Science.gov

Sample records for modeling detector response

  1. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  2. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    PubMed

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors. PMID:23744671

  3. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  4. Gamma Detector Response and Analysis Software - Detector Response Function

    Energy Science and Technology Software Center (ESTSC)

    2014-05-13

    GADRAS-DRF uses a Detector Response Function (DRF) to compute the response of gamma-ray detectors incident radiation. The application includes provision for plotting measured and computed spectra and for characterizing detector response parameters based on measurements of a series of calibration sources (e.g., Ba-133, Cs-137, Co-60, and Th-228). An application program interface enables other programs to access the dynamic-link library that is used to compute spectra.

  5. Modeling the optical response of grating-profiled PtSi/Si infrared detectors

    NASA Astrophysics Data System (ADS)

    Rea, Chris J. T.; Cairns, Gerald F.; Dawson, Paul

    1997-10-01

    Modeling the optical response of grating profiled PtSi/Si structures is examined to demonstrate the potential of microstructuring in optimizing the absorption of infrared detectors. Coupling to angularly broad surface plasmon polariton resonances near normal incidence is, in fact, achieved at both Si/PtSi and SiO2/PtSi interfaces for the same grating parameters in the wavelength ranges 3.0 - 4.4 micrometer and 1.3 - 1.9 micrometer respectively. These ranges correspond to two infrared, atmospheric transmission windows, and demonstrate the potential for a single device geometry to operate optimally in two different spectral bands. It is also shown that, throughout these spectral bands, it is possible to attain reflectance significantly lower than that of the planar structure counterparts in the angle range 0 degrees to plus or minus 20 degrees (corresponding to the use of F1.4 optics), along with containment of low reflectance to that angle range. Absorption mediated by the PtSi/Si surface plasmon polariton mode may be of particular interest in these Schottky barrier structures, since there would be considerable enhancement in the generation of hot carriers in the near barrier region where they have a better chance of direct or indirect (via elastic scattering) promotion over the barrier to give rise to a detectable charge.

  6. An analytic model for the response of a CZT detector in diagnostic energy dispersive x-ray spectroscopy

    SciTech Connect

    LeClair, Robert J.; Wang Yinkun; Zhao Peiying; Boileau, Michel; Wang, Lilie; Fleurot, Fabrice

    2006-05-15

    A CdZnTe detector (CZTD) can be very useful for measuring diagnostic x-ray spectra. The semiconductor detector does, however, exhibit poor hole transport properties and fluorescence generation upon atomic de-excitations. This article describes an analytic model to characterize these two phenomena that occur when a CZTD is exposed to diagnostic x rays. The analytical detector response functions compare well with those obtained via Monte Carlo calculations. The response functions were applied to 50, 80, and 110 kV x-ray spectra. Two 50 kV spectra were measured; one with no filtration and the other with 1.35 mm Al filtration. The unfiltered spectrum was numerically filtered with 1.35 mm of Al in order to see whether the recovered spectrum resembled the filtered spectrum actually measured. A deviation curve was obtained by subtracting one curve from the other on an energy bin by bin basis. The deviation pattern fluctuated around the zero line when corrections were applied to both spectra. Significant deviations from zero towards the lower energies were observed when the uncorrected spectra were used. Beside visual observations, the exposure obtained using the numerically attenuated unfiltered beam was compared to the exposure calculated with the actual filtered beam. The percent differences were 0.8% when corrections were applied and 25% for no corrections. The model can be used to correct diagnostic x-ray spectra measured with a CdZnTe detector.

  7. Response microcantilever thermal detector

    SciTech Connect

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  8. Gamma Detector Response and Analysis Software - Light

    Energy Science and Technology Software Center (ESTSC)

    2004-06-14

    GADRAS is used to analyze gamma-ray spectra, which may be augmented by neutron count rate information. The fundamental capabilities of GADRAS are imparted by physics-based detector response functions for a variety of gamma ray and neufron detectors. The software has provisions for characterizing detector response parameters so that specta can be computed accurately over the range 30keV key to II MeV. Associated neutron detector count rates can also be computed for characterized detectors. GADRAS incorporatesmore » a variety of analysis algorithms that utilize the computed spectra. The full version of GADRAS incorporates support for computation of radiation leakages from complex source models, but this capability is not supported by GADRAS-LT. GADRAS has been and will continue to be disseminated free of charge to government agencies and National Laboratories as OUO software. GADRAS-LT is a limited software version that was prepared for exclusive use of our Technology Transfer parnter Thermo Electron (TE). TE will use the software to characterize and test radiation detectors that are fabricated under the terms of our partnership. The development of these sensors has been defined as a National Security priority by our sponsor, NNSA/NA-20, by DHS/S&T, and by SNL president Paul Robinson. Although GADRAS-LT is OUO, features that are not essential to the detector development have been removed. TE will not be licensed to commercialize GADRAS-LT or to distribute it to third parties.« less

  9. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect

    Nelson, A. J.; Cooper, G. W.; Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A.

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  10. Increased response of the reversal electron attachment detector and modeling of ion space-charge effects

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Chutjian, A.

    1992-01-01

    Design and sensitivity tests of a modified version of the so-called reversal electron attachment detector (READ) are presented. The new version uses a spherical cathode capable of emitting higher electron currents. As in the original READ (which used a planar emitter) electrons are focused into an electrostatic mirror which reverses their trajectories. In the reversal region electrons have essentially zero energy and attach to target molecules to form negative ions. The electron gun lens system has been modified using a field and trajectory code with space charge included. Electron trajectories have been calculated for 1-mA current focused into a reversal region of 3.5-mm diameter. The detection limit of the apparatus is approximately 25 times lower than for the original READ. Nonlinearity in the measured signal vs electron current is described by a model in which a spherical ball of ions expands outward with velocity determined by the space-charge force and the initial velocity of ion formation.

  11. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    SciTech Connect

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-02-15

    Purpose: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a ''pulse pileup event'' and results in both a loss of counts (called ''deadtime losses'') and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. Methods: An energy calibration was performed using {sup 99m}Tc (140 keV), {sup 57}Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 {mu}A for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime {tau}, a coefficient k that relates the x-ray tube current I to an incident count rate a by a=kxI, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to

  12. Dose responses of diamond detectors to monoenergetic X-rays

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Hugtenburg, R. P.; Green, S.; Beddoe, A. H.

    2004-01-01

    The characterisation of a detectors response in the kilovoltage range is necessary to understand its response to scattered radiation in the megavoltage range. Scattered radiation is absorbed in the detector by the highly Z-dependent photoelectric process. Measurements of diamond detector response to highly filtered quasi-monoenergetic X-rays and synchrotron-generated monoenergetic photons have been performed revealing effects that relate to the presence of copper and silver used to form electrical contact with the crystal. A three-component model of energy absorption, utilizing tabulated cross-sections for C, Cu and Ag, is proposed and a calculation of phantom scatter factors for diamond detector is given.

  13. Modelling the channel-wise count response of a photon-counting spectral CT detector to a broad x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-03-01

    Variations among detector channels in CT very sensitively lead to ring artefacts in the reconstructed images. For material decomposition in the projection domain, the variations can result in intolerable biases in the material line integral estimates. A typical way to overcome these effects is to apply calibration methods that try to unify spectral responses from different detector channels to an ideal response from a detector model. However, the calibration procedure can be rather complex and require excessive calibration measurements for a multitude of combinations of x-ray shapes, tissue combinations and thicknesses. In this paper, we propose a channel-wise model for a multibin photon-counting detector for spectral CT. Predictions of this channel-wise model match well with their physical performances, which can thus be used to eliminate ring artefacts in CT images and achieve projection-basis material decomposition. In an experimental validation, image data show significant improvement with respect to ring artefacts compared to images calibrated with flat-fielding data. Projection-based material decomposition gives basis material images showing good separation among individual materials and good quantification of iodine and gadolinium contrast agents. The work indicates that the channel-wise model can be used for quantitative CT with this detector.

  14. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee

    PubMed Central

    Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.

    2016-01-01

    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968

  15. A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.

    PubMed

    Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R

    2016-05-01

    We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968

  16. Gamma Detector Response and Analysis Software (GADRAS) v. 16.0

    Energy Science and Technology Software Center (ESTSC)

    2009-12-24

    GADRAS is a general purpose application for the modeling and analysis of radiation detector responses, primarily gamma spectroscopic instruments and neutron detectors based on proportional counters. It employs radiation source and detector response models to predict the response of user-defined detectors to user-defined sources. It implements methods to identify radiation sources from their measured signatures, primarily the measured gamma spectrum and neutron count rate. Radiation source emissions are calculated using analytical and numerical radiation transportmore » models. Detector responses are calculated using point models of the detector material, dimensions, collimation, and scattering environment. Analytical methods are implemented using linear and nonlinear regression techniques.« less

  17. Gamma Detector Response and Analysis Software (GADRAS) v. 16.0

    SciTech Connect

    Mitchell, Dean; & Mattingly, John

    2009-12-24

    GADRAS is a general purpose application for the modeling and analysis of radiation detector responses, primarily gamma spectroscopic instruments and neutron detectors based on proportional counters. It employs radiation source and detector response models to predict the response of user-defined detectors to user-defined sources. It implements methods to identify radiation sources from their measured signatures, primarily the measured gamma spectrum and neutron count rate. Radiation source emissions are calculated using analytical and numerical radiation transport models. Detector responses are calculated using point models of the detector material, dimensions, collimation, and scattering environment. Analytical methods are implemented using linear and nonlinear regression techniques.

  18. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  19. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  20. Picosecond response of a photon drag detector

    SciTech Connect

    Kimmitt, M.F.

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  1. Adjustable responsivity for thermal infrared detectors

    NASA Astrophysics Data System (ADS)

    Song, Woo-Bin; Talghader, Joseph J.

    2002-07-01

    With the recent interest in adaptive IR imaging, focal plane arrays are desired that can operate linearly over an enormous dynamic range. Unfortunately, large signals can cause thermal detectors to operate at temperatures significantly above their ambient resulting in intensity dependent performance or even device damage. In this letter, the responsivity of microbolometer devices is controlled using the detector and substrate as a simple electrostatic actuator. Microbolometers are demonstrated to switch between states that are over a factor of 50 apart in responsivity. The limits of the switching are theoretically separated by four to five orders of magnitude. In addition, intermediate values of responsivity can be obtained by designing devices in which the support beams snap down at lower voltage than the detector plate. Combining this idea with the pressure dependence of the thermal contact conductance, continuous thermal conductance tuning over a factor of 3 is demonstrated.

  2. Study of gamma ray response of R404A superheated droplet detector using a two-state model.

    PubMed

    Mondal, P K; Chatterjee, B K

    2013-07-01

    The superheated droplet detector (SDD) is known to be gamma ray insensitive below a threshold temperature which made them excellent candidates for neutron detection in the presence of gamma rays. Above the threshold temperature, the gamma ray detection efficiency increases with increase in temperature. In this work the gamma ray threshold temperature has been studied for SDD using R404A as the active liquid and is compared to the theoretical prediction. The temperature variation of gamma ray detection efficiency and interstate transition kinetics has also been studied using a two-state model. The experiments are performed at the ambient pressure of 1 atm and in the temperature range of 17-32 °C using a 662 keV (1)(37)Cs gamma ray source. PMID:23528644

  3. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  4. Neutron responsive self-powered radiation detector

    DOEpatents

    Brown, Donald P.; Cannon, Collins P.

    1978-01-01

    An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.

  5. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.

  6. A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems

    PubMed Central

    Freed, Melanie; Park, Subok; Badano, Aldo

    2010-01-01

    Purpose: Accurate models of detector blur are crucial for performing meaningful optimizations of three-dimensional (3D) x-ray breast imaging systems as well as for developing reconstruction algorithms that faithfully reproduce the imaged object anatomy. So far, x-ray detector blur has either been ignored or modeled as a shift-invariant symmetric function for these applications. The recent development of a Monte Carlo simulation package called MANTIS has allowed detailed modeling of these detector blur functions and demonstrated the magnitude of the anisotropy for both tomosynthesis and breast CT imaging systems. Despite the detailed results that MANTIS produces, the long simulation times required make inclusion of these results impractical in rigorous optimization and reconstruction algorithms. As a result, there is a need for detector blur models that can be rapidly generated. Methods: In this study, the authors have derived an analytical model for deterministic detector blur functions, referred to here as point response functions (PRFs), of columnar CsI phosphor screens. The analytical model is x-ray energy and incidence angle dependent and draws on results from MANTIS to indirectly include complicated interactions that are not explicitly included in the mathematical model. Once the mathematical expression is derived, values of the coefficients are determined by a two-dimensional (2D) fit to MANTIS-generated results based on a figure-of-merit (FOM) that measures the normalized differences between the MANTIS and analytical model results averaged over a region of interest. A smaller FOM indicates a better fit. This analysis was performed for a monochromatic x-ray energy of 25 keV, a CsI scintillator thickness of 150 μm, and four incidence angles (0°, 15°, 30°, and 45°). Results: The FOMs comparing the analytical model to MANTIS for these parameters were 0.1951±0.0011, 0.1915±0.0014, 0.2266±0.0021, and 0.2416±0.0074 for 0°, 15°, 30°, and 45

  7. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  8. Physics-based generation of gamma-ray response functions for CDZNTE detectors

    SciTech Connect

    Prettyman, T.H.; Mercer, D.J.; Cooper, C.; Russo, P.A.; Rawool-Sullivan, M.; Close, D.A.; Luke, P.N.; Amman, M.; Soldner, S.

    1997-09-01

    A physics-based approach to gamma-ray response-function generation is presented in which the response of CdZnTe detectors is modeled from first principles. Computer modeling is used to generate response functions needed for spectrum analysis for general detector configurations (e.g., electrode design, detector materials and geometry, and operating conditions). With computer modeling, requirements for calibration and characterization are significantly reduced. Elements of the physics-based model, including gamma-ray transport, charge drift-diffusion, and circuit response, are presented. Calculated and experimental gamma-ray spectra are compared for a coplanar-grid CdZnTe detector.

  9. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    SciTech Connect

    Cammin, Jochen E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki E-mail: ktaguchi@jhmi.edu; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.

    2014-04-15

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011

  10. Pulse height model for deuterated scintillation detectors

    NASA Astrophysics Data System (ADS)

    Wang, Haitang; Enqvist, Andreas

    2015-12-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  11. Time-domain response of the ARIANNA detector

    NASA Astrophysics Data System (ADS)

    Barwick, S. W.; Berg, E. C.; Besson, D. Z.; Duffin, T.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Piasecki, M.; Ratzlaff, K.; Reed, C.; Roumi, M.; Stezelberger, T.; Tatar, J.; Walker, J.; Young, R.; Zou, L.

    2015-03-01

    The Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) is a high-energy neutrino detector designed to record the Askaryan electric field signature of cosmogenic neutrino interactions in ice. To understand the inherent radio-frequency (RF) neutrino signature, the time-domain response of the ARIANNA RF receiver must be measured. ARIANNA uses Create CLP5130-2N log-periodic dipole arrays (LPDAs). The associated effective height operator converts incident electric fields to voltage waveforms at the LDPA terminals. The effective height versus time and incident angle was measured, along with the associated response of the ARIANNA RF amplifier. The results are verified by correlating to field measurements in air and ice, using oscilloscopes. Finally, theoretical models for the Askaryan electric field are combined with the detector response to predict the neutrino signature.

  12. SU-E-I-07: Response Characteristics and Signal Conversion Modeling of KV Flat-Panel Detector in Cone Beam CT System

    SciTech Connect

    Wang, Yu; Cao, Ruifen; Pei, Xi; Wang, Hui; Hu, Liqin

    2015-06-15

    Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared to Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by

  13. ATLAS Inner Detector Event Data Model

    SciTech Connect

    ATLAS; Akesson, F.; Costa, M.J.; Dobos, D.; Elsing, M.; Fleischmann, S.; Gaponenko, A.; Gnanvo, K.; Keener, P.T.; Liebig, W.; Moyse, E.; Salzburger, A.; Siebel, M.; Wildauer, A.

    2007-12-12

    The data model for event reconstruction (EDM) in the Inner Detector of the ATLAS experiment is presented. Different data classes represent evolving stages in the reconstruction data flow, and specific derived classes exist for the sub-detectors. The Inner Detector EDM also extends the data model for common tracking in ATLAS and is integrated into the modular design of the ATLAS high-level trigger and off-line software.

  14. Fire detector response in aircraft applications

    NASA Technical Reports Server (NTRS)

    Wiersma, S. J.; Mckee, R. G.

    1978-01-01

    Photoelectric, ionization, and gas sensors were used to detect the signatures from the radiant heat or flame of various aircraft materials. It was found that both ionization and photoelectric detectors are about equally capable of detecting products of pyrolysis and combustion of synthetic polymers, especially those containing fire-retardant additives. Ionization detectors alone appeared to be sensitive to combustion products of simple cellulosic materials. A gas sensor detector appeared to be insensitive to pyrolysis or combustion products of many of the materials.

  15. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals

    NASA Astrophysics Data System (ADS)

    Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.

    2015-03-01

    A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.

  16. Spatial response characterization of He-4 scintillation detectors

    NASA Astrophysics Data System (ADS)

    Kelley, Ryan P.; Steinberg, Noah; Murer, David; Ray, Heather; Jordan, Kelly A.

    2015-09-01

    The spatial response of pressurized helium-4 fast neutron scintillation detectors is characterized using collimated neutron source measurements and MCNPX-PoliMi simulations. A method for localizing the position of each detected event is also demonstrated using the two-sided photomultiplier readout. Results show that the position of particle interaction along the axis of the active volume has a measurable effect on the scintillation light response of the detector. An algorithm is presented that uses the probability distribution of relative interaction positions to perform source localization, further demonstrating the applicability of these detectors as tools for the detector of hidden shielded nuclear material.

  17. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  18. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2014-09-15

    Purpose: MR-Linac devices under development worldwide will require standard calibration, commissioning, and quality assurance. Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is therefore evaluated in varying transverse and longitudinal magnetic fields for this purpose. Methods: The Monte Carlo code PENELOPE was used to model irradiation of a PTW 60003 diamond detector and IBA PFD diode detector in the presence of a magnetic field. The field itself was varied in strength, and oriented both transversely and longitudinally with respect to the incident photon beam. The long axis of the detectors was oriented either parallel or perpendicular to the photon beam. The dose to the active volume of each detector in air was scored, and its ratio to dose with zero magnetic field strength was determined as the “dose response” in magnetic field. Measurements at low fields for both detectors in transverse magnetic fields were taken to evaluate the accuracy of the simulations. Additional simulations were performed in a water phantom to obtain few representative points for beam profile and percent depth dose measurements. Results: Simulations show significant dose response as a function of magnetic field in transverse field geometries. This response can be near 20% at 1.5 T, and it is highly dependent on the detectors’ relative orientation to the magnetic field, the energy of the photon beam, and detector composition. Measurements at low transverse magnetic fields verify the simulations for both detectors in their relative orientations to radiation beam. Longitudinal magnetic fields, in contrast, show little dose response, rising slowly with magnetic field, and reaching 0.5%–1% at 1.5 T regardless of detector orientation. Water tank and in air simulation results were the same within simulation uncertainty where lateral electronic equilibrium is present and expectedly

  19. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  20. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  1. Estimating Cosmic Ray Spectral Parameters From Simulated Detector Responses With Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index alpha (sub 1), is believed to be an adequate description of the galactic cosmic ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy E(sub k) to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  2. Response of Plasmonic Terahertz Detectors to Modulated Signals

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Reed, Meredith; Shur, Michael

    We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. Our model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor. The modulation response was evaluated as a function of modulation frequency for a range of mobility values in different semiconductor materials. Maximum modulation frequency was evaluated as a function of channel mobility, with typical values in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime meets the requirements for applications as terahertz detectors and modulators in high-speed wireless communication circuits.

  3. Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    SciTech Connect

    Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Fisher, R. K.; Van Zeeland, M. A.; Garcia-Munoz, M.; Darrow, D. S.; Nazikian, R.

    2010-10-15

    A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

  4. An exponential model for HPGe detector efficiencies

    SciTech Connect

    Winn, W.G.

    1991-06-11

    Interest in reducing the labor-intensive requirements for calibrating HPGe detectors has resulted in various efficiency models. The present study examines a method for predicting the efficiencies over ranges of sample geometries, whereby only a few measurements are required. The method has been appraised against extensive HPGe calibrations, and has been used for a ``nondestructive`` calibration for samples from a NASA satellite.

  5. An exponential model for HPGe detector efficiencies

    SciTech Connect

    Winn, W.G.

    1991-06-11

    Interest in reducing the labor-intensive requirements for calibrating HPGe detectors has resulted in various efficiency models. The present study examines a method for predicting the efficiencies over ranges of sample geometries, whereby only a few measurements are required. The method has been appraised against extensive HPGe calibrations, and has been used for a nondestructive'' calibration for samples from a NASA satellite.

  6. Theory and measurement of plasmonic terahertz detector response to large signals

    SciTech Connect

    Rudin, S.; Rupper, G.; Gutin, A.; Shur, M.

    2014-02-14

    Electron gas in the conduction channel of a Field Effect Transistor (FET) can support collective plasma oscillations tunable by the gate voltage. In the Dyakonov-Shur terahertz (THz) detector, nonlinearities in the plasma wave propagation in the gated channel of a FET lead to a constant source-to-drain voltage providing the detector output. We present the detector theory in the frame of the hydrodynamic model using the electron plasma Navier-Stokes and thermal transport equations, thus fully accounting for the hydrodynamic non-linearity, the viscosity, and pressure gradients in the detector response. Both resonant and broadband operations of the high electron mobility transistor (HEMT) based plasmonic detectors are described by this model. The relation between the electron channel density and gate voltage was modeled by the unified charge control model applicable both above and below the threshold voltage. The theoretical results are compared with the response measured in the short channel InGaAs HEMT and the analytical approximation. The THz source was operating at 1.63 THz, and the response was measured at varying signal intensities. The response of the detector operated in the open drain mode was measured above and below the threshold, and the theoretical and experimental results are shown to be in good agreement.

  7. Ultrafast IR detector response in high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, Mikael; Ahlberg, Henrik; Danerud, Martin; Larsson, Anders; Eng, Sverre T.

    1991-01-01

    The response from a high Tc superconducting multielement optical detector made of a laser deposited Y-Ba-Cu-O thin film has been evaluated. Several microscopic and spectroscopic techniques were used to establish the presence of the correct phase of the thin film. Optical pulses from a laser diode at 830 nm and from a Q-switched CO2-laser at 10.6 microns were used. The detector responded to 50 ps (FWHM) pulses. A comparison between dR/dT of the film and the response amplitude as a function of temperature indicated a bolometric response.

  8. Local mapping of detector response for reliable quantum state estimation.

    PubMed

    Cooper, Merlin; Karpiński, Michał; Smith, Brian J

    2014-01-01

    Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states. PMID:25019300

  9. Diesel-discriminating detector response to smoldering fires

    SciTech Connect

    Egan, M.R. )

    1993-01-01

    Reliable fire detection is essential for both safe evacuation and containment or extinguishment. In order to increase reliability by reducing the number of nuisance fire alarms in underground mines that use diesel-powered equipment, the U.S. Bureau of Mines has developed a diesel-discriminating fire detector (DDD). It was designed to discriminate between smoke produced by a fire and the smoke-laden exhaust of a diesel engine. Experiments were conducted by the Bureau to compare the smoke detection capabilities of the DDD with those of conventional fire detectors in response to smoldering coal and conveyor belting. A comparison was made among the alarm times of a carbon monoxide (CO) detector with an alarm threshold of 5 ppm, a smoke detector with an optical density alarm threshold of 0.044 m[sup [minus]1], and the DDD with an alarm threshold of 0.025 V. The results show that the DDD will reliably detect developing coal and conveyor belt fires. The average time delay separating the DDD alarm from the first detector to alarm was 76 s for smoldering conveyor belt and 65 s for smoldering coal. The longest time delay between the response of the DDD and the first detector to alarm was approximately 120 s.

  10. Hybrid method for ex-core detector response

    SciTech Connect

    Emert, C.J.; Freeman, L.B.; Tessler, G.

    1997-04-01

    Calculations have been completed to predict currents for ion chambers located in a shield tank exterior to a reactor vessel. The detector response is best described using a Monte Carlo transport theory calculation showing the detailed detector region geometry. To save computer time, a hybrid method has been used, whereby neutron attenuation between the core and the shield tank is calculated by deterministic methods and the results are spliced to the Monte Carlo detector calculation. The approach used has the effect of separating the detailed description of the neutron source distribution in the core from the detailed Monte Carlo description of the neutron detector environment. Comparisons have been made to measurements and to calculations using a purely Monte Carlo approach.

  11. Characterization and modeling of a low background HPGe detector

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Nanal, V.; Pal, S.; Pillay, R. G.

    2014-05-01

    A high efficiency, low background counting setup has been made at TIFR consisting of a special HPGe detector (~ 70 %) surrounded by a low activity copper+lead shield. Detailed measurements are performed with point and extended geometry sources to obtain a complete response of the detector. An effective model of the detector has been made with GEANT4 based Monte Carlo simulations which agrees with experimental data within 5%. This setup will be used for qualification and selection of radio-pure materials to be used in a cryogenic bolometer for the study of Neutrinoless Double Beta Decay in 124Sn as well as for other rare event studies. Using this setup, radio-impurities in the rock sample from India-based Neutrino Observatory (INO) site have been estimated.

  12. SPICE models for simulating BDJ and BTJ detectors

    NASA Astrophysics Data System (ADS)

    Alexandre, Annick; Lu, Guo N.; Sedjil, Mohamed

    1999-03-01

    We have recently reported two novel integrated optical detectors called BDJ detector and BTJ detector. The BDJ detector elaborated in CMOS process can be applied for wavelength detection while the BTJ detector based on a bipolar structure finds its applications in colorimetry. In order to use electronic CAD tools for designing micro- systems we have developed SPICE models for these detectors. The device modeling with physical approach has allowed us to determine photocurrents, which are functions of physical, geometrical, electrical, technological parameters. We have also defined schematic diagram and small signal models and integrated them in the HSPICE program. Simulations and measurements have validated these models.

  13. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  14. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  15. Simple classical model for Fano statistics in radiation detectors

    NASA Astrophysics Data System (ADS)

    Jordan, David V.; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; René Corrales, L.; Peurrung, Anthony J.

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ("bathtub") with a small dipping implement ("shot or whiskey glass"). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the "Fano effect"). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, "microscopic" physical models of detector material response to ionizing radiation is discussed.

  16. Alternative derivation of the response of interferometric gravitational wave detectors

    SciTech Connect

    Cornish, Neil J.

    2009-10-15

    It has recently been pointed out by Finn that the long-standing derivation of the response of an interferometric gravitational wave detector contains several errors. Here I point out that a contemporaneous derivation of the gravitational wave response for spacecraft doppler tracking and pulsar timing avoids these pitfalls, and when adapted to describe interferometers, recovers a simplified version of Finn's derivation. This simplified derivation may be useful for pedagogical purposes.

  17. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    SciTech Connect

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E. . Dept. of Radiology)

    1993-06-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector.

  18. Gamma Detector Response and Analysis Software%u2013Detector Response Function

    Energy Science and Technology Software Center (ESTSC)

    2015-04-01

    Version 00 GADRAS-DRF contains a suite of capabilities related to radiation detection. Its primary function is the simulation of gamma-ray and neutron detector signals to radiation sources. It also contains limited analysis functionality. GADRAS-DRF is the public version of the full version of GADRAS with capabilities such as radiation transport and advanced analyses removed.

  19. Hard x-ray response of a CdZnTe ring-drift detector

    SciTech Connect

    Owens, A.; Hartog, R. den; Quarati, F.; Gostilo, V.; Kondratjev, V.; Loupilov, A.; Kozorezov, A. G.; Wigmore, J. K.; Webb, A.; Welter, E.

    2007-09-01

    We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, at 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.

  20. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    NASA Astrophysics Data System (ADS)

    Hartwig, Zachary S.; Gumplinger, Peter

    2014-02-01

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0-20 MeV and 0.511-1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination.

  1. Next Generation Beta Decay Studies: Refinements in Detector System Calibration and Response Function Measurements

    NASA Astrophysics Data System (ADS)

    Jutz, Kenneth

    2013-10-01

    High precision β-decay studies provide constraints on extensions to the standard model of particle physics. In order to continue to provide competitive limits with LHC measurements for new tensor and scalar interactions, the uncertainties in neutron and nuclear β-decay studies must be pushed to the 0.1% level and below. In order to control the systematic errors in particle detection at these levels, new detector systems (highly-segmented, large area, thick Si detectors) are being implemented. In order to realize gains in detector response, new capabilities must be developed to calibrate the detectors and characterize their response function. As an alternative to conventional sources mounted on thin foils, an electron beam provides a regular grid of calibration and detector response measurements which are essentially unperturbed by scattering effects. We have developed a 1 MeV electron accelerator that will deliver electrons in a tunable range covering the energy spectrum of neutron β-decay. We present our efforts to implement this accelerator as well as our development of thin backing foils and detector systems in this poster.

  2. Flat-response x-ray-diode-detector development

    SciTech Connect

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage.

  3. Some observations on spin detector response during Galileo high gain antenna deployment

    NASA Technical Reports Server (NTRS)

    Peng, Chia-Yen; Smith, Kenneth S.

    1992-01-01

    This paper summarizes a dynamic analysis conducted in support of the investigation of the anomalous deployment of the Galileo High Gain Antenna on April 11, 1991. The work was focused on modeling the spacecraft spin dynamics to predict and compare the spin detector telemetry during the antenna deployment for possible cause scenarios. The effects of analog and digital low-pass filtering, digitization, and telemetry on the reported spin rate were studied as well. The high frequency phenomena in the spin detector response are masked by the filtering and sampling of the telemetry data. However, the observed spin detector telemetery is consistent with a single rib popping free, and is most likely associated with a rib near the spin detector, or 180 deg opposite.

  4. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  5. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  6. Detector-Response Correction of Two-Dimensional γ-Ray Spectra from Neutron Capture

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-01

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.

  7. Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture

    DOE PAGESBeta

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-28

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. Themore » detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.« less

  8. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  9. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    SciTech Connect

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-12-15

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  10. Simulated response of Cherenkov glass detectors to MeV photons

    SciTech Connect

    Hayward, J P; Bell, Zane W; Boatner, Lynn A; Hobbs, C. L.; Johnson, Rose E; Ramey, Joanne Oxendine; Jellison Jr, Gerald Earle

    2012-01-01

    Cherenkov detectors are widely used for par ticle identification in high-energy physics and for track imaging in astrophysics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we evaluate Cherenkov glass detectors for sensitivity and specificity to MeV photons through simulations using Geant4. The model has been previously compared with measurements of isotopic gamma sources. It includes Cherenkov gener ation, light transport, light collection, photoelectron pro duction and time response in photomultiplier tubes. The model incorporates measured, wavelength-dependent absorption and refractive index data. Simulations are con ducted for glasses the size of fabricated samples and also for the same glasses in monolithic, square-meter-size. Implications for selective detection of MeV photons are discussed.

  11. Modeling spin transport with current-sensing spin detectors

    NASA Astrophysics Data System (ADS)

    Li, Jing; Appelbaum, Ian

    2010-03-01

    The impulse response (or ``Green's function'') of a current-sensing spin detector is derived analytically by incorporating the proper boundary conditions. This result is also compared to a Monte Carlo simulation (which automatically takes the proper boundary conditions into account) and an empirical spin transit time distribution obtained from experimental spin precession measurements. In the strong drift-dominated transport regime, this spin current impulse response can be approximated by multiplying the spin density impulse response by the average drift velocity. However, in weak drift fields, large modeling errors up to a factor of 3 in most-probable spin transit time can be incurred unless the full spin current Green's function is used.

  12. Modeling spin transport with current-sensing spin detectors

    NASA Astrophysics Data System (ADS)

    Li, Jing; Appelbaum, Ian

    2009-10-01

    By incorporating the proper boundary conditions, we analytically derive the impulse response (or "Green's function") of a current-sensing spin detector. We also compare this result to a Monte Carlo simulation (which automatically takes the proper boundary condition into account) and an empirical spin transit time distribution obtained from experimental spin precession measurements. In the strong drift-dominated transport regime, this spin current impulse response can be approximated by multiplying the spin density impulse response by the average drift velocity. However, in weak drift fields, large modeling errors up to a factor of 3 in most-probable spin transit time can be incurred unless the full spin current Green's function is used.

  13. Effects of the interstrip gap on the efficiency and response of Double Sided Silicon Strip Detectors

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Forneris, J.; Grassi, L.; Acosta, L.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Grilj, V.; Jakic, M.; Lattuada, M.; Mijatovic, T.; Milin, M.; Prepolec, L.; Skukan, N.; Soic, N.; Stanko, D.; Tokic, V.; Uroic, M.; Zadro, M.

    2016-05-01

    In this work the effects of the segmentation of the electrodes of Double Sided Silicon Strip Detectors (DSSSDs) are investigated. In order to characterize the response of the DSSSDs we perform a first experiment by using tandem beams of different energies directly sent on the detector and a second experiment by mean of a proton microbeam. Results show that the effective width of the inter-strip region and the efficiency for full energy detection, varies with both detected energy and bias voltage. The experimental results are qualitatively reproduced by a simplified model based on the Shockley-Ramo-Gunn framework.

  14. Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.

    PubMed

    Glickstein, S S

    1983-02-01

    In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377

  15. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  16. SU-E-J-51: Dose Response of Common Solid State Detectors in Homogeneous Transverse and Longitudinal Magnetic Fields

    SciTech Connect

    Reynolds, M; Fallone, B; Rathee, S

    2014-06-01

    Purpose: Solid state radiation detectors are often used for dose profiles and percent depth dose measurements. The dose response of selected solid state detectors is evaluated in varying transverse and longitudinal magnetic fields for eventual use in MR-Linac devices. Methods: A PTW 60003 and IBA PFD detector were modeled in the Monte Carlo code PENELOPE, incorporating a magnetic field which was varied in strength and oriented both transversely and longitudinally with respect to the incident photon beam. The detectors' long axis was in turn oriented either parallel or perpendicular to the photon beam. Dose to the active volume of each detector was scored, and its ratio to dose with zero magnetic field strength (dose response) was determined. Accuracy of the simulations was evaluated by measurements using both chambers taken at low field with a small electromagnet. Simulations were also performed in a water phantom to compare to the in air results. Results: Significant dose response was found in transverse field geometries, nearing 20% at 1.5T. The response is highly dependent on relative orientations to the magnetic field and photon beam, and on detector composition. Low field measurements confirm these results. In the presence of longitudinal magnetic fields, the detectors exhibit little dose response, reaching 0.5–1% at 1.5T regardless of detector orientation. Water tank simulations compared well to the in air simulations when not at the beam periphery, where in transverse magnetic fields only, the water tank simulations differed from the in air results. Conclusion: Transverse magnetic fields can cause large deviations in dose response, and are highly position orientation dependent. Comparatively, longitudinal magnetic fields exhibit little to no dose response in each detector as a function of magnetic field strength. Water tank simulations show longitudinal fields are generally easier to work with, but each detector must be evaluated separately.

  17. [Methods of detector response function establishment in X-ray fluorescence spectra analysis].

    PubMed

    Li, Zhe; Tuo, Xian-Guo; Yang, Jian-Bo; Liu, Ming-Zhe; Cheng, Yi; Wang, Lei; Zhou, Jian-Bin

    2012-11-01

    During the measurement and analysis process of X-ray fluorescence spectra, it is very helpful to improve the analyze speed, accuracy and automaticity of X-ray fluorescence spectra analysis by establishing detector response function(DRF), which represents the shape of full energy peak and can provide former basic data for subsequent X-ray analysis technique. For the theory and model of semiconductor DRF in X-ray energy spectrum measurements, methods of three typical detector response function model establishment, key parameters of full energy peak standard deviation and Fano factor calculation, etc. are discussed, and meanwhile, the summarization and contrast of existing studies are shown in this paper. Finally, the suggestion for modeling methods of DRF in X-ray fluorescence spectra measurements is provided. PMID:23387190

  18. Coupling external radiation transport code results to the GADRAS detector response function.

    SciTech Connect

    Mitchell, Dean J; Thoreson, Gregory G.; Horne, Steven M.

    2014-01-01

    Simulating gamma spectra is useful for analyzing special nuclear materials. Gamma spectra are influenced not only by the source and the detector, but also by the external, and potentially complex scattering environment. The scattering environment can make accurate representations of gamma spectra difficult to obtain. By coupling the Monte Carlo Nuclear Particle (MCNP) code with the Gamma Detector Response and Analysis Software (GADRAS) detector response function, gamma spectrum simulations can be computed with a high degree of fidelity even in the presence of a complex scattering environment. Traditionally, GADRAS represents the external scattering environment with empirically derived scattering parameters. By modeling the external scattering environment in MCNP and using the results as input for the GADRAS detector response function, gamma spectra can be obtained with a high degree of fidelity. This method was verified with experimental data obtained in an environment with a significant amount of scattering material. The experiment used both gamma-emitting sources and moderated and bare neutron-emitting sources. The sources were modeled using GADRAS and MCNP in the presence of the external scattering environment, producing accurate representations of the experimental data.

  19. Measurements of speed of response of high-speed visible and IR optical detectors

    NASA Technical Reports Server (NTRS)

    Rowe, H. E.; Osmundson, J. S.

    1972-01-01

    A technique for measuring speed of response of high speed visible and IR optical detectors to mode-locked Nd:YAG laser pulses is described. Results of measurements of response times of four detectors are presented. Three detectors that can be used as receivers in a 500-MHz optical communication system are tested.

