Science.gov

Sample records for modeling mlrs operations

  1. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  2. Learning Resources Operational Model.

    ERIC Educational Resources Information Center

    Tarrant County Junior Coll. District, Ft. Worth, TX.

    The learning resources program at Tarrant Count Junior College calls for a district-wide resource dedicated to the support of instruction. Traditional library and media services are subsumed within this approach. The operational model consists of many interrelated subsystems most of which are described by flow charts. The systems viewpoint is…

  3. Operations and Modeling Analysis

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    2005-01-01

    The Reliability and Maintainability Analysis Tool (RMAT) provides NASA the capability to estimate reliability and maintainability (R&M) parameters and operational support requirements for proposed space vehicles based upon relationships established from both aircraft and Shuttle R&M data. RMAT has matured both in its underlying database and in its level of sophistication in extrapolating this historical data to satisfy proposed mission requirements, maintenance concepts and policies, and type of vehicle (i.e. ranging from aircraft like to shuttle like). However, a companion analyses tool, the Logistics Cost Model (LCM) has not reached the same level of maturity as RMAT due, in large part, to nonexistent or outdated cost estimating relationships and underlying cost databases, and it's almost exclusive dependence on Shuttle operations and logistics cost input parameters. As a result, the full capability of the RMAT/LCM suite of analysis tools to take a conceptual vehicle and derive its operations and support requirements along with the resulting operating and support costs has not been realized.

  4. Modeling aerial refueling operations

    NASA Astrophysics Data System (ADS)

    McCoy, Allen B., III

    Aerial Refueling (AR) is the act of offloading fuel from one aircraft (the tanker) to another aircraft (the receiver) in mid flight. Meetings between tanker and receiver aircraft are referred to as AR events and are scheduled to: escort one or more receivers across a large body of water; refuel one or more receivers; or train receiver pilots, tanker pilots, and boom operators. In order to efficiently execute the Aerial Refueling Mission, the Air Mobility Command (AMC) of the United States Air Force (USAF) depends on computer models to help it make tanker basing decisions, plan tanker sorties, schedule aircraft, develop new organizational doctrines, and influence policy. We have worked on three projects that have helped AMC improve its modeling and decision making capabilities. Optimal Flight Planning. Currently Air Mobility simulation and optimization software packages depend on algorithms which iterate over three dimensional fuel flow tables to compute aircraft fuel consumption under changing flight conditions. When a high degree of fidelity is required, these algorithms use a large amount of memory and CPU time. We have modeled the rate of aircraft fuel consumption with respect to AC GrossWeight, Altitude and Airspeed. When implemented, this formula will decrease the amount of memory and CPU time needed to compute sortie fuel costs and cargo capacity values. We have also shown how this formula can be used in optimal control problems to find minimum costs flight plans. Tanker Basing Demand Mismatch Index. Since 1992, AMC has relied on a Tanker Basing/AR Demand Mismatch Index which aggregates tanker capacity and AR demand data into six regions. This index was criticized because there were large gradients along regional boundaries. Meanwhile tankers frequently cross regional boundaries to satisfy the demand for AR support. In response we developed continuous functions to score locations with respect to their proximity to demand for AR support as well as their

  5. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. PMID:25808298

  6. Launch systems operations cost modeling

    NASA Astrophysics Data System (ADS)

    Jacobs, Mark K.

    1999-01-01

    This paper describes the launch systems operations modeling portion of a larger model development effort, NASA's Space Operations Cost Model (SOCM), led by NASA HQ. The SOCM study team, which includes cost and technical experts from each NASA Field Center and various contractors, has been tasked to model operations costs for all future NASA mission concepts including planetary and Earth orbiting science missions, space facilities, and launch systems. The launch systems operations modeling effort has near term significance for assessing affordability of our next generation launch vehicles and directing technology investments, although it provides only a part of the necessary inputs to assess life cycle costs for all elements that determine affordability for a launch system. Presented here is a methodology to estimate requirements associated with a launch facility infrastructure, or Spaceport, from start-up/initialization into steady-state operation. Included are descriptions of the reference data used, the unique estimating methodology that combines cost lookup tables, parametric relationships, and constructively-developed correlations of cost driver input values to collected reference data, and the output categories that can be used by economic and market models. Also, future plans to improve integration of launch vehicle development cost models, reliability and maintainability models, economic and market models, and this operations model to facilitate overall launch system life cycle performance simulations will be presented.

  7. Lunar Landing Operational Risk Model

    NASA Technical Reports Server (NTRS)

    Mattenberger, Chris; Putney, Blake; Rust, Randy; Derkowski, Brian

    2010-01-01

    Characterizing the risk of spacecraft goes beyond simply modeling equipment reliability. Some portions of the mission require complex interactions between system elements that can lead to failure without an actual hardware fault. Landing risk is currently the least characterized aspect of the Altair lunar lander and appears to result from complex temporal interactions between pilot, sensors, surface characteristics and vehicle capabilities rather than hardware failures. The Lunar Landing Operational Risk Model (LLORM) seeks to provide rapid and flexible quantitative insight into the risks driving the landing event and to gauge sensitivities of the vehicle to changes in system configuration and mission operations. The LLORM takes a Monte Carlo based approach to estimate the operational risk of the Lunar Landing Event and calculates estimates of the risk of Loss of Mission (LOM) - Abort Required and is Successful, Loss of Crew (LOC) - Vehicle Crashes or Cannot Reach Orbit, and Success. The LLORM is meant to be used during the conceptual design phase to inform decision makers transparently of the reliability impacts of design decisions, to identify areas of the design which may require additional robustness, and to aid in the development and flow-down of requirements.

  8. Reusable Rocket Engine Operability Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Christenson, R. L.; Komar, D. R.

    1998-01-01

    This paper describes the methodology, model, input data, and analysis results of a reusable launch vehicle engine operability study conducted with the goal of supporting design from an operations perspective. Paralleling performance analyses in schedule and method, this requires the use of metrics in a validated operations model useful for design, sensitivity, and trade studies. Operations analysis in this view is one of several design functions. An operations concept was developed given an engine concept and the predicted operations and maintenance processes incorporated into simulation models. Historical operations data at a level of detail suitable to model objectives were collected, analyzed, and formatted for use with the models, the simulations were run, and results collected and presented. The input data used included scheduled and unscheduled timeline and resource information collected into a Space Transportation System (STS) Space Shuttle Main Engine (SSME) historical launch operations database. Results reflect upon the importance not only of reliable hardware but upon operations and corrective maintenance process improvements.

  9. Operating cost model for local service airlines

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Andrastek, D. A.

    1976-01-01

    Several mathematical models now exist which determine the operating economics for a United States trunk airline. These models are valuable in assessing the impact of new aircraft into an airline's fleet. The use of a trunk airline cost model for the local service airline does not result in representative operating costs. A new model is presented which is representative of the operating conditions and resultant costs for the local service airline. The calculated annual direct and indirect operating costs for two multiequipment airlines are compared with their actual operating experience.

  10. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  11. Evaluation of stochastic reservoir operation optimization models

    NASA Astrophysics Data System (ADS)

    Celeste, Alcigeimes B.; Billib, Max

    2009-09-01

    This paper investigates the performance of seven stochastic models used to define optimal reservoir operating policies. The models are based on implicit (ISO) and explicit stochastic optimization (ESO) as well as on the parameterization-simulation-optimization (PSO) approach. The ISO models include multiple regression, two-dimensional surface modeling and a neuro-fuzzy strategy. The ESO model is the well-known and widely used stochastic dynamic programming (SDP) technique. The PSO models comprise a variant of the standard operating policy (SOP), reservoir zoning, and a two-dimensional hedging rule. The models are applied to the operation of a single reservoir damming an intermittent river in northeastern Brazil. The standard operating policy is also included in the comparison and operational results provided by deterministic optimization based on perfect forecasts are used as a benchmark. In general, the ISO and PSO models performed better than SDP and the SOP. In addition, the proposed ISO-based surface modeling procedure and the PSO-based two-dimensional hedging rule showed superior overall performance as compared with the neuro-fuzzy approach.

  12. A Staffing Model for Telephone Reference Operations

    ERIC Educational Resources Information Center

    Sampson, Gary S.

    1978-01-01

    A model is provided for staffing telephone reference operations which allow for the balancing of staffing requirements and reference delivery standards. Telephone service is assumed, but it should be equally applicable to any reference queuing situation. (Author)

  13. Modeling of Transient Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Colwell, G. T.; Hartley, J. G.

    1984-01-01

    The major goal of this project is to develop mathematical models of heat pipes which can be used to predict transient behavior under normal and adverse conditions. The models and solution techniques are to be formulated so that they can be incorporated into existing NASA structural design codes. The major parameters of interest are heat flux distribution, temperature distribution, working fluid pressure distribution, fluid and containment thermal and mechanical properties and geometry. Normal transient operation is taken to be operating conditions where the capillary structure remains fully wetted. Adverse transient operation occurs when drying, re-wetting, choking, non-continuum flow, thawing, freezing, etc., occur in the internal heat pipe working fluid.

  14. The Launch Systems Operations Cost Model

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  15. An Ionospheric Metric Study Using Operational Models

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Schunk, R. W.; Thompson, D. C.; Scherliess, L.; Harris, T. J.

    2006-12-01

    One of the outstanding challenges in upgrading ionospheric operational models is quantifying their improvement. This challenge is not necessarily an absolute accuracy one, but rather answering the question, "Is the newest operational model an improvement over its predecessor under operational scenarios?" There are few documented cases where ionospheric models are compared either with each other or against "ground truth". For example a CEDAR workshop team, PRIMO, spent almost a decade carrying out a models comparison with ionosonde and incoherent scatter radar measurements from the Millstone Hill, Massachusetts location [Anderson et al.,1998]. The result of this study was that all models were different and specific conditions could be found when each was the "best" model. Similarly, a National Space Weather Metrics ionospheric challenge was held and results were presented at a National Space Weather meeting. The results were again found to be open to interpretation, and issues with the value of the specific metrics were raised (Fuller-Rowell, private communication, 2003). Hence, unlike the tropospheric weather community, who have established metrics and exercised them on new models over many decades to quantify improvement, the ionospheric community has not yet settled on a metric of both scientific and operational value. We report on a study in which metrics were used to compare various forms of the International Reference Ionosphere (IRI), the Ionospheric Forecast Model (IFM), and the Utah State University Global Assimilation of Ionospheric Measurements Model (USU-GAIM) models. The ground truth for this study was a group of 11 ionosonde data sets taken between 20 March and 19 April 2004. The metric parameter was the ionosphere's critical frequency. The metric was referenced to the IRI. Hence, the study addressed the specific question what improvement does IFM and USU-GAIM have over IRI. Both strengths (improvements) and weaknesses of these models are discussed

  16. An Operational Model of Motor Skill Diagnosis.

    ERIC Educational Resources Information Center

    Pinheiro, Victor E. D.; Simon, Herbert A.

    1992-01-01

    The ability to diagnose motor skills is important for physical educators. The paper discusses processes critical in motor skill diagnosis, proposing an operational model of motor skill development diagnosis for teacher educators and practitioners. The model provides a foundation upon which to build instructional strategies for developing…

  17. Risk management model of winter navigation operations.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-07-15

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. PMID:27207023

  18. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  19. Statistical models for operational risk management

    NASA Astrophysics Data System (ADS)

    Cornalba, Chiara; Giudici, Paolo

    2004-07-01

    The Basel Committee on Banking Supervision has released, in the last few years, recommendations for the correct determination of the risks to which a banking organization is subject. This concerns, in particular, operational risks, which are all those management events that may determine unexpected losses. It is necessary to develop valid statistical models to measure and, consequently, predict, such operational risks. In the paper we present the possible approaches, including our own proposal, which is based on Bayesian networks.

  20. Modeling Operations Costs for Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  1. Modeling of transient heat pipe operation

    NASA Technical Reports Server (NTRS)

    Colwell, Gene T.

    1989-01-01

    Mathematical models and an associated computer program for heat pipe startup from the frozen state have been developed. Finite element formulations of the governing equations are written for each heat pipe region for each operating condition during startup from the frozen state. The various models were checked against analytical and experimental data available in the literature for three specific types of operation. Computations using the methods developed were made for a space shuttle reentry mission where a heat pipe cooled leading edge was used on the wing.

  2. Operational physical models of the ionosphere

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1978-01-01

    Global models of the neutral constituents are considered relevant to ion density models and improved knowledge of the ion chemistry. Information provided on the pressure gradients that control the wind system and the electric field systems due to balloon, satellite, and incoherent scatter measurements is discussed along with the implication of these results to the development of global ionospheric models. The current state of knowledge of the factors controlling the large day to day variations in the ionosphere and possible approaches for operational models are reviewed.

  3. Nearshore Operational Model for Rip Current Predictions

    NASA Astrophysics Data System (ADS)

    Sembiring, L. E.; Van Dongeren, A. R.; Van Ormondt, M.; Winter, G.; Roelvink, J.

    2012-12-01

    A coastal operational model system can serve as a tool in order to monitor and predict coastal hazards, and to acquire up-to-date information on coastal state indicators. The objective of this research is to develop a nearshore operational model system for the Dutch coast focusing on swimmer safety. For that purpose, an operational model system has been built which can predict conditions up to 48 hours ahead. The model system consists of three different nested model domain covering The North Sea, The Dutch coastline, and one local model which is the area of interest. Three different process-based models are used to simulate physical processes within the system: SWAN to simulate wave propagation, Delft3D-Flow for hydraulics flow simulation, and XBeach for the nearshore models. The SWAN model is forced by wind fields from operational HiRLAM, as well as two dimensional wave spectral data from WaveWatch 3 Global as the ocean boundaries. The Delft3D Flow model is forced by assigning the boundaries with tidal constants for several important astronomical components as well as HiRLAM wind fields. For the local XBeach model, up-to-date bathymetry will be obtained by assimilating model computation and Argus video data observation. A hindcast is carried out on the Continental Shelf Model, covering the North Sea and nearby Atlantic Ocean, for the year 2009. Model skills are represented by several statistical measures such as rms error and bias. In general the results show that the model system exhibits a good agreement with field data. For SWAN results, integral significant wave heights are predicted well by the model for all wave buoys considered, with rms errors ranging from 0.16 m for the month of May with observed mean significant wave height of 1.08 m, up to rms error of 0.39 m for the month of November, with observed mean significant wave height of 1.91 m. However, it is found that the wave model slightly underestimates the observation for the period of June, especially

  4. An operator model-based filtering scheme

    SciTech Connect

    Sawhney, R.S.; Dodds, H.L. ); Schryer, J.C. )

    1990-01-01

    This paper presents a diagnostic model developed at Oak Ridge National Laboratory (ORNL) for off-normal nuclear power plant events. The diagnostic model is intended to serve as an embedded module of a cognitive model of the human operator, one application of which could be to assist control room operators in correctly responding to off-normal events by providing a rapid and accurate assessment of alarm patterns and parameter trends. The sequential filter model is comprised of two distinct subsystems --- an alarm analysis followed by an analysis of interpreted plant signals. During the alarm analysis phase, the alarm pattern is evaluated to generate hypotheses of possible initiating events in order of likelihood of occurrence. Each hypothesis is further evaluated through analysis of the current trends of state variables in order to validate/reject (in the form of increased/decreased certainty factor) the given hypothesis. 7 refs., 4 figs.

