaria; Contu, Marino; Capece, Paolo; Fiori, Michele; Canu, Simona; Foxi, Cipriano; Rolesu, Sandro

    2018-07-01

    Bluetongue (BT) is a vector-borne disease transmitted by species of Culicoides midges (Diptera: Ceratopogonidae). Many studies have contributed to clarifying various aspects of its aetiology, epidemiology and vector dynamic; however, BT remains a disease of epidemiological and economic importance that affects ruminants worldwide. Since 2000, the Sardinia region has been the most affected area of the Mediterranean basin. The region is characterised by wide pastoral areas for sheep and represents the most likely candidate region for the study of Bluetongue virus (BTV) distribution and prevalence in Italy. Furthermore, specific information on the farm level and epidemiological studies needs to be provided to increase the knowledge on the disease's spread and to provide valid mitigation strategies in Sardinia. This study conducted a punctual investigation into the spatial patterns of BTV transmission to define a risk profile for all Sardinian farmsby using a logistic multilevel mixed model that take into account agro-meteorological aspects, as well as farm characteristics and management. Data about animal density (i.e. sheep, goats and cattle), vaccination, previous outbreaks, altitude, land use, rainfall, evapotranspiration, water surface, and farm management practices (i.e. use of repellents, treatment against insect vectors, storage of animals in shelter overnight, cleaning, presence of mud and manure) were collected for 12,277 farms for the years 2011-2015. The logistic multilevel mixed model showed the fundamental role of climatic factors in disease development and the protective role of good management, vaccination, outbreak in the previous year and altitude. Regional BTV risk maps were developed, based on the predictor values of logistic model results, and updated every 10 days. These maps were used to identify, 20 days in advance, the areas at highest risk. The risk farm profile, as defined by the model, would provide specific information about the role of each

  1. Farm Population Trends and Farm Characteristics. Rural Development Research Report No. 3.

    ERIC Educational Resources Information Center

    Banks, Vera J.

    While total farm population is declining, the number of people living on the farms which produce the bulk of the nation's food and fiber is increasing. The 1970-75 total farm population decline was 13 percent, but the number of people living on farms with annual sales greater than $40,000 increased 76 percent. Such farms account for about 80…

  2. Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew

    Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less

  3. Long Island Solar Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the differentmore » players.« less

  4. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    PubMed

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Farm-Size Structure and Off-Farm Income and Employment Generation in the North Central Region.

    ERIC Educational Resources Information Center

    Heady, Earl O.; Sonka, Steven T.

    The relationship between size of farm and the welfare of farm and nonfarm society was examined in terms of total income in the farm sector, the number and size of farms, income per farm, secondary income generation, and consumer food costs using four alternative farm structures: large farm (gross farm sales of at least $40,000); medium farm (gross…

  6. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  7. What Happens to the Farm? Australian Farmers' Experiences after a Serious Farm Injury.

    PubMed

    Beattie, Jessica; McLeod, Candis; Murray, Meg; Pedler, Daryl; Brumby, Susan; Gabbe, Belinda

    2018-01-01

    To investigate the experiences of farmers on returning to farming following a serious farm-related injury. Patients who had sustained major trauma on a farm in Victoria, Australia, were identified using the Victorian State Trauma Registry (VSTR). In depth, semistructured phone interviews were conducted with 31 participants. Interview data were subjected to thematic analysis to identify important recurring themes. Interviews continued until data saturation was achieved. Interviewees included self-employed full-time farmers, part-time farmers with a supplementary income, and agricultural employees. Analysis of participant responses connected to returning to farming after a serious farm-related injury identified five major interconnected themes: (i) effect on farm work, (ii) farming future, (iii) safety advocacy, (iv) changes to farming practices, and (v) financial ramifications. Farmers who have sustained a serious farm-related injury are an important resource; their experiences and perspectives could assist in the development of educational and transitional support services from recovery back to working at a preinjury level, while ensuring farming production is sustainable during this period. Furthermore, farm safety programs can be enhanced by the engagement of farmers, such as participants in this study as advocates for improved farm safety practices.

  8. Leachate recirculation: moisture content assessment by means of a geophysical technique.

    PubMed

    Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne

    2004-01-01

    Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.

  9. Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier

    NASA Astrophysics Data System (ADS)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad

    2017-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  10. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    that can potentially block it. Based on blockage ratio and distance, an optimization procedure is proposed that explores many different layout variables and identifies, given actual wind direction and stability distributions, the optimal wind farm layout, i.e., the one with the highest wind energy production. The optimization procedure is applied to both the calibration wind farm (Lillgrund) and a test wind farm (Horns Rev) and a number of layouts more efficient than the existing ones are identified. The optimization procedure based on geometric models proposed here can be applied very quickly (within a few hours) to any proposed wind farm, once enough information on wind direction frequency and, if available, atmospheric stability frequency has been gathered and once the number of turbines and/or the areal extent of the wind farm have been identified.

  11. Short-term Wind Forecasting at Wind Farms using WRF-LES and Actuator Disk Model

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan

    2017-04-01

    Short-term wind forecasts are obtained for a wind farm on a mountainous terrain using WRF-LES. Multi-scale simulations are also performed using different PBL parameterizations. Turbines are parameterized using Actuator Disc Model. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed. Complex topography of the study area affects model performance, especially the accuracy of wind forecasts were poor for cross valley-mountain flows. By means of LES, we gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as the configuration of wind turbines.

  12. Developing COMET-Farm and the DayCent Model for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Steenwerth, K. L.; Barker, X. Z.; Carlson, M.; Killian, K.; Easter, M.; Swan, A.; Thompson, L.; Williams, S.; Paustian, K.

    2016-12-01

    Specialty crops are hugely important to the agricultural economy of California, which grows over 400 specialty crops and produces at least a third of the nations' vegetables and more than two thirds of its fruit and nut tree crops. Since the passage of AB32 Global Warming Solutions Act in 2006, the state has made strong investments in reducing greenhouse gas emissions and developing climate adaptation solutions. Most recently, Governor J. Brown (CA) has issued an executive order to establish reductions to 40% below 1990 levels. While agriculture in California is not regulated for greenhouse gas emissions under AB32, efforts are being made to develop tools to support practices that can enhance soil health and reduce greenhouse gas emissions. USDA-NRCS supports one such tool known as COMET-Farm, which is intended for future use with incentive programs and soil conservation plans managed by the agency. The underlying model that that simulates entity-scale greenhouse gas emissions in COMET-Farm is DayCent. Members of the California Climate Hub are collaborating with the Natural Resource Ecology Laboratory at Colorado State University in Fort Collins, CO to develop DayCent for 15 California specialty crops. These specialty crops include woody perennials like stone fruit like almonds and peaches, walnuts, citrus, wine grapes, raisins and table grapes. Annual specialty crops include cool season vegetables like lettuce and broccoli, tomatoes, and strawberries. DayCent has been parameterized for these crops using existing published and unpublished studies. Practice based information has also been gathered in consultation with growers. Aspects of the model have been developed for woody biomass production and competition between herbaceous vegetation and woody perennial crops. We will report on model performance for these crops and opportunities for model improvement.

  13. Advanced Modeling System for Optimization of Wind Farm Layout and Wind Turbine Sizing Using a Multi-Level Extended Pattern Search Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick

    This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at eachmore » turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.« less

  14. Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Paula D; Annoni, Jennifer; Jonkman, Jason

    2018-01-04

    FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral andmore » vertical directions under different atmospheric and turbine operating conditions.« less

  15. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  16. Comparison of Greenhouse Gas Emissions between Two Dairy Farm Systems (Conventional vs. Organic Management) in New Hampshire Using the Manure DNDC Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Dorich, C.; Contosta, A.; Li, C.; Brito, A.; Varner, R. K.

    2013-12-01

    Agriculture contributes 20 to 25 % of the total anthropogenic greenhouse gas (GHG) emissions globally. These agricultural emissions are primarily in the form of methane (CH4) and nitrous oxide (N2O) with these GHG accounting for roughly 40 and 80 % of the total anthropogenic emissions of CH4 and N2O, respectively. Due to varied management and the complexities of agricultural ecosystems, it is difficult to estimate these CH4 and N2O emissions. The IPCC emission factors can be used to yield rough estimates of CH4 and N2O emissions but they are often based on limited data. Accurate modeling validated by measurements is needed in order to identify potential mitigation areas, reduce GHG emissions from agriculture, and improve sustainability of farming practices. The biogeochemical model Manure DNDC was validated using measurements from two dairy farms in New Hampshire, USA in order to quantify GHG emissions under different management systems. One organic and one conventional dairy farm operated by the University of New Hampshire's Agriculture Experiment Station were utilized as the study sites for validation of Manure DNDC. Compilation of management records started in 2011 to provide model inputs. Model results were then compared to field collected samples of soil carbon and nitrogen, above-ground biomass, and GHG fluxes. Fluxes were measured in crop, animal, housing, and waste management sites on the farms in order to examine the entire farm ecosystem and test the validity of the model. Fluxes were measured by static flux chambers, with enteric fermentation measurements being conducted by the SF6 tracer test as well as a new method called Greenfeeder. Our preliminary GHG flux analysis suggests higher emissions than predicted by IPCC emission factors and equations. Results suggest that emissions from manure management is a key concern at the conventional dairy farm while bedded housing at the organic dairy produced large quantities of GHG.

  17. The Rapid Adjustment Farm Program's Influence on Other Farms in the Community.

    ERIC Educational Resources Information Center

    Simeral, Kenneth D.