  20. General Graded Response Model.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper describes the graded response model. The graded response model represents a family of mathematical models that deal with ordered polytomous categories, such as: (1) letter grading; (2) an attitude survey with "strongly disagree, disagree, agree, and strongly agree" choices; (3) partial credit given in accord with an individual's degree…

  1. Model LS-2X laser source detector test system

    NASA Astrophysics Data System (ADS)

    1980-05-01

    Proper, characterization of infrared photodiodes requires a series of optical tests that include blackbody response, spatial uniformity, pulse response, and wavelength sensitivity measurements. The results of these optical tests will depend upon many fundamental properties of the detector crystal, namely absorption depth of the radiation, bulk lifetimes of injected carriers, surface recombination effects, carrier drift and diffusion effects, trapping effects and other mechanisms. Some of these effects are not clearly understood but may play important roles in such application as high speed pulse detectors, laser heterodyne receivers, or large area high resolution detector arrays. Spears has shown that proper spatial and temporal characterization of HgCdTe CO2 laser heterodyne receivers must be done at the operating frequencies. A realistic characterization of the pulse response of an infrared detector must be made at the operating wavelength, generally that of peak detector response. Certain fixed frequency gas lasers such as CO2, CO, or HF can provide sufficient power and speed for detector characterization but they have limited wavelength coverage and are often cumbersome to use. On the other hand, Pb-salt tunable diode lasers can provide more than 100 micro w of power emitted from nearly a point source, subnanosecond risetime pulses and wavelength selectability between 2.8 and 30 micrometers. These characteristics make diode lasers an ideal source for pulse spatial response measurements of infrared detectors.

  2. Monte Carlo simulation of beta radiation response function for semiconductor Si detector

    NASA Astrophysics Data System (ADS)

    Grujić, Selena; Milošević, Miodrag; Kozmidis-Luburić, Uranija; Bikit, Ištvan

    2011-10-01

    This paper describes the modeling of the Passivated Implanted Planar Silicon (PIPS) detector for the beta particles response function simulations with the MCNP-5 code. The simulated and measured energy response functions were compared and a good agreement was found in the entire range of energies. The verified model of a PIPS detector was applied in a non-destructive method that determines the activity of beta emitters in the sample with a known geometry and atomic number densities. The procedure for the identification of beta emitters in the samples was also described. Finally, the application of the proposed method for the determination of 137Cs and 90Sr activity in water samples taken from the RA reactor spent fuel storage pools and from the paper filter taken from an air monitor operated during repackaging of spent fuel elements, was presented.

  3. Vibration Model Validation for Linear Collider Detector Platforms

    SciTech Connect

    Bertsche, Kirk; Amann, J.W.; Markiewicz, T.W.; Oriunno, M.; Weidemann, A.; White, G.; /SLAC

    2012-05-16

    The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations, which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.

  4. Parasitic Effects Affecting Responsivity of Sub-THz Radiation Detector Built of a MOSFET

    NASA Astrophysics Data System (ADS)

    Kopyt, P.; Salski, B.; Marczewski, J.; Zagrajek, P.; Lusakowski, J.

    2015-11-01

    In this paper, an analysis of parasitic elements that are found in all typical metal-oxide-semiconductor field-effect transistors (MOSFETs) has been performed from a viewpoint of a designer of sub-THz radiation detectors. A simplified model of the extrinsic MOSFET device has been proposed. Typical values of its parameters have been assumed. The authors have also built a model of the MOSFET's channel (intrinsic device) employing the standard transmission line approach and defining a Z-matrix of the circuit in order to facilitate its integration with the parasitic elements. The full effective circuit model of the MOSFET has been employed to analyze the behavior of the detector when subjected to sub-THz radiation delivered through the Gate and Source pads. Finally, predictions of the responsivity of an example detector built of a typical MOSFET integrated with a patch antenna fabricated on a 40-μm-thick silicon membrane have been compared with measurements of several structures employing MOSFETs of various channel widths. Good agreement between the predictions and the measurements has been demonstrated, which indicates that despite its simplicity, the presented model can significantly help to better understand operation of MOSFET-based detectors and also to use the existing silicon-based manufacturing processes.

  5. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    SciTech Connect

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.

  6. Correction for collimator-detector response in SPECT using point spread function template.

    PubMed

    Chun, Se Young; Fessler, Jeffrey A; Dewaraja, Yuni K

    2013-02-01

    Compensating for the collimator-detector response (CDR) in SPECT is important for accurate quantification. The CDR consists of both a geometric response and a septal penetration and collimator scatter response. The geometric response can be modeled analytically and is often used for modeling the whole CDR if the geometric response dominates. However, for radionuclides that emit medium or high-energy photons such as I-131, the septal penetration and collimator scatter response is significant and its modeling in the CDR correction is important for accurate quantification. There are two main methods for modeling the depth-dependent CDR so as to include both the geometric response and the septal penetration and collimator scatter response. One is to fit a Gaussian plus exponential function that is rotationally invariant to the measured point source response at several source-detector distances. However, a rotationally-invariant exponential function cannot represent the star-shaped septal penetration tails in detail. Another is to perform Monte-Carlo (MC) simulations to generate the depth-dependent point spread functions (PSFs) for all necessary distances. However, MC simulations, which require careful modeling of the SPECT detector components, can be challenging and accurate results may not be available for all of the different SPECT scanners in clinics. In this paper, we propose an alternative approach to CDR modeling. We use a Gaussian function plus a 2-D B-spline PSF template and fit the model to measurements of an I-131 point source at several distances. The proposed PSF-template-based approach is nearly non-parametric, captures the characteristics of the septal penetration tails, and minimizes the difference between the fitted and measured CDR at the distances of interest. The new model is applied to I-131 SPECT reconstructions of experimental phantom measurements, a patient study, and a MC patient simulation study employing the XCAT phantom. The proposed model

  7. Qubit Measurement with a Nonlinear Cavity Detector Beyond Linear Response

    NASA Astrophysics Data System (ADS)

    Laflamme, Catherine; Clerk, Aashish

    2012-02-01

    We consider theoretically the use of a driven, nonlinear superconducting microwave cavity to measure a coupled superconducting qubit. This is similar to setups studied in recent experiments.ootnotetextM. Hatridge et al. Phys.Rev.B, 83,134501 (2011)^,ootnotetextF.R. Ong et al. PRL 106,167002 (2011) In a previous work, we demonstrated that for weak coupling (where linear response theory holds) one misses the quantum limit on QND detection in this system by a large factor proportional to the parametric gain.ootnotetextC. Laflamme and A.A. Clerk, Phys. Rev. A 83, 033803 (2011) Here we calculate measurement backaction beyond linear response by using an approximate mapping to a detuned degenerate parametric amplifier having both linear and dispersive couplings to the qubit. We find surprisingly that the backaction dephasing rate is far more sensitive to corrections beyond linear response than the detector response. Thus, increasing the coupling strength can significantly increase the efficiency of the measurement. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results have applications to quantum information processing and quantum amplification with superconducting microwave circuits.

  8. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  9. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height

    PubMed Central

    Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei

    2015-01-01

    High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.

  10. Surface treatment to improve responsivity of MgZnO UV detectors

    NASA Astrophysics Data System (ADS)

    Zhao, Yajun; Jiang, Dayong; Liu, Rusheng; Duan, Qian; Tian, Chunguang; Sun, Long; Gao, Shang; Qin, Jieming; Liang, Qingcheng; Zhao, Jianxun

    2015-09-01

    MgZnO films were grown on quartz substrates by radio frequency (RF) magnetron sputtering technique with a combinatorial target. The structural and optical properties of the sputtering films were characterized. Based on the MgZnO films, planar geometry metal-semiconductor-metal (MSM) structured ultraviolet (UV) detectors were fabricated. At 30 V bias, a peak responsivity of 3.5 mA/W was achieved at 285 nm, and the visible rejection was about one order of magnitude with 25 pairs of electrodes. Afterward, in order to improve the responsivity, the surface of the MgZnO-based detector was sputtered ZnO within 20 s. The responsivity was improved significantly from 3.5 to 15.8 mA/W after surface treatment, and the corresponding visible rejection increased to three orders of magnitude. It revealed ZnO particles play a key role in enhancing the responsivity of detector, and the physical mechanism has been explained by a straightforward model.

  11. Models of neural novelty detectors, with similarities to cerebral cortex.

    PubMed

    Salu, Y

    1988-01-01

    A novelty detector is a functional unit, that indicates whether an incoming stimulus is familiar or novel. Novelty detection is prevalent in the central nervous system (CNS), and is involved in various activities. Its basic characteristics are discussed first. Then, models of neural novelty detectors are described, and tested and evaluated in simulations. The simulations have shown that one novelty detector, the bi-compartmental, simulates very closely the behavior of neural novelty detectors. This model is constructed in a way that resembles the observed architecture and function of area 17, and similar regions in the cortex. The first step in novelty detection is data retrieval. The proposed novelty detectors can utilize various compatible modes of data storage and retrieval, and one of those has been utilized in the simulations. PMID:3355886

  12. Incident angle dependence of proton response of CR-39 (TS-16) track detector

    NASA Technical Reports Server (NTRS)

    Oda, K.; Csige, I.; Yamauchi, T.; Miyake, H.; Benton, E. V.

    1993-01-01

    The proton response of the TS-16 type of CR-39 plastic nuclear track detector has been studied with accelerated and fast neutron induced protons in vacuum and in air. The diameters of etched tracks were measured as a function of etching time and the etch rate ratio and the etch induction layer were determined from the growth curve of the diameter using a variable etch rate ratio model. In the case of the accelerated protons in vacuum an anomalous incident angle dependence of the response is observed.

  13. Polycrystalline CVD diamond detector: Fast response and high sensitivity with large area

    SciTech Connect

    Liu, Linyue Zhang, Xianpeng; Zhong, Yunhong; Ouyang, Xiaoping Zhang, Jianfu

    2014-01-15

    Polycrystalline diamond was successfully used to fabricate a large area (diameter up to 46 mm) radiation detector. It was proven that the developed detector shows a fast pulsed response time and a high sensitivity, therefore its rise time is lower than 5 ns, which is two times faster than that of a Si-PIN detector of the same size. And because of the large sensitive area, this detector shows good dominance in fast pulsed and low density radiation detection.

  14. Alpha particle response study of polycrstalline diamond radiation detector

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Topkar, Anita

    2016-05-01

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  15. Using Lunar Observations to Validate Pointing Accuracy and Geolocation, Detector Sensitivity Stability and Static Point Response of the CERES Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2 Deg. in azimuth and 0.17 Deg. in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1o with most detector telescopes showing a consistent alignment offset of less than 0.02 Deg.

  16. Using lunar observations to validate pointing accuracy and geolocation, detector sensitivity stability and static point response of the CERES instruments

    NASA Astrophysics Data System (ADS)

    Daniels, Janet; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-10-01

    Validation of in-orbit instrument performance is a function of stability in both instrument and calibration source. This paper describes a method using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. The Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, these in-orbit observations have become standardized and compiled for the Flight Models -1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance measurements studied are detector sensitivity stability, pointing accuracy and static detector point response function. This validation method also shows trends per CERES data channel of 0.8% per decade or less for Flight Models 1-4. Using instrument gimbal data and computed lunar position, the pointing error of each detector telescope, the accuracy and consistency of the alignment between the detectors can be determined. The maximum pointing error was 0.2o in azimuth and 0.17o in elevation which corresponds to an error in geolocation near nadir of 2.09 km. With the exception of one detector, all instruments were found to have consistent detector alignment from 2006 to present. All alignment error was within 0.1o with most detector telescopes showing a consistent alignment offset of less than 0.02o.

  17. Modified dispersion relations and the response of the rotating Unruh-DeWitt detector

    SciTech Connect

    Gutti, Sashideep; Kulkarni, Shailesh; Sriramkumar, L.

    2011-03-15

    We study the response of a rotating monopole detector that is coupled to a massless scalar field which is described by a nonlinear dispersion relation in flat spacetime. Since it does not seem to be possible to evaluate the response of the rotating detector analytically, we resort to numerical computations. Interestingly, unlike the case of the uniformly accelerated detector that has been considered recently, we find that defining the transition probability rate of the rotating detector poses no difficulties. Further, we show that the response of the rotating detector can be computed exactly (albeit, numerically) even when it is coupled to a field that is governed by a nonlinear dispersion relation. We also discuss the response of the rotating detector in the presence of a cylindrical boundary on which the scalar field is constrained to vanish. While superluminal dispersion relations hardly affect the standard results, we find that subluminal dispersion relations can lead to relatively large modifications.

  18. Hybrid deterministic and stochastic x-ray transport simulation for transmission computed tomography with advanced detector noise model

    NASA Astrophysics Data System (ADS)

    Popescu, Lucretiu M.

    2016-03-01

    We present a model for simulation of noisy X-ray computed tomography data sets. The model is made of two main components, a photon transport simulation component that generates the noiseless photon field incident on the detector, and a detector response model that takes as input the incident photon field parameters and given the X-ray source intensity and exposure time can generate noisy data sets, accordingly. The photon transport simulation component combines direct ray-tracing of polychromatic X-rays for calculation of transmitted data, with Monte Carlo simulation for calculation of the scattered-photon data. The Monte Carlo scatter simulation is accelerated by implementing particle splitting and importance sampling variance reduction techniques. The detector-incident photon field data are stored as energy expansion coefficients on a refined grid that covers the detector area. From these data the detector response model is able to generate noisy detector data realizations, by reconstituting the main parameters that describe each detector element response in statistical terms, including spatial correlations. The model is able to generate very fast, on the fly, CT data sets corresponding to different radiation doses, as well as detector response characteristics, facilitating data management in extensive optimization studies by reducing the computation time and storage space demands.

  19. Technical Note: Response measurement for select radiation detectors in magnetic fields

    SciTech Connect

    Reynolds, M.; Fallone, B. G.; Rathee, S.

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  20. Characterization of Detector Response for PROSPECT - A Precision Reactor Oscillation and SPECTrum Measurement

    NASA Astrophysics Data System (ADS)

    Goddard, Brian; Dolinski, Michelle; Prospect Collaboration

    2015-10-01

    Recently, several experiments have reported an approximately 5% deficit of antineutrinos from nuclear reactors when the measured flux is compared with that predicted by current nuclear models. This is termed the ``Reactor Antineutrino Anomaly''. Furthermore, the predicted shape of the antineutrino spectrum is not in agreement with measurements from those experiments. The PROSPECT (Precision Reactor Oscillation and SPECTrum Measurement) collaboration plans to investigate this anomaly and constrain the shape of the spectrum with a high precision, short baseline (7-20m) measurement of the antineutrino spectrum from Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) which will include a search for sterile neutrinos as one possible solution to the anomaly. PROSPECT will utilize a segmented, lithium-loaded liquid scintillator detector and is taking a phased approach to detector design by building progressively larger prototypes of this final detector with several prototypes already constructed and taking data. This poster will report on the ongoing analysis of the detector response of these prototypes including aspects such as position reconstruction, energy resolution, and pulse shape discrimination.

  1. Characterizing the radiation response of Cherenkov glass detectors with isotopic sources

    SciTech Connect

    Hayward, J P; Hobbs, C. L.; Bell, Zane W; Boatner, Lynn A; Johnson, Rose E; Ramey, Joanne Oxendine; Jellison Jr, Gerald Earle; Lillard, Cole R; Ramey, Lucas A

    2012-01-01

    Abstract Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gammaray response are discussed.

  2. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy.

    PubMed

    Tomal, A; Santos, J C; Costa, P R; Lopez Gonzales, A H; Poletti, M E

    2015-06-01

    In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined. PMID:25599872

  3. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  4. Modeling Response Signal and Response Time Data

    ERIC Educational Resources Information Center

    Ratcliff, Roger

    2006-01-01

    The diffusion model (Ratcliff, 1978) and the leaky competing accumulator model (LCA, Usher & McClelland, 2001) were tested against two-choice data collected from the same subjects with the standard response time procedure and the response signal procedure. In the response signal procedure, a stimulus is presented and then, at one of a number of…

  5. Detector response in time-of-flight mass spectrometry at high pulse repetition frequencies

    NASA Technical Reports Server (NTRS)

    Gulcicek, Erol E.; Boyle, James G.

    1993-01-01

    Dead time effects in chevron configured dual microchannel plates (MCPs) are investigated. Response times are determined experimentally for one chevron-configured dual MCP-type detector and two discrete dynode-type electron multipliers with 16 and 23 resistively divided stages. All of these detectors are found to be suitable for time-of-flight mass spectrometry (TOF MS), yielding 3-6-ns (FWHM) response times triggered on a single ion pulse. It is concluded that, unless there are viable solutions to overcome dead time disadvantages for continuous dynode detectors, suitable discrete dynode detectors for TOF MS appear to have a significant advantage for high repetition rate operation.

  6. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  7. Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields.

    PubMed

    Scott, Alison J D; Kumar, Sudhir; Nahum, Alan E; Fenwick, John D

    2012-07-21

    The impact of density and atomic composition on the dosimetric response of various detectors in small photon radiation fields is characterized using a 'density-correction' factor, F(detector), defined as the ratio of Monte Carlo calculated doses delivered to water and detector voxels located on-axis, 5 cm deep in a water phantom with a SSD of 100 cm. The variation of F(detector) with field size has been computed for detector voxels of various materials and densities. For ion chambers and solid-state detectors, the well-known variation of F(detector) at small field sizes is shown to be due to differences between the densities of detector active volumes and water, rather than differences in atomic number. However, associated changes in the measured shapes of small-field profiles offset these variations in F(detector), so that integral doses measured using the different detectors are quite similar, at least for slit fields. Since changes in F(detector) with field size arise primarily from differences between the densities of the detector materials and water, ideal small-field relative dosimeters should have small active volumes and water-like density. PMID:22722374

  8. Charge-coupled-device X-ray detector performance model

    NASA Technical Reports Server (NTRS)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  9. Understanding sensitization behavior of lead selenide photoconductive detectors by charge separation model

    SciTech Connect

    Zhao, Lihua E-mail: shi@ou.edu; Qiu, Jijun; Weng, Binbin; Chang, Caleb; Yuan, Zijian; Shi, Zhisheng E-mail: shi@ou.edu

    2014-02-28

    We introduce a charge separation model in this work to explain the mechanism of enhanced photoconductivity of polycrystalline lead salt photoconductors. Our results show that this model could clarify the heuristic fabrication processes of such lead salt detectors that were not well understood and often considered mysterious for nearly a century. The improved lifetime and performance of the device, e.g., responsivity, are attributed to the spatial separation of holes and electrons, hence less possibility of carrier recombination. This model shows that in addition to crystal quality the size of crystallites, the depth of outer conversion layer, and doping concentration could all affect detector performance. The simulation results agree well with experimental results and thus offer a very useful tool for further improvement of lead salt detectors. The model was developed with lead salt family of photoconductors in mind, but may well be applicable to a wider class of semiconducting films.

  10. Surface Water Response Modeling

    EPA Science Inventory

    During response to spills, or for facility planning, the vulnerability of downstream water resources is a major concern. How long and at what concentration do spilled contaminants reach downstream receptors? Models have the potential to answer these questions, but only if they ...

  11. Modeling indirect detectors for performance optimization of a digital mammographic detector for dual energy applications

    NASA Astrophysics Data System (ADS)

    Martini, N.; Koukou, V.; Kalyvas, N.; Sotiropoulou, P.; Michail, C.; Valais, I.; Bakas, A.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. The advent of two X-ray energies (low and high) requires a suitable detector. The scope of this work is to determine optimum detector parameters for dual energy applications. The detector was modeled through the linear cascaded (LCS) theory. It was assumed that a phosphor material was coupled to a CMOS photodetector (indirect detection). The pixel size was 22.5 μm. The phosphor thickness was allowed to vary between 20mg/cm2 and 160mg/cm2 The phosphor materials examined where Gd2O2S:Tb and Gd2O2S:Eu. Two Tungsten (W) anode X-ray spectra at 35 kV (filtered with 100 μm Palladium (Pd)) and 70 kV (filtered with 800 pm Ytterbium (Yb)), corresponding to low and high energy respectively, were considered to be incident on the detector. For each combination the contrast- to-noise ratio (CNR) and the detector optical gain (DOG), showing the sensitivity of the detector, were calculated. The 40 mg/cm2 and 70 mg/cm2 Gd2O2S:Tb exhibited the higher DOG values for the low and high energy correspondingly. Higher CNR between microcalcification and mammary gland exhibited the 70mg/cm2 and the 100mg/cm2 Gd2O2S:Tb for the low and the high energy correspondingly.

  12. Design and response function of NaI detectors of Aragats complex installation

    NASA Astrophysics Data System (ADS)

    Arakelyan, K.; Daryan, A.; Kozliner, L.; Hovsepyan, G.; Reimers, A.

    2014-11-01

    In 2011, a network of five thallium-doped sodium iodide (Nal(Tl)) detectors was installed on Aragats Space Environmental Center (ASEC) and was included into ASEC detectors system. Along with monitoring of different species of secondary cosmic rays, ASEC detectors register several thunderstorm ground enhancements (TGEs). NaI(Tl) detector integration in the ASEC detector system is of great importance for the study of thunderstorm phenomena for the reason that NaI(Tl) detectors have a higher efficiency of gamma rays detection compared with plastic ones. In this article, the design and characteristics of NaI(Tl) detectors are described. Simulations of detector response are performed. Comparison of simulation results with experimental data showed good agreement between simulations and experimentally observed distributions for analog-to-digital converter (ADC) channels (codes) of NaI(Tl) detectors at two depths of the atmosphere, thus, indicating the correctness of the detector's response determination. A procedure for reconstruction of gamma energy spectrum was developed and approximation of the energy spectrum of recorded TGE event was carried out by a power function under the assumption that the recorded fluxes consist mainly of gamma quanta.

  13. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    SciTech Connect

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-04-15

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 {mu}m for indirect CsI:Tl and 200 {mu}m for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  14. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    SciTech Connect

    Filipuzzi, M; Garrigo, E; Venencia, C; Germanier, A

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculate the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the

  15. Response function stability of single crystal diamond detectors to 14 MeV neutrons

    SciTech Connect

    Zbořil, Miroslav Zimbal, Andreas

    2014-11-15

    Detectors based on single crystal synthetic diamond show promise as neutron spectrometers for the ITER project. In this work, the stability of the response function of two diamond detectors was tested at the Physikalisch-Technische Bundesanstalt (PTB) accelerator using a 14 MeV neutron field and a method of time-resolved fluence monitoring. In addition, measurements at the PTB ion-microbeam were made to investigate the charge collection properties of the detectors in more detail. The {sup 12}C(n,α){sup 9}Be peak response of one of the detectors was found to be stable within 1% after irradiation with a neutron fluence of 8 × 10{sup 9} cm{sup −2}. The absolute value of the peak response of this detector was determined as 8.65(26) × 10{sup −5} cm{sup 2}.

  16. Response function stability of single crystal diamond detectors to 14 MeV neutrons.

    PubMed

    Zbořil, Miroslav; Zimbal, Andreas

    2014-11-01

    Detectors based on single crystal synthetic diamond show promise as neutron spectrometers for the ITER project. In this work, the stability of the response function of two diamond detectors was tested at the Physikalisch-Technische Bundesanstalt (PTB) accelerator using a 14 MeV neutron field and a method of time-resolved fluence monitoring. In addition, measurements at the PTB ion-microbeam were made to investigate the charge collection properties of the detectors in more detail. The (12)C(n,α)(9)Be peak response of one of the detectors was found to be stable within 1% after irradiation with a neutron fluence of 8 × 10(9) cm(-2). The absolute value of the peak response of this detector was determined as 8.65(26) × 10(-5) cm(2). PMID:25430252

  17. Automatic Construction of Anomaly Detectors from Graphical Models

    SciTech Connect

    Ferragut, Erik M; Darmon, David M; Shue, Craig A; Kelley, Stephen

    2011-01-01

    Detection of rare or previously unseen attacks in cyber security presents a central challenge: how does one search for a sufficiently wide variety of types of anomalies and yet allow the process to scale to increasingly complex data? In particular, creating each anomaly detector manually and training each one separately presents untenable strains on both human and computer resources. In this paper we propose a systematic method for constructing a potentially very large number of complementary anomaly detectors from a single probabilistic model of the data. Only one model needs to be trained, but numerous detectors can then be implemented. This approach promises to scale better than manual methods to the complex heterogeneity of real-life data. As an example, we develop a Latent Dirichlet Allocation probability model of TCP connections entering Oak Ridge National Laboratory. We show that several detectors can be automatically constructed from the model and will provide anomaly detection at flow, sub-flow, and host (both server and client) levels. This demonstrates how the fundamental connection between anomaly detection and probabilistic modeling can be exploited to develop more robust operational solutions.

  18. Detector-Response Correction of Two-Dimensional γ -Ray Spectra from Neutron Capture

    SciTech Connect

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-28

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.

  19. Response of timepix detector with GaAs:Cr and Si sensor to heavy ions

    NASA Astrophysics Data System (ADS)

    Abu Al Azm, S. M.; Chelkov, G.; Kozhevnikov, D.; Guskov, A.; Lapkin, A.; Leyva Fabelo, A.; Smolyanskiy, P.; Zhemchugov, A.

    2016-05-01

    The response of the Timepix detector to neon ions with kinetic energy 77 and 158.4 MeV has been studied at the cyclotron U-400M of the JINR Flerov Laboratory of Nuclear Reaction. Sensors produced from gallium arsenide compensated by chromium and from silicon are used for these measurements. While in Timepix detector with Si sensor the well-known so-called "volcano effect" observed, in Timepix detector with GaAs:Cr sensor such effect was completely absent. In the work the behavior of the Timepix detector with GaAs:Cr sensor under irradiation with heavy ions is described in comparison with the detector based on Si sensor. Also the possible reason for absence of "volcano" effect in GaAs:Cr detector is proposed.

  20. Calibration method for spectral responsivity of infrared detector based on blackbody at multiple temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Shao, Z. F.; Wu, Y. Q.

    2015-08-01

    The spectral responsivity is one of the most important technical indicators of infrared detector which has an important significance for radiation thermometry and emissivity measurement. Using a blackbody radiation at multiple temperatures, the calibration for spectral responsivity of the infrared detector is proposed. With the Planck's law, the spectral radiance of blackbody at the different temperature is calculated. The detector captures the radiation and generates output values each of those is the function of spectral responsivity, spectral radiance and environmental radiation. Calibration equation is established by means of the calculated radiance and output values. By solving the equations based on principle of least squares, the calibration of spectral responsivity is implemented. From the comparison experiment of measuring the radiance of blackbody at 850K, radiance value measured by the MCT detector has a good consistency with the theoretical data.

  1. Material properties and room-temperature nuclear detector response of wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Lund, J. C.; Olsen, R. W.; McGregor, D. S.; Van Scyoc, J. M.; James, R. B.; Soria, E.; Bauser, E.

    1996-02-01

    Several semiconductor materials for room-temperature X-ray and gamma-ray detectors, including HgI 2, Cd 1- xZn xTe (CZT), GaAs, and Pbl 2 have been studied at Sandia National Laboratories, California. A comparison of the spectral response of these detectors will be given and related to material properties, such as charge carrier drift length, crystal purity, structural perfection, and material stoichiometry, as well as to the crystal growth techniques and device fabrication processes published elsewhere. Room-temperature detector spectral responses for each of these materials are presented, for photon energies in the range of 5.9 to 662 keV. CZT and HgI 2 detectors demonstrate excellent energy resolution over the entire energy range, while PbI 2 detectors exhibit reasonable response only up to about 30 keV. Some of the semi-insulating GaAs detectors fabricated from vertical gradient freeze materials show good spectral resolution for lower energies up to ˜60 keV, whereas other SI-GaAs detectors studied at Sandia function only as counters. Finally, some predictions on the future materials development of these wide bandgap semiconductors for room-temperature radiation detector applications will be discussed.

  2. ILCRoot tracker and vertex detector response to MARS15 simulated backgrounds in muon collider

    SciTech Connect

    Terentiev, N.K.; Di Benedetto, V.; Gatto, C.; Mazzacane, A.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-10-01

    Results from a simulation of the background for a muon collider, and the response of a silicon tracking detector to this background are presented. The background caused by decays of the 750-GeV muon beams was simulated using the MARS15 program, which included the infrastructure of the beam line elements near the detector and the 10{sup o} nozzles that shield the detector from this background. The ILCRoot framework, along with the Geant4 program, was used to simulate the response of the tracker and vertex silicon detectors to the muon-decay background remaining after the shielding nozzles. Results include the hit distributions in these detectors, the fractions of type-specific background particles producing these hits and illustrate the use of timing of the hits to suppress the muon beam background.

  3. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    NASA Astrophysics Data System (ADS)

    Parno, D. S.; Friend, M.; Mamyan, V.; Benmokhtar, F.; Camsonne, A.; Franklin, G. B.; Paschke, K.; Quinn, B.

    2013-11-01

    We have modeled, tested, and installed a large, cerium-activated Gd2SiO5 crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  4. Photoconductive detectors with fast temporal response for laser produced plasma experiments

    SciTech Connect

    May, M. J.; Halvorson, C.; Perry, T.; Weber, F.; Young, P.; Silbernagel, C.

    2008-10-15

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires x-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different x-ray sensitive photoconductive detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using x-ray radiation from a synchrotron radiation source are presented.

  5. Photoconductive Detectors with Fast Temporal Response for Laser Produced Plasma Experiments.

    SciTech Connect

    May, M; Halvorson, C; Perry, T; Weber, F; Young, P; Silbernagel, C

    2008-05-06

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires X-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different X-ray sensitive Photoconductive Detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using X-ray light from a synchrotron light source are presented.

  6. Photoconductive Detectors with Fast Temporal Response for Laser Produced Plasma Experiments

    SciTech Connect

    M. J. May, C. Halvorson, T. Perry, F. Weber, P. Young, C. Silbernagel

    2008-06-01

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires X-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different Xray sensitive Photoconductive Detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using X-ray light from a synchrotron light source are presented.

  7. Photoconductive detectors with fast temporal response for laser produced plasma experiments.

    PubMed

    May, M J; Halvorson, C; Perry, T; Weber, F; Young, P; Silbernagel, C

    2008-10-01

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires x-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different x-ray sensitive photoconductive detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using x-ray radiation from a synchrotron radiation source are presented. PMID:19044466

  8. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  9. Compensational scintillation detector with a flat energy response for flash X-ray measurements

    SciTech Connect

    Chen Liang; Quan Lin; Zhang Zhongbing; Ouyang Xiaoping; Liu Bin; Liu Jinliang

    2013-01-15

    To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and {gamma}-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

  10. A SPICE model of double-sided Si microstrip detectors

    SciTech Connect

    Candelori, A.; Paccagnella, A. |; Bonin, F.

    1996-12-31

    We have developed a SPICE model for the ohmic side of AC-coupled Si microstrip detectors with interstrip isolation via field plates. The interstrip isolation has been measured in various conditions by varying the field plate voltage. Simulations have been compared with experimental data in order to determine the values of the model parameters for different voltages applied to the field plates. The model is able to predict correctly the frequency dependence of the coupling between adjacent strips. Furthermore, we have used such model for the study of the signal propagation along the detector when a current signal is injected in a strip. Only electrical coupling is considered here, without any contribution due to charge sharing derived from carrier diffusion. For this purpose, the AC pads of the strips have been connected to a read-out electronics and the current signal has been injected into a DC pad. Good agreement between measurements and simulations has been reached for the central strip and the first neighbors. Experimental tests and computer simulations have been performed for four different strip and field plate layouts, in order to investigate how the detector geometry affects the parameters of the SPICE model and the signal propagation.

  11. A detector response function design in pinhole SPECT including geometrical calibration

    PubMed Central

    El Bitar, Z; Huesman, R H; Buchko, R; Bekaert, Virgile; Brasse, David; Gullberg, G T

    2014-01-01

    Clinical single photon emission computed tomography (SPECT) equipped with pinhole collimators have a magnification factor that results in high spatial resolution images for small animal imaging. Using Monte Carlo simulations to model the acquisition process and the propagation of the photons from their point of emission to their detection point then integrating the model into an iterative reconstruction algorithm improves the signal-to-noise ratio, the contrast and the spatial resolution in the reconstructed images. However, pinhole SPECT systems are known to be very sensitive to geometrical misalignments. Geometrical misalignments are defined as the radial or axial shift of the collimator pinhole and/or twist and tilt of the detector heads and are introduced in the system each time the collimation device is changed (pinhole to parallel holes or vice versa). In this work, we present a flexible detector response function table (DRFT) design that takes into account the geometrical misalignments and avoids performing new Monte Carlo simulations for each exam in order to calculate a geometrical study-dependent system matrix. The utilization of the DRFT for the calculation of the system matrix speeds up its computation time by two orders of magnitude making it acceptable for preclinical and clinical applications. PMID:23492938

  12. Correction of complex nonlinear signal response from a pixel array detector

    DOE PAGESBeta

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering frommore » liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.« less

  13. Correction of complex nonlinear signal response from a pixel array detector

    SciTech Connect

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-04-22

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  14. Correction of complex nonlinear signal response from a pixel array detector

    PubMed Central

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-01-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics. PMID:25931072

  15. Modelling radiation loads to detectors in a SNAP mission.

    PubMed

    Mokhov, N V; Rakhno, I L; Striganov, S I; Peterson, T J

    2005-01-01

    In order to investigate the degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission because of irradiation, a three-dimensional model of the satellite has been developed. A realistic radiation environment at the satellite orbit, including both galactic cosmic rays and cosmic ray trapped in radiation belts, has been taken into account. The modelling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photo-detectors is shown to be due to trapped protons. The contribution of primary alpha particles is estimated. Predicted performance degradation for the photodetector for a four-year space mission is 40% and this can be reduced further by means of shielding optimisation. PMID:16604632

  16. Modeling radiation loads to detectors in a SNAP mission

    SciTech Connect

    Nikolai V. Mokhov et al.

    2004-05-12

    In order to investigate degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission due to irradiation, a three-dimensional model of the satellite has been developed. Realistic radiation environment at the satellite orbit, including both galactic and trapped in radiation belts cosmic rays, has been taken into account. The modeling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photodetectors is shown to be due to trapped protons. A contribution of primary {alpha}-particles is estimated. Predicted performance degradation for the photo-detector for a 4-year space mission is 40% and can be reduced further by means of shielding optimization.

  17. The influence of electron track lengths on the γ-ray response of compound semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Esmaili-Torshabi, A.

    2015-10-01

    The charge-trapping effect in compound semiconductor γ-ray detectors in the presence of a uniform electric field is commonly described by Hecht's relation. However, Hecht's relation ignores the geometrical spread of charge carriers caused by the finite range of primary and secondary electrons (δ-rays) in the detector. In this paper, a method based on the Shockley-Ramo theorem is developed to calculate γ-ray induced charge pulses by taking into account the charge-trapping effect associated with the geometrical spread of charge carriers. The method is then used to calculate the response of a planar CdTe detector to energetic γ-rays by which the influence of electron track lengths on the γ-ray response of the detectors is clearly shown.

  18. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    PubMed

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183

  19. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    SciTech Connect

    Theocharous, Evangelos

    2005-10-10

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar.

  20. Comparison of RPL GD-301 and TLD-100 detectors responses by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Benali, A.-H.; Medkour Ishak-Boushaki, G.; Nourreddine, A.; Allab, M.

    2015-07-01

    (LiF:Mg,Ti) Thermo Luminescent Detectors are widely used for monitoring patient dose in radiotherapy treatments whereas Radio-Photoluminescent Dosimeters (RPL) are increasingly devoted to radiological protection purposes. A study, aiming at extending the use of RPL glasses to clinical applications, is conducted by comparing the dosimetric characteristics of a RPL glass dosimeter, commercially known as GD-301 to those of a TLD -100 detector. In this paper, preliminary Monte Carlo simulation results describing these dosimeters responses in terms of absorbed dose, source-detector distance and characteristics of the incident gamma field are presented.

  1. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    SciTech Connect

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-06-15

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1-50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  2. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    SciTech Connect

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for the light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.

  3. Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors

    DOE PAGESBeta

    Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.

    2013-03-26

    Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less

  4. Randomized Item Response Theory Models

    ERIC Educational Resources Information Center

    Fox, Jean-Paul

    2005-01-01

    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by an item response theory (IRT) model. The RR…

  5. Neutrino oscillations in a model with a source and detector

    NASA Astrophysics Data System (ADS)

    Kiers, Ken; Weiss, Nathan

    1998-03-01

    We study the oscillations of neutrinos in a model in which the neutrino is coupled to a localized, idealized source and detector. By varying the spatial and temporal resolution of the source and detector we are able to model the full range of source and detector types ranging from coherent to incoherent. We find that this approach is useful in understanding the interface between the quantum mechanical nature of neutrino oscillations on the one hand and the production and detection systems on the other hand. This method can easily be extended to study the oscillations of other particles such as the neutral K and B mesons. We find that this approach gives a reliable way to treat the various ambiguities which arise when one examines the oscillations from a wave packet point of view. We demonstrate that the conventional oscillation formula is correct in the relativistic limit and that several recent claims of an extra factor of 2 in the oscillation length are incorrect. We also demonstrate explicitly that the oscillations of neutrinos which have separated spatially may be ``revived'' by a long coherent measurement.

  6. A systematic characterization of the low-energy photon response of plastic scintillation detectors.

    PubMed

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to (137)Cs and (60)Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators' volume. The scintillators' expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator's light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams ((137)Cs and (60)Co), the scintillators' response was corrected for the Cerenkov stem effect. The scintillators' response increased by a factor of approximately 4 from a 20 kVp to a (60)Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about [Formula: see text] between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology. PMID:27384872

  7. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  8. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  9. Analysis of the response of silicon detectors to α particles and 16O ions

    NASA Astrophysics Data System (ADS)

    Kirsebom, O. S.; Fynbo, H. O. U.; Riisager, K.; Raabe, R.; Roger, T.

    2014-09-01

    We clarify basic concepts concerning the response of silicon detectors to ionizing radiation, focusing on light ions with energies ranging from a few hundred keV to a few MeV. Through reanalysis of existing experimental data, we quantify the difference in the response of silicon detectors to α particles and 16O ions, and we determine the correction that must be made before an energy calibration obtained with α particles can be applied to the measurement of 16O ions. Finally, we show that an apparent disagreement among three recent measurements of the decay spectrum of 8B can be explained by a failure to correctly take into account the different response of silicon detectors to α particles and 16O ions.

  10. Generalizability in Item Response Modeling

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Wilson, Mark

    2007-01-01

    An approach called generalizability in item response modeling (GIRM) is introduced in this article. The GIRM approach essentially incorporates the sampling model of generalizability theory (GT) into the scaling model of item response theory (IRT) by making distributional assumptions about the relevant measurement facets. By specifying a random…

  11. Estimation of ex-core detector responses by adjoint Monte Carlo

    SciTech Connect

    Hoogenboom, J. E.

