Science.gov

Sample records for modeling animal movement

  1. Modeling interdependent animal movement in continuous time.

    PubMed

    Niu, Mu; Blackwell, Paul G; Skarin, Anna

    2016-06-01

    This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals. PMID:26812666

  2. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  3. On modeling animal movements using Brownian motion with measurement error.

    PubMed

    Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun

    2014-02-01

    Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation. PMID:24669719

  4. Mapping behavioral landscapes for animal movement: a finite mixture modeling approach

    USGS Publications Warehouse

    Tracey, Jeff A.; Zhu, Jun; Boydston, Erin E.; Lyren, Lisa M.; Fisher, Robert N.; Crooks, Kevin R.

    2013-01-01

    Because of its role in many ecological processes, movement of animals in response to landscape features is an important subject in ecology and conservation biology. In this paper, we develop models of animal movement in relation to objects or fields in a landscape. We take a finite mixture modeling approach in which the component densities are conceptually related to different choices for movement in response to a landscape feature, and the mixing proportions are related to the probability of selecting each response as a function of one or more covariates. We combine particle swarm optimization and an Expectation-Maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. We use this approach to analyze data for movement of three bobcats in relation to urban areas in southern California, USA. A behavioral interpretation of the models revealed similarities and differences in bobcat movement response to urbanization. All three bobcats avoided urbanization by moving either parallel to urban boundaries or toward less urban areas as the proportion of urban land cover in the surrounding area increased. However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided urbanization at lower densities and responded strictly by moving parallel to the urban edge. The other two bobcats, which were both residents and occupied similar geographic areas, avoided urban areas using a combination of movements parallel to the urban edge and movement toward areas of less urbanization. However, the resident female appeared to exhibit greater repulsion at lower levels of urbanization than the resident male, consistent with empirical observations of bobcats in southern California. Using the parameterized finite mixture models, we mapped behavioral states to geographic space, creating a representation of a behavioral landscape. This approach can provide guidance for conservation planning based on analysis of animal movement data using

  5. a Geo-Visual Analytics Approach to Biological Shepherding: Modelling Animal Movements and Impacts

    NASA Astrophysics Data System (ADS)

    Benke, K. K.; Sheth, F.; Betteridge, K.; Pettit, C. J.; Aurambout, J.-P.

    2012-07-01

    The lamb industry in Victoria is a significant component of the state economy with annual exports in the vicinity of 1 billion. GPS and visualisation tools can be used to monitor grazing animal movements at the farm scale and observe interactions with the environment. Modelling the spatial-temporal movements of grazing animals in response to environmental conditions provides input for the design of paddocks with the aim of improving management procedures, animal performance and animal welfare. The term "biological shepherding" is associated with the re-design of environmental conditions and the analysis of responses from grazing animals. The combination of biological shepherding with geo-visual analytics (geo-spatial data analysis with visualisation) provides a framework for improving landscape design and supports research in grazing behaviour in variable landscapes, heat stress avoidance behaviour during summer months, and modelling excreta distributions (with respect to nitrogen emissions and nitrogen return for fertilising the paddock). Nitrogen losses due to excreta are mainly in the form of gaseous emissions to the atmosphere and leaching into the groundwater. In this study, background and context are provided in the case of biological shepherding and tracking animal movements. Examples are provided of recent applications in regional Australia and New Zealand. Based on experimental data and computer simulation, and using data visualisation and feature extraction, it was demonstrated that livestock excreta are not always randomly located, but concentrated around localised gathering points, sometimes separated by the nature of the excretion. Farmers require information on the nitrogen losses in order to reduce emissions to meet local and international nitrogen leaching and greenhouse gas targets and to improve the efficiency of nutrient management.

  6. Uniting Statistical and Individual-Based Approaches for Animal Movement Modelling

    PubMed Central

    Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel

    2014-01-01

    The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems. PMID:24979047

  7. Effects of Temporal Resolution on an Inferential Model of Animal Movement

    PubMed Central

    Postlethwaite, Claire M.; Dennis, Todd E.

    2013-01-01

    Recently, there has been much interest in describing the behaviour of animals by fitting various movement models to tracking data. Despite this interest, little is known about how the temporal ‘grain’ of movement trajectories affects the outputs of such models, and how behaviours classified at one timescale may differ from those classified at other scales. Here, we present a study in which random-walk state-space models were fit both to nightly geospatial lifelines of common brushtail possums (Trichosurus vulpecula) and synthetic trajectories parameterised from empirical observations. Observed trajectories recorded by GPS collars at 5-min intervals were sub-sampled at periods varying between 10 and 60 min, to approximate the effect of collecting data at lower sampling frequencies. Markov-Chain Monte-Carlo fitting techniques, using information about movement rates and turning angles between sequential fixes, were employed using a Bayesian framework to assign distinct behavioural states to individual location estimates. We found that in trajectories with higher temporal granularities behaviours could be clearly differentiated into ‘slow-area-restricted’ and ‘fast-transiting’ states, but for trajectories with longer inter-fix intervals this distinction was markedly less obvious. Specifically, turning-angle distributions varied from being highly peaked around either or at fine temporal scales, to being uniform across all angles at low sampling intervals. Our results highlight the difficulty of comparing model results amongst tracking-data sets that vary substantially in temporal grain, and demonstrate the importance of matching the observed temporal resolution of tracking devices to the timescales of behaviours of interest, otherwise inter-individual comparisons of inferred behaviours may be invalid, or important biological information may be obscured. PMID:23671558

  8. Effects of temporal resolution on an inferential model of animal movement.

    PubMed

    Postlethwaite, Claire M; Dennis, Todd E

    2013-01-01

    Recently, there has been much interest in describing the behaviour of animals by fitting various movement models to tracking data. Despite this interest, little is known about how the temporal 'grain' of movement trajectories affects the outputs of such models, and how behaviours classified at one timescale may differ from those classified at other scales. Here, we present a study in which random-walk state-space models were fit both to nightly geospatial lifelines of common brushtail possums (Trichosurus vulpecula) and synthetic trajectories parameterised from empirical observations. Observed trajectories recorded by GPS collars at 5-min intervals were sub-sampled at periods varying between 10 and 60 min, to approximate the effect of collecting data at lower sampling frequencies. Markov-Chain Monte-Carlo fitting techniques, using information about movement rates and turning angles between sequential fixes, were employed using a Bayesian framework to assign distinct behavioural states to individual location estimates. We found that in trajectories with higher temporal granularities behaviours could be clearly differentiated into 'slow-area-restricted' and 'fast-transiting' states, but for trajectories with longer inter-fix intervals this distinction was markedly less obvious. Specifically, turning-angle distributions varied from being highly peaked around either 0° or 180° at fine temporal scales, to being uniform across all angles at low sampling intervals. Our results highlight the difficulty of comparing model results amongst tracking-data sets that vary substantially in temporal grain, and demonstrate the importance of matching the observed temporal resolution of tracking devices to the timescales of behaviours of interest, otherwise inter-individual comparisons of inferred behaviours may be invalid, or important biological information may be obscured. PMID:23671558

  9. Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator.

    PubMed

    Bestley, Sophie; Jonsen, Ian D; Hindell, Mark A; Guinet, Christophe; Charrassin, Jean-Benoît

    2013-01-01

    A fundamental goal in animal ecology is to quantify how environmental (and other) factors influence individual movement, as this is key to understanding responsiveness of populations to future change. However, quantitative interpretation of individual-based telemetry data is hampered by the complexity of, and error within, these multi-dimensional data. Here, we present an integrative hierarchical Bayesian state-space modelling approach where, for the first time, the mechanistic process model for the movement state of animals directly incorporates both environmental and other behavioural information, and observation and process model parameters are estimated within a single model. When applied to a migratory marine predator, the southern elephant seal (Mirounga leonina), we find the switch from directed to resident movement state was associated with colder water temperatures, relatively short dive bottom time and rapid descent rates. The approach presented here can have widespread utility for quantifying movement-behaviour (diving or other)-environment relationships across species and systems. PMID:23135676

  10. Multielectrode nerve cuff stimulation of the median nerve produces selective movements in a raccoon animal model.

    PubMed

    Walter, J S; Griffith, P; Sweeney, J; Scarpine, V; Bidnar, M; McLane, J; Robinson, C

    1997-04-01

    In this study, an electrode system consisting of twelve small platinum dot electrodes imbedded in a spiral silicone rubber insulating cuff was used to investigate the feasibility of selective (regional) stimulation of the median nerves of the raccoon. Acute experiments in four raccoons consisted of functional responses observations, isometric force recordings from tendon attachments and postmortem fascicular mapping. Functional responses (elbow, wrist and/or digit flexion, pronation and/or thumb abduction) to selective stimulation were noted as dependent upon cuff electrode configuration (longitudinal tripole with and without field steering, as well as a transverse bipolar arrangement) and current level (threshold, 1/2 maximal, maximal). Muscle force recruitment curves (force as a function of stimulus amplitude) were plotted for flexor digitorum superficialis, flexor digitorum profundus, flexor carpi radialis, palmaris longus and pronator teres of three raccoons. Fascicular maps at the level of the nerve cuff were created indicating the approximate position of innervation to each of the aforementioned muscles, as well as other innervation such as paw fascicles, sensory fascicles, and elbow innervation (such as coracobrachialis). The greatest selectivity was observed at or near threshold current levels. In all four raccoons studied, a threshold electrode choice and stimulation strategy could be identified enabling selective production of either digit flexion, wrist flexion and/or digit and wrist flexion. It was possible to elicit a selective pronation response at threshold in three of the four animals. Selective elbow flexion at threshold could be produced in all four experiments. With stronger currents, additional movements were usually induced. The raccoon therefore appears to be a suitable, if challenging, animal model for further development of not only nerve cuff electrode approaches but perhaps other stimulation electrode technologies prior to human

  11. Balancing direct and indirect sources of navigational information in a leaderless model of collective animal movement.

    PubMed

    Codling, Edward A; Bode, Nikolai W F

    2016-04-01

    Navigation is an important movement process that enables individuals and groups of animals to find targets in space at different spatio-temporal scales. Earlier studies have shown how being in a group can confer navigational advantages to individuals, either through following more experienced leaders or through the pooling of many inaccurate compasses, a process known as the 'many wrongs principle'. However, the exact mechanisms for how information is transferred and used within the group in order to improve both individual- and group-level navigational performance are not fully understood. Here we explore the relative weighting that should be given to different sources of navigational information by an individual within a navigating group at each step of the movement process. Specifically, we consider a direct goal-oriented source of navigational information such as the individual׳s own imperfect knowledge of the target (a 'noisy compass') alongside two indirect sources of navigational information: the previous movement directions of neighbours in the group (social information) and, for the first time in this context, the previous movement direction of the individual (persistence). We assume that all individuals are equal in their abilities and that direct navigational information is prone to higher errors than indirect information. Using computer simulations, we show that in such situations giving a high weighting to either type of indirect navigational information can serve to significantly improve the navigation success of groups. Crucially, we also show that if the quality of social information is reduced, e.g. by an individual׳s limited cognitive abilities, the best navigational strategy for groups assigns a considerable weighting to persistence, a behaviour that is neither social, nor directly aimed at navigating. PMID:26801875

  12. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    NASA Astrophysics Data System (ADS)

    Lee, Victor R.

    2015-04-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.

  13. Maximum-entropy description of animal movement.

    PubMed

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic. PMID:25871054

  14. Maximum-entropy description of animal movement

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.; Subaşı, Yiǧit; Calabrese, Justin M.

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  15. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder.

    PubMed

    Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David; Nielsen, Anders; Mills, Joanna

    2015-10-01

    State-space models (SSM) are often used for analyzing complex ecological processes that are not observed directly, such as marine animal movement. When outliers are present in the measurements, special care is needed in the analysis to obtain reliable location and process estimates. Here we recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous-time t-distributed measurement errors for error-prone data is more robust to outliers and improves the location estimation compared to using discretized-time t-distributed errors (implemented with a Gibbs sampler) or using continuous-time Gaussian errors (as with the Kalman filter). Using TMB, we are able to estimate additional parameters compared to previous methods, all without requiring a substantial increase in computational time. The model implementation is made available through the R package argosTrack. PMID:26649381

  16. Can physical exercise have a protective effect in an animal model of sleep-related movement disorder?

    PubMed

    Esteves, Andrea M; Lopes, Cleide; Frank, Miriam K; Arida, Ricardo M; Frussa-Filho, Roberto; Tufik, Sergio; de Mello, Marco Túlio

    2016-05-15

    The purpose of the present study was to determine whether physical exercise (PE) has a protective effect in an experimental animal model of sleep-related movement disorder (A11 dopaminergic nuclei lesions with 6-OHDA). Rats were divided into four groups (Control PE-CTRL/PE, SHAM/PE, A11 lesion/NPE, A11 lesion/PE). Two experiments were performed: (1) the rats underwent PE before (2 weeks) and after (4 weeks) the A11 lesion; and (2) the rats underwent PE only after (4 weeks) the A11 lesion. Electrode insertion surgery was performed and sleep analyses were conducted over a period of 24h (baseline and after PE) and analyzed in 6 blocks of 4h. The results demonstrated that the A11 lesion produced an increased percentage of wakefulness in the final block of the dark period (3-7am) and a significant enhancement of the number of limb movements (LM) throughout the day. Four weeks of PE was important for reducing the number of LMs in the A11 lesion group in the rats that performed PE before and after the A11 lesion. However, in the analysis of the protective effect of PE on LM, the results showed that the number of LMs was lower at baseline in the group that had performed 2 weeks of PE prior to the A11 lesion than in the group that had not previously performed PE. In conclusion, these findings consistently demonstrate that non-pharmacological manipulations had a beneficial effect on the symptoms of sleep-related movement disorder. PMID:26923163

  17. Movement of regulatory RNA between animal cells

    PubMed Central

    Jose, Antony M.

    2015-01-01

    Summary Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. PMID:26138457

  18. Building the bridge between animal movement and population dynamics

    PubMed Central

    Morales, Juan M.; Moorcroft, Paul R.; Matthiopoulos, Jason; Frair, Jacqueline L.; Kie, John G.; Powell, Roger A.; Merrill, Evelyn H.; Haydon, Daniel T.

    2010-01-01

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction. PMID:20566505

  19. Comparative study between two animal models of extrapyramidal movement disorders: prevention and reversion by pecan nut shell aqueous extract.

    PubMed

    Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E

    2011-08-01

    Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. PMID:21356248

  20. Understanding the dynamical control of animal movement

    NASA Astrophysics Data System (ADS)

    Edwards, Donald

    2008-03-01

    Over the last 50 years, neurophysiologists have described many neural circuits that transform sensory input into motor commands, while biomechanicians and behavioral biologists have described many patterns of animal movement that occur in response to sensory input. Attempts to link these two have been frustrated by our technical inability to record from the necessary neurons in a freely behaving animal. As a result, we don't know how these neural circuits function in the closed loop context of free behavior, where the sensory and motor context changes on a millisecond time-scale. To address this problem, we have developed a software package, AnimatLab (www.AnimatLab.com), that enables users to reconstruct an animal's body and its relevant neural circuits, to link them at the sensory and motor ends, and through simulation, to test their ability to reproduce appropriate patterns of the animal's movements in a simulated Newtonian world. A Windows-based program, AnimatLab consists of a neural editor, a body editor, a world editor, stimulus and recording facilities, neural and physics engines, and an interactive 3-D graphical display. We have used AnimatLab to study three patterns of behavior: the grasshopper jump, crayfish escape, and crayfish leg movements used in postural control, walking, reaching and grasping. In each instance, the simulation helped identify constraints on both nervous function and biomechanical performance that have provided the basis for new experiments. Colleagues elsewhere have begun to use AnimatLab to study control of paw movements in cats and postural control in humans. We have also used AnimatLab simulations to guide the development of an autonomous hexapod robot in which the neural control circuitry is downloaded to the robot from the test computer.

  1. What is the animal doing? Tools for exploring behavioural structure in animal movements.

    PubMed

    Gurarie, Eliezer; Bracis, Chloe; Delgado, Maria; Meckley, Trevor D; Kojola, Ilpo; Wagner, C Michael

    2016-01-01

    Movement data provide a window - often our only window - into the cognitive, social and biological processes that underlie the behavioural ecology of animals in the wild. Robust methods for identifying and interpreting distinct modes of movement behaviour are of great importance, but complicated by the fact that movement data are complex, multivariate and dependent. Many different approaches to exploratory analysis of movement have been developed to answer similar questions, and practitioners are often at a loss for how to choose an appropriate tool for a specific question. We apply and compare four methodological approaches: first passage time (FPT), Bayesian partitioning of Markov models (BPMM), behavioural change point analysis (BCPA) and a fitted multistate random walk (MRW) to three simulated tracks and two animal trajectories - a sea lamprey (Petromyzon marinus) tracked for 12 h and a wolf (Canis lupus) tracked for 1 year. The simulations - in which, respectively, velocity, tortuosity and spatial bias change - highlight the sensitivity of all methods to model misspecification. Methods that do not account for autocorrelation in the movement variables lead to spurious change points, while methods that do not account for spatial bias completely miss changes in orientation. When applied to the animal data, the methods broadly agree on the structure of the movement behaviours. Important discrepancies, however, reflect differences in the assumptions and nature of the outputs. Important trade-offs are between the strength of the a priori assumptions (low in BCPA, high in MRW), complexity of output (high in the BCPA, low in the BPMM and MRW) and explanatory potential (highest in the MRW). The animal track analysis suggests some general principles for the exploratory analysis of movement data, including ways to exploit the strengths of the various methods. We argue for close and detailed exploratory analysis of movement before fitting complex movement models. PMID

  2. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  3. Memory Effects on Movement Behavior in Animal Foraging

    PubMed Central

    Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R. Andrew

    2015-01-01

    An individual’s choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems. PMID:26288228

  4. When to be discrete: The importance of time formulation in understanding animal movement

    USGS Publications Warehouse

    McClintock, Brett T.; Johnson, Devin S.; Hooten, Mevin B.; Ver Hoef, Jay M.; Morales, Juan M.