    The study investigated the diffusion of innovative farming practices from Rapid Adjustment Farms (RAF) to other farms in southeast Ohio. The RAF program, begun in 1968, introduced new technology and management practices to its participant farmers. After reviewing literature of farming programs' information diffusion, a descriptive survey was made…

  18. Family Ranching and Farming: A Consensus Management Model to Improve Family Functioning and Decrease Work Stress.

    ERIC Educational Resources Information Center

    Zimmerman, Toni Schindler; Fetsch, Robert J.

    1994-01-01

    Notes that internal and external threats could squeeze ranch and farm families out of business. Offers six-step Consensus Management Model that combines strategic planning with psychoeducation/family therapy. Describes pilot test with intergenerational ranch family that indicated improvements in family functioning, including reduced stress and…

  19. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    There is a need to develop practical methods to reduce nitrate -nitrogen loads from recirculating aqua-culture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-...

  20. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  1. 50 CFR 14.23 - Live farm-raised fish and farm-raised fish eggs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Live farm-raised fish and farm-raised fish eggs. 14.23 Section 14.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... Exportation at Designated Ports § 14.23 Live farm-raised fish and farm-raised fish eggs. Live farm-raised fish...

  2. 50 CFR 14.23 - Live farm-raised fish and farm-raised fish eggs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Live farm-raised fish and farm-raised fish eggs. 14.23 Section 14.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... Exportation at Designated Ports § 14.23 Live farm-raised fish and farm-raised fish eggs. Live farm-raised fish...

  3. 50 CFR 14.23 - Live farm-raised fish and farm-raised fish eggs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Live farm-raised fish and farm-raised fish eggs. 14.23 Section 14.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... Exportation at Designated Ports § 14.23 Live farm-raised fish and farm-raised fish eggs. Live farm-raised fish...

  4. Environmental and economic comparisons of manure application methods in farming systems.

    PubMed

    Rotz, C A; Kleinman, P J A; Dell, C J; Veith, T L; Beegle, D B

    2011-01-01

    Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.

  5. Researchers evaluate low-energy recirculating system for inland production of marine finfish juveniles

    USDA-ARS?s Scientific Manuscript database

    The low-energy recirculating aquaculture system consists of nine separate modules which utilize the double drain fish culture tank paired to a moving bed biofilter. The nine fiberglass tanks are five feet in diameter and normal water depth is about three feet for a total tank volume of approximately...

  6. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms.

    PubMed

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10 -4 ; 5% and 95%, 5.7 × 10 -4 -0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10 -4 and 1.6 × 10 -4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10 -4 , 2.0 × 10 -4 , and 1.9 × 10 -4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  7. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms

    PubMed Central

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  8. SIMS(DAIRY): a modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation.

    PubMed

    Del Prado, A; Misselbrook, T; Chadwick, D; Hopkins, A; Dewhurst, R J; Davison, P; Butler, A; Schröder, J; Scholefield, D

    2011-09-01

    Multiple demands are placed on farming systems today. Society, national legislation and market forces seek what could be seen as conflicting outcomes from our agricultural systems, e.g. food quality, affordable prices, a healthy environmental, consideration of animal welfare, biodiversity etc., Many of these demands, or desirable outcomes, are interrelated, so reaching one goal may often compromise another and, importantly, pose a risk to the economic viability of the farm. SIMS(DAIRY), a farm-scale model, was used to explore this complexity for dairy farm systems. SIMS(DAIRY) integrates existing approaches to simulate the effect of interactions between farm management, climate and soil characteristics on losses of nitrogen, phosphorus and carbon. The effects on farm profitability and attributes of biodiversity, milk quality, soil quality and animal welfare are also included. SIMS(DAIRY) can also be used to optimise fertiliser N. In this paper we discuss some limitations and strengths of using SIMS(DAIRY) compared to other modelling approaches and propose some potential improvements. Using the model we evaluated the sustainability of organic dairy systems compared with conventional dairy farms under non-optimised and optimised fertiliser N use. Model outputs showed for example, that organic dairy systems based on grass-clover swards and maize silage resulted in much smaller total GHG emissions per l of milk and slightly smaller losses of NO(3) leaching and NO(x) emissions per l of milk compared with the grassland/maize-based conventional systems. These differences were essentially because the conventional systems rely on indirect energy use for 'fixing' N compared with biological N fixation for the organic systems. SIMS(DAIRY) runs also showed some other potential benefits from the organic systems compared with conventional systems in terms of financial performance and soil quality and biodiversity scores. Optimisation of fertiliser N timings and rates showed a

  9. Farm Population of the United States: 1975. Current Population Reports: Farm Population.

    ERIC Educational Resources Information Center

    Banks, Vera J.; And Others

    Presented via narrative and tabular data, this report includes: Population of the U.S., Total and Farm: 1960-1975; Metropolitan-Nonmetropolitan Residence of the Farm and Nonfarm Population, by Race: 1975; Fertility Characteristics of Farm and Nonfarm Women, by Race: 1975; Persons 14 Years Old and Over Employed in Agriculture, by Farm-Nonfarm…

  10. Within-farm transmission dynamics of foot and mouth disease as revealed by the 2001 epidemic in Great Britain.

    PubMed

    Chis Ster, Irina; Dodd, Peter J; Ferguson, Neil M

    2012-08-01

    This paper uses statistical and mathematical models to examine the potential impact of within-farm transmission dynamics on the spread of the 2001 foot and mouth disease (FMD) outbreak in Great Britain. We partly parameterize a simple within farm transmission model using data from experimental studies of FMD pathogenesis, embed this model within an existing between-farm transmission model, and then estimate unknown parameters (such as the species-specific within-farm reproduction number) from the 2001 epidemic case data using Markov Chain Monte-Carlo (MCMC) methods. If the probability of detecting an infected premises depends on farm size and species mix then the within-farm species specific basic reproduction ratios for baseline models are estimated to be 21 (16, 25) and 14 (10, 19) for cattle and sheep, respectively. Alternatively, if detection is independent of farm size, then the corresponding estimates are 49 (41, 61) and 10 (1.4, 21). Both model variants predict that the average fraction of total farm infectiousness accumulated prior to detection of infection on an IP is about 30-50% in cattle or mixed farms. The corresponding estimate for sheep farms depended more on the detection model, being 65-80% if detection was linked to the farms' characteristics, but only 25% if not. We highlighted evidence which reinforces the role of within-farm dynamics in contributing to the long tail of the 2001 epidemic. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Molecular Cardiac Surgery with Recirculating Delivery (MCARD): Procedure and Vector Transfer.

    PubMed

    Katz, Michael G; Fargnoli, Anthony S; Kendle, Andrew P; Bridges, Charles R

    2017-01-01

    Despite progress in clinical treatment, cardiovascular diseases are still the leading cause of morbidity and mortality worldwide. Therefore, novel therapeutic approaches are needed, targeting the underlying molecular mechanisms of disease with improved outcomes for patients. Gene therapy is one of the most promising fields for the development of new treatments for the advanced stages of cardiovascular diseases. The establishment of clinically relevant methods of gene transfer remains one of the principal limitations on the effectiveness of gene therapy. Recently, there have been significant advances in direct and transvascular gene delivery methods. The ideal gene transfer method should be explored in clinically relevant large animal models of heart disease to evaluate the roles of specific molecular pathways in disease pathogenesis. Characteristics of the optimal technique for gene delivery include low morbidity, an increased myocardial transcapillary gradient, esxtended vector residence time in the myocytes, and the exclusion of residual vector from the systemic circulation after delivery to minimize collateral expression and immune response. Here we describe myocardial gene transfer techniques with molecular cardiac surgery with recirculating delivery in a large animal model of post ischemic heart failure.

  12. Recirculation of reverse osmosis concentrate in lab-scale anaerobic and aerobic landfill simulation reactors.

    PubMed

    Morello, Luca; Cossu, Raffaello; Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina

    2016-10-01

    Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste

  13. Array Effects in Large Wind Farms. Cooperative Research and Development Final Report, CRADA Number CRD-09-343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, Patrick

    2016-02-23

    The effects of wind turbine wakes within operating wind farms have a substantial impact on the overall energy production from the farm. The current generation of models drastically underpredicts the impact of these wakes leading to non-conservative estimates of energy capture and financial losses to wind farm operators and developers. To improve these models, detailed research of operating wind farms is necessary. Rebecca Barthelmie of Indiana University is a world leader of wind farm wakes effects and would like to partner with NREL to help improve wind farm modeling by gathering additional wind farm data, develop better models and increasemore » collaboration with European researchers working in the same area. This is currently an active area of research at NREL and the capabilities of both parties should mesh nicely.« less

  14. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  15. Social environments, risk-taking and injury in farm adolescents

    PubMed Central

    Pickett, William; Berg, Richard L; Marlenga, Barbara

    2017-01-01

    Background Farm environments are especially hazardous for young people. While much is known about acute physical causes of traumatic farm injury, little is known about social factors that may underlie their aetiology. Objectives In a nationally representative sample of young Canadians aged 11–15 years, we described and compared farm and non-farm adolescents in terms of the qualities of their social environments, engagement in overt multiple risk-taking as well as how such exposures relate aetiologically to their reported injury experiences. Methods Cross-sectional analysis of survey reports from the 2014 (Cycle 7) Canadian Health Behaviour in School-Aged Children study was conducted. Children (n=2567; 2534 weighted) who reported living or working on farms were matched within schools in a 1:1 ratio with children not living or working on farms. Scales examining quality of social environments and overt risk-taking were compared between the two groups, stratified by gender. We then related the occurrence of any serious injury to these social exposures in direct and interactive models. Results Farm and non-farm children reported social environments that were quite similar, with the exception of overt multiple risk-taking, which was demonstrably higher in farm children of both genders. Engagement in overt risk-taking, but not the other social environmental factors, was strongly and consistently associated with risks for serious injury in farm as well as non-farm children, particularly among males. Conclusions Study findings highlight the strength of associations between overt multiple risk-taking and injury among farm children. This appears to be a normative aspect of adolescent farm culture. PMID:28137978