  5. Model Based Autonomy for Robust Mars Operations

    NASA Technical Reports Server (NTRS)

    Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)

    1998-01-01

    Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.

  6. Business Intelligence Modeling in Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  7. Business intelligence modeling in launch operations

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  8. The national operational environment model (NOEM)

    NASA Astrophysics Data System (ADS)

    Salerno, John J.; Romano, Brian; Geiler, Warren

    2011-06-01

    The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components

  9. Disease Prediction Models and Operational Readiness

    SciTech Connect

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.

    2014-03-19

    INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNL’s IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the

  10. Disease Prediction Models and Operational Readiness

    PubMed Central

    Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M.; Lancaster, Mary J.

    2014-01-01

    The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness

  11. Disease prediction models and operational readiness.

    PubMed

    Corley, Courtney D; Pullum, Laura L; Hartley, David M; Benedum, Corey; Noonan, Christine; Rabinowitz, Peter M; Lancaster, Mary J

    2014-01-01

    The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. We define a disease event to be a biological event with focus on the One Health paradigm. These events are characterized by evidence of infection and or disease condition. We reviewed models that attempted to predict a disease event, not merely its transmission dynamics and we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). We searched commercial and government databases and harvested Google search results for eligible models, using terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche modeling. After removal of duplications and extraneous material, a core collection of 6,524 items was established, and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. As a result, we systematically reviewed 44 papers, and the results are presented in this analysis. We identified 44 models, classified as one or more of the following: event prediction (4), spatial (26), ecological niche (28), diagnostic or clinical (6), spread or response (9), and reviews (3). The model parameters (e.g., etiology, climatic, spatial, cultural) and data sources (e.g., remote sensing, non-governmental organizations, expert opinion, epidemiological) were recorded and reviewed. A component of this review is the identification of verification and validation (V&V) methods applied to each model, if any V&V method was reported. All models were classified as either having undergone Some Verification or Validation method, or No Verification or Validation. We close by outlining an initial set of operational readiness level guidelines for disease prediction models based upon established Technology Readiness

  12. Radiative transfer model: matrix operator method.

    PubMed

    Liu, Q; Ruprecht, E

    1996-07-20

    A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832

  13. Operations for Learning with Graphical Models

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1994-01-01

    This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Well-known examples of graphical models include Bayesian net- works, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. These operations adapt existing techniques from statistics and automatic differentiation to graphs. Two standard algorithm schemes for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Some algorithms are developed in this graphical framework including a generalized version of linear regression, techniques for feed-forward networks, and learning Gaussian and discrete Bayesian networks from data. The paper concludes by sketching some implications for data analysis and summarizing some popular algorithms that fall within the framework presented. The main original contributions here are the decomposition techniques and the demonstration that graphical models provide a framework for understanding and developing complex learning algorithms.

  14. Modelling approaches for bio-manufacturing operations.

    PubMed

    Chhatre, Sunil

    2013-01-01

    Fast and cost-effective methods are needed to reduce the time and money needed for drug commercialisation and to determine the risks involved in adopting specific manufacturing strategies. Simulations offer one such approach for exploring design spaces before significant process development is carried out and can be used from the very earliest development stages through to scale-up and optimisation of operating conditions and resource deployment patterns both before and after plant start-up. The advantages this brings in terms of financial savings can be considerable, but to achieve these requires a full appreciation of the complexities of processes and how best to represent them mathematically within the context of in silico software. This chapter provides a summary of some of the work that has been carried out in the areas of mathematical modelling and discrete event simulations for production, recovery and purification operations when designing bio-pharmaceutical processes, looking at both financial and technical modelling. PMID:23183689

  15. An Operator Formalism for Unitary Matrix Models

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, K. N.; Bowick, M. J.; Ishibashi, N.

    We analyze the double scaling limit of unitary matrix models in terms of trigonometric orthogonal polynomials on the circle. In particular we find a compact formulation of the string equation at the kth multicritical point in terms of pseudodifferential operators and a corresponding action principle. We also relate this approach to the mKdV hierarchy which appears in the analysis in terms of conventional orthogonal polynomials on the circle.

  16. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  17. Modelling of the District Heating System's Operation

    NASA Astrophysics Data System (ADS)

    Vigants, Girts; Blumberga, Dagnija; Vīgants, Ģirts; Blumberga, Dagnija

    2011-01-01

    The development of a district heating systems calculation model means improvement in the energy efficiency of a district heating system, which makes it possible to reduce the heat losses, thus positively affecting the tariffs on thermal energy. In this paper, a universal approach is considered, based on which the optimal flow and temperature conditions in a district heating system network could be calculated. The optimality is determined by the least operational costs. The developed calculation model has been tested on the Ludza district heating system based on the technical parameters of this system.

  18. Maximally Expressive Modeling of Operations Tasks

    NASA Technical Reports Server (NTRS)

    Jaap, John; Richardson, Lea; Davis, Elizabeth

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.

  19. Facility Will Help Transition Models Into Operations

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-02-01

    The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.

  20. Dipole operator constraints on composite Higgs models

    NASA Astrophysics Data System (ADS)

    König, Matthias; Neubert, Matthias; Straub, David M.

    2014-07-01

    Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the branching ratio and . After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and or flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.

  1. Evaluation of Model Operational Analyses during DYNAMO

    NASA Astrophysics Data System (ADS)

    Ciesielski, Paul; Johnson, Richard

    2013-04-01

    A primary component of the observing system in the DYNAMO-CINDY2011-AMIE field campaign was an atmospheric sounding network comprised of two sounding quadrilaterals, one north and one south of the equator over the central Indian Ocean. During the experiment a major effort was undertaken to ensure the real-time transmission of these data onto the GTS (Global Telecommunication System) for dissemination to the operational centers (ECMWF, NCEP, JMA, etc.). Preliminary estimates indicate that ~95% of the soundings from the enhanced sounding network were successfully transmitted and potentially used in their data assimilation systems. Because of the wide use of operational and reanalysis products (e.g., in process studies, initializing numerical simulations, construction of large-scale forcing datasets for CRMs, etc.), their validity will be examined by comparing a variety of basic and diagnosed fields from two operational analyses (ECMWF and NCEP) to similar analyses based solely on sounding observations. Particular attention will be given to the vertical structures of apparent heating (Q1) and drying (Q2) from the operational analyses (OA), which are strongly influenced by cumulus parameterizations, a source of model infidelity. Preliminary results indicate that the OA products did a reasonable job at capturing the mean and temporal characteristics of convection during the DYNAMO enhanced observing period, which included the passage of two significant MJO events during the October-November 2011 period. For example, temporal correlations between Q2-budget derived rainfall from the OA products and that estimated from the TRMM satellite (i.e., the 3B42V7 product) were greater than 0.9 over the Northern Sounding Array of DYNAMO. However closer inspection of the budget profiles show notable differences between the OA products and the sounding-derived results in low-level (surface to 700 hPa) heating and drying structures. This presentation will examine these differences and

  2. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  3. Modeling Power System Operation with Intermittent Resources

    SciTech Connect

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  4. Implementation of Mexico's Health Promotion Operational Model.

    PubMed

    Santos-Burgoa, Carlos; Rodríguez-Cabrera, Lucero; Rivero, Lilia; Ochoa, Jorge; Stanford, Adriana; Latinovic, Ljubica; Rueda, Gretel

    2009-01-01

    Mexico is undergoing profound health reform, extending health insurance to previously uninsured populations and changing the way health care services are delivered. Legislation enacted in 2003 and implemented in 2004 mandated funding and infrastructure that will allow 52% of Mexico's population to access medical care at no cost by 2010. This ambitious social reform has not been without challenges, particularly financial sustainability. Health promotion, because of its potential to prevent or delay chronic diseases and injuries and their associated costs, is a key component of health care reform. In 2006, the Ministry of Health's General Directorate of Health Promotion developed the Health Promotion Operational Model. Based on Ottawa Charter functions, the model integrates health promotion activities within the overall health care system. The main goal of this model is to build strong human capital and to improve organizational capacity for health promotion starting at the local level by training health care personnel to implement health promotion activities. Organizational development workshops started in 2006, and implementation plans in all 32 Mexican states were in place by end of 2008. PMID:19080038

  5. A Secure Operational Model for Mobile Payments

    PubMed Central

    2014-01-01

    Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers' security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service. PMID:25386607

  6. A secure operational model for mobile payments.

    PubMed

    Chang, Tao-Ku

    2014-01-01

    Instead of paying by cash, check, or credit cards, customers can now also use their mobile devices to pay for a wide range of services and both digital and physical goods. However, customers' security concerns are a major barrier to the broad adoption and use of mobile payments. In this paper we present the design of a secure operational model for mobile payments in which access control is based on a service-oriented architecture. A customer uses his/her mobile device to get authorization from a remote server and generate a two-dimensional barcode as the payment certificate. This payment certificate has a time limit and can be used once only. The system also provides the ability to remotely lock and disable the mobile payment service. PMID:25386607

  7. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  8. A posteriori operation detection in evolving software models

    PubMed Central

    Langer, Philip; Wimmer, Manuel; Brosch, Petra; Herrmannsdörfer, Markus; Seidl, Martina; Wieland, Konrad; Kappel, Gerti

    2013-01-01

    As every software artifact, also software models are subject to continuous evolution. The operations applied between two successive versions of a model are crucial for understanding its evolution. Generic approaches for detecting operations a posteriori identify atomic operations, but neglect composite operations, such as refactorings, which leads to cluttered difference reports. To tackle this limitation, we present an orthogonal extension of existing atomic operation detection approaches for detecting also composite operations. Our approach searches for occurrences of composite operations within a set of detected atomic operations in a post-processing manner. One major benefit is the reuse of specifications available for executing composite operations also for detecting applications of them. We evaluate the accuracy of the approach in a real-world case study and investigate the scalability of our implementation in an experiment. PMID:23471366

  9. Teacher Consultation Model: An Operant Approach

    ERIC Educational Resources Information Center

    Halfacre, John; Welch, Frances

    1973-01-01

    This article describes a model for changing teacher behavior in dealing with problem students. The model reflects the incorporation of learning theory techniques (pinpointing behavior, reinforcement, shaping, etc.). A step-by-step account of how a psychologist deals with a teacher concerned about a boy's cursing is given. The teacher is encouraged…

  10. Intent inferencing with a model-based operator's associate

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.; Mitchell, Christine M.; Rubin, Kenneth S.

    1989-01-01

    A portion of the Operator Function Model Expert System (OFMspert) research project is described. OFMspert is an architecture for an intelligent operator's associate or assistant that can aid the human operator of a complex, dynamic system. Intelligent aiding requires both understanding and control. The understanding (i.e., intent inferencing) ability of the operator's associate is discussed. Understanding or intent inferencing requires a model of the human operator; the usefulness of an intelligent aid depends directly on the fidelity and completeness of its underlying model. The model chosen for this research is the operator function model (OFM). The OFM represents operator functions, subfunctions, tasks, and actions as a heterarchic-hierarchic network of finite state automata, where the arcs in the network are system triggering events. The OFM provides the structure for intent inferencing in that operator functions and subfunctions correspond to likely operator goals and plans. A blackboard system similar to that of Human Associative Processor (HASP) is proposed as the implementation of intent inferencing function. This system postulates operator intentions based on current system state and attempts to interpret observed operator actions in light of these hypothesized intentions.

  11. Superstring vertex operators in type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2008-06-15

    We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.

  12. An operator calculus for surface and volume modeling

    NASA Technical Reports Server (NTRS)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  13. Operations on Graphical Models with Plates

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper explains how graphical models, for instance Bayesian or Markov networks, can be extended to model problems in data analysis and learning. This provides a unified framework that combines lessons learned from the artificial intelligence, statistical and connectionist communities. This also offers a set of principles for developing a software generator for data analysis, whereby a learning or discovery system can be compiled from specifications. Many of the popular learning algorithms can be compiled in this way from graphical specifications. While in a sense this paper is a multidisciplinary review of learning, the main contribution here is the presentation of the material within the unifying framework of graphical models, and the observation that, as a result, the process of developing learning algorithms can be partly automated.

  14. An operational GLS model for hydrologic regression

    USGS Publications Warehouse

    Tasker, Gary D.; Stedinger, J.R.

    1989-01-01

    Recent Monte Carlo studies have documented the value of generalized least squares (GLS) procedures to estimate empirical relationships between streamflow statistics and physiographic basin characteristics. This paper presents a number of extensions of the GLS method that deal with realities and complexities of regional hydrologic data sets that were not addressed in the simulation studies. These extensions include: (1) a more realistic model of the underlying model errors; (2) smoothed estimates of cross correlation of flows; (3) procedures for including historical flow data; (4) diagnostic statistics describing leverage and influence for GLS regression; and (5) the formulation of a mathematical program for evaluating future gaging activities. ?? 1989.

  15. Galileo spacecraft modeling for orbital operations

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Bruce A.; Nilsen, Erik N.

    1994-01-01

    The Galileo Jupiter orbital mission using the Low Gain Antenna (LGA) requires a higher degree of spacecraft state knowledge than was originally anticipated. Key elements of the revised design include onboard buffering of science and engineering data and extensive processing of data prior to downlink. In order to prevent loss of data resulting from overflow of the buffers and to allow efficient use of the spacecraft resources, ground based models of the spacecraft processes will be implemented. These models will be integral tools in the development of satellite encounter sequences and the cruise/playback sequences where recorded data is retrieved.

  16. Identification of human operator performance models utilizing time series analysis

    NASA Technical Reports Server (NTRS)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  17. Modeling stock markets through bosonic operators

    NASA Astrophysics Data System (ADS)

    Bagarello, Fabio

    2008-11-01

    We review our results on a quantum-like approach recently developed in the attempt of modeling a simplified stock-market. Under suitable approximations we deduce the time evolution of the portfolio of the various traders of the market, as well as of other observable quantities.

  18. Final Report for CAEL Operational Models Project.

    ERIC Educational Resources Information Center

    Cooperative Assessment of Experiential Learning, Columbia, MD.