    2014-01-01

    Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data.

  5. When to be discrete: the importance of time formulation in understanding animal movement.

    PubMed

    McClintock, Brett T; Johnson, Devin S; Hooten, Mevin B; Ver Hoef, Jay M; Morales, Juan M

    2014-01-01

    Animal movement is essential to our understanding of population dynamics, animal behavior, and the impacts of global change. Coupled with high-resolution biotelemetry data, exciting new inferences about animal movement have been facilitated by various specifications of contemporary models. These approaches differ, but most share common themes. One key distinction is whether the underlying movement process is conceptualized in discrete or continuous time. This is perhaps the greatest source of confusion among practitioners, both in terms of implementation and biological interpretation. In general, animal movement occurs in continuous time but we observe it at fixed discrete-time intervals. Thus, continuous time is conceptually and theoretically appealing, but in practice it is perhaps more intuitive to interpret movement in discrete intervals. With an emphasis on state-space models, we explore the differences and similarities between continuous and discrete versions of mechanistic movement models, establish some common terminology, and indicate under which circumstances one form might be preferred over another. Counter to the overly simplistic view that discrete- and continuous-time conceptualizations are merely different means to the same end, we present novel mathematical results revealing hitherto unappreciated consequences of model formulation on inferences about animal movement. Notably, the speed and direction of movement are intrinsically linked in current continuous-time random walk formulations, and this can have important implications when interpreting animal behavior. We illustrate these concepts in the context of state-space models with multiple movement behavior states using northern fur seal (Callorhinus ursinus) biotelemetry data. PMID:25709830

  6. Predicting the Movement Speeds of Animals in Natural Environments.

    PubMed

    Wilson, Robbie S; Husak, Jerry F; Halsey, Lewis G; Clemente, Christofer J

    2015-12-01

    An animal's movement speed affects all behaviors and underlies the intensity of an activity, the time it takes to complete it, and the probability of successfully completing it, but which factors determine how fast or slow an animal chooses to move? Despite the critical importance of an animal's choice of speed (hereafter designated as "speed-choice"), we still lack a framework for understanding and predicting how fast animals should move in nature. In this article, we develop a framework for predicting speed that is applicable to any animal-including humans-performing any behavior where choice of speed occurs. To inspire new research in this area, we (1) detail the main factors likely to affect speed-choice, including organismal constraints (i.e., energetic, physiological, and biomechanical) and environmental constraints (i.e., predation intensity and abiotic factors); (2) discuss the value of optimal foraging theory in developing models of speed-choice; and (3) describe how optimality models might be integrated with the range of potential organismal and environmental constraints to predict speed. We show that by utilizing optimality theory it is possible to provide quantitative predictions of optimal speeds across different ecological contexts. However, the usefulness of any predictive models is still entirely dependent on being able to provide relevant mathematical functions to insert into such models. We still lack basic knowledge about how an animal's speed affects its motor control, maneuverability, observational skills, and vulnerability to predators. Studies exploring these gaps in knowledge will help facilitate the field of optimal performance and allow us to adequately parameterize models predicting the speed-choice of animals, which represents one of the most basic of all behavioral decisions. PMID:26493609

  7. Art In Movement: New Directions in Animation.

    ERIC Educational Resources Information Center

    Halas, John; Manvell, Roger

    Thanks to film, graphic artists can now create over time as well as in space. An essay discusses the influence of cinema on still paintings (e.g., Duchamp's "Nude Descending a Staircase" and the increasing combination of animation and live action in films. New techniques that are available in animation and in special visual effects are explained,…

  8. Analysis and visualization of animal movement

    PubMed Central

    Shamoun-Baranes, Judy; van Loon, E. Emiel; Purves, Ross S.; Speckmann, Bettina; Weiskopf, Daniel; Camphuysen, C. J.

    2012-01-01

    The interdisciplinary workshop ‘Analysis and Visualization of Moving Objects’ was held at the Lorentz Centre in Leiden, The Netherlands, from 27 June to 1 July 2011. It brought together international specialists from ecology, computer science and geographical information science actively involved in the exploration, visualization and analysis of moving objects, such as marine reptiles, mammals, birds, storms, ships, cars and pedestrians. The aim was to share expertise, methodologies, data and common questions between different fields, and to work towards making significant advances in movement research. A data challenge based on GPS tracking of lesser black-backed gulls (Larus fuscus) was used to stimulate initial discussions, cross-fertilization between research groups and to serve as an initial focus for activities during the workshop. PMID:21865243

  9. Crossing regimes of temperature dependence in animal movement.

    PubMed

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. PMID:26854767

  10. Toward a mechanistic understanding of animal migration: incorporating physiological measurements in the study of animal movement

    PubMed Central

    Jachowski, David S.; Singh, Navinder J.

    2015-01-01

    Movements are a consequence of an individual's motion and navigational capacity, internal state variables and the influence of external environmental conditions. Although substantial advancements have been made in methods of measuring and quantifying variation in motion capacity, navigational capacity and external environmental parameters in recent decades, the role of internal state in animal migration (and in movement in general) is comparatively little studied. Recent studies of animal movement in the wild illustrate how direct physiological measurements can improve our understanding of the mechanisms underlying movement decisions. In this review, we synthesize and provide examples of how recent technical advances in the physiology-related fields of energetics, nutrition, endocrinology, immunology and ecotoxicology provide opportunities for direct measurements of physiological state in the study of animal movement. We then propose a framework for practitioners to enable better integration of studies of physiological state into animal movement ecology by assessing the mechanistic role played by physiology as both a driver and a modulator of movement. Finally, we highlight the current limitations and research priorities for better integration of direct measurements of animal physiological state into the study of animal movement. PMID:27293720

  11. A passive integrated transponder system for tracking animal movements

    USGS Publications Warehouse

    Boarman, W.I.; Beigel, M.L.; Goodlett, G.C.; Sazaki, M.

    1999-01-01

    We describe an automated system that uses passive integrated transponder (PIT) tags to track movements of animals past specific locations. The system was designed to operate maintenance free for several months, be secure from vandalism and environmental damage, and record the identity, date, and time of passage of animals past a 2.4-m wide area. We used the system to monitor effectively the movements of 172 desert tortoises (Gopherus agassizii) through 2 storm drain culverts that pass beneath a state highway in the Mojave Desert, California. Four tortoises entered or passed through the culverts on 60 occasions. The system can be easily adapted to other species.

  12. Animal Model of Dermatophytosis

    PubMed Central

    Shimamura, Tsuyoshi; Kubota, Nobuo; Shibuya, Kazutoshi

    2012-01-01

    Dermatophytosis is superficial fungal infection caused by dermatophytes that invade the keratinized tissue of humans and animals. Lesions from dermatophytosis exhibit an inflammatory reaction induced to eliminate the invading fungi by using the host's normal immune function. Many scientists have attempted to establish an experimental animal model to elucidate the pathogenesis of human dermatophytosis and evaluate drug efficacy. However, current animal models have several issues. In the present paper, we surveyed reports about the methodology of the dermatophytosis animal model for tinea corporis, tinea pedis, and tinea unguium and discussed future prospects. PMID:22619489

  13. Discovering loose group movement patterns from animal trajectories

    USGS Publications Warehouse

    Wang, Yuwei; Luo, Ze; Xiong, Yan; Prosser, Diann J.; Newman, Scott H.; Takekawa, John Y.; Yan, Baoping

    2015-01-01

    The technical advances of positioning technologies enable us to track animal movements at finer spatial and temporal scales, and further help to discover a variety of complex interactive relationships. In this paper, considering the loose gathering characteristics of the real-life groups' members during the movements, we propose two kinds of loose group movement patterns and corresponding discovery algorithms. Firstly, we propose the weakly consistent group movement pattern which allows the gathering of a part of the members and individual temporary leave from the whole during the movements. To tolerate the high dispersion of the group at some moments (i.e. to adapt the discontinuity of the group's gatherings), we further scheme the weakly consistent and continuous group movement pattern. The extensive experimental analysis and comparison with the real and synthetic data shows that the group pattern discovery algorithms proposed in this paper are similar to the the real-life frequent divergences of the members during the movements, can discover more complete memberships, and have considerable performance.

  14. Animal models of atherosclerosis

    PubMed Central

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Chen, Li; Uitz, Elisabeth; Bahadori, Babak; Moghadasian, Mohammed H

    2014-01-01

    In this mini-review several commonly used animal models of atherosclerosis have been discussed. Among them, emphasis has been made on mice, rabbits, pigs and non-human primates. Although these animal models have played a significant role in our understanding of induction of atherosclerotic lesions, we still lack a reliable animal model for regression of the disease. Researchers have reported several genetically modified and transgenic animal models that replicate human atherosclerosis, however each of current animal models have some limitations. Among these animal models, the apolipoprotein (apo) E-knockout (KO) mice have been used extensively because they develop spontaneous atherosclerosis. Furthermore, atherosclerotic lesions developed in this model depending on experimental design may resemble humans’ stable and unstable atherosclerotic lesions. This mouse model of hypercholesterolemia and atherosclerosis has been also used to investigate the impact of oxidative stress and inflammation on atherogenesis. Low density lipoprotein (LDL)-r-KO mice are a model of human familial hypercholesterolemia. However, unlike apo E-KO mice, the LDL-r-KO mice do not develop spontaneous atherosclerosis. Both apo E-KO and LDL-r-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. In addition to mice, rabbits have been used extensively particularly to understand the mechanisms of cholesterol-induced atherosclerosis. The present review paper details the characteristics of animal models that are used in atherosclerosis research. PMID:24868511

  15. From birds to butterflies: animal movement patterns and stable isotopes.

    PubMed

    Rubenstein, Dustin R; Hobson, Keith A

    2004-05-01

    Establishing patterns of movement of wild animals is crucial for our understanding of their ecology, life history and behavior, and is a prerequisite for their effective conservation. Advances in the use of stable isotope markers make it possible to track a diversity of animal species in a variety of habitats. This approach is revolutionizing the way in which we make connections between phases of the annual cycle of migratory animals. However, researchers must exercise care in their application of isotopic methods. Here, we review stable isotope patterns in nature and discuss recent tracking applications in a range of taxa. To aid in the interpretation and design of effective and insightful isotope movement studies, we discuss a series of key issues and assumptions. This exciting field will advance rapidly if researchers consider these aspects of study design and interpretation carefully. PMID:16701265

  16. 9 CFR 71.16 - Inspection and certification of poultry or other animals for interstate movement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... poultry or other animals for interstate movement. 71.16 Section 71.16 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.16 Inspection and certification of poultry or other animals for interstate movement. (a) Assistance and facilities. When poultry or other animals...

  17. 9 CFR 71.16 - Inspection and certification of poultry or other animals for interstate movement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... poultry or other animals for interstate movement. 71.16 Section 71.16 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.16 Inspection and certification of poultry or other animals for interstate movement. (a) Assistance and facilities. When poultry or other animals...

  18. 9 CFR 71.16 - Inspection and certification of poultry or other animals for interstate movement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... poultry or other animals for interstate movement. 71.16 Section 71.16 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.16 Inspection and certification of poultry or other animals for interstate movement. (a) Assistance and facilities. When poultry or other animals...

  19. 9 CFR 71.16 - Inspection and certification of poultry or other animals for interstate movement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... poultry or other animals for interstate movement. 71.16 Section 71.16 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.16 Inspection and certification of poultry or other animals for interstate movement. (a) Assistance and facilities. When poultry or other animals...

  20. 9 CFR 71.16 - Inspection and certification of poultry or other animals for interstate movement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... poultry or other animals for interstate movement. 71.16 Section 71.16 Animals and Animal Products ANIMAL... (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.16 Inspection and certification of poultry or other animals for interstate movement. (a) Assistance and facilities. When poultry or other animals...

  1. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  2. Animal Density and Track Counts: Understanding the Nature of Observations Based on Animal Movements

    PubMed Central

    Keeping, Derek; Pelletier, Rick

    2014-01-01

    Counting animals to estimate their population sizes is often essential for their management and conservation. Since practitioners frequently rely on indirect observations of animals, it is important to better understand the relationship between such indirect indices and animal abundance. The Formozov-Malyshev-Pereleshin (FMP) formula provides a theoretical foundation for understanding the relationship between animal track counts and the true density of species. Although this analytical method potentially has universal applicability wherever animals are readily detectable by their tracks, it has long been unique to Russia and remains widely underappreciated. In this paper, we provide a test of the FMP formula by isolating the influence of animal travel path tortuosity (i.e., convolutedness) on track counts. We employed simulations using virtual and empirical data, in addition to a field test comparing FMP estimates with independent estimates from line transect distance sampling. We verify that track counts (total intersections between animals and transects) are determined entirely by density and daily movement distances. Hence, the FMP estimator is theoretically robust against potential biases from specific shapes or patterns of animal movement paths if transects are randomly situated with respect to those movements (i.e., the transects do not influence animals’ movements). However, detectability (the detection probability of individual animals) is not determined simply by daily travel distance but also by tortuosity, so ensuring that all intersections with transects are counted regardless of the number of individual animals that made them becomes critical for an accurate density estimate. Additionally, although tortuosity has no bearing on mean track encounter rates, it does affect encounter rate variance and therefore estimate precision. We discuss how these fundamental principles made explicit by the FMP formula have widespread implications for methods of

  3. Dissemination of parasites by animal movements in small ruminant farms.

    PubMed

    Vasileiou, N G C; Fthenakis, G C; Papadopoulos, E

    2015-09-30

    The present paper discusses the spread of parasites by animal movements in small ruminant farms; it focuses in dissemination of parasitic forms that would lead to subsequent infection of sheep or goats. Systems of small ruminant production involve a component of animal movement (e.g., grazing) as part of routine husbandry, which favors spread of parasitic forms; that refers mainly to parasites of the digestive system (nematodes, trematodes, cestodes, protozoa), as well as helminthes of the respiratory system, although dissemination of the various parasitic forms in the environment would not always result to subsequent infection; external parasites may also be disseminated during movements, e.g., to inhabit wooden poles used in fencing. New livestock into a farm constitutes a biosecurity hazard and the most common means to introducing new parasitic pathogens into a farm; in contemporary small ruminant health management, this contributes in dissemination of anthelmintic resistant parasitic strains; other parasitic disease agents (e.g., mange mites, ticks) may also be spread into a farm that way. Often, especially in small scale farming, visits of rams or bucks take place from one farm to another during the mating season; in such cases, ectoparasites (e.g., mange mites) can be disseminated through direct contact of animals, as well other pathogens (e.g., Toxoplasma gondii, Neospora caninum) via the semen. During transportation of sheep/goats, parasitic forms can also spread, as well as during movement of sheep or goats to slaughterhouses, in which case dogs present in these places would contribute to their dissemination. Spread of life forms of various parasites can also occur from animal species present in the environment of sheep or goats; these include animals present within a farm, stray dogs roaming around a farm (e.g., for spread of Multiceps multiceps, Echinococcus granulosus, Taenia hydatigena, N. caninum), cats commanding the environment of a farm (e.g., for

  4. A new method for discovering behavior patterns among animal movements

    USGS Publications Warehouse

    Wang, Y.; Luo, Ze; Takekawa, J.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A; Balachandran, S.; Yan, B.

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.

  5. A new method for discovering behavior patterns among animal movements

    PubMed Central

    Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping

    2016-01-01

    Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets. PMID:27217810

  6. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  7. Animal models for osteoporosis.