    2006-07-01

    Ex-core detector responses can be efficiently calculated by combining an adjoint Monte Carlo calculation with the converged source distribution of a forward Monte Carlo calculation. As the fission source distribution from a Monte Carlo calculation is given only as a collection of discrete space positions, the coupling requires a point flux estimator for each collision in the adjoint calculation. To avoid the infinite variance problems of the point flux estimator, a next-event finite-variance point flux estimator has been applied, witch is an energy dependent form for heterogeneous media of a finite-variance estimator known from the literature. To test the effects of this combined adjoint-forward calculation a simple geometry of a homogeneous core with a reflector was adopted with a small detector in the reflector. To demonstrate the potential of the method the continuous-energy adjoint Monte Carlo technique with anisotropic scattering was implemented with energy dependent absorption and fission cross sections and constant scattering cross section. A gain in efficiency over a completely forward calculation of the detector response was obtained, which is strongly dependent on the specific system and especially the size and position of the ex-core detector and the energy range considered. Further improvements are possible. The method works without problems for small detectors, even for a point detector and a small or even zero energy range. (authors)

  12. Response regime studies on standard detectors for decay time determination in phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Knappe, C.; Abou Nada, F.; Lindén, J.; Richter, M.; Aldén, M.

    2013-09-01

    This work compares the extent of linear response regimes from standard time-resolving optical detectors for phosphor thermometry. Different types of Photomultipliers (ordinary and time-gated) as well as an Avalanche Photodiode are tested and compared using the phosphorescent time decay of CdWO4 that ranges from 10 μs down to a few ns within a temperature span of 290 to 580 K. Effects originating from incipient detector saturation, far from obvious to the operator's eye, are revealed as a change in evaluated phosphorescence decay time. Since the decay time of thermographic phosphors itself is used for temperature determination - systematic temperature errors up to several tens of Kelvins may be introduced by such detector saturation. A detector mapping procedure is suggested in order to identify linear response regions where the decay-to-temperature evaluation can be performed unbiased. Generation of such a library is highly recommended prior to any quantitative measurement attempt. Using this detector library, even signals collected in the partly saturated regime can be corrected to their unbiased value extending the usable detector operating range significantly. Further, the use of an external current-to-voltage amplifier proved useful for most applications in time-based phosphor thermometry helping to limit saturation effects whilst maintaining a reasonable bandwidth and signal outputs.

  13. A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector

    NASA Astrophysics Data System (ADS)

    Tam, Hoang Duc; Chuong, Huynh Dinh; Thanh, Tran Thien; Van Tao, Chau

    2016-08-01

    This study aims to assess the effect of Al2O3 reflector surrounding the NaI(Tl) crystal on the detector response function, based on Monte Carlo simulation, which can verify the precise model of the NaI(Tl) detector. The method used in determining the suitable thickness of Al2O3 reflector is to compare the calculated and experimental values of full-energy peak efficiency. The results show that the Al2O3 reflector should have a thickness of 0.8-1.2 mm for the maximum deviation between the experimental and simulated efficiency of 3.2% at all concerning energies. In addition, the obtained results are in good agreement with the response function of simulation and experimental spectra.

  14. Monte Carlo calculation of the energy response characteristics of a RadFET radiation detector

    NASA Astrophysics Data System (ADS)

    Belicev, P.; Spasic Jokic, V.; Mayer, S.; Milosevic, M.; Ilic, R.; Pesic, M.

    2010-07-01

    The Metal -Oxide Semiconductor Field-Effect-Transistor (MOSFET, RadFET) is frequently used as a sensor of ionizing radiation in nuclear-medicine, diagnostic-radiology, radiotherapy quality-assurance and in the nuclear and space industries. We focused our investigations on calculating the energy response of a p-type RadFET to low-energy photons in range from 12 keV to 2 MeV and on understanding the influence of uncertainties in the composition and geometry of the device in calculating the energy response function. All results were normalized to unit air kerma incident on the RadFET for incident photon energy of 1.1 MeV. The calculations of the energy response characteristics of a RadFET radiation detector were performed via Monte Carlo simulations using the MCNPX code and for a limited number of incident photon energies the FOTELP code was also used for the sake of comparison. The geometry of the RadFET was modeled as a simple stack of appropriate materials. Our goal was to obtain results with statistical uncertainties better than 1% (fulfilled in MCNPX calculations for all incident energies which resulted in simulations with 1 - 2×109 histories.

  15. Iterative reconstruction of detector response of an Anger gamma camera.

    PubMed

    Morozov, A; Solovov, V; Alves, F; Domingos, V; Martins, R; Neves, F; Chepel, V

    2015-05-21

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations. PMID:25951792

  16. Iterative reconstruction of detector response of an Anger gamma camera

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Solovov, V.; Alves, F.; Domingos, V.; Martins, R.; Neves, F.; Chepel, V.

    2015-05-01

    Statistical event reconstruction techniques can give better results for gamma cameras than the traditional centroid method. However, implementation of such techniques requires detailed knowledge of the photomultiplier tube light-response functions. Here we describe an iterative method which allows one to obtain the response functions from flood irradiation data without imposing strict requirements on the spatial uniformity of the event distribution. A successful application of the method for medical gamma cameras is demonstrated using both simulated and experimental data. An implementation of the iterative reconstruction technique capable of operating in real time is presented. We show that this technique can also be used for monitoring photomultiplier gain variations.

  17. Design and fabrication of engineering model fiber-optics detector

    NASA Technical Reports Server (NTRS)

    Mcsweeney, A.

    1972-01-01

    The design and fabrication of an annular ring detector consisting of optical fibers terminated with photodetectors is described. The maximum width of each concentric ring has to be small enough to permit the resolution of a Ronchi ruling transform with a dot spacing of 150 microns. A minimum of 100 concentric rings covering a circular area of 2.54 cm diameter also is necessary. A fiber-optic array consisting of approximately 89,000 fibers of 76 microns diameter was fabricated to meet the above requirements. The fibers within a circular area of 2.5 cm diameter were sorted into 168 adjacent rings concentric with the center fiber. The response characteristics of several photodetectors were measured, and the data used to compare their linearity of response and dynamic range. Also, coupling loss measurements were made for three different methods of terminating the optical fibers with a photodetector.

  18. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  19. Photoresponse Model for Si_(1-x)Ge_x/Si Heterojunction Internal Photoemission Infrared Detector

    NASA Technical Reports Server (NTRS)

    Lin, T.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1993-01-01

    A photoresponse model has been developed for the Si_(1-x)Ge_x/Si heterojunction internalphotoemission (HIP) infrared detector at wavelengths corresponding to photon energies less than theFermi energy. A Si_(0.7)Ge_(0.3)/Si HIP detector with a cutoff wavelength of 23 micrometers andan emission coefficient of 0.4 eV^(-1) has been demonstrated. The model agrees with the measureddetector response at lambda greater than 8 micrometers. The potential barrier determined by themodel is in close agreement (difference similar to 4 meV) with the potential barrier determined by theRichardson plot, compared to the discrepancies of 20-50 meV usually observed for PtSi Schottkydetectors.

  20. A theoretical model for the overlapping effect in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    López-Coto, I.; Bolívar, J. P.

    2011-10-01

    Solid state nuclear track detectors (SSNTD) are commonly deployed in many scientific and technological fields due to their low cost and relatively easy handling. In general, SSNTD response is considered to be linear, with exposure and efficiency supposedly constant across the entire exposure range, but in reality this response varies at high exposure levels, and efficiency diminishes as exposure rises. In high exposure measurements, this phenomenon results in an underestimation of the exposure levels and the results obtained must be treated with caution. To explain this phenomenon, this work establishes a theoretical model based on the track overlapping. Furthermore, an algorithm based on the Monte Carlo method has been used to obtain numerical results and a set of around 40 SSNTD has been exposed to three different exposure levels to validate this model. It has been demonstrated that overlapping efficiency is a linear function of the real exposure. The slope depends on the surface of the tracks, the resolution of the counting system and the reference efficiency for low exposures. The initial offset can be associated to the track background that reduces the overlapped efficiency. The recorded exposure can be modeled as a quadratic function of the real exposure without initial offset. As a result, the experimental data have been fitted to second order polynomial functions and the detectors parameters have been obtained. If detector parameters such as reference efficiency and track radio are known, the model can reliably predict the overlapping effect and enable the correction of the solid state track detector measurements. These results could also be extended to other SSNTD applications.

  1. Response of a diamond detector sandwich to 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Verona-Rinati, G.; Cardarelli, R.

    2016-05-01

    In this paper we present the measurement of the response of 50 μm thin diamond detectors to 14 MeV neutrons. Such neutrons are produced in fusion reactors and are of particular interest for ITER neutron diagnostics. Among semiconductor detectors diamond has properties most appropriate for harsh radiation and temperature conditions of a fusion reactor. However, 300-500 μm thick diamond detectors suffer significant radiation damage already at neutron fluences of the order of 1014 n/cm2. It is expected that a 50 μm thick diamond will withstand a fluence of >1016 n /cm2. We tested two 50 μm thick single crystal CVD diamonds, stacked to form a "sandwich" detector for coincidence measurements. The coincidence between two diamonds allows to suppress background and increase detection efficiency. The detector measured the conversion of 14 MeV neutrons, impinging on one diamond, into α particles which were detected in the second diamond in coincidence with nuclear recoil. For 12C(n , α)9Be reaction the total energy deposited in the detector gives access to the initial neutron energy value. The measured 14 MeV neutron detection sensitivity through this reaction by a detector of an effective area 3×3 mm2 was 5 ×10-7 counts cm2/n. This value is in good agreement with Geant4 simulations. The energy resolution of the detector was found to be 870 keV FWHM, but according to Geant4 simulations only about 160 keV FWHM were intrinsic.

  2. The smoke detector principle. Natural selection and the regulation of defensive responses.

    PubMed

    Nesse, R M

    2001-05-01

    Defenses, such as flight, cough, stress, and anxiety, should theoretically be expressed to a degree that is near the optimum needed to protect against a given threat. Many defenses seem, however, to be expressed too readily or too intensely. Furthermore, there are remarkably few untoward effects from using drugs to dampen defensive responses. A signal detection analysis of defense regulation can help to resolve this apparent paradox. When the cost of expressing an all-or-none defense is low compared to the potential harm it protects against, the optimal system will express many false alarms. Defenses with graded responses are expressed to the optimal degree when the marginal cost equals the marginal benefit, a point that may vary considerably from the intuitive optimum. Models based on these principles show that the overresponsiveness of many defenses is only apparent, but they also suggest that, in specific instances, defenses can often be dampened without compromising fitness. The smoke detector principle is an essential foundation for making decisions about when drugs can be used safely to relieve suffering and block defenses. PMID:11411177

  3. Detector photon response and absorbed dose and their applications to rapid triage techniques

    NASA Astrophysics Data System (ADS)

    Voss, Shannon Prentice

    As radiation specialists, one of our primary objectives in the Navy is protecting people and the environment from the effects of ionizing and non-ionizing radiation. Focusing on radiological dispersal devices (RDD) will provide increased personnel protection as well as optimize emergency response assets for the general public. An attack involving an RDD has been of particular concern because it is intended to spread contamination over a wide area and cause massive panic within the general population. A rapid method of triage will be necessary to segregate the unexposed and slightly exposed from those needing immediate medical treatment. Because of the aerosol dispersal of the radioactive material, inhalation of the radioactive material may be the primary exposure route. The primary radionuclides likely to be used in a RDD attack are Co-60, Cs-137, Ir-192, Sr-90 and Am-241. Through the use of a MAX phantom along with a few Simulink MATLAB programs, a good anthropomorphic phantom was created for use in MCNPX simulations that would provide organ doses from internally deposited radionuclides. Ludlum model 44-9 and 44-2 detectors were used to verify the simulated dose from the MCNPX code. Based on the results, acute dose rate limits were developed for emergency response personnel that would assist in patient triage.

  4. Study of the response of PICASSO bubble detectors to neutron irradiation

    NASA Astrophysics Data System (ADS)

    Marlisov, Daniiar

    The objective of this work was to simulate the PICASSO experiment and to study the detector response to neutron irradiation. The results of the simulation show the rock neutron rate to be 1-2 neutrons/day for the setup used until 2009 and less than 0.1 neutrons/day for the setup used after 2010. The shielding efficiency was calculated to be 98% and 99.6% for the two setups respectively. The detector response to an AmBe source was simulated. Neutron rates differ for two AmBe source spectra from the literature. The observed data rate is in agreement with the rate from the simulation. The detector stability was examined and found to be stable. The source position and orientation affect the detector efficiency creating a systematic uncertainity on the order of 10-35%. This uncertainity was eliminated with a source holder. The localisation of recorded events inside the detector and the simulated neutron distribution agree.

  5. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  6. Terahertz response of NbN-based microwave kinetic inductance detectors with rewound spiral resonator

    NASA Astrophysics Data System (ADS)

    Ariyoshi, S.; Nakajima, K.; Saito, A.; Taino, T.; Otani, C.; Yamada, H.; Ohshima, S.; Bae, J.; Tanaka, S.

    2016-03-01

    We have developed microwave kinetic inductance detectors (MKIDs) consisting of dual-purpose rewound spirals (spiral-MKIDs) made of a metal nitride superconductor for terahertz imaging applications. An NbN-based spiral-MKID array with 25 pixels was fabricated, and the fundamental performance of the terahertz receptivity was evaluated at the equilibrium temperature of a conventional 4He refrigerator (≃3 K). The microwave transmission property of the array showed the 25 resonance lines, equally separated by frequency, in the microwave range from 2.70 to 2.95 GHz. To evaluate its optical performance as a terahertz detector, we measured the spiral-MKID’s spectral response, response time, and noise equivalent power (NEP), and confirmed that it revealed a broad spectral response from 1 to 9 THz and an effective response time of approximately 80 μs. The noise-equivalent power was estimated to be {10}-13 {{W}}/\\sqrt{{Hz}}.

  7. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields

    NASA Astrophysics Data System (ADS)

    Fenwick, John D.; Kumar, Sudhir; Scott, Alison J. D.; Nahum, Alan E.

    2013-05-01

    The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a detector located within a water phantom depends on the density of the sensitive volume. Here this effect is explained using cavity theory, and analysed using Monte Carlo data calculated for schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density and atomic composition of the sensitive volume on its response is represented as a ratio, Fw,det, of doses absorbed by equal volumes of unit density water and detector material co-located within a unit density water phantom. The impact of density alone is characterized through a similar ratio, Pρ -, of doses absorbed by equal volumes of unit and modified density water. The cavity theory is developed by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons liberated in photon interactions occurring inside and outside the volume. Using this theory a simple model is obtained that links Pρ - to the degree of electronic equilibrium, see, at the centre of a field via a parameter Icav determined by the density and geometry of the sensitive volume. Following the scheme of Bouchard et al (2009 Med. Phys. 36 4654-63) Fw,det can be written as the product of Pρ -, the water-to-detector stopping power ratio [ {\\bar L_\\Delta /\\rho } ]_{det}^w, and an additional factor Pfl -. In small fields [ {\\bar L_\\Delta /\\rho } ]_{det}^w changes little with field-size; and for the schematic diamond and Pinpoint detectors Pfl - takes values close to one. Consequently most of the field-size variation in Fw,det originates from the Pρ - factor. Relative changes in see and in the phantom scatter factor sp are similar in small fields. For the diamond detector, the variation of Pρ - with see (and thus field-size) is described well by the simple cavity model using an Icav parameter in line with independent Monte Carlo estimates. The model also captures the overall field

  8. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields.

    PubMed

    Fenwick, John D; Kumar, Sudhir; Scott, Alison J D; Nahum, Alan E

    2013-05-01

    The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a detector located within a water phantom depends on the density of the sensitive volume. Here this effect is explained using cavity theory, and analysed using Monte Carlo data calculated for schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density and atomic composition of the sensitive volume on its response is represented as a ratio, Fw,det, of doses absorbed by equal volumes of unit density water and detector material co-located within a unit density water phantom. The impact of density alone is characterized through a similar ratio, Pρ -, of doses absorbed by equal volumes of unit and modified density water. The cavity theory is developed by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons liberated in photon interactions occurring inside and outside the volume. Using this theory a simple model is obtained that links Pρ - to the degree of electronic equilibrium, see, at the centre of a field via a parameter Icav determined by the density and geometry of the sensitive volume. Following the scheme of Bouchard et al (2009 Med. Phys. 36 4654-63) Fw,det can be written as the product of Pρ -, the water-to-detector stopping power ratio [L[overline](Δ)/ρ](w)(det), and an additional factor Pfl -. In small fields [L[overline](Δ)/ρ](w)(det) changes little with field-size; and for the schematic diamond and Pinpoint detectors Pfl - takes values close to one. Consequently most of the field-size variation in Fw,det originates from the Pρ - factor. Relative changes in see and in the phantom scatter factor sp are similar in small fields. For the diamond detector, the variation of Pρ - with see (and thus field-size) is described well by the simple cavity model using an Icav parameter in line with independent Monte Carlo estimates. The model also captures the overall field-size dependence of P

  9. Minimal Conductance-Based Model of Auditory Coincidence Detector Neurons

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Kretzberg, Jutta

    2015-01-01

    Sound localization is a fundamental sensory function of a wide variety of animals. The interaural time difference (ITD), an important cue for sound localization, is computed in the auditory brainstem. In our previous modeling study, we introduced a two-compartment Hodgkin-Huxley type model to investigate how cellular and synaptic specializations may contribute to precise ITD computation of the barn owl's auditory coincidence detector neuron. Although our model successfully reproduced fundamental physiological properties observed in vivo, it was unsuitable for mathematical analyses and large scale simulations because of a number of nonlinear variables. In the present study, we reduce our former model into three types of conductance-based integrate-and-fire (IF) models. We test their electrophysiological properties using data from published in vivo and in vitro studies. Their robustness to parameter changes and computational efficiencies are also examined. Our numerical results suggest that the single-compartment active IF model is superior to other reduced models in terms of physiological reproducibility and computational performance. This model will allow future theoretical studies that use more rigorous mathematical analysis and network simulations. PMID:25844803

  10. High-resolution image reconstruction for PET using estimated detector response functions

    NASA Astrophysics Data System (ADS)

    Tohme, Michel S.; Qi, Jinyi

    2007-02-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed PET images. For efficient computation in reconstruction, the system model in PET can be factored into a product of geometric projection matrix and detector blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. In this work, we propose a method to estimate the 2D detector blurring matrix from experimental measurements. Point source data were acquired with high-count statistics in the microPET II scanner using a computer-controlled 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner with the modeling of the detector block structure. Since the resulting blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo simulation. Reconstructed images of a line source phantom show improved resolution with the new detector blurring matrix compared to the original one from the Monte Carlo simulation. This method can be applied to other small-animal and clinical scanners.

  11. An investigation of optical feedback to extend the frequency response of solid-state detector systems

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1972-01-01

    A primary limitation of many solid-state photodetectors used in electro-optical systems such as the facsimile camera is their slow response in converting light intensities into electrical signals. An optical feedback technique is presented which can extend the frequency response of systems that use these detectors by orders of magnitude without significantly degrading their signal-to-noise performance. This technique is analyzed to predict improvement, implemented, and evaluated to verify analytical results.

  12. Feedback control indirect response models.

    PubMed

    Zhang, Yaping; D'Argenio, David Z

    2016-08-01

    A general framework is introduced for modeling pharmacodynamic processes that are subject to autoregulation, which combines the indirect response (IDR) model approach with methods from classical feedback control of engineered systems. The canonical IDR models are modified to incorporate linear combinations of feedback control terms related to the time course of the difference (the error signal) between the pharmacodynamic response and its basal value. Following the well-established approach of traditional engineering control theory, the proposed feedback control indirect response models incorporate terms proportional to the error signal itself, the integral of the error signal, the derivative of the error signal or combinations thereof. Simulations are presented to illustrate the types of responses produced by the proposed feedback control indirect response model framework, and to illustrate comparisons with other PK/PD modeling approaches incorporating feedback. In addition, four examples from literature are used to illustrate the implementation and applicability of the proposed feedback control framework. The examples reflect each of the four mechanisms of drug action as modeled by each of the four canonical IDR models and include: selective serotonin reuptake inhibitors and extracellular serotonin; histamine H2-receptor antagonists and gastric acid; growth hormone secretagogues and circulating growth hormone; β2-selective adrenergic agonists and potassium. The proposed feedback control indirect response approach may serve as an exploratory modeling tool and may provide a bridge for development of more mechanistic systems pharmacology models. PMID:27394724

  13. Linking Item Response Model Parameters.

    PubMed

    van der Linden, Wim J; Barrett, Michelle D

    2016-09-01

    With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs. PMID:26155754

  14. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  15. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range. PMID:27587107

  16. The temporal response and relative proton-to-gamma ratio of radiation detectors made from natural diamond

    SciTech Connect

    Wagner, R.S. ); Hilko, R.A.; Harper, R.W. . Los Alamos Operations); Tinsley, J.R. . Santa Barbara Operations)

    1992-01-01

    Measurements have been made on photoconductive detectors made from natural Class Ila diamond and from neutron-irradiated GaAs using identical physical geometries. The temporal response, relative proton-to-gamma ratio, and relative sensitivity were measured. For comparison, the same measurements were made on similarly configured InP(Fe) detectors. The temporal response of the diamond detectors varied from 145 to 360 ps full width at half maximum (FWHM) for a 30 ps, 16 MeV end point bremsstrahlung pulse. This compares to 103 ps FWHM for the GaAs detectors. Proton-to-gamma ratios for the diamond detectors were > 3.5 times those of the reference GaAs detector. The ratio was 1.2 times the reference for InP(Fe) detectors. The relative sensitivities of the diamond detectors, compared with the GaAs detectors, was 0.5 to 0.7. The leakage current of the diamond detectors was at least three orders of magnitude lower than the GaAs devices. Finally, the temporal response of nuetron-irradiated diamond detectors was 90 ps FWHM, a significant improvement in speed over natural diamond.

  17. The temporal response and relative proton-to-gamma ratio of radiation detectors made from natural diamond

    SciTech Connect

    Wagner, R.S.; Hilko, R.A.; Harper, R.W.; Tinsley, J.R.

    1992-12-01

    Measurements have been made on photoconductive detectors made from natural Class Ila diamond and from neutron-irradiated GaAs using identical physical geometries. The temporal response, relative proton-to-gamma ratio, and relative sensitivity were measured. For comparison, the same measurements were made on similarly configured InP(Fe) detectors. The temporal response of the diamond detectors varied from 145 to 360 ps full width at half maximum (FWHM) for a 30 ps, 16 MeV end point bremsstrahlung pulse. This compares to 103 ps FWHM for the GaAs detectors. Proton-to-gamma ratios for the diamond detectors were > 3.5 times those of the reference GaAs detector. The ratio was 1.2 times the reference for InP(Fe) detectors. The relative sensitivities of the diamond detectors, compared with the GaAs detectors, was 0.5 to 0.7. The leakage current of the diamond detectors was at least three orders of magnitude lower than the GaAs devices. Finally, the temporal response of nuetron-irradiated diamond detectors was 90 ps FWHM, a significant improvement in speed over natural diamond.

  18. Improved model for surface shunt resistance due to passivant for HgCdTe photoconductive detectors

    NASA Astrophysics Data System (ADS)

    Bhan, R. K.; Dhar, V.

    2003-12-01

    We present the results of calculations for surface shunt resistance due to the passivant fixed charge density (Qss) in n-HgCdTe photoconductive (PC) detectors. To the best of our knowledge, this is the first detailed calculation involving the actual majority carrier profile at the accumulated surface. The effect of surface field (or potential) due to heavily accumulated density of majority carriers on surface mobility (mus) has been investigated in detail by employing the Schrieffer and Goldstein models using random diffuse scattering. Additionally, the effect of lateral field (applied to these devices) on surface mobility is included by invoking the model of Yoo et al. The above effects were not taken into account in previous simplified models. For narrow-band, n-type HgCdTe the effects of carrier degeneracy and band non-parabolicity cannot be neglected. In this work, a one-dimensional model including these effects has been developed to evaluate the detector resistance and responsivity. A proper two-layer (bulk and surface) responsivity model is developed. The results are compared with the widely-used approximate one-layer model of Reine and with the step model proposed by Bhan and Gopal. It is shown that, for the Reine model, the agreement with the present model depends on the value of mus chosen. The trend of the step model agrees with the Reine model, but both models show disagreement with the present one-layer and two-layer profile models for Qss approx (1010-1012) cm-2.

  19. Diesel-discriminating detector response to smoldering fires. Information circular/1993

    SciTech Connect

    Egan, M.R.

    1992-12-07

    Reliable fire detection is essential for both safe evacuation and containment or extinguishment. In order to increase reliability by reducing the number of nuisance fire alarms in underground mines that use diesel-powered equipment, the US Bureau of Mines has developed a diesel-discriminating fire detector (DDD). It was designed to discriminate between smoke produced by a fire and the smoke-laden exhaust of a diesel engine. Experiments were conducted by the Bureau to compare the smoke detection capabilities of the DDD with those of conventional fire detectors in response to smoldering coal and conveyor belting.

  20. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  1. First experience of vectorizing electromagnetic physics models for detector simulation

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  2. PTOSL response of commercial Al2O3:C detectors to ultraviolet radiation.

    PubMed

    Gronchi, Claudia C; Caldas, Linda V E

    2013-04-01

    The photo-transferred optically stimulated luminescence (PTOSL) technique using Al2O3:C detectors has been suggested as a good option for ultraviolet (UV) radiation dosimetry. The objective of this work was to study the PTOSL response of Al2O3:C InLight detectors and the OSL microStar reader of Landauer. The parameters such as radiation pre-dose, optical treatment time and UV illumination time were determined. The detectors presented a satisfactory stimulus of PTOSL signals when they were subjected to a preconditioning procedure with gamma radiation (1 Gy pre-dose), 30 min of optical treatment (to empty the shallow traps) and 30 min of UV illumination from an artificial source. PMID:22887115

  3. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  4. Detector response to high repetition rate ultra-short laser pulses. I

    NASA Astrophysics Data System (ADS)

    Zakharova, I. K.; Rafailov, Michael K.

    2015-05-01

    Optical nonlinearities in semiconductors and semiconductor detectors have been widely investigated and exploited for many scientific and industrial applications. The correlation of optical and electronic characteristics in these detector materials under exposure of ultra-short laser pulses at high pulse repetition rates is still not very well known. These effects may be quite beneficial for many applications ranging from chemical and biological sensing to light-induced superconductivity. In this paper, we discuss the effect of extended bleaching in order to demonstrate sensing applications of such phenomenon as an example. Pump-probe measurements in bulk semiconductors will be presented to quantify the transient absorption dynamics and relate this to the electronic response of the detector devices. This effect is not limited semiconductors and may affect other matter states and electronic structures, like dielectrics.

  5. Model refinement using transient response

    SciTech Connect

    Dohrmann, C.R.; Carne, T.G.

    1997-12-01

    A method is presented for estimating uncertain or unknown parameters in a mathematical model using measurements of transient response. The method is based on a least squares formulation in which the differences between the model and test-based responses are minimized. An application of the method is presented for a nonlinear structural dynamic system. The method is also applied to a model of the Department of Energy armored tractor trailer. For the subject problem, the transient response was generated by driving the vehicle over a bump of prescribed shape and size. Results from the analysis and inspection of the test data revealed that a linear model of the vehicle`s suspension is not adequate to accurately predict the response caused by the bump.

  6. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  7. MO-E-17A-11: In-Phantom Detector Response in a Kilovoltage X-Ray Beam

    SciTech Connect

    Lawless, M; DeWerd, L

    2014-06-15

    Purpose: To investigate changes in detector response in a kilovoltage x-ray beam as a function of depth in phantom. Methods: Detector response in a 120kVp x-ray beam as a function of depth in a PMMA phantom was determined for a reference class Exradin A12 ionization chamber, an Exradin A1SL ionization chamber, TLD-100 and EBT3 radiochromic film and normalized to a depth of 1cm. The output of each detector was referenced to the A12 ionization chamber reading to assess changes in detector response as a function of depth. The BEAMnrc, DOSxyz, and egs-chamber user codes of the EGSnrc Monte Carlo code were used to calculate the dose delivered to the detectors from an x-ray source with similar beam quality to the one used in the measurements. Results: Changes in detector response relative to the A12 ionization chamber of 2%, 7%, and 14% for the A1SL, TLDs, and film, respectively, were observed with the larger changes in response occurring at larger depths. The Monte Carlo calculated changes in dose response showed less deviation, with the largest difference being within 2%. Conclusion: The Monte Carlo simulations show that doses delivered to the different detectors are quite similar, while measurements show that the detector output varies drastically. This indicates that the detector output per unit dose is changing with depth, most likely due to changes in the photon spectrum that occur because of scatter and attenuation of the primary beam. Because detector calibration is often performed at a single point in the kilovoltage energy range, the change in detector response needs to be considered when the measurement conditions differ from those of the calibration. This is of particular concern in computed tomography dose measurement, where calibrations are performed at shallow depths or in air, and measurements are made at deeper locations.

  8. Modeling of kinetic processes in thermoelectric single photon detectors

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Armen; Nikoghosyan, Vahan; Kuzanyan, Astghik

    2015-05-01

    The results of computer modeling of the thermoelectric single-photon detector are presented. We observe the processes of heat distribution after absorption of a photon of 0.1-1 keV energy in different parts of the absorber for different geometries of absorbers and thermoelectric sensors. The calculations were carried out by the matrix method for differential equations using parameters for the tungsten absorber and thermoelectric sensor made of (La, Ce)B6. The results of calculations show that it is realistic to detect photons about 0.1-1 keV and determine their energy with accuracy of not less than 1%. High count rates up to 200 GHz can be achieved.

  9. Transient photocurrent response of three-color detectors based on amorphous silicon

    NASA Astrophysics Data System (ADS)

    Stannowski, B.; Stiebig, H.; Knipp, D.; Wagner, H.

    1999-04-01

    Color detectors based on multilayers of amorphous-silicon alloys facilitate the detection of the three fundamental components of visible light in one single pixel of a sensor array. In order to achieve sensitivity for the blue, green, and red components of light, three different bias voltages are applied to the device. By switching them sequentially the detector is read out. n-i-p-i-i-n structures with a controlled band gap and mobility-lifetime product exhibit excellent stationary properties, namely: good color separation and have dynamic behaviors above 95 dB. Besides the stationary behavior the transient response of a color detector is a further optimization criterion. The experimentally found transient photocurrent response after switching on monochromatic light at different applied bias voltages showed reasonable delay times in the range of tens of milliseconds before reaching steady state. Numerical simulations have been carried out which reproduce this characteristic behavior and facilitate a study of time dependent processes within the device, such as charge transport and storage in localized states. The delay times can be explained by the recharging of electrical defect states in the amorphous material. Consequently, the electrical potential within the device changes, which remarkably affects the carrier transport. Based on these results optimization criteria for the transient behavior of the color detectors are discussed.

  10. Neutron response characterization for an EJ299-33 plastic scintillation detector

    SciTech Connect

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; Flaska, Marek; Becchetti, F. D.; Pozzi, Sara A.

    2014-05-10

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for both detectors. A Continuous spectrum neutron source, obtained via the bombardment of Al-27 with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals. (C) 2014 Elsevier B.V. All rights reserved. Keywords

  11. Neutron response characterization for an EJ299-33 plastic scintillation detector

    DOE PAGESBeta

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; Flaska, Marek; Becchetti, F. D.; Pozzi, Sara A.

    2014-05-10

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for both detectors. A Continuousmore » spectrum neutron source, obtained via the bombardment of Al-27 with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals. (C) 2014 Elsevier B.V. All rights reserved. Keywords« less

  12. Neutron response characterization for an EJ299-33 plastic scintillation detector

    NASA Astrophysics Data System (ADS)

    Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; Flaska, Marek; Becchetti, F. D.; Pozzi, Sara A.

    2014-09-01

    Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland-security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much-expanded range of deployment relative to liquids and crystals. Here, we present a full characterization of pulse-height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light-output relations, energy resolutions, and response matrices are presented for both detectors. A continuous-spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light-output relation on the ability to detect low-energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Nevertheless the EJ299 is likely to bring a modest PSD capability into a array of field applications that are not accessible to liquids or crystals.

  13. Monte Carlo study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams

    PubMed Central

    Wang, Lilie L. W.; Klein, David; Beddar, A. Sam

    2010-01-01

    Purpose: By using Monte Carlo simulations, the authors investigated the energy and angular dependence of the response of plastic scintillation detectors (PSDs) in photon beams. Methods: Three PSDs were modeled in this study: A plastic scintillator (BC-400) and a scintillating fiber (BCF-12), both attached by a plastic-core optical fiber stem, and a plastic scintillator (BC-400) attached by an air-core optical fiber stem with a silica tube coated with silver. The authors then calculated, with low statistical uncertainty, the energy and angular dependences of the PSDs’ responses in a water phantom. For energy dependence, the response of the detectors is calculated as the detector dose per unit water dose. The perturbation caused by the optical fiber stem connected to the PSD to guide the optical light to a photodetector was studied in simulations using different optical fiber materials. Results: For the energy dependence of the PSDs in photon beams, the PSDs with plastic-core fiber have excellent energy independence within about 0.5% at photon energies ranging from 300 keV (monoenergetic) to 18 MV (linac beam). The PSD with an air-core optical fiber with a silica tube also has good energy independence within 1% in the same photon energy range. For the angular dependence, the relative response of all the three modeled PSDs is within 2% for all the angles in a 6 MV photon beam. This is also true in a 300 keV monoenergetic photon beam for PSDs with plastic-core fiber. For the PSD with an air-core fiber with a silica tube in the 300 keV beam, the relative response varies within 1% for most of the angles, except in the case when the fiber stem is pointing right to the radiation source in which case the PSD may over-response by more than 10%. Conclusions: At ±1% level, no beam energy correction is necessary for the response of all three PSDs modeled in this study in the photon energy ranges from 200 keV (monoenergetic) to 18 MV (linac beam). The PSD would be even closer

  14. An empirical method for correcting the detector spectral response in energy-resolved CT

    NASA Astrophysics Data System (ADS)

    Schmidt, Taly Gilat

    2012-03-01

    Energy-resolving photon-counting detectors have the potential for improved material decomposition compared to dual-kVp approaches. However, material decomposition accuracy is limited by the nonideal spectral response of the detectors. This work proposes an empirical method for correcting the nonideal spectral response, including spectrum-tailing effects. Unlike previous correction methods which relied on synchrotron measurements, the proposed method can be performed on the scanner. The proposed method estimates a spectral-response matrix by performing x-ray projection measurements through a range of known thicknesses of two or more calibration materials. Once estimated, the spectral-response matrix is incorporated into conventional material decomposition algorithms. A simulation study investigated preliminary feasibility of the proposed method. The spectral-response matrix was estimated using simulated projection measurements through PMMA, aluminum, and gadolinium. An energy-resolved acquisition of a thorax phantom with gadolinium in the blood pool was simulated assuming a five-bin detector with realistic spectral response. Energy-bin data was decomposed into Compton, photoelectric, and gadolinium basis projections with and without the proposed correction method. Basis images were reconstructed by filtered backprojection. Results demonstrated that the nonideal spectral response reduced the ability to distinguish gadolinium from materials such as bone, while images reconstructed with the proposed correction method successfully depicted the contrast agent. The proposed correction method reduced errors from 9% to 0.6% in the Compton image, 90% to 0.6% in the photoelectric image and from 40% to 6% in the gadolinium image when using a three-material calibration. Overall, results support feasibility of the proposed spectral-response correction method.

  15. Time-domain response of a metal detector to a target buried in soil with frequency-dependent magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2006-05-01

    The work reported in this paper is a part of on-going studies to clarify how and to what extent soil electromagnetic properties affect the performance of induction metal detectors widely used in humanitarian demining. This paper studies the specific case of the time-domain response of a small metallic sphere buried in a non-conducting soil half-space with frequency-dependent complex magnetic susceptibility. The sphere is chosen as a simple prototype for the small metal parts in low-metal landmines, while soil with dispersive magnetic susceptibility is a good model for some soils that are known to adversely affect the performance of metal detectors. The included analysis and computations extend previous work which has been done mostly in the frequency domain. Approximate theoretical expressions for weakly magnetic soils are found to fit the experimental data very well, which allowed the estimation of soil model parameters, albeit in an ad hoc manner. Soil signal is found to exceed target signal (due to an aluminum sphere of radius 0.0127 m) in many cases, even for the weakly magnetic Cambodian laterite used in the experiments. How deep a buried target is detected depends on many other factors in addition to the relative strength of soil and target signals. A general statement cannot thus be made regarding detectability of a target in soil based on the presented results. However, computational results complemented with experimental data extend the understanding of the effect that soil has on metal detectors.

  16. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    SciTech Connect

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration.

  17. MCNPX--PoliMi Variance Reduction Techniques for Simulating Neutron Scintillation Detector Response

    NASA Astrophysics Data System (ADS)

    Prasad, Shikha

    Scintillation detectors have emerged as a viable He-3 replacement technology in the field of nuclear nonproliferation and safeguards. The scintillation light produced in the detectors is dependent on the energy deposited and the nucleus with which the interaction occurs. For neutrons interacting with hydrogen in organic liquid scintillation detectors, the energy-to-light conversion process is nonlinear. MCNPX-PoliMi is a Monte Carlo Code that has been used for simulating this detailed scintillation physics; however, until now, simulations have only been done in analog mode. Analog Monte Carlo simulations can take long times to run, especially in the presence of shielding and large source-detector distances, as in the case of typical nonproliferation problems. In this thesis, two nonanalog approaches to speed up MCNPX-PoliMi simulations of neutron scintillation detector response have been studied. In the first approach, a response matrix method (RMM) is used to efficiently calculate neutron pulse height distributions (PHDs). This method combines the neutron current incident on the detector face with an MCNPX-PoliMi-calculated response matrix to generate PHDs. The PHD calculations and their associated uncertainty are compared for a polyethylene-shielded and lead-shielded Cf-252 source for three different techniques: fully analog MCNPX-PoliMi, the RMM, and the RMM with source biasing. The RMM with source biasing reduces computation time or increases the figure-of-merit on an average by a factor of 600 for polyethylene and 300 for lead shielding (when compared to the fully analog calculation). The simulated neutron PHDs show good agreement with the laboratory measurements, thereby validating the RMM. In the second approach, MCNPX-PoliMi simulations are performed with the aid of variance reduction techniques. This is done by separating the analog and nonanalog components of the simulations. Inside the detector region, where scintillation light is produced, no variance

  18. MARX: Model of AXAF Response to X-rays

    NASA Astrophysics Data System (ADS)

    Wise, Michael W.; Davis, John E.; Huenemoerder, David P.; Houck, John C.; Dewey, Dan

    2013-02-01

    MARX (Model of AXAF Response to X-rays) is a suite of programs designed to enable the user to simulate the on-orbit performance of the Chandra satellite. MARX provides a detailed ray-trace simulation of how Chandra responds to a variety of astrophysical sources and can generate standard FITS events files and images as output. It contains models for the HRMA mirror system onboard Chandra as well as the HETG and LETG gratings and all focal plane detectors.