    Twelve institutions with experiential learning programs in higher education were selected to develop practical models that could be useful to similar institutions. Attention was to be focused on either or both of two areas of concern for experiential learning programs: the establishment of criterion standards for assessment and the financial…

  19. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process

  20. Quantum morphology operations based on quantum representation model

    NASA Astrophysics Data System (ADS)

    Yuan, Suzhen; Mao, Xia; Li, Tian; Xue, Yuli; Chen, Lijiang; Xiong, Qingxu

    2015-05-01

    Quantum morphology operations are proposed based on the novel enhanced quantum representation model. Two kinds of quantum morphology operations are included: quantum binary and grayscale morphology operations. Dilation and erosion operations are fundamental to morphological operations. Consequently, we focus on quantum binary and flat grayscale dilation and erosion operations and their corresponding circuits. As the basis of designing of binary morphology operations, three basic quantum logic operations AND, OR, and NOT involving two binary images are presented. Thus, quantum binary dilation and erosion operations can be realized based on these logic operations supplemented by quantum measurement operations. As to the design of flat grayscale dilation and erosion operations, the searching for maxima or minima in a certain space is involved; here, we use Grover's search algorithm to get these maxima and minima. With respect that the grayscale is represented by quantum bit string, the quantum bit string comparator is used as an oracle in Grover's search algorithm. In these quantum morphology operations, quantum parallelism is well utilized. The time complexity analysis shows that quantum morphology operations' time complexity is much lower or equal to the classical morphology operations.

  1. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  2. Models of unit operations used for solid-waste processing

    SciTech Connect

    Savage, G.M.; Glaub, J.C.; Diaz, L.F.

    1984-09-01

    This report documents the unit operations models that have been developed for typical refuse-derived-fuel (RDF) processing systems. These models, which represent the mass balances, energy requirements, and economics of the unit operations, are derived, where possible, from basic principles. Empiricism has been invoked where a governing theory has yet to be developed. Field test data and manufacturers' information, where available, supplement the analytical development of the models. A literature review has also been included for the purpose of compiling and discussing in one document the available information pertaining to the modeling of front-end unit operations. Separate analytics have been done for each task.

  3. The Application of Architecture Frameworks to Modelling Exploration Operations Costs

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.

  4. Modeling operating weight and axle weight distributions for highway vehicles

    SciTech Connect

    Greene, D.L.; Liang, J.C.

    1988-07-01

    The estimation of highway cost responsibility requires detailed information on vehicle operating weights and axle weights by type of vehicle. Typically, 10--20 vehicle types must be cross-classified by 10--20 registered weight classes and again by 20 or more operating weight categories, resulting in 100--400 relative frequencies to be determined for each vehicle type. For each of these, gross operating weight must be distributed to each axle or axle unit. Given the rarity of many of the heaviest vehicle types, direct estimation of these frequencies and axle weights from traffic classification count statistics and truck weight data may exceed the reliability of even the largest (e.g., 250,000 record) data sources. An alternative is to estimate statistical models of operating weight distributions as functions of registered weight, and models of axle weight shares as functions of operating weight. This paper describes the estimation of such functions using the multinomial logit model (a log-linear model) and the implementation of the modeling framework as a PC-based FORTRAN program. Areas for further research include the addition of highway class and region as explanatory variables in operating weight distribution models, and the development of theory for including registration costs and costs of operating overweight in the modeling framework. 14 refs., 45 figs., 5 tabs.

  5. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  6. Retrospective tests of hybrid operational earthquake forecasting models for Canterbury

    NASA Astrophysics Data System (ADS)

    Rhoades, D. A.; Liukis, M.; Christophersen, A.; Gerstenberger, M. C.

    2016-01-01

    The Canterbury, New Zealand, earthquake sequence, which began in September 2010, occurred in a region of low crustal deformation and previously low seismicity. Because, the ensuing seismicity in the region is likely to remain above previous levels for many years, a hybrid operational earthquake forecasting model for Canterbury was developed to inform decisions on building standards and urban planning for the rebuilding of Christchurch. The model estimates occurrence probabilities for magnitudes M ≥ 5.0 in the Canterbury region for each of the next 50 yr. It combines two short-term, two medium-term and four long-term forecasting models. The weight accorded to each individual model in the operational hybrid was determined by an expert elicitation process. A retrospective test of the operational hybrid model and of an earlier informally developed hybrid model in the whole New Zealand region has been carried out. The individual and hybrid models were installed in the New Zealand Earthquake Forecast Testing Centre and used to make retrospective annual forecasts of earthquakes with magnitude M > 4.95 from 1986 on, for time-lags up to 25 yr. All models underpredict the number of earthquakes due to an abnormally large number of earthquakes in the testing period since 2008 compared to those in the learning period. However, the operational hybrid model is more informative than any of the individual time-varying models for nearly all time-lags. Its information gain relative to a reference model of least information decreases as the time-lag increases to become zero at a time-lag of about 20 yr. An optimal hybrid model with the same mathematical form as the operational hybrid model was computed for each time-lag from the 26-yr test period. The time-varying component of the optimal hybrid is dominated by the medium-term models for time-lags up to 12 yr and has hardly any impact on the optimal hybrid model for greater time-lags. The optimal hybrid model is considerably more

  7. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  8. Modeling and Simulation of Shuttle Launch and Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  9. Analysis and Modeling of Ground Operations at Hub Airports

    NASA Technical Reports Server (NTRS)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  10. Cognitive-Operative Model of Intelligent Learning Systems Behavior

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; Mora-Torres, Martha; de Arriaga, Fernando; Escarela-Perez, Rafael

    2010-01-01

    In this paper behavior during the teaching-learning process is modeled by means of a fuzzy cognitive map. The elements used to model such behavior are part of a generic didactic model, which emphasizes the use of cognitive and operative strategies as part of the student-tutor interaction. Examples of possible initial scenarios for the…

  11. Simulation Modeling of a Facility Layout in Operations Management Classes

    ERIC Educational Resources Information Center

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  12. The design and implementation of an operational model evaluation system

    SciTech Connect

    Foster, K.T.

    1995-06-01

    An evaluation of an atmospheric transport and diffusion model`s operational performance typically involves the comparison of the model`s calculations with measurements of an atmospheric pollutant`s temporal and spatial distribution. These evaluations however often use data from a small number of experiments and may be limited to producing some of the commonly quoted statistics based on the differences between model calculations and the measurements. This paper presents efforts to develop a model evaluation system geared for both the objective statistical analysis and the more subjective visualization of the inter-relationships between a model`s calculations and the appropriate field measurement data.

  13. Designing visual displays and system models for safe reactor operations

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  14. View southwest of model board and operator's station #2; cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southwest of model board and operator's station #2; cabinet in foreground houses at supervisory board and control switches for circuit breakers - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  15. View north of model board; operator's console #1 is in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of model board; operator's console #1 is in the left foreground of the photograph: communications module at center foreground - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  16. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  17. Development of operational models for space weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, Siqing; Gong, Jiancun

    Since space weather prediction is currently at the stage of transition from human experience to objective forecasting methods, developing operational forecasting models becomes an important way to improve the capabilities of space weather service. As the existing theoretical models are not fully operational when it comes to space weather prediction, we carried out researches on developing operational models, considering the user needs for prediction of key elements in space environment, which have vital impacts on space assets security. We focused on solar activities, geomagnetic activities, high-energy particles, atmospheric density, plasma environment and so forth. Great progresses have been made in developing 3D dynamic asymmetric magnetopause model, plasma sheet energetic electron flux forecasting model and 400km-atmospheric density forecasting model, and also in the prediction of high-speed solar-wind streams from coronal holes and geomagnetic AE indices. Some of these models have already been running in the operational system of Space Environment Prediction Center, National Space Science Center (SEPC/NSSC). This presentation will introduce the research plans for space weather prediction in China, and current progresses of developing operational models and their applications in daily space weather services in SEPC/NSSC.

  18. Characteristics of Operational Space Weather Forecasting: Observations and Models

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim

    2015-04-01

    In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.

  19. Model independent constraints on four-lepton operators

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; Mimouni, Kin

    2016-02-01

    We obtain constraints on 4-lepton interactions in the effective field theory with dimension-6 operators. To this end, we combine the experimental input from Z boson measurements in LEP-1, W boson mass and decays, muon and tau decays, lepton pair production in LEP-2, neutrino scattering on electrons, and parity violating electron scattering. The analysis does not rely on any assumptions about the flavor structure of the dimension-6 operators. Our main results are the confidence intervals for Wilson coefficients of 16 lepton-flavor conserving four-lepton operators, together with the full correlation matrix. Consequences for leptophilic models beyond the Standard Model are discussed.

  20. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    SciTech Connect

    BERRY J; GALLAHER BN

    2011-01-13

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  1. OFMTutor: An operator function model intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    1989-01-01

    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.

  2. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  3. Modeling and simulation of longwall scraper conveyor considering operational faults

    NASA Astrophysics Data System (ADS)

    Cenacewicz, Krzysztof; Katunin, Andrzej

    2016-06-01

    The paper provides a description of analytical model of a longwall scraper conveyor, including its electrical, mechanical, measurement and control actuating systems, as well as presentation of its implementation in the form of computer simulator in the Matlab®/Simulink® environment. Using this simulator eight scenarios typical of usual operational conditions of an underground scraper conveyor can be generated. Moreover, the simulator provides a possibility of modeling various operational faults and taking into consideration a measurement noise generated by transducers. The analysis of various combinations of scenarios of operation and faults with description is presented. The simulator developed may find potential application in benchmarking of diagnostic systems, testing of algorithms of operational control or can be used for supporting the modeling of real processes occurring in similar systems.

  4. An Economic Model of U.S. Airline Operating Expenses

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2005-01-01

    This report presents a new economic model of operating expenses for 67 airlines. The model is based on data that the airlines reported to the United States Department of Transportation in 1999. The model incorporates expense-estimating equations that capture direct and indirect expenses of both passenger and cargo airlines. The variables and business factors included in the equations are detailed enough to calculate expenses at the flight equipment reporting level. Total operating expenses for a given airline are then obtained by summation over all aircraft operated by the airline. The model's accuracy is demonstrated by correlation with the DOT Form 41 data from which it was derived. Passenger airlines are more accurately modeled than cargo airlines. An appendix presents a concise summary of the expense estimating equations with explanatory notes. The equations include many operational and aircraft variables, which accommodate any changes that airline and aircraft manufacturers might make to lower expenses in the future. In 1999, total operating expenses of the 67 airlines included in this study amounted to slightly over $100.5 billion. The economic model reported herein estimates $109.3 billion.

  5. Validating Physics-based Space Weather Models for Operational Use

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Singer, Howard; Millward, George; Toth, Gabor; Welling, Daniel

    2016-07-01

    The Geospace components of the Space Weather Modeling Framework developed at the University of Michigan is presently transitioned to operational use by the NOAA Space Weather Prediction Center. This talk will discuss the various ways the model is validated and skill scores are calculated.

  6. A Model for Resource Allocation Using Operational Knowledge Assets

    ERIC Educational Resources Information Center

    Andreou, Andreas N.; Bontis, Nick

    2007-01-01

    Purpose: The paper seeks to develop a business model that shows the impact of operational knowledge assets on intellectual capital (IC) components and business performance and use the model to show how knowledge assets can be prioritized in driving resource allocation decisions. Design/methodology/approach: Quantitative data were collected from 84…

  7. Operator function modeling: Cognitive task analysis, modeling and intelligent aiding in supervisory control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1990-01-01

    The design, implementation, and empirical evaluation of task-analytic models and intelligent aids for operators in the control of complex dynamic systems, specifically aerospace systems, are studied. Three related activities are included: (1) the models of operator decision making in complex and predominantly automated space systems were used and developed; (2) the Operator Function Model (OFM) was used to represent operator activities; and (3) Operator Function Model Expert System (OFMspert), a stand-alone knowledge-based system was developed, that interacts with a human operator in a manner similar to a human assistant in the control of aerospace systems. OFMspert is an architecture for an operator's assistant that uses the OFM as its system and operator knowledge base and a blackboard paradigm of problem solving to dynamically generate expectations about upcoming operator activities and interpreting actual operator actions. An experiment validated the OFMspert's intent inferencing capability and showed that it inferred the intentions of operators in ways comparable to both a human expert and operators themselves. OFMspert was also augmented with control capabilities. An interface allowed the operator to interact with OFMspert, delegating as much or as little control responsibility as the operator chose. With its design based on the OFM, OFMspert's control capabilities were available at multiple levels of abstraction and allowed the operator a great deal of discretion over the amount and level of delegated control. An experiment showed that overall system performance was comparable for teams consisting of two human operators versus a human operator and OFMspert team.

  8. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  9. Evaluation of advanced geopotential models for operational orbit determination

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Davis, B. E.; Samii, M. V.; Engel, C. J.; Doll, C. E.

    1988-01-01

    To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study.

  10. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  11. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    NASA Astrophysics Data System (ADS)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models

  12. Modeling of reservoir operation in UNH global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  13. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. PMID:27092420

  14. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  15. Hubbard operator density functional theory for Fermionic lattice models

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengqian; Marianetti, Chris

    We formulate an effective action as a functional of Hubbard operator densities whose stationary point delivers all local static information of the interacting lattice model. Using the variational principle, we get a self-consistent equation for Hubbard operator densities. The computational cost of our approach is set by diagonalizing the local Fock space. We apply our method to the one and two band Hubbard model (including crystal field and on-site exchange) in infinite dimensions where the exact solution is known. Excellent agreement is obtained for the one-band model. In the two-band model, good agreement is obtained in the metallic region of the phase diagram in addition to the metal-insulator transition. While our approach does not address frequency dependent observables, it has a negligible computational cost as compared to dynamical mean field theory and could be highly applicable in the context total energies of strongly correlated materials and molecules.

  16. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  17. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  18. Human operator identification model and related computer programs

    NASA Technical Reports Server (NTRS)

    Kessler, K. M.; Mohr, J. N.

    1978-01-01

    Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.

  19. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  20. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2002-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  1. MAESTRO -- A Model and Expert System Tuning Resource for Operators

    SciTech Connect

    Lager, D.L.; Brand, H.R.; Maurer, W.J.; Coffield, F.E.; Chambers, F.