    PubMed

    Turner, R T; Maran, A; Lotinun, S; Hefferan, T; Evans, G L; Zhang, M; Sibonga, J D

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge. PMID:11704974

  8. Animal movement constraints improve resource selection inference in the presence of telemetry error.

    PubMed

    Brost, Brian M; Hooten, Mevin B; Hanks, Ephraim M; Small, Robert J

    2015-10-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines. PMID:26649380

  9. Animal movement constraints improve resource selection inference in the presence of telemetry error

    USGS Publications Warehouse

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  10. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  11. Joint estimation over multiple individuals improves behavioural state inference from animal movement data

    PubMed Central

    Jonsen, Ian

    2016-01-01

    State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone. PMID:26853261

  12. Animal models of ADHD.

    PubMed

    Bari, A; Robbins, T W

    2011-01-01

    Studies employing animal models of attention-deficit/hyperactivity disorder (ADHD) present clear inherent advantages over human studies. Animal models are invaluable tools for the study of underlying neurochemical, neuropathological and genetic alterations that cause ADHD, because they allow relatively fast, rigorous hypothesis testing and invasive manipulations as well as selective breeding. Moreover, especially for ADHD, animal models with good predictive validity would allow the assessment of potential new therapeutics. In this chapter, we describe and comment on the most frequently used animal models of ADHD that have been created by genetic, neurochemical and physical alterations in rodents. We then discuss that an emerging and promising direction of the field is the analysis of individual behavioural differences among a normal population of animals. Subjects presenting extreme characteristics related to ADHD can be studied, thereby avoiding some of the problems that are found in other models, such as functional recovery and unnecessary assumptions about aetiology. This approach is justified by the theoretical need to consider human ADHD as the extreme part of a spectrum of characteristics that are distributed normally in the general population, as opposed to the predominant view of ADHD as a separate pathological category. PMID:21287324

  13. Animal models of fibromyalgia

    PubMed Central

    2013-01-01

    Animal models of disease states are valuable tools for developing new treatments and investigating underlying mechanisms. They should mimic the symptoms and pathology of the disease and importantly be predictive of effective treatments. Fibromyalgia is characterized by chronic widespread pain with associated co-morbid symptoms that include fatigue, depression, anxiety and sleep dysfunction. In this review, we present different animal models that mimic the signs and symptoms of fibromyalgia. These models are induced by a wide variety of methods that include repeated muscle insults, depletion of biogenic amines, and stress. All potential models produce widespread and long-lasting hyperalgesia without overt peripheral tissue damage and thus mimic the clinical presentation of fibromyalgia. We describe the methods for induction of the model, pathophysiological mechanisms for each model, and treatment profiles. PMID:24314231

  14. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity. PMID:25492698

  15. Animal Models of Glaucoma

    PubMed Central

    A. Bouhenni, Rachida; Dunmire, Jeffrey; Sewell, Abby; Edward, Deepak P.

    2012-01-01

    Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model. PMID:22665989

  16. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND...

  17. 9 CFR 94.15 - Animal products and materials; movement and handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Animal products and materials; movement and handling. 94.15 Section 94.15 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND...

  18. Agent Based Model of Livestock Movements

    NASA Astrophysics Data System (ADS)

    Miron, D. J.; Emelyanova, I. V.; Donald, G. E.; Garner, G. M.

    The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.

  19. Animal Models of Hemophilia

    PubMed Central

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  20. Animal models of schizophrenia

    PubMed Central

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  1. Can orchards help connect Mediterranean ecosystems? Animal movement data alter conservation priorities

    USGS Publications Warehouse

    Nogeire, Theresa M.; Davis, Frank W.; Crooks, Kevin R.; McRae, Brad H.; Lyren, Lisa M.; Boydston, Erin E.

    2015-01-01

    As natural habitats become fragmented by human activities, animals must increasingly move through human-dominated systems, particularly agricultural landscapes. Mapping areas important for animal movement has therefore become a key part of conservation planning. Models of landscape connectivity are often parameterized using expert opinion and seldom distinguish between the risks and barriers presented by different crop types. Recent research, however, suggests different crop types, such as row crops and orchards, differ in the degree to which they facilitate or impede species movements. Like many mammalian carnivores, bobcats (Lynx rufus) are sensitive to fragmentation and loss of connectivity between habitat patches. We investigated how distinguishing between different agricultural land covers might change conclusions about the relative conservation importance of different land uses in a Mediterranean ecosystem. Bobcats moved relatively quickly in row crops but relatively slowly in orchards, at rates similar to those in natural habitats of woodlands and scrub. We found that parameterizing a connectivity model using empirical data on bobcat movements in agricultural lands and other land covers, instead of parameterizing the model using habitat suitability indices based on expert opinion, altered locations of predicted animal movement routes. These results emphasize that differentiating between types of agriculture can alter conservation planning outcomes.

  2. 9 CFR 71.3 - Interstate movement of diseased animals and poultry generally prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Interstate movement of diseased animals and poultry generally prohibited. 71.3 Section 71.3 Animals and Animal Products ANIMAL AND...

  3. 9 CFR 71.3 - Interstate movement of diseased animals and poultry generally prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate movement of diseased animals and poultry generally prohibited. 71.3 Section 71.3 Animals and Animal Products ANIMAL AND...

  4. Modeling animal landscapes.

    PubMed

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  5. Animal Models of Narcolepsy

    PubMed Central

    Chen, Lichao; Brown, Ritchie E.; McKenna, James T.; McCarley, Robert W.

    2013-01-01

    Narcolepsy is a debilitating sleep disorder with excessive daytime sleepiness and cataplexy as its two major symptoms. Although this disease was first described about one century ago, an animal model was not available until the 1970s. With the establishment of the Stanford canine narcolepsy colony, researchers were able to conduct multiple neurochemical studies to explore the pathophysiology of this disease. It was concluded that there was an imbalance between monoaminergic and cholinergic systems in canine narcolepsy. In 1999, two independent studies revealed that orexin neurotransmission deficiency was pivotal to the development of narcolepsy with cataplexy. This scientific leap fueled the generation of several genetically engineered mouse and rat models of narcolepsy. To facilitate further research, it is imperative that researchers reach a consensus concerning the evaluation of narcoleptic behavioral and EEG phenomenology in these models. PMID:19689311

  6. Development of automatic movement analysis system for a small laboratory animal using image processing

    NASA Astrophysics Data System (ADS)

    Nagatomo, Satoshi; Kawasue, Kikuhito; Koshimoto, Chihiro

    2013-03-01

    Activity analysis in a small laboratory animal is an effective procedure for various bioscience fields. The simplest way to obtain animal activity data is just observation and recording manually, even though this is labor intensive and rather subjective. In order to analyze animal movement automatically and objectivity, expensive equipment is usually needed. In the present study, we develop animal activity analysis system by means of a template matching method with video recorded movements in laboratory animal at a low cost.

  7. Introduction to the Symposium: Towards a General Framework for Predicting Animal Movement Speeds in Nature.

    PubMed

    Wilson, Robbie S; Husak, Jerry F

    2015-12-01

    Speed of movement is fundamental to animal behavior-defining the intensity of a task, the time needed to complete it, and the likelihood of success-but how does an animal decide how fast to move? Most studies of animal performance measure maximum capabilities, but animals rarely move at their maximum in the wild. It was the goal of our symposium to develop a conceptual framework to explore the choices of speed in nature. A major difference between our approach and previous work is our move toward understanding optimal rather than maximal speeds. In the following series of papers, we provide a starting point for future work on animal movement speeds, including a conceptual framework, a simple optimality model, an evolutionary context, and an exploration of the various biomechanical and energetic constraints on speed. By applying a cross-disciplinary approach to the study of the choice of speed-as we have done here-we can reveal much about the way animals use habitats, interact with conspecifics, avoid predators, obtain food, and negotiate human-modified landscapes. PMID:26493610

  8. The effect of animal movement on line transect estimates of abundance.

    PubMed

    Glennie, Richard; Buckland, Stephen T; Thomas, Len

    2015-01-01

    Line transect sampling is a distance sampling method for estimating the abundance of wild animal populations. One key assumption of this method is that all animals are detected at their initial location. Animal movement independent of the transect and observer can thus cause substantial bias. We present an analytic expression for this bias when detection within the transect is certain (strip transect sampling) and use simulation to quantify bias when detection falls off with distance from the line (line transect sampling). We also explore the non-linear relationship between bias, detection, and animal movement by varying detectability and movement type. We consider animals that move in randomly orientated straight lines, which provides an upper bound on bias, and animals that are constrained to a home range of random radius. We find that bias is reduced when animal movement is constrained, and bias is considerably smaller in line transect sampling than strip transect sampling provided that mean animal speed is less than observer speed. By contrast, when mean animal speed exceeds observer speed the bias in line transect sampling becomes comparable with, and may exceed, that of strip transect sampling. Bias from independent animal movement is reduced by the observer searching further perpendicular to the transect, searching a shorter distance ahead and by ignoring animals that may overtake the observer from behind. However, when animals move in response to the observer, the standard practice of searching further ahead should continue as the bias from responsive movement is often greater than that from independent movement. PMID:25799206

  9. 9 CFR 78.2 - Handling of certificates, permits, and “S” brand permits for interstate movement of animals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... âSâ brand permits for interstate movement of animals. 78.2 Section 78.2 Animals and Animal Products... certificates, permits, and “S” brand permits for interstate movement of animals. (a) Any certificate, permit, or “S” brand permit required by this part for the interstate movement of animals shall be...

  10. 9 CFR 78.2 - Handling of certificates, permits, and “S” brand permits for interstate movement of animals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... âSâ brand permits for interstate movement of animals. 78.2 Section 78.2 Animals and Animal Products... certificates, permits, and “S” brand permits for interstate movement of animals. (a) Any certificate, permit, or “S” brand permit required by this part for the interstate movement of animals shall be...

  11. 9 CFR 78.2 - Handling of certificates, permits, and “S” brand permits for interstate movement of animals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... âSâ brand permits for interstate movement of animals. 78.2 Section 78.2 Animals and Animal Products... certificates, permits, and “S” brand permits for interstate movement of animals. (a) Any certificate, permit, or “S” brand permit required by this part for the interstate movement of animals shall be...

  12. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.3 Movement of domestic animals that are positive to an official Johne's disease test. (a) Movement of domestic animals...

  13. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.3 Movement of domestic animals that are positive to an official Johne's disease test. (a) Movement of domestic animals...

  14. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.4 Segregation of animals positive to an official Johne's disease test during interstate movement. Animals that are...

  15. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.3 Movement of domestic animals that are positive to an official Johne's disease test. (a) Movement of domestic animals...

  16. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.4 Segregation of animals positive to an official Johne's disease test during interstate movement. Animals that are...

  17. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.3 Movement of domestic animals that are positive to an official Johne's disease test. (a) Movement of domestic animals...

  18. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.4 Segregation of animals positive to an official Johne's disease test during interstate movement. Animals that are...

  19. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.3 Movement of domestic animals that are positive to an official Johne's disease test. (a) Movement of domestic animals...

  20. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.4 Segregation of animals positive to an official Johne's disease test during interstate movement. Animals that are...

  1. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS JOHNE'S DISEASE IN DOMESTIC ANIMALS § 80.4 Segregation of animals positive to an official Johne's disease test during interstate movement. Animals that are...

  2. Apparent power-law distributions in animal movements can arise from intraspecific interactions

    PubMed Central

    Breed, Greg A.; Severns, Paul M.; Edwards, Andrew M.

    2015-01-01

    Lévy flights have gained prominence for analysis of animal movement. In a Lévy flight, step-lengths are drawn from a heavy-tailed distribution such as a power law (PL), and a large number of empirical demonstrations have been published. Others, however, have suggested that animal movement is ill fit by PL distributions or contend a state-switching process better explains apparent Lévy flight movement patterns. We used a mix of direct behavioural observations and GPS tracking to understand step-length patterns in females of two related butterflies. We initially found movement in one species (Euphydryas editha taylori) was best fit by a bounded PL, evidence of a Lévy flight, while the other (Euphydryas phaeton) was best fit by an exponential distribution. Subsequent analyses introduced additional candidate models and used behavioural observations to sort steps based on intraspecific interactions (interactions were rare in E. phaeton but common in E. e. taylori). These analyses showed a mixed-exponential is favoured over the bounded PL for E. e. taylori and that when step-lengths were sorted into states based on the influence of harassing conspecific males, both states were best fit by simple exponential distributions. The direct behavioural observations allowed us to infer the underlying behavioural mechanism is a state-switching process driven by intraspecific interactions rather than a Lévy flight. PMID:25519992

  3. A new multi-scale measure for analysing animal movement data.

    PubMed

    Postlethwaite, Claire M; Brown, Pieta; Dennis, Todd E

    2013-01-21

    We present a new measure for analysing animal movement data, which we term a 'Multi-Scale Straightness Index' (MSSI). The measure is a generalisation of the 'Straightness Index', the ratio of the beeline distance between the start and end of a track to the total distance travelled. In our new measure, the Straightness Index is computed repeatedly for track segments at all possible temporal scales. The MSSI offers advantages over the standard Straightness Index, and other simple measures of track tortuosity (such as Sinuosity and Fractal Dimension), because it provides multiple characterisations of straightness, rather than just a single summary measure. Thus, comparisons can be made among different segments of trajectories and changes in behaviour can be inferred, both over time and at different temporal granularities. The measure also has an important advantage over several recent and increasingly popular methods for detecting behavioural changes in time-series locational data (e.g., state-space models and positional entropy methods), in that it is extremely simple to compute. Here, we demonstrate use of the MSSI on both synthetic and real animal-movement trajectories. We show how behavioural changes can be inferred within individual tracks and how behaviour varies across spatio-temporal scales. Our aim is to present a useful tool for researchers requiring a computationally simple but effective means of analysing the movement patterns of animals. PMID:23079283

  4. Animated Randomness, Avatars, Movement, and Personalization in Risk Graphics

    PubMed Central

    Fuhrel-Forbis, Andrea; Wijeysundera, Harindra C; Exe, Nicole; Dickson, Mark; Holtzman, Lisa; Kahn, Valerie C; Zikmund-Fisher, Brian J

    2014-01-01

    Background Risk communication involves conveying two inherently difficult concepts about the nature of risk: the underlying random distribution of outcomes and how a population-based proportion applies to an individual. Objective The objective of this study was to test whether 4 design factors in icon arrays—animated random dispersal of risk events, avatars to represent an individual, personalization (operationalized as choosing the avatar’s color), and a moving avatar—might help convey randomness and how a given risk applies to an individual, thereby better aligning risk perceptions with risk estimates. Methods A diverse sample of 3630 adults with no previous heart disease or stroke completed an online nested factorial experiment in which they entered personal health data into a risk calculator that estimated 10-year risk of cardiovascular disease based on a robust and validated model. We randomly assigned them to view their results in 1 of 10 risk graphics that used different combinations of the 4 design factors. We measured participants’ risk perceptions as our primary outcome, as well as behavioral intentions and recall of the risk estimate. We also assessed subjective numeracy, whether or not participants knew anyone who had died of cardiovascular causes, and whether or not they knew their blood pressure and cholesterol as potential moderators. Results Animated randomness was associated with better alignment between risk estimates and risk perceptions (F 1,3576=6.12, P=.01); however, it also led to lower scores on healthy lifestyle intentions (F 1,3572=11.1, P<.001). Using an avatar increased risk perceptions overall (F 1,3576=4.61, P=.03) and most significantly increased risk perceptions among those who did not know a particular person who had experienced the grave outcomes of cardiovascular disease (F 1,3576=5.88, P=.02). Using an avatar also better aligned actual risk estimates with intentions to see a doctor (F 1,3556=6.38, P=.01). No design

  5. ANIMAL MODELS FOR IMMUNOTOXICITY

    EPA Science Inventory

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  6. Model of Emotional Expressions in Movements

    ERIC Educational Resources Information Center

    Rozaliev, Vladimir L.; Orlova, Yulia A.

    2013-01-01

    This paper presents a new approach to automated identification of human emotions based on analysis of body movements, a recognition of gestures and poses. Methodology, models and automated system for emotion identification are considered. To characterize the person emotions in the model, body movements are described with linguistic variables and a…

  7. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  8. Spatial scaling: Its analysis and effects on animal movements in semiarid landscape mosaics

    SciTech Connect

    Wiens, J.A.

    1992-09-01

    The research conducted under this agreement focused in general on the effects of envirorunental heterogeneity on movements of animals and materials in semiarid grassland landscapes, on the form of scale-dependency of ecological patterns and processes, and on approaches to extrapolating among spatial scales. The findings are summarized in a series of published and unpublished papers that are included as the main body of this report. We demonstrated the value of experimental model systems'' employing observations and experiments conducted in small-scale microlandscapes to test concepts relating to flows of individuals and materials through complex, heterogeneous mosaics. We used fractal analysis extensively in this research, and showed how fractal measures can produce insights and lead,to questions that do not emerge from more traditional scale-dependent measures. We developed new concepts and theory to deal with scale-dependency in ecological systems and with integrating individual movement patterns into considerations of population and ecosystem dynamics.

  9. How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making.

    PubMed

    Tilles, Paulo F C; Petrovskii, Sergei V

    2016-07-01

    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement. PMID:26650504

  10. Taking animal tracking to new depths: synthesizing horizontal--vertical movement relationships for four marine predators.

    PubMed

    Bestley, Sophie; Jonsen, Ian D; Hindell, Mark A; Harcourt, Robert G; Gales, Nicholas J

    2015-02-01

    In animal ecology, a question of key interest for aquatic species is how changes in movement behavior are related in the horizontal and vertical dimensions when individuals forage. Alternative theoretical models and inconsistent empirical findings mean that this question remains unresolved. Here we tested expectations by incorporating the vertical dimension (dive information) when predicting switching between movement states ("resident" or "directed") within a state-space model. We integrated telemetry-based tracking and diving data available for four seal species (southern elephant, Weddell, antarctic fur, and crabeater) in East Antarctica. Where possible, we included dive variables derived from the relationships between (1) dive duration and depth (as a measure of effort), and (2) dive duration and the postdive surface interval (as a physiological measure of cost). Our results varied within and across species, but there was a general tendency for the probability of switching into "resident" state to be positively associated with shorter dive durations (for a given depth) and longer postdive surface intervals (for a given dive duration). Our results add to a growing body of literature suggesting that simplistic interpretations of optimal foraging theory based only on horizontal movements do not directly translate into the vertical dimension in dynamic marine environments. Analyses that incorporate at least two dimensions can test more sophisticated models of foraging behavior. PMID:26240863

  11. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  12. 9 CFR 71.2 - Secretary to issue rule governing quarantine and interstate movement of diseased animals...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quarantine and interstate movement of diseased animals, including poultry. 71.2 Section 71.2 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.2 Secretary to issue rule governing quarantine and interstate movement of diseased animals, including poultry. When...