  16. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully

  17. Pesticide poisoning and respiratory disorders in Colorado farm residents.

    PubMed

    Beseler, C L; Stallones, L

    2009-10-01

    Respiratory hazards significantly contribute to the burden of occupational disease among farmers. Pesticide exposure has been linked to an increased prevalence of respiratory symptoms in several farming populations. The purpose of this study was to evaluate the association between respiratory symptoms and pesticide poisoning in a cross-sectional survey of farm residents. A total of 761 farm operators and their spouses, representing 479 farms in northeastern Colorado, were recruited from 1993 to 1997. A personal interview asked whether the resident had experienced a pesticide poisoning and several respiratory conditions including cough, allergy, wheeze, and organic dust toxic syndrome (ODTS). Spirometry testing was performed on 196 individuals. Logistic regression was used to model the association of pesticide poisoning with respiratory conditions, and linear regression was used to model the relationship of pesticide poisoning and forced vital capacity (FVC) and forced expiratory volume (FEV1). In unadjusted models, pesticide poisoning was associated with all four respiratory conditions, and stayed significant in adjusted models of allergies and cough in non-smokers. In age- and gender-adjusted models, pesticide poisoning was significantly associated with lower FVC and FEV1 in current smokers and in those who were not heavy drinkers. Although this study should be reproduced in a larger sample, it suggests that further evaluation of the respiratory effects of pesticide exposure is warranted.

  18. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments

    NASA Astrophysics Data System (ADS)

    Colmenares Roldán, Gabriel Jaime; Agudelo Gomez, Liliana María; Carlos Cornelio, Jesús Antonio; Rodriguez, Luis Fernando; Pinal, Rodolfo; Hoyos Palacio, Lina Marcela

    2018-03-01

    Encapsulation and controlled release of substances using polymeric nanoparticles require that these have a high reproducibility, homogeneity, and control over their properties (diameter and polydispersity), especially when they are to be used in medical, pharmaceutical, or nutritional applications among others. In conventional production systems, it is tough to ensure these characteristics; hence, the cost increases when we try to control these properties. This paper shows a comparison between a recirculating system and the standard nanoprecipitation technique for producing polymeric nanoparticles. In previous investigations, we evaluate the effect of recirculating flow and the ratio between the organic and aqueous phase. For this paper, we evaluated the effect of polymer and surfactant concentrations using a multifactorial design of experiments on the recirculating system and on the standard nanoprecipitation system. The response of the design was the average diameter of the nanoparticles and polydispersity index. Finally, we found that the polymer and surfactant concentrations could change the average diameter and polydispersity index of the nanoparticles obtained. On the other hand, it was found that the effect of the polymer concentration was stronger than the surfactant concentration to reduce the average diameter of the nanoparticles. The results of the present study show that the proposed recirculation system presents a high potential to produce polymer nanoparticles with good morphological characteristics, particle size distributions in the nano range, and with a low polydispersity. The average mean size of nanoparticles of polycaprolactone for the design using the recirculating system was of 61 to 140 nm and the values of polydispersity index PDI for this design were between 0.097 and 0.22, while for the design using the standard nanoprecipitation technique, the obtained diameters were 74 to 176 nm and the polydispersity was between 0.26 and 0.41.

  19. Risk-based audit selection of dairy farms.

    PubMed

    van Asseldonk, M A P M; Velthuis, A G J

    2014-02-01

    Dairy farms are audited in the Netherlands on numerous process standards. Each farm is audited once every 2 years. Increasing demands for cost-effectiveness in farm audits can be met by introducing risk-based principles. This implies targeting subpopulations with a higher risk of poor process standards. To select farms for an audit that present higher risks, a statistical analysis was conducted to test the relationship between the outcome of farm audits and bulk milk laboratory results before the audit. The analysis comprised 28,358 farm audits and all conducted laboratory tests of bulk milk samples 12 mo before the audit. The overall outcome of each farm audit was classified as approved or rejected. Laboratory results included somatic cell count (SCC), total bacterial count (TBC), antimicrobial drug residues (ADR), level of butyric acid spores (BAB), freezing point depression (FPD), level of free fatty acids (FFA), and cleanliness of the milk (CLN). The bulk milk laboratory results were significantly related to audit outcomes. Rejected audits are likely to occur on dairy farms with higher mean levels of SCC, TBC, ADR, and BAB. Moreover, in a multivariable model, maxima for TBC, SCC, and FPD as well as standard deviations for TBC and FPD are risk factors for negative audit outcomes. The efficiency curve of a risk-based selection approach, on the basis of the derived regression results, dominated the current random selection approach. To capture 25, 50, or 75% of the population with poor process standards (i.e., audit outcome of rejected), respectively, only 8, 20, or 47% of the population had to be sampled based on a risk-based selection approach. Milk quality information can thus be used to preselect high-risk farms to be audited more frequently. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms

    DOE PAGES

    Gebraad, Pieter M. O.; Churchfield, Matthew J.; Fleming, Paul A.

    2016-10-03

    Atmospheric stability conditions have an effect on wind turbine wakes. This is an important factor in wind farms in which the wake properties affect the performance of downstream turbines. In the stable atmosphere, wind direction shear has a lateral skewing effect on the wakes. In this study, we describe changes to the FLOw Redirection and Induction in Steady-state (FLORIS) wake engineering model to incorporate and parameterize this effect.

  1. Wake characteristics of wind turbines in utility-scale wind farms

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  2. Forest farming practices

    Treesearch

    J.L. Chamberlain; D. Mitchell; T. Brigham; T. Hobby; L. Zabek; J. Davis

    2009-01-01

    Forest farming in North America is becoming popular as a way for landowners to diversify income opportunities, improve management of forest resources, and increase biological diversity. People have been informally "farming the forests" for generations. However, in recent years, attention has been directed at formalizing forest farming and improving it...

  3. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.

    PubMed

    Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-15

    Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  5. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    -trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  6. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes

  7. The Statistics of Albedo and Heat Recirculation on Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Agol, Eric

    2011-03-01

    If both the day-side and night-side effective temperatures of a planet can be measured, it is possible to estimate its Bond albedo, 0 < AB < 1, as well as its day-night heat redistribution efficiency, 0 < ɛ < 1. We attempt a statistical analysis of the albedo and redistribution efficiency for 24 transiting exoplanets that have at least one published secondary eclipse. For each planet, we show how to calculate a sub-stellar equilibrium temperature, T 0, and associated uncertainty. We then use a simple model-independent technique to estimate a planet's effective temperature from planet/star flux ratios. We use thermal secondary eclipse measurements—those obtained at λ>0.8 μm—to estimate day-side effective temperatures, T d, and thermal phase variations—when available—to estimate night-side effective temperature. We strongly rule out the "null hypothesis" of a single AB and ɛ for all 24 planets. If we allow each planet to have different parameters, we find that low Bond albedos are favored (AB < 0.35 at 1σ confidence), which is an independent confirmation of the low albedos inferred from non-detections of reflected light. Our sample exhibits a wide variety of redistribution efficiencies. When normalized by T 0, the day-side effective temperatures of the 24 planets describe a uni-modal distribution. The two biggest outliers are GJ 436b (abnormally hot) and HD 80606b (abnormally cool), and these are the only eccentric planets in our sample. The dimensionless quantity T d/T 0 exhibits no trend with the presence or absence of stratospheric inversions. There is also no clear trend between T d/T 0 and T 0. That said, the six planets with the greatest sub-stellar equilibrium temperatures (T > 2400 K) have low ɛ, as opposed to the 18 cooler planets, which show a variety of recirculation efficiencies. This hints that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters. We propose an explanation of this trend based on

  8. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  9. Turbulence and entrainment length scales in large wind farms.

    PubMed

    Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F

    2017-04-13

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  10. Turbulence and entrainment length scales in large wind farms

    PubMed Central

    2017-01-01

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265028

  11. Social environments, risk-taking and injury in farm adolescents.

    PubMed

    Pickett, William; Berg, Richard L; Marlenga, Barbara

    2017-12-01

    Farm environments are especially hazardous for young people. While much is known about acute physical causes of traumatic farm injury, little is known about social factors that may underlie their aetiology. In a nationally representative sample of young Canadians aged 11-15 years, we described and compared farm and non-farm adolescents in terms of the qualities of their social environments, engagement in overt multiple risk-taking as well as how such exposures relate aetiologically to their reported injury experiences. Cross-sectional analysis of survey reports from the 2014 (Cycle 7) Canadian Health Behaviour in School-Aged Children study was conducted. Children (n=2567; 2534 weighted) who reported living or working on farms were matched within schools in a 1:1 ratio with children not living or working on farms. Scales examining quality of social environments and overt risk-taking were compared between the two groups, stratified by gender. We then related the occurrence of any serious injury to these social exposures in direct and interactive models. Farm and non-farm children reported social environments that were quite similar, with the exception of overt multiple risk-taking, which was demonstrably higher in farm children of both genders. Engagement in overt risk-taking, but not the other social environmental factors, was strongly and consistently associated with risks for serious injury in farm as well as non-farm children, particularly among males. Study findings highlight the strength of associations between overt multiple risk-taking and injury among farm children. This appears to be a normative aspect of adolescent farm culture. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Farming for a Better Climate by Improving Nitrogen Use Efficiency and Reducing Greenhouse Gas Emissions (FarmClim)