    1989-01-01

    We have developed MAESTRO, a Model And Expert System Tuning Resource for Operators. It provides a unified software environment for optimizing the performance of large, complex machines, in particular the Advanced Test Accelerator and Experimental Test Accelerator at Lawrence Livermore National Laboratory. The system incorporates three approaches to tuning: a mouse-based manual interface to select and control magnets and to view displays of machine performance; an automation based on cloning the operator'' by implementing the strategies and reasoning used by the operator; an automation based on a simulator model which, when accurately matched to the machine, allows downloading of optimal sets of parameters and permits diagnosing errors in the beamline. The latter two approaches are based on the Artificial Intelligence technique known as Expert Systems. 4 refs., 4 figs.

  2. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  3. Automated particulate sampler field test model operations guide

    SciTech Connect

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  4. Space Transportation Operations: Assessment of Methodologies and Models

    NASA Technical Reports Server (NTRS)

    Joglekar, Prafulla

    2001-01-01

    The systems design process for future space transportation involves understanding multiple variables and their effect on lifecycle metrics. Variables such as technology readiness or potential environmental impact are qualitative, while variables such as reliability, operations costs or flight rates are quantitative. In deciding what new design concepts to fund, NASA needs a methodology that would assess the sum total of all relevant qualitative and quantitative lifecycle metrics resulting from each proposed concept. The objective of this research was to review the state of operations assessment methodologies and models used to evaluate proposed space transportation systems and to develop recommendations for improving them. It was found that, compared to the models available from other sources, the operations assessment methodology recently developed at Kennedy Space Center has the potential to produce a decision support tool that will serve as the industry standard. Towards that goal, a number of areas of improvement in the Kennedy Space Center's methodology are identified.

  5. Transitioning Space Weather Models Into Operations: The Basic Building Blocks

    NASA Astrophysics Data System (ADS)

    Araujo-Pradere, Eduardo A.

    2009-10-01

    New and improved space weather models that provide real-time or near-real time operational awareness to the long list of customers that the NOAA Space Weather Prediction Center (SWPC) serves are critically needed. Recognizing this, SWPC recently established a Developmental Testbed Center (DTC [see Kumar, 2009]) at which models will be vetted for operational use. What characteristics should models have if they are to survive this transition? The difficulties around the implementation of real-time models are many. From the stability of the data input (frequently coming from third parties) to the elevated information technology (IT) security atmosphere present everywhere, scientists and developers are confronting a series of challenges in the implementation of their models. Quinn et al. [2009] noted that “the transition challenges are numerous and require ongoing interaction between model developers and users.” However, the 2006 Report of the Assessment Committee for the National Space Weather Program (NSWP; see http://www.nswp.gov/nswp_acreport0706.pdf) found that “there is an absence of suitable connection[s] for ‘academia-to-operations’ knowledge transfer and for the transition of research to operations in general.”

  6. American Association of University Women: Branch Operations Data Modeling Case

    ERIC Educational Resources Information Center

    Harris, Ranida B.; Wedel, Thomas L.

    2015-01-01

    A nationally prominent woman's advocacy organization is featured in this case study. The scenario may be used as a teaching case, an assignment, or a project in systems analysis and design as well as database design classes. Students are required to document the system operations and requirements, apply logical data modeling concepts, and design…

  7. View southwest of model board from operator's station #2; round ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southwest of model board from operator's station #2; round hole in board at right center of photograph was the location for a clock - Thirtieth Street Station, Power Director Center, Thirtieth & Market Streets in Amtrak Railroad Station, Philadelphia, Philadelphia County, PA

  8. Automated biowaste sampling system urine subsystem operating model, part 1

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Rosen, F.

    1973-01-01

    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.

  9. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  10. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  11. A consistent collinear triad approximation for operational wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Smit, P. B.; Janssen, T. T.; Holthuijsen, L. H.

    2016-08-01

    In shallow water, the spectral evolution associated with energy transfers due to three-wave (or triad) interactions is important for the prediction of nearshore wave propagation and wave-driven dynamics. The numerical evaluation of these nonlinear interactions involves the evaluation of a weighted convolution integral in both frequency and directional space for each frequency-direction component in the wave field. For reasons of efficiency, operational wave models often rely on a so-called collinear approximation that assumes that energy is only exchanged between wave components travelling in the same direction (collinear propagation) to eliminate the directional convolution. In this work, we show that the collinear approximation as presently implemented in operational models is inconsistent. This causes energy transfers to become unbounded in the limit of unidirectional waves (narrow aperture), and results in the underestimation of energy transfers in short-crested wave conditions. We propose a modification to the collinear approximation to remove this inconsistency and to make it physically more realistic. Through comparison with laboratory observations and results from Monte Carlo simulations, we demonstrate that the proposed modified collinear model is consistent, remains bounded, smoothly converges to the unidirectional limit, and is numerically more robust. Our results show that the modifications proposed here result in a consistent collinear approximation, which remains bounded and can provide an efficient approximation to model nonlinear triad effects in operational wave models.

  12. Performing efficient NURBS modeling operations on the GPU.

    PubMed

    Krishnamurthy, Adarsh; Khardekar, Rahul; McMains, Sara; Haller, Kirk; Elber, Gershon

    2009-01-01

    We present algorithms for evaluating and performing modeling operations on NURBS surfaces using the programmable fragment processor on the Graphics Processing Unit (GPU). We extend our GPU-based NURBS evaluator that evaluates NURBS surfaces to compute exact normals for either standard or rational B-spline surfaces for use in rendering and geometric modeling. We build on these calculations in our new GPU algorithms to perform standard modeling operations such as inverse evaluations, ray intersections, and surface-surface intersections on the GPU. Our modeling algorithms run in real time, enabling the user to sketch on the actual surface to create new features. In addition, the designer can edit the surface by interactively trimming it without the need for retessellation. Our GPU-accelerated algorithm to perform surface-surface intersection operations with NURBS surfaces can output intersection curves in the model space as well as in the parametric spaces of both the intersecting surfaces at interactive rates. We also extend our surface-surface intersection algorithm to evaluate self-intersections in NURBS surfaces. PMID:19423879

  13. eWaterCycle: A global operational hydrological forecasting model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  14. Operational ocean models in the Adriatic Sea: a skill assessment

    NASA Astrophysics Data System (ADS)

    Chiggiato, J.; Oddo, P.

    2006-12-01

    In the framework of the Mediterranean Forecasting System project (MFS) sub-regional and regional numerical ocean forecasting systems performance are assessed by mean of model-model and model-data comparison. Three different operational systems have been considered in this study: the Adriatic REGional Model (AREG); the AdriaROMS and the Mediterranean Forecasting System general circulation model (MFS model). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM (Blumberg and Mellor, 1987) and ROMS (Shchepetkin and McWilliams, 2005) respectively, while MFS model is based on OPA (Madec et al., 1998) code. The assessment has been done by means of standard scores. The data used for operational systems assessment derive from in-situ and remote sensing measurements. In particular a set of CTDs covering the whole western Adriatic, collected in January 2006, one year of SST from space born sensors and six months of buoy data. This allowed to have a full three-dimensional picture of the operational forecasting systems quality during January 2006 and some preliminary considerations on the temporal fluctuation of scores estimated on surface (or near surface) quantities between summer 2005 and summer 2006. In general, the regional models are found to be colder and fresher than observations. They eventually outperform the large scale model in the shallowest locations, as expected. Results on amplitude and phase errors are also much better in locations shallower than 50 m, while degraded in deeper locations, where the models tend to have a higher homogeneity along the vertical column compared to observations. In a basin-wide overview, the two regional models show some dissimilarities in the local displacement of errors, something suggested by the full three-dimensional picture depicted using CTDs, but also confirmed by the comparison with SSTs. In locations where the regional models are mutually correlated, the aggregated mean-square-error has

  15. Distributed models for operational river forecasting: research, development, and implementation

    NASA Astrophysics Data System (ADS)

    Smith, M.

    2003-04-01

    Model Intercomparison Project- DMIP) in order to identify which model or process algorithms would benefit the NWS mission. DMIP has also been designed to understand issues such as the use of operational data, the amount of calibration required, and methods of deriving initial parameter estimates. DMIP has garnered participation from 12 research institutions in the US and abroad, including China, Canada, and Denmark. Simultaneously, HL has developed a flexible modeling system that can be used to develop and evaluate various rainfall runoff models and modeling approaches (gridded distributed, semi distributed, and lumped). HL has successfully participated in DMIP with a gridded distributed model consisting of the SAC-SMA and kinematic routing in each computational element. As a result of DMIP, the NWS has decided to move ahead with the implementation of the HL distributed model. As with the research effort, a specific implementation plan is being followed. First, a prototype version of the research distributed model is being run at the one RFC for real time operations. Short term software development is being conducted to make this research version more user friendly. Long term software development is planned to derive a system to efficiently support operational distributed modeling. Long term research will also continue into new rainfall/runoff/routing models and well as parameter estimation, calibration and state updating issues. Formal implementation includes a transition phase in which the new distributed model will be run parallel to the current lumped model in selected basins, providing the forecaster with two simulations for decision making. Moreover, such a transition period will provide much needed exposure and training. Problems identified to date with the deployment of distributed models include the addition of a snow model, issues relating to the quality of the NEXRAD data, methods of parameterizing and calibrating a distributed model, methods of state

  16. Ethical issues in engineering models: an operations researcher's reflections.

    PubMed

    Kleijnen, J

    2011-09-01

    This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling. PMID:20535643

  17. operational modelling and forecasting of the Iberian shelves ecosystem

    NASA Astrophysics Data System (ADS)

    Marta-Almeida, M.; Reboreda, R.; Rocha, C.; Dubert, J.; Nolasco, R.; Cordeiro, N.; Luna, T.; Rocha, A.; Silva, J. Lencart e.; Queiroga, H.; Peliz, A.; Ruiz-Villarreal, M.

    2012-04-01

    There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a NPZD biogeochemical module. In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmolN m-3). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill.

  18. Towards operational modeling and forecasting of the Iberian shelves ecosystem.

    PubMed

    Marta-Almeida, Martinho; Reboreda, Rosa; Rocha, Carlos; Dubert, Jesus; Nolasco, Rita; Cordeiro, Nuno; Luna, Tiago; Rocha, Alfredo; Lencart E Silva, João D; Queiroga, Henrique; Peliz, Alvaro; Ruiz-Villarreal, Manuel

    2012-01-01

    There is a growing interest on physical and biogeochemical oceanic hindcasts and forecasts from a wide range of users and businesses. In this contribution we present an operational biogeochemical forecast system for the Portuguese and Galician oceanographic regions, where atmospheric, hydrodynamic and biogeochemical variables are integrated. The ocean model ROMS, with a horizontal resolution of 3 km, is forced by the atmospheric model WRF and includes a Nutrients-Phytoplankton-Zooplankton-Detritus biogeochemical module (NPZD). In addition to oceanographic variables, the system predicts the concentration of nitrate, phytoplankton, zooplankton and detritus (mmol N m(-3)). Model results are compared against radar currents and remote sensed SST and chlorophyll. Quantitative skill assessment during a summer upwelling period shows that our modelling system adequately represents the surface circulation over the shelf including the observed spatial variability and trends of temperature and chlorophyll concentration. Additionally, the skill assessment also shows some deficiencies like the overestimation of upwelling circulation and consequently, of the duration and intensity of the phytoplankton blooms. These and other departures from the observations are discussed, their origins identified and future improvements suggested. The forecast system is the first of its kind in the region and provides free online distribution of model input and output, as well as comparisons of model results with satellite imagery for qualitative operational assessment of model skill. PMID:22666349

  19. DISTRIBUTED PROCESSING TRADE-OFF MODEL FOR ELECTRIC UTILITY OPERATION

    NASA Technical Reports Server (NTRS)

    Klein, S. A.

    1994-01-01

    The Distributed processing Trade-off Model for Electric Utility Operation is based upon a study performed for the California Institute of Technology's Jet Propulsion Laboratory. This study presented a technique that addresses the question of trade-offs between expanding a communications network or expanding the capacity of distributed computers in an electric utility Energy Management System (EMS). The technique resulted in the development of a quantitative assessment model that is presented in a Lotus 1-2-3 worksheet environment. The model gives EMS planners a macroscopic tool for evaluating distributed processing architectures and the major technical and economic tradeoffs as well as interactions within these architectures. The model inputs (which may be varied according to application and need) include geographic parameters, data flow and processing workload parameters, operator staffing parameters, and technology/economic parameters. The model's outputs are total cost in various categories, a number of intermediate cost and technical calculation results, as well as graphical presentation of Costs vs. Percent Distribution for various parameters. The model has been implemented on an IBM PC using the LOTUS 1-2-3 spreadsheet environment and was developed in 1986. Also included with the spreadsheet model are a number of representative but hypothetical utility system examples.

  20. Verification of a model for foam flotation column operation

    SciTech Connect

    Kiefer, J.E.; Rodriguez, J.; McIntyre, G.; Thackston, E.L.; Wilson, D.J.

    1982-01-01

    We report experimental data testing the validity of a mathematical model for the time-dependent operation of a continuous-flow foam floating column.Sodium lauryl sulfate was the surfactant being removed. The responses of the column in steady-state operation and under the influence of rectangular pulses in sodium lauryl sulfates concentration and in hydraulic loading rate were investigated and compared with the results of computer simulation.Effluent surfactant concentrations were well simulated under all conditions. It was found that the fraction of liquid in the Plateau borders varies somewhat with the hydraulic loading rate, which causes some discrepancy between calculated and observed collapsed foamate flow rates.

  1. Operational Space Weather Models: Trials, Tribulations and Rewards

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2009-12-01

    There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of

  2. A model technology transfer program for independent operators

    SciTech Connect

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  3. Modelling of dynamic targeting in the Air Operations Centre

    NASA Astrophysics Data System (ADS)

    Lo, Edward H. S.; Au, T. Andrew

    2007-12-01

    Air Operations Centres (AOCs) are high stress multitask environments for planning and executing of theatre-wide airpower. Operators have multiple responsibilities to ensure that the orchestration of air assets is coordinated to maximum effect. AOCs utilise a dynamic targeting process to immediately prosecute time-sensitive targets. For this process to work effectively, a timely decision must be made regarding the appropriate course of action before the action is enabled. A targeting solution is typically developed using a number of inter-related processes in the kill chain - the Find, Fix, Track, Target, Engage, and Assess (F2T2EA) model. The success of making a right decision about dynamic targeting is ultimately limited by the cognitive and cooperative skills of the team prosecuting the mission and their associated workload. This paper presents a model of human interaction and tasks within the dynamic targeting sequence. The complex network of tasks executed by the team can be analysed by undertaking simulation of the model to identify possible information-processing bottlenecks and overloads. The model was subjected to various tests to generate typical outcomes, operator utilisation, duration as well as rates of output in the dynamic targeting process. This capability will allow for future "what-if" evaluations of numerous concepts for team formation or task reallocation, complementing live exercises and experiments.