  13. 9 CFR 71.2 - Secretary to issue rule governing quarantine and interstate movement of diseased animals...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quarantine and interstate movement of diseased animals, including poultry. 71.2 Section 71.2 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.2 Secretary to issue rule governing quarantine and interstate movement of diseased animals, including poultry. When...

  14. 9 CFR 71.2 - Secretary to issue rule governing quarantine and interstate movement of diseased animals...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quarantine and interstate movement of diseased animals, including poultry. 71.2 Section 71.2 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.2 Secretary to issue rule governing quarantine and interstate movement of diseased animals, including poultry. When...

  15. 9 CFR 71.2 - Secretary to issue rule governing quarantine and interstate movement of diseased animals...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quarantine and interstate movement of diseased animals, including poultry. 71.2 Section 71.2 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.2 Secretary to issue rule governing quarantine and interstate movement of diseased animals, including poultry. When...

  16. 9 CFR 71.2 - Secretary to issue rule governing quarantine and interstate movement of diseased animals...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quarantine and interstate movement of diseased animals, including poultry. 71.2 Section 71.2 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.2 Secretary to issue rule governing quarantine and interstate movement of diseased animals, including poultry. When...

  17. Animal Models for Therapeutic Embolization

    SciTech Connect

    Moreira, Patricia L.; An, Yuehuei H.

    2003-04-15

    Embolization techniques have been performed in different animals to accumulate basic data before a clinical trial.Choosing the right embolization model for a specific project is critical. However, there are several variables when defining the best model for embolization research such as the size of the animal to be used, the target organs, the route of introducing the embolization agent, and the feasible methods of evaluation. Commonly used research animals for endovascular embolization include rabbits, dogs, and rats. Frequently used target organs are the kidney and the liver. Most models use a transcatheter for introducing the embolus and occasionally open surgery and direct arterial injection are used. Basic methods of evaluation are straightforward, and commonly include macro observation of the embolized organs, angiogram, and histology. This article concisely reviews the available animal models and their evaluation for embolization research to help researchers to choose the appropriate model.

  18. Animal models in peritoneal dialysis

    PubMed Central

    Nikitidou, Olga; Peppa, Vasiliki I.; Leivaditis, Konstantinos; Eleftheriadis, Theodoros; Zarogiannis, Sotirios G.; Liakopoulos, Vassilios

    2015-01-01

    Peritoneal dialysis (PD) has been extensively used over the past years as a method of kidney replacement therapy for patients with end stage renal disease (ESRD). In an attempt to better understand the properties of the peritoneal membrane and the mechanisms involved in major complications associated with PD, such as inflammation, peritonitis and peritoneal injury, both in vivo and ex vivo animal models have been used. The aim of the present review is to briefly describe the animal models that have been used, and comment on the main problems encountered while working with these models. Moreover, the differences characterizing these animal models, as well as, the differences with humans are highlighted. Finally, it is suggested that the use of standardized protocols is a necessity in order to take full advantage of animal models, extrapolate their results in humans, overcome the problems related to PD and help promote its use. PMID:26388781

  19. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  20. Animal models in burn research.

    PubMed

    Abdullahi, A; Amini-Nik, S; Jeschke, M G

    2014-09-01

    Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  1. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  2. Animal Models of Bacterial Keratitis

    PubMed Central

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  3. Dystonia and Paroxysmal Dyskinesias: Under-Recognized Movement Disorders in Domestic Animals? A Comparison with Human Dystonia/Paroxysmal Dyskinesias

    PubMed Central

    Richter, Angelika; Hamann, Melanie; Wissel, Jörg; Volk, Holger A.

    2015-01-01

    Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements, and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis, and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e., dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans and summarizes similar hereditary movement disorders reported in domestic animals. PMID:26664992

  4. Animal models for human diseases.

    PubMed

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  5. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. PMID:26769177

  6. Modelling larval movement data from individual bioassays.

    PubMed

    McLellan, Chris R; Worton, Bruce J; Deasy, William; Birch, A Nicholas E

    2015-05-01

    We consider modelling the movements of larvae using individual bioassays in which data are collected at a high-frequency rate of five observations per second. The aim is to characterize the behaviour of the larvae when exposed to attractant and repellent compounds. Mixtures of diffusion processes, as well as Hidden Markov models, are proposed as models of larval movement. These models account for directed and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on extensive data collected in a study of novel approaches for the management of cabbage root fly. PMID:25764283

  7. Animal Models of Bone Metastasis.

    PubMed

    Simmons, J K; Hildreth, B E; Supsavhad, W; Elshafae, S M; Hassan, B B; Dirksen, W P; Toribio, R E; Rosol, T J

    2015-09-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  8. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  9. A dynamical model for mirror movements

    NASA Astrophysics Data System (ADS)

    Daffertshofer, A.; van den Berg, C.; Beek, P. J.

    1999-07-01

    In an experiment involving the unimanual performance of rhythmic movements about the elbow joint, mirror movements (MM) (i.e., unintended, associated movements) were observed in the arm not instructed to move. The amplitude of these movements was small relative to that of the intended movements (in the order of 0.5 to 5%). Complex patterns of relative phasing were observed between the intended movements and the MM that were characterized by the presence of higher harmonics in the oscillating units. The patterns in question depended on the frequency of the intended movements, which was varied from 0.5 to 3 Hz. At low frequencies, cases of both in- and anti-phase coordination were observed amidst various other instances of phase locking. MM were smaller in the anti-phase than in the in-phase coordination. At higher frequencies, the occurrence of in-phase coordination was most common while instances of anti-phase coordination were absent. To account for these properties, a dynamical model for the coordination between large-amplitude intended movements and small-amplitude MM was derived in the form of a model of nonlinearly coupled nonlinear oscillators with unequal amplitudes. The derived model was shown to correspond well with many quantitative and qualitative features of the observed dynamics of MM, including frequency locking, stable in-phase and anti-phase coordination, coordination-dependency of mirror movement amplitudes, and the presence of higher harmonics. The implications of the obtained experimental and analytical results and numerical parameter optimizations for the study of MM were discussed.

  10. An information maximization model of eye movements

    NASA Technical Reports Server (NTRS)

    Renninger, Laura Walker; Coughlan, James; Verghese, Preeti; Malik, Jitendra

    2005-01-01

    We propose a sequential information maximization model as a general strategy for programming eye movements. The model reconstructs high-resolution visual information from a sequence of fixations, taking into account the fall-off in resolution from the fovea to the periphery. From this framework we get a simple rule for predicting fixation sequences: after each fixation, fixate next at the location that minimizes uncertainty (maximizes information) about the stimulus. By comparing our model performance to human eye movement data and to predictions from a saliency and random model, we demonstrate that our model is best at predicting fixation locations. Modeling additional biological constraints will improve the prediction of fixation sequences. Our results suggest that information maximization is a useful principle for programming eye movements.

  11. Animal Models of Head Trauma

    PubMed Central

    Cernak, Ibolja

    2005-01-01

    Summary: Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization. PMID:16389305

  12. Terrestrial movement energetics: current knowledge and its application to the optimising animal.

    PubMed

    Halsey, Lewis G

    2016-05-15

    The energetic cost of locomotion can be a substantial proportion of an animal's daily energy budget and thus key to its ecology. Studies on myriad species have added to our knowledge about the general cost of animal movement, including the effects of variations in the environment such as terrain angle. However, further such studies might provide diminishing returns on the development of a deeper understanding of how animals trade-off the cost of movement with other energy costs, and other ecological currencies such as time. Here, I propose the 'individual energy landscape' as an approach to conceptualising the choices facing the optimising animal. In this Commentary, first I outline previous broad findings about animal walking and running locomotion, focusing in particular on the use of net cost of transport as a metric of comparison between species, and then considering the effects of environmental perturbations and other extrinsic factors on movement costs. I then introduce and explore the idea that these factors combine with the behaviour of the animal in seeking short-term optimality to create that animal's individual energy landscape - the result of the geographical landscape and environmental factors combined with the animal's selected trade-offs. Considering an animal's locomotion energy expenditure within this context enables hard-won empirical data on transport costs to be applied to questions about how an animal can and does move through its environment to maximise its fitness, and the relative importance, or otherwise, of locomotion energy economy. PMID:27207950

  13. Symptomatic animal models for dystonia

    PubMed Central

    Wilson, Bethany K.; Hess, Ellen J.

    2013-01-01

    Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. PMID:23893454

  14. Animal Models of Muscular Dystrophy

    PubMed Central

    Ng, Rainer; Banks, Glen B.; Hall, John K.; Muir, Lindsey A.; Ramos, Julian N.; Wicki, Jacqueline; Odom, Guy L.; Konieczny, Patryk; Seto, Jane; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2016-01-01

    The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 20021). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 20032). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 20093). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development. PMID:22137430

  15. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  16. ANIMAL MODELS FOR FOOD ALLERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal models have been used to provide insight into the complex immunological and pathophysioligical mechanisms of human Type 1 allergic diseases. Research efforts that include mechanistic studies in search of new therapies and screening models for hazard identification of potential allergens in a...

  17. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  18. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.

    PubMed

    Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi

    2016-01-01

    The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP

  19. Construction of energy landscapes can clarify the movement and distribution of foraging animals

    PubMed Central

    Wilson, Rory P.; Quintana, Flavio; Hobson, Victoria J.

    2012-01-01

    Variation in the physical characteristics of the environment should impact the movement energetics of animals. Although cognizance of this may help interpret movement ecology, determination of the landscape-dependent energy expenditure of wild animals is problematic. We used accelerometers in animal-attached tags to derive energy expenditure in 54 free-living imperial cormorants Phalacrocorax atriceps and construct an energy landscape of the area around a breeding colony. Examination of the space use of a further 74 birds over 4 years showed that foraging areas selected varied considerably in distance from the colony and water depth, but were characterized by minimal power requirements compared with other areas in the available landscape. This accords with classic optimal foraging concepts, which state that animals should maximize net energy gain by minimizing costs where possible and show how deriving energy landscapes can help understand how and why animals distribute themselves in space. PMID:21900327

  20. Animal Models of Ricin Toxicosis

    PubMed Central

    Song, Kejing; Sivasubramani, Satheesh K.; Gardner, Donald J.; Pincus, Seth H.

    2015-01-01

    Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies. PMID:21956160

  1. Animal models of drug craving.

    PubMed

    Markou, A; Weiss, F; Gold, L H; Caine, S B; Schulteis, G; Koob, G F

    1993-01-01

    Drug craving, the desire to experience the effect(s) of a previously experienced psychoactive substance, has been hypothesized to contribute significantly to continued drug use and relapse after a period of abstinence in humans. In more theoretical terms, drug craving can be conceptualized within the framework of incentive motivational theories of behavior and be defined as the incentive motivation to self-administer a psychoactive substance. The incentive-motivational value of drugs is hypothesized to be determined by a continuous interaction between the hedonic rewarding properties of drugs (incentive) and the motivational state of the organism (organismic state). In drug-dependent individuals, the incentive-motivational value of drugs (i.e., drug craving) is greater compared to non-drug-dependent individuals due to the motivational state (i.e., withdrawal) developed with repeated drug administration. In this conceptual framework, animal models of drug craving would reflect two aspects of the incentive motivation to self-administer a psychoactive substance. One aspect would be the unconditioned incentive (reinforcing) value of the drug itself. The other aspect would be relatively independent of the direct (unconditioned) incentive value of the drug itself and could be reflected in the ability of previously neutral stimuli to acquire conditioned incentive properties that could elicit drug-seeking and drug-taking behavior. Animal models of drug craving that permit the investigation of the behavioral and neurobiological components of these two aspects of drug craving are reviewed and evaluated. The models reviewed are the progressive ratio, choice, extinction, conditioned reinforcement and second-order schedule paradigms. These animal models are evaluated according to two criteria that are established herein as necessary and sufficient criteria for the evaluation of animal models of human psychopathology: reliability and predictive validity. The development of

  2. The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

    PubMed Central

    Koen, Erin L.; Garroway, Colin J.; Wilson, Paul J.; Bowman, Jeff

    2010-01-01

    Background Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. Methodology/Principal Findings We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. Conclusions/Significance Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies. PMID:20668690

  3. Animal models of CNS disorders.

    PubMed

    McGonigle, Paul

    2014-01-01

    There is intense interest in the development and application of animal models of CNS disorders to explore pathology and molecular mechanisms, identify potential biomarkers, and to assess the therapeutic utility, estimate safety margins and establish pharmacodynamic and pharmacokinetic parameters of new chemical entities (NCEs). This is a daunting undertaking, due to the complex and heterogeneous nature of these disorders, the subjective and sometimes contradictory nature of the clinical endpoints and the paucity of information regarding underlying molecular mechanisms. Historically, these models have been invaluable in the discovery of therapeutics for a range of disorders including anxiety, depression, schizophrenia, and Parkinson's disease. Recently, however, they have been increasingly criticized in the wake of numerous clinical trial failures of NCEs with promising preclinical profiles. These failures have resulted from a number of factors including inherent limitations of the models, over-interpretation of preclinical results and the complex nature of clinical trials for CNS disorders. This review discusses the rationale, strengths, weaknesses and predictive validity of the most commonly used models for psychiatric, neurodegenerative and neurological disorders as well as critical factors that affect the variability and reproducibility of these models. It also addresses how progress in molecular genetics and the development of transgenic animals has fundamentally changed the approach to neurodegenerative disorder research. To date, transgenic animal models\\have not been the panacea for drug discovery that many had hoped for. However continual refinement of these models is leading to steady progress with the promise of eventual therapeutic breakthroughs. PMID:23811310

  4. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  5. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement

    NASA Astrophysics Data System (ADS)

    Wilson, Rory P.; Liebsch, Nikolai; Davies, Ian M.; Quintana, Flavio; Weimerskirch, Henri; Storch, Sandra; Lucke, Klaus; Siebert, Ursula; Zankl, Solvin; Müller, Gabriele; Zimmer, Ilka; Scolaro, Alejandro; Campagna, Claudio; Plötz, Jochen; Bornemann, Horst; Teilmann, Jonas; McMahon, Clive R.

    2007-02-01

    Determining the movement of marine animals is logistically difficult and is currently primarily based on VHF and satellite-tracking telemetry, GPS, acoustic telemetry, and geolocation, all of which have substantial limitations in accurately locating the fine-scale movements of these animals. A recent development—that of dead-reckoning—is being increasingly used to examine the fine-scale movement of animals underwater. The advantages and drawbacks of this approach are quite different to those incurred by the other methods. This paper considers the advances that dead-reckoning can bring to the study of the often cryptic movement and behaviour of marine animals at sea. Methods used in determining position via dead-reckoning are presented and consideration is given to results derived from the use of dead-reckoning on cetaceans, pinnipeds, penguins and sea turtles; these are complemented by data on cormorants and albatrosses acquired using GPS systems. Suggestions are made as to how movement data derived from these devices can be analysed using indices that allow interpretation over a large variety of temporal and spatial scales.

  6. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  7. Extrapyramidal system neurotoxicity: animal models.