    NASA Astrophysics Data System (ADS)

    Amon, Barbara; Winiwarter, Wilfried; Schröck, Andrea; Zechmeister-Boltenstern, Sophie; Kasper, Martina; Sigmund, Elisabeth; Schaller, Lena; Moser, Tobias; Baumgarten, Andreas; Dersch, Georg; Zethner, Gerhard; Anderl, Michael; Kitzler, Barbara

    2014-05-01

    The project FarmClim (Farming for a better climate) assesses impacts of agriculture on N and GHG fluxes in Austria and proposes measures for improving N efficiency and mitigating emissions, including their economic assessment. This paper focuses on animal husbandry and crop production measures, and on N2O emissions from soils. FarmClim applies national inventory reporting methods to assess Austrian NH3 and GHG fluxes in order to develop flux estimates with implementation of mitigation measures. Based on scientific literature and on the outcome of the Austrian working group agriculture and climate protection a list of potential mitigation measures has been produced: phase feeding, dairy cattle diet, biogas production. Data cover resulting production levels as well as GHG mitigation. In crop production, an optimisation potential remains with respect to N fertilization and nutrient uptake efficiency. Projected regional yield data and information on the N content of arable crops have been delivered from field experiments. These data complement official statistics and allow assessing the effect of increasing proportions of legume crops in crop rotations and reducing fertilizer input on a regional scale. Economic efficiency of measures is a crucial factor for their future implementation on commercial farms. The economic model evaluates investment costs as well as changes in direct costs, labour costs and economic yield. Biophysical modelling with Landscape DNDC allows establishing a framework to move from the current approach of applying the IPCC default emission factor for N2O emissions from soils. We select two Austrian model regions to calculate N fluxes taking into account region and management practices. Hot spots and hot moments as well as mitigation strategies are identified. Two test regions have been identified for soil emission modelling. The Marchfeld is an intensively used agricultural area in North-East Austria with very fertile soils and dry climate. The

  13. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals.

    PubMed

    Byrne, M J; Power, J M; Preovolos, A; Mariani, J A; Hajjar, R J; Kaye, D M

    2008-12-01

    Abnormal excitation-contraction coupling is a key pathophysiologic component of heart failure (HF), and at a molecular level reduced expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) is a major contributor. Previous studies in small animals have suggested that restoration of SERCA function is beneficial in HF. Despite this promise, the means by which this information might be translated into potential clinical application remains uncertain. Using a recently established cardiac-directed recirculating method of gene delivery, we administered adeno-associated virus 2 (AAV2)/1SERCA2a to sheep with pacing-induced HF. We explored the effects of differing doses of AAV2/1SERCA2a (low 1 x 10(10) d.r.p.; medium 1 x 10(12) d.r.p. and high 1 x 10(13) d.r.p.) in conjunction with an intra-coronary delivery group (2.5 x 10(13) d.r.p.). At the end of the study, haemodynamic, echocardiographic, histopathologic and molecular biologic assessments were performed. Cardiac recirculation delivery of AAV2/1SERCA2a elicited a dose-dependent improvement in cardiac performance determined by left ventricular pressure analysis, (+d P/d t(max); low dose -220+/-70, P>0.05; medium dose 125+/-53, P<0.05; high dose 287+/-104, P<0.05) and echocardiographically (fractional shortening: low dose -3+/-2, P>0.05; medium dose 1+/-2, P>0.05; high dose 6.5+/-3.9, P<0.05). In addition to favourable haemodynamic effects, brain natriuretic peptide expression was reduced consistent with reversal of the HF molecular phenotype. In contrast, direct intra-coronary infusion did not elicit any effect on ventricular function. As such, AAV2/1SERCA2a elicits favourable functional and molecular actions when delivered in a mechanically targeted manner in an experimental model of HF. These observations lay a platform for potential clinical translation.

  14. Quantifying saphenous recirculation in patients with primary lower extremity venous reflux.

    PubMed

    Lattimer, Christopher R; Azzam, Mustapha; Kalodiki, Evi; Geroulakos, George

    2016-04-01

    The great saphenous vein (GSV) in patients with superficial venous insufficiency might act as a beneficial conduit for antegrade venous drainage and also as a harmful conduit for promotion of reflux and/or recirculation and subsequent skin changes. The aim of this study was to measure the antegrade and retrograde GSV volume displacements during calf compression and release maneuvers. This was used to quantify harm over benefit with a recirculation index (RCI). Sixteen legs (nine right) from 16 patients (nine male) with primary superficial venous insufficiency were scanned standing with duplex ultrasound, at the upper thigh GSV, 10 cm below the sapheno-femoral junction. The clinical, etiological, anatomical, pathophysiological class was C2 = 3, C3 = 2, C4a = 6, C4b = 4, C5 = 1. The median age (range), venous clinical severity score, and refluxing GSV diameter were 63 (21-79) years, 8 (4-16), and 7 (5-10) mm, respectively. A manual calf compression and release (MCCR) maneuver was performed once, and a cyclical calf compression and release (CCCR) three times for repeatability. With the CCCR maneuver, the calf-cuff and inflation-deflation pump provided a cyclical compression pressure of 120 mm Hg (3 seconds) with a release time of 16.4 seconds to standardize venous refilling time. The results are expressed as median [interquartile range]. The CCCR compared with the MCCR resulted in longer reflux duration (16.4 [8.2-16.4] seconds vs 5.7 [3.7-6.8] seconds; P < .0005), higher time-averaged mean velocities in reflux (23.5 [14.9-27.9] cm/s vs 14.1 [9-17.6] cm/s; P < .0005) and greater reflux volume displacements (81.7 [38.8-152.8] mL vs 27.3 [16.4-53.4] mL; P < .0005). There were significant correlations between increasing antegrade volume measurements and increasing reflux volume measurements irrespective of whether CCCR, (r = 0.841; P < .0005) or MCCR (r = 0.762; P = .001) was used. This implies that the displaced antegrade volume might have a causal effect on the

  15. Farming and the fate of wild nature.

    PubMed

    Green, Rhys E; Cornell, Stephen J; Scharlemann, Jörn P W; Balmford, Andrew

    2005-01-28

    World food demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on wild species and habitats. We show that farming is already the greatest extinction threat to birds (the best known taxon), and its adverse impacts look set to increase, especially in developing countries. Two competing solutions have been proposed: wildlife-friendly farming (which boosts densities of wild populations on farmland but may decrease agricultural yields) and land sparing (which minimizes demand for farmland by increasing yield). We present a model that identifies how to resolve the trade-off between these approaches. This shows that the best type of farming for species persistence depends on the demand for agricultural products and on how the population densities of different species on farmland change with agricultural yield. Empirical data on such density-yield functions are sparse, but evidence from a range of taxa in developing countries suggests that high-yield farming may allow more species to persist.

  16. Investigation of Saltwater Intrusion and Recirculation of Seawater for Henry Constant Dispersion and Velocity-Dependent Dispersion Problems and Field-Scale Problem

    NASA Astrophysics Data System (ADS)

    Motz, L. H.; Kalakan, C.

    2013-12-01

    Three problems regarding saltwater intrusion, namely the Henry constant dispersion and velocity-dependent dispersion problems and a larger, field-scale velocity-dependent dispersion problem, have been investigated to determine quantitatively how saltwater intrusion and the recirculation of seawater at a coastal boundary are related to the freshwater inflow and the density-driven buoyancy flux. Based on dimensional analysis, saltwater intrusion and the recirculation of seawater are dependent functions of the independent ratio of freshwater advective flux relative to the density-driven vertical buoyancy flux, defined as az (or a for an isotropic aquifer), and the aspect ratio of horizontal and vertical dimensions of the cross-section. For the Henry constant dispersion problem, in which the aquifer is isotropic, saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the constant dispersion coefficient treated as a scalar quantity, the porosity, and the freshwater advective flux, defined as b. For the Henry velocity-dependent dispersion problem, the ratio b is zero, and saltwater intrusion and recirculation are related to an additional independent dimensionless parameter that is the ratio of the vertical and horizontal dispersivities, or rα = αz/αx. For an anisotropic aquifer, saltwater intrusion and recirculation are also dependent on the ratio of vertical and horizontal hydraulic conductivities, or rK = Kz/Kx. For the field-scale velocity-dependent dispersion problem, saltwater intrusion and recirculation are dependent on the same independent ratios as the Henry velocity-dependent dispersion problem. In the two-dimensional cross-section for all three problems, freshwater inflow occurs at an upgradient boundary, and recirculated seawater outflow occurs at a downgradient coastal boundary. The upgradient boundary is a specified-flux boundary with zero freshwater concentration, and the downgradient

  17. Exploring the Role of Farm Animals in Providing Care at Care Farms

    PubMed Central

    Hassink, Jan; De Bruin, Simone R.; Berget, Bente; Elings, Marjolein

    2017-01-01

    Simple Summary This paper provides insight into the role of farm animals in farm-based programs and their importance to different types of participants. Farm animals provide real work, close relationships, challenging tasks and opportunities for reflection. They also contribute to a welcoming atmosphere for various types of participants. Abstract We explore the role of farm animals in providing care to different types of participants at care farms (e.g., youngsters with behavioural problems, people with severe mental problems and people with dementia). Care farms provide alternative and promising settings where people can interact with animals compared to a therapeutic healthcare setting. We performed a literature review, conducted focus group meetings and carried out secondary data-analysis of qualitative studies involving care farmers and different types of participants. We found that farm animals are important to many participants and have a large number of potential benefits. They can (i) provide meaningful day occupation; (ii) generate valued relationships; (iii) help people master tasks; (iv) provide opportunities for reciprocity; (v) can distract people from them problems; (vi) provide relaxation; (vii) facilitate customized care; (viii) facilitate relationships with other people; (ix) stimulate healthy behavior; (x) contribute to a welcoming environment; (xi) make it possible to experience basic elements of life; and (xii) provide opportunities for reflection and feedback. This shows the multi-facetted importance of interacting with animals on care farms. In this study the types of activities with animals and their value to different types of participants varied. Farm animals are an important element of the care farm environment that can address the care needs of different types of participants. PMID:28574435

  18. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  19. Design validation and performance of closed loop gas recirculation system

    NASA Astrophysics Data System (ADS)

    Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.