  4. Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2012-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.

  5. Hedging rule for reservoir operations: 2. A numerical model

    NASA Astrophysics Data System (ADS)

    You, Jiing-Yun; Cai, Ximing

    2008-01-01

    Optimization models for reservoir operation analysis usually use a heuristic algorithm to search for the hedging rule. This paper presents a method that derives a hedging rule from theoretical analysis (J.-Y. You and X. Cai, 2008) with an explicit two-period Markov hydrology model, a particular form of nonlinear utility function, and a given inflow probability distribution. The unique procedure is to embed hedging rule derivation based on the marginal utility principle into reservoir operation simulation. The simulation method embedded with the optimization principle for hedging rule derivation will avoid both the inaccuracy problem caused by trail and error with traditional simulation models and the computational difficulty ("curse of dimensionality") with optimization models. Results show utility improvement with the hedging policy compared to the standard operation policy (SOP), considering factors such as reservoir capacity, inflow level and uncertainty, price elasticity and discount rate. Following the theoretical analysis presented in the companion paper, the condition for hedging application, the starting water availability and ending water availability for hedging, is reexamined with the numerical example; the probabilistic performance of hedging and SOP regarding water supply reliability is compared; and some findings from the theoretical analysis are verified numerically.

  6. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  7. Operational forecasting for the Rhine-Meuse Estuary - Modelling and Operating Storm Surge Barriers

    NASA Astrophysics Data System (ADS)

    Bogaard, Tom; van Dam, Theo; Twigt, Daniel; de Goederen, Sacha

    2016-04-01

    Large parts of the Netherlands are very vulnerable to extreme storm surges, due to its low lying, highly populated and economically valuable coastal areas. In this project the focus is on the low-lying Rhine-Meuse estuary in the south-western part of the Netherlands. The area is protected by a complex defence system, including dunes, dikes, large barriers and a retention basin. Hydrodynamics in this complex delta area are influenced by tide, storm surge, discharges of the rivers Rhine and Meuse and the operation of barriers. A forecasting system based on the generic operational platform software Delft-FEWS has been developed in order to produce timely and accurate water level forecasts for the Rhine-Meuse estuary. Barriers as well as their complex closing procedures are included in this operational system. A high resolution 1D hydrodynamic model, forced by Numerical Weather Prediction (NWP) product from the Dutch national weather service (KNMI) and hydrodynamic conditions from the Dutch Water Authority (Rijkswaterstaat), runs every six-hours with a forecast horizon of seven days. The system is operated at Rijkswaterstaat, who is responsible for hydrodynamic forecasting and the operation of the main storm surge barriers of the Netherlands. By running the hydrodynamic model in an automated way the system is able to provide accurate forecasts at all times: during calm weather conditions or when severe storm situations might require closing of the barriers. Especially when storm and peak discharge events coincide, careful operation of the barriers is required. Within the Delft-FEWS platform tools have been developed to test different closing procedures instantly, in case of an event. Expert forecasters will be able to examine effects of multiple closing procedures as well as (partial) failure of the barriers on water levels in the estuary. Apart from forecasting, the system can be used offline to mimic storm events for training purposes. Forecasters at Dutch Water

  8. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  9. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  10. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect

    Wu Dianliang; Zhu Hongmin

    2010-05-21

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  11. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  12. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  13. Model Predictive Control for the Operation of Building Cooling Systems

    SciTech Connect

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  14. Transitioning Models and Model Output to Space Weather Operations: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Berrios, David; Chulaki, Anna; Kuznetsova, Maria M.; MacNeice, Peter J.; Maddox, Mario; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The transition of space weather models or of information derived from space weather models to space weather forecasting is the last step of the chain from model development to model deployment in forecasting operations. As such, it is an extremely important element of the quest to increase our national capability to forecast and mitigate space weather hazards. It involves establishing customer requirements, and analyses of available models, which are, in principle, capable of delivering the required product. Models will have to be verified and validated prior to a selection of the best performing model. Further considerations include operational hardware, and the availability of data streams to drive the model. The final steps include the education of forecasters, and the implementation on gateway hardware prior to operational use. This presentation will provide a discussion of opportunities for rapid progress from the viewpoint of the Community Coordinated Modeling Center.

  15. Modeling operation mode of pellet boilers for residential heating

    NASA Astrophysics Data System (ADS)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  16. High energy pulsed inductive thruster modeling operating with ammonia propellant

    SciTech Connect

    Mikellides, Pavlos G.; Villarreal, James K.

    2007-11-15

    Numerical modeling of the pulsed inductive thruster operating with ammonia propellant at high energy levels, utilized a time-dependent, two-dimensional, and axisymmetric magnetohydrodynamics code to provide bilateral validation of experiment and theory and offer performance insights for improved designs. The power circuit model was augmented by a plasma voltage algorithm that accounts for the propellant's time-dependent resistance and inductance to properly account for plasma dynamics and was verified using available analytic solutions of two idealized plasma problems. Comparisons of the predicted current waveforms to experimental data exhibited excellent agreement for the initial half-period, essentially capturing the dominant acceleration phase. Further validation proceeded by comparisons of the impulse for three different energy levels, 2592, 4050, and 4608 J and a wide range of propellant mass values. Predicted impulse captured both trends and magnitudes measured experimentally for nominal operation. Interpretation of the modeling results in conjunction to experimental observations further confirm the critical mass phenomenon beyond which efficiency degrades due to elevated internal energy mode deposition and anomalous operation.

  17. Automatically calibrating admittances in KATE's autonomous launch operations model

    NASA Astrophysics Data System (ADS)

    Morgan, Steve

    1992-09-01

    This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).

  18. Automatically calibrating admittances in KATE's autonomous launch operations model

    NASA Technical Reports Server (NTRS)

    Morgan, Steve

    1992-01-01

    This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).

  19. 75 FR 28463 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...-16301; AD 2010-10-22] RIN 2120-AA64 Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro 146-RJ Airplanes AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD), which applies to Model BAe 146 airplanes and Model Avro 146-RJ airplanes. That...

  20. 75 FR 10701 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... (Operations) Limited Model BAe 146 Airplanes and Model Avro 146-RJ Airplanes AGENCY: Federal Aviation... directive (AD) that applies to all Model BAe 146 airplanes and Model Avro 146-RJ airplanes. The original.... ADDRESSES: You may send comments by any of the following methods: Federal eRulemaking Portal: Go to...

  1. Comparison of semiparametric receiver operating characteristic models on observer data

    PubMed Central

    Samuelson, Frank W.; He, Xin

    2014-01-01

    Abstract. The evaluation of medical imaging devices often involves studies that measure the ability of observers to perform a signal detection task on images obtained from those devices. Data from such studies are frequently regressed ordinally using two-sample receiver operating characteristic (ROC) models. We applied some of these models to a number of randomly chosen data sets from medical imaging and evaluated how well they fit using the Akaike and Bayesian information criteria and cross-validation. We find that for many observer data sets, a single-parameter model is sufficient and that only some studies exhibit evidence for the use of models with more than a single parameter. In particular, the single-parameter power-law model frequently well describes observer data. The power-law model has an asymmetric ROC curve and a constant mean-to-sigma ratio seen in studies analyzed with the bi-normal model. It is identical or very similar to special cases of other two-parameter models. PMID:26158046

  2. MPS Solidification Model. Volume 2: Operating guide and software documentation for the unsteady model

    NASA Technical Reports Server (NTRS)

    Maples, A. L.

    1981-01-01

    The operation of solidification Model 2 is described and documentation of the software associated with the model is provided. Model 2 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of unsteady horizontal axisymmetric bidirectional solidification. The solidification program allows interactive modification of calculation parameters as well as selection of graphical and tabular output. In batch mode, parameter values are input in card image form and output consists of printed tables of solidification functions. The operational aspects of Model 2 that differ substantially from Model 1 are described. The global flow diagrams and data structures of Model 2 are included. The primary program documentation is the code itself.

  3. Modeling actions and operations to support mission preparation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, D. P.; Schreckenghost, D. L.

    1994-01-01

    This paper describes two linked technology development projects to support Space Shuttle ground operations personnel, both during mission preparation analysis and related analyses in missions. The Space Propulsion Robust Analysis Tool (SPRAT) will provide intelligent support and automation for mission analysis setup, interpretation, reporting and documentation. SPRAT models the actions taken by flight support personnel during mission preparation and uses this model to generate an action plan. CONFIG will provide intelligent automation for procedure analyses and failure impact analyses, by simulating the interactions between operations and systems with embedded failures. CONFIG models the actions taken by crew during space vehicle malfunctions and simulates how the planned action sequences in procedures affect a device model. Jointly the SPRAT and CONFIG projects provide an opportunity to investigate how the nature of a task affects the representation of actions, and to determine a more general action representation supporting a broad range of tasks. This paper describes the problems in representing actions for mission preparation and their relation to planning and scheduling.

  4. Control models for hydropower system analysis and operation

    SciTech Connect

    Georgakakos, A.P.; Yao, H.; Yu, Y.

    1995-03-01

    In this work, several new models for hydropower systems analysis and operation have been developed and tested. More specifically, the new models are designed to address the following issues: (1) Determination of the dependable power capacity for a system of hydropower facilities, (2) Determination of the firm energy for a system of hydropower facilities, with or without dependable capacity commitments, and (3) optimization of the hydroelectric energy value. (The value of energy is measured by the savings in thermal plant fuel consumption). The models of the first two categories have a time discretization of one day, while those of the third are hourly. All models share a common structure consisting of a turbine load allocation module and a reservoir control module. In addition to a detailed representation of the hydroelectric facilities, this control model structure is also able to model most aspects of water management. The models are applied to the Lanier-Allatoona-Carters reservoir system on the Chattahoochee and Coosa River Basins in the southeastern U.S.

  5. Energy balance model of a SOFC cogenerator operated with biogas

    NASA Astrophysics Data System (ADS)

    Van herle, Jan; Maréchal, F.; Leuenberger, S.; Favrat, D.

    A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m 3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. A process flow diagram was defined in a software package allowing to vary system operating parameters like the fuel inlet composition, reforming technology, stack temperature and stack current (or fuel conversion). For system reforming simplicity, a base case parameter set was defined as the fuel inlet of 60% CH 4:40% CO 2 mixed with air in a 1:1 ratio, together with 800 °C operating temperature and 80% fuel conversion. A model stack, consisting of 100 series elements of anode supported electrolyte cells of 100 cm 2 each, was calculated to deliver 3.1 kW el and 5.16 kW th from an input of 1.5 N m 3/h of biogas (8.95 kW LHV), corresponding to 33.8 and 57.6% electrical and thermal efficiencies (Lower Heating Values (LHVs)), respectively. The incidence on the efficiencies of the model system was examined by the variation of a number of parameters such as the CO 2 content in the biogas, the amount of air addition to the biogas stream, the addition of steam to the fuel inlet, the air excess ratio λ and the stack operating temperature, and the results discussed.

  6. A Small-Scale Tiltrotor Model Operating in Descending Flight

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Betzina, Mark D.; Long, Kurtis R.

    2002-01-01

    As a rotor s descent velocity in low speed flight approaches the induced wake velocity, a vortex ring is formed around the circumference of the rotor disk causing the flow to become very unsteady. This condition is known as Vortex Ring State (VRS). The aerodynamic Characteristics of edgewise operating rotors in this VRS induced environment have been studied for many years. In the 1960 s, two propellers were tested in vertical or near vertical descent, indicating a loss in thrust in the region of VRS. Thrust fluctuations of both single and tandem rotor configurations while operating in VRS were reported. More recently, the effects of descending flight on a single rotor operating in close proximity to a physical image plane, simulating the effects of a twin rotor tiltrotor system were investigated. Mean rotor thrust reductions and thrust fluctuations were shown in VRS. Results indicated the need to acquire additional data with a two-rotor model and the need to investigate the use of a single rotor/image plane apparatus to identify the characteristics of a two-rotor flowfield. As a result a small-scale tiltrotor model with 2-b1adedy untwisted, teetering rotors was tested at various states of descent and sideslip. Dual-rotor, single-rotor with image plane, and isolated-rotor results were reported, suggesting the single-rotor with image plane configuration may not properly capture the aerodynamic nature of a dual-rotor vehicle. Recommendations included additional testing of a model that better represents the physical characteristics of a tiltrotor aircraft. Specific recommendations for model improvements included using three-bladed rotors, twisted blades, a tiltrotor fuselage and wings.

  7. Model Combination and Weighting Methods in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Pappenberger, Florian; Cloke, Hannah L.

    2013-04-01

    In order to get maximum benefits from operational forecast systems based on different model approaches, it is necessary to find an optimal way to combine the forecasts in real-time and to derive the predictive probability distribution by assigning different weights to the different actual forecasts according to the forecast performance of the previous days. In the European Flood Alert System (EFAS) a Bayesian Forecast System has been implemented in order to derive the overall predictive probability distribution. The EFAS is driven by different numerical weather prediction systems like the deterministic forecasts from the German Weather Service and from the ECMWF, as well as Ensemble Prediction Systems from the ECMWS and COSMO-LEPS. In this study the effect of combining these different forecast systems in respect of the total predictive uncertainty are investigated by applying different weighting methods like the Non-homogenous Gaussian Regression (NGR) model, the Bayesian Model Averaging (BMA) and an empirical method. Besides that different methods of bias removal are applied, namely additive and regression based ones, and the applicability in operational forecast is tested. One of the problems identified is the difficulty in optimizing the weight parameters for each lead-time separately resulting in highly inconsistent forecasts, especially for regression based bias removal methods. Therefore in operational use methods with only sub-optimal skill score results, could be preferable showing more realistic shapes of uncertainty bands for the predicted future stream-flow values. Another possible approach could be the optimization of the weighting parameters not for each lead-time separately, but to look at different levels of aggregations over expanding windows of time ranges. First results indicate the importance of the proper choice of the model combination method in view of reliability and sharpness of the forecast system.

  8. Physical and mathematical modelling of ladle metallurgy operations. [steelmaking

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.

  9. USU GAIM: An Operational Data Assimilation Model of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2004-12-01

    Physics-based data assimilation models of the ionosphere were developed at Utah State University as part of a DoD Multidisciplinary University Research Initiative (MURI) program. The USU effort was called Global Assimilation of Ionospheric Measurements (GAIM). One of the USU data assimilation models has been selected for operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GMKF) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+). The Gauss-Markov Kalman Model assimilates bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, and line-of-sight UV emissions measured by satellites. With the GMKF model the ionospheric densities obtained from the IFM constitute a background ionospheric density field on which perturbations are superimposed based on the available data sources and their errors. The density perturbations and the associated errors evolve over time via a statistical Gauss-Markov process. The configuration of the GMKF model and relevant applications will be presented.