    PubMed

    Dorman, David

    2015-01-01

    The central nervous system's extrapyramidal system provides involuntary motor control to the muscles of the head, neck, and limbs. Toxicants that affect the extrapyramidal system are generally clinically characterized by impaired motor control, which is usually the result of basal ganglionic dysfunction. A variety of extrapyramidal syndromes are recognized in humans and include Parkinson's disease, secondary parkinsonism, other degenerative diseases of the basal ganglia, and clinical syndromes that result in dystonia, dyskinesia, essential tremor, and other forms of tremor and chorea. This chapter briefly reviews the anatomy of the extrapyramidal system and discusses several naturally occurring and experimental models that target the mammalian (nonhuman) extrapyramidal system. Topics discussed include extrapyramidal syndromes associated with antipsychotic drugs, carbon monoxide, reserpine, cyanide, rotenone, paraquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and manganese. In most cases, animals are used as experimental models to improve our understanding of the toxicity and pathogenesis of these agents. Another agent discussed in this chapter, yellowstar thistle poisoning in horses, however, represents an important spontaneous cause of parkinsonism that naturally occurs in animals. The central focus of the chapter is on animal models, especially the concordance between clinical signs, neurochemical changes, and neuropathology between animals and people. PMID:26563791

  8. Animal Models of Sleep Disorders

    PubMed Central

    Toth, Linda A; Bhargava, Pavan

    2013-01-01

    Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders—insomnia, narcolepsy, restless legs syndrome, and sleep apnea—and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders. PMID:23582416

  9. Biliary atresia: the animal models.

    PubMed

    Petersen, Claus

    2012-08-01

    Biliary atresia (BA) is a progressive fibrosing process of the neonatal biliary tree and liver, of unknown origin, and an as-yet unexplained pathologic mechanism. The crucial point is to elucidate the origin of this rare disease to change palliative surgery to etiology-related procedures. Patient-based research can only begin at the time of the Kasai procedure and does not allow retracing of the pathology back to its origin. Basic research has focused on similar diseases in the veterinary literature and started to simulate BA in animal models. Unfortunately, even after 50 years of research, no knowledge has been gained from such models, which has led to a single clinical application. This article reviews BA in the context of the animal models available and discusses whether future studies are promising or futile. PMID:22800971

  10. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory. PMID:26609644

  11. An accurate and portable eye movement detector for studying sleep in small animals.

    PubMed

    Sánchez-López, Álvaro; Escudero, Miguel

    2015-08-01

    Although eye movements are a highly valuable variable in attempts to precisely identify different periods of the sleep-wake cycle, their indirect measurement by electrooculography is not good enough. The present article describes an accurate and portable scleral search coil that allows the detection of tonic and phasic characteristics of eye movements in free-moving animals. Six adult Wistar rats were prepared for chronic recording of electroencephalography, electromyography and eye movements using the scleral search coil technique. We developed a miniature magnetic field generator made with two coils, consisting of 35 turns and 15 mm diameter of insulated 0.2 mm cooper wire, mounted in a frame of carbon fibre. This portable scleral search coil was fixed on the head of the animal, with each magnetic coil parallel to the eye coil and at 5 mm from each eye. Eye movements detected by the portable scleral search coil were compared with those measured by a commercial scleral search coil requiring immobilizing the head of the animal. No qualitative differences were found between the two scleral search coil systems in their capabilities to detect eye movements. This innovative portable scleral search coil system is an essential tool to detect slow changes in eye position and miniature rapid eye movements during sleep. The portable scleral search coil is much more suitable for detecting eye movements than any previously available system because of its precision and simplicity, and because it does not require immobilization of the animal's head. PMID:25590417

  12. A model for learning human reaching movements.

    PubMed

    Karniel, A; Inbar, G F

    1997-09-01

    Reaching movement is a fast movement towards a given target. The main characteristics of such a movement are straight path and a bell-shaped speed profile. In this work a mathematical model for the control of the human arm during ballistic reaching movements is presented. The model of the arm contains a 2 degrees of freedom planar manipulator, and a Hill-type, non-linear mechanical model of six muscles. The arm model is taken from the literature with minor changes. The nervous system is modeled as an adjustable pattern generator that creates the control signals to the muscles. The control signals in this model are rectangular pulses activated at various amplitudes and timings, that are determined according to the given target. These amplitudes and timings are the parameters that should be related to each target and initial conditions in the work-space. The model of the nervous system consists of an artificial neural net that maps any given target to the parameter space of the pattern generator. In order to train this net, the nervous system model includes a sensitivity model that transforms the error from the arm end-point coordinates to the parameter coordinates. The error is assessed only at the termination of the movement from knowledge of the results. The role of the non-linearity in the muscle model and the performance of the learning scheme are analysed, illustrated in simulations and discussed. The results of the present study demonstrate the central nervous system's (CNS) ability to generate typical reaching movements with a simple feedforward controller that controls only the timing and amplitude of rectangular excitation pulses to the muscles and adjusts these parameters based on knowledge of the results. In this scheme, which is based on the adjustment of only a few parameters instead of the whole trajectory, the dimension of the control problem is reduced significantly. It is shown that the non-linear properties of the muscles are essential to achieve

  13. Animal models for human sexuality.

    PubMed

    Beach, F A

    The value of animal models in biomedical research is firmly established, and many basic principles of human psychology have been explicated as the result of comparative studies. There is pressing need for non-human models in the behavioural sciences as represented by psychiatry, psychology and ethology; and such models should be constructed, provided their validity can be assured. Valid models cannot be based exclusively on similarity in the formal properties of behaviour. Commonality of descriptive terms as applied to different species does not guarantee identity of the concepts to which the terms apply. Model builders must evaluate interspecific similarities and differences in the causes, mediating mechanisms and functional outcomes of behaviour. The validity of interspecific generalization can never exceed the reliability of intraspecific analysis; and the latter is an indispensable antecedent of the former. Existing and potential models for homosexuality and other psychosexual characteristics of human beings are evaluated within the perspective provided by the foregoing generalizations. PMID:256826

  14. Animal models for microbicide studies

    PubMed Central

    Veazey, Ronald S.; Shattock, Robin J; Klasse, Per Johan; Moore, John P.

    2013-01-01

    There have been encouraging recent successes in the development of safe and effective topical microbicides to prevent vaginal or rectal HIV-1 transmission, based on the use of anti-retroviral drugs. However, much work remains to be accomplished before a microbicide becomes a standard element of prevention science strategies. Animal models should continue to play an important role in pre-clinical testing, with emphasis on safety, pharmacokinetic and efficacy testing. PMID:22264049

  15. Animal movement and establishment of vaccinia virus Cantagalo strain in Amazon biome, Brazil.

    PubMed

    Quixabeira-Santos, Jociane Cristina; Medaglia, Maria Luiza G; Pescador, Caroline A; Damaso, Clarissa R

    2011-04-01

    To understand the emergence of vaccinia virus Cantagalo strain in the Amazon biome of Brazil, during 2008-2010 we conducted a molecular and epidemiologic survey of poxvirus outbreaks. Data indicate that animal movement was the major cause of virus dissemination within Rondonia State, leading to the establishment and spread of this pathogen. PMID:21470472

  16. Urban landscape features influencing rodent control and animal movement in two urban areas of California

    EPA Science Inventory

    “Pest” control of both native (e.g., gophers) and exotic (e.g., black rats, house mice) species may impact populations of non-target species inadvertently. We evaluated relationships among animal movement, rodent control, and landscape features in two urban locations in Californ...

  17. Landscape features influencing residential rodent control and animal movement in two urban areas of California

    EPA Science Inventory

    Residential “pest” control of both native (e.g., gophers, rabbits) and exotic (e.g., black and Norway rats, house mice) species may impact populations of non-target species inadvertently. We evaluated relationships among animal movement, rodent control, and landscape features in...

  18. Modeling the biomechanics of fetal movements.

    PubMed

    Verbruggen, Stefaan W; Loo, Jessica H W; Hayat, Tayyib T A; Hajnal, Joseph V; Rutherford, Mary A; Phillips, Andrew T M; Nowlan, Niamh C

    2016-08-01

    Fetal movements in the uterus are a natural part of development and are known to play an important role in normal musculoskeletal development. However, very little is known about the biomechanical stimuli that arise during movements in utero, despite these stimuli being crucial to normal bone and joint formation. Therefore, the objective of this study was to create a series of computational steps by which the forces generated during a kick in utero could be predicted from clinically observed fetal movements using novel cine-MRI data of three fetuses, aged 20-22 weeks. A custom tracking software was designed to characterize the movements of joints in utero, and average uterus deflection of [Formula: see text] mm due to kicking was calculated. These observed displacements provided boundary conditions for a finite element model of the uterine environment, predicting an average reaction force of [Formula: see text] N generated by a kick against the uterine wall. Finally, these data were applied as inputs for a musculoskeletal model of a fetal kick, resulting in predicted maximum forces in the muscles surrounding the hip joint of approximately 8 N, while higher maximum forces of approximately 21 N were predicted for the muscles surrounding the knee joint. This study provides a novel insight into the closed mechanical environment of the uterus, with an innovative method allowing elucidation of the biomechanical interaction of the developing fetus with its surroundings. PMID:26534772

  19. Springs, steroids, and slingshots: the roles of enhancers and constraints in animal movement.

    PubMed

    Higham, Timothy E; Irschick, Duncan J

    2013-07-01

    Whole-body movement is an essential part of life for many animal species, and is used to evade predators, capture prey, and perform many other behaviors. In many cases, the ability to perform rapid movements may be crucial to fitness as doing so may allow animals to do things like effectively capture an elusive prey or to elude a chasing predator. A significant body of research has been devoted toward the musculoskeletal and neurobiological basis of animal movement, with large reviews and volumes written on locomotion and feeding. Biologists have also defined how movement can be quantified and compared among different species. Arnold (Am Zool 23:347-361, 1983) first clearly explained that the ability to perform an ecologically important task could be labeled and quantified as maximum performance abilities, a point that is elaborated upon later (Garland and Losos, Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, 1994; Irschick et al., Evol Ecol Res 10:177-196, 2008). Some commonly examined performance traits include maximum sprint speed, maximum acceleration or deceleration, maneuverability, maximum aerobic capacity (VO2max), bite force, and rapidity of tongue projection, among other examples. Although the ability to perform such movements can be limited by muscle physiology, there are several situations in which the limits of muscle physiology are circumvented with a range of specializations. Here, we synthesize the literature dealing with movement (primarily ballistic) enhancers. Our goal is both to encapsulate the current state of knowledge of enhancers, and also to provide a broader evolutionary framework that might explain in which ecological contexts they have evolved, and how they can be studied in the future. Some common mechanisms for enhancing movement include elastic energy storage (e.g., tendons and other materials) in vertebrates and invertebrates, or hormonal changes (e.g., increased testosterone levels

  20. Animal models of serotonergic psychedelics.

    PubMed

    Hanks, James B; González-Maeso, Javier

    2013-01-16

    The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects. PMID:23336043

  1. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  2. ANIMAL CONTROL - WHAT CONSTITUTES A RELIABLE CUE TO STOP ANIMAL MOVEMENT?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controlling free-range livestock requires low-stress cues to alter animal behaviour. Recently modulated sound and electric shock were demonstrated to be effective in controlling free-ranging cattle. In this study the behaviour of 60, 300 kg Belmont Red heifers were observed for behavioural changes ...

  3. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins.

    PubMed

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C; Rucina, Stephen M; King, Geoffrey C P

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging. PMID:26369499

  4. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-09-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging.

  5. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    PubMed Central

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging. PMID:26369499

  6. Animal models of erectile dysfunction

    PubMed Central

    Gajbhiye, Snehlata V.; Jadhav, Kshitij S.; Marathe, Padmaja A.; Pawar, Dattatray B.

    2015-01-01

    Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.” PMID:25624570

  7. A movement pattern generator model using artificial neural networks.

    PubMed

    Srinivasan, S; Gander, R E; Wood, H C

    1992-07-01

    Artificial neural networks (ANN's) allow a new approach to biological modeling. The main applications of ANN's have been geared towards the modeling of the association and learning mechanisms of the brain; only a few researchers have explored them for motor control. The fact that ANN's are based on biological systems indicates their potential application for a biological act such as locomotion. Towards this goal, we have developed a "movement pattern generator," using an ANN for generating periodic movement trajectories. This model is based on the concept of "central pattern generators." Jordan's sequential network, which is capable of learning sequences of patterns, was modified and used to generate several bipedal trajectories (or gaits), coded in task space, at different frequencies. The network model successfully learned all of the trajectories presented to it. The model has many attractive properties such as limit cycle behavior, generalization of trajectories and frequencies, phase maintenance, and fault tolerance. The movement pattern generator model is potentially applicable for improved understanding of animal locomotion and for use in legged robots and rehabilitation medicine. PMID:1516938

  8. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  9. Effects of Number of Animals Monitored on Representations of Cattle Group Movement Characteristics and Spatial Occupancy

    PubMed Central

    Liu, Tong; Green, Angela R.; Rodríguez, Luis F.; Ramirez, Brett C.; Shike, Daniel W.

    2015-01-01

    The number of animals required to represent the collective characteristics of a group remains a concern in animal movement monitoring with GPS. Monitoring a subset of animals from a group instead of all animals can reduce costs and labor; however, incomplete data may cause information losses and inaccuracy in subsequent data analyses. In cattle studies, little work has been conducted to determine the number of cattle within a group needed to be instrumented considering subsequent analyses. Two different groups of cattle (a mixed group of 24 beef cows and heifers, and another group of 8 beef cows) were monitored with GPS collars at 4 min intervals on intensively managed pastures and corn residue fields in 2011. The effects of subset group size on cattle movement characterization and spatial occupancy analysis were evaluated by comparing the results between subset groups and the entire group for a variety of summarization parameters. As expected, more animals yield better results for all parameters. Results show the average group travel speed and daily travel distances are overestimated as subset group size decreases, while the average group radius is underestimated. Accuracy of group centroid locations and group radii are improved linearly as subset group size increases. A kernel density estimation was performed to quantify the spatial occupancy by cattle via GPS location data. Results show animals among the group had high similarity of spatial occupancy. Decisions regarding choosing an appropriate subset group size for monitoring depend on the specific use of data for subsequent analysis: a small subset group may be adequate for identifying areas visited by cattle; larger subset group size (e.g. subset group containing more than 75% of animals) is recommended to achieve better accuracy of group movement characteristics and spatial occupancy for the use of correlating cattle locations with other environmental factors. PMID:25647571

  10. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns.

    PubMed

    Edelhoff, Hendrik; Signer, Johannes; Balkenhol, Niko

    2016-01-01

    Increased availability of high-resolution movement data has led to the development of numerous methods for studying changes in animal movement behavior. Path segmentation methods provide basics for detecting movement changes and the behavioral mechanisms driving them. However, available path segmentation methods differ vastly with respect to underlying statistical assumptions and output produced. Consequently, it is currently difficult for researchers new to path segmentation to gain an overview of the different methods, and choose one that is appropriate for their data and research questions. Here, we provide an overview of different methods for segmenting movement paths according to potential changes in underlying behavior. To structure our overview, we outline three broad types of research questions that are commonly addressed through path segmentation: 1) the quantitative description of movement patterns, 2) the detection of significant change-points, and 3) the identification of underlying processes or 'hidden states'. We discuss advantages and limitations of different approaches for addressing these research questions using path-level movement data, and present general guidelines for choosing methods based on data characteristics and questions. Our overview illustrates the large diversity of available path segmentation approaches, highlights the need for studies that compare the utility of different methods, and identifies opportunities for future developments in path-level data analysis. PMID:27595001

  11. An animal model of fetishism.

    PubMed

    Köksal, Falih; Domjan, Michael; Kurt, Adnan; Sertel, Ozlem; Orüng, Sabiha; Bowers, Rob; Kumru, Gulsen

    2004-12-01

    An animal model of sexual fetishism was developed with male Japanese quail based on persistence of conditioned sexual responding during extinction to an inanimate object made of terrycloth (Experiments 1 and 3). This persistent responding occurred only in subjects that came to copulate with the terrycloth object, suggesting that the copulatory behavior served to maintain the fetishistic behavior. Sexual conditioning was carried out by pairing a conditioned stimulus (CS) with the opportunity to copulate with a female (the unconditioned stimulus or US). Copulation with the CS object and persistent responding did not develop if the CS was a light (Experiment 1) or if conditioning was carried out with a food US (Experiment 2). In addition, subjects that showed persistence in responding to the terrycloth CS did not persist in their responding to a light CS (Experiment 3). The results are consistent with the hypothesis that conditioned copulatory behavior creates a form of self-maintenance that leads to persistent responding to an inanimate object. The development of an animal model of such fetishistic behavior should facilitate experimental analysis of the phenomenon. PMID:15500813

  12. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  13. Animal Models of Autoimmune Neuropathy

    PubMed Central

    Soliven, Betty

    2014-01-01

    The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models. PMID:24615441

  14. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement.

    PubMed

    Neumann, Wiebke; Martinuzzi, Sebastian; Estes, Anna B; Pidgeon, Anna M; Dettki, Holger; Ericsson, Göran; Radeloff, Volker C

    2015-01-01

    Animal movement patterns in space and time are a central aspect of animal ecology. Remotely-sensed environmental indices can play a key role in understanding movement patterns by providing contiguous, relatively fine-scale data that link animal movements to their environment. Still, implementation of newly available remotely-sensed data is often delayed in studies of animal movement, calling for a better flow of information to researchers less familiar with remotely-sensed data applications. Here, we reviewed the application of remotely-sensed environmental indices to infer movement patterns of animals in terrestrial systems in studies published between 2002 and 2013. Next, we introduced newly available remotely-sensed products, and discussed their opportunities for animal movement studies. Studies of coarse-scale movement mostly relied on satellite data representing plant phenology or climate and weather. Studies of small-scale movement frequently used land cover data based on Landsat imagery or aerial photographs. Greater documentation of the type and resolution of remotely-sensed products in ecological movement studies would enhance their usefulness. Recent advancements in remote sensing technology improve assessments of temporal dynamics of landscapes and the three-dimensional structures of habitats, enabling near real-time environmental assessment. Online movement databases that now integrate remotely-sensed data facilitate access to remotely-sensed products for movement ecologists. We recommend that animal movement studies incorporate remotely-sensed products that provide time series of environmental response variables. This would facilitate wildlife management and conservation efforts, as well as the predictive ability of movement analyses. Closer collaboration between ecologists and remote sensing experts could considerably alleviate the implementation gap. Ecologists should not expect that indices derived from remotely-sensed data will be directly

  15. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  16. Animal models of recurrent or bipolar depression.