  19. Spatio-energetic cross-talks in photon counting detectors: detector model and correlated Poisson data generator

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Kappler, Steffen

    2016-03-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the two pixels. This is called double-counting with charge sharing. The output of individual PCD pixel is Poisson distributed integer counts; however, the outputs of adjacent pixels are correlated due to double-counting. Major problems are the lack of detector noise model for the spatio-energetic crosstalk and the lack of an efficient simulation tool. Monte Carlo simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, we developed a new detector model and implemented into an efficient software simulator which uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account effects: (1) detection efficiency and incomplete charge collection; (2) photoelectric effect with total absorption; (3) photoelectric effect with fluorescence x-ray emission and re-absorption; (4) photoelectric effect with fluorescence x-ray emission which leaves PCD completely; and (5) electric noise. The model produced total detector spectrum similar to previous MC simulation data. The model can be used to predict spectrum and correlation with various different settings. The simulated noisy data demonstrated the expected performance: (a) data were integers; (b) the mean and covariance matrix was close to the target values; (c) noisy data generation was very efficient

  20. [Generation of response functions of a NaI detector by using an interpolation technic].

    PubMed

    Tominaga, S

    1983-03-01

    A computer method is developed for generating response functions of a NaI detector to monoenergetic gamma-rays. The method is based on an interpolation between measured response curves by a detector. The computer programs are constructed for Heath's response spectral library. The principle of the basic mathematics used for interpolation, which was reported previously by the author, et al., is that response curves can be decomposed into a linear combination of intrinsic-component patterns, and thereby the interpolation of curves is reduced to a simple interpolation of weighting coefficients needed to combine the component patterns. This technique has some advantages of data compression, reduction in computation time, and stability of the solution, in comparison with the usual functional fitting method. The processing method of segmentation of a spectrum is devised to generate useful and precise response curves. A spectral curve, obtained for each gamma-ray source, is divided into some regions defined by the physical processes, such as the photopeak area, the Compton continuum area, the backscatter peak area, and so on. Each segment curve then is processed separately for interpolation. Lastly the estimated curves to the respective areas are connected on one channel scale. The generation programs are explained briefly. It is shown that the generated curve represents the overall shape of a response spectrum including not only its photopeak but also the corresponding Compton area, with a sufficient accuracy. PMID:6688137

  1. Renormalized Unruh-DeWitt particle detector models for boson and fermion fields

    NASA Astrophysics Data System (ADS)

    Hümmer, Daniel; Martín-Martínez, Eduardo; Kempf, Achim

    2016-01-01

    Since quantum field theories do not possess proper position observables, Unruh-DeWitt detector models serve as a key theoretical tool for extracting localized spatiotemporal information from quantum fields. Most studies have been limited, however, to Unruh-DeWitt (UDW) detectors that are coupled linearly to a scalar bosonic field. Here, we investigate UDW detector models that probe fermionic as well as bosonic fields through both linear and quadratic couplings. In particular, we present a renormalization method that cures persistent divergencies of prior models. We then show how perturbative calculations with UDW detectors can be streamlined through the use of extended Feynman rules that include localized detector-field interactions. Our findings pave the way for the extension of previous studies of the Unruh and Hawking effects with UDW detectors, and provide new tools for studies in relativistic quantum information, for example, regarding relativistic quantum communication and studies of the entanglement structure of the fermionic vacuum.

  2. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  3. Detector Modeling and CMB Polarimetry Technology Development at GSFC

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Withington, Stafford; Saklatvala, George

    2007-01-01

    Pixel size limits the resolution in the focal plane. This should be accounted for in optical design. Alternatively, this reduces the effective number of independent detectors. Polarization and scattering are intrinsically related, and both are more severe at low pnambda. Future work: Quantification of the pixel cross-coupling- calculate a theoretical covariance matrix to predict performance of future detector arrays.

  4. Investigation of Neutron Detector Response to Varying Temperature and Water Content for Geothermal Applications

    SciTech Connect

    Akkurt, Hatice

    2010-01-01

    Nuclear logging techniques have been used for oil well logging applications for decades. The basic principle is to use a neutron and/or photon source and neutron and photon detectors for characterization purposes. Although the technology has matured, it is not directly applicable to geothermal logging due to even more challenging environmental conditions, both in terms of temperature and pressure. For geothermal logging, the operating temperature can go up to 376 C for depths up to 10,000 km. In this paper, the preliminary computational results for thermal neutron detector response for varying temperature and water content for geothermal applications are presented. In this summary, preliminary results for neutron detector response for varying formation temperature and water content are presented. The analysis is performed for a steady state source (AmBe) and time dependent source (PNG) in pulsed mode. The computational results show significant sensitivity to water content as well as temperature changes for both steady state and time dependent measurements. As expected, the most significant change is due to the temperature change for S({alpha}, {beta}) nuclear data instead of individual isotope cross sections for the formation. Clearly, this is partially because of the fact that strong absorbers (i.e., chlorine) are not taken into account for the analysis at this time. The computational analysis was performed using the temperature dependent data in the ENDF/B-VII libraries, supplied with MCNP. Currently, the data for intermediate temperatures are being generated using NJOY and validated. A series of measurements are planned to validate the computational results. Further measurements are planned to determine the neutron and photon detector response as a function of temperature. The tests will be performed for temperatures up to 400 C.

  5. Evaluation the nonlinear response function of a 3 x 3 in NaI scintillation detector for PGNAA applications.

    PubMed

    Miri Hakimabad, Hashem; Panjeh, Hamed; Vejdani-Noghreiyan, Alireza

    2007-08-01

    Response functions of the 3 x 3 in NaI detector, which is mainly used in PGNAA applications, have been calculated by using MCNP-4C code. Calculated results are compared with measured data by using standard gamma-ray sources and prompt gamma-rays from pure element samples to check their accuracy. Prompt gamma-rays from pure element samples were used for this determination in the range from 1.942 to 10.829 MeV by use of (241)Am-Be neutron source and gamma-rays from radioisotope sources were used in the range from 0.081 to 4.438 MeV. Through the precise modeling of the detector structure, the agreement between both results has been improved. A surprising result is that in the PGNAA method the agreement between the MCNP simulation and experiment will be better by using a suitable neutron shield for NaI detector in order to prevent the activation of NaI (Tl) and a proper gamma-shield to attenuate the high-rate 4.438 MeV gamma-ray, (241)Am-Be gamma-ray component. PMID:17485218

  6. Multivariate objective response detectors (MORD): statistical tools for multichannel EEG analysis during rhythmic stimulation.

    PubMed

    Felix, Leonardo Bonato; Miranda de Sá, Antonio Mauricio Ferreira Leite; Infantosi, Antonio Fernando Catelli; Yehia, Hani Camille

    2007-03-01

    The presence of cerebral evoked responses can be tested by using objective response detectors. They are statistical tests that provide a threshold above which responses can be assumed to have occurred. The detection power depends on the signal-to-noise ratio (SNR) of the response and the amount of data available. However, the correlation within the background noise could also affect the power of such detectors. For a fixed SNR, the detection can only be improved at the expense of using a longer stretch of signal. This can constitute a limitation, for instance, in monitored surgeries. Alternatively, multivariate objective response detection (MORD) could be used. This work applies two MORD techniques (multiple coherence and multiple component synchrony measure) to EEG data collected during intermittent photic stimulation. They were evaluated throughout Monte Carlo simulations, which also allowed verifying that correlation in the background reduces the detection rate. Considering the N EEG derivations as close as possible to the primary visual cortex, if N = 4, 6 or 8, multiple coherence leads to a statistically significant higher detection rate in comparison with multiple component synchrony measure. With the former, the best performance was obtained with six signals (O1, O2, T5, T6, P3 and P4). PMID:17180463

  7. An EGS4 Monte Carlo examination of the response of a PTW-diamond radiation detector in megavoltage electron beams.

    PubMed

    Mobit, P N; Sandison, G A

    1999-05-01

    The EGS4 Monte Carlo code has been used to investigate the response of a PTW/diamond detector irradiated in both clinical and monoenergetic megavoltage electron beams ranging in energy from 5 to 20 MeV. The sensitive volume of the PTW/diamond detector simulated has a thickness of 0.4 mm and a diameter of 4.4 mm. Irradiation was simulated at various depths in a water phantom. The results show that the PTW/diamond detector has a constant response (within 1.0%) in electron beams if irradiated at depths closed to dmax, and its response is almost independent of irradiation depth or incident electron energy (within 3%). A detailed examination of the average detector dose shows that the sensitive volume of the PTW/diamond detector acts as a Spencer-Attix cavity within 1%. The encapsulation of the bare diamond detector with low-Z epoxy and polystyrene wall material does not affect its response in electron beams. The difference in response between the unencapsulated (TLD) and the encapsulated form of the detector is less than 0.5% for all depths over electron energy range investigated. PMID:10360550

  8. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    NASA Astrophysics Data System (ADS)

    Zou, Shiyang; Song, Peng; Guo, Liang; Pei, Wenbing

    2013-09-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  9. A Beta Item Response Model for Continuous Bounded Responses

    ERIC Educational Resources Information Center

    Noel, Yvonnick; Dauvier, Bruno

    2007-01-01

    An item response model is proposed for the analysis of continuous response formats in an item response theory (IRT) framework. With such formats, respondents are asked to report their response as a mark on a fixed-length graphical segment whose ends are labeled with extreme responses. An interpolation process is proposed as the response mechanism…

  10. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  11. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    SciTech Connect

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W; Reeher, M; Galmarini, D

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  12. Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Grupen, Matt; Duran, Joshua M.; Scheihing, John E.; Nelson, Thomas R.; Eismann, Michael T.

    2012-04-01

    The objective of this paper is to provide a credible analysis for predicting the spectral responsivity of InAs/GaSb/AlSb type-II superlattice (T2SL) based dual-band infrared photodetectors. An overview of the T2SL based design criteria is given and new dual-band detector architecture with a model dual-band detector structure designed to detect light in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) ranges is presented. The absorption coefficient is modeled empirically and the quantum efficiency spectra are calculated using a numerical model and Hovel's analytical expressions. The spectral cross-talk due to the response of the LWIR channel to residual MWIR light is also investigated. It is shown that the significance of this cross-talk primarily depends on the temperature of the target (scene) being detected. For MWIR/MWIR (two bands in the MWIR range) dual-band detectors, the spectral cross-talk becomes significant irrespective of the target temperature. Eliminating the spectral cross-talk in T2SL dual-band detectors presently remains a challenge.

  13. Overview of Responsive Model Program.

    ERIC Educational Resources Information Center

    Nimnicht, Glen P.

    The Responsive Model program assumes that the school environment should be designed to respond to the learner, and that school activities should be autotelic, or self-rewarding, not dependent upon rewards or punishment unrelated to the activity. Developmental theory, certain ideas of operant conditioning, and flexible learning sequences are used…

  14. A Measurement Model for Likert Responses that Incorporates Response Time

    ERIC Educational Resources Information Center

    Ferrando, Pere J.; Lorenzo-Seva, Urbano

    2007-01-01

    This article describes a model for response times that is proposed as a supplement to the usual factor-analytic model for responses to graded or more continuous typical-response items. The use of the proposed model together with the factor model provides additional information about the respondent and can potentially increase the accuracy of the…

  15. In Dogs We Trust? Intersubjectivity, Response-Able Relations, and the Making of Mine Detector Dogs

    PubMed Central

    Kirk, Robert G W

    2014-01-01

    The utility of the dog as a mine detector has divided the mine clearance community since dogs were first used for this purpose during the Second World War. This paper adopts a historical perspective to investigate how, why, and to what consequence, the use of minedogs remains contested despite decades of research into their abilities. It explores the changing factors that have made it possible to think that dogs could, or could not, serve as reliable detectors of landmines over time. Beginning with an analysis of the wartime context that shaped the creation of minedogs, the paper then examines two contemporaneous investigations undertaken in the 1950s. The first, a British investigation pursued by the anatomist Solly Zuckerman, concluded that dogs could never be the mine hunter's best friend. The second, an American study led by the parapsychologist J. B. Rhine, suggested dogs were potentially useful for mine clearance. Drawing on literature from science studies and the emerging subdiscipline of “animal studies,” it is argued that cross-species intersubjectivity played a significant role in determining these different positions. The conceptual landscapes of Zuckerman and Rhine's disciplinary backgrounds are shown to have produced distinct approaches to managing cross-species relations, thus explaining how diverse opinions on minedog can coexist. In conclusion, it is shown that the way one structures relationships between humans and animals has profound impact on the knowledge and labor subsequently produced, a process that cannot be separated from ethical consequence. PMID:24318987

  16. The detector response matrices of the burst and transient source experiment (BATSE) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Horack, John M.; Lestrade, John Patrick

    1995-01-01

    The detector response matrices for the Burst And Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) are described, including their creation and operation in data analysis. These response matrices are a detailed abstract representation of the gamma-ray detectors' operating characteristics that are needed for data analysis. They are constructed from an extensive set of calibration data coupled with a complex geometry electromagnetic cascade Monte Carlo simulation code. The calibration tests and simulation algorithm optimization are described. The characteristics of the BATSE detectors in the spacecraft environment are also described.

  17. The response of a 300 micron silicon detector to monoenergetic neutrons determined by the use of the Monte Carlo technique

    NASA Technical Reports Server (NTRS)

    Tahezadeh, M.; Anno, G.

    1972-01-01

    The response of a 300 micron thick silicon detector to an incident monoenergetic neutron beam is evaluated by the Monte Carlo method for the cases of both a shielded and a bare detector. The result of Monte Carlo calculation, using elastic, inelastic, and absorption reactions indicates that the response of the silicon detector to neutrons is basically due to the elastic scattering. In addition, the gamma rays generated in the shield of the detector will result in a response which is 3 or 4 orders of magnitude smaller than response to incident photons. The response of a bare silicon detector is calculated for neutron energies up to 6 MeV and bias energies from 50 to 250 KeV. It is found that the maximum response for a 300 micron thick silicon detector is less than .004 c/n within this selected neutron and bias energy range. When the pulse height defect is introduced in the calculation the results at low energy neutrons were reduced.

  18. Computation of Schenberg response function by using finite element modelling

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Magalhaes, N. S.

    2016-05-01

    Schenberg is a detector of gravitational waves resonant mass type, with a central frequency of operation of 3200 Hz. Transducers located on the surface of the resonating sphere, according to a distribution half-dodecahedron, are used to monitor a strain amplitude. The development of mechanical impedance matchers that act by increasing the coupling of the transducers with the sphere is a major challenge because of the high frequency and small in size. The objective of this work is to study the Schenberg response function obtained by finite element modeling (FEM). Finnaly, the result is compared with the result of the simplified model for mass spring type system modeling verifying if that is suitable for the determination of sensitivity detector, as the conclusion the both modeling give the same results.

  19. Predator versus Prey: Locust Looming-Detector Neuron and Behavioural Responses to Stimuli Representing Attacking Bird Predators

    PubMed Central

    Santer, Roger D.; Rind, F. Claire; Simmons, Peter J.

    2012-01-01

    Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response. PMID:23209660

  20. Assessing the validity of two indirect questioning techniques: A Stochastic Lie Detector versus the Crosswise Model.

    PubMed

    Hoffmann, Adrian; Musch, Jochen

    2016-09-01

    Estimates of the prevalence of sensitive attributes obtained through direct questions are prone to being distorted by untruthful responding. Indirect questioning procedures such as the Randomized Response Technique (RRT) aim to control for the influence of social desirability bias. However, even on RRT surveys, some participants may disobey the instructions in an attempt to conceal their true status. In the present study, we experimentally compared the validity of two competing indirect questioning techniques that presumably offer a solution to the problem of nonadherent respondents: the Stochastic Lie Detector and the Crosswise Model. For two sensitive attributes, both techniques met the "more is better" criterion. Their application resulted in higher, and thus presumably more valid, prevalence estimates than a direct question. Only the Crosswise Model, however, adequately estimated the known prevalence of a nonsensitive control attribute. PMID:26182857

  1. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  2. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGESBeta

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  3. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  4. EUCLID detector system demonstrator model: a first demonstration of the NISP detection system

    NASA Astrophysics Data System (ADS)

    Clémens, J. C.; Serra, B.; Niclas, M.; Ealet, A.; Gillard, W.; Secroun, A.; Barbier, R.; Kubik, B.; Ferriol, S.; Smadja, G.; Prieto, E.; Beaumont, F.; Fabron, C.; Garcia, J.; Grassi, E.; Maciaszek, T.

    2015-09-01

    The detector system (DS) of Euclid NISP's instrument (Near-Infrared Spectro-Photometer) is a matrix of 16 H2RG infrared detectors acquired simultaneously. After their characterization done at CPPM (Centre de Physique des Particules de Marseille), these detectors are integrated into a mechanical structure designed at LAM (Laboratoire d'Astronomie de Marseille) and called NI-FPA (Focal Plane Array) Before delivering the full instrument to ESA several test models have to demonstrate the performances of the detector system. The first test model, the Demonstrator Model (DM), has been integrated and tested in dedicated facilities at LAM. The aim was to validate both the integration process and the simultaneous acquisition of the detectors. Dark, noise, self-compatibility and EMC performances are presented in this paper.

  5. A phenomenological model to study the energy discrimination potential of GEM detectors in the X-ray range

    NASA Astrophysics Data System (ADS)

    Causa, F.; Pacella, D.; Romano, A.; Claps, G.; Gabellieri, L.

    2015-11-01

    An empirical model is presented to study the operational characteristics of GEM detectors in the X-ray range and, in particular, its energy discrimination potential. Physical processes are modelled from a macroscopic point of view, to provide a simple but effective simulation tool. Experimental data from monochromatic and combined, two-line fluorescence sources, are used to validate the model and provide realistic estimates of the empirical parameters used in the description. The model is instrumental in understanding the role of threshold, gain and operational conditions to achieve energy-discriminating response. Appropriate choices of gas mixtures, threshold and gain will permit to best utilise this new functionality of the GEM to improve the efficiency of image detectors in applications ranging from in-situ imaging in harsh environments, such as tokamaks, to composite materials analysis and medical imaging of tissues.

  6. Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications

    PubMed Central

    Sobott, B. A.; Broennimann, Ch.; Schmitt, B.; Trueb, P.; Schneebeli, M.; Lee, V.; Peake, D. J.; Elbracht-Leong, S.; Schubert, A.; Kirby, N.; Boland, M. J.; Chantler, C. T.; Barnea, Z.; Rassool, R. P.

    2013-01-01

    The performance of a single-photon-counting hybrid pixel detector has been investigated at the Australian Synchrotron. Results are compared with the body of accepted analytical models previously validated with other detectors. Detector functionals are valuable for empirical calibration. It is shown that the matching of the detector dead-time with the temporal synchrotron source structure leads to substantial improvements in count rate and linearity of response. Standard implementations are linear up to ∼0.36 MHz pixel−1; the optimized linearity in this configuration has an extended range up to ∼0.71 MHz pixel−1; these are further correctable with a transfer function to ∼1.77 MHz pixel−1. This new approach has wide application both in high-accuracy fundamental experiments and in standard crystallographic X-ray fluorescence and other X-ray measurements. The explicit use of data variance (rather than N 1/2 noise) and direct measures of goodness-of-fit (χr 2) are introduced, raising issues not encountered in previous literature for any detector, and suggesting that these inadequacies of models may apply to most detector types. Specifically, parametrization of models with non-physical values can lead to remarkable agreement for a range of count-rate, pulse-frequency and temporal structure. However, especially when the dead-time is near resonant with the temporal structure, limitations of these classical models become apparent. Further, a lack of agreement at extreme count rates was evident. PMID:23412493

  7. Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation

    SciTech Connect

    Gazizov, I. M.; Zaletin, V. M.; Kukushkin, V. M.; Khrunov, V. S.

    2011-05-15

    The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence of the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.

  8. Understanding the lateral dose response functions of high-resolution photon detectors by reverse Monte Carlo and deconvolution analysis.

    PubMed

    Looe, Hui Khee; Harder, Dietrich; Poppe, Björn

    2015-08-21

    The purpose of the present study is to understand the mechanism underlying the perturbation of the field of the secondary electrons, which occurs in the presence of a detector in water as the surrounding medium. By means of 'reverse' Monte Carlo simulation, the points of origin of the secondary electrons contributing to the detector's signal are identified and associated with the detector's mass density, electron density and atomic composition. The spatial pattern of the origin of these secondary electrons, in addition to the formation of the detector signal by components from all parts of its sensitive volume, determines the shape of the lateral dose response function, i.e. of the convolution kernel K(x,y) linking the lateral profile of the absorbed dose in the undisturbed surrounding medium with the associated profile of the detector's signal. The shape of the convolution kernel is shown to vary essentially with the electron density of the detector's material, and to be attributable to the relative contribution by the signal-generating secondary electrons originating within the detector's volume to the total detector signal. Finally, the representation of the over- or underresponse of a photon detector by this density-dependent convolution kernel will be applied to provide a new analytical expression for the associated volume effect correction factor. PMID:26267311

  9. Coupled Deterministic/Monte Carlo Simulation of Radiation Transport and Detector Response

    SciTech Connect

    Gesh, Christopher J.; Meriwether, George H.; Pagh, Richard T.; Smith, Leon E.

    2005-09-01

    The analysis of radiation sensor systems used to detect and identify nuclear and radiological weapons materials requires detailed radiation transport calculations. Two basic steps are required to solve radiation detection scenario analysis (RDSA) problems. First, the radiation field produced by the source must be calculated. Second, the response that the radiation field produces in a detector must be determined. RDSA problems are characterized by complex geometries, the presence of shielding materials, and large amounts of scattering (or absorption/re-emission). In this paper, we will discuss the use of the Attila code [2] for RDSA.

  10. Characterization of responses and comparison of calibration factor for commercial MOSFET detectors

    SciTech Connect

    Bharanidharan, Ganesan; Manigandan, Durai; Devan, Krishnamurthy; Subramani, Vellaiyan; Gopishankar, Natanasabapathi; Ganesh, Tharmar; Joshi, Rakeshchander; Rath, Gourakishore; Velmurugan, Jagadeesan; Aruna, Prakasarao; Ganesan, Singaravelu . E-mail: sganesan@annauniv.edu

    2005-01-01

    A commercial metal oxide silicon field effect transistor (MOSFET) dosimeter of model TN502-RD has been characterized for its linearity, reproducibility, field size dependency, dose rate dependency, and angular dependency for Cobalt-60 ({sup 6}Co), 6-MV, and 15-MV beam energies. The performance of the MOSFET clearly shows that it is highly reproducible, independent of field size and dose rate. Furthermore, MOSFET has a very high degree of linearity, with r-value > 0.9 for all 3 energies. The calibration factor for 2 similar MOSFET detectors of model TN502-RD were also estimated and compared for all 3 energies. The calibration factor between the 2 similar MOSFET detectors shows a variation of about 1.8% for {sup 6}Co and 15 MV, and for 6 MV it shows variation of about 2.5%, indicating that calibration should be done whenever a new MOSFET is used. However, the detector shows considerable angular dependency of about 8.8% variation. This may be due to the variation in radiation sensitivity between flat and bubble sides of the MOSFET, and indicates that positional care must be taken while using MOSFET for stereotactic radiosurgery and stereotactic radiotherapy dosimetric applications.

  11. Response corrections for solid-state detectors in megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Hugtenburg, R. P.; Beddoe, A. H.

    2004-08-01

    Solid-state detectors offer high sensitivity, stability and resolution and are frequently the dosimeter of choice for on-line dosimetry and small field therapies such as stereotactic radiosurgery. The departure from tissue equivalence of many solid-state devices, including diodes and MOSFETs, has to be carefully considered at lower energies and for Compton scattered radiation where the strongly Z-dependent photoelectric effect is significant. A modification of Burlin cavity theory is proposed that treats primary and scatter photon spectra separately and this has been applied to determine the correction factors for diode detector measurements of 6 and 15 MV linear accelerator beams. Uncorrected, an unshielded diode overestimates the dose at depth by as much as 15% for the 6 MV beam. The model predicts the effect to within 1% for both energies offering a basis for the correction of diodes for use in routine dosimetry.

  12. Poster — Thur Eve — 27: Flattening Filter Free VMAT Quality Assurance: Dose Rate Considerations for Detector Response

    SciTech Connect

    Viel, Francis; Duzenli, Cheryl; Camborde, Marie-Laure; Strgar, Vincent; Horwood, Ron; Atwal, Parmveer; Gete, Ermias; Karan, Tania

    2014-08-15

    Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data and a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.

  13. A Mixed Effects Randomized Item Response Model

    ERIC Educational Resources Information Center

    Fox, J.-P.; Wyrick, Cheryl

    2008-01-01

    The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…

  14. Benchmark validation comparisons of measured and calculated delayed neutron detector responses for a pulsed photonuclear assessment technique

    NASA Astrophysics Data System (ADS)

    Sterbentz, J. W.; Jones, J. L.; Yoon, W. Y.; Norman, D. R.; Haskell, K. J.

    2007-08-01

    An MCNPX-based calculational methodology has been developed to numerically simulate the complex electron-photon-neutron transport problem for the active interrogation system known as the pulsed photonuclear assessment (PPA) technique. The PPA technique uses a pulsed electron accelerator to generate bremsstrahlung photons in order to fission nuclear materials. Delayed neutron radiation is then detected with helium-3 neutron detectors as evidence of the nuclear material presence. Two experimental tests were designed, setup and run to generate experimental data for benchmarking purposes. The first test irradiated depleted uranium in air, and the second test, depleted uranium in a simulated cargo container (plywood pallet), using 10 MeV electron pulses. Time-integrated, post-flash, delayed neutron counts were measured and compared to calculated count predictions in order to benchmark the calculational methodology and computer models. Comparisons between the experimental measurements and numerical predictions of the delayed neutron detector responses resulted in reasonable experiment/calculated ratios of 1.42 and 1.06 for the two tests. High-enriched uranium (HEU) predictions were also made with the benchmarked models.

  15. Benchmark validation comparisons of measured and calculated delayed neutron detector responses for a pulsed photonuclear assessment technique

    SciTech Connect

    J. W. Sterbentz; J. L. Jones; W. Y. Yoon; D. R. Norman; K. J. Haskell

    2007-08-01

    An MCNPX-based calculational methodology has been developed to numerically simulate the complex electron–photon–neutron transport problem for the active interrogation system known as the pulsed photonuclear assessment (PPA) technique. The PPA technique uses a pulsed electron accelerator to generate bremsstrahlung photons in order to fission nuclear materials. Delayed neutron radiation is then detected with helium-3 neutron detectors as evidence of the nuclear material presence. Two experimental tests were designed, setup and run to generate experimental data for benchmarking purposes. The first test irradiated depleted uranium in air, and the second test, depleted uranium in a simulated cargo container (plywood pallet), using 10 MeV electron pulses. Time-integrated, post-flash, delayed neutron counts were measured and compared to calculated count predictions in order to benchmark the calculational methodology and computer models. Comparisons between the experimental measurements and numerical predictions of the delayed neutron detector responses resulted in reasonable experiment/calculated ratios of 1.42 and 1.06 for the two tests. High-enriched uranium (HEU) predictions were also made with the benchmarked models.

  16. Validation of Monte Carlo model of HPGe detector for field-station measurement of airborne radioactivity

    NASA Astrophysics Data System (ADS)

    Šolc, J.; Kovář, P.; Dryák, P.

    2016-03-01

    A Monte Carlo (MC) model of a mechanically-cooled High Purity Germanium detection system IDM-200-V™ manufactured by ORTEC® was created, optimized and validated within the scope of the Joint Research Project ENV57 ``Metrology for radiological early warning networks in Europe''. The validation was performed for a planar source homogeneously distributed on a filter placed on top of the detector end cap and for point sources positioned farther from the detector by comparing simulated full-energy peak (FEP) detection efficiencies with the ones measured with two or three different pieces of the IDM detector. True coincidence summing correction factors were applied to the measured FEP efficiencies. Relative differences of FEP efficiencies laid within 8% that is fully satisfactory for the intended use of the detectors as instruments for airborne radioactivity measurement in field-stations. The validated MC model of the IDM-200-V™ detector is now available for further MC calculations planned in the ENV57 project.

  17. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    SciTech Connect

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E.; Moreno Barbosa, F.

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  18. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    NASA Astrophysics Data System (ADS)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, F.; Moreno Barbosa, E.

    2014-11-01

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  19. Low energy response of the NICER detectors and "threshold efficiency" effect

    NASA Astrophysics Data System (ADS)

    Prigozhin, Gregory; Doty, John; LaMarr, Beverly; Malonis, Andrew; Remillard, Ronald A.; Scholze, Frank; Laubis, Christian; Krumrey, Michael

    2016-04-01

    The Neutron Star Interior Composition ExploreR (NICER) is an instrument that is planned to be installed on the International Space Station in 2016 to study time-resolved spectra of the rapidly changing celestial ojects. The focal plane of the instrument consists of 56 Silicon Drift Detectors (SDDs). Signal from each SDD is fed to shaping amplifiers and triggering circuits that determine both amplitude and time of arrival for each "event".Zero crossing timing circuit is used in order to suppress energy dependent "time walk". That is done with a chain producing a derivative of the shaped signal, and the same chain detects threshold crossings marking the arrival of an X-ray photon. Higher noise of the differentiated signal leads to a somewhat extended band of signal amplitudes close to the threshold value, for which detection efficiency is less than 100%. Detection efficiency in this area affects the low energy portion of the detector response, and is very well described by an error function. We will present accurate measurements of this effect, show the consequences for the instrument quantum efficiency and the shape of the response function and will describe the calibration procedures that would allow selection of optimal threshold values for each observation.

  20. Iterative optimisation of Monte Carlo detector models using measurements and simulations

    NASA Astrophysics Data System (ADS)

    Marzocchi, O.; Leone, D.

    2015-04-01

    This work proposes a new technique to optimise the Monte Carlo models of radiation detectors, offering the advantage of a significantly lower user effort and therefore an improved work efficiency compared to the prior techniques. The method consists of four steps, two of which are iterative and suitable for automation using scripting languages. The four steps consist in the acquisition in the laboratory of measurement data to be used as reference; the modification of a previously available detector model; the simulation of a tentative model of the detector to obtain the coefficients of a set of linear equations; the solution of the system of equations and the update of the detector model. Steps three and four can be repeated for more accurate results. This method avoids the "try and fail" approach typical of the prior techniques.

  1. Evaluation of models of spectral distortions in photon-counting detectors for computed tomography.

    PubMed

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2016-04-01

    A semi-analytical model describing spectral distortions in photon-counting detectors (PCDs) for clinical computed tomography was evaluated using simulated data. The distortions were due to count rate-independent spectral response effects and count rate-dependent pulse-pileup effects and the model predicted both the mean count rates and the spectral shape. The model parameters were calculated using calibration data. The model was evaluated by comparing the predicted x-ray spectra to Monte Carlo simulations of a PCD at various count rates. The data-model agreement expressed as weighted coefficient of variation [Formula: see text] was better than [Formula: see text] for dead time losses up to 28% and [Formula: see text] or smaller for dead time losses up to 69%. The accuracy of the model was also tested for the purpose of material decomposition by estimating material thicknesses from simulated projection data. The estimated attenuator thicknesses generally agreed with the true values within one standard deviation of the statistical uncertainty obtained from multiple noise realizations. PMID:27213165

  2. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    NASA Astrophysics Data System (ADS)

    Tohme, Michel S.; Qi, Jinyi

    2009-06-01

    reconstruction with a MC-based sinogram blurring matrix, and one without a detector response model. The reconstruction time is unaffected by the new method since the blurring component takes a relatively small part of the overall reconstruction time. The proposed method can be applied to other PET scanners for human and animal imaging.

  3. Iterative Image Reconstruction for Positron Emission Tomography Based on Detector Response Function Estimated from Point Source Measurements

    PubMed Central

    Tohme, Michel S.; Qi, Jinyi

    2009-01-01

    reconstruction with a MC-based sinogram blurring matrix, and one without a detector response model. The reconstruction time is unaffected by the new method since the blurring component takes a relatively small part of the overall reconstruction time. The proposed method can be applied to other PET scanners for human and animal imaging. PMID:19478379

  4. Modelling superconducting nanowire single photon detectors in a waveguide cavity.

    PubMed

    Tyler, Nicola A; Barreto, Jorge; Villarreal-Garcia, Gerardo E; Bonneau, Damien; Sahin, Döndü; O'Brien, Jeremy L; Thompson, Mark G

    2016-04-18

    In this work we report on a single photon detector system which offers near-unity detection efficiency using waveguide-coupled superconducting nanowires with lengths on the order of 1 μm. This is achieved by embedding the nanowires in a racetrack resonator where the interaction time with the photons trapped in the cavity is increased, thereby allowing for shorter nanowires. We expect this to lead to a higher fabrication yield as the amount of inhomogeneities decreases for shorter nanowires. Our simulations show a system with a 1 μm long superconducting nanowire single photon detector (SNSPD) operating at near-unity detection efficiency using design parameters that can be realistically achieved with conventional fabrication processes. The resonant cavity introduces spectral selectivity to the otherwise broad-band SNSPDs and the cavity induced timing jitter is shown to be insignificant for SNSPDs longer than 1 μm. PMID:27137314

  5. Home radon monitor modeled after the common smoke detector

    SciTech Connect

    Bolton, R.D.; Arnone, G.J.; Johnson, J.P.

    1995-02-01

    The EPA has declared that five million or so of the nation`s 80 million homes may have indoor radon levels that pose an unacceptably high risk of lung cancer to occupants. They estimate that four times as many people die from radon-induced lung cancers as from fires in the home. Therefore the EPA has recommended that all homes be tested and that action be taken to reduce the radon concentration in homes that test above the 4 pCi/L level. The push to have homeowners voluntarily test for elevated radon levels has been only marginally successful. A reliable, inexpensive, and accurate in-home radon monitor designed along the same general lines as a home smoke detector might overcome much of the public reluctance to test homes for radon. Such a Home Radon Monitor (HRM) is under development at Los Alamos National Laboratory. To be acceptable to the public, HRMs should have the following characteristics in common with smoke detectors: low cost, small size, ease of installation and use, low maintenance, and high performance. Recent advances in Long-Range Alpha Detection technology are being used in the design of a HRM that should meet or exceed all these characteristics. A proof-of-principle HRM detector prototype has been constructed and results from tests of this prototype will be presented.

  6. Thin-film scintillators for extended ultraviolet /UV/ response silicon detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.

    1979-01-01

    The preparation and radiometric properties of silicon detectors coated with fluorescent thin films are described. The films are deposited from solutions of clear plastics, such as acrylic resins, polyvinyl toluene or polystyrene, and of organic laser dyes in a common solvent. They are optically clear, mechanically and chemically stable, yet easily applied and removed. Multiple doped films of a few microns thickness exhibit broad-band absorption from less than 250 nm to about 450 nm and narrow band emissions with peaks ranging from 380 nm to 600 nm. Internal quantum efficiencies are close to 100 percent and fluorescence decay times are in the nanosecond range. When deposited on optically denser media, a large fraction of the fluorescent emission is trapped in the substrate. Silicon photodiodes coated with multiple doped films exhibit high external quantum efficiencies and virtually flat photon response in the near UV.

  7. Effect of photometric detector spectral response quality on white LED spectral mismatch correction factors.

    PubMed

    Rosas, E; Estrada-Hernández, A

    2016-07-01

    Light-emitting-diode (LED)-based solid-state lighting has become a real option for private and public lighting after achieving high total luminous flux (TLF) and luminous efficacy levels, thus promoting the development of energy efficient use regulation to be fulfilled by LED lamps and LED luminaires. Here, we propose a photometer-quality-based fast-checking criterion. This allows photometric technicians to perform a quick evaluation of the photometric head spectral response quality effect on the LED source spectral mismatch correction factor-when determining the TLF and luminous efficacy minimum approved levels-performance parameters subject to mandatory verification by the conformity assessment procedures technically supporting the corresponding regulation. The proposed criterion applies for a wide range of photometric detector heads' qualities (2.6%≤f1'≤36.4%). PMID:27409220

  8. A new technique of characterization of intrapixel response dedicated to astronomical detectors

    NASA Astrophysics Data System (ADS)

    Ketchazo, C.; Viale, T.; Boulade, O.; Druart, G.; Moreau, V.; Mugnier, L.; Dubrueil, D.; Derelle, S.; Ronayette, S.; Guérineau, N.; Berthé, M.

    2015-07-01

    This paper is devoted to the presentation of a new technique of characterization of the intra-pixel sensitivity variations (IPSVs) of astronomical detectors. The IPSV is the spatial variation of the pixel response function (PRF). In the case of under-sampled instruments for high quality imaging and accurate photometry, IPSV can contribute to the instrument global error and it should be considered carefully. Our measurement technique is based in the Fourier transform (FT) approach. It consists into the sampling of the pixel transfer function (PTF) by projecting high-resolution periodic patterns onto the whole sensor without classic optics but using the self-imaging property (the Talbot effect) of a continuously self imaging grating (CSIG) illuminated by a plane wave. The PRF is determined by computing the inverse FT. Our measurement technique permits to determine the PRF with a resolution of pixel/10 (10 times Nyquist frequency).

  9. Response of Cellulose detectors to different doses of 62 MeV protons

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Mishra, R.; Dwivedi, K. K.; Ghosh, S.; Fink, D.; Khathing, D. T.

    2003-08-01

    Optical and thermal responses of two cellulose detectors, Cellulose triacetate (Triafol-TN) and Cellulose acetate butyrate (Triafol-BN), to four different doses of 62 MeV protons were studied using spectroscopic, thermal and track-etching techniques. The spectroscopic analysis revealed that though the optical band-gap in the polymers was affected by proton irradiation, the polymers showed high resistance against any major structural modification by radiation. The thermal stability of the polymers was found to be affected by proton irradiation. The activation energy of etching was found to be almost constant for both the polymers even after irradiation. It is hoped that the findings in this work would be of significant relevance to material science and applications of polymers.