  10. An operational phenological model for numerical pollen prediction

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried

    2010-05-01

    The general prevalence of seasonal allergic rhinitis is estimated to be about 15% in Europe, and still increasing. Pre-emptive measures require both the reliable assessment of production and release of various pollen species and the forecasting of their atmospheric dispersion. For this purpose numerical pollen prediction schemes are being developed by a number of European weather services in order to supplement and improve the qualitative pollen prediction systems by state of the art instruments. Pollen emission is spatially and temporally highly variable throughout the vegetation period and not directly observed, which precludes a straightforward application of dispersion models to simulate pollen transport. Even the beginning and end of flowering, which indicates the time period of potential pollen emission, is not (yet) available in real time. One way to create a proxy for the beginning, the course and the end of the pollen emission is its simulation as function of real time temperature observations. In this work the European phenological data set of the COST725 initiative forms the basis of modelling the beginning of flowering of 15 species, some of which emit allergic pollen. In order to keep the problem as simple as possible for the sake of spatial interpolation, a 3 parameter temperature sum model was implemented in a real time operational procedure, which calculates the spatial distribution of the entry dates for the current day and 24, 48 and 72 hours in advance. As stand alone phenological model and combined with back trajectories it is thought to support the qualitative pollen prediction scheme at the Austrian national weather service. Apart from that it is planned to incorporate it in a numerical pollen dispersion model. More details, open questions and first results of the operation phenological model will be discussed and presented.

  11. Ice-ocean-ecosystem operational model of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Janecki, M.; Dzierzbicka-Glowacka, L.; Jakacki, J.; Nowicki, A.

    2012-04-01

    3D-CEMBS is a fully coupled model adopted for the Baltic Sea and have been developed within the grant, wchich is supported by the Polish State Committee of Scientific Reasearch. The model is based on CESM1.0 (Community Earth System Model), in our configuration it consists of two active components (ocean and ice) driven by central coupler (CPL7). Ocean (POP version 2.1) and ice models (CICE model, version 4.0) are forced by atmospheric and land data models. Atmospheric data sets are provided by ICM-UM model from University of Warsaw. Additionally land model provides runoff of the Baltic Sea (currently 78 rivers). Ecosystem model is based on an intermediate complexity marine ecosystem model for the global domain (J.K. Moore et. al., 2002) and consists of 11 main components: zooplankton, small phytoplankton, diatoms, cyanobacteria, two detrital classes, dissolved oxygen and the nutrients nitrate, ammonium, phosphate and silicate. The model is configured at two horizontal resolutions, approximately 9km and 2km (1/12° and 1/48° respectively). The model bathymetry is represented as 21 vertical levels and the thickness of the first four layers were chosen to be five metres. 3D-CEMBS model grid is based on stereographic coordinates, but equator of these coordinates is in the centre of the Baltic Sea (rotated stereographic coordinates) and we can assume that shape of the cells are square and they are identical. Currently model works in a operational state. The model creates 48-hour forecasts every 6 hours (or when new atmospheric dataset is available). Prognostic variables such as temperature, salinity, ice cover, currents, sea surface height and phytoplankton concentration are presented online on a the website and are available for registered users. Also time series for any location are accessible. This work was carried out in support of grant No NN305 111636 and No NN306 353239 - the Polish state Committee of Scientific Research. The partial support for this study was

  12. Operation and calibration of the Wincharger 450 model SWECS

    NASA Astrophysics Data System (ADS)

    Bryant, P. J.; Boeh, M.

    This paper presents an analysis of the operation of the new 450 model Wincharger. Assembly, testing, output power calibrations and other operational parameters are presented. Techniques of testing are described, including the use of a pickup truck for Controlled Velocity Tests (CVT). The measured output power was just above the rated values when only 12 volts was applied to the generator field. When a separate and constant 15 volt field was applied the output ranged from 46 watts for a 10 mi/h wind speed to 1146 watts for 35 mi/h. At the rated 25 mi/h speed an output of 774 watts was obtained by tuning a resistive load. These values are much greater than the ratings for this unit. However, it is being tested here with a separate field supply and without a voltage regulator.

  13. Assimilating glider data operationally in the CYCOFOS Levantine model

    NASA Astrophysics Data System (ADS)

    Hayes, Daniel; Dobricic, Srdjan; Zodiatis, George; Sofianos, Sarantis

    2013-04-01

    Assimilating observed ocean state variables improves the forecast skill of oceanic flow models. Many forecast centers and institutions assimilate remotely-sensed observations such as sea level anomaly, sea surface temperature, and surface currents. For further improvement, in situ data from the ocean depths are assimilated, typically temperature and salinity profiles, as they are often available in near real time. In many regions, there are few available in situ observations, because of gaps in the observational system (most often ARGO profiling floats and expendable bathythermographs from ships of opportunity). If resources allow, it is preferable to use an autonomous, steerable platform, the ocean glider, to collect observations of specific processes and/or wide areas and long times in near real time for data assimilation. In this study, we illustrate the construction and operation of such an observing and data assimilating system in the Eastern Levantine basin of the Mediterranean. The existing POM-based model of the CYCOFOS-Cyprus Coastal Ocean Forecasting and Observing System is nested within a regional model of the Eastern Mediterranean (ALERMO), which is in turn nested within the operational MyOcean regional model of the Mediterranean (MFS). Each model is run daily, with assimilation of various data products. In this study, glider data were assimilated in the CYCOFOS model only, without influencing the coarser resolution models that provide the initial and boundary conditions. Every day, the model was run in hindcast mode for 1.5 days, during which innovations were computed based on available glider data. At the end of the hindcast, the data assimilation tool OceanVar (based on 3DVAR) calculated corrections to the temperature and salinity fields, which were introduced into the initial time steps of the forecast run of the current day. The forecast run continued for 4.5 days. The run was carried out from 1 December 2011 until 15 April 2012, during which time

  14. Modeling Characteristics of an Operational Probabilistic Safety Assessment (PSA)

    SciTech Connect

    Anoba, Richard C.; Khalil, Yehia; Fluehr, J.J. III; Kellogg, Richard; Hackerott, Alan

    2002-07-01

    Probabilistic Safety Assessments (PSAs) are increasingly being used as a tool for supporting the acceptability of design, procurement, construction, operation, and maintenance activities at nuclear power plants. Since the issuance of Generic Letter 88-20 and subsequent Individual Plant Examinations (IPEs)/Individual Plant Examinations for External Events (IPEEEs), the NRC has issued several Regulatory Guides such as RG 1.182 to describe the use of PSA in risk informed regulation activities. The PSA models developed for the IPEs were typically based on a 'snapshot' of the the risk profile at the nuclear power plant. The IPE models contain implicit assumptions and simplifications that limit the ability to realistically assess current issues. For example, IPE modeling assumptions related to plant configuration limit the ability to perform online equipment out-of-service assessments. The lack of model symmetry results in skewed risk results. IPE model simplifications related to initiating events have resulted in non-conservative estimates of risk impacts when equipment is removed from service. The IPE models also do not explicitly address all external events that are potentially risk significant as equipment is removed from service. (authors)

  15. A Final Approach Trajectory Model for Current Operations

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Sadovsky, Alexander

    2010-01-01

    Predicting accurate trajectories with limited intent information is a challenge faced by air traffic management decision support tools in operation today. One such tool is the FAA's Terminal Proximity Alert system which is intended to assist controllers in maintaining safe separation of arrival aircraft during final approach. In an effort to improve the performance of such tools, two final approach trajectory models are proposed; one based on polynomial interpolation, the other on the Fourier transform. These models were tested against actual traffic data and used to study effects of the key final approach trajectory modeling parameters of wind, aircraft type, and weight class, on trajectory prediction accuracy. Using only the limited intent data available to today's ATM system, both the polynomial interpolation and Fourier transform models showed improved trajectory prediction accuracy over a baseline dead reckoning model. Analysis of actual arrival traffic showed that this improved trajectory prediction accuracy leads to improved inter-arrival separation prediction accuracy for longer look ahead times. The difference in mean inter-arrival separation prediction error between the Fourier transform and dead reckoning models was 0.2 nmi for a look ahead time of 120 sec, a 33 percent improvement, with a corresponding 32 percent improvement in standard deviation.

  16. Addressing drug adherence using an operations management model.

    PubMed

    Nunlee, Martin; Bones, Michelle

    2014-01-01

    OBJECTIVE To provide a model that enables health systems and pharmacy benefit managers to provide medications reliably and test for reliability and validity in the analysis of adherence to drug therapy of chronic disease. SUMMARY The quantifiable model described here can be used in conjunction with behavioral designs of drug adherence assessments. The model identifies variables that can be reproduced and expanded across the management of chronic diseases with drug therapy. By creating a reorder point system for reordering medications, the model uses a methodology commonly seen in operations research. The design includes a safety stock of medication and current supply of medication, which increases the likelihood that patients will have a continuous supply of medications, thereby positively affecting adherence by removing barriers. CONCLUSION This method identifies an adherence model that quantifies variables related to recommendations from health care providers; it can assist health care and service delivery systems in making decisions that influence adherence based on the expected order cycle days and the expected daily quantity of medication administered. This model addresses the possession of medication as a barrier to adherence. PMID:24407742

  17. Consistent tangent operator for an exact Kirchhoff rod model

    NASA Astrophysics Data System (ADS)

    Greco, L.; Cuomo, M.

    2015-09-01

    In the paper, it is considered an exact spatial Kirchhoff rod structural model. The configuration space for this model that has dimension 4 is obtained considering an ad hoc split of the rotation operator that implicitly enforces the constraints on the directors. The tangent stiffness operator, essential for the nonlinear numerical simulations, has been studied. It has been obtained as second covariant gradient of the internal energy functional for the considered structural model that preserves symmetry for any configuration, either equilibrated or not. The result has been reached evaluating the Levi- Civita connection for the tangent space of the configuration manifold. The results obtained extend to the case of Kirchoff - Love rods those presented by Simo (Comput Methods Appl Mech Eng 49:55-70, 1985) for Timoshenko rods. Given the different structure of the tangent spaces in this case, it has been necessary to introduce a specific metric that accounts for the rotation of the intrinsic triad due to the change of the position of the centroid axis of the rod.

  18. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  19. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    PubMed

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-01-01

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction. PMID:26598363

  20. Using Model-Based Reasoning for Autonomous Instrument Operation

    NASA Technical Reports Server (NTRS)

    Johnson, Mike; Rilee, M.; Truszkowski, W.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    of environmental hazards, frame the problem of constructing autonomous science instruments. we are developing a model of the Low Energy Neutral Atom instrument (LENA) that is currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. LENA is a particle detector that uses high voltage electrostatic optics and time-of-flight mass spectrometry to image neutral atom emissions from the denser regions of the Earth's magnetosphere. As with most spacecraft borne science instruments, phenomena in addition to neutral atoms are detected by LENA. Solar radiation and energetic particles from Earth's radiation belts are of particular concern because they may help generate currents that may compromise LENA's long term performance. An explicit model of the instrument response has been constructed and is currently in use on board IMAGE to dynamically adapt LENA to the presence or absence of energetic background radiations. The components of LENA are common in space science instrumentation, and lessons learned by modelling this system may be applied to other instruments. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. Our future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.

  1. Transit Model Fitting in the Kepler Science Operations Center Pipeline

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2012-05-01

    We describe the algorithm and performance of the transit model fitting of the Kepler Science Operations Center (SOC) Pipeline. Light curves of long cadence targets are subjected to the Transiting Planet Search (TPS) component of the Kepler SOC Pipeline. Those targets for which a Threshold Crossing Event (TCE) is generated in the transit search are subsequently processed in the Data Validation (DV) component. The light curves may span one or more Kepler observing quarters, and data may not be available for any given target in all quarters. Transit model parameters are fitted in DV to transit-like signatures in the light curves of target stars with TCEs. The fitted parameters are used to generate a predicted light curve based on the transit model. The residual flux time series of the target star, with the predicted light curve removed, is fed back to TPS to search for additional TCEs. The iterative process of transit model fitting and transiting planet search continues until no TCE is generated from the residual flux time series or a planet candidate limit is reached. The transit model includes five parameters to be fitted: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. The initial values of the fit parameters are determined from the TCE values provided by TPS. A limb darkening model is included in the transit model to generate the predicted light curve. The transit model fitting results are used in the diagnostic tests in DV, such as the centroid motion test, eclipsing binary discrimination tests, etc., which helps to validate planet candidates and identify false positive detections. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  2. Behavior modeling through CHAOS for simulation of dismounted soldier operations

    NASA Astrophysics Data System (ADS)

    Ubink, Emiel; Aldershoff, Frank; Lotens, Wouter; Woering, Arend

    2008-04-01

    One of the major challenges in human behavior modeling for military applications is dealing with all factors that can influence behavior and performance. In a military context, behavior and performance are influenced by the task at hand, the internal (cognitive and physiological) and external (climate, terrain, threat, equipment, etc.) state. Modeling the behavioral effects of all these factors in a centralized manner would lead to a complex rule-base that is difficult to maintain or expand. To better cope with this complexity we have developed the Capability-based Human-performance Architecture for Operational Simulation (CHAOS). CHAOS is a multi-agent system for human behavior modeling that is based on pandemonium theory. Every agent in CHAOS represents a specific part of behavior, such as 'reaction to threat' or 'performing a patrol task'. These agents are competing over a limited set of resources that represent human capabilities. By combining the element of competition with multiple limited resources, CHAOS allows us to model stress, strain and multi-tasking in an intuitive manner. The CHAOS architecture is currently used in firefighter and dismounted soldier simulations and has shown itself to be suitable for human behavior and performance modeling.

  3. Strategic Scene Generation Model: baseline and operational software

    NASA Astrophysics Data System (ADS)

    Heckathorn, Harry M.; Anding, David C.

    1993-08-01

    The Strategic Defense Initiative (SDI) must simulate the detection, acquisition, discrimination and tracking of anticipated targets and predict the effect of natural and man-made background phenomena on optical sensor systems designed to perform these tasks. NRL is developing such a capability using a computerized methodology to provide modeled data in the form of digital realizations of complex, dynamic scenes. The Strategic Scene Generation Model (SSGM) is designed to integrate state-of-science knowledge, data bases and computerized phenomenology models to simulate strategic engagement scenarios and to support the design, development and test of advanced surveillance systems. Multi-phenomenology scenes are produced from validated codes--thereby serving as a traceable standard against which different SDI concepts and designs can be tested. This paper describes the SSGM design architecture, the software modules and databases which are used to create scene elements, the synthesis of deterministic and/or stochastic structured scene elements into composite scenes, the software system to manage the various databases and digital image libraries, and verification and validation by comparison with empirical data. The focus will be on the functionality of the SSGM Phase II Baseline MOdel (SSGMB) whose implementation is complete Recent enhancements for Theater Missile Defense will also be presented as will the development plan for the SSGM Phase III Operational Model (SSGMO) whose development has just begun.