    PubMed

    Kato, T; Kasahara, T; Kubota-Sakashita, M; Kato, T M; Nakajima, K

    2016-05-01

    Animal models of mental disorders should ideally have construct, face, and predictive validity, but current animal models do not always satisfy these validity criteria. Additionally, animal models of depression rely mainly on stress-induced behavioral changes. These stress-induced models have limited validity, because stress is not a risk factor specific to depression, and the models do not recapitulate the recurrent and spontaneous nature of depressive episodes. Although animal models exhibiting recurrent depressive episodes or bipolar depression have not yet been established, several researchers are trying to generate such animals by modeling clinical risk factors as well as by manipulating a specific neural circuit using emerging techniques. PMID:26265551

  17. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies. PMID:22754549

  18. Disease Spread through Animal Movements: A Static and Temporal Network Analysis of Pig Trade in Germany

    PubMed Central

    Lentz, Hartmut H. K.; Koher, Andreas; Hövel, Philipp; Gethmann, Jörn; Sauter-Louis, Carola; Selhorst, Thomas; Conraths, Franz J.

    2016-01-01

    Background Animal trade plays an important role for the spread of infectious diseases in livestock populations. The central question of this work is how infectious diseases can potentially spread via trade in such a livestock population. We address this question by analyzing the underlying network of animal movements. In particular, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network. Methodology The considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account. Findings We find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume do barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size. PMID:27152712

  19. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  20. Optimal orientation in flows: providing a benchmark for animal movement strategies

    PubMed Central

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  1. Animal Models of Williams Syndrome

    PubMed Central

    OSBORNE, LUCY R.

    2010-01-01

    In recent years, researchers have generated a variety of mouse models in an attempt to dissect the contribution of individual genes to the complex phenotype associated with Williams syndrome (WS). The mouse genome is easily manipulated to produce animals that are copies of humans with genetic conditions, be it with null mutations, hypomorphic mutations, point mutations, or even large deletions encompassing many genes. The existing mouse models certainly seem to implicate hemizygosity for ELN, BAZ1B, CLIP2, and GTF2IRD1 in WS, and new mice with large deletions of the WS region are helping us to understand both the additive and potential combinatorial effects of hemizygosity for specific genes. However, not all genes that are haploinsufficient in humans prove to be so in mice and the effect of genetic background can also have a significant effect on the penetrance of many phenotypes. Thus although mouse models are powerful tools, the information garnered from their study must be carefully interpreted. Nevertheless, mouse models look set to provide a wealth of information about the neuroanatomy, neurophysiology and molecular pathways that underlie WS and in the future will act as essential tools for the development and testing of therapeutics. PMID:20425782

  2. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia.

    PubMed

    Beaudoin-Gobert, Maude; Sgambato-Faure, Véronique

    2014-06-01

    Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders. PMID:24486710

  3. Energy efficiency and allometry of movement of swimming and flying animals

    PubMed Central

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patankar, Neelesh A.

    2014-01-01

    Which animals use their energy better during movement? One metric to answer this question is the energy cost per unit distance per unit weight. Prior data show that this metric decreases with mass, which is considered to imply that massive animals are more efficient. Although useful, this metric also implies that two dynamically equivalent animals of different sizes will not be considered equally efficient. We resolve this longstanding issue by first determining the scaling of energy cost per unit distance traveled. The scale is found to be M2/3 or M1/2, where M is the animal mass. Second, we introduce an energy-consumption coefficient (CE) defined as energy per unit distance traveled divided by this scale. CE is a measure of efficiency of swimming and flying, analogous to how drag coefficient quantifies aerodynamic drag on vehicles. Derivation of the energy-cost scale reveals that the assumption that undulatory swimmers spend energy to overcome drag in the direction of swimming is inappropriate. We derive allometric scalings that capture trends in data of swimming and flying animals over 10–20 orders of magnitude by mass. The energy-consumption coefficient reveals that swimmers beyond a critical mass, and most fliers are almost equally efficient as if they are dynamically equivalent; increasingly massive animals are not more efficient according to the proposed metric. Distinct allometric scalings are discovered for large and small swimmers. Flying animals are found to require relatively more energy compared with swimmers. PMID:24821764

  4. Energy efficiency and allometry of movement of swimming and flying animals.

    PubMed

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patankar, Neelesh A

    2014-05-27

    Which animals use their energy better during movement? One metric to answer this question is the energy cost per unit distance per unit weight. Prior data show that this metric decreases with mass, which is considered to imply that massive animals are more efficient. Although useful, this metric also implies that two dynamically equivalent animals of different sizes will not be considered equally efficient. We resolve this longstanding issue by first determining the scaling of energy cost per unit distance traveled. The scale is found to be M(2/3) or M(1/2), where M is the animal mass. Second, we introduce an energy-consumption coefficient (CE) defined as energy per unit distance traveled divided by this scale. CE is a measure of efficiency of swimming and flying, analogous to how drag coefficient quantifies aerodynamic drag on vehicles. Derivation of the energy-cost scale reveals that the assumption that undulatory swimmers spend energy to overcome drag in the direction of swimming is inappropriate. We derive allometric scalings that capture trends in data of swimming and flying animals over 10-20 orders of magnitude by mass. The energy-consumption coefficient reveals that swimmers beyond a critical mass, and most fliers are almost equally efficient as if they are dynamically equivalent; increasingly massive animals are not more efficient according to the proposed metric. Distinct allometric scalings are discovered for large and small swimmers. Flying animals are found to require relatively more energy compared with swimmers. PMID:24821764

  5. Animal Models of Stress Urinary Incontinence

    PubMed Central

    Jiang, Hai-Hong

    2011-01-01

    Stress urinary incontinence (SUI) is a common health problem significantly affecting the quality of life of women worldwide. Animal models that simulate SUI enable the assessment of the mechanism of risk factors for SUI in a controlled fashion, including childbirth injuries, and enable preclinical testing of new treatments and therapies for SUI. Animal models that simulate childbirth are presently being utilized to determine the mechanisms of the maternal injuries of childbirth that lead to SUI with the goal of developing prophylactic treatments. Methods of assessing SUI in animals that mimic diagnostic methods used clinically have been developed to evaluate the animal models. Use of these animal models to test innovative treatment strategies has the potential to improve clinical management of SUI. This chapter provides a review of the available animal models of SUI, as well as a review of the methods of assessing SUI in animal models, and potential treatments that have been tested on these models. PMID:21290221

  6. Animal models to evaluate bacterial biofilm development.

    PubMed

    Thomsen, Kim; Trøstrup, Hannah; Moser, Claus

    2014-01-01

    Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models - two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model. PMID:24664830

  7. Potency of Animal Models in KANSEI Engineering

    NASA Astrophysics Data System (ADS)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  8. Minimally Invasive Techniques to Accelerate the Orthodontic Tooth Movement: A Systematic Review of Animal Studies

    PubMed Central

    Qamruddin, Irfan; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli; Husein, Adam

    2015-01-01

    Objective. To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals. Materials and Methods. Literature was searched using NCBI (PubMed, PubMed Central, and PubMed Health), MedPilot (Medline, Catalogue ZB MED, Catalogue Medicine Health, and Excerpta Medica Database (EMBASE)), and Google Scholar from January 2009 till 31 December 2014. We included original articles related to noninvasive and minimally invasive procedures to enhance orthodontic tooth movement in animals. Extraction of data and quality assessments were carried out by two observers independently. Results. The total number of hits was 9195 out of which just 11 fulfilled the inclusion criteria. Nine articles were good and 5 articles were moderate in quality. Low level laser therapy (LLLT) was among the most common noninvasive techniques whereas flapless corticision using various instruments was among the commonest minimally invasive procedures to enhance velocity of tooth movement. Conclusions. LLLT, low intensity pulsed ultrasound (LIPUS), mechanical vibration, and flapless corticision are emerging noninvasive and minimally invasive techniques which need further researches to establish protocols to use them clinically with conviction. PMID:26881201

  9. Laboratory Animal Models for Brucellosis Research

    PubMed Central

    Silva, Teane M. A.; Costa, Erica A.; Paixão, Tatiane A.; Tsolis, Renée M.; Santos, Renato L.

    2011-01-01

    Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused by Brucella. This model is most frequently used to investigate specific pathogenic factors of Brucella spp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis. PMID:21403904

  10. The mathematics of movement

    USGS Publications Warehouse

    Johnson, D.H.

    1999-01-01

    Review of: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Peter Turchin. 1998. Sinauer Associates, Sunderland, MA. 306 pages. $38.95 (paper).

  11. Animal Models and Integrated Nested Laplace Approximations

    PubMed Central

    Holand, Anna Marie; Steinsland, Ingelin; Martino, Sara; Jensen, Henrik

    2013-01-01

    Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA. PMID:23708299

  12. Computer Model Predicts the Movement of Dust

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new computer model of the atmosphere can now actually pinpoint where global dust events come from, and can project where they're going. The model may help scientists better evaluate the impact of dust on human health, climate, ocean carbon cycles, ecosystems, and atmospheric chemistry. Also, by seeing where dust originates and where it blows people with respiratory problems can get advanced warning of approaching dust clouds. 'The model is physically more realistic than previous ones,' said Mian Chin, a co-author of the study and an Earth and atmospheric scientist at Georgia Tech and the Goddard Space Flight Center (GSFC) in Greenbelt, Md. 'It is able to reproduce the short term day-to-day variations and long term inter-annual variations of dust concentrations and distributions that are measured from field experiments and observed from satellites.' The above images show both aerosols measured from space (left) and the movement of aerosols predicted by computer model for the same date (right). For more information, read New Computer Model Tracks and Predicts Paths Of Earth's Dust Images courtesy Paul Giroux, Georgia Tech/NASA Goddard Space Flight Center

  13. Relevance of animal models to human tardive dyskinesia.

    PubMed

    Blanchet, Pierre J; Parent, Marie-Thérèse; Rompré, Pierre H; Lévesque, Daniel

    2012-01-01

    Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia. PMID:22404856

  14. Impact of Bisphosphonate on Orthodontic tooth movement and osteoclastic count: An Animal Study

    PubMed Central

    Venkataramana, V; Chidambaram, S; Reddy, B Vishnuvardhan; Goud, E V Soma Shekara; Arafath, Mohammed; Krishnan, Santhana

    2014-01-01

    Background : The aim of the current study is to examine the effect of systemically administered BP-Pamidronate, on Orthodontic Tooth Movement (OTM) along with osteoclastic quantification in New Zealand white rabbits. Materials & Methods : Twenty rabbits used in the study, were equally divided into 2 groups ; Group-1 as Control & Group-2 as Experimental. A sentalloy NITI closed coil spring (GAC International, USA) of 100 gram force, ligated between the lower first molar and the anterior most incisors of the rabbit has served as orthodontic force element. The BP- Pamidronate was administered at the dosage of 1.5 mg/kg body intra-peritonially, on the 1st, 7th and 14th day of the experiment. On the 21st day both group of animals were sacrificed, mandibles were dissected. The formed diastema between the 1st and 2nd molar was measured on the dissected mandibles using standard metric scale, which is considered as the OTM in the mesial direction. Next, the alveolar bone regions along with intact mesial surfaces were processed for histological investigation (osteoclastic count). Results : The student ‘t’ test has been done to compare the mean values of molar tooth movement and osteoclastic count. Parameter :1 molar tooth movement has shown a significant difference between the control (3.750 ± 0.548 mm) and the experimental group (3.050 ± 0.556 mm) with calculated ‘p’ value (p-value <0.05) is significant at 0.0110 level. Parameter : 2 osteoclastic count has shown a significant difference between the control (13.335000 ± 0.735856 per square mm.) and the experimental group (11.426900 ± 1.49369 per square mm) calculated ‘p’ value (p-value <0.05) is significant at 0.003 level. Conclusion : The molar tooth movement and the osteoclastic count were significantly reduced in BP – Pamidronate administered animals than non-drug recipients. How to cite the article: Venkataramana V, Chidambaram S, Reddy BV, Goud EV, Arafath M, Krishnan S. Impact of Bisphosphonate on

  15. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.

    PubMed

    Bradshaw, Corey J A; Sims, David W; Hays, Graeme C

    2007-03-01

    Recent advances in telemetry technology have created a wealth of tracking data available for many animal species moving over spatial scales from tens of meters to tens of thousands of kilometers. Increasingly, such data sets are being used for quantitative movement analyses aimed at extracting fundamental biological signals such as optimal searching behavior and scale-dependent foraging decisions. We show here that the location error inherent in various tracking technologies reduces the ability to detect patterns of behavior within movements. Our analyses endeavored to set out a series of initial ground rules for ecologists to help ensure that sampling noise is not misinterpreted as a real biological signal. We simulated animal movement tracks using specialized random walks known as Lévy flights at three spatial scales of investigation: 100-km, 10-km, and 1-km maximum daily step lengths. The locations generated in the simulations were then blurred using known error distributions associated with commonly applied tracking methods: the Global Positioning System (GPS), Argos polar-orbiting satellites, and light-level geolocation. Deviations from the idealized Lévy flight pattern were assessed for each track after incrementing levels of location error were applied at each spatial scale, with additional assessments of the effect of error on scale-dependent movement patterns measured using fractal mean dimension and first-passage time (FPT) analyses. The accuracy of parameter estimation (Lévy mu, fractal mean D, and variance in FPT) declined precipitously at threshold errors relative to each spatial scale. At 100-km maximum daily step lengths, error standard deviations of > or = 10 km seriously eroded the biological patterns evident in the simulated tracks, with analogous thresholds at the 10-km and 1-km scales (error SD > or = 1.3 km and 0.07 km, respectively). Temporal subsampling of the simulated tracks maintained some elements of the biological signals depending on

  16. MOAB: a spatially explicit, individual-based expert system for creating animal foraging models

    USGS Publications Warehouse

    Carter, J.; Finn, John T.

    1999-01-01

    We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.

  17. Animal models of tuberculosis for vaccine development.

    PubMed

    Gupta, U D; Katoch, V M

    2009-01-01

    Animal models for testing different vaccine candidates have been developed since a long time for studying tuberculosis. Mice, guinea pigs and rabbits are animals most frequently used. Each model has its own merits for studying human tuberculosis, and none completely mimics the human disease. Different animal models are being used depending upon the availability of the space, trained manpower as well as other resources. Efforts should continue to develop a vaccine which can replace/outperform the presently available vaccine BCG. PMID:19287053

  18. Space-use behaviour of woodland caribou based on a cognitive movement model.

    PubMed

    Avgar, Tal; Baker, James A; Brown, Glen S; Hagens, Jevon S; Kittle, Andrew M; Mallon, Erin E; McGreer, Madeleine T; Mosser, Anna; Newmaster, Steven G; Patterson, Brent R; Reid, Douglas E B; Rodgers, Art R; Shuter, Jennifer; Street, Garrett M; Thompson, Ian; Turetsky, Merritt J; Wiebe, Philip A; Fryxell, John M

    2015-07-01

    Movement patterns offer a rich source of information on animal behaviour and the ecological significance of landscape attributes. This is especially useful for species occupying remote landscapes where direct behavioural observations are limited. In this study, we fit a mechanistic model of animal cognition and movement to GPS positional data of woodland caribou (Rangifer tarandus caribou; Gmelin 1788) collected over a wide range of ecological conditions. The model explicitly tracks individual animal informational state over space and time, with resulting parameter estimates that have direct cognitive and ecological meaning. Three biotic landscape attributes were hypothesized to motivate caribou movement: forage abundance (dietary digestible biomass), wolf (Canis lupus; Linnaeus, 1758) density and moose (Alces alces; Linnaeus, 1758) habitat. Wolves are the main predator of caribou in this system and moose are their primary prey. Resulting parameter estimates clearly indicated that forage abundance is an important driver of caribou movement patterns, with predator and moose avoidance often having a strong effect, but not for all individuals. From the cognitive perspective, our results support the notion that caribou rely on limited sensory inputs from their surroundings, as well as on long-term spatial memory, to make informed movement decisions. Our study demonstrates how sensory, memory and motion capacities may interact with ecological fitness covariates to influence movement decisions by free-ranging animals. PMID:25714592

  19. Pain assessment in animal models of osteoarthritis.

    PubMed

    Piel, Margaret J; Kroin, Jeffrey S; van Wijnen, Andre J; Kc, Ranjan; Im, Hee-Jeong

    2014-03-10

    Assessment of pain in animal models of osteoarthritis is integral to interpretation of a model's utility in representing the clinical condition, and enabling accurate translational medicine. Here we describe behavioral pain assessments available for small and large experimental osteoarthritic pain animal models. PMID:24333346

  20. PARTICLE TRACKING ANALYSIS & ANIMATIONS DEPICTING MOVEMENT OF THE CARBON TETRACHLORIDE PLUME REPORT

    SciTech Connect

    MCMAHON, W.J.; ROHAY, V.J.

    2006-11-02

    The purpose of the hydraulic particle tracking animation files is to show where carbon tetrachloride that reached groundwater from the known discharge facilities would have been likely to travel fin the groundwater, and from where carbon tetrachloride presently observed in the aquifer likely would have started. These analyses support the 200-PW-1 Operable Unit activity to identify sources of carbon tetrachloride currently observed in groundwater or locations where carbon tetrachloride may have entered the groundwater. The animation files show travel paths (both forward and backward in time) for hypothetical particles of carbon tetrachloride carried in the groundwater. The travel paths represent the movement of the carbon tetrachloride at the average groundwater velocity. The particles only represent an estimation of where the carbon tetrachloride would be expected to be (or have come from) and do not indicate or imply what the concentration in the groundwater would be.

  1. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  2. Ethical issues: impact of the animal rights movement on surgical research.