  10. Monte Carlo Study of the abBA Experiment: Detector Response and Physics Analysis

    PubMed Central

    Frlež, E.

    2005-01-01

    The abBA collaboration proposes to conduct a comprehensive program of precise measurements of neutron β-decay coefficients a (the correlation between the neutrino momentum and the decay electron momentum), b (the electron energy spectral distortion term), A (the correlation between the neutron spin and the decay electron momentum), and B (the correlation between the neutron spin and the decay neutrino momentum) at a cold neutron beam facility. We have used a GEANT4-based code to simulate the propagation of decay electrons and protons in the electromagnetic spectrometer and study the energy and timing response of a pair of Silicon detectors. We used these results to examine systematic effects and find the uncertainties with which the physics parameters a, b, A, and B can be extracted from an over-determined experimental data set. PMID:27308164

  11. Optimization and small-signal modeling of zero-bias InAs self-switching diode detectors

    NASA Astrophysics Data System (ADS)

    Westlund, A.; Sangaré, P.; Ducournau, G.; Iñiguez-de-la-Torre, I.; Nilsson, P.-Å.; Gaquière, C.; Desplanque, L.; Wallart, X.; Millithaler, J. F.; González, T.; Mateos, J.; Grahn, J.

    2015-02-01

    Design optimization of the InAs self-switching diode (SSD) intended for direct zero-bias THz detection is presented. The SSD, which consists of nanometer-sized channels in parallel, was described using an equivalent small-signal circuit. Expressions for voltage responsivity and noise equivalent power (NEP) were derived in terms of geometrical design parameters of the SSD, i.e. the channel length and the number of channels. Modeled design dependencies were confirmed by RF and DC measurements on InAs SSDs. In terms of NEP, an optimum number of channels were found with the detector driven by a 50 Ω source. With a matched source, the model predicted a responsivity of 1900 V/W and NEP of 7.7 pW/Hz½ for a single-channel InAs SSD with 35 nm channel width. Monte Carlo device simulations supported observed design dependencies. The proposed small-signal model can be used to optimize SSDs of any material system for low-noise and high-frequency operation as zero-bias detectors. In large signal measurements, the responsivity of the InAs SSDs exhibited a 1 dB deviation from linear responsivity at an input power of -3 dBm from a 50 Ω source.

  12. Modeling of beam loss in Tevatron and backgrounds in the BTeV detector

    SciTech Connect

    Alexandr I. Drozhdin; Nikolai V. Mokhov

    2004-07-07

    Detailed STRUCT simulations are performed on beam loss rates in the vicinity of the BTeV detector in the Tevatron CO interaction region due to beam-gas nuclear elastic interactions and out-scattering from the collimation system. Corresponding showers induced in the machine components and background rates in BTeV are modeled with the MARS14 code. It is shown that the combination of a steel collimator and concrete shielding wall located in front of the detector can reduce the accelerator-related background rates in the detector by an order of magnitude.

  13. Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors

    NASA Astrophysics Data System (ADS)

    Movassaghi, Yashar; Fathipour, Vala; Fathipour, Morteza; Mohseni, Hooman

    2016-03-01

    This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studies of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.

  14. Monte Carlo simulation of the BEGe detector response function for in vivo measurements of 241Am in the skull

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.

    2014-11-01

    This paper reports on the procedure of the BEGe detector characterization for the Monte Carlo calibrations. A project is under way to improve the counting and operating capabilities of the Whole Body Counter (WBC) installed in SÚRO, v.v.i. (NRPI) Prague, Czech Republic. Possible emergency monitoring should mainly benefit from the rapid, safe and flexible operation of the WBC. The system of the WBC for the detection of low energy X and gamma radiation comprises four HPGe detectors intended for the routine, emergency, and research measurements of persons internally contaminated with low-energy photon emitters, mainly actinides. Among them, 241Am is the main subject of interest. A precise detection efficiency calibration of the detector is required for the measurement of activity in individual organs and tissues. The use of physical phantoms in the calibrations is often supplemented with the application of voxel phantoms and a Monte Carlo technique that are used for the calculation of the detector response function and the full energy peak efficiency. Both experimental and computational approaches have been used for the calibration of the BEGe (Broad Energy Germanium) detector. In this paper, the process of the Monte Carlo simulation of the detector response function and the peak efficiency calculation is described. Results of the simulations are provided in the paper and discussed.

  15. Ultrafast Response p-Si/n-ZnO Heterojunction Ultraviolet Detector Based on Pyro-Phototronic Effect.

    PubMed

    Wang, Zhaona; Yu, Ruomeng; Wang, Xingfu; Wu, Wenzhuo; Wang, Zhong Lin

    2016-08-01

    A light-self-induced pyro-phototronic effect in wurtzite ZnO nanowires is proposed as an effective approach to achieve ultrafast response ultraviolet sensing in p-Si/n-ZnO heterostructures. The relatively long response/recovery time of zinc-oxide-based ultraviolet sensors in air/vacuum has long been an obstacle to developing such detectors for practical applications. The response/recovery time and photoresponsivity are greatly improved by the pyro-phototronic effect. PMID:27219114

  16. An effect of the networks of the subgrain boundaries on spectral responses of thick CdZnTe detectors

    SciTech Connect

    Bolotnikov, A.; Butcher, J.; Camarda, G.; Cui, Y.; Egarievwe, S.; Fochuk, P.; Gul,R.; Hamade, M.; Hossain, A.; Kim, K.; Kopach,O.; Petryk, M.; Raghothamachar, B.; Yang, G.; and James, R.B.

    2011-08-12

    CdZnTe (CZT) crystals used for nuclear-radiation detectors often contain high concentrations of subgrain boundaries and networks of poligonized dislocations that can significantly degrade the performance of semiconductor devices. These defects exist in all commercial CZT materials, regardless of their growth techniques and their vendor. We describe our new results from examining such detectors using IR transmission microscopy and white X-ray beam diffraction topography. We emphasize the roles on the devices performances of networks of subgrain boundaries with low dislocation densities, such as poligonized dislocations and mosaic structures. Specifically, we evaluated their effects on the gamma-ray responses of thick, >10 mm, CZT detectors. Our findings set the lower limit on the energy resolution of CZT detectors containing dense networks of subgrain boundaries, and walls of dislocations.

  17. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.

    PubMed

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  18. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  19. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-02-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  20. Calibration Scheme for Large Kinetic Inductance Detector Arrays Based on Readout Frequency Response

    NASA Astrophysics Data System (ADS)

    Bisigello, L.; Yates, S. J. C.; Murugesan, V.; Baselmans, J. J. A.; Baryshev, A. M.

    2016-07-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground-based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over a wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that the shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal applied in a wide range of operating points on the resonance and readout powers. This calibration method has three particular advantages: first, it is fast enough to be used to calibrate large arrays, with pixel counts in the thousands of pixels; second, it is based on data that are already necessary to determine KID positions; third, it can be done without applying any optical source in front of the array.

  1. Avalanche Effect in Si Heavily Irradiated Detectors: Physical Model and Perspectives for Application

    SciTech Connect

    Eremin V.; Li Z.; Verbitskaya, E.; Zabrodskii, A.; Harkonen, J.

    2011-05-07

    The model explaining an enhanced collected charge in detectors irradiated to 10{sup 15}-10{sup 16} n{sub eq}/cm{sup 2} is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider.

  2. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    SciTech Connect

    Oh Kim, Jun; Ku, Zahyun; Urbas, Augustine E-mail: Augustine.Urbas@wpafb.af.mil; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young E-mail: Augustine.Urbas@wpafb.af.mil

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  3. Effects of Surface Processing on the Response of CZT Gamma Detectors: Studies with a Collimated Synchrotron X-Ray Beam

    SciTech Connect

    Hossain,A.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Babalola, S.; Burger, A.; James, R.

    2008-01-01

    Using a microscale X-ray mapping technique incorporating a synchrotron beam, we are able to reveal the fine details of the surface properties in cadmium zinc telluride (CZT) semiconductor detectors. A detector, with various degrees of surface roughness, was irradiated by a high-spatial-resolution X-ray beam. The detector's response was analyzed and displayed as a two-dimensional (2-D) map, and the charge collection was obtained from the peak positions in the spectra versus the beam's location, which reflects the local material properties. We noted the correlation between the 2-D image and the spectral response of the charge collection at different locations on the surface area, which indicates that a rough surface tends to contain trapping centers, thereby enhancing leakage current and distorting the signal. We also discuss our observations on the transition effect at the boundary area of a rough and a smooth surface under identical conditions.

  4. SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS

    SciTech Connect

    Couture, A.

    2013-06-07

    Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

  5. Causality issues of particle detector models in QFT and quantum optics

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo

    2015-11-01

    We analyze the constraints that causality imposes on some of the particle detector models employed in quantum field theory in general and, in particular, on those used in quantum optics (or superconducting circuits) to model atoms interacting with light. Namely, we show that disallowing faster-than-light communication can impose severe constraints on the applicability of particle detector models in three different common scenarios: (1) when the detectors are spatially smeared, (2) when a UV cutoff is introduced in the theory and (3) under one of the most typical approximations made in quantum optics: the rotating-wave approximation. We identify the scenarios in which the models' causal behavior can and cannot be cured.

  6. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    SciTech Connect

    Siddiquee, Sinchita; Kabir, M. Z.

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chest radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.

  7. Single-electron response and energy resolution of a Micromegas detector

    NASA Astrophysics Data System (ADS)

    Zerguerras, T.; Genolini, B.; Lepeltier, V.; Peyré, J.; Pouthas, J.; Rosier, P.

    2009-09-01

    Micro-Pattern Gaseous Detectors (MPGDs) such as Micromegas or GEM are used in particle physics experiments for their capability of particle tracking at high rates. Their excellent position resolutions are well known but their energy characteristics have been less studied. The energy resolution is mainly affected by ionisation processes and gain fluctuations. This paper presents a method to separately measure these two contributions to the energy resolution of a Micromegas detector. The method relies on the injection of a controlled number of primary electrons in the gas. The Micromegas has a 1.6-mm drift zone and a 160-μm amplification gap. It is operated in Ne 95%-iC4H10 5% at atmospheric pressure. The electrons are generated by non-linear photoelectric emission derived from the photons of a pulsed 337-nm wavelength laser coupled to a focusing system. The single-electron response has been measured at different gains ( 3.7×104, 5.0×104 and 7.0×104) and is fit with good agreement by a Polya distribution. From those fits, a relative gain variance of 0.31±0.02 is deduced. The setup has also been characterised at several voltages by fitting the energy resolution measured as a function of the number of primary electrons, ranging from 5 to 210. An upper limit on the Fano factor (0.37) has been estimated for 5.9 keV X-rays absorbed in a Ne 95%-iC4H10 5% gas mixture.

  8. Beam related response of in vivo diode detectors for external radiotherapy

    NASA Astrophysics Data System (ADS)

    Baci, Syrja; Telhaj, Ervis; Malkaj, Partizan

    2016-03-01

    In Vivo Dosimetry (IVD) is a set of methods used in cancer treatment clinics to determine the real dose of radiation absorbed by target volume in a patient's body. IVD has been widely implemented in radiotherapy treatment centers and is now recommended part of Quality Assurance program by many International health and radiation organizations. Because of cost and lack of specialized personnel, IVD has not been practiced as yet, in Albanian radiotherapy clinics. At Hygeia Hospital Tirana, patients are irradiated with high energy photons generated by Elekta Synergy Accelerators. We have recently started experimenting with the purpose of establishing an IVD practice at this hospital. The first set of experiments was aimed at calibration of diodes that are going to be used for IVD. PMMA, phantoms by PTW were used to calibrate p - type Si, semiconductor diode dosimeters, made by PTW Freiburg for entrance dose. Response of the detectors is affected by energy of the beam, accumulated radiation dose, dose rate, temperature, angle against the beam axis, etc. Here we present the work done for calculating calibration factor and correction factors of source to surface distance, field size, and beam incidence for the entrance dose for both 6 MV photon beam and 18 MV photon beam. Dependence of dosimeter response was found to be more pronounced with source to surface distance as compared to other variables investigated.

  9. Teaching about Heterogeneous Response Models

    ERIC Educational Resources Information Center

    Murray, Michael P.

    2014-01-01

    Individuals vary in their responses to incentives and opportunities. For example, additional education will affect one person differently than another. In recent years, econometricians have given increased attention to such heterogeneous responses and to the consequences of such responses for interpreting regression estimates, especially…

  10. Peak shifted properties of the "low background NaI(Tl) detectors": An experimental study of response function behavior in different temperature and acquisition time

    NASA Astrophysics Data System (ADS)

    Rezaei Moghaddam, Y.; Rafat Motavalli, L.; Miri Hakimabadi, H.

    2016-09-01

    Due to the necessity of using low background NaI detector in sensitive and accurate measurements, study on the response function variations in different conditions is very important. These types of detectors have different responses in various measurement conditions, including time, temperature and high voltage. In this study, the response function of 76 B 76 LB NaI (SCIONIX) in different conditions is discussed. According to the channel shifting in these detectors and its direct effect on degrading the resolution, the most convenient measurement condition for these detectors, is proposed. Finally, it is recommended that before long-time measurements a "waiting time" is needed to avoid the channel shifting effects.

  11. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    NASA Astrophysics Data System (ADS)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  12. Instrument Response Modeling and Simulation for the GLAST Burst Monitor

    SciTech Connect

    Kippen, R. M.; Hoover, A. S.; Wallace, M. S.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.; Wilson-Hodge, C. A.; Kouveliotou, C.; Preece, R. D.; Connaughton, V.; Briggs, M. S.; Paciesas, W. S.; Bhat, P. N.

    2007-07-12

    The GLAST Burst Monitor (GBM) is designed to provide wide field of view observations of gamma-ray bursts and other fast transient sources in the energy range 10 keV to 30 MeV. The GBM is composed of several unshielded and uncollimated scintillation detectors (twelve NaI and two BGO) that are widely dispersed about the GLAST spacecraft. As a result, reconstructing source locations, energy spectra, and temporal properties from GBM data requires detailed knowledge of the detectors' response to both direct radiation as well as that scattered from the spacecraft and Earth's atmosphere. This full GBM instrument response will be captured in the form of a response function database that is derived from computer modeling and simulation. The simulation system is based on the GEANT4 Monte Carlo radiation transport simulation toolset, and is being extensively validated against calibrated experimental GBM data. We discuss the architecture of the GBM simulation and modeling system and describe how its products will be used for analysis of observed GBM data. Companion papers describe the status of validating the system.

  13. Hard x-ray response of pixellated CdZnTe detectors

    SciTech Connect

    Abbene, L.; Caccia, S.; Bertuccio, G.

    2009-06-15

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10x10x1 and 10x10x2 mm{sup 3} single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 mum BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T=10 deg.C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  14. Equivalent-circuit modeling of a MEMS phase detector for phase-locked loop applications

    NASA Astrophysics Data System (ADS)

    Han, Juzheng; Liao, Xiaoping

    2016-05-01

    This paper presents an equivalent-circuit model of a MEMS phase detector and deals with its application in phase-locked loops (PLLs). Due to the dc voltage output of the MEMS phase detector, the low-pass filter which is essential in a conventional PLL can be omitted. Thus, the layout area can be miniaturized and the consumed power can be saved. The signal transmission inside the phase detector is realized in circuit model by waveguide modules while the electric-thermal-electric conversion is illustrated in circuit term based on analogies between thermal and electrical variables. Losses are taken into consideration in the modeling. Measurement verifications for the phase detector model are conducted at different input powers 11, 14 and 17 dBm at 10 GHz. The maximum discrepancies between the simulated and measured results are 0.14, 0.42 and 1.13 mV, respectively. A new structure of PLL is constructed by connecting the presented model directly to a VCO module in the simulation platform. It allows to model the transient behaviors of the PLL at both locked and out of lock conditions. The VCO output frequency is revealed to be synchronized with the reference frequency within the hold range. All the modeling and simulation are performed in Advanced Design System (ADS) software.

  15. Accurate modeling of SiPM detectors coupled to FE electronics for timing performance analysis

    NASA Astrophysics Data System (ADS)

    Ciciriello, F.; Corsi, F.; Licciulli, F.; Marzocca, C.; Matarrese, G.; Del Guerra, A.; Bisogni, M. G.

    2013-08-01

    It has already been shown how the shape of the current pulse produced by a SiPM in response to an incident photon is sensibly affected by the characteristics of the front-end electronics (FEE) used to read out the detector. When the application requires to approach the best theoretical time performance of the detection system, the influence of all the parasitics associated to the coupling SiPM-FEE can play a relevant role and must be adequately modeled. In particular, it has been reported that the shape of the current pulse is affected by the parasitic inductance of the wiring connection between SiPM and FEE. In this contribution, we extend the validity of a previously presented SiPM model to account for the wiring inductance. Various combinations of the main performance parameters of the FEE (input resistance and bandwidth) have been simulated in order to evaluate their influence on the time accuracy of the detection system, when the time pick-off of each single event is extracted by means of a leading edge discriminator (LED) technique.

  16. Anomalous spectral response in heterojunction PbTe/PbSnTe infrared detectors - A new effect: Two Peak Effect

    SciTech Connect

    Gong Shuxing; Chen Boliang; Yuan Shixin )

    1991-03-01

    In the measurements of the spectral responses of PbTe/PbSnTe p-n heterojunction infrared detectors, the authors have discovered that there is an anomalous phenomenon in a few detectors when reverse bias is applied: there is not only a response peak in the 8-14 {mu}m long-wavelength range, but also another response peak in the 3-6 {mu}m short-wavelength range. They have also discovered that when reverse bias is increased, the heights of both spectral peaks can be adjusted, and the height of short-wavelength peak may be quickly increased, even if its long-wavelength peak is exceeded. This is an unreported new phenomenon up to now. It is shortly called anomalous phenomenon,' or Two Peak Effect' (TPE). This paper describes the new effect TPE' firstly, and makes a theoretical explanation. On the basis of this effect, it would be possible to make a new type of IR detector, which is quite different from the available detectors.

  17. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  18. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-03-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  19. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  20. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm . Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  1. Determination of neutron-induced alpha-particle cross sections on carbon using the response of a liquid scintillation detector

    SciTech Connect

    Brede, H.J.; Dietze, G.; Klein, H.; Schoelermann, H. )

    1991-01-01

    This paper presents the sums of the cross section {sup 12}C(n, {alpha}{sub 0}) {sup 9}Be and {sup 12}C(n, N{prime}3{alpha}) determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections {sigma}{sub n,{alpha}0} + {sigma}{sub n,n{prime}3{alpha}} are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.

  2. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of

  3. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays.

    PubMed

    Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A

    2014-11-01

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement. PMID:25430209

  4. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays

    SciTech Connect

    Bonura, M. A.; Cooper, G. W.; Nelson, A. J.; Styron, J. D.; Ruiz, C. L. Fehl, D. L.; Chandler, G.; Hahn, K. D.; Torres, J. A.

    2014-11-15

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF’s) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.

  5. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic raysa)

    NASA Astrophysics Data System (ADS)

    Bonura, M. A.; Ruiz, C. L.; Fehl, D. L.; Cooper, G. W.; Chandler, G.; Hahn, K. D.; Nelson, A. J.; Styron, J. D.; Torres, J. A.

    2014-11-01

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.

  6. The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.

    PubMed

    Yeoh, Catriona S M; Rossouw, David; Saghi, Zineb; Burdet, Pierre; Leary, Rowan K; Midgley, Paul A

    2015-06-01

    A simple model is proposed to account for the loss of collected X-ray signal by the shadowing of X-ray detectors in the scanning transmission electron microscope. The model is intended to aid the analysis of three-dimensional elemental data sets acquired using energy-dispersive X-ray tomography methods where shadow-free specimen holders are unsuitable or unavailable. The model also provides a useful measure of the detection system geometry. PMID:25790959

  7. Dose-response model for teratological experiments involving quantal responses

    SciTech Connect

    Rai, K.; Van Ryzin, J.

    1985-03-01

    This paper introduces a dose-response model for teratological quantal response data where the probability of response for an offspring from a female at a given dose varies with the litter size. The maximum likelihood estimators for the parameters of the model are given as the solution of a nonlinear iterative algorithm. Two methods of low-dose extrapolation are presented, one based on the litter size distribution and the other a conservative method. The resulting procedures are then applied to a teratological data set from the literature.

  8. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  9. Dose response signal detection under model uncertainty.

    PubMed

    Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav; Bretz, Frank

    2015-12-01

    We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations. PMID:26228796

  10. Detailed Modeling and Response of Demand Response Enabled Appliances

    SciTech Connect

    Vyakaranam, Bharat; Fuller, Jason C.

    2014-04-14

    Proper modeling of end use loads is very important in order to predict their behavior, and how they interact with the power system, including voltage and temperature dependencies, power system and load control functions, and the complex interactions that occur between devices in such an interconnected system. This paper develops multi-state time variant residential appliance models with demand response enabled capabilities in the GridLAB-DTM simulation environment. These models represent not only the baseline instantaneous power demand and energy consumption, but the control systems developed by GE Appliances to enable response to demand response signals and the change in behavior of the appliance in response to the signal. These DR enabled appliances are simulated to estimate their capability to reduce peak demand and energy consumption.

  11. Multiscale modeling of photon detectors from the infrared to the ultraviolet

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Schuster, Jonathan; Pinkie, Benjamin; Bertazzi, Francesco

    2013-09-01

    Due to the ever increasing complexity of novel semiconductor systems, it is essential to possess design tools and simulation strategies that include in the macroscopic device models the details of the microscopic physics and their dependence on the macroscopic (continuum) variables. Towards this end, we have developed robust multi-scale modeling capabilities that begin with modeling the intrinsic semiconductor properties. The models are fully capable of incorporating effects of substrate driven stress/strain and the material quality (dislocations and defects) on microscopic quantities such as the local transport coefficients and non-radiative recombination rate. Using this modeling approach we have extensively studied UV APD detectors and infrared focal plane arrays. Particular emphasis was placed on HgCdTe and InAsSb arrays incorporating photon trapping structures as well as two-color HgCdTe detectors arrays.

  12. Generalized IRT Models for Extreme Response Style

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…

  13. TU-F-18A-07: To Explore the More Realistic Energy Responses of the In-Depth Photon Counting Detectors

    SciTech Connect

    Yao, Y; Pelc, N

    2014-06-15

    Purpose: We study the effect of the secondary photon events on modeling the energy response functions of the In-depth photon counting X-ray detectors (PCXD) and the potential impact of the spectral distortion on material decompositions. Methods: Square-shape wafers of three potential PCXD materials were constructed (5-by-20-by-30 mm{sup 3} for Si, 4-by-20-by-5 mm{sup 3} for GaAs and 4-by-20-by-3 mm{sup 3} for CdTe), with pixel size of 5-by-4 mm{sup 2} for Si and 5-by-5 mm{sup 2} for GaAs and CdTe. The depth direction (z-direction) was segmented into 5 layers with exponentially increasing thicknesses of each layer. X-rays from 10keV to 120keV with 20000 photons per keV bin was simulated to characterize the energy response function of each PCXD using Geant4. Secondary photons events were recorded and we omitted the photons exiting the detector. The Energy Response Functions (ERFs) from the Monte Carlo (MC) simulations were compared with those from a semi-ideal model developed earlier. Results: For Si, detection of secondary events in the center detector were minimal due to the long aspect ratio of the detector, which results in the agreement between the theoretical prediction and the MC simulation with and without the secondary photons. For CdTe, the secondary photons captured by the center pixel were important, leading to obvious disagreement between the analytical and the simulated ERF. After correction for secondary events, the two curves were more similar except for the escape peaks which are not correctly portrayed by the semi-ideal model. For GaAs, the behavior is in between Si and CdTe. Conclusion: Given the complexity of the In-Depth PCXD's geometry, the uniform semi-ideal model does not fully characterize the ERF at each layer. Therefore, more realistic models need to be explored for better modeling of the spectral distortion.

  14. Model-based pulse shape correction for CdTe detectors

    NASA Astrophysics Data System (ADS)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.

    1999-02-01

    We present a systematic method to improve energy resolution of CdTe-detector systems with full control of the efficiency. Sampled pulses and multiple amplifier data are fitted by a model of the pulse shape including the deposited energy and the interaction point within the detector as parameters. We show the decisive improvements of spectral resolution and photo-peak efficiency that is obtained without distortion of spectral shape. The information concerning the interaction depth of individual events can be used to discriminate between beta particles and gamma quanta.

  15. Identification of a Semiparametric Item Response Model

    ERIC Educational Resources Information Center

    Peress, Michael

    2012-01-01

    We consider the identification of a semiparametric multidimensional fixed effects item response model. Item response models are typically estimated under parametric assumptions about the shape of the item characteristic curves (ICCs), and existing results suggest difficulties in recovering the distribution of individual characteristics under…

  16. On Compensation in Multidimensional Response Modeling

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2012-01-01

    The issue of compensation in multidimensional response modeling is addressed. We show that multidimensional response models are compensatory in their ability parameters if and only if they are monotone. In addition, a minimal set of assumptions is presented under which the MLEs of the ability parameters are also compensatory. In a recent series of…

  17. Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the geostationary earth radiation budget experiment.

    PubMed

    Matthews, Grant

    2004-12-01

    The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available. PMID:15619842

  18. Novel positioning method using Gaussian mixture model for a monolithic scintillator-based detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Bae, Seungbin; Lee, Kisung; Seo, Changwoo; Kim, Jungmin; Joo, Sung-Kwan; Joung, Jinhun

    2011-09-01

    We developed a high precision position decoding method for a positron emission tomography (PET) detector that consists of a thick slab scintillator coupled with a multichannel photomultiplier tube (PMT). The DETECT2000 simulation package was used to validate light response characteristics for a 48.8 mm×48.8 mm×10 mm slab of lutetium oxyorthosilicate coupled to a 64 channel PMT. The data are then combined to produce light collection histograms. We employed a Gaussian mixture model (GMM) to parameterize the composite light response with multiple Gaussian mixtures. In the training step, light photons acquired by N PMT channels was used as an N-dimensional feature vector and were fed into a GMM training model to generate optimal parameters for M mixtures. In the positioning step, we decoded the spatial locations of incident photons by evaluating a sample feature vector with respect to the trained mixture parameters. The average spatial resolutions after positioning with four mixtures were 1.1 mm full width at half maximum (FWHM) at the corner and 1.0 mm FWHM at the center section. This indicates that the proposed algorithm achieved high performance in both spatial resolution and positioning bias, especially at the corner section of the detector.

  19. Briefly iodized Ag foils: microstructure, structure, optical response and potential as iodine detectors

    NASA Astrophysics Data System (ADS)

    Desapogu, Rajesh; Krishna, M. Ghanashyam; Sunandana, C. S.

    2015-06-01

    Commercial silver foils—typically 10 µ thick—were subjected to a regulated flux of iodine (I2) vapors produced in a "figure of eight" iodinator. The effect of iodization time, varied in steps from 0 to 720 s, on the microstructure, structure and optical response is reported. The uniodized Ag foil shows large clusters which transform into sub 100 nm sizes on exposure to iodine vapors up to a duration of 540 s, beyond which there is re-growth of large clusters. Crystallization of AgI is not observed up to an iodine exposure duration of 720 s. The foils continue to exhibit diffraction peaks corresponding to crystalline Ag up to this duration of iodine exposure. In the first 180 s, there is very little difference between the optical absorption spectra of the exposed and unexposed foils. At an exposure time of 360 s, a localized surface plasmon peak of Ag appears at a wavelength of 550 nm. The intensity of the plasmon peak increases with further increase in exposure time to 540 and 720 s. Interestingly, the intensity of the plasmon peak and the optical absorption value at 700 nm increase linearly beyond an exposure time of 180 s. The process was monitored gravimetrically to obtain a mass loss of I2 versus iodination time profile. This profile is apparently linear for iodination times in the range 180-720 s, suggesting a linear uptake of I2 by silver foil. This feature together with the gravimetry result makes the process applicable as detectors in situations where ppm levels of I2 need to be detected.

  20. Response of Solid He-4 to External Stress: Interdigital Capacitor Solid Level Detector and Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Fay, J.; Wada, Y.; Masutomi, R.; Elkholy, T.; Kojima, H.

    2003-01-01

    Two experiments are being conducted to observe the liquid/solid interface of He-4 near 1 K. Interesting instabilities are expected to occur when the solid is non-hydrostatically stressed. (1)A compact interdigital capacitor is used as a level detector to observe solid He-4 to which stresses are applied externally. The capacitor consists of 38 interlaced 50 m wide and 3.8 mm long gold films separated by 50 m and deposited onto a 5 mm by 5 mm sapphire substrate. The capacitor is placed on one flat end wall of a cylindrical chamber (xx mm diameter and xx mm long). The solid is grown to a known height and a stress is applied by a tubular PZT along the cylindrical axis. The observed small change in height of the solid at the wall is linearly proportional to the applied stress. The solid height decreases under compressive stress but does not change under tensile stress. The response of the solid on compressive stress is consistent with the expected quadratic dependence on strain. (2)Interferometric techniques are being developed for observing the solid He-4 surface profile. A laser light source is brought into the low temperature region via single mode optical fiber. The interference pattern is transmitted back out of the low temperature apparatus via optical fiber bundle. The solid He-4 growth chamber will be equipped with two PZT's such that stress can be applied from orthogonal directions. Orthogonally applied stress is expected to induce surface instability with island-like deformation on a grid pattern. Apparatus design and progress of its construction are described.

  1. Fast response amplitude scintillation detector for X-ray synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Dementyev, E. N.; Sheromov, M. A.; Sokolov, A. S.

    1986-05-01

    The present paper describes a scintillation detector for X-ray synchrotron radiation. This detector has been created on the basis of a scintillator and a photoelectron multiplier (FEU-130) and its construction allows one to use the specific features of the time characteristics of synchrotron radiation from the electron storage ring. In a given range of amplitudes, the detector electronics makes a 64-channel amplitude analysis of the FEU-130 signal strobed by the revolution frequency of an electron bunch in the storage ring ( f0 = 818 kHz). There is the possibility of operating the detector at high intensities of the monochromatic radiation incident on the scintillator. Such a possibility is directly provided by the time structure of SR and is not realizable with the use of other X-ray sources. The detector will find wide application in studies on X-ray structural analysis, transmission and fluorescent EXAFS- and XANES-spectroscopy, transmission scanning microscopy and microtomography, calibration of X-ray detectors and as a monitor on SR beams from the storage ring VEPP-4.

  2. Experimental response function of NaI(Tl) scintillation detector for gamma photons and tomographic measurements for defect detection

    NASA Astrophysics Data System (ADS)

    Sharma, Amandeep; Singh, Karamjit; Singh, Bhajan; Sandhu, B. S.

    2011-02-01

    The response function of gamma detector is an important factor for spectrum analysis because some photons and secondary electrons may escape the detector volume before fully depositing their energy, of course destroys the ideal delta function response. An inverse matrix approach, for unfolding of observed pulse-height distribution to a true photon spectrum, is used for construction of experimental response function by formulating a 40 × 40 matrix with bin mesh ( E1/2) of 0.025 (MeV) 1/2 for the present measurements. A tomographic scanner system, operating in a non-destructive and non-invasive way, is also presented for inspection of density variation in any object. The incoherent scattered intensity of 662 keV gamma photons, obtained by unfolding (deconvolution) the experimental pulse-height distribution of NaI(Tl) scintillation detector, provides the desired information. The method is quite sensitive, for showing inclusion of medium Z (atomic number) material (iron) in low Z material (aluminium) and detecting a void of ˜2 mm in size for iron block, to investigate the inhomogeneities in the object. Also, the grey scale images (using "MATLAB") are shown to visualise the presence of defects/inclusion in metal samples.

  3. A model of spike-timing dependent plasticity: one or two coincidence detectors?

    PubMed

    Karmarkar, Uma R; Buonomano, Dean V

    2002-07-01

    In spike-timing dependent plasticity (STDP), synapses exhibit LTD or LTP depending on the order of activity in the presynaptic and postsynaptic cells. LTP occurs when a single presynaptic spike precedes a postsynaptic one (a positive interspike interval, or ISI), while the reverse order of activity (a negative ISI) produces LTD. A fundamental question is whether the "standard model" of plasticity in which moderate increases in Ca(2+) influx through the N-methyl-D-aspartate (NMDA) channels induce LTD and large increases induce LTP, can account for the order and interval sensitivity of STDP. To examine this issue we developed a model that captures postsynaptic Ca(2+) influx dynamics and the associativity of the NMDA receptors. While this model can generate both LTD and LTP, it predicts that LTD will be observed at both negative and positive ISIs. This is because longer and longer positive ISIs induce monotonically decreasing levels of Ca(2+), which eventually fall into the same range that produced LTD at negative ISIs. A second model that incorporated a second coincidence detector in addition to the NMDA receptor generated LTP at positive intervals and LTD only at negative ones. Our findings suggest that a single coincidence detector model based on the standard model of plasticity cannot account for order-specific STDP, and we predict that STDP requires two coincidence detectors. PMID:12091572

  4. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures.

    PubMed

    de Saint Laumer, Jean-Yves; Cicchetti, Esmeralda; Merle, Philippe; Egger, Jonathan; Chaintreau, Alain

    2010-08-01

    In a previous report, we validated the use of a database that compiled the relative response factors of flavor and fragrance compounds under standard GC conditions for a flame ionization detector. Here we investigate the prediction of unknown response factors from the molecular structure by using combustion enthalpies. In a first step, this enthalpy was well-predicted with either ab initio calculation or multiple linear regression based on the molecular formula. In a second step, good correlation was observed between these combustion enthalpies and experimental relative response factors, and so the response factors were predictable from only the molecular formula. With a database of 351 compounds, about 60% of them exhibited a difference of less than 5% between the predicted and experimental relative response factors and about 80% exhibited a difference of less than 10%. PMID:20698579

  5. Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures.

    PubMed

    de Saint Laumer, Jean-Yves; Cicchetti, Esmeralda; Merle, Philippe; Egger, Jonathan; Chaintreau, Alain

    2010-08-01

    In a previous report, we validated the use of a database that compiled the relative response factors of flavor and fragrance compounds under standard GC conditions for a flame ionization detector. Here we investigate the prediction of unknown response factors from the molecular structure by using combustion enthalpies. In a first step, this enthalpy was well-predicted with either ab initio calculation or multiple linear regression based on the molecular formula. In a second step, good correlation was observed between these combustion enthalpies and experimental relative response factors, and so the response factors were predictable from only the molecular formula. With a database of 351 compounds, about 60% of them exhibited a difference of less than 5% between the predicted and experimental relative response factors and about 80% exhibited a difference of less than 10%. PMID:20700911

  6. A 3-D Theoretical Model for Calculating Plasma Effects in Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Liu, Jing; Mei, Dongming; Cubed Collaboration

    2015-04-01

    In the detection of WIMP-induced nuclear recoil with Ge detectors, the main background source is the electron recoil produced by natural radioactivity. The capability of discriminating nuclear recoil (n) from electron recoil (γ) is crucial to WIMP searches. Digital pulse shape analysis is an encouraging approach to the discrimination of nuclear recoil from electron recoil since nucleus is much heavier than electron and heavier particle generates ionization more densely along its path, which forms a plasma-like cloud of charge that shields the interior from the influence of the electric field. The time needed for total disintegration of this plasma region is called plasma time. The plasma time depends on the initial density and radius of the plasma-like cloud, diffusion constant for charge carriers, and the strength of electric field. In this work, we developed a 3-D theoretical model for calculating the plasma time in Ge detectors. Using this model, we calculated the plasma time for both nuclear recoils and electron recoils to study the possibility for Ge detectors to realize n/ γ discrimination and improve detector sensitivity in detecting low-mass WIMPs. This work is supported by NSF in part by the NSF PHY-0758120, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  7. Model of carrier dynamics in chemical vapor deposition diamond detectors

    SciTech Connect

    Borchi, Emilio; Lagomarsino, Stefano; Mersi, Stefano; Sciortino, Silvio

    2005-03-01

    We propose a quantitative model of electronic transport on the basis of a conductivity characterization of diamond-based sensors exposed to {beta} radiation. Some of the investigated samples have been irradiated with neutron up to a fluence of 2x10{sup 15}/cm{sup 2}. Radiation-induced current measurements have been performed to study the trapping and recombination of deep defect levels in the diamond band gap. We present a quantitative analysis of the passivation of deep traps and the release of carriers during thermal fading between consecutive exposures. We determine the density of trap states per unit volume and per unit energy and their capture cross sections. We also evaluate the modification of these parameters after neutron irradiation. Our analysis gives the cross sections of the traps involved in our measurements with an accuracy of 20-50%, which is far better than that attainable with thermal spectroscopy. Our results on the capture cross section of the recombination centers agree with relevant works presented in literature on natural IIa diamond. We propose that some defects are of the same nature in chemical vapor deposition diamond, but their concentration is far lower in the state-of-the-art material. We also study a modification of the trap level distribution after neutron irradiation. Finally we propose a rationale for the improvement obtained in recent years in the performances of top quality polycrystalline diamond sensors.

  8. An Analysis of the Control Hierarchy Modelling of the CMS Detector Control System

    NASA Astrophysics Data System (ADS)

    Hwong, Yi Ling; Willemse, Tim; Kusters, Vincent; Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Bouffet, Olivier; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa, Jose Antonio; Deldicque, Christian; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Holzner, Andre; Hatton, Derek; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdeckerb, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty

    2011-12-01

    The supervisory level of the Detector Control System (DCS) of the CMS experiment is implemented using Finite State Machines (FSM), which model the behaviours and control the operations of all the sub-detectors and support services. The FSM tree of the whole CMS experiment consists of more than 30.000 nodes. An analysis of a system of such size is a complex task but is a crucial step towards the improvement of the overall performance of the FSM system. This paper presents the analysis of the CMS FSM system using the micro Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2 simulation tool is used to closer examine the system. Visualization of a system based on the exploration of its state space is enabled with a mCRL2 tool. Requirements such as command and state propagation are expressed using modal mu-calculus and checked using a model checking algorithm. For checking local requirements such as endless loop freedom, the Bounded Model Checking technique is applied. This paper discusses these analysis techniques and presents the results of their application on the CMS FSM system.