    2016-11-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  20. uFarm: a smart farm management system based on RFID

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsuk; Lee, Moonsup; Jung, Jonghyuk; Lee, Hyunwook; Kim, Taehyoun

    2007-12-01

    Recently, the livestock industry in Korea has been threatened by many challenges such as low productivity due to labor intensiveness, global competition compelled by the Free Trade Agreement (FTA), and emerging animal disease issues such as BSE or foot-and-mouth. In this paper, we propose a smart farm management system, called uFarm, which would come up with such challenges by automating farm management. First, we automate labor-intensive jobs using equipments based on sensors and actuators. The automation subsystem can be controlled by remote user through wireless network. Second, we provide real-time traceability of information on farm animals using the radio-frequency identification (RFID) method and embedded data server with network connectivity.

  1. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  2. Gaming as an Instrument of Farm Management Education-A Development and Evaluation.

    ERIC Educational Resources Information Center

    Schneeberger, Kenneth Clifford

    A study of the Oklahoma Farm Management Decision Exercise was made to explore and appraise ways of teaching farm management. A general computer model was developed which allowed the administrator flexibility in teaching, accommodated any size of farm and any set of feasible crop and livestock activities, and identified superior strategies for the…

  3. 50 CFR 14.23 - Live farm-raised fish and farm-raised fish eggs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... eggs. 14.23 Section 14.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF... Exportation at Designated Ports § 14.23 Live farm-raised fish and farm-raised fish eggs. Live farm-raised fish and farm-raised fish eggs meet the definition of “bred in captivity” as stated in 50 CFR 17.3. Except...

  4. Intensive Farming: Evolutionary Implications for Parasites and Pathogens

    PubMed Central

    Nilsen, Frank; Ebert, Dieter; Skorping, Arne

    2010-01-01

    An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be ‘under control’ are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers. PMID:21151485

  5. Effects of stored feed cropping systems and farm size on the profitability of Maine organic dairy farm simulations.

    PubMed

    Hoshide, A K; Halloran, J M; Kersbergen, R J; Griffin, T S; DeFauw, S L; LaGasse, B J; Jain, S

    2011-11-01

    United States organic dairy production has increased to meet the growing demand for organic milk. Despite higher prices received for milk, organic dairy farmers have come under increasing financial stress due to increases in concentrated feed prices over the past few years, which can make up one-third of variable costs. Market demand for milk has also leveled in the last year, resulting in some downward pressure on prices paid to dairy farmers. Organic dairy farmers in the Northeast United States have experimented with growing different forage and grain crops to maximize on-farm production of protein and energy to improve profitability. Three representative organic feed systems were simulated using the integrated farm system model for farms with 30, 120, and 220 milk cows. Increasing intensity of equipment use was represented by organic dairy farms growing only perennial sod (low) to those with corn-based forage systems, which purchase supplemental grain (medium) or which produce and feed soybeans (high). The relative profitability of these 3 organic feed systems was strongly dependent on dairy farm size. From results, we suggest smaller organic dairy farms can be more profitable with perennial sod-based rather than corn-based forage systems due to lower fixed costs from using only equipment associated with perennial forage harvest and storage. The largest farm size was more profitable using a corn-based system due to greater economies of scale for growing soybeans, corn grain, winter cereals, and corn silages. At an intermediate farm size of 120 cows, corn-based forage systems were more profitable if perennial sod was not harvested at optimum quality, corn was grown on better soils, or if milk yield was 10% higher. Delayed harvest decreased the protein and energy content of perennial sod crops, requiring more purchased grain to balance the ration and resulting in lower profits. Corn-based systems were less affected by lower perennial forage quality, as corn silage

  6. High Performance Computing for Modeling Wind Farms and Their Impact

    NASA Astrophysics Data System (ADS)

    Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.

    2016-12-01

    As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.

  7. Whole farm quantification of GHG emissions within smallholder farms in developing countries

    NASA Astrophysics Data System (ADS)

    Seebauer, Matthias

    2014-03-01

    The IPCC has compiled the best available scientific methods into published guidelines for estimating greenhouse gas emissions and emission removals from the land-use sector. In order to evaluate existing GHG quantification tools to comprehensively quantify GHG emissions and removals in smallholder conditions, farm scale quantification was tested with farm data from Western Kenya. After conducting a cluster analysis to identify different farm typologies GHG quantification was exercised using the VCS SALM methodology complemented with IPCC livestock emission factors and the cool farm tool. The emission profiles of four farm clusters representing the baseline conditions in the year 2009 are compared with 2011 where farmers adopted sustainable land management practices (SALM). The results demonstrate the variation in both the magnitude of the estimated GHG emissions per ha between different smallholder farm typologies and the emissions estimated by applying two different accounting tools. The farm scale quantification further shows that the adoption of SALM has a significant impact on emission reduction and removals and the mitigation benefits range between 4 and 6.5 tCO2 ha-1 yr-1 with significantly different mitigation benefits depending on typologies of the crop-livestock systems, their different agricultural practices, as well as adoption rates of improved practices. However, the inherent uncertainty related to the emission factors applied by accounting tools has substantial implications for reported agricultural emissions. With regard to uncertainty related to activity data, the assessment confirms the high variability within different farm types as well as between different parameters surveyed to comprehensively quantify GHG emissions within smallholder farms.

  8. A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Rhode, D. L.

    1982-01-01

    A primitive pressure-velocity variable finite difference computer code was developed to predict swirling recirculating inert turbulent flows in axisymmetric combustors in general, and for application to a specific idealized combustion chamber with sudden or gradual expansion. The technique involves a staggered grid system for axial and radial velocities, a line relaxation procedure for efficient solution of the equations, a two-equation k-epsilon turbulence model, a stairstep boundary representation of the expansion flow, and realistic accommodation of swirl effects. A user's manual, dealing with the computational problem, showing how the mathematical basis and computational scheme may be translated into a computer program is presented. A flow chart, FORTRAN IV listing, notes about various subroutines and a user's guide are supplied as an aid to prospective users of the code.

  9. Calibration of an electronic nose for poultry farm

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.

    2017-03-01

    Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.

  10. Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data.

    PubMed

    Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco

    2014-11-15

    The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all

  11. The skin, a novel niche for recirculating B cells1

    PubMed Central

    Geherin, Skye A.; Fintushel, Sarah R.; Lee, Michael H.; Wilson, R. Paul; Patel, Reema T.; Alt, Carsten; Young, Alan J.; Hay, John B.; Debes, Gudrun F.

    2012-01-01

    B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that co-express high levels IgM and CD11b. Skin B cells have increased MHCII, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and antibody-secreting cells during inflammation increases local antibody titers, which could augment host defense and autoimmunity. While skin B cells express typical skin homing receptors such as E-selectin ligand and alpha-4 and beta-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation. PMID:22561151

  12. Process Requirements for Achieving Full-Flow Disinfection of Recirculating Water Using Ozonation and UV Irradiation

    USDA-ARS?s Scientific Manuscript database

    A continuous water disinfection process can be used to prevent the introduction and accumulation of obligate and opportunistic fish pathogens in recirculating aquaculture systems (RAS), especially during a disease outbreak when the causative agent would otherwise proliferate within the system. To p...

  13. Off-Farm Labour Decision of Canadian Farm Operators: Urbanization Effects and Rural Labour Market Linkages

    ERIC Educational Resources Information Center

    Alasia, Alessandro; Weersink, Alfons; Bollman, Ray D.; Cranfield, John

    2009-01-01

    Understanding the factors affecting off-farm labour decisions of census-farm operators has significant implications for rural development and farm income support policy. We examine the off-farm labour decisions of Canadian farm operators using micro-level data from the 2001 Census of Agriculture combined with community level data from the 2001…

  14. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating

  15. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  16. Correlation between Reynolds number and eccentricity effect in stenosed artery models.

    PubMed

    Javadzadegan, Ashkan; Shimizu, Yasutomo; Behnia, Masud; Ohta, Makoto

    2013-01-01

    Flow recirculation and shear strain are physiological processes within coronary arteries which are associated with pathogenic biological pathways. Distinct Quite apart from coronary stenosis severity, lesion eccentricity can cause flow recirculation and affect shear strain levels within human coronary arteries. The aim of this study is to analyse the effect of lesion eccentricity on the transient flow behaviour in a model of a coronary artery and also to investigate the correlation between Reynolds number (Re) and the eccentricity effect on flow behaviour. A transient particle image velocimetry (PIV) experiment was implemented in two silicone based models with 70% diameter stenosis, one with eccentric stenosis and one with concentric stenosis. At different times throughout the flow cycle, the eccentric model was always associated with a greater recirculation zone length, maximum shear strain rate and maximum axial velocity; however, the highest and lowest impacts of eccentricity were on the recirculation zone length and maximum shear strain rate, respectively. Analysis of the results revealed a negative correlation between the Reynolds number (Re) and the eccentricity effect on maximum axial velocity, maximum shear strain rate and recirculation zone length. As Re number increases the eccentricity effect on the flow behavior becomes negligible.