    PubMed

    Sonnino, R E; Banks, R E

    1996-08-01

    The aggressive militancy of many animal rights or "antivivisectionist" groups is causing great consternation but little action on the part of medical and surgical researchers. Pediatric surgeons are particularly affected, since issues of tissue healing, growth and development, and organ or total-body responses to surgical insults must be established in the live organism, usually in animal models that cannot be replaced by other methods. Investigators have been threatened physically; laboratories have been vandalized and valuable data destroyed. Biomedical researchers have been called "animal-Nazis." The proliferation of animal rights groups such as the Animal Liberation Front (ALF) and People for the Ethical Treatment of Animals (PETA) have prompted the birth of pro-research organizations such as "Putting People First" and the "incurably ill For Animal Research" (iiFAR). The result of this pro and con activity is an extraordinary amount of time and expense devoted to cover the cost of new regulations and laboratory security (approximately $ 1.5 billion in the U. S. alone) at the expense of research budgets, adding to the increasing shortage of research funding. This situation has created dilemmas for the surgeon involved in basic animal research: is it worth taking personal risks to develop new techniques? Is it ethical to allow these fears to hinder progress in surgery? Should we do away with animal research entirely and test new techniques directly on children? Would that be ethical? These questions are difficult to answer, but must be addressed if we expect medicine to progress. PMID:24057778

  3. 9 CFR 71.17 - Interstate movement of dead poultry or other animals prohibited in same car with live poultry or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate movement of dead poultry or other animals prohibited in same car with live poultry or other animals. 71.17 Section 71.17 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.17 Interstate...

  4. 9 CFR 71.17 - Interstate movement of dead poultry or other animals prohibited in same car with live poultry or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Interstate movement of dead poultry or other animals prohibited in same car with live poultry or other animals. 71.17 Section 71.17 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.17 Interstate...

  5. 9 CFR 71.17 - Interstate movement of dead poultry or other animals prohibited in same car with live poultry or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Interstate movement of dead poultry or other animals prohibited in same car with live poultry or other animals. 71.17 Section 71.17 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.17 Interstate...

  6. 9 CFR 71.17 - Interstate movement of dead poultry or other animals prohibited in same car with live poultry or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Interstate movement of dead poultry or other animals prohibited in same car with live poultry or other animals. 71.17 Section 71.17 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.17 Interstate...

  7. 9 CFR 71.17 - Interstate movement of dead poultry or other animals prohibited in same car with live poultry or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Interstate movement of dead poultry or other animals prohibited in same car with live poultry or other animals. 71.17 Section 71.17 Animals and... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.17 Interstate...

  8. DynAOI: a tool for matching eye-movement data with dynamic areas of interest in animations and movies.

    PubMed

    Papenmeier, Frank; Huff, Markus

    2010-02-01

    Analyzing gaze behavior with dynamic stimulus material is of growing importance in experimental psychology; however, there is still a lack of efficient analysis tools that are able to handle dynamically changing areas of interest. In this article, we present DynAOI, an open-source tool that allows for the definition of dynamic areas of interest. It works automatically with animations that are based on virtual three-dimensional models. When one is working with videos of real-world scenes, a three-dimensional model of the relevant content needs to be created first. The recorded eye-movement data are matched with the static and dynamic objects in the model underlying the video content, thus creating static and dynamic areas of interest. A validation study asking participants to track particular objects demonstrated that DynAOI is an efficient tool for handling dynamic areas of interest. PMID:20160298

  9. A method to quantify movement activity of groups of animals using automated image analysis

    NASA Astrophysics Data System (ADS)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  10. Relative contributions of neighbourhood and animal movements to Coxiella burnetii infection in dairy cattle herds.

    PubMed

    Nusinovici, Simon; Hoch, Thierry; Widgren, Stefan; Joly, Alain; Lindberg, Ann; Beaudeau, François

    2014-05-01

    Q fever in dairy cattle herds occurs mainly after inhalation of contaminated aerosols generated from excreta by shedder animals. Propagation of Coxiella burnetii, the cause of the disease between ruminant herds could result from transmission between neighbouring herds and/or the introduction of infected shedder animals in healthy herds. The objective of this study were (i) to describe the spatial distribution C. burnetii-infected dairy cattle herds in two different regions: the Finistère District in France (2,829 herds) and the island of Gotland in Sweden (119 herds) and (ii) to quantify and compare the relative contributions of C. burnetii transmission related to neighbourhood and to animal movements on the risk for a herd to be infected. An enzyme--linked immunosorbent assay was used for testing bulk tank milk in May 2012 and June 2011, respectively. Only one geographical cluster of positive herds was identified in north-western Finistère. Logistic regression was used to assess the association of risk for a herd to test positively with local cattle density (the total number of cattle located in a 5 km radius circle) and the in-degree (ID) parameter, a measure of the number of herds from which each herd had received animals directly within the last 2 years. The risk for a herd to test positively was higher for herds with a higher local cattle density [odds ratio (OR) = 2.3, 95% confidence interval (CI) = 1.6-3.2, for herds with a local density between 100 and 120 compared to herds with a local density 60]. The risk was also higher for herds with higher IDs (OR = 2.3, 95% CI = 1.6-3.2, for herds with ID 3 compared to herds that did not introduce animals). The proportion of cases attributable to infections in the neighbourhood in high-density areas was twice the proportion attributable to animal movements, suggesting that wind plays a main role in the transmission. PMID:24893024

  11. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  12. An integrated model of fixational eye movements and microsaccades.

    PubMed

    Engbert, Ralf; Mergenthaler, Konstantin; Sinn, Petra; Pikovsky, Arkady

    2011-09-27

    When we fixate a stationary target, our eyes generate miniature (or fixational) eye movements involuntarily. These fixational eye movements are classified as slow components (physiological drift, tremor) and microsaccades, which represent rapid, small-amplitude movements. Here we propose an integrated mathematical model for the generation of slow fixational eye movements and microsaccades. The model is based on the concept of self-avoiding random walks in a potential, a process driven by a self-generated activation field. The self-avoiding walk generates persistent movements on a short timescale, whereas, on a longer timescale, the potential produces antipersistent motions that keep the eye close to an intended fixation position. We introduce microsaccades as fast movements triggered by critical activation values. As a consequence, both slow movements and microsaccades follow the same law of motion; i.e., movements are driven by the self-generated activation field. Thus, the model contributes a unified explanation of why it has been a long-standing problem to separate slow movements and microsaccades with respect to their motion-generating principles. We conclude that the concept of a self-avoiding random walk captures fundamental properties of fixational eye movements and provides a coherent theoretical framework for two physiologically distinct movement types. PMID:21873243

  13. Experimental Animal Models in Periodontology: A Review

    PubMed Central

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  14. Animal models for the study of tendinopathy

    PubMed Central

    Warden, S J

    2007-01-01

    Tendinopathy is a common and significant clinical problem characterised by activity‐related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent potential efficient and effective means of furthering our understanding of human tendinopathy and its underlying pathology. By selecting an appropriate species and introducing known risk factors for tendinopathy in humans, it is possible to develop tendon changes in animal models that are consistent with the human condition. This paper overviews the role of animal models in tendinopathy research by discussing the benefits and development of animal models of tendinosis, highlighting potential outcome measures that may be used in animal tendon research, and reviewing current animal models of tendinosis. It is hoped that with further development of animal models of tendinosis, new strategies for the prevention and treatment of tendinopathy in humans will be generated. PMID:17127722

  15. Animal Models in Studying Cerebral Arteriovenous Malformation

    PubMed Central

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected. PMID:26649296

  16. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies. PMID:26414877

  17. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  18. Movement.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on movement: movable art, relocating families, human rights, and trains and cars. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books, additional resources and activities (PEN)

  19. Classifying movement behaviour in relation to environmental conditions using hidden Markov models.

    PubMed

    Patterson, Toby A; Basson, Marinelle; Bravington, Mark V; Gunn, John S

    2009-11-01

    1. Linking the movement and behaviour of animals to their environment is a central problem in ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of movement observations to environmental conditions are still in development. 2. In this study, we examine the hidden Markov model (HMM) for behavioural analysis of tracking data. HMMs allow for prediction of latent behavioural states while directly accounting for the serial dependence prevalent in ETT data. Updating the probability of behavioural switches with tag or remote-sensing data provides a statistical method that links environmental data to behaviour in a direct and integrated manner. 3. It is important to assess the reliability of state categorization over the range of time-series lengths typically collected from field instruments and when movement behaviours are similar between movement states. Simulation with varying lengths of times series data and contrast between average movements within each state was used to test the HMMs ability to estimate movement parameters. 4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident and migratory phases and the relationship between movement behaviour and ocean temperature using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to evaluate the suitability of different models and inferential methods for investigating differences in behaviour between individuals are also demonstrated. PMID:19563470

  20. Natural movement generation using hidden Markov models and principal components.

    PubMed

    Kwon, Junghyun; Park, Frank C

    2008-10-01

    Recent studies have shown that the perception of natural movements-in the sense of being "humanlike"-depends on both joint and task space characteristics of the movement. This paper proposes a movement generation framework that merges two established techniques from gesture recognition and motion generation-hidden Markov models (HMMs) and principal components-into an efficient and reliable means of generating natural movements, which uniformly considers joint and task space characteristics. Given human motion data that are classified into several movement categories, for each category, the principal components extracted from the joint trajectories are used as basis elements. An HMM is, in turn, designed and trained for each movement class using the human task space motion data. Natural movements are generated as the optimal linear combination of principal components, which yields the highest probability for the trained HMM. Experimental case studies with a prototype humanoid robot demonstrate the various advantages of our proposed framework. PMID:18784005

  1. Modelling Fine Scale Movement Corridors for the Tricarinate Hill Turtle

    NASA Astrophysics Data System (ADS)

    Mondal, I.; Kumar, R. S.; Habib, B.; Talukdar, G.

    2016-06-01

    Habitat loss and the destruction of habitat connectivity can lead to species extinction by isolation of population. Identifying important habitat corridors to enhance habitat connectivity is imperative for species conservation by preserving dispersal pattern to maintain genetic diversity. Circuit theory is a novel tool to model habitat connectivity as it considers habitat as an electronic circuit board and species movement as a certain amount of current moving around through different resistors in the circuit. Most studies involving circuit theory have been carried out at small scales on large ranging animals like wolves or pumas, and more recently on tigers. This calls for a study that tests circuit theory at a large scale to model micro-scale habitat connectivity. The present study on a small South-Asian geoemydid, the Tricarinate Hill-turtle (Melanochelys tricarinata), focuses on habitat connectivity at a very fine scale. The Tricarinate has a small body size (carapace length: 127-175 mm) and home range (8000-15000 m2), with very specific habitat requirements and movement patterns. We used very high resolution Worldview satellite data and extensive field observations to derive a model of landscape permeability at 1 : 2,000 scale to suit the target species. Circuit theory was applied to model potential corridors between core habitat patches for the Tricarinate Hill-turtle. The modelled corridors were validated by extensive ground tracking data collected using thread spool technique and found to be functional. Therefore, circuit theory is a promising tool for accurately identifying corridors, to aid in habitat studies of small species.

  2. Animal Models of Human Granulocyte Diseases

    PubMed Central

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  3. Assessing the Permeability of Landscape Features to Animal Movement: Using Genetic Structure to Infer Functional Connectivity

    PubMed Central

    Anderson, Sara J.; Kierepka, Elizabeth M.; Swihart, Robert K.; Latch, Emily K.; Rhodes, Olin E.

    2015-01-01

    Human-altered environments often challenge native species with a complex spatial distribution of resources. Hostile landscape features can inhibit animal movement (i.e., genetic exchange), while other landscape attributes facilitate gene flow. The genetic attributes of organisms inhabiting such complex environments can reveal the legacy of their movements through the landscape. Thus, by evaluating landscape attributes within the context of genetic connectivity of organisms within the landscape, we can elucidate how a species has coped with the enhanced complexity of human altered environments. In this research, we utilized genetic data from eastern chipmunks (Tamias striatus) in conjunction with spatially explicit habitat attribute data to evaluate the realized permeability of various landscape elements in a fragmented agricultural ecosystem. To accomplish this we 1) used logistic regression to evaluate whether land cover attributes were most often associated with the matrix between or habitat within genetically identified populations across the landscape, and 2) utilized spatially explicit habitat attribute data to predict genetically-derived Bayesian probabilities of population membership of individual chipmunks in an agricultural ecosystem. Consistency between the results of the two approaches with regard to facilitators and inhibitors of gene flow in the landscape indicate that this is a promising new way to utilize both landscape and genetic data to gain a deeper understanding of human-altered ecosystems. PMID:25719366

  4. Assessing the permeability of landscape features to animal movement: using genetic structure to infer functional connectivity.

    PubMed

    Anderson, Sara J; Kierepka, Elizabeth M; Swihart, Robert K; Latch, Emily K; Rhodes, Olin E

    2015-01-01

    Human-altered environments often challenge native species with a complex spatial distribution of resources. Hostile landscape features can inhibit animal movement (i.e., genetic exchange), while other landscape attributes facilitate gene flow. The genetic attributes of organisms inhabiting such complex environments can reveal the legacy of their movements through the landscape. Thus, by evaluating landscape attributes within the context of genetic connectivity of organisms within the landscape, we can elucidate how a species has coped with the enhanced complexity of human altered environments. In this research, we utilized genetic data from eastern chipmunks (Tamias striatus) in conjunction with spatially explicit habitat attribute data to evaluate the realized permeability of various landscape elements in a fragmented agricultural ecosystem. To accomplish this we 1) used logistic regression to evaluate whether land cover attributes were most often associated with the matrix between or habitat within genetically identified populations across the landscape, and 2) utilized spatially explicit habitat attribute data to predict genetically-derived Bayesian probabilities of population membership of individual chipmunks in an agricultural ecosystem. Consistency between the results of the two approaches with regard to facilitators and inhibitors of gene flow in the landscape indicate that this is a promising new way to utilize both landscape and genetic data to gain a deeper understanding of human-altered ecosystems. PMID:25719366

  5. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther.

    PubMed

    van de Kerk, Madelon; Onorato, David P; Criffield, Marc A; Bolker, Benjamin M; Augustine, Ben C; McKinley, Scott A; Oli, Madan K

    2015-03-01

    Animals must move to find food and mates, and to avoid predators; movement thus influences survival and reproduction, and ultimately determines fitness. Precise description of movement and understanding of spatial and temporal patterns as well as relationships with intrinsic and extrinsic factors is important both for theoretical and applied reasons. We applied hidden semi-Markov models (HSMM) to hourly geographic positioning system (GPS) location data to understand movement patterns of the endangered Florida panther (Puma concolor coryi) and to discern factors influencing these patterns. Three distinct movement modes were identified: (1) Resting mode, characterized by short step lengths and turning angles around 180(o); (2) Moderately active (or intermediate) mode characterized by intermediate step lengths and variable turning angles, and (3) Traveling mode, characterized by long step lengths and turning angles around 0(o). Males and females, and females with and without kittens, exhibited distinctly different movement patterns. Using the Viterbi algorithm, we show that differences in movement patterns of male and female Florida panthers were a consequence of sex-specific differences in diurnal patterns of state occupancy and sex-specific differences in state-specific movement parameters, whereas the differences between females with and without dependent kittens were caused solely by variation in state occupancy. Our study demonstrates the use of HSMM methodology to precisely describe movement and to dissect differences in movement patterns according to sex, and reproductive status. PMID:25251870

  6. Using mass scaling of movement cost and resource encounter rate to predict animal body size-population density relationships.

    PubMed

    Nilsen, Erlend B; Finstad, Anders G; Næsje, Tor F; Sverdrup-Thygeson, Anne

    2013-06-01

    The negative relationship between body mass and population abundance was documented decades ago and forms one of the most fundamental scaling-laws in ecology. However, current theory fails to capture observed variations and the subject continues to raise controversy. Here we unify empirically observed size-abundance relationships with theory, by incorporating allometries in resource encounter rate and metabolic costs of movements. Fractal geometry is used to quantify the underlying resources distributions. Our model predicts that in environments packed with resources, body mass to population abundance relationships is less negative than the commonly assumed -3/4 power law. When resources are more patchily distributed, we predict a more negative exponent. These predictions are consistent with empirical observations. The current research provides an important step towards synthesizing metabolism, resource distribution and the global scaling of animal abundance, explaining why size-abundance relationships vary among feeding guilds and ecosystems. PMID:23548840

  7. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  8. Dynamic modeling of the neck muscles during horizontal head movement.

    PubMed

    Haapala, Stephenie A; Enderle, John D

    2002-01-01

    This paper presents modeling and simulation of superficial neck muscle movement in the horizontal plane (yaw). The parametric muscle model was constructed using Pro/Engineer 2000i Student Edition, Parametric Technologies Corp, and simulated using Pro/Mechanica. Pennation angles, force-tension, force-generation and rate of muscle activation data were obtained from anatomic and physiological studies. Saccadic eye movement models developed by G. Alexander Korentis and John Enderle also provided the basis for this model. PMID:12085608

  9. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  10. Progress With Nonhuman Animal Models of Addiction.

    PubMed

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten. PMID:27588527

  11. Genetic animal models of dystonia: common features and diversities.

    PubMed

    Richter, Franziska; Richter, Angelika

    2014-10-01

    Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder. PMID:25034123

  12. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  13. Animal models of monogenic migraine.