  9. The response of smoke detectors to pyrolysis and combustion products from aircraft interior materials

    NASA Technical Reports Server (NTRS)

    Mckee, R. G.; Alvares, N. J.

    1976-01-01

    The following projects were completed as part of the effort to develop and test economically feasible fire-resistant materials for interior furnishings of aircraft as well as detectors of incipient fires in passenger and cargo compartments: (1) determination of the sensitivity of various contemporary gas and smoke detectors to pyrolysis and combustion products from materials commonly used in aircraft interiors and from materials that may be used in the future, (2) assessment of the environmental limitations to detector sensitivity and reliability. The tests were conducted on three groups of materials by exposure to the following three sources of exposure: radiant and Meeker burner flame, heated coil, and radiant source only. The first test series used radiant heat and flame exposures on easily obtainable test materials. Next, four materials were selected from the first group and exposed to an incandescent coil to provide the conditions for smoldering combustion. Finally, radiant heat exposures were used on advanced materials that are not readily available.

  10. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Kamio, Yuji; Palmans, Hugo; Seuntjens, Jan

    2015-10-15

    Purpose: To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. Methods: In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano’s theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. Results: Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. Conclusions: Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.

  11. Modeling Thermal Noise from Crystaline Coatings for Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Demos, Nicholas; Lovelace, Geoffrey; LSC Collaboration

    2016-03-01

    The sensitivity of current and future ground-based gravitational-wave detectors are, in part, limited in sensitivity by Brownian and thermoelastic noise in each detector's mirror substrate and coating. Crystalline mirror coatings could potentially reduce thermal noise, but thermal noise is challenging to model analytically in the case of crystalline materials. Thermal noise can be modeled using the fluctuation-dissipation theorem, which relates thermal noise to an auxiliary elastic problem. In this poster, I will present results from a new code that numerically models thermal noise by numerically solving the auxiliary elastic problem for various types of crystalline mirror coatings. The code uses a finite element method with adaptive mesh refinement to model the auxiliary elastic problem which is then related to thermal noise. I will present preliminary results for a crystal coating on a fused silica substrate of varying sizes and elastic properties. This and future work will help develop the next generation of ground-based gravitational-wave detectors.

  12. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    SciTech Connect

    Beck, Patrick R.

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  13. Monte Carlo semi-empirical model for Si(Li) x-ray detector: Differences between nominal and fitted parameters

    SciTech Connect

    Lopez-Pino, N.; Padilla-Cabal, F.; Garcia-Alvarez, J. A.; Vazquez, L.; D'Alessandro, K.; Correa-Alfonso, C. M.; Godoy, W.; Maidana, N. L.; Vanin, V. R.

    2013-05-06

    A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV, which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when the manufacturer parameters of the detector were used in the simulation. A complete Computerized Tomography (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.

  14. Computer and laboratory modeling of radiation-acoustic detector for charged particles pulse beams and plasma parameters measuring

    SciTech Connect

    Kresnin, Yu.A.; Stervoedov, N.G.

    1996-12-31

    Model investigations and laboratory tests of detectors for charged particles pulse beams and plasma parameters measuring are presented. Detector represents combination of classic Faraday cup with electrical way of signal getting and radiation-acoustic meter of pulse beams parameters. Radiation-acoustic meter consists of two parts--thin detector, transparent for beams of high energy particles, and thick detector with full absorption. Ultrasonic oscillations, which arise during interaction of charged particles pulse beams or plasma with detector material, are transformed by piezoelectric detector into electric signals, whose amplitude-frequency and time characteristics functionally depended on beams parameters. All the signals come into microcontroller device Intel MSC51. This device produces calculations of following beam parameters: average energy, pulse charge, pulse currents, density, beam size and pulse time. Calculated characteristics of meter well coincide with experimental measurements, carried out at accelerators in particles energy range from 1 to 100 Mev.

  15. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays. PMID:26836674

  16. Graded Response Model Based on the Logistic Positive Exponent Family of Models for Dichotomous Responses

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    2008-01-01

    Samejima ("Psychometrika "65:319--335, 2000) proposed the logistic positive exponent family of models (LPEF) for dichotomous responses in the unidimensional latent space. The objective of the present paper is to propose and discuss a graded response model that is expanded from the LPEF, in the context of item response theory (IRT). This specific…

  17. Optimization of the Time Response of LaBr3(Ce) Detectors, and Its Dependence on Ce Concentration

    NASA Astrophysics Data System (ADS)

    Vedia, V.; Mach, H.; Fraile, L. M.; Lalkovski, S.; Udías, J. M.

    Fast inorganic scintillators that exhibit good spectroscopy performance, like LaBr3(Ce), are the crystals of choice for many applications; they play a crucial role in the Ultra Fast Timing technique by virtue of their good energy resolution and fast response [1]. This method, which is very sensitive to the LaBr3(Ce) time resolution, allows measurements of nuclear level lifetimes down to few ps range. There are indications that the nominal Ce concentration does strongly influence on the timing properties as well as it varies the photon yield and the energy resolution [2]. In this work we have searched for the best settings in order to optimize the time resolution of three cylindrical LaBr3(Ce) detectors equipped with crystals identical in volume and shape but with different Ce dopant concentration. The time resolution of every detector depends on the proper selection of the fast photomultiplier tube and the set up parameters that can be further optimized by fine-tuning of the Constant Fraction Discrimination (CFD) and the PMT bias voltage. Very good time resolution can be obtained with the ORTEC 935 CFD for very short time-delays. Timing properties of the three crystals were studied by delayed coincidence measurements against a reference BaF2 detector, whose time response is well known. The LaBr3(Ce) detector and the reference unit were placed in a close geometry with the radioactive source in between. We report timing results measured at the 60Co and 22Na energies.

  18. Modeling T cell responses to antigenic challenge

    PubMed Central

    Wodarz, Dominik

    2014-01-01

    T cell responses are a crucial part of the adaptive immune system in the fight against infections. This article discusses the use of mathematical models for understanding the dynamics of cytotoxic T lymphocyte (CTL) responses against viral infections. Complementing experimental research, mathematical models have been very useful for exploring new hypotheses, interpreting experimental data, and for defining what needs to be measured to improve understanding. This review will start with minimally parameterized models of CTL responses, which have generated some valuable insights into basic dynamics and correlates of control. Subsequently, more biological complexity is incorporated into this modeling framework, examining different mechanisms of CTL expansion, different effector activities, and the influence of T cell help. Models and results are discussed in the context of data from specific infections. PMID:25269610

  19. Characterizing the response of miniature scintillation detectors when irradiated with proton beams

    PubMed Central

    Archambault, Louis; Polf, Jerimy C.; Beaulieu, Luc; Beddar, Sam

    2014-01-01

    Designing a plastic scintillation detector for proton radiation therapy requires careful consideration. Most plastic scintillators should not perturb a proton beam if they are sufficiently small but may exhibit some energy dependence due to quenching effect. In this work, we studied the factors that would affect the performance of such scintillation detectors. We performed Monte Carlo simulations of proton beams with energies between 50 and 250 MeV to study signal amplitude, water equivalence, spatial resolution, and quenching of light output. Implementation of the quenching effect in the Monte Carlo simulations was then compared with prior experimental data for validation. The signal amplitude of a plastic scintillating fiber detector was on the order of 300 photons per MeV of energy deposited in the detector, corresponding to a power of about 30 pW at a proton dose rate of 100 cGy/min. The signal amplitude could be increased by up to a factor of 2 with reflective coating. We also found that Cerenkov light was not a significant source of noise. Dose deposited in the plastic scintillator was within 2% of the dose deposited in a similar volume of water throughout the whole depth-dose curve for protons with energies higher than 50 MeV. A scintillation detector with a radius of 0.5 mm offers a sufficient spatial resolution for use with a proton beam of 100 MeV or more. The main disadvantage of plastic scintillators when irradiated by protons was the quenching effect, which reduced the amount of scintillation and resulted in dose underestimation by close to 30% at the Bragg peak for beams of 150 MeV or more. However, the level of quenching was nearly constant throughout the proximal half of the depth-dose curve for all proton energies considered. We therefore conclude that it is possible to construct an effective detector to overcome the problems traditionally encountered in proton dosimetry. Scintillation detectors could be used for surface or shallow measurements

  20. Preliminary study of the Suomi NPP VIIRS detector-level spectral response function effects for the long-wave infrared bands M15 and M16

    NASA Astrophysics Data System (ADS)

    Padula, Francis; Cao, Changyong

    2014-09-01

    The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  1. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    NASA Astrophysics Data System (ADS)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  2. Taxonomy for Modeling Demand Response Resources

    SciTech Connect

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  3. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    NASA Astrophysics Data System (ADS)

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  4. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.

    PubMed

    Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun

    2010-07-01

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector. PMID:20687719

  5. A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV

    SciTech Connect

    Li Zhichao; Guo Liang; Jiang Xiaohua; Liu Shenye; Huang Tianxuan; Yang Jiamin; Li Sanwei; Zhao Xuefeng; Du Huabin; Song Tianming; Yi Rongqing; Liu Yonggang; Jiang Shaoen; Ding Yongkun; Zheng Jian

    2010-07-15

    A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

  6. Complete optical stack modeling for CMOS-based medical x-ray detectors

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander S.; Peters, Inge M.

    2015-03-01

    We have developed a simulation tool for modeling the performance of CMOS-based medical x-ray detectors, based on the Monte Carlo toolkit GEANT4. Following the Fujita-Lubberts-Swank approach recently reported by Star-Lack et al., we calculate modulation transfer function MTF(f), noise power spectrum NPS(f) and detective quantum efficiency DQE(f) curves. The complete optical stack is modeled, including scintillator, fiber optic plate (FOP), optical adhesive and CMOS image sensor. For critical parts of the stack, detailed models have been developed, taking into account their respective microstructure. This includes two different scintillator types: Gd2O2S:Tb (GOS) and CsI:Tl. The granular structure of the former is modeled using anisotropic Mie scattering. The columnar structure of the latter is introduced into calculations directly, using the parameterization capabilities of GEANT4. The underlying homogeneous CsI layer is also incorporated into the model as well as the optional reflective layer on top of the scintillator screen or the protective polymer top coat. The FOP is modeled as an array of hexagonal bundles of fibers. The simulated CMOS stack consists of layers of Si3N4 and SiO2 on top of a silicon pixel array. The model is validated against measurements of various test detector structures, using different x-ray spectra (RQA5 and RQA-M2), showing good match between calculated and measured MTF(f) and DQE(f) curves.

  7. Exposure–Response Modeling of Clinical End Points Using Latent Variable Indirect Response Models

    PubMed Central

    Hu, C

    2014-01-01

    Exposure–response modeling facilitates effective dosing regimen selection in clinical drug development, where the end points are often disease scores and not physiological variables. Appropriate models need to be consistent with pharmacology and identifiable from the time courses of available data. This article describes a general framework of applying mechanism-based models to various types of clinical end points. Placebo and drug model parameterization, interpretation, and assessment are discussed with a focus on the indirect response models. PMID:24897307

  8. Characterization of the high frequency response of LASER interferometer gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Butler, William E.

    This thesis describes a search for a stochastic background of gravitational waves at high frequency, 37.52 kHz. At this frequency the separation between the available instruments excludes the use of a correlation technique. Instead I rely on the spectral response of the LASER interferometer to isolate a possible signal from the underlying noise. This research was carried out at the LIGO (LASER Interferometer Gravitational Observatory) located in Hanford, WA and within the LIGO Scientific Collaboration (LSC). Chapter 1 serves as a general introduction to the present state of the search for gravitational waves (GW). I discuss the indirect observation of gravitational radiation as well as the expected sources for GW and their characteristics. I also discuss possible future developments, in particular the Advanced LIGO instruments and the LASER Interferometer Space Antenna (LISA). The characteristics of the large LASER interferometers, layout, terminology and necessary formulae are developed in Chapter 2. To carry out the proposed search it is essential that the frequency response of the interferometer be thoroughly understood, including possible noise sources. This was the subject of a series of experimental investigations using sideband injection and mirror excitations to characterize the IFO response in the region of the first free spectral range, which is at 37.52 kHz. The results of these experiments as well as their theoretical model are presented in Chapter 3. Contributions to the spectrum from mechanical noise are investigated in Chapter 4, and compared to the expected contribution thermal excitation. The results of my search are based on data obtained during the third science run of LIGO (S3) and are presented in Chapter 5. I show that a signal such as expected from a stochastic gravitational wave background is manifest in the data and compare it to the expected noise signal. This allows me to postulate a limit on a possible stochastic background. I also

  9. Dose response of commercially available optically stimulated luminescent detector, Al2O3:C for megavoltage photons and electrons.

    PubMed

    Kim, Dong Wook; Chung, Weon Kuu; Shin, Dong Oh; Yoon, Myonggeun; Hwang, Ui-Jung; Rah, Jeong-Eun; Jeong, Hojin; Lee, Sang Yeob; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong

    2012-04-01

    This study examined the dose response of an optically stimulated luminescence dosemeter (OSLD) to megavoltage photon and electron beams. A nanoDot™ dosemeter was used to measure the dose response of the OSLD. Photons of 6-15 MV and electrons of 9-20 MeV were delivered by a Varian 21iX machine (Varian Medical System, Inc. Milpitas, CA, USA). The energy dependency was <1 %. For the 6-MV photons, the dose was linear until 200 cGy. The superficial dose measurements revealed photon irradiation to have an angular dependency. The nanoDot™ dosemeter has potential use as an in vivo dosimetric tool that is independent of the energy, has dose linearity and a rapid response compared with normal in vivo dosimetric tools, such as thermoluminescence detectors. However, the OSLD must be treated very carefully due to the high angular dependency of the photon beam. PMID:21636557

  10. High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    SciTech Connect

    Li, Guanhai; Chen, Xiaoshuang; Wang, Shao-Wei Lu, Wei

    2014-06-09

    With asymmetric split ring metamaterial periodically placed on top of the niobium nitride (NbN) nanowire meander, we theoretically propose a kind of metal-insulator-metallic metamaterial nanocavity to enhance absorbing efficiency and shorten response time of the superconducting NbN nanowire single photon detector (SNSPD) operating at wavelength of 1550 nm. Up to 99.6% of the energy is absorbed and 96.5% dissipated in the nanowire. Meanwhile, taking advantage of this high efficiency absorbing cavity, we implement a more sparse arrangement of the NbN nanowire of the filling factor 0.2, which significantly lessens the nanowire and crucially boosts the response time to be only 40% of reset time in previous evenly spaced meander design. Together with trapped mode resonance, a standing wave oscillation mechanism is presented to explain the high efficiency and broad bandwidth properties. To further demonstrate the advantages of the nanocavity, a four-pixel SNSPD on 10 μm × 10 μm area is designed to further reduce 75% reset time while maintaining 70% absorbing efficiency. Utilizing the asymmetric split ring metamaterial, we show a higher efficiency and more rapid response SNSPD configuration to contribute to the development of single photon detectors.

  11. A model-based, multichannel, real-time capable sawtooth crash detector

    NASA Astrophysics Data System (ADS)

    van den Brand, H.; de Baar, M. R.; van Berkel, M.; Blanken, T. C.; Felici, F.; Westerhof, E.; Willensdorfer, M.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2016-07-01

    Control of the time between sawtooth crashes, necessary for ITER and DEMO, requires real-time detection of the moment of the sawtooth crash. In this paper, estimation of sawtooth crash times is demonstrated using the model-based interacting multiple model (IMM) estimator, based on simplified models for the sawtooth crash. In contrast to previous detectors, this detector uses the spatial extent of the sawtooth crash as detection characteristic. The IMM estimator is tuned and applied to multiple ECE channels at once. A model for the sawtooth crash is introduced, which is used in the IMM algorithm. The IMM algorithm is applied to seven datasets from the ASDEX Upgrade tokamak. Five crash models with different mixing radii are used. All sawtooth crashes that have been identified beforehand by visual inspection of the data, are detected by the algorithm. A few additional detections are made, which upon closer inspection are seen to be sawtooth crashes, which show a partial reconnection. A closer inspection of the detected normal crashes shows that about 42% are not well fitted by any of the full reconnection models and show some characteristics of a partial reconnection. In some case, the measurement time is during the sawtooth crashes, which also results in an incorrect estimate of the mixing radius. For data provided at a sampling rate of 1 kHz, the run time of the IMM estimator is below 1 ms, thereby fulfilling real-time requirements.

  12. Investigation of X-ray spectral response of D-T fusion produced neutron irradiated PIPS detectors for plasma X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.; Rao, C. V. S.; Abhangi, Mitul

    2015-10-01

    This paper describes the fusion-produced neutron irradiation induced changes in the X-ray spectral response of commercially available Passivated Implanted Planar Silicon (PIPS) detectors using the accelerator based D-T generator. After 14.1 MeV neutron irradiation up to a fluence of 3.6× 1010 n/cm2, the energy resolution (i.e. FWHM) of the detectors at room temperature is found to degrade by about 3.8 times that of the pre-irradiated value. From the X-ray spectral characteristics, it has been observed that the room temperature spectral response of PIPS detectors is too poor even at low neutron fluences. Irradiation is also carried out with Am-Be neutron source for studying the effect of scattered neutrons from the reactor walls on the detector performance. Comparative studies of the damage caused by 14.1 MeV neutrons and Am-Be source produced neutrons at the same neutron fluence are carried out by analyzing the irradiated detector characteristics. The degradation in the energy resolution of the detectors is attributed to the radiation induced changes in the detector leakage current. No considerable changes in the full depletion voltage and the effective doping concentration up to the neutron fluence of 3.6× 1010 n/cm2, are observed from the measured C-V characteristics. Partial recovery of the neutron irradiated detector characteristics is discussed.

  13. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  14. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    SciTech Connect

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  15. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy.

    PubMed

    Bulgarevich, Dmitry S; Watanabe, Makoto; Shiwa, Mitsuharu; Niehues, Gudrun; Nishizawa, Seizi; Tani, Masahiko

    2014-05-01

    A light polarization angle-sensitive photoconductive detector for terahertz time-domain spectroscopy is computer-modeled, microfabricated, and tested. The experimental results show good agreement with the linear angular response for an ideal detector. The detector's frequency, angular, and crosstalk responses are discussed in the context of theoretical and experimental considerations. PMID:24921735

  16. Modelling and testing the x-ray performance of CCD and CMOS APS detectors using numerical finite element simulations

    NASA Astrophysics Data System (ADS)

    Weatherill, Daniel P.; Stefanov, Konstantin D.; Greig, Thomas A.; Holland, Andrew D.

    2014-07-01

    Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source.

  17. Multiscale modeling of mucosal immune responses

    PubMed Central

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  18. Combustion response modeling for composite solid propellants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computerized mathematical model of the combustion response function of composite solid propellants was developed with particular attention to the contributions of the solid phase heterogeneity. The one-dimensional model treats the solid phase as alternating layers of ammonium perchlorate and binder, with an exothermic melt layer at the surface. Solution of the Fourier heat equation in the solid provides temperature and heat flux distributions with space and time. The problem is solved by conserving the heat flux at the surface from that produced by a suitable model of the gas phase. An approximation of the BDP flame model is utilized to represent the gas phase. By the use of several reasonable assumptions, it is found that a significant portion of the problem can be solved in closed form. A method is presented by which the model can be applied to tetramodal particle size distributions. A computerized steady-state version of the model was completed, which served to validate the various approximations and lay a foundation for the combustion response modeling. The combustion response modeling was completed in a form which does not require an iterative solution, and some preliminary results were acquired.

  19. Chemical feed control using coagulation computer models and a streaming current detector.

    PubMed

    Yavich, Alex A; Van De Wege, Jim

    2013-01-01

    This paper describes the use of both the streaming current detector (SCD) and coagulation computer models to provide real-time data for required coagulant feed rates. The method for computer modeling of coagulation and other water treatment processes/operations was originally developed for Lake Michigan Filtration Plant in Grand Rapids, Michigan (MI). Since the initial implementation, a number of water treatment plants (WTPs) in the United States have begun routinely utilizing computer models for chemical feed control and process performance optimization. One plant, Holland WTP in Holland, MI, currently employs both an SCD and a coagulation computer model for chemical feed control. Case studies presented in this paper compare the performance of coagulation computer models and the SCD in full-scale operation. PMID:23787322

  20. Kinetics of olfactory responses might largely depend on the odorant-receptor interaction and the odorant deactivation postulated for flux detectors.

    PubMed

    Kaissling, Karl-Ernst

    2013-11-01

    Experimental data together with modeling of pheromone perireceptor and receptor events in moths (Bombyx mori, Antheraea polyphemus) suggest that the kinetics of olfactory receptor potentials largely depend on the association of the odorant with the neuronal receptor molecules and the deactivation of the odorant accumulated around the receptor neuron. The first process could be responsible for the reaction times (mean about 400 ms) of the nerve impulses at threshold. The second process has been postulated for flux detectors such as olfactory sensilla of moths. The odorant deactivation could involve a modification of the pheromone-binding protein (PBP) that "locks" the pheromone inside the inner binding cavity of the protein. The model combines seemingly contradictory functions of the PBP such as pheromone transport, protection of the pheromone from enzymatic degradation, pheromone deactivation, and pheromone-receptor interaction. Model calculations reveal a density of at least 6,000 receptor molecules per µm(2) of neuronal membrane. The volatile decanoyl-thio-1,1,1-trifluoropropanone specifically blocks pheromone receptor neurons, probably when bound to the PBP and by competitive binding to the receptor molecules. The shallow dose-response curve of the receptor potential and altered response properties observed with pheromone derivatives or after adaptation may indicate shortened opening of ion channels. PMID:23563709

  1. Stiffening response of a cellular tensegrity model.

    PubMed

    Wendling, S; Oddou, C; Isabey, D

    1999-02-01

    Living cells exhibit, as most biological tissues, a stiffening (strain-hardening) response which reflects the nonlinearity of the stress-strain relationship. Tensegrity structures have been proposed as a comprehensive model of such a cell's mechanical response. Based on a theoretical model of a 30-element tensegrity structure, we propose a quantitative analysis of its nonlinear mechanical behavior under static conditions and large deformations. This study provides theoretical foundation to the passage from large-scale tensegrity models to microscale living cells, as well as the comparison between results obtained in biological specimens of different sizes. We found two non-dimensional parameters (L*-normalized element length and T*-normalized elastic tension) which govern the mechanical response of the structure for three types of loading tested (extension, compression and shear). The linear strain-hardening is uniquely observed for extension but differed for the two other types of loading tested. The stiffening response of the theoretical model was compared and discussed with the living cells stiffening response observed by different methods (shear flow experiments, micromanipulation and magnetocytometry). PMID:10049624

  2. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    NASA Astrophysics Data System (ADS)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  3. An Introduction to Polytomous Item Response Theory Models.

    ERIC Educational Resources Information Center

    De Ayala, R. J.

    1993-01-01

    Notes that polytomous item response theory (IRT) models are appropriate for Likert scale and other polytomous item types. Presents polytomous IRT models, including graded response, nominal response, partial credit, and rating scale models. (Author/NB)

  4. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-06-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  5. Quantum parameter estimation in the Unruh-DeWitt detector model

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Wu, Yinzhong

    2016-09-01

    Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh-DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivity is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.

  6. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  7. Flash-Bang Detector to Model the Attenuation of High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.

    2015-12-01

    It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.

  8. Detector dose response in megavoltage small photon beams. I. Theoretical concepts

    SciTech Connect

    Bouchard, Hugo Duane, Simon; Seuntjens, Jan; Kamio, Yuji; Palmans, Hugo

    2015-10-15

    Purpose: To explain the reasons for significant quality correction factors in megavoltage small photon fields and clarify the underlying concepts relevant to dosimetry under such conditions. Methods: The validity of cavity theory and the requirement of charged particle equilibrium (CPE) are addressed from a theoretical point of view in the context of nonstandard beams. Perturbation effects are described into four main subeffects, explaining their nature and pointing out their relative importance in small photon fields. Results: It is demonstrated that the failure to meet classical cavity theory requirements, such as CPE, is not the reason for significant quality correction factors. On the contrary, it is shown that the lack of CPE alone cannot explain these corrections and that what matters most, apart from volume averaging effects, is the relationship between the lack of CPE in the small field itself and the density of the detector cavity. The density perturbation effect is explained based on Fano’s theorem, describing the compensating effect of two main contributions to cavity absorbed dose. Using the same approach, perturbation effects arising from the difference in atomic properties of the cavity medium and the presence of extracameral components are explained. Volume averaging effects are also discussed in detail. Conclusions: Quality correction factors of small megavoltage photon fields are mainly due to differences in electron density between water and the detector medium and to volume averaging over the detector cavity. Other effects, such as the presence of extracameral components and differences in atomic properties of the detection medium with respect to water, can also play an accentuated role in small photon fields compared to standard beams.

  9. 3He and BF 3 neutron detector pressure effect and model comparison

    NASA Astrophysics Data System (ADS)

    Lintereur, Azaree; Conlin, Kenneth; Ely, James; Erikson, Luke; Kouzes, Richard; Siciliano, Edward; Stromswold, David; Woodring, Mitchell

    2011-10-01

    Radiation detection systems for homeland security applications must possess the capability of detecting both gamma rays and neutrons. The radiation portal monitor systems that are currently deployed use a plastic scintillator for detecting gamma rays and 3He gas-filled proportional counters for detecting neutrons. Proportional counters filled with 3He are the preferred neutron detectors for use in radiation portal monitor systems because 3He has a large neutron cross-section, is relatively insensitive to gamma-rays, is neither toxic nor corrosive, can withstand extreme environments, and can be operated at a lower voltage than some of the alternative proportional counters. The amount of 3He required for homeland security and science applications has depleted the world supply and there is no longer enough available to fill the demand. Thus, alternative neutron detectors are being explored. Two possible temporary solutions that could be utilized while a more permanent solution is being identified are reducing the 3He pressure in the proportional counters and using boron trifluoride gas-filled proportional counters. Reducing the amount of 3He required in each of the proportional counters would decrease the rate at which 3He is being used; not enough to solve the shortage, but perhaps enough to increase the amount of time available to find a working replacement. Boron trifluoride is not appropriate for all situations as these detectors are less sensitive than 3He, boron trifluoride gas is corrosive, and a much higher voltage is required than what is used with 3He detectors. Measurements of the neutron detection efficiency of 3He and boron trifluoride as a function of tube pressure were made. The experimental results were also used to validate models of the radiation portal monitor systems.

  10. The social structure of experimental'' strings at Fermilab; a physics and detector driven model

    SciTech Connect

    Bodnarczuk, M.

    1990-12-12

    Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP.

  11. Universal squash model for optical communications using linear optics and threshold detectors

    NASA Astrophysics Data System (ADS)

    Fung, Chi-Hang Fred; Chau, H. F.; Lo, Hoi-Kwong

    2011-08-01

    Transmission of photons through open-air or optical fibers is an important primitive in quantum-information processing. Theoretical descriptions of this process often consider single photons as information carriers and thus fail to accurately describe experimental implementations where any number of photons may enter a detector. It has been a great challenge to bridge this big gap between theory and experiments. One powerful method for achieving this goal is by conceptually squashing the received multiphoton states to single-photon states. However, until now, only a few protocols admit a squash model; furthermore, a recently proven no-go theorem appears to rule out the existence of a universal squash model. Here we show that a necessary condition presumed by all existing squash models is in fact too stringent. By relaxing this condition, we find that, rather surprisingly, a universal squash model actually exists for many protocols, including quantum key distribution, quantum state tomography, Bell's inequality testing, and entanglement verification.

  12. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  13. Application of unfolding technique to HPGe detector using response functions calculated with the EGS4 Monte Carlo code.

    PubMed

    Chun, Kook Jin; Hah, Suck Ho; Kim, Hyun Moon; Yoo, Gwang Ho

    2006-03-01

    The EGS4 Monte Carlo simulation technique was used to obtain the energy spectra of photons arriving at a detector from the pulse height distributions measured by the same detector. First, the measured pulse height distribution for incident photons from several radiation sources such as 60Co, 137Cs, 152Eu and 207Bi with a collimator are compared with those calculated using the EGS4 code to investigate the feasibility of the simulation. The comparison showed good agreement of 98.7% for 60Co, 92.5% for 207Bi on the total counts. Second, the pulse height distributions were measured in the open space and then unfolded. The measurement of the distributions was done with changing the source to detector distance (SDD) from 10 cm to 100 cm for 60Co and 137Cs respectively. In the unfolding process, response functions of a high purity Ge (HPGe) detector were calculated using the EGS4 code. The calculated pulse height distributions were then normalized to the measured ones at the peaks of the incident photon energies. The ratio of the sum of counts of the main peaks to the total count in the unfolded spectra for 60Co varied from 5.4 to 5.7 times greater than those in the measured pulse height distributions, while from 2.5 to 2.9 times for 137Cs. Electron contribution to the unfolded spectra for 137Cs decreased as the source to detector distance increased, becoming negligible above 50 cm. The pulse height distributions at the center of the reference plane at 100 cm from the 60Co and 137Cs dummy sources located inside each irradiator were also measured and unfolded to obtain the real pulse height distribution. In the unfolded spectra, the photons scattered from the surrounding materials were reduced to approximately one fourth of those measured in the open space due to the small size of apertures of the irradiators. The ratio of the sum of counts for the main peaks to the total count was larger than those in the measured pulse height distributions by the factor of 5.0 for 60Co

  14. Monte Carlo Simulation of a Silicon Strip Detector Response For Angiography Applications. First approach

    NASA Astrophysics Data System (ADS)

    Ceballos, C.; Baldazzi, G.; Bollini, D.; Cabal Rodríguez, A. E.; Dabrowski, W.; Días García, A.; Gambaccini, M.; Giubellino, P.; Gombia, M.; Grybos, P.; Idzik, M.; Marzari-Chiesa, A.; Montaño, L. M.; Prino, F.; Ramello, L.; Sitta, M.; Swientek, K.; Taibi, A.; Tomassi, E.; Tuffanelli, A.; Wiacek, P.

    2003-09-01

    We present First results of Monte Carlo simulation by the general purpose MCNP-4C transport code of an experimental facility at Bologna S. Orsola hospital for studying the possible application of a X-Ray detection system based on a silicon strip detector on a dual energy angiography. The quasi-monochromatic X-ray beam with the detector in the edge-on configuration has been used to acquire images of a test object at two different energies (namely 31 and 35 keV) suitable for the K-edge subtraction angiography application. As a test object a Plexiglas step wedge phantom with four cylindrical cavities, having 1 mm diameter was used. The cavities have been drilled and filled, with iodated contrast medium, whose concentration varied from 370 mg/ml to 92 mg/ml. Both the profiles obtained from measurements and the generated images where reproduced by computer simulation on a first approach to use this technique as an evaluation tool for future developments on the experimental setup.

  15. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  16. Lawyer Proliferation and the Social Responsibility Model.

    ERIC Educational Resources Information Center

    Wines, William A.

    1989-01-01

    Drawing on the model of social responsibility that colleges of business have been teaching, the boom in lawyer education is examined. It is argued that law schools are irresponsible in overselling the benefits of law school graduation, creating a surplus of lawyers whose abilities could be used as well elsewhere. (MSE)

  17. A Ballistic Model of Choice Response Time

    ERIC Educational Resources Information Center

    Brown, Scott; Heathcote, Andrew

    2005-01-01

    Almost all models of response time (RT) use a stochastic accumulation process. To account for the benchmark RT phenomena, researchers have found it necessary to include between-trial variability in the starting point and/or the rate of accumulation, both in linear (R. Ratcliff & J. N. Rouder, 1998) and nonlinear (M. Usher & J. L. McClelland, 2001)…

  18. Adaptation of an evaporative light-scattering detector to micro and capillary liquid chromatography and response assessment.

    PubMed

    Gaudin, Karen; Baillet, Arlette; Chaminade, Pierre

    2004-10-01

    A commercially available evaporative light-scattering detection (ELSD) system was adapted for micro and capillary LC. Therefore the various parameters involved in the droplet formation during the nebulization step in the ELSD system were studied. It was shown that the velocity term in the Nukiyama Tanasawa equation remains constant, leading to droplets of the same order of magnitude for narrow bore and capillary columns. Consequently, the ELSD modification was performed by decreasing the internal diameter of the effluent capillary tube in the nebulizer nozzle and by keeping its external diameter constant. Next, response curves for a conventional and the developed micro and capillary LC were compared as to investigate why a linear ELSD response is often obtained when used in micro or capillary LC. By splitting the flow rate post column, we showed that the nebulization process was not at the origin of the phenomenon. For ceramide III and tripalmitin, the response curves were found to be non-linear. However the curvature was less significant when the columns internal diameter decreased. Calculated particle size profiles for micro or capillary LC suggest that the particle entering the detection chamber are bigger than under conventional LC conditions. Last, triethylamine and formic acid were used to increase the response of the detector. The response enhancement, expected from previous studies, was established for the two lipids involved in this study. PMID:15532554

  19. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Meyners, J.; Delfs, B.; Muru, A.; Harder, D.; Poppe, B.; Looe, HK

    2015-12-01

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  20. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles.

    PubMed

    Poppinga, D; Meyners, J; Delfs, B; Muru, A; Harder, D; Poppe, B; Looe, H K

    2015-12-21

    This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x)  =  K(x)  ∗  D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with

  1. Testing Linear Models for Ability Parameters in Item Response Models

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Hendrawan, Irene

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum likelihood framework. They are explicitly formulated…

  2. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  3. A SPICE model for Si microstrip detectors and read-out electronics

    SciTech Connect

    Bacchetta, N.; Candelori, A.; Bisello, D. |; Calgarotto, C.; Paccagnella, A. |

    1996-06-01

    The authors have developed a SPICE model of silicon microstrip detector and its read-out electronics. The SPICE model of an AC-coupled single-sided polysilicon-biased silicon microstrip detector has been implemented by using a RC network containing up to 19 strips. The main parameters of this model have been determined by direct comparison with DC and AC measurements. The simulated interstrip and coupling impedance and phase angle are in good agreement with experimental results, up to a frequency of 1 MHz. The authors have used the PreShape 32 as the read-out chip for both the simulation and the measurements. It consists of a charge sensitive preamplifier followed by a shaper and a buffer. The SPICE parameters have been adjusted to fit the experimental results obtained for the configuration where every strip is connected to the read-out electronics and kept the same for the different read-out configurations they have considered. By adding 2 further capacitances simulating the parasitic contributions between the read-out channels of the PS32 chip, a satisfactory matching between the experimental data and the simulated curves has been reached on both rising and trailing edges of the signal. Such agreement deteriorates only for strips far from the strip where the signal has been applied.

  4. Mathematical modelling and study of the encoding readout scheme for position sensitive detectors

    NASA Astrophysics Data System (ADS)

    Yue, Xiaoguang; Zeng, Ming; Zeng, Zhi; Wang, Yi; Wang, Xuewu; Zhao, Ziran; Cheng, Jianping; Kang, Kejun

    2016-04-01

    Encoding readout methods based on different schemes have been successfully developed and tested with different types of position-sensitive detectors with strip-readout structures. However, how to construct an encoding scheme in a more general and systematic way is still under study. In this paper, we present a graph model for the encoding scheme. With this model, encoding schemes can be studied in a more systematic way. It is shown that by using an encoding readout method, a maximum of n (n - 1)/2 + 1 strips can be processed with n channels if n is odd, while a maximum of n (n - 2)/2 + 2 strips can be processed with n channels if n is even. Furthermore, based on the model, the encoding scheme construction problem can be translated into a problem in graph theory, the aim of which is to construct an Eulerian trail such that the length of the shortest subcycle is as long as possible. A more general approach to constructing the encoding scheme is found by solving the associated mathematical problem. In addition, an encoding scheme prototype has been constructed, and verified with MRPC detectors.

  5. Spectral responses of virtual Frisch-grid CdZnTe detectors and their relation to IR microscopy and x-ray diffraction topography data

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Babalola, S.; Camarda, G. S.; Cui, Y.; Egarievwe, S. U.; Fochuk, P. M.; Hawrami, R.; Hossain, A.; James, J. R.; Nakonechnyj, I. J.; Yang, Ge; James, R. B.

    2008-08-01

    Virtual Frisch-grid CdZnTe detectors potentially can provide energy resolution close to the statistical limit. However, in real detectors, the quality of the crystals used to fabricate the devices primarily determines energy resolution. In this paper, we report our findings on the spectral response of devices and their relation to material-characterization data obtained using IR microscopy and X-ray diffraction topography.

  6. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions.

    PubMed

    Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A

    2014-11-01

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement. PMID:25430363

  8. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions

    SciTech Connect

    Styron, J. D. Cooper, G. W.; Carpenter, Ken; Bonura, M. A.; Ruiz, C. L.; Hahn, K. D.; Chandler, G. A.; Nelson, A. J.; Torres, J. A.; McWatters, B. R.

    2014-11-15

    A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.

  9. Modeling the mechanical response of PBX 9501

    SciTech Connect

    Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng; Thompson, Darla G

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

  10. The High Altitude Water Cherenlov (HAWC) Gamma ray Detector Response to Atmospheric Electric Field Variations

    NASA Astrophysics Data System (ADS)

    Lara, A.

    2015-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is located at 4100 m a.s.l. in Mexico. HAWC's primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC consists of 300 large water Cherenkov detectors (WCD), each instrumented with 4 photo-multipliers (PMTs). The HAWC scaler system records the rates of individual PMTs giving the opportunity of study relatively low energy transients as solar energetic particles, the solar modulation of galactic cosmic rays and possible variations of the cosmic ray rate due to atmospheric electric field changes. In this work, we present the observations of scaler rate enhancements associated with thunderstorm activity observed at the HAWC site.In particular, we present preliminary results of the analysis of the time coincidence of the electric field changes and the scaler enhancements.

  11. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    SciTech Connect

    Taylor-mccabe, Kirsten J; Wingo, Robert M; Haarmann, Timothy K

    2008-01-01

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response to TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.