  4. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    NASA Technical Reports Server (NTRS)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  5. Assessing skill of operational forest fire emissions model

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    Across the continental United States, the BlueSky Smoke Modeling Framework provides hourly forest fire emissions forecasts and calculates the concentrations of hazardous compounds 72 hours in advance. Though a traditional computational model itself, the BlueSky Framework pulls together the results from a number of different independent models for fire and fuel information, combustion of fuel, and speciated emissions calculations to produce its operational forecasts of fire-related emissions and smoke dispersals. One aspect of forest fire emissions that is of particular concern is small particulate matter, particularly microscopic particles with diameters less than 2.5 micrometers. These particles, known as PM2.5, are small enough to penetrate lung tissue and cause serious health problems in high concentrations. To assess the skill of the BlueSky Gateway, a system that uses the BlueSky Framework and the Community MultiScale Air Quality (CMAQ) model to forecast PM2.5 surface concentrations, Strand et al. compared the modeled estimates for two Californian forest wildfire events against observations.

  6. Application of thermospheric general circulation models for space weather operations

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T.; Minter, C.; Codrescu, M.

    Solar irradiance is the dominant source of heat, ionization, and dissociation of the thermosphere, and to a large extent drives the global dynamics, and controls the neutral composition and density structure. Neutral composition is important for space weather applications because of its impact on ionospheric loss rates, and neutral density is critical for satellite drag prediction. The future for thermospheric general circulation models for space weather operations lies in their use as state propagators in data assimilation techniques. The physical models can match empirical models in accuracy provided accurate drivers are available, but their true value comes when combined with data in an optimal way. Two such applications have recently been developed. The first utilizes a Kalman filter to combine space-based observation of airglow with physical model predictions to produce global maps of neutral composition. The output of the filter will be used within the GAIM (Global Assimilation of Ionospheric Measurement) model developed under a parallel effort. The second filter uses satellite tracking and remote sensing data for specification of neutral density. Both applications rely on accurate estimates of the solar EUV and magnetospheric drivers.

  7. Model operating permits for natural gas processing plants

    SciTech Connect

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  8. Modeling and simulation for space medicine operations: preliminary requirements considered.

    PubMed

    Dawson, D L; Billica, R D; McDonald, P V

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed. PMID:11317721

  9. An Extended Model for E-Discovery Operations

    NASA Astrophysics Data System (ADS)

    Billard, David

    Most models created for electronic discovery (e-discovery) in legal proceedings tend to ignore the technical aspects mainly because they assume that only traditional digital forensic tasks are involved. However, this assumption is incorrect. The time frames for conducting e-discovery procedures are very restricted, and investigations are carried out in real time with strict non-disclosure dispositions and changing demands as the cases unfold. This paper presents an augmented model and architecture for e-discovery designed to cope with the technological complexities in real-world scenarios. It also discusses how e-discovery operations should be handled to ensure cooperation between digital forensic professionals and legal teams while guaranteeing that non-disclosure agreements and information confidentiality are preserved.

  10. Spectral Differentiation Operators for Solving Hydrodynamic PSE Models

    NASA Astrophysics Data System (ADS)

    Alina Bistrian, Diana; Ioana Dragomirescu, Florica; Savii, George; Monica Stoica, Diana

    2010-09-01

    This paper explores the use of spectral methods in the numerical investigation of the eigenvalue problem governing the linear stability of the mechanical equilibria of the flow motion. Parabolized stability equations are used as a new approach to investigate the stability of the swirling flow ingested by the conical diffuser in the Francis hydropower turbine which determines the behavior and the performances of the draft tube. For the cases of sophisticated boundary conditions, the study involves a new mathematical model in spectral operators formulation and a simulation algorithm that translates the hydrodynamic PSE model into computer code instructions immediately following problem formulations. A two-dimensional stability analysis is performed and the frequency ranges of the most unstable modes are provided together with the perturbation amplitudes.

  11. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  12. Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators

    NASA Technical Reports Server (NTRS)

    Smith, R. C.

    1997-01-01

    A phenomenological characterization of hysteresis in magnetostrictive materials is presented. Such hysteresis is due to both the driving magnetic fields and stress relations within the material and is significant throughout, most of the drive range of magnetostrictive transducers. An accurate characterization of the hysteresis and material nonlinearities is necessary, to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a characterization is made here in the context of generalized Preisach operators. This yields a framework amenable to proving the well-posedness of structural models that incorporate the magnetostrictive transducers. It also provides a natural setting in which to develop practical approximation techniques. An example illustrating this framework in the context of a Timoshenko beam model is presented.

  13. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this…

  14. Verification of the NWP models operated at ICM, Poland

    NASA Astrophysics Data System (ADS)

    Melonek, Malgorzata

    2010-05-01

    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw (ICM) started its activity in the field of NWP in May 1997. Since this time the numerical weather forecasts covering Central Europe have been routinely published on our publicly available website. First NWP model used in ICM was hydrostatic Unified Model developed by the UK Meteorological Office. It was a mesoscale version with horizontal resolution of 17 km and 31 levels in vertical. At present two NWP non-hydrostatic models are running in quasi-operational regime. The main new UM model with 4 km horizontal resolution, 38 levels in vertical and forecats range of 48 hours is running four times a day. Second, the COAMPS model (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by the US Naval Research Laboratory, configured with the three nested grids (with coresponding resolutions of 39km, 13km and 4.3km, 30 vertical levels) are running twice a day (for 00 and 12 UTC). The second grid covers Central Europe and has forecast range of 84 hours. Results of the both NWP models, ie. COAMPS computed on 13km mesh resolution and UM, are verified against observations from the Polish synoptic stations. Verification uses surface observations and nearest grid point forcasts. Following meteorological elements are verified: air temperature at 2m, mean sea level pressure, wind speed and wind direction at 10 m and 12 hours accumulated precipitation. There are presented different statistical indices. For continous variables Mean Error(ME), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) in 6 hours intervals are computed. In case of precipitation the contingency tables for different thresholds are computed and some of the verification scores such as FBI, ETS, POD, FAR are graphically presented. The verification sample covers nearly one year.

  15. Models for filtration during drilling, completion and stimulation operations

    NASA Astrophysics Data System (ADS)

    Xie, Jing

    Filtration of solid suspensions is encountered in many operations during drilling, completing and stimulating oil and gas wells. Filtration of drilling muds, completion and fracturing fluids, gravel packing slurries are a few examples. Most of these applications involve the filtration of non-Newtonian fluids into a porous medium containing compressible fluids. Internal and external compressible filter cakes can form under static or dynamic filtration conditions. Models for static filtration of solid-laden polymer fluids have been developed. These models solve the basic filtration equations to obtain the depth of invasion of solids and polymer into the formation. The buildup of an external filter cake is modeled after a transition time is reached when no more additional particles invade the formation. It is shown that a square root of time dependence is obtained during external filtration of polymer fluids. During the spurt loss period (internal filtration) the model allows us to calculate the extent of solids and filtrate invasion and the duration of spurt loss. The model for the first time presents a formulation where the spurt loss can be obtained from the model directly. Fluid compressibility effects as well as cake compressibility can be accounted for in the model. The results of the model allow us to better interpret leak-off data during the period in which the polymer is being squeezed into the formation. Comparisons with experiments show that fluid leak-off during the spurt loss period can be accurately estimated with the equations presented. During drilling or when a fracture is created in a frac-and-pack operation, fluid leak-off occurs by a dynamic filtration process. In this process, particles are constantly sheared away by the flow of the polymer slurry parallel to the face of the fracture with fluid leak-off occurring into the rock. A new model for dynamic filtration has been developed which takes into account the particle size distribution of the wall

  16. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  17. An operational model for mainstreaming ecosystem services for implementation

    PubMed Central

    Cowling, Richard M.; Egoh, Benis; Knight, Andrew T.; O'Farrell, Patrick J.; Reyers, Belinda; Rouget, Mathieu; Roux, Dirk J.; Welz, Adam; Wilhelm-Rechman, Angelika

    2008-01-01

    Research on ecosystem services has grown markedly in recent years. However, few studies are embedded in a social process designed to ensure effective management of ecosystem services. Most research has focused only on biophysical and valuation assessments of putative services. As a mission-oriented discipline, ecosystem service research should be user-inspired and user-useful, which will require that researchers respond to stakeholder needs from the outset and collaborate with them in strategy development and implementation. Here we provide a pragmatic operational model for achieving the safeguarding of ecosystem services. The model comprises three phases: assessment, planning, and management. Outcomes of social, biophysical, and valuation assessments are used to identify opportunities and constraints for implementation. The latter then are transformed into user-friendly products to identify, with stakeholders, strategic objectives for implementation (the planning phase). The management phase undertakes and coordinates actions that achieve the protection of ecosystem services and ensure the flow of these services to beneficiaries. This outcome is achieved via mainstreaming, or incorporating the safeguarding of ecosystem services into the policies and practices of sectors that deal with land- and water-use planning. Management needs to be adaptive and should be institutionalized in a suite of learning organizations that are representative of the sectors that are concerned with decision-making and planning. By following the phases of our operational model, projects for safeguarding ecosystem services are likely to empower stakeholders to implement effective on-the-ground management that will achieve resilience of the corresponding social-ecological systems. PMID:18621695

  18. BepiColombo/MMO model payload and its operation plan

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Kasaba, Y.; Yamakawa, H.; Ogawa, H.; Mukai, T.

    We introduce the outline and current investigations of the model payloads and its operation plan for BepiColombo/MMO(Mercury Magnetospheric Orbiter). Main targets of MMO are 1) Structure and origin of Herman magnetic field, 2) Structure, dynamics, and physical processes of Herman magnetosphere, 3) Structure, variation, and origin of Herman atmosphere, 4) Macroscopic structure of Herman crust, and 5) Physical environment of inner solar system. For these targets, MMO has 10 Smodel payloadsT: Electron Spectrum Analyzer (ESA), Mass Spectrum Analyzer (MSA), Solar Wind Analyzer (SWA), High Energy Particle (HEP), Energetic Neutral Atoms (ENA), Magnetic Field sensor (MGF), Plasma Wave Instrument (PWI), Mercury Dust Monitor (MDM), Mercury Imaging Camera for Atmosphere (MIC-A), Mercury Imaging Camera for Surface (MIC-S). These are operated by 3 common systems, which have Data Processing Unit (DPU) and Power Conversion Unit (PCU) with standard I/O to each instrument. The former provides command/telemetry functions and integrated operations. The latter provides power supply and control. MGF might be separated and installed into both PCS and FCS, for the redundancy of the magnetic field measurement. MMO will be at polar orbit with the period of 9.2hour, the periherm of 400km and the apoherm of 12,000km (~6RM). It is selected for the observations of large regions in the Herman magnetosphere, mappings of magnetic field and surface, and macroscopic imaging of the Na atmosphere. The telemetry ability will be 20~160Mbytes/day (~40Mbytes/day [ave]). Data production rate will show large seasonal variation, because the data rate of in-situ plasma instruments is correlated to the duration staying in the magnetosphere and varies in 20~75MB/day. So basic policy of the operation is Sstoring in the high-production term and reproduction in the low-production termT. This policy requires large DR capacity, above 4GB. In the actual operation, we will take data depending on the telemetry rate

  19. Modeling and simulation of the USAVRE network and radiology operations

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Bradford, Daniel Q.; Hatch, Jay; Sochan, John; Chimiak, William J.

    1998-07-01

    . There are three levels to the model: (1) Network model of the Cable Bundling Initiative (CBI) network and base networks (CUITIN), (2) Protocol model, including network, transport, and middleware protocols, such TCP/IP and Common Object Request Broker Architecture (CORBA) protocols, and (3) USAVRE Application layer model, including database archive systems, acquisition equipment, viewing workstations, and operations and management. The Network layer of the model contains the ATM-based backbone network provided by the CBI, interfaces into the RMC regional networks and the PACS networks at the medical centers and RMC sites. The CBI network currently is a DS-3 (45 Mbps) backbone consisting of three major hubs, at Ft. Leavenworth, KS, Ft. Belvoir, VA, and Ft. McPherson, GA. The medical center PACS networks are 100 Mbps and 1 Gbps networks. The RMC site networks are 100 Mbps speeds. The model is very beneficial in studying the multimedia transfer and operations characteristics of the USAVRE before it is completely built and deployed.

  20. Chiral condensate in the Schwinger model with matrix product operators

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana

    2016-05-01

    Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.

  1. Operational support for a range-dependent radio propagation model

    NASA Astrophysics Data System (ADS)

    Cook, John; Vogel, Gerard; Love, Gary

    1995-02-01

    The emerging new standard in the U.S. Navy for range-dependent radio propagation assessment is the Radio Physical Optics (RPO) model developed at the Naval Command, Control and Ocean Surveillance Center, RDT&E Division (NRaD). RPO allows one to compare the expected radio propagation loss field as a function of height along a desired bearing, provided the atmospheric propagation conditions are specified along the path. This paper describes an architecture being developed to operationally support RPO. In developing this architecture, a number of unique constraints and considerations have been dealt with to provide RPO with cross-sections of atmospheric propagation conditions. First, forecast grids from a mesoscale weather data assimilation/prediction model are accessed to provide the best estimate of the current and future refractive and meteorological conditions over the area of interest. Based on conditions near the surface, high-resolution profiles of refractivity in the evaporation duct are calculated and appended onto the bottom of the model forecast profiles. This completes the specification of refractivity down to the sea surface. These refractivity profiles are then processed by a unique algorithm that matches similar refractivity structures from profile-to-profile and reformats the data to support the indexing scheme required by RPO. After RPO has been run, the propagation loss results can be displayed and thresholded to provide expected coverage against specific targets. An example will be shown where multiple RPO runs are used to suggest positioning of available assets to maximize coverage.

  2. 76 FR 53348 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... (Operations) Limited Model BAe 146 Airplanes and Model Avro 146-RJ Airplanes AGENCY: Federal Aviation... send comments by any of the following methods: Federal eRulemaking Portal: Go to http://www.regulations... proposed AD. Discussion On May 3, 2010, we issued AD 2010-10-22, Amendment 39-16301 (75 FR 28463, May...