  17. Environmental risk perception, environmental concern and propensity to participate in organic farming programmes.

    PubMed

    Toma, Luiza; Mathijs, Erik

    2007-04-01

    This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.

  18. The profitability of automatic milking on Dutch dairy farms.

    PubMed

    Bijl, R; Kooistra, S R; Hogeveen, H

    2007-01-01

    Several studies have reported on the profitability of automatic milking based on different simulation models, but a data-based study using actual farm data has been lacking. The objective of this study was to analyze the profitability of dairy farms having an automatic milking system (AMS) compared with farms using a conventional milking system (CMS) based on real accounting data. In total, 62 farms (31 using an AMS and 31 using a CMS) were analyzed for the year 2003 in a case control study. Differences between the years 2002 and 2003 also were analyzed by comparing a subgroup of 16 farms with an AMS and 16 farms with a CMS. Matching was based on the time of investment in a milking system (same year), the total milk production per year, and intensity of land use (kg/ha). Results from 2003 showed that the farms with an AMS used, on average, 29% less labor than farms with a CMS. In contrast, farms using a CMS grew faster (37,132 kg of milk quota and 5 dairy cows) than farms with an AMS (-3,756 kg milk quota and 0.5 dairy cows) between 2002 and 2003. Dairy farmers with a CMS had larger (euro7,899) revenues than those with an AMS. However, no difference in the margin on dairy production was detected, partly because of numerically greater (euro6,822) variable costs on CMS farms. Dairy farms were compared financially based on the amount of money that was available for rent, depreciation, interest, labor, and profit (RDILP). The CMS farms had more money (euro15,566) available for RDILP than the AMS farms. This difference was caused by larger fixed costs (excluding labor) for the AMS farms, larger contractor costs (euro6,422), and larger costs for gas, water, and electricity (euro1,549). Differences in costs for contractors and for gas, water, and electricity were statistically significant. When expressed per full-time employee, AMS farms had greater revenues, margins, and gross margins per full-time employee than did CMS farms. This resulted in a substantially greater

  19. Farm Management Basic Core Curriculum. Kansas Postsecondary Farm and Ranch Management Project.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    Thirty-five units of instruction are included in this core curriculum in farm management for postsecondary farm and ranch management programs. Units of instruction are divided into 12 instructional areas: (1) Introduction to Financial Management, (2) Farm Business Arrangement, (3) Credit Management, (4) Budgeting, (5) Recordkeeping, (6) Record…

  20. The Extent of Off-Farm Employment and Its Impact on Farm Women.

    ERIC Educational Resources Information Center

    Danes, Sharon M.; Keskinen, Susan M.

    1990-01-01

    Surveys off-farm employment of farm women and its impact on their lives. Describes survey data illustrating financial hardships experienced by working farm women. Describes imbalance between work and leisure as major source of dissatisfaction. Suggests service providers recognize women's "role overload" and its effects on families. (TES)

  1. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  2. Farm Mapping to Assist, Protect, and Prepare Emergency Responders: Farm MAPPER.

    PubMed

    Reyes, Iris; Rollins, Tami; Mahnke, Andrea; Kadolph, Christopher; Minor, Gerald; Keifer, Matthew

    2014-01-01

    Responders such as firefighters and emergency medical technicians who respond to farm emergencies often face complex and unknown environments. They may encounter hazards such as fuels, solvents, pesticides, caustics, and exploding gas storage cylinders. Responders may be unaware of dirt roads within the farm that can expedite their arrival at critical sites or snow-covered manure pits that act as hidden hazards. A response to a farm, unless guided by someone familiar with the operation, may present a risk to responders and post a challenge in locating the victim. This project explored the use of a Web-based farm-mapping application optimized for tablets and accessible via easily accessible on-site matrix barcodes, or quick response codes (QR codes), to provide emergency responders with hazard and resource information to agricultural operations. Secured portals were developed for both farmers and responders, allowing both parties to populate and customize farm maps with icons. Data were stored online and linked to QR codes attached to mailbox posts where emergency responders may read them with a mobile device. Mock responses were conducted on dairy farms to test QR code linking efficacy, Web site security, and field usability. Findings from farmer usability tests showed willingness to enter data as well as ease of Web site navigation and data entry even with farmers who had limited computer knowledge. Usability tests with emergency responders showed ease of QR code connectivity to the farm maps and ease of Web site navigation. Further research is needed to improve data security as well as assess the program's applicability to nonfarm environments and integration with existing emergency response systems. The next phases of this project will expand the program for regional and national use, develop QR code-linked, Web-based extrication guidance for farm machinery for victim entrapment rescue, and create QR code-linked online training videos and materials for limited

  3. Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines

    NASA Astrophysics Data System (ADS)

    Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.

    1983-09-01

    The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.

  4. Farm Population of the United States: 1976. Current Population Reports: Farm Population.

    ERIC Educational Resources Information Center

    Banks, Vera J.; And Others

    Prepared cooperatively by the Bureau of the Census and the Economic Research Service of the U.S. DeparLment of Agriculture, this document presents narrative and tabular data on: demographic and social characteristics of the farm population; economic characteristics of the farm population; revision of farm population processing procedures; and…

  5. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    The effect of feeding three commercially available diets manufactured by three U.S. feed companies on production characteristics and body composition of juvenile cobia Rachycentron canadum reared in recirculating aquaculture systems (RAS) was evaluated in a 57 d growth trial. Juvenile cobia (26.7 +...

  6. Modeled Effectiveness of Ventilation with Contaminant Control Devices on Indoor Air Quality in a Swine Farrowing Facility

    PubMed Central

    Anthony, T. Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M.

    2016-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5°C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s−1 (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures. PMID:24433305

  7. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    PubMed

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  8. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling.

    PubMed

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm's capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate 'eco-efficiency' score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental 'sustainability' of intensive dairy farming

  9. Energy Economics of Farm Biogas in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could bemore » used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.« less

  10. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  11. Projecting carbon footprint of Canadian dairy farms under future climate conditions with the integrated farm system model

    USDA-ARS?s Scientific Manuscript database

    Dairy farms are an important sector of Canadian agriculture, and there is an on-going effort to assess their environmental impact. In Canada, like many northern areas of the world, climate change is expected to increase agricultural productivity. This will likely come along with changes in environme...

  12. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  13. Investigation of sludge re-circulating clarifiers design and optimization through numerical simulation.

    PubMed

    Davari, S; Lichayee, M J

    2003-01-01

    In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs.

  14. The effects of farm management practices on liver fluke prevalence and the current internal parasite control measures employed on Irish dairy farms.

    PubMed

    Selemetas, Nikolaos; Phelan, Paul; O'Kiely, Padraig; de Waal, Theo

    2015-01-30

    (P<0.05) in the use of triclabendazole and albendazole between positive and negative farms, with triclabendazole use being more common in positive farms. This study highlighted differences in dairy management practices between Irish farms with dairy herds exposed or not exposed to liver fluke and stressed the need of fine-scale mapping of the disease patterns even at farm level to increase the accuracy of risk models. Also, comprehensive advice and professional support services to farmers on appropriate farm management practices are very important for an effective anthelmintic control strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recirculating cross-correlation detector

    DOEpatents

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.

  16. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  17. Farm Household Survival Strategies and Diversification on Marginal Farms

    ERIC Educational Resources Information Center

    Meert, H.; Van Huylenbroeck, G.; Vernimmen, T.; Bourgeois, M.; van Hecke, E.

    2005-01-01

    On marginal farms, and in agriculture in general, sustainability is largely guaranteed by a broad range of survival strategies, closely interlinked and embedded in the household structure of typical family farms. This paper reports results of a socio-economic study carried out among Belgian farmers, focusing specifically on the opportunities…

  18. Automatic milking systems, farm size, and milk production.

    PubMed

    Rotz, C A; Coiner, C U; Soder, K J

    2003-12-01

    Automatic milking systems (AMS) offer relief from the demanding routine of milking. Although many AMS are in use in Europe and a few are used in the United States, the potential benefit for American farms is uncertain. A farm-simulation model was used to determine the long-term, whole-farm effect of implementing AMS on farm sizes of 30 to 270 cows. Highest farm net return to management and unpaid factors was when AMS were used at maximal milking capacity. Adding stalls to increase milking frequency and possibly increase production generally did not improve net return. Compared with new traditional milking systems, the greatest potential economic benefit was a single-stall AMS on a farm size of 60 cows at a moderate milk production level (8600 kg/cow). On other farm sizes using single-stall type robotic units, losses in annual net return of 0 dollars to 300 dollars/cow were projected, with the greatest losses on larger farms and at high milk production (10,900 kg/cow). Systems with one robot serving multiple stalls provided a greater net return than single-stall systems, and this net return was competitive with traditional parlors for 50- to 130-cow farm sizes. The potential benefit of AMS was improved by 100 dollars/cow per year if the AMS increased production an additional 5%. A 20% reduction in initial equipment cost or doubling milking labor cost also improved annual net return of an AMS by up to 100 dollars/cow. Annual net return was reduced by 110 dollars/cow, though, if the economic life of the AMS was reduced by 3 yr for a more rapid depreciation than that normally used with traditional milking systems. Thus, under current assumptions, the economic return for an AMS was similar to that of new parlor systems on smaller farms when the milking capacity of the AMS was well matched to herd size and milk production level.

  19. Wind Farm LES Simulations Using an Overset Methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas; Yellapantula, Shashank

    2017-11-01

    Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.

  20. Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland

    Treesearch

    Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen Deng

    2012-01-01

    Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...