  12. Modelling the superparamagnetic response of AEM data

    NASA Astrophysics Data System (ADS)

    Sattel, Daniel; Mutton, Oaul

    2015-09-01

    Several lines of VTEM data flown at different system elevations across a known sulphide body and surface cover with elevated superparamagnetic (SPM) properties were analysed with MAXWELL, layered-earth inversions (LEI), LEROIAIR and LEROI. The SPM material was modelled with frequency-dependent magnetic susceptibilities at shallow depth. Due to their slow late-time decay, SPM responses can be confused with responses of deep conductors and vice versa. Depending on the parameter weighting used, 1D inversions model all late-time responses as deep conductive material or as surficial SPM material. However, the joint 1D inversion of data acquired at different system elevations manages to recover a deep conductor from the sulphide anomaly and elevated SPM values at the location of the SPM response. For the modelled parameters, the VTEM datasets from two elevations (at 70 and 80 m) require a vertical separation of ~10 m to allow for the discrimination between the SPM and sulphide responses. For lower system elevations, less sensor separation is necessary due to the strong gradient of the SPM response. Following the determination of SPM parameters from VTEM survey data, these values were used to hypothesise the SPM response for a range of system geometries, showing that larger transmitter loops and larger offsets between transmitter and receiver loops reduce SPM effects. We suggest that two vertically separated receivers could be used to measure the airborne electromagnetic (AEM) gradient and depending on the flying height of the transmitter, the vertical offset of the receivers should be between 2 and 40 m. If gradient data are not collected, then EM responses measured during the transmitter on-time and x-component data, if available, might offer some model discrimination. Whereas synthetic data of the examined helicopter TEM systems VTEM, AEROTEM and HELITEM indicate a fairly high sensitivity to SPM effects, fixed-wing MEGATEM data are much less affected, due to the higher

  13. NGC1300 dynamics - II. The response models

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, C.; Patsis, P. A.; Grosbøl, P.

    2010-10-01

    We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp pattern speed values. Our goal is to discover the geometries and the Ωp supporting specific morphological features of NGC1300. For this purpose we use the method of response models. In order to compare the images of NGC1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild-type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp ~ 16 and 22 kms-1kpc-1 are able to reproduce efficiently certain morphological features of NGC1300, with each one having its advantages and drawbacks. Based on observations collected at the European Southern Observatory, Chile: programme ESO 69.A-0021. E-mail: ckalapot@phys.uoa.gr (CK); patsis@academyofathens.gr (PAP); pgrosbol@eso.org (PG)

  14. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  15. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  16. A Flexible Latent Trait Model for Response Times in Tests

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jorg-Tobias

    2012-01-01

    Latent trait models for response times in tests have become popular recently. One challenge for response time modeling is the fact that the distribution of response times can differ considerably even in similar tests. In order to reduce the need for tailor-made models, a model is proposed that unifies two popular approaches to response time…

  17. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  18. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  19. Monte Carlo simulation of semiconductor detector response to (222)Rn and (220)Rn environments.

    PubMed

    Irlinger, J; Trinkl, S; Wielunksi, M; Tschiersch, J; Rühm, W

    2016-07-01

    A new electronic radon/thoron monitor employing semiconductor detectors based on a passive diffusion chamber design has been recently developed at the Helmholtz Zentrum München (HMGU). This device allows for acquisition of alpha particle energy spectra, in order to distinguish alpha particles originating from radon and radon progeny decays, as well as those originating from thoron and its progeny decays. A Monte-Carlo application is described which uses the Geant4 toolkit to simulate these alpha particle spectra. Reasonable agreement between measured and simulated spectra were obtained for both (220)Rn and (222)Rn, in the energy range between 1 and 10 MeV. Measured calibration factors could be reproduced by the simulation, given the uncertainties involved in the measurement and simulation. The simulated alpha particle spectra can now be used to interpret spectra measured in mixed radon/thoron atmospheres. The results agreed well with measurements performed in both radon and thoron gas environments. It is concluded that the developed simulation allows for an accurate prediction of calibration factors and alpha particle energy spectra. PMID:27074199

  20. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  1. A multi-detector neutron spectrometer with nearly isotropic response for environmental and workplace monitoring

    NASA Astrophysics Data System (ADS)

    Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Delgado, A.; Romero, A.; Esposito, A.

    2010-01-01

    This communication describes an improved design for a neutron spectrometer consisting of 6Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10 -9 to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.

  2. Search for Kaluza-Klein gravitons in extra dimension models via forward detectors at the LHC

    NASA Astrophysics Data System (ADS)

    Cho, Gi-Chol; Kono, Takanori; Mawatari, Kentarou; Yamashita, Kimiko

    2015-06-01

    We investigate contributions of Kaluza-Klein (KK) graviton in extra dimension models to the process p p →p γ p →p γ j X , where a proton emits a quasireal photon and is detected by using the very forward detectors planned at the LHC. In addition to the γ q initial state as in the Compton scattering in the standard model, the γ g scattering contributes through the t -channel exchange of KK gravitons. Taking account of pileup contributions to the background and examining viable kinematical cuts, constraints on the parameter space of both the ADD (Arkani-Hamed, Dimopoulos and Dvali) model and the RS (Randall and Sundrum) model are studied. With 200 fb-1 data at a center-of-mass energy of 14 TeV, the expected lower bound on the cutoff scale for the ADD model is 6.3 TeV at 95% confidence level, while a lower limit of 2.0 (0.5) TeV is set on the mass of the first excited graviton with the coupling parameter k /M¯ Pl=0.1 (0.01 ) for the RS model.

  3. Modeling listeners' emotional response to music.

    PubMed

    Eerola, Tuomas

    2012-10-01

    An overview of the computational prediction of emotional responses to music is presented. Communication of emotions by music has received a great deal of attention during the last years and a large number of empirical studies have described the role of individual features (tempo, mode, articulation, timbre) in predicting the emotions suggested or invoked by the music. However, unlike the present work, relatively few studies have attempted to model continua of expressed emotions using a variety of musical features from audio-based representations in a correlation design. The construction of the computational model is divided into four separate phases, with a different focus for evaluation. These phases include the theoretical selection of relevant features, empirical assessment of feature validity, actual feature selection, and overall evaluation of the model. Existing research on music and emotions and extraction of musical features is reviewed in terms of these criteria. Examples drawn from recent studies of emotions within the context of film soundtracks are used to demonstrate each phase in the construction of the model. These models are able to explain the dominant part of the listeners' self-reports of the emotions expressed by music and the models show potential to generalize over different genres within Western music. Possible applications of the computational models of emotions are discussed. PMID:22389191

  4. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  5. Novel detectors for traceable THz power measurements

    NASA Astrophysics Data System (ADS)

    Müller, Ralf; Bohmeyer, Werner; Kehrt, Mathias; Lange, Karsten; Monte, Christian; Steiger, Andreas

    2014-08-01

    Several novel types of detectors for the measurement of electromagnetic radiation in the THz spectral range are described. Firstly, detectors based on pyroelectric foil coated with different absorbers have been developed focusing on the following features: high accuracy due to well-characterized absorption, high sensitivity, large area absorbers and frequency and polarization independence. A three-dimensional design with five absorptions gave an overall absorption of more than 98 %. Secondly, detectors based on pyroelectric foils with thin metal layers were realized. An absorption of 50 % can be obtained if the thickness of the layers is carefully adjusted. According to electromagnetic theory this degree of absorption is independent of the polarization and frequency of the radiation in a wide range from at least 20 GHz to 5 THz. The third type of detector is based on a new type of volume absorber with a polished front surface and a gold-coated back side. It is the absorber of choice of the standard power detector for disseminating the spectral power responsivity scale. This standard detector allows the application of a physical model to calculate its spectral responsivity in the range from 1 THz to 5 THz if the detector has been calibrated at one single frequency. Finally, a THz detector calibration facility was set up and is now in operation at PTB to calibrate detectors from customers with an uncertainty as low as 1.7 %.

  6. RESPONSE LINEARIZATION OF A DIODE DETECTOR TYPE RADIO FREQUENCY ELECTRIC FIELD PROBE

    EPA Science Inventory

    An EPROM-based linearization circuit with a resolution of 0.1 percent of full scale has been designed to linearize the response of an orthogonal dipole electric field probe terminated with diodes. Design approach, performance, and probe characteristics are discussed. The nonlinea...

  7. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    NASA Astrophysics Data System (ADS)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  8. Ballistic Response of Fabrics: Model and Experiments

    NASA Astrophysics Data System (ADS)

    Orphal, Dennis L.; Walker Anderson, James D., Jr.

    2001-06-01

    Walker (1999)developed an analytical model for the dynamic response of fabrics to ballistic impact. From this model the force, F, applied to the projectile by the fabric is derived to be F = 8/9 (ET*)h^3/R^2, where E is the Young's modulus of the fabric, T* is the "effective thickness" of the fabric and equal to the ratio of the areal density of the fabric to the fiber density, h is the displacement of the fabric on the axis of impact and R is the radius of the fabric deformation or "bulge". Ballistic tests against Zylon^TM fabric have been performed to measure h and R as a function of time. The results of these experiments are presented and analyzed in the context of the Walker model. Walker (1999), Proceedings of the 18th International Symposium on Ballistics, pp. 1231.

  9. Comparing analytical and Monte Carlo optical diffusion models in phosphor-based X-ray detectors

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Liaparinos, P.

    2014-03-01

    Luminescent materials are employed as radiation to light converters in detectors of medical imaging systems, often referred to as phosphor screens. Several processes affect the light transfer properties of phosphors. Amongst the most important is the interaction of light. Light attenuation (absorption and scattering) can be described either through "diffusion" theory in theoretical models or "quantum" theory in Monte Carlo methods. Although analytical methods, based on photon diffusion equations, have been preferentially employed to investigate optical diffusion in the past, Monte Carlo simulation models can overcome several of the analytical modelling assumptions. The present study aimed to compare both methodologies and investigate the dependence of the analytical model optical parameters as a function of particle size. It was found that the optical photon attenuation coefficients calculated by analytical modeling are decreased with respect to the particle size (in the region 1- 12 μm). In addition, for particles sizes smaller than 6μm there is no simultaneous agreement between the theoretical modulation transfer function and light escape values with respect to the Monte Carlo data.

  10. The Graded Unfolding Model: A Unidimensional Item Response Model for Unfolding Graded Responses.

    ERIC Educational Resources Information Center

    Roberts, James S.; Laughlin, James E.

    Binary or graded disagree-agree responses to attitude items are often collected for the purpose of attitude measurement. Although such data are sometimes analyzed with cumulative measurement models, recent investigations suggest that unfolding models are more appropriate (J. S. Roberts, 1995; W. H. Van Schuur and H. A. L. Kiers, 1994). Advances in…

  11. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam.

    PubMed

    Rossomme, S; Hopfgartner, J; Vynckier, S; Palmans, H

    2016-06-21

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination. PMID:27224547

  12. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam

    NASA Astrophysics Data System (ADS)

    Rossomme, S.; Hopfgartner, J.; Vynckier, S.; Palmans, H.

    2016-06-01

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.

  13. Constitutive modeling of inelastic anisotropic material response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.

    1984-01-01

    A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.

  14. MODELING VENTILATION SYSTEM RESPONSE TO FIRE

    SciTech Connect

    Coutts, D

    2007-04-17

    Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

  15. Single electron response of the scintillator-light guide-photomultiplier detector.

    PubMed

    Novák, L; Müllerová, I

    2009-01-01

    The time response of a scintillator-light guide-photomultiplier combination was measured with a time-constant of 3 ns. Single detected electrons were recognizable at the output of the photomultiplier. The distribution of the number of photoelectrons produced by one detected electron and the pulse-height distribution of the photomultiplier output pulses were analysed. Statistical noise computed from these distributions was compared with the noise produced by the dark current of the photomultiplier. PMID:19196414

  16. The professional responsibility model of physician leadership.

    PubMed

    Chervenak, Frank A; McCullough, Laurence B; Brent, Robert L

    2013-02-01

    The challenges physician leaders confront today call to mind Odysseus' challenge to steer his fragile ship successfully between Scylla and Charybdis. The modern Scylla takes the form of ever-increasing pressures to provide more resources for professional liability, compliance, patient satisfaction, central administration, and a host of other demands. The modern Charybdis takes the form of ever-increasing pressures to procure resources when fewer are available and competition is continuously increasing the need for resources, including managed care, hospital administration, payers, employers, patients who are uninsured or underinsured, research funding, and philanthropy. This publication provides physician leaders with guidance for identifying and managing common leadership challenges on the basis of the professional responsibility model of physician leadership. This model is based on Plato's concept of leadership as a life of service and the professional medical ethics of Drs John Gregory and Thomas Percival. Four professional virtues should guide physician leaders: self-effacement, self-sacrifice, compassion, and integrity. These professional virtues direct physician leaders to treat colleagues as ends in themselves, to provide justice-based resource management, to use power constrained by medical professionalism, and to prevent and respond effectively to organizational dysfunction. The professional responsibility model guides physician leaders by proving an explicit "tool kit" to complement managerial skills. PMID:22483086

  17. Development of a hemispheric p-type point-contact Ge detector to verify hole drifting models in arbitrary direction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Mei, Dongming

    2016-03-01

    We propose to develop a hemispheric p-type point-contact high-purity germanium detector to verify experimentally hole drifting models in an arbitrary direction in the germanium crystal. It would be the first of its kind in the world with such a unique geometry. Calibrated low energy gamma ray sources will be used to deposit energy close to the outer surface of the detector. Electron-hole pairs will be created there. Holes will be drifted from the surface all the way to the point contact along any chosen direction. Amorphous germanium will be used to replace commonly used Lithium-diffused surface to remove the surface effect on the measurements. Such a detector would provide direct measurements of hole drift mobilities in all directions, which can be used to verify current hole drifting models. Those models are heavily used in pulse-shape simulations for neutrinoless double beta experiments using germanium detector arrays. The verification of them would significantly improve the understanding of the behavior of holes in germanium detectors and reduce the uncertainty of detection efficiency estimated by the pulse-shape simulation packages.

  18. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  19. Additivity of detector responses of a portable direct-reading 10. 2 eV photoionization detector and a flame ionization gas chromatograph for atmospheres of multicomponent organics: use of PID/FID ratios

    SciTech Connect

    Lee, I.N.; Hee, S.S.Q.; Clark, C.S.

    1987-05-01

    The H-Nu PI-101 with a photoionization detector (PID) of 10.2 eV and Century OVA-128 equipped with a flame ionization detector (FID) were evaluated for the additivity of their responses to a defined mixtures of dissimilar organic vapors at a 0 and 90% relative humidity (RH). The responses of both instruments were additive as long as the effect of RH was accounted for the PID. The PI-101 was not as precise as the Century OVA-128 for 90% RH atmospheres. PID/FID ratios did not change in the presence of 90% RH as long as the effect of RH also was accounted for in the PID reading. The compounds investigated included: toluene, benzaldehyde; 1,2,4-trichlorobenzene, methyl chloroform, methylene dichloride, methyl ethyl ketone, ethanol and acetonitrile.

  20. Biological Event Modeling for Response Planning

    NASA Astrophysics Data System (ADS)

    McGowan, Clement; Cecere, Fred; Darneille, Robert; Laverdure, Nate

    People worldwide continue to fear a naturally occurring or terrorist-initiated biological event. Responsible decision makers have begun to prepare for such a biological event, but critical policy and system questions remain: What are the best courses of action to prepare for and react to such an outbreak? Where resources should be stockpiled? How many hospital resources—doctors, nurses, intensive-care beds—will be required? Will quarantine be necessary? Decision analysis tools, particularly modeling and simulation, offer ways to address and help answer these questions.

  1. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  2. SU-C-304-01: Investigation of Various Detector Response Functions and Their Geometry Dependence in a Novel Method to Address Ion Chamber Volume Averaging Effect

    SciTech Connect

    Barraclough, B; Lebron, S; Li, J; Fan, Qiyong; Liu, C; Yan, G

    2015-06-15

    Purpose: A novel convolution-based approach has been proposed to address ion chamber (IC) volume averaging effect (VAE) for the commissioning of commercial treatment planning systems (TPS). We investigate the use of various convolution kernels and its impact on the accuracy of beam models. Methods: Our approach simulates the VAE by iteratively convolving the calculated beam profiles with a detector response function (DRF) while optimizing the beam model. At convergence, the convolved profiles match the measured profiles, indicating the calculated profiles match the “true” beam profiles. To validate the approach, beam profiles of an Elekta LINAC were repeatedly collected with ICs of various volumes (CC04, CC13 and SNC 125) to obtain clinically acceptable beam models. The TPS-calculated profiles were convolved externally with the DRF of respective IC. The beam model parameters were reoptimized using Nelder-Mead method by forcing the convolved profiles to match the measured profiles. We evaluated three types of DRFs (Gaussian, Lorentzian, and parabolic) and the impact of kernel dependence on field geometry (depth and field size). The profiles calculated with beam models were compared with SNC EDGE diode-measured profiles. Results: The method was successfully implemented with Pinnacle Scripting and Matlab. The reoptimization converged in ∼10 minutes. For all tested ICs and DRFs, penumbra widths of the TPS-calculated profiles and diode-measured profiles were within 1.0 mm. Gaussian function had the best performance with mean penumbra width difference within 0.5 mm. The use of geometry dependent DRFs showed marginal improvement, reducing the penumbra width differences to less than 0.3 mm. Significant increase in IMRT QA passing rates was achieved with the optimized beam model. Conclusion: The proposed approach significantly improved the accuracy of the TPS beam model. Gaussian functions as the convolution kernel performed consistently better than Lorentzian and

  3. Modeling of Cardiovascular Response to Weightlessness

    NASA Technical Reports Server (NTRS)

    Sharp, M. Keith

    1999-01-01

    pressure and, to a limited extent, in extravascular and pedcardial hydrostatic pressure were investigated. A complete hydraulic model of the cardiovascular system was built and flown aboard the NASA KC-135 and a computer model was developed and tested in simulated microgravity. Results obtained with these models have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume. When combined with the acute increase in ventricular pressure associated with the elimination of hydrostatic pressure within the vasculature and the resultant cephalad fluid shift with the models in the upright position, however, stroke volume increased in the models. Imposition of a decreased pedcardial pressure in the computer model and in a simplified hydraulic model increased stroke volume. Physiologic regional fluid shifting was also demonstrated by the models. The unifying parameter characterizing of cardiac response was diastolic ventricular transmural pressure (DVDELTAP) The elimination of intraventricular hydrostatic pressure in O-G decreased DVDELTAP stroke volume, while the elimination of intravascular hydrostatic pressure increased DVDELTAP and stroke volume in the upright posture, but reduced DVDELTAP and stroke volume in the launch posture. The release of gravity on the chest wall and its associated influence on intrathoracic pressure, simulated by a drop in extraventricular pressure4, increased DVDELTAP ans stroke volume.

  4. A Study of 3He detectors for Active Interrogation

    SciTech Connect

    E.H. Seabury; D.L. Chichester

    2009-10-01

    3He proportional counters have long been used as neutron detectors for both passive and active detection of Special Nuclear Material (SNM). The optimal configuration of these detectors as far as gas pressure, amount of moderating material, and size are concerned is highly dependent on what neutron signatures are being used to detect and identify SNM. We present here a parametric study of the neutron capture response of 3He detectors, based on Monte Carlo simulations using the MCNPX radiation transport code. The neutron capture response of the detectors has been modeled as a function of time after an incident neutron pulse.

  5. Ovine model for studying pulmonary immune responses

    SciTech Connect

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  6. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  7. Understanding the SNO+ Detector

    DOE PAGESBeta

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  8. Understanding the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Kamdin, K.

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  9. Understanding the SNO+ Detector

    SciTech Connect

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, in which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.

  10. Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1980-01-01

    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers.

  11. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches.

    PubMed

    Zeil, K; Kraft, S D; Jochmann, A; Kroll, F; Jahr, W; Schramm, U; Karsch, L; Pawelke, J; Hidding, B; Pretzler, G

    2010-01-01

    The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source. PMID:20113093

  12. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches

    SciTech Connect

    Zeil, K.; Kraft, S. D.; Jochmann, A.; Kroll, F.; Jahr, W.; Schramm, U.; Karsch, L.; Pawelke, J.; Hidding, B.; Pretzler, G.

    2010-01-15

    The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source.

  13. GAMMA DETECTOR RESPONSE/SOIL CONCENTRATION CORRELATION STUDY AT THE AAR MANUFACTURING, INC. SITE, LIVONIA, MICHIGAN

    SciTech Connect

    ALTIC, NICK A

    2013-03-22

    At the NRC's request, ORAU conducted surveys of the AAR Manufacturing site during the period of September 25 through September 27, 2012. The survey activities included walkover surveys and sampling activities. Once the survey team was onsite, the NRC personnel decided to forgo survey activities in the New Addition and the pickling area. Areas of the planned study boundary were inaccessible due to overgrowth/large pieces of concrete covering the soil surface; therefore, the study boundary was redefined. Gamma walkover scans of the site boundary and front yard identified multiple areas of elevated gamma radiation. As a result, two judgmental samples were collected. Sample results were above thorium background levels The answer to the PSQ relating to the relationship between thorium concentration in soil and NaI instrument response is Yes. NaI instrument response can be used as a predictor of Th-232 concentration in the 0 to 1 m layer. An R2 value of 0.79 was determined for the surface soil relationship, thus satisfying the DQOs. Moreover, the regression was cross-checked by comparing the predicted Th-232 soil core concentration to the average Th-232 concentration (Section 5.3.2). Based on the cross-check, the regression equation provides a reasonable estimate for the Th-232 concentration at the judgmental locations. Consideration must be given when applying this equation to other soil areas of the site. If the contamination was heterogeneously distributed, and not distributed in a discrete layer as it was in the study area, then using the regression equation to predict Th-232 concentration would not be applicable.

  14. Collimated neutron detector FREND for the ESA ExoMars Trace Gas Orbiter: objectives and modelling

    NASA Astrophysics Data System (ADS)

    Sanin, A.; Mitrofanov, I.; Malakhov, A.; Fedosov, F.; Golovin, D.; Kozyrev, A. S.; Litvak, M. L.; Lisov, D.; Mokrousov, M.; Nikiforov, S.; Shvetsov, V. N.; Tret'yakov, V. I.; Varenikov, A.; Vostrukhin, A.

    2013-09-01

    High Energy Neutron Detector (HEND) is continuously operating onboard the NASA Mars Odyssey spacecraft starting from Mars orbit insertion maneuver at October 24, 2001. It provides data about low, epithermal and fast neutrons fluxes and fluxes of charged particles on the spacecraft orbit. Significant amount of accumulated HEND data allows to study hydrogen distribution in top ~1 meter layer of the Martian regolith, seasonal variations of H2O permafrost, CO2 deposition and sublimation and radiation condition on Martian surface during Solar activity cycle. One of the most important results obtained from HEND data analysis is the evidence of presence of significant amount of H2O permafrost at high latitudes around both poles and enhanced hydrogen concentration at Arabia and Memnonia regions. The highest spatial resolution of HEND data is about 600*600 km, since the instrument measured neutron fluxes from all directions at the spacecraft orbit. Such resolution is much broader than sizes of most Martian relief features. Even 150-km diameter Gale crater is significantly smaller. It is obvious that such resolution makes difficult any studying of hydrogen distribution across small to medium size Martian relief features and, for example, landing sites of future robotic and/or manned missions. Fine Resolution Epithermal Neutron Detector (FREND) selected for flight as a part of scientific payload of the ESA ExoMars Trace Gas Orbiter (TGO) contains a neutron collimation module. It will provide a narrow field of view (FOV) for detectors of FREND instrument. LEND instrument onboard the NASA LRO mission is the heritage for FREND. The idea of neutron collimation has been successfully tested during the LRO mission. Mechanical design of the instrument is fixed and it is on manufacturing stage now. The ESA ExoMars TGO orbiter is scheduled to be launched at January 2016. After about 240 days of cruise the spacecraft will start Mars orbit insertion and aerobraking maneuvers. Science

  15. Use of high-granularity position sensing to correct response non-uniformities of CdZnTe detectors

    SciTech Connect

    Bolotnikov, A. E. Camarda, G. S.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Marshall, M.; Roy, U.; Vernon, E.; Yang, G.; James, R. B.; Lee, K.; Petryk, M.

    2014-06-30

    CdZnTe (CZT) is a promising medium for room-temperature gamma-ray detectors. However, the low production yield of acceptable quality crystals hampers the use of CZT detectors for gamma-ray spectroscopy. Significant efforts have been directed towards improving quality of CZT crystals to make them generally available for radiation detectors. Another way to address this problem is to implement detector designs that would allow for more accurate and predictable correction of the charge loss associated with crystal defects. In this work, we demonstrate that high-granularity position-sensitive detectors can significantly improve the performance of CZT detectors fabricated from CZT crystals with wider acceptance boundaries, leading to an increase of their availability and expected decrease in cost.

  16. The Value of Response Times in Item Response Modeling

    ERIC Educational Resources Information Center

    Molenaar, Dylan

    2015-01-01

    A new and very interesting approach to the analysis of responses and response times is proposed by Goldhammer (this issue). In his approach, differences in the speed-ability compromise within respondents are considered to confound the differences in ability between respondents. These confounding effects of speed on the inferences about ability can…

  17. MTF for Bayer pattern color detector

    NASA Astrophysics Data System (ADS)

    Yotam, Elor; Ephi, Pinsky; Ami, Yaacobi

    2007-04-01

    We present a model for calculating the Spatial Frequency Response (SFR) for Bayer pattern color detectors. The model is based on the color detector response to B/W scenes. When a Bayer color detector is compared to a B/W detector, SFR difference results from the interpolation process. This process exists only in the Bayer pattern detectors. In this work we ascribe the MTF and the spurious response to the interpolation process. The model may be applied to any linear interpolation. Although the interpolation is linear, it is not Shift Invariant (SI). Therefore, calculating the interpolation MTF is not a trivial task. Furthermore, the interpolation creates a spurious response. In order to calculate the interpolation SFR, we introduce a separable constraint (for x and y directions) by using a scene that varies only on one axis and is fixed on the other. We further assume integration in the direction of the fixed axis. By using these two assumptions, we have been able to separate the response into two axes and calculate the SFR. For distant scenes, colors saturation decreases, the colors are less visible and mostly grey colors are sensed. In these cases the Johnson Criterion can be roughly applied. In order to apply the Johnson Criterion it is required to know the MTF of the sensing system. The sensing system MTF includes the interpolation MTF. We show that the interpolation process degrades the system performance compared to B/W sensor. Another application of the model is in comparing different interpolation algorithms.

  18. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  19. Development of a Spectral Model Based on Charge Transport for the Swift/BAT 32K CdZnTe Detector Array

    NASA Technical Reports Server (NTRS)

    Sato, Goro; Parsons, Ann; Hillinger, Derek; Suzuki, Masaya; Takahashi, Tadayuki; Tashiro, Makoto; Nakazawa, Kazuhiro; Okada, Yuu; Takahashi, Hiromitsu; Watanabe, Shin

    2005-01-01

    The properties of 32K CdZnTe (4 x 4 sq mm large, 2 mm thick) detectors have been studied in the pre-flight calibration of the Burst Alert Telescope (BAT) on-board the Swift Gamma-ray Burst Explorer (scheduled for launch in November 2004). In order to understand the energy response of the BAT CdZnTe array, we first quantify the mobility-lifetime (mu tau) products of carriers in individual CdZnTe detectors, which produce a position dependency in the charge induction efficiency and results in a low energy tail in the energy spectrum. Based on a new method utilizing (57)Co spectra obtained at different bias voltages, the mu tau for electrons ranges from 5.0 x 10(exp -4) to 1.0 x 10(exp -2) sq cm/V while the mu tau for holes ranges from 1.3 x 10(exp -5 to 1.8 x 10(exp -4) sq cm/V. We find that this wide distribution of mu tau products explains the large diversity in spectral shapes between CdZnTe detectors well. We also find that the variation of mu tau products can be attributed to the difference of crystal ingots or manufacturing harness. We utilize the 32K sets of extracted mu tau products to develop a spectral model of the detector. In combination with Monte Carlo simulations, we can construct a spectral model for any photon energy or any incident angle.

  20. Computed radiography as a gamma ray detector--dose response and applications.

    PubMed

    O'Keeffe, D S; McLeod, R W

    2004-08-21

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 microGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse. PMID:15446787

  1. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  2. MTF optimization of MCT detectors

    NASA Astrophysics Data System (ADS)

    Martineau, L.; Rubaldo, L.; Chabuel, F.; Gravrand, Olivier

    2013-10-01

    Spatial applications are challenging infrared (IR) technologies requiring the best system performances. Usually, the need is a trade-off between the signal to noise ratio (SNR) and spatial response of the IR detector, and in particular the modulation transfer function (MTF) performance. MTF optimization requires a deep understanding of detector physics and the use of evaluation tools. This paper describes the optimization of an n-on-p Mercury Cadmium Telluride (MCT) pixel design using a MTF mathematical model to predict the performance.

  3. Bioadhesion to model thermally responsive surfaces

    NASA Astrophysics Data System (ADS)

    Andrzejewski, Brett Paul

    This dissertation focuses on the characterization of two surfaces: mixed self-assembled monolayers (SAMs) of hexa(ethylene glycol) and alkyl thiolates (mixed SAM) and poly(N-isopropylacrylamide) (PNIPAAm). The synthesis of hexa(ethylene gylcol) alkyl thiol (C11EG 6OH) is presented along with the mass spectrometry and nuclear magnetic resonance results. The gold substrates were imaged prior to SAM formation with atomic force micrscopy (AFM). Average surface roughness of the gold substrate was 0.44 nm, 0.67 nm, 1.65 nm for 15, 25 and 60 nm gold thickness, respectively. The height of the mixed SAM was measured by ellipsometry and varied from 13 to 28°A depending on surface mole fraction of C11EG6OH. The surface mole fraction of C11EG6OH for the mixed SAM was determined by X-ray photoelectron spectroscopy (XPS) with optimal thermal responsive behavior in the range of 0.4 to 0.6. The mixed SAM surface was confirmed to be thermally responsive by contact angle goniometry, 35° at 28°C and ˜55° at 40°C. In addition, the mixed SAM surfaces were confirmed to be thermally responsive for various aqueous mediums by tensiometry. Factors such as oxygen, age, and surface mole fraction and how they affect the thermal responsive of the mixed SAM are discussed. Lastly, rat fibroblasts were grown on the mixed SAM and imaged by phase contrast microscopy to show inhibition of attachment at temperatures below the molecular transition. Qualitative and quantitative measurements of the fibroblast adhesion data are provided that support the hypothesis of the mixed SAM exhibits a dominantly non-fouling molecular conformation at 25°C whereas it exhibits a dominantly fouling molecular conformation at 40°C. The adhesion of six model proteins: bovine serum albumin, collagen, pyruvate kinase, cholera toxin subunit B, ribonuclease, and lysozyme to the model thermally responsive mixed SAM were examined using AFM. All six proteins possessed adhesion to the pure component alkyl thiol, in

  4. Modeling event‐related heart period responses

    PubMed Central

    Paulus, Philipp C.; Castegnetti, Giuseppe

    2016-01-01

    Abstract Cardiac rhythm is generated locally in the sinoatrial node, but modulated by central neural input. This may provide a possibility to infer central processes from observed phasic heart period responses (HPR). Currently, operational methods are used for HPR analysis. These methods embody implicit assumptions on how central states influence heart period. Here, we build an explicit psychophysiological model (PsPM) for event‐related HPR. This phenomenological PsPM is based on three experiments involving white noise sounds, an auditory oddball task, and emotional picture viewing. The model is optimized with respect to predictive validity—the ability to separate experimental conditions from each other. To validate the PsPM, an independent sample of participants is presented with auditory stimuli of varying intensity and emotional pictures of negative and positive valence, at short intertrial intervals. Our model discriminates these experimental conditions from each other better than operational approaches. We conclude that our PsPM is more sensitive to distinguish experimental manipulations based on heart period data than operational methods, and furnishes a principled approach to analysis of HPR. PMID:26849101

  5. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job. PMID:16253942

  6. Continuum Models of Stimuli-responsive Gels

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    Immersed in a solution of small molecules and ions, a network of long-chain polymers may imbibe the solution and swell, resulting in a polymeric gel. Depending on the molecular structure of the polymers, the amount of swelling can be regulated by moisture, mechanical forces, ionic strength, electric field, pH value, and many other types of stimuli. Starting from the basic principles of non-equilibrium thermodynamics, this chapter formulates a field theory of the coupled large deformation and mass transportation in a neutral polymeric gel. The theory is then extended to study polyelectrolyte gels with charge-carrying networks by accounting for the electromechanical coupling and migration of solute ions. While the theoretical framework is adaptable to various types of material models, some representative ones are described through specific free-energy functions and kinetic laws. A specific material law for pH-sensitive gels—a special type of polyelectrolyte gels—is introduced as an example of incorporating chemical reactions in modeling stimuli-responsive gels. Finally, a simplified theory for the equilibrium but inhomogeneous swelling of a polymeric gel is deduced. The theory and the specific material models are illustrated through several examples.

  7. A holographic model for quantum critical responses

    NASA Astrophysics Data System (ADS)

    Myers, Robert C.; Sierens, Todd; Witczak-Krempa, William

    2016-05-01

    We analyze the dynamical response functions of strongly interacting quantum critical states described by conformal field theories (CFTs). We construct a self-consistent holographic model that incorporates the relevant scalar operator driving the quantum critical phase transition. Focusing on the finite temperature dynamical conductivity σ( ω, T ), we study its dependence on our model parameters, notably the scaling dimension of the relevant operator. It is found that the conductivity is well-approximated by a simple ansatz proposed in [1] for a wide range of parameters. We further dissect the conductivity at large frequencies ω ≫ T using the operator product expansion, and show how it reveals the spectrum of our model CFT. Our results provide a physically-constrained framework to study the analytic continuation of quantum Monte Carlo data, as we illustrate using the O(2) Wilson-Fisher CFT. Finally, we comment on the variation of the conductivity as we tune away from the quantum critical point, setting the stage for a comprehensive analysis of the phase diagram near the transition.

  8. Modeling event-related heart period responses.

    PubMed

    Paulus, Philipp C; Castegnetti, Giuseppe; Bach, Dominik R

    2016-06-01

    Cardiac rhythm is generated locally in the sinoatrial node, but modulated by central neural input. This may provide a possibility to infer central processes from observed phasic heart period responses (HPR). Currently, operational methods are used for HPR analysis. These methods embody implicit assumptions on how central states influence heart period. Here, we build an explicit psychophysiological model (PsPM) for event-related HPR. This phenomenological PsPM is based on three experiments involving white noise sounds, an auditory oddball task, and emotional picture viewing. The model is optimized with respect to predictive validity-the ability to separate experimental conditions from each other. To validate the PsPM, an independent sample of participants is presented with auditory stimuli of varying intensity and emotional pictures of negative and positive valence, at short intertrial intervals. Our model discriminates these experimental conditions from each other better than operational approaches. We conclude that our PsPM is more sensitive to distinguish experimental manipulations based on heart period data than operational methods, and furnishes a principled approach to analysis of HPR. PMID:26849101

  9. Monte Carlo and Analytical Models of Neutron Detection with Organic Scintillation Detectors

    SciTech Connect

    Pozzi, Sara A; Flaska, Marek; Enqvist, Andreas; Pazsit, Imre

    2007-01-01

    This paper presents a new technique for the analysis of neutron pulse height distributions generated in an organic scintillation detector. The methodology presented in this paper can be applied to techniques such as neutron spectrum unfolding, which have a variety of applications, including nuclear nonproliferation and homeland security. The technique is based on two independent approaches: (i) the use of the MCNP-PoliMi code to simulate neutron detection on an event-by-event basis via the Monte Carlo method and (ii) an analytical approach for neutron slowing down and detection processes. We show that the total neutron pulse height response measured by the organic scintillators is given by the sum of a large number of different neutron histories, each composed of a certain number of neutron scatterings on hydrogen and/or on carbon. The relative contributions of each of these histories are described for a cylindrical liquid scintillator BC-501A. The total simulated pulse height distributions are compared to experimental data measured using two neutron sources, Cf-252 and Am-Be, and very good agreement is achieved. Simulations and measurements of neutron pulse height distributions are essential for neutron spectrum unfolding procedures.

  10. An interval model updating strategy using interval response surface models

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-En; Zhang, Qiu-Hu; Ren, Wei-Xin

    2015-08-01

    Stochastic model updating provides an effective way of handling uncertainties existing in real-world structures. In general, probabilistic theories, fuzzy mathematics or interval analyses are involved in the solution of inverse problems. However in practice, probability distributions or membership functions of structural parameters are often unavailable due to insufficient information of a structure. At this moment an interval model updating procedure shows its superiority in the aspect of problem simplification since only the upper and lower bounds of parameters and responses are sought. To this end, this study develops a new concept of interval response surface models for the purpose of efficiently implementing the interval model updating procedure. The frequent interval overestimation due to the use of interval arithmetic can be maximally avoided leading to accurate estimation of parameter intervals. Meanwhile, the establishment of an interval inverse problem is highly simplified, accompanied by a saving of computational costs. By this means a relatively simple and cost-efficient interval updating process can be achieved. Lastly, the feasibility and reliability of the developed method have been verified against a numerical mass-spring system and also against a set of experimentally tested steel plates.

  11. A Lognormal Model for Response Times on Test Items

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2006-01-01

    A lognormal model for the response times of a person on a set of test items is investigated. The model has a parameter structure analogous to the two-parameter logistic response models in item response theory, with a parameter for the speed of each person as well as parameters for the time intensity and discriminating power of each item. It is…

  12. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  13. Modeling macroscopic response of random composites

    SciTech Connect

    Aidun, J.B.; Rintoul, M.D.; Lo, D.C.S.

    1998-02-01

    Preliminary work is presented on an effort to generate synthetic constitutive data for random composite materials. The long-ranged goal is to use the overall response determined from finite element simulations of representative volumes (RV) of the heterogeneous material to construct a homogenized constitutive model. A simple composite of a matrix containing polydispersed spheres was chosen as the first configuration to simulate. Here the accuracy of the numerical simulation tools is tested by determining effective elastic constants of the ordered elastic composite in which equal-sized spheres are arranged in each of three cubic lattice configurations. The resulting anisotropic effective elastic constant values agree with theoretical results to better than 10%, with typical agreement being better than 4%.