    PubMed

    Chen, Shih-Pin; Tolner, Else A; Eikermann-Haerter, Katharina

    2016-06-01

    Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine. PMID:27154999

  14. Animal models of acute lung injury

    PubMed Central

    Matute-Bello, Gustavo; Frevert, Charles W.; Martin, Thomas R.

    2008-01-01

    Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury. PMID:18621912

  15. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    PubMed Central

    Severns, Paul M.

    2015-01-01

    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches. PMID:26312190

  16. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns.

    PubMed

    Breed, Greg A; Severns, Paul M

    2015-01-01

    Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m) ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm), this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches. PMID:26312190

  17. Animal Eye Models for Uveal Melanoma.

    PubMed

    Cao, Jinfeng; Jager, Martine J

    2015-04-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  18. Animal Eye Models for Uveal Melanoma

    PubMed Central

    Cao, Jinfeng; Jager, Martine J.

    2015-01-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  19. Animal models of human response to dioxins.

    PubMed Central

    Grassman, J A; Masten, S A; Walker, N J; Lucier, G W

    1998-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent member of a class of chlorinated hydrocarbons that interact with the aryl hydrocarbon receptor (AhR). TCDD and dioxinlike compounds are environmentally and biologically stable and as a result, human exposure is chronic and widespread. Studies of highly exposed human populations show that dioxins produce developmental effects, chloracne, and an increase in all cancers and suggest that they may also alter immune and endocrine function. In contrast, the health effects of low-level environmental exposure have not been established. Experimental animal models can enhance the understanding of the effects of low-level dioxin exposure, particularly when there is evidence that humans respond similarly to the animal models. Although there are species differences in pharmacokinetics, experimental animal models demonstrate AhR-dependent health effects that are similar to those found in exposed human populations. Comparisons of biochemical changes show that humans and animal models have similar degrees of sensitivity to dioxin-induced effects. The information gained from animal models is important for developing mechanistic models of dioxin toxicity and critical for assessing the risks to human populations under different circumstances of exposure. PMID:9599728

  20. Animal Models for Adipose Tissue Engineering

    PubMed Central

    Uthamanthil, Rajesh; Beahm, Elisabeth; Frye, Cindy

    2008-01-01

    Abstract There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering. PMID:18544014

  1. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  2. Animal models of human granulocyte diseases.

    PubMed

    Schäffer, Alejandro A; Klein, Christoph

    2013-02-01

    In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  3. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  4. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  5. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  6. Animal models of gastrointestinal inflammation and cancer.

    PubMed

    Lu, L; Chan, Ruby L Y; Luo, X M; Wu, William K K; Shin, Vivian Y; Cho, C H

    2014-07-11

    Inflammation and cancer are the two major disorders in the gastrointestinal tract. They are causally related in their pathogenesis. It is important to study animal models' causal relationship and, in particular, to discover new therapeutic agents for such diseases. There are several criteria for these models in order to make them useful in better understanding the etiology and treatment of the said diseases in humans. In this regard, animal models should be similar as possible to human diseases and also be easy to produce and reproducible and also economic to allow a continuous replication in different laboratories. In this review, we summarize the various animal models for inflammatory and cancerous disorders in the upper and lower gastrointestinal tract. Experimental approaches are as simple as by giving a single oral dose of alcohol or other noxious agents or by injections of multiple dosages of ulcer inducing agents or by parenteral administration or in drinking water of carcinogens or by modifying the genetic makeups of animals to produce relatively long-term pathological changes in particular organs. With these methods they could induce consistent inflammatory responses or tumorigenesis in the gastrointestinal mucosa. These animal models are widely used in laboratories in understanding the pathogenesis as well as the mechanisms of action for therapeutic agents in the treatment of gastrointestinal inflammation and cancer. PMID:24825611

  7. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J., Jr.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  8. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  9. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  10. Lessons from Animal Models of Arterial Aneurysm

    PubMed Central

    Gertz, S. David; Mintz, Yoav; Beeri, Ronen; Rubinstein, Chen; Gilon, Dan; Gavish, Leah; Berlatzky, Yacov; Appelbaum, Liat; Gavish, Lilach

    2013-01-01

    We review the results from the most common animal models of arterial aneurysm, including recent findings from our novel, laparoscopy-based pig model of abdominal aortic aneurysm, that contribute important insights into early pathogenesis. We emphasize the relevance of these findings for evaluation of treatment protocols and novel device prototypes for mechanism-based prevention of progression and rupture. PMID:26798701

  11. Large animal models for stem cell therapy

    PubMed Central

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  12. Simplification of the kinematic model of human movement

    NASA Astrophysics Data System (ADS)

    Dusza, Jacek J.; Wawrzyniak, Zbigniew M.; del Prado Martinez, David

    2013-10-01

    The paper presents a methods of simplification of the human gait model. The experimental data were obtained in the laboratory of the group SATI in the Electronics Engineering Department of the University of Valencia. As a result of the Mean Double Step (MDS) procedure, the human motion were described by a matrix containing the Cartesian coordinates of 26 markers placed on the human body recorded in the 100 time points. With these data it has been possible to develop an software application which performs a wide diversity of tasks like array simplification, mask calculation for the simplification, error calculation as well as tools for signals comparison and movement animation of the markers. Simplifications were made by the spectral analysis of signals and calculating the standard deviation of the differences between the signal and its approximation. Using this method the signals of displacement could be written as the time series limited to a small number of harmonic signals. This approach allows us for a high degree of data compression. The model presented in this work can be applied into the context of medical diagnostics or rehabilitation because for a given approximation error and a large number of harmonics may demonstrate some abnormalities (of orthopaedic symptoms) in the gait cycle analysis.

  13. Measuring Animal Movements in a Natural Ecosystem: A Mark-Recapture Investigation Using Stream-Dwelling Snails

    ERIC Educational Resources Information Center

    Stewart, Timothy W.

    2007-01-01

    In this investigation, students measure and describe movements of animals in a natural ecosystem. Students mark stream-dwelling snails with nail polish, then search for these snails 1-7 days later. Distances and directions moved by recaptured snails are recorded. Simple statistical techniques are used to answer specific research questions and…

  14. Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density

    USGS Publications Warehouse

    Sullivan, A.B.; Jager, H.I.; Myers, R.

    2003-01-01

    We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.

  15. Animal models for motor neuron disease.

    PubMed

    Green, S L; Tolwani, R J

    1999-10-01

    Motor neuron disease is a general term applied to a broad class of neurodegenerative diseases that are characterized by fatally progressive muscular weakness, atrophy, and paralysis attributable to loss of motor neurons. At present, there is no cure for most motor neuron diseases, including amyotrophic lateral sclerosis (ALS), the most common human motor neuron disease--the cause of which remains largely unknown. Animal models of motor neuron disease (MND) have significantly contributed to the remarkable recent progress in understanding the cause, genetic factors, and pathologic mechanisms proposed for this class of human neurodegenerative disorders. Largely driven by ALS research, animal models of MND have proven their usefulness in elucidating potential causes and specific pathogenic mechanisms, and have helped to advance promising new treatments from "benchside to bedside." This review summarizes important features of selected established animal models of MND: genetically engineered mice and inherited or spontaneously occurring MND in the murine, canine, and equine species. PMID:10551448

  16. Differential Paradigms in Animal Models of Sepsis.

    PubMed

    Kingsley, S Manoj Kumar; Bhat, B Vishnu

    2016-09-01

    Sepsis is a serious clinical problem involving complex mechanisms which requires better understanding and insight. Animal models of sepsis have played a major role in providing insight into the complex pathophysiology of sepsis. There have been various animal models of sepsis with different paradigms. Endotoxin, bacterial infusion, cecal ligation and puncture, and colon ascendens stent peritonitis models are the commonly practiced methods at present. Each of these models has their own advantages and also confounding factors. We have discussed the underlying mechanisms regulating each of these models along with possible reasons why each model failed to translate into the clinic. In animal models, the timing of development of the hemodynamic phases and the varied cytokine patterns could not accurately resemble the progression of clinical sepsis. More often, the exuberant and transient pro-inflammatory cytokine response is only focused in most models. Immunosuppression and apoptosis in the later phase of sepsis have been found to cause more damage than the initial acute phase of sepsis. Likewise, better understanding of the existing models of sepsis could help us create a more relevant model which could provide solution to the currently failed clinical trials in sepsis. PMID:27432263

  17. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA? PMID:23859342

  18. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  19. Animal models of cavitation in pulmonary tuberculosis.

    PubMed

    Helke, Kris L; Mankowski, Joseph L; Manabe, Yukari C

    2006-09-01

    Transmission of tuberculosis occurs with the highest frequency from patients with extensive, cavitary, pulmonary disease and positive sputum smear microscopy. In animal models of tuberculosis, the development of caseous necrosis is an important prerequisite for the formation of cavities although the immunological triggers for liquefaction are unknown. We review the relative merits and the information gleaned from the available animal models of pulmonary cavitation. Understanding the host-pathogen interaction important to the formation of cavities may lead to new strategies to prevent cavitation and thereby, block transmission. PMID:16359922

  20. Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals.

    PubMed

    Edwards, Andrew M

    2011-06-01

    A surprisingly diverse variety of foragers have previously been concluded to exhibit movement patterns known as Lévy flights, a special type of random walk. These foragers range in size from microzooplankton in experiments to fishermen in the Pacific Ocean and the North Sea. The Lévy flight conclusion implies that all the foragers have similar scale-free movement patterns that can be described by a single dimensionless parameter, the exponent micro of a power-law (Pareto) distribution. However, the previous conclusions have been made using methods that have since been shown to be problematic: inaccurate techniques were used to estimate micro, and the power-law distribution was usually assumed to hold without testing any alternative hypotheses. Therefore, I address the open question of whether the previous data still support the Lévy flight hypothesis, and thus determine whether Lévy flights really are so ubiquitous in ecology. I present a comprehensive reanalysis of 17 data sets from seven previous studies for which Lévy flight behavior had been concluded, covering marine, terrestrial, and experimental systems from four continents. I use the modern likelihood and Akaike weights approach to test whether simple alternative models are more supported by the data than Lévy flights. The previously estimated values of the power-law exponent micro do not match those calculated here using the accurate likelihood approach, and almost all of them lie outside of the likelihood-based 95% confidence intervals. Furthermore, the original power-law Lévy flight model is overwhelmingly rejected for 16 out of the 17 data sets when tested against three other simple models. For one data set, the data are consistent with coming from a bounded power-law distribution (a truncated Lévy flight). For three other data sets, an exponential distribution corresponding to a simple Poisson process is suitable. Thus, Lévy flight movement patterns are not the common phenomena that was once

  1. Animal models of gene-nutrient interactions.

    PubMed

    Reed, Danielle R

    2008-12-01

    Food intake of humans is governed by the food's nutritional value and pleasing taste, but also by other factors such as food cost and availability, cultural imperatives, and social status. The biological determinants of human food intake are not easily parsed from these other factors, making them hard to study against the whirligig aspects of human life in a modern age. The study of animals provides a useful alternative. Humans have a history of studying animal food intake, for agricultural reasons (e.g., pigs and cows), and for personal reasons (e.g., dogs and cats), and these practical concerns have been joined with the appreciation that other models can teach us the principles of behavior, genetics, and nutrition. Thus there is a steady use of the traditional animal models in this type of research, as well as growth in the use of other systems such as worms and flies. Rats and mice occupy a special niche as animal models for two reasons; first, they share with humans a love of the same types of food, and second, they are the target of a number of well-developed genetic tools. The available genetic tools that make mice a popular model include a well-annotated genome (Mouse Build 37), profiles of RNA expression from many tissues, a diverse panel of inbred strains, and the ability to manipulate genes in the whole animal, including removing a gene only in specific tissues (e.g., Cre-lox system). Mice have been harnessed to find genotypes that contribute to sweet-liking, and other studies are underway to understand how genetic variation might at least partially explain other puzzles of human appetites. Animal models provide a way to study the genetic determinants of food selection with experimental rigor and therefore complement human genetics studies. PMID:19037208

  2. Animal models of neurological deficits: how relevant is the rat?

    PubMed

    Cenci, M Angela; Whishaw, Ian Q; Schallert, Timothy

    2002-07-01

    Animal models of neurological deficits are essential for the assessment of new therapeutic options. It has been suggested that rats are not as appropriate as primates for the symptomatic modelling of disease, but a large body of data argues against this view. Comparative analyses of movements in rats and primates show homology of many motor patterns across species. Advances have been made in identifying rat equivalents of akinesia, tremor, postural deficits and dyskinesia, which are relevant to Parkinson's disease. Rat models of hemiplegia, neglect and tactile extinction are useful in assessing the outcome of ischaemic or traumatic brain injury, and in monitoring the effects of therapeutic interventions. Studies in rodents that emphasize careful behavioural analysis should continue to be developed as effective and inexpensive models that complement studies in primates. PMID:12094213

  3. Are animal models predictive for humans?

    PubMed Central

    2009-01-01

    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics. PMID:19146696

  4. [Diabetes mellitus and its animal models].

    PubMed

    Duhault, J; Koenig-Berard, E

    1997-01-01

    This review presents the major animal models usually used for the study of the pathological processes related to insulin-dependent diabetes mellitus (IDDM), non-insulin-dependent diabetes mellitus (NIDDM) and to the main diabetic complications. These models can be observed spontaneously or can be obtained by selective cross-breeding or toxic exposure (chemical or viral), as well as genetically induced. They reproduce some aspects of the human pathology without combining them all in a single model. Consequently, a pertinent pharmacological approach may compare the results obtained with several models. The examination of the recent results obtained with transgenesis does not allow these animal models to replace more classical ones but they may constitute a future challenge for gene therapy despite the multifactorial aspect of diabetic disease. PMID:9501560

  5. State-Space Modelling of the Drivers of Movement Behaviour in Sympatric Species.

    PubMed

    Pérez-Barbería, F J; Small, M; Hooper, R J; Aldezabal, A; Soriguer-Escofet, R; Bakken, G S; Gordon, I J

    2015-01-01

    Understanding animal movement behaviour is key to furthering our knowledge on intra- and inter-specific competition, group cohesion, energy expenditure, habitat use, the spread of zoonotic diseases or species management. We used a radial basis function surface approximation subject to minimum description length constraint to uncover the state-space dynamical systems from time series data. This approximation allowed us to infer structure from a mathematical model of the movement behaviour of sheep and red deer, and the effect of density, thermal stress and vegetation type. Animal movement was recorded using GPS collars deployed in sheep and deer grazing a large experimental plot in winter and summer. Information on the thermal stress to which animals were exposed was estimated using the power consumption of mechanical heated models and meteorological records of a network of stations in the plot. Thermal stress was higher in deer than in sheep, with less differences between species in summer. Deer travelled more distance than sheep, and both species travelled more in summer than in winter; deer travel distance showed less seasonal differences than sheep. Animal movement was better predicted in deer than in sheep and in winter than in summer; both species showed a swarming behaviour in group cohesion, stronger in deer. At shorter separation distances swarming repulsion was stronger between species than within species. At longer separation distances inter-specific attraction was weaker than intra-specific; there was a positive density-dependent effect on swarming, and stronger in deer than in sheep. There was not clear evidence which species attracted or repelled the other; attraction between deer at long separation distances was stronger when the model accounted for thermal stress, but in general the dynamic movement behaviour was hardly affected by the thermal stress. Vegetation type affected intra-species interactions but had little effect on inter

  6. State-Space Modelling of the Drivers of Movement Behaviour in Sympatric Species

    PubMed Central

    Pérez-Barbería, F. J.; Small, M.; Hooper, R. J.; Aldezabal, A.; Soriguer-Escofet, R.; Bakken, G. S.; Gordon, I. J.

    2015-01-01

    Understanding animal movement behaviour is key to furthering our knowledge on intra- and inter-specific competition, group cohesion, energy expenditure, habitat use, the spread of zoonotic diseases or species management. We used a radial basis function surface approximation subject to minimum description length constraint to uncover the state-space dynamical systems from time series data. This approximation allowed us to infer structure from a mathematical model of the movement behaviour of sheep and red deer, and the effect of density, thermal stress and vegetation type. Animal movement was recorded using GPS collars deployed in sheep and deer grazing a large experimental plot in winter and summer. Information on the thermal stress to which animals were exposed was estimated using the power consumption of mechanical heated models and meteorological records of a network of stations in the plot. Thermal stress was higher in deer than in sheep, with less differences between species in summer. Deer travelled more distance than sheep, and both species travelled more in summer than in winter; deer travel distance showed less seasonal differences than sheep. Animal movement was better predicted in deer than in sheep and in winter than in summer; both species showed a swarming behaviour in group cohesion, stronger in deer. At shorter separation distances swarming repulsion was stronger between species than within species. At longer separation distances inter-specific attraction was weaker than intra-specific; there was a positive density-dependent effect on swarming, and stronger in deer than in sheep. There was not clear evidence which species attracted or repelled the other; attraction between deer at long separation distances was stronger when the model accounted for thermal stress, but in general the dynamic movement behaviour was hardly affected by the thermal stress. Vegetation type affected intra-species interactions but had little effect on inter

  7. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design. PMID:26737430

  8. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  9. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations. PMID:20054084

  10. Henipavirus infections: lessons from animal models.

    PubMed

    Dhondt, Kévin P; Horvat, Branka

    2013-01-01

    The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed. PMID:25437037