  1. Centralization of dairy farming facilities for improved economics and environmental quality.

    PubMed

    Inaba, Rokuta; Furuichi, Tohru; Komatsu, Toshihiro; Tanikawa, Noboru; Ishii, Kazuei

    2009-01-01

    In Japan, most farm animal excreta has been stored directly on farmland. Runoff from this storage has often caused water pollution. Biogasification is anticipated as an important technology to manage excreta properly, but complex problems hinder its introduction. Economic aspects of management have been especially difficult for dairy farmers. For this study, structural problems regarding introduction of biogasification into dairy farming were identified. Subsequently, a desirable system of dairy farming including biogasification was suggested, and an evaluation model of the financial balance was constructed. A case study using current financial balances of several systems of dairy farming was evaluated using the constructed model and actual data. The systems were based on several policy alternatives including the suggested system mentioned above. Results show that a farmer can obtain sufficient income from a system featuring centralization of dairy housing and biogasification facilities and coordinated management by over six farmers.

  2. Neither "Family" nor "Corporate" Farming: Australian Tomato Growers as Farm Family Entrepreneurs

    ERIC Educational Resources Information Center

    Pritchard, Bill; Burch, David; Lawrence, Geoffrey

    2007-01-01

    For the past two decades there has been much debate about the future of family farming. The basic question on which this debate has turned is whether current pressures on family farm systems should be understood as symptomatic of a terminal condition, in which farmers are replaced progressively by corporate ownership; or whether family farms will…

  3. Farm Population of the United States: 1971. Current Population Reports: Farm Population.

    ERIC Educational Resources Information Center

    Bureau of the Census (DOC), Suitland, MD. Population Div.

    Based on data derived from the Current Population Survey of the Bureau of the Census, this statistical report presents demographic and labor force characteristics of the U.S. farm population and comparisons of the farm and nonfarm populations. Tabular data are presented as follows: (1) U.S. Population, Total and Farm: April 1960 and 1971; (2)…

  4. Farm Population of the United States: 1972. Current Population Reports: Farm Population.

    ERIC Educational Resources Information Center

    Bureau of the Census (DOC), Suitland, MD. Population Div.

    Based on data derived from the Current Population Survey of the Bureau of Census, this statistical report presents demographic and labor force characteristics of the U.S. farm population and comparisons of the farm and nonfarm populations. Tabular data are presented as follows: (1) U.S. Population, Total and Farm: April 1960 to 1972; (2) Persons…

  5. cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate.

    PubMed

    Clevert, Djork-Arné; Mitterecker, Andreas; Mayr, Andreas; Klambauer, Günter; Tuefferd, Marianne; De Bondt, An; Talloen, Willem; Göhlmann, Hinrich; Hochreiter, Sepp

    2011-07-01

    Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, 'cn.FARMS', which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html.

  6. Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms

    NASA Astrophysics Data System (ADS)

    Emre Yilmaz, Ali; Meyers, Johan

    2014-06-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.

  7. Ammonia-oxidizing bacteria and archaea within biofilters of a commercial recirculating marine aquaculture system.

    PubMed

    Huang, Zhitao; Jiang, Yuli; Song, Xiefa; Hallerman, Eric; Peng, Lei; Dong, Dengpan; Ma, Teng; Zhai, Jieming; Li, Wensheng

    2018-02-10

    While biofilters are widely used to metabolize ammonia and other wastes in marine recirculating aquaculture systems, the ammonia-oxidizing bacterial and archaeal communities have not been characterized across a diversity of production systems. Using a metagenomics approach, we characterized the ammonia-oxidizing microbiological community of biofilters in a commercial recirculating marine aquaculture system producing hybrid grouper (Epinephelus lanceolatus × E. fuscoguttatus). Cloning and sequencing of the amoA gene showed that nitrifying bacteria included Nitrosomonas europea, N. stercoris, N. cryotolerans, N. eutropha, N. estuarii, eight strains of N. marina, and 15 strains not associated with described species. Nitrifying archaea included eight strains of Nitrosopumilus maritimus, N. koreensis, N. piranensis, N. adriaticus, undescribed congeners, and other undescribed archaea. The species composition of the bacterial and especially the archaeal communities was beyond that yet reported for aquaculture biofilters. While ammonia flux through the respective communities has yet to be estimated, the diverse environmental adaptations of the bacterial and archaeal communities suggest resilience of function under a range of environmental conditions.

  8. End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Meot, F.; Brooks, S.

    2015-05-03

    This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project

  9. The Relationship of Dairy Farm Eco-Efficiency with Intensification and Self-Sufficiency. Evidence from the French Dairy Sector Using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling

    PubMed Central

    Soteriades, Andreas Diomedes; Stott, Alistair William; Moreau, Sindy; Charroin, Thierry; Blanchard, Melanie; Liu, Jiayi; Faverdin, Philippe

    2016-01-01

    We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy

  10. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  11. Efficiency of dairy farms participating and not participating in veterinary herd health management programs.

    PubMed

    Derks, Marjolein; Hogeveen, Henk; Kooistra, Sake R; van Werven, Tine; Tauer, Loren W

    2014-12-01

    This paper compares farm efficiencies between dairies who were participating in a veterinary herd health management (VHHM) program with dairies not participating in such a program, to determine whether participation has an association with farm efficiency. In 2011, 572 dairy farmers received a questionnaire concerning the participation and execution of a VHHM program on their farms. Data from the questionnaire were combined with farm accountancy data from 2008 through 2012 from farms that used calendar year accounting periods, and were analyzed using Stochastic Frontier Analysis (SFA). Two separate models were specified: model 1 was the basic stochastic frontier model (output: total revenue; input: feed costs, land costs, cattle costs, non-operational costs), without explanatory variables embedded into the efficiency component of the error term. Model 2 was an expansion of model 1 which included explanatory variables (number of FTE; total kg milk delivered; price of concentrate; milk per hectare; cows per FTE; nutritional yield per hectare) inserted into the efficiency component of the joint error term. Both models were estimated with the financial parameters expressed per 100 kg fat and protein corrected milk and per cow. Land costs, cattle costs, feed costs and non-operational costs were statistically significant and positive in all models (P<0.01). Frequency distributions of the efficiency scores for the VHHM dairies and the non-VHHM dairies were plotted in a kernel density plot, and differences were tested using the Kolmogorov-Smirnov two-sample test. VHHM dairies had higher total revenue per cow, but not per 100 kg milk. For all SFA models, the difference in distribution was not statistically different between VHHM dairies and non-VHHM dairies (P values 0.94, 0.35, 0.95 and 0.89 for the basic and complete model per 100 kg fat and protein corrected milk and per cow respectively). Therefore we conclude that with our data farm participation in VHHM is not related

  12. Mukhabarah as Sharia Financing Model in Beef Cattle Farm Entrepise

    NASA Astrophysics Data System (ADS)

    Asnawi, A.; Amrawaty, A. A.; Nirwana

    2018-02-01

    Financing constraints on beef cattle farm nowadays have received attention by the government through distributed various assistance programs and program loans through implementing banks. The existing financing schemes are all still conventional yet sharia-based. The purpose of this research is to formulate financing pattern for sharia beef cattle farm. A qualitative and descriptive approach is used to formulate the pattern by considering the profit-sharing practices of the beef cattle farmers. The results of this study have formulated a financing pattern that integrates government, implementing banks, beef cattle farmers group and cooperative as well as breeders as its members. This pattern of financing is very accommodating of local culture that develops in rural communities. It is expected to be an input, especially in formulating a business financing policy Sharia-based beef cattle breeding.

  13. Can tidal energy farms create temperature fronts in the coastal ocean?

    NASA Astrophysics Data System (ADS)

    Shapiro, G. I.

    2012-04-01

    Although an industrial scale tidal farm comprising a large set of submerged turbines has not been built yet, tidal power is considered to be one of potential sources of renewable energy in the future. For example, India plans to install a 50MW tidal farm in the Gulf of Kutch which could be further expanded to deliver more than 200MW. As tidal stream generators extract kinetic energy from the ocean currents, they change the circulation pattern and hence affect the marine environment. Recent research has shown ( Shapiro, 2011, Neill et al., 2009) that a tidal farm can modify currents and sediment transport outside the farm as far as up to a hundred kilometres. This paper studies the potential effect of a tidal farm on the temperature structure in a shallow sea using a 3D ocean model POLCOMS which was modified to include effects of kinetic energy extraction as detailed in (Shapiro, 2011). The model is set up in the Celtic Sea known for its high levels of tidal energy. The model is driven by 15 tidal constituents and the meteo forcing. Effects of tidal farms of varying sizes and power capacities (from 50 MW to 1500MW) have been studied during summer months. The simulated farms are placed in various locations north of the Cornish coast. It has been shown that even smaller farms can modify temperature distribution as far as a few tens of kilometres from the farm, and sometimes generate localised temperature fronts. This effect is particularly strong during the month of June when the fronts penetrate from surface to the seabed. The fronts are more pronounced during the spring tides, however they are still seen during the neaps. As the seasonal thermocline strengthens towards the end of summer, the fronts are mostly seen in the upper ocean layer, with warmer waters in the area of the farm and cooler waters outside the farm. The physical mechanism of front generation is linked to abrupt changes in the current patterns due to energy extraction from the ocean. The currents