  14. Point spread function modeling method for x-ray flat panel detector imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Shi, Yikai; Huang, Kuidong; Yu, Qingchao

    2012-10-01

    Flat panel detector (FPD) has been widely used as the imaging unit in the current X-ray digital radiography (DR) systems and Computed Tomography (CT) systems. Point spread function (PSF) is an important indicator of the FPD imaging system, but also the basis for image restoration. For the problem of poor accuracy of the FPD's PSF measurement with the original pinhole imaging for DR systems, a new PSF measuring method with the pinhole imaging based on the image restoration is proposed in this paper. Firstly, some images collected with the pinhole imaging are averaged to one image to reducing the noise. Then, the original pinhole image is calculated according to the energy conservation principle of point spread. Finally, the PSF of the FPD is obtained using the operation of image restoration. On this basis, through the fitting of the characteristic parameters of the PSF on different scan conditions, the computational model of the PSF is established for any scan conditions. Experimental results show that the method can obtain a more accurate PSF of the FPD, and the PSF of the same system under any scan conditions can be directly calculated with the PSF model.

  15. Modeling superposition of 3- and N-polarized beams on an isotropic photo detector

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar; Ambroselli, Michael

    2015-09-01

    In a previous paper [SPIE Proc.Vol.7063, paper #4 (2008)], we have attempted to model possible modes of excitations that detecting dipoles carry out during the interaction process with EM waves before absorbing a quantum cupful of energy out of the two simultaneously stimulating EM waves along with experimental validations. Those experiments and analyses basically corroborate the law of Malus. For these two-beam cases, the cosθ-factor, (θ being the angle between the two polarization vectors), is too symmetric and too simple a case to assure that we are modeling the energy absorption process definitively. Accordingly, this paper brings in asymmetry in the interaction process by considering 3-beam and N-beam cases to find out whether there are more subtleties behind the energy absorption processes when more than two beams are simultaneous stimulating a detector for the transfer of EM energy from these multiple beams. We have suggested a possible experimental set up for a three-polarized beam experiment that we plan to carry out in the near future. We also present analyses for 3-beam and simplified Nbeam cases and computed curves for some 3-beam cases. The results strengthen what we concluded in our two beam experimental paper. We also recognize that the mode of mathematical analyses, based upon traditional approach, may not be sufficient to extract any more details of the invisible light-dipole interaction processes going on in nature.

  16. Constitutive modeling of shock response of PTFE

    SciTech Connect

    Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K; Millett, Jeremy C F

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.

  17. On the time response of background obtained in γ-ray spectroscopy experiments using LaBr3(Ce) detectors with different shielding

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Dannhoff, M.; Jolie, J.; Müller-Gatermann, C.; Saed-Samii, N.

    2016-03-01

    Employing the γ-γ fast-timing technique with LaBr3(Ce) scintillator detectors allows the direct determination of lifetimes of nuclear excited states with a lower limit of about 5 ps. This limit is increased as soon as background is present in the coincidence spectra underneath the full-energy peaks of the γ-γ cascade. Our aim was to identify the components of the γ-ray background by systematic γ-γ fast-timing measurements using different types of γ shielding within a large γ-ray spectrometer. The energy dependent physical zero-time response was measured using background-free full-energy peak events from the 152Eu γ-ray source. This is compared with the time response of the (Compton-) background distribution as obtained using the prompt 60Co γ-ray source. The time response of the typical Compton background is about 15 ps faster than the time response of background-free full-energy peak events. Below about 500 keV, a second type of background contributes by the detection of Compton-scattered γ rays generated in the materials of the spectrometer around the detector. Due to the additional time-of-flight of the Compton-scattered γ rays, this low-energy background is largely delayed. Compared with a bare cylindrical 1.5 in . × 1.5 in . LaBr3(Ce) detector, the BGO-shielded detector in the Compton-suppression mode improves the peak-to-total ratio by a factor of 1.66(5), while the Pb-shielded detector only slightly reduces the low-energy background.

  18. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  19. Examination of the spatial-response uniformity of a microchannel-plate detector using a pulsed high-voltage electron gun

    NASA Astrophysics Data System (ADS)

    Alumot, D.; Kroupp, E.; Fisher, A.

    2014-05-01

    In this paper we describe an alternative method to examine the spatial-response uniformity of a microchannel-plate (MCP) detector to a ~ 1 ns pulse of soft x-rays. The examination was performed by illuminating the MCP surface with energetic electrons rather than with x-rays. It is shown that the MCP features similar, yet not identical, response to pulses of soft x-ray photons or energetic electrons, making such examinations much simpler and less expensive. The building of the electron-gun system is relatively easy and inexpensive, and in addition to verifying the spatial uniformity of the response of the MCP to incoming particles and radiation, it can be used to detect damaged areas on the detector. A comparison between the results obtained using the electron-gun with those obtained using a laser-produced-plasma x-ray source, demonstrating the reliability of the method, is presented.

  20. Simulation of germanium detector calibration using the Monte Carlo method: comparison between point and surface source models.

    PubMed

    Ródenas, J; Burgos, M C; Zarza, I; Gallardo, S

    2005-01-01

    Simulation of detector calibration using the Monte Carlo method is very convenient. The computational calibration procedure using the MCNP code was validated by comparing results of the simulation with laboratory measurements. The standard source used for this validation was a disc-shaped filter where fission and activation products were deposited. Some discrepancies between the MCNP results and laboratory measurements were attributed to the point source model adopted. In this paper, the standard source has been simulated using both point and surface source models. Results from both models are compared with each other as well as with experimental measurements. Two variables, namely, the collimator diameter and detector-source distance have been considered in the comparison analysis. The disc model is seen to be a better model as expected. However, the point source model is good for large collimator diameter and also when the distance from detector to source increases, although for smaller sizes of the collimator and lower distances a surface source model is necessary. PMID:16604596

  1. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    SciTech Connect

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-12-20

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  2. SU-E-T-249: Neutron Model Upgrade for Radiotherapy Patients Monitoring Using a New Online Detector

    SciTech Connect

    Irazola, L; Sanchez Doblado, F.; Lorenzoli, M; Pola, A.; Terron, J.A.; Bedogni, R.; Sanchez Nieto, B.; Romero-Exposito, M.

    2014-06-01

    Purpose: The purpose of this work is to improve the existing methodology to estimate neutron equivalent dose in organs during radiotherapy treatments, based on a Static Random Access Memory neutron detector (SRAMnd) [1]. This is possible thanks to the introduction of a new digital detector with improved characteristics, which is able to measure online the neutron fluence rate in the presence of an intense photon background [2]. Its reduced size, allows the direct estimation of doses in specific points inside an anthropomorphic phantom (NORMA) without using passive detectors as TLD or CR-39. This versatility will allow not only to improve the existing models (generic abdomen and H and N [1]) but to generate more specific ones for any technique. Methods: The new Thermal Neutron Rate Detector (TNRD), based on a diode device sensitized to thermal neutrons, have been inserted in 16 points of the phantom. These points are distributed to infer doses to specific organs. Simultaneous measurements of these devices and a reference one, located in front of the gantry, have been performed for the mentioned generic treatments, in order to improve the existing model. Results: These new devices have shown more precise since they agree better with Monte Carlo simulations. The comparison of the thermal neutron fluence, measured with TNRD, and the existing models, converted from events to fluence, shows an average improvement of (3.90±3.37) % for H and N and (12.61±9.43) % for abdomen, normalized to the maximum value. Conclusion: This work indicates the potential of these new devices for more precise neutron equivalent dose estimation in organs, as a consequence of radiotherapy treatments. The simplicity of the process makes possible to establish more specific models that will provide a better dose estimation. References[1] Phys Med Biol 2012; 57:6167–6191.[2] A new active thermal neutron detector. Radiat. Prot. Dosim. (in press)

  3. Classification of scalar and dyadic nonlocal optical response models.

    PubMed

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency. PMID:26698757

  4. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms.

    PubMed

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel Ab

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20-35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  5. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    PubMed Central

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  6. Modeling Information Accumulation in Psychological Tests Using Item Response Times

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jörg-Tobias

    2015-01-01

    In this article, a latent trait model is proposed for the response times in psychological tests. The latent trait model is based on the linear transformation model and subsumes popular models from survival analysis, like the proportional hazards model and the proportional odds model. Core of the model is the assumption that an unspecified monotone…

  7. Evaluation of commercial pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Crouch, R. K.

    1977-01-01

    A series of commercially available pyroelectric detectors made from PVF2, LTO, SBN, and TGS were evaluated in terms of responsivity and detectivity as a function of frequency. The performance of the detectors evaluated was very different, depending upon the manufacturer of the detector, and this dependency was primarily related to the thickness of the various detectors. The best detectors of each material were comparable in performance at frequencies around 10 Hz but differed radically at frequencies above 100 Hz.

  8. Constitutive modeling of shock response of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Bourne, N. K.; Millett, J. C. F.; Brown, E. N.

    2011-08-01

    Polytetrafluoroethylene (PTFE) is a polymer with a simple atomic structure that shows complex behavior under pressure and demonstrates a highly variable metastable phase structure in shock waves with amorphous and crystalline components. In turn, the crystalline component has four known phases with the high-pressure transition of the crystalline domain from crystalline phase IV at ambient through phase II to III. At the same time, as has been recently studied using spectrometry, the crystalline region nucleates from the amorphous one with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate features that may be related to the impedance mismatch between the phase domains subjected to such transitions resulting in variations of mechanical and thermophysical characteristics. We consider the inter-phase non-equilibrium and the amorphous-to-crystalline and inter-crystalline transitions that are associated with the high pressure and temperature transformations under shock wave loading as possible candidates for the analysis. The present work utilizes a multi-phase constitutive model that considers strength effects to describe the observed response under shock loading of the PTFE material. Experimental plate impact shock-wave histories are compared with calculated profiles using kinetics describing the transitions. The study demonstrates that the inter-phase pressure non-equilibrium of the state parameters plays the key role in the delay of the shock wave attenuation. At the same time, the forward transition associated with the crystallization might be responsible for the velocity spike in the experimental velocity profiles at high impact velocity and the modulus variation at low impact velocity. On the other hand, an accelerated attenuation of the velocity in the rarefaction wave is associated with another transition resulting in the residual crystallinity change during unloading.

  9. Grade of Membership Response Time Model for Detecting Guessing Behaviors

    ERIC Educational Resources Information Center

    Pokropek, Artur

    2016-01-01

    A response model that is able to detect guessing behaviors and produce unbiased estimates in low-stake conditions using timing information is proposed. The model is a special case of the grade of membership model in which responses are modeled as partial members of a class that is affected by motivation and a class that responds only according to…

  10. Nested Logit Models for Multiple-Choice Item Response Data

    ERIC Educational Resources Information Center

    Suh, Youngsuk; Bolt, Daniel M.

    2010-01-01

    Nested logit item response models for multiple-choice data are presented. Relative to previous models, the new models are suggested to provide a better approximation to multiple-choice items where the application of a solution strategy precedes consideration of response options. In practice, the models also accommodate collapsibility across all…

  11. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  12. Comparing Geant4 hadronic models for the WENDI-II rem meter response function.

    PubMed

    Vanaudenhove, T; Dubus, A; Pauly, N

    2013-01-01

    The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application. PMID:22972796

  13. Improving the growth of CZT crystals for radiation detectors: a modeling perspective

    NASA Astrophysics Data System (ADS)

    Derby, Jeffrey J.; Zhang, Nan; Yeckel, Andrew

    2012-10-01

    The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties is key to improving the performance of gamma radiation detectors fabricated from them. Towards this goal, we discuss results obtained by computational models that provide a deeper understanding of crystal growth processes and how the growth of CZT can be improved. In particular, we discuss methods that may be implemented to lessen the deleterious interactions between the ampoule wall and the growing crystal via engineering a convex solidification interface. For vertical Bridgman growth, a novel, bell-curve furnace temperature profile is predicted to achieve macroscopically convex solid-liquid interface shapes during melt growth of CZT in a multiple-zone furnace. This approach represents a significant advance over traditional gradient-freeze profiles, which always yield concave interface shapes, and static heat transfer designs, such as pedestal design, that achieve convex interfaces over only a small portion of the growth run. Importantly, this strategy may be applied to any Bridgman configuration that utilizes multiple, controllable heating zones. Realizing a convex solidification interface via this adaptive bell-curve furnace profile is postulated to result in better crystallinity and higher yields than conventional CZT growth techniques.

  14. Intelligent Detector Design

    SciTech Connect

    Graf, N.A.; /SLAC

    2012-06-11

    As the complexity and resolution of imaging detectors increases, the need for detailed simulation of the experimental setup also becomes more important. Designing the detectors requires efficient tools to simulate the detector response and reconstruct the events. We have developed efficient and flexible tools for detailed physics and detector response simulation as well as event reconstruction and analysis. The primary goal has been to develop a software toolkit and computing infrastructure to allow physicists from universities and labs to quickly and easily conduct physics analyses and contribute to detector research and development. The application harnesses the full power of the Geant4 toolkit without requiring the end user to have any experience with either Geant4 or C++, thereby allowing the user to concentrate on the physics of the detector system.

  15. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  16. Item Response Modeling with Sum Scores

    ERIC Educational Resources Information Center

    Johnson, Timothy R.

    2013-01-01

    One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…

  17. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  18. DOSE-RESPONSE ASSESSMENT FOR DEVELOPMENTAL TOXICITY: III. STATISTICAL MODELS

    EPA Science Inventory

    Although quantitative modeling has been central to cancer risk assessment for years, the concept of dose-response modeling for developmental effects is relatively new. Recently, statistical models appropriate for developmental toxicity testing have been developed and applied (Rai...

  19. True coincidence summing correction and mathematical efficiency modeling of a well detector

    NASA Astrophysics Data System (ADS)

    Jäderström, H.; Mueller, W. F.; Atrashkevich, V.; Adekola, A. S.

    2015-06-01

    True coincidence summing (TCS) occurs when two or more photons are emitted from the same decay of a radioactive nuclide and are detected within the resolving time of the gamma ray detector. TCS changes the net peak areas of the affected full energy peaks in the spectrum and the nuclide activity is rendered inaccurate if no correction is performed. TCS is independent of the count rate, but it is strongly dependent on the peak and total efficiency, as well as the characteristics of a given nuclear decay. The TCS effects are very prominent for well detectors because of the high efficiencies, and make accounting for TCS a necessity. For CANBERRA's recently released Small Anode Germanium (SAGe) well detector, an extension to CANBERRA's mathematical efficiency calibration method (In Situ Object Calibration Software or ISOCS, and Laboratory SOurceless Calibration Software or LabSOCS) has been developed that allows for calculation of peak and total efficiencies for SAGe well detectors. The extension also makes it possible to calculate TCS corrections for well detectors using the standard algorithm provided with CANBERRAS's Spectroscopy software Genie 2000. The peak and total efficiencies from ISOCS/LabSOCS have been compared to MCNP with agreements within 3% for peak efficiencies and 10% for total efficiencies for energies above 30 keV. A sample containing Ra-226 daughters has been measured within the well and analyzed with and without TCS correction and applying the correction factor shows significant improvement of the activity determination for the energy range 46-2447 keV. The implementation of ISOCS/LabSOCS for well detectors offers a powerful tool for efficiency calibration for these detectors. The automated algorithm to correct for TCS effects in well detectors makes nuclide specific calibration unnecessary and offers flexibility in carrying out gamma spectral analysis.

  20. Redox response model for partly substituted cuprates

    SciTech Connect

    Oesterreicher, H. . Dept. of Chemistry)

    1994-05-01

    Inhomogeneous substitutions (e.g. clustering and preferential site occupations) in compounds such as YBa[sub 2](Cu[sub 1[minus]x]M[sub x])[sub 3]O[sub y] with M = Fe, Co, Ni, etc. are an unavoidable response to the changing redox environments in these O intercalation compounds. The authors collect here experimental evidence for various types of inhomogeneous distributions predicted on a thermodynamic model which considers the preferential desorption'' of O from various local environments. The parameter organizing the redox environment is [Delta]H* (incremental enthalpy of oxygen desorption per mol O[sub 2]). Theory suggests a sequence of discernible states represented by the acronym CLUSTER. With decreasing [Delta]H*, indications for several of these states are obtained from Moessbauer and other experiments. These states are characteristically shifted in [Delta]H* for different M. Also, further substitutions according to (YX)(BaZ)[sub 2](CuM)[sub 3]O[sub y] with X = Ca, Z = Sr, La can change the relevant [Delta]H* for these states, allowing prediction of their preparation conditions. Aspects of the complex electronic phase diagram as a function of redox preparation are discussed.

  1. Modeling Multiple Response Processes in Judgment and Choice

    ERIC Educational Resources Information Center

    Bockenholt, Ulf

    2012-01-01

    In this article, I show how item response models can be used to capture multiple response processes in psychological applications. Intuitive and analytical responses, agree-disagree answers, response refusals, socially desirable responding, differential item functioning, and choices among multiple options are considered. In each of these cases, I…

  2. Robust Estimation of Latent Ability in Item Response Models

    ERIC Educational Resources Information Center

    Schuster, Christof; Yuan, Ke-Hai

    2011-01-01

    Because of response disturbances such as guessing, cheating, or carelessness, item response models often can only approximate the "true" individual response probabilities. As a consequence, maximum-likelihood estimates of ability will be biased. Typically, the nature and extent to which response disturbances are present is unknown, and, therefore,…

  3. A Conditional Joint Modeling Approach for Locally Dependent Item Responses and Response Times

    ERIC Educational Resources Information Center

    Meng, Xiang-Bin; Tao, Jian; Chang, Hua-Hua

    2015-01-01

    The assumption of conditional independence between the responses and the response times (RTs) for a given person is common in RT modeling. However, when the speed of a test taker is not constant, this assumption will be violated. In this article we propose a conditional joint model for item responses and RTs, which incorporates a covariance…

  4. Improving Item Response Theory Model Calibration by Considering Response Times in Psychological Tests

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jorg-Tobias

    2012-01-01

    Research findings indicate that response times in personality scales are related to the trait level according to the so-called speed-distance hypothesis. Against this background, Ferrando and Lorenzo-Seva proposed a latent trait model for the responses and response times in a test. The model consists of two components, a standard item response…

  5. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    NASA Astrophysics Data System (ADS)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  6. Calibration of spectral responsivity of IR detectors in the range from 0.6 μm to 24 μm

    NASA Astrophysics Data System (ADS)

    Podobedov, Vyacheslav B.; Eppeldauer, George P.; Hanssen, Leonard M.; Larason, Thomas C.

    2016-05-01

    We report the upgraded performance of the National Institute of Standards and Technology (NIST) facility for spectral responsivity calibrations of infrared (IR) detectors in both radiant power and irradiance measurement modes. The extension of the wavelength range of the previous scale, below 0.8 μm and above 19 μm in radiant power mode as well as above 5.3 μm in irradiance mode, became available as a result of multiple improvements. The calibration facility was optimized for low-level radiant flux. A significantly reduced noise-equivalent-power and a relatively constant spectral response were achieved recently on newly developed pyroelectric detectors. Also, an efficient optical geometry was developed for calibration of the spectral irradiance responsivity without using an integrating sphere. Simultaneously, the upgrade and maintenance of the NIST transfer standards, with an extended spectral range, were supported by spectral reflectance measurements of a transfer standard pyroelectric detector using a custom integrating sphere and a Fourier transform spectrometer. The sphere reflectance measurements performed in a relative mode were compared to a bare gold-coated mirror reference, separately calibrated at the Fourier transform Infrared Spectrophotometry facility to 18 μm. Currently, the reflectance data for the pyroelectric standard, available in the range up to 30 μm, are supporting the absolute power responsivity scale by the propagation of the reflectance curve to the absolute tie-spectrum in the overlapping range. Typical examples of working standard pyroelectric-, Si-, MCT-, InSb- and InGaAs- detectors are presented and their optimal use for scale dissemination is analyzed.

  7. SU-E-I-67: X-Ray Fluorescence for Energy Response Calibration of a Photon Counting Detector: A Simulation Study

    SciTech Connect

    Cho, H; Ding, H; Ziemer, B; Molloi, S

    2014-06-01

    Purpose: To investigate the feasibility of energy calibration and energy response characterization of a photon counting detector using x-ray fluorescence. Methods: A comprehensive Monte Carlo simulation study was done to investigate the influence of various geometric components on the x-ray fluorescence measurement. Different materials, sizes, and detection angles were simulated using Geant4 Application for Tomographic Emission (GATE) Monte Carlo package. Simulations were conducted using 100 kVp tungsten-anode spectra with 2 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The fluorescence material was placed 300 mm away from both the x-ray source and the detector. For angular dependence measurement, the distance was decreased to 30 mm to reduce the simulation time. Compound materials, containing silver, barium, gadolinium, hafnium, and gold in cylindrical shape, were simulated. The object size varied from 5 to 100 mm in diameter. The angular dependence of fluorescence and scatter were simulated from 20° to 170° with an incremental step of 10° to optimize the fluorescence to scatter ratio. Furthermore, the angular dependence was also experimentally measured using a spectrometer (X-123CdTe, Amptek Inc., MA) to validate the simulation results. Results: The detection angle between 120° to 160° resulted in more optimal x-ray fluorescence to scatter ratio. At a detection angle of 120°, the object size did not have a significant effect on the fluorescence to scatter ratio. The experimental results of fluorescence angular dependence are in good agreement with the simulation results. The Kα and Kβ peaks of five materials could be identified. Conclusion: The simulation results show that the x-ray fluorescence procedure has the potential to be used for detector energy calibration and detector response characteristics by using the optimal system geometry.

  8. Exact modeling of lineshape and wavenumber variations for off-axis detectors in Fourier transform spectrometers (FTS) sensor systems

    NASA Technical Reports Server (NTRS)

    Niple, E.; Pires, A.; Poultney, S. K.

    1983-01-01

    The utilization of detector arrays in the focal planes of FTS sensor systems allows simultaneous spectral and spatial measurements. However, spectral lineshapes and wavenumber locations depend upon the size and location of the detector elements with respect to the Haidinger fringe pattern of the FTS sensor. These spectral distortions can be generalized as a shift and shape change of the FTS sensor lineshape. Depending on the distortions that can be tolerated, a degree of field-widening can be obtained for a given Haidinger fringe pattern. An exact model for predicting the FTS lineshape distortions is presented. The model is applied to several contemporary applications in order to quantify the magnitude of distortions to be expected.

  9. Modeling of radiation damage effects in silicon detectors at high fluences HL-LHC with Sentaurus TCAD

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Moscatelli, F.; Morozzi, A.; Bilei, G. M.

    2016-07-01

    In this work we propose the application of an enhanced radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of silicon detectors at very high fluences (e.g. 2.0 ×1016 1 MeV equivalent neutrons/cm2). We present the comparison between simulation results and experimental data for p-type substrate structures in different operating conditions (temperature and biasing voltages) for fluences up to 2.2 ×1016 neutrons/cm2. The good agreement between simulation findings and experimental measurements fosters the application of this modeling scheme to the optimization of the next silicon detectors to be used at HL-LHC.

  10. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type

  11. Estimating the Nominal Response Model under Nonnormal Conditions

    ERIC Educational Resources Information Center

    Preston, Kathleen Suzanne Johnson; Reise, Steven Paul

    2014-01-01

    The nominal response model (NRM), a much understudied polytomous item response theory (IRT) model, provides researchers the unique opportunity to evaluate within-item category distinctions. Polytomous IRT models, such as the NRM, are frequently applied to psychological assessments representing constructs that are unlikely to be normally…

  12. Multidimensional Vector Model of Stimulus-Response Compatibility

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Proctor, Robert W.

    2012-01-01

    The present study proposes and examines the multidimensional vector (MDV) model framework as a modeling schema for choice response times. MDV extends the Thurstonian model, as well as signal detection theory, to classification tasks by taking into account the influence of response properties on stimulus discrimination. It is capable of accounting…

  13. Hierarchical Diffusion Models for Two-Choice Response Times

    ERIC Educational Resources Information Center

    Vandekerckhove, Joachim; Tuerlinckx, Francis; Lee, Michael D.

    2011-01-01

    Two-choice response times are a common type of data, and much research has been devoted to the development of process models for such data. However, the practical application of these models is notoriously complicated, and flexible methods are largely nonexistent. We combine a popular model for choice response times--the Wiener diffusion…

  14. The Gradual Increase of Responsibility Model: Coaching for Teacher Change

    ERIC Educational Resources Information Center

    Collet, Vicki S.

    2012-01-01

    This study examines the gradual increase of responsibility (GIR) model for teacher coaching (Collet, 2008), an adaptation of Pearson and Gallagher's (1983) Gradual Release of Responsibility model. In GIR, instructional coaches model, make recommendations, ask probing questions, affirm teachers' appropriate decisions, and praise in order to provide…

  15. SCINTILLATION EXPOSURE RATE DETECTOR

    DOEpatents

    Spears, W.G.

    1960-11-01

    A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.

  16. Women's Endorsement of Models of Sexual Response: Correlates and Predictors.

    PubMed

    Nowosielski, Krzysztof; Wróbel, Beata; Kowalczyk, Robert

    2016-02-01

    Few studies have investigated endorsement of female sexual response models, and no single model has been accepted as a normative description of women's sexual response. The aim of the study was to establish how women from a population-based sample endorse current theoretical models of the female sexual response--the linear models and circular model (partial and composite Basson models)--as well as predictors of endorsement. Accordingly, 174 heterosexual women aged 18-55 years were included in a cross-sectional study: 74 women diagnosed with female sexual dysfunction (FSD) based on DSM-5 criteria and 100 non-dysfunctional women. The description of sexual response models was used to divide subjects into four subgroups: linear (Masters-Johnson and Kaplan models), circular (partial Basson model), mixed (linear and circular models in similar proportions, reflective of the composite Basson model), and a different model. Women were asked to choose which of the models best described their pattern of sexual response and how frequently they engaged in each model. Results showed that 28.7% of women endorsed the linear models, 19.5% the partial Basson model, 40.8% the composite Basson model, and 10.9% a different model. Women with FSD endorsed the partial Basson model and a different model more frequently than did non-dysfunctional controls. Individuals who were dissatisfied with a partner as a lover were more likely to endorse a different model. Based on the results, we concluded that the majority of women endorsed a mixed model combining the circular response with the possibility of an innate desire triggering a linear response. Further, relationship difficulties, not FSD, predicted model endorsement. PMID:26601676

  17. Analysis of the Response of CVD Diamond Detectors for UV and sX-Ray Plasma Diagnostics Installed at JET

    NASA Astrophysics Data System (ADS)

    Caiffi, B.; Coffey, I.; Pillon, M.; Osipenko, M.; Prestopino, G.; Ripani, M.; Taiuti, M.; Verona, C.; Verona-Rinati, G.

    Diamond detectors are very promising candidates for plasma diagnostics in a harsh environment. In fact, they have several proprieties which make them suitable for magnetic fusion devices: radiation hardness, high thermal conductivity, high resistivity, high carrier mobility and a large bandgap (5.5 eV). The latter makes them insensitive to visible radiation and allows low noise measurements without any cooling. In 2008 two CVD (Chemical Vapour Deposition) single crystal diamond (SCD) detectors were installed at the JET tokamak as extreme UV and soft X-Ray diagnostics [1]. In this work the neutron background in these detectors was measured shielding the UV and soft X-Ray radiation by closing a local vacuum valve. The UV detector was found to be insensitive to the neutron flux, while the soft X Ray detector signal exhibited spikes during the highest neutron rate pulse (neutron rate 1016n/s, which corresponds to a flux of φn ˜105n/cm2s in the detector location). These spikes were found to be due to the (n,p) reaction within the plastic filter in front of the soft X-Ray detector. The UV SCD was also used to perform time of flight (ToF) measurements in laser ablation experiments. ToFs were found to be an order of magnitude higher than expected if only the drift velocity is considered. This discrepancy could be due to a delay between the arrival time of the impurities in the plasma and their emission in an energy range which SCD is sensitive to (Eph >5.5 eV). The delay is found to be comparable with the expected ionization times for edge plasma conditions.

  18. Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2008-01-01

    In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters of a unidimensional item response model using marginal maximum likelihood estimation. This study evaluates RC-IRT for the three-parameter logistic (3PL) model with comparisons to the normal model and to the empirical…

  19. Modeling electric fields inside the LUX detector in 3D using 83mKr calibration data

    NASA Astrophysics Data System (ADS)

    Tvrznikova, Lucie; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) experiment is a 350 kg two-phase liquid/gas xenon time projection chamber designed for the direct detection of weakly interacting massive particles, a leading dark matter candidate. LUX operates on the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. Weekly calibrations using a homogeneous injection of a monoenergetic 83mKr source enable us to monitor xenon within the active region. For this project, a 3D model of the electric fields inside the LUX detector was created using COMSOL Multiphysics software. A simulation of electrons drifting in the detector then produces a set of computational predictions. These are then reconciled with the 83mKr data to confirm the accuracy of the field model. The result of this work is a more accurate understanding of the electric field inside the active region. This model, in conjuction with these methods, may now be used to study other phenomena such as possible surface charge buildup in detector materials.

  20. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  1. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  2. SU-E-T-592: OSL Response of Al2O3:C Detectors Exposed to Therapeutic Proton Beams

    SciTech Connect

    Granville, DA; Flint, DB; Sawakuchi, GO

    2015-06-15

    Purpose: To characterize the response of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) detectors (OSLDs) exposed to therapeutic proton beams of differing beam quality. Methods: We prepared Al{sub 2}O{sub 3}:C OSLDs from the same material as commercially available nanoDot dosimeters (Landauer, Inc). We irradiated the OSLDs in modulated proton beams of varying quality, as defined by the residual range. An absorbed dose to water of 0.2 Gy was delivered to all OSLDs with the residual range values varying from 0.5 to 23.5 cm (average LET in water from ∼0.5 to 2.5 keV/µm). To investigate the beam quality dependence of different emission bands within the OSL spectrum, we performed OSLD readouts using both continuous-wave stimulation (CW-OSL) and pulsed stimulation (P-OSL) with two sets of optical filters (Hoya U-340 and Kopp 5113). For all readout modes, the relative absorbed dose sensitivity (S{sub rel}) for each beam quality was calculated using OSLDs irradiated in a 6 MV photon beam as a reference. Results: We found that the relative absorbed dose sensitivity was highly dependent on both readout mode and integration time of the OSL signal. For CW-OSL signals containing only the blue emission band, S{sub rel} was between 0.85 and 0.94 for 1 s readouts and between 0.82 and 0.93 for 10 s readouts. Similarly, for P-OSL readouts containing only the blue emission band S{sub rel} ranged from 0.86 to 0.91, and 0.82 to 0.93 for 1 s and 10 s readouts, respectively. For OSLD signals containing only the UV emission band, S{sub rel} ranged from 1.00 to 1.46, and 0.97 to 1.30 for P-OSL readouts of 1 s and 10 s, respectively. Conclusion: For measurements of absorbed dose using Al{sub 2}O{sub 3}:C OSLDs in therapeutic proton beams, dependence on beam quality was smallest for readout protocols that selected the blue emission band with small integration times. DA Granville received financial support from the Natural Sciences and Engineering

  3. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from

  4. FOUR PI CALIBRATION AND MODELING OF A BARE GERMANIUM DETECTOR IN A CYLINDRICAL FIELD SOURCE

    SciTech Connect

    Dewberry, R.; Young, J.

    2011-04-29

    In reference 1 the authors described {gamma}-ray holdup assay of a Mossbauer spectroscopy instrument where they utilized two axial symmetric cylindrical shell acquisitions and two disk source acquisitions to determine Am-241 and Np-237 contamination. The measured contents of the two species were determined using a general detector efficiency calibration taken from a 12-inch point source.2 The authors corrected the raw spectra for container absorption as well as for geometry corrections to transform the calibration curve to the applicable axial symmetric cylindrical source - and disk source - of contamination. The authors derived the geometry corrections with exact calculus that are shown in equations (1) and (2) of our Experimental section. A cylindrical shell (oven source) acquisition configuration is described in reference 3, where the authors disclosed this configuration to gain improved sensitivity for holdup measure of U-235 in a ten-chamber oven. The oven was a piece of process equipment used in the Savannah River Plant M-Area Uranium Fuel Fabrication plant for which a U-235 holdup measurement was necessary for its decontamination and decommissioning in 2003.4 In reference 4 the authors calibrated a bare NaI detector for these U-235 holdup measurements. In references 5 and 6 the authors calibrated a bare HpGe detector in a cylindrical shell configuration for improved sensitivity measurements of U-235 in other M-Area process equipment. Sensitivity was vastly improved compared to a close field view of the sample, with detection efficiency of greater than 1% for the 185.7-keV {gamma}-ray from U-235. In none of references 3 - 7 did the authors resolve the exact calculus descriptions of the acquisition configurations. Only the empirical efficiency for detection of the 185.7-keV photon from U-235 decay was obtained. Not until the 2010 paper of reference 1 did the authors derive a good theoretical description of the flux of photons onto the front face of a detector

  5. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  6. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.

    PubMed

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-21

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code MANTIS, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fastDETECT2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the MANTIS code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify PENELOPE (the open source software package that handles the x-ray and electron transport in MANTIS) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fastDETECT2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybridMANTIS approach achieves a significant speed-up factor of 627 when compared to MANTIS and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybridMANTIS, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical tox-ray transport. The new code requires much less memory than MANTIS and, asa result, allows us to efficiently simulate large area detectors. PMID:22469917

  7. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  8. Response of CR39 track etch detector to 10 A GeV Fe 26+ ion beam and total charge changing cross section measurement

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Gupta, R.; Jalota, S.; Giacomelli, G.; Patrizii, L.; Togo, V.

    2012-01-01

    Total charge changing cross-section of 10 A GeV Fe 26+ ion beam on polyethylene and CR39 targets was measured. Charge of the fragments of projectiles was detected using CR39 nuclear track detectors by a new technique of one-side etching using an automated optical microscope with an image analysing software. The calculated value of total charge changing cross-section is σ tot = (2694 ± 142)mb and is in good agreement with the experimental values by other methods within error. The restricted energy loss ( REL) at energy 10 A GeV for all the fragments was theoretically calculated by using Bethe-Bloch equation and then obtained a calibration curve of reduced etch-rate ratio ( p) versus REL showing the response of CR39 track detectors to 10 A GeV Fe 26+ beam. The curve was fitted by a polynomial showing the relation between p and REL.

  9. Bayesian Estimation of Multi-Unidimensional Graded Response IRT Models

    ERIC Educational Resources Information Center

    Kuo, Tzu-Chun

    2015-01-01

    Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…

  10. Item Response Models for Local Dependence among Multiple Ratings

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Su, Chi-Ming; Qiu, Xue-Lan

    2014-01-01

    Ratings given to the same item response may have a stronger correlation than those given to different item responses, especially when raters interact with one another before giving ratings. The rater bundle model was developed to account for such local dependence by forming multiple ratings given to an item response as a bundle and assigning…

  11. Understanding Responsibility: A Self-Directed Learning Application of the Triangle Model of Responsibility

    ERIC Educational Resources Information Center

    Kohns, Jonathan W.; Ponton, Michael K.

    2006-01-01

    Personal responsibility has long been considered an important component in self-directed learning. And yet, a theoretical understanding of personal responsibility that could lead to meaningful instrumentation has eluded the field. The present study considers the merits of the Triangle Model of Responsibility (TMR) (Schlenker, Britt, Pennington,…

  12. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system.

    PubMed

    Fahmi, Rachid; Eck, Brendan L; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G; Wilson, David L

    2016-03-21

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR [Formula: see text] 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition

  13. Quantitative myocardial perfusion imaging in a porcine ischemia model using a prototype spectral detector CT system

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Dhanantwari, Amar; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR  <  0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29  ±  0.01, over-estimating stenosis severity as compared to 0.42  ±  0.01 (p  <  0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50  ±  0.04 falsely indicating an actionable ischemic condition in a healthy

  14. A Mixture Rasch Model with Item Response Time Components

    ERIC Educational Resources Information Center

    Meyer, J. Patrick

    2010-01-01

    An examinee faced with a test item will engage in solution behavior or rapid-guessing behavior. These qualitatively different test-taking behaviors bias parameter estimates for item response models that do not control for such behavior. A mixture Rasch model with item response time components was proposed and evaluated through application to real…

  15. Item Response Models for Examinee-Selected Items

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Jin, Kuan-Yu; Qiu, Xue-Lan; Wang, Lei

    2012-01-01

    In some tests, examinees are required to choose a fixed number of items from a set of given items to answer. This practice creates a challenge to standard item response models, because more capable examinees may have an advantage by making wiser choices. In this study, we developed a new class of item response models to account for the choice…

  16. The Nominal Response Model in Computerized Adaptive Testing.

    ERIC Educational Resources Information Center

    De Ayala, R. J.

    One important and promising application of item response theory (IRT) is computerized adaptive testing (CAT). The implementation of a nominal response model-based CAT (NRCAT) was studied. Item pool characteristics for the NRCAT as well as the comparative performance of the NRCAT and a CAT based on the three-parameter logistic (3PL) model were…

  17. The Role of Assessment in a Response to Intervention Model

    ERIC Educational Resources Information Center

    Crawford, Lindy

    2014-01-01

    This article discusses the role of assessment in a response-to-intervention model. Although assessment represents only 1 component in a response-to-intervention model, a well-articulated assessment system is critical in providing teachers with reliable data that are easily interpreted and used to make instructional decisions. Three components of…

  18. Projective Item Response Model for Test-Independent Measurement

    ERIC Educational Resources Information Center

    Ip, Edward Hak-Sing; Chen, Shyh-Huei

    2012-01-01

    The problem of fitting unidimensional item-response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that contains a major dimension of interest but that may also contain minor nuisance dimensions. Because fitting a unidimensional model to multidimensional data results in…

  19. Investigating the LGBTQ Responsive Model for Supervision of Group Work

    ERIC Educational Resources Information Center

    Luke, Melissa; Goodrich, Kristopher M.

    2013-01-01

    This article reports an investigation of the LGBTQ Responsive Model for Supervision of Group Work, a trans-theoretical supervisory framework to address the needs of lesbian, gay, bisexual, transgender, and questioning (LGBTQ) persons (Goodrich & Luke, 2011). Findings partially supported applicability of the LGBTQ Responsive Model for Supervision…

  20. Models for Measurement, Precision, and the Nondichotomization of Graded Responses.

    ERIC Educational Resources Information Center

    Andrich, David

    1995-01-01

    It is common in the social sciences to collect data in the form of graded responses and then to combine adjacent categories. The joining assumptions of Jansen and Roskam (1986) and the use of the Rasch model for graded responses are explored. Implications of model choice are discussed. (SLD)