  14. Economic and environmental feasibility of a perennial cow dairy farm.

    PubMed

    Rotz, C A; Zartman, D L; Crandall, K L

    2005-08-01

    More efficient and economical production systems are needed to improve the sustainability of dairy farms. One concept to consider is using perennial cows. Perennial cows are those that maintain a relatively high milk production for >or=2 yr without going through the typical dry period followed by calving. Farm records show that some cows have produced over 20 kg/d after 4 yr of continuous lactation. A farm simulation model was used to evaluate the long-term performance, environmental impact, and economics of a conceptual perennial cow production system on a typical dairy farm in Pennsylvania. Compared with a traditional 100-cow farm with replacement heifers produced on the farm, a perennial herd of 100 cows and purchased replacements provided environmental benefit but sustained a substantial economic loss. However, increasing the perennial herd to 128 cows better utilized the feed produced on the farm. Compared with the traditional 100-cow farm, use of the perennial 128-cow herd reduced supplemental protein and mineral feed purchases by 38%, increased annual milk sales by 21%, reduced nitrogen losses by 17%, maintained a phosphorus balance, and increased annual net return to farm management by 3200 dollars. A traditional 120-cow dairy farm with purchased replacements also used a similar amount of farm-produced feed. Compared with this option, the farm with 128 perennial cows reduced protein and mineral feed purchases by 36%, maintained similar annual milk sales, increased manure production by 7%, reduced N losses by 10%, and increased annual net return by 12,700 dollars. The economic feasibility of the perennial-cow dairy farm was very sensitive to the milk production maintained by the perennial herd and market prices for milk and perennial replacement animals. The analysis was relatively insensitive to the assumed useful life of perennial cows as long as they could be maintained in the herd for at least 3 yr. Thus, a perennial cow production system can improve the

  15. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System

    PubMed Central

    Sawvel, Russell A.; Park, Jae Hong; Anthony, T. Renée

    2016-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion

  16. Health effects of agrochemicals among farm workers in commercial farms of Kwekwe district, Zimbabwe

    PubMed Central

    Magauzi, Regis; Mabaera, Bigboy; Rusakaniko, Simbarashe; Chimusoro, Anderson; Ndlovu, Nqobile; Tshimanga, Mufuta; Shambira, Gerald; Chadambuka, Addmore; Gombe, Notion

    2011-01-01

    Introduction Farm workers are at a very high risk of occupational diseases due to exposure to pesticides resulting from inadequate education, training and safety systems. The farm worker spends a lot of time exposed to these harmful agrochemicals. Numerous acute cases with symptoms typical of agrochemical exposure were reported from the commercial farms. We assessed the health effects of agrochemicals in farm workers in commercial farms of Kwekwe District (Zimbabwe), in 2006. Methods An analytical cross sectional study was conducted amongst a sample of 246 farm workers who handled agrochemicals when discharging their duties in the commercial farms. Plasma cholinesterase activity in blood specimens obtained from farm workers was measured using spectrophotometry to establish levels of poisoning by organophosphate and/or carbamates. Information on the knowledge, attitudes and practices of farm workers on agrochemicals use was collected using a pre-tested interviewer administered questionnaire. Bivariate and multivariate analyses were conducted to determine factors that were associated with abnormal cholinesterase activity. Results The prevalence of organophosphate poisoning, indicated by cholinesterase activity of 75% or less, was 24.1%. The median period of exposure to agrochemicals was 3 years (Q1:=1 year, Q3:=7 years). Ninety eight (41.5%) farm workers knew the triangle colour code for the most dangerous agrochemicals. Not being provided with personal protective equipment (OR 2.00; 95% CI: 1.07 – 3.68) and lack of knowledge of the triangle colour code for most dangerous agrochemicals (OR 2.02; 95% CI: 1.02 – 4.03) were significantly associated with abnormal cholinesterase activity. Conclusion There was organophosphate poisoning in the commercial farms. Factors that were significantly associated with the poisoning were lack of protective clothing and lack of knowledge of the triangle colour code for most dangerous agrochemicals. We recommended intensive health

  17. Health effects of agrochemicals among farm workers in commercial farms of Kwekwe district, Zimbabwe.

    PubMed

    Magauzi, Regis; Mabaera, Bigboy; Rusakaniko, Simbarashe; Chimusoro, Anderson; Ndlovu, Nqobile; Tshimanga, Mufuta; Shambira, Gerald; Chadambuka, Addmore; Gombe, Notion

    2011-01-01

    Farm workers are at a very high risk of occupational diseases due to exposure to pesticides resulting from inadequate education, training and safety systems. The farm worker spends a lot of time exposed to these harmful agrochemicals. Numerous acute cases with symptoms typical of agrochemical exposure were reported from the commercial farms. We assessed the health effects of agrochemicals in farm workers in commercial farms of Kwekwe District (Zimbabwe), in 2006. An analytical cross sectional study was conducted amongst a sample of 246 farm workers who handled agrochemicals when discharging their duties in the commercial farms. Plasma cholinesterase activity in blood specimens obtained from farm workers was measured using spectrophotometry to establish levels of poisoning by organophosphate and/or carbamates. Information on the knowledge, attitudes and practices of farm workers on agrochemicals use was collected using a pre-tested interviewer administered questionnaire. Bivariate and multivariate analyses were conducted to determine factors that were associated with abnormal cholinesterase activity. The prevalence of organophosphate poisoning, indicated by cholinesterase activity of 75% or less, was 24.1%. The median period of exposure to agrochemicals was 3 years (Q(1):=1 year, Q(3):=7 years). Ninety eight (41.5%) farm workers knew the triangle colour code for the most dangerous agrochemicals. Not being provided with personal protective equipment (OR 2.00; 95% CI: 1.07 - 3.68) and lack of knowledge of the triangle colour code for most dangerous agrochemicals (OR 2.02; 95% CI: 1.02 - 4.03) were significantly associated with abnormal cholinesterase activity. There was organophosphate poisoning in the commercial farms. Factors that were significantly associated with the poisoning were lack of protective clothing and lack of knowledge of the triangle colour code for most dangerous agrochemicals. We recommended intensive health education and training of farm workers on

  18. H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, G.; Jalalzadeh, A.

    2010-12-01

    The new H2A Biomethane model was developed to estimate the levelized cost of biomethane by using the framework of the vetted original H2A models for hydrogen production and delivery. For biomethane production, biogas from sources such as dairy farms and landfills is upgraded by a cleanup process. The model also estimates the cost to compress and transport the product gas via the pipeline to export it to the natural gas grid or any other potential end-use site. Inputs include feed biogas composition and cost, required biomethane quality, cleanup equipment capital and operations and maintenance costs, process electricity usage and costs,more » and pipeline delivery specifications.« less

  19. Impacts of an offshore wind farm on the lower marine atmosphere

    NASA Astrophysics Data System (ADS)

    Volker, P. J.; Huang, H.; Capps, S. B.; Badger, J.; Hahmann, A. N.; Hall, A. D.

    2013-12-01

    Due to a continuing increase in energy demand and heightened environmental consciousness, the State of California is seeking out more environmentally-friendly energy resources. Strong and persistent winds along California's coast can be harnessed effectively by current wind turbine technology, providing a promising source of alternative energy. Using an advanced wind farm parameterization implemented in the Weather Research & Forecast model, we investigate the potential impacts of a large offshore wind farm on the lower marine atmosphere. Located offshore of the Sonoma Coast in northern California, this theoretical wind farm includes 200-7 megawatt, 125 m hub height wind turbines which are able to provide a total of 1.4 TW of power for use in neighboring cities. The wind turbine model (i.e., the Explicit Wake Parameterization originally developed at the Danish Technical University) acts as a source of drag where the sub-grid scale velocity deficit expansion is explicitly described. A swath consisting of hub-height velocity deficits and temperature and moisture anomalies extends more than 100 km downstream of the wind farm location. The presence of the large modern wind farm also creates flow distortion upstream in conjunction with an enhanced vertical momentum and scalar transport.

  20. Farm and cow-level prevalence of bovine digital dermatitis on dairy farms in Taranaki, New Zealand.

    PubMed

    Yang, D A; Heuer, C; Laven, R; Vink, W D; Chesterton, R N

    2017-09-01

    The aims of this cross-sectional study were to investigate the herd and cow-level prevalence of bovine digital dermatitis (BDD) in dairy farms in the northern Taranaki region of New Zealand, and to identify whether there was any spatial clustering of herds with the disease. A survey of 224 dairy farms in the northern Taranaki region of New Zealand was undertaken from September 2014 to February 2015. Following training in robust criteria to confirm BDD visually, a technician inspected the rear feet of every milking cow on the farms during milking. The identity of cows with lesions and the feet involved were recorded. The proportion of cows affected among the inspected population (cow-level prevalence), the proportion of a herd affected (farm-level prevalence), and proportion of farms with ≥1 cow with lesions, were calculated. A bivariate K function analysis was then used to assess whether farms with ≥1 cow with lesions were clustered, after accounting for the distribution of the farms involved in the study. Bovine digital dermatitis lesions were observed on 143/224 (63.8 (95% CI=57.5-70.1)%) farms. Within-farm prevalence was 0% on 81 (36.2%) farms, between >0 and <3% on 120 (53.5%) farms, with a maximum prevalence of 12.7% on one farm. Overall, cow-level prevalence was 707/60,455 (1.2 (95% CI=0.9-3.0)%), and on affected farms was 707/41,116 (1.7 (95% CI=1.4-2.1)%). In affected cows, 268/707 (37.9%) had a lesion on left foot only, 262/707 (37.1%) on the right foot only and 177/707 (25.0%) on both feet. The K function analysis showed no evidence of clustering of farms with BDD. Bovine digital dermatitis was widespread among the survey farms, but there was no evidence that there was any clustering of herds with BDD. The cow-level prevalence on affected farms was much lower than reported elsewhere. Although the prevalence at the cow level was low, if these data are representative of other regions of New Zealand, BDD could easily become a major problem on dairy farms