  3. 76 FR 2281 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Model BAe 146 Airplanes, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... (OPERATIONS) LIMITED Model BAe 146 Airplanes, and Model Avro 146-RJ Airplanes AGENCY: Federal Aviation... comments by any of the following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov... this proposed AD. Discussion On June 14, 2005, we issued AD 2005-13-19, Amendment 39-14156 (70 FR...

  4. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  5. Making Risk Models Operational for Situational Awareness and Decision Support

    SciTech Connect

    Paulson, Patrick R.; Coles, Garill A.; Shoemaker, Steven V.

    2012-06-12

    Modernization of nuclear power operations control systems, in particular the move to digital control systems, creates an opportunity to modernize existing legacy infrastructure and extend plant life. We describe here decision support tools that allow the assessment of different facets of risk and support the optimization of available resources to reduce risk as plants are upgraded and maintained. This methodology could become an integrated part of the design review process and a part of the operations management systems. The methodology can be applied to the design of new reactors such as small nuclear reactors (SMR), and be helpful in assessing the risks of different configurations of the reactors. Our tool provides a low cost evaluation of alternative configurations and provides an expanded safety analysis by considering scenarios while early in the implementation cycle where cost impacts can be minimized. The effects of failures can be modeled and thoroughly vetted to understand their potential impact on risk. The process and tools presented here allow for an integrated assessment of risk by supporting traditional defense in depth approaches while taking into consideration the insertion of new digital instrument and control systems.

  6. Evolving Gaussian Mixture Models with Splitting and Merging Mutation Operators.

    PubMed

    Covões, Thiago Ferreira; Hruschka, Eduardo Raul; Ghosh, Joydeep

    2016-01-01

    This paper describes the evolutionary split and merge for expectation maximization (ESM-EM) algorithm and eight of its variants, which are based on the use of split and merge operations to evolve Gaussian mixture models. Asymptotic time complexity analysis shows that the proposed algorithms are competitive with the state-of-the-art genetic-based expectation maximization (GA-EM) algorithm. Experiments performed in 35 data sets showed that ESM-EM can be computationally more efficient than the widely used multiple runs of EM (for different numbers of components and initializations). Moreover, a variant of ESM-EM free from critical parameters was shown to be able to provide competitive results with GA-EM, even when GA-EM parameters were fine-tuned a priori. PMID:25950390

  7. Operation and modeling of the FORTE trigger box

    SciTech Connect

    Murphy, T.

    1996-06-01

    The fast on-orbit recording of transient events satellite (FORTE) will carry a multiple-narrow-band trigger designed to detect impulsive VHF signals embedded in a high-noise background. The FORTE trigger boxes consist of eight VHF channels spaced across twenty MHz of bandwidth. A trigger is generated when a sufficiently bright signal is seen in a user-defined number of these channels within a specified coincidence window. In addition, the trigger circuitry incorporates a feature to reject events caused by the actuation of narrow-band carriers. This report describes the trigger`s operating principles and their implementation in the satellite hardware. We then discuss a computer model which can be used to simulate the performance of the trigger circuit.

  8. AMFESYS: Modelling and diagnosis functions for operations support

    NASA Technical Reports Server (NTRS)

    Wheadon, J.

    1993-01-01

    Packetized telemetry, combined with low station coverage for close-earth satellites, may introduce new problems in presenting to the operator a clear picture of what the spacecraft is doing. A recent ESOC study has gone some way to show, by means of a practical demonstration, how the use of subsystem models combined with artificial intelligence techniques, within a real-time spacecraft control system (SCS), can help to overcome these problems. A spin-off from using these techniques can be an improvement in the reliability of the telemetry (TM) limit-checking function, as well as the telecommand verification function, of the Spacecraft Control systems (SCS). The problem and how it was addressed, including an overview of the 'AMF Expert System' prototype are described, and proposes further work which needs to be done to prove the concept. The Automatic Mirror Furnace is part of the payload of the European Retrievable Carrier (EURECA) spacecraft, which was launched in July 1992.

  9. Modelling dispersion of traffic pollution in a deep street canyon: Application of CFD and operational models

    NASA Astrophysics Data System (ADS)

    Murena, Fabio; Favale, Giuseppe; Vardoulakis, Sotiris; Solazzo, Efisio

    In this study, numerical modelling of the flow and concentration fields has been undertaken for a deep street canyon in Naples (Italy), having aspect ratio (i.e. ratio of the building height H to the street width W) H/ W = 5.7. Two different modelling techniques have been employed: computational fluid dynamics (CFD) and operational dispersion modelling. The CFD simulations have been carried out by using the RNG k- ɛ turbulence model included in the commercial suite FLUENT, while operational modelling has been conducted by means of the WinOSPM model. Concentration fields obtained from model simulations have been compared with experimental data of CO concentrations measured at two vertical locations within the canyon. The CFD results are in good agreement with the experimental data, while poor agreement is observed for the WinOSPM results. This is because WinOSPM was originally developed and tested for street canyons with aspect ratio H/ W ≌ 1. Large discrepancies in wind profiles simulated within the canyon are observed between CFD and OSPM models. Therefore, a modification of the wind profile within the canyon is introduced in WinOSPM for extending its applicability to deeper canyons, leading to an improved agreement between modelled and experimental data. Further development of the operational dispersion model is required in order to reproduce the distinct air circulation patterns within deep street canyons.

  10. Operational Assimilation of GOES Data into a Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Lapenta, William; Suggs, Ron; McNider, Richard; Jedlovec, Gary; Dembek, Scott

    2000-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The technique has been employed on a semi-operational basis at the Global Hydrology and Climate Center (GHCC) within the Penn State/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5) since 1 November 1998. We performed the assimilation on a model grid centered over the Southeastern US. In addition, a control run without assimilation was performed to provide insight into the performance of the assimilation technique. Bulk verification statistics (BIAS and RMSE) of surface air temperature and relative humidity of more than 250 case days has been performed to date. Results show that assimilation of the satellite data results reduces both the bias and RMSE for simulations of surface air temperature and relative humidity. We are working with forecasters at the National Weather Service Forecast Office located in Birmingham, AL to evaluate the impact of the assimilation on precipitation forecasts. In addition

  11. SP-100 operational life model. Fiscal Year 1990 annual report

    SciTech Connect

    Ewell, R.; Awaya, H.

    1990-12-14

    This report covers the initial year`s effort in the development of an Operational Life Model (OLM) for the SP-100 Space Reactor Power System. The initial step undertaken in developing the OLM was to review all available documentation from GE on their plans for the OLM and on the degradation and failure mechanisms envisioned for the SP-100. In addition, the DEGRA code developed at JPL, which modelled the degradation of the General Purpose Heat Source based Radioisotope Thermoelectric Generator (GPHS-RTG), was reviewed. Based on the review of the degradation and failure mechanisms, a list of the most pertinent degradation effects along with their key degradation mechanisms was compiled. This was done as a way of separating the mechanisms from the effects and allowing all of the effects to be incorporated into the OLM. The emphasis was on parameters which will tend to change performance as a function of time and not on those that are simply failures without any prior degradation.

  12. Development of Standardized Probabilistic Risk Assessment Models for Shutdown Operations Integrated in SPAR Level 1 Model

    SciTech Connect

    S. T. Khericha; J. Mitman

    2008-05-01

    Nuclear plant operating experience and several studies show that the risk from shutdown operation during Modes 4, 5, and 6 at pressurized water reactors and Modes 4 and 5 at boiling water reactors can be significant. This paper describes using the U.S. Nuclear Regulatory Commission’s full-power Standardized Plant Analysis Risk (SPAR) model as the starting point for development of risk evaluation models for commercial nuclear power plants. The shutdown models are integrated with their respective internal event at-power SPAR model. This is accomplished by combining the modified system fault trees from the SPAR full-power model with shutdown event tree logic. Preliminary human reliability analysis results indicate that risk is dominated by the operator’s ability to correctly diagnose events and initiate systems.

  13. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  14. Operational model updating of spinning finite element models for HAWT blades

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew; Loh, Kenneth J.; Zhao, Yingjun; La Saponara, Valeria; Kamisky, Robert J.; van Dam, Cornelis P.

    2014-04-01

    Structural health monitoring (SHM) relies on collection and interrogation of operational data from the monitored structure. To make this data meaningful, a means of understanding how damage sensitive data features relate to the physical condition of the structure is required. Model-driven SHM applications achieve this goal through model updating. This study proposed a novel approach for updating of aero-elastic turbine blade vibrational models for operational horizontal-axis wind turbines (HAWTs). The proposed approach updates estimates of modal properties for spinning HAWT blades intended for use in SHM and load estimation of these structures. Spinning structures present additional challenges for model updating due to spinning effects, dependence of modal properties on rotational velocity, and gyroscopic effects that lead to complex mode shapes. A cyclo-stationary stochastic-based eigensystem realization algorithm (ERA) is applied to operational turbine data to identify data-driven modal properties including frequencies and mode shapes. Model-driven modal properties are derived through modal condensation of spinning finite element models with variable physical parameters. Complex modes are converted into equivalent real modes through reduction transformation. Model updating is achieved through use of an adaptive simulated annealing search process, via Modal Assurance Criterion (MAC) with complex-conjugate modes, to find the physical parameters that best match the experimentally derived data.

  15. NOAA Operational Model Archive Distribution System (NOMADS): High Availability Applications for Reliable Real Time Access to Operational Model Data

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.; Wang, J.

    2009-12-01

    To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including

  16. Software design and operational model for the WCEDS prototype

    SciTech Connect

    Beiriger, J.I.; Moore, S.G.; Young, C.J.; Trujillo, J.R.

    1997-08-01

    To explore the potential of waveform correlation for CTBT, the Waveform Correlation Event Detection System (WCEDS) prototype was developed. The WCEDS software design followed the Object Modeling Technique process of analysis, system design, and detailed design and implementation. Several related executable programs are managed through a Graphical User Interface (GUI). The WCEDS prototype operates in an IDC/NDC-compatible environment. It employs a CSS 3.0 database as its primary input/output interface, reading in raw waveforms at the start, and storing origins, events, arrivals, and associations at the finish. Additional output includes correlation results and data for specified testcase origins, and correlation timelines for specified locations. During the software design process, the more general seismic monitoring functionality was extracted from WCEDS-specific requirements and developed into C++ object-oriented libraries. These include the master image, grid, basic seismic, and extended seismic libraries. Existing NDC and commercial libraries were incorporated into the prototype where appropriate, to focus development activities on new capability. The WCEDS-specific application code was built in a separate layer on top of the general seismic libraries. The general seismic libraries developed for the WCEDS prototype can provide a base for other algorithm development projects.

  17. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  18. Building Restoration Operations Optimization Model Beta Version 1.0

    Energy Science and Technology Software Center (ESTSC)

    2007-05-31

    The Building Restoration Operations Optimization Model (BROOM), developed by Sandia National Laboratories, is a software product designed to aid in the restoration of large facilities contaminated by a biological material. BROOM’s integrated data collection, data management, and visualization software improves the efficiency of cleanup operations, minimizes facility downtime, and provides a transparent basis for reopening the facility. Secure remote access to building floor plans Floor plan drawings and knowledge of the HVAC system are criticalmore » to the design and implementation of effective sampling plans. In large facilities, access to these data may be complicated by the sheer abundance and disorganized state they are often stored in. BROOM avoids potentially costly delays by providing a means of organizing and storing mechanical and floor plan drawings in a secure remote database that is easily accessed. Sampling design tools BROOM provides an array of tools to answer the question of where to sample and how many samples to take. In addition to simple judgmental and random sampling plans, the software includes two sophisticated methods of adaptively developing a sampling strategy. Both tools strive to choose sampling locations that best satisfy a specified objective (i.e. minimizing kriging variance) but use numerically different strategies to do so. Surface samples are collected early in the restoration process to characterize the extent of contamination and then again later to verify that the facility is safe to reenter. BROOM supports sample collection using a ruggedized PDA equipped with a barcode scanner and laser range finder. The PDA displays building floor drawings, sampling plans, and electronic forms for data entry. Barcodes are placed on sample containers for the purpose of tracking the specimen and linking acquisition data (i.e. location, surface type, texture) to laboratory results. Sample location is determined by activating the integrated

  19. Building Restoration Operations Optimization Model Beta Version 1.0

    SciTech Connect

    2007-05-31

    The Building Restoration Operations Optimization Model (BROOM), developed by Sandia National Laboratories, is a software product designed to aid in the restoration of large facilities contaminated by a biological material. BROOM’s integrated data collection, data management, and visualization software improves the efficiency of cleanup operations, minimizes facility downtime, and provides a transparent basis for reopening the facility. Secure remote access to building floor plans Floor plan drawings and knowledge of the HVAC system are critical to the design and implementation of effective sampling plans. In large facilities, access to these data may be complicated by the sheer abundance and disorganized state they are often stored in. BROOM avoids potentially costly delays by providing a means of organizing and storing mechanical and floor plan drawings in a secure remote database that is easily accessed. Sampling design tools BROOM provides an array of tools to answer the question of where to sample and how many samples to take. In addition to simple judgmental and random sampling plans, the software includes two sophisticated methods of adaptively developing a sampling strategy. Both tools strive to choose sampling locations that best satisfy a specified objective (i.e. minimizing kriging variance) but use numerically different strategies to do so. Surface samples are collected early in the restoration process to characterize the extent of contamination and then again later to verify that the facility is safe to reenter. BROOM supports sample collection using a ruggedized PDA equipped with a barcode scanner and laser range finder. The PDA displays building floor drawings, sampling plans, and electronic forms for data entry. Barcodes are placed on sample containers for the purpose of tracking the specimen and linking acquisition data (i.e. location, surface type, texture) to laboratory results. Sample location is determined by activating the integrated laser

  20. Proton Therapy Facility Planning From a Clinical and Operational Model.

    PubMed

    Das, Indra J; Moskvin, Vadim P; Zhao, Qingya; Cheng, Chee-Wai; Johnstone, Peter A

    2015-10-01

    This paper provides a model for planning a new proton therapy center based on clinical data, referral pattern, beam utilization and technical considerations. The patient-specific data for the depth of targets from skin in each beam angle were reviewed at our center providing megavoltage photon external beam and proton beam therapy respectively. Further, data on insurance providers, disease sites, treatment depths, snout size and the beam angle utilization from the patients treated at our proton facility were collected and analyzed for their utilization and their impact on the facility cost. The most common disease sites treated at our center are head and neck, brain, sarcoma and pediatric malignancies. From this analysis, it is shown that the tumor depth from skin surface has a bimodal distribution (peak at 12 and 26 cm) that has significant impact on the maximum proton energy, requiring the energy in the range of 130-230 MeV. The choice of beam angles also showed a distinct pattern: mainly at 90° and 270°; this indicates that the number of gantries may be minimized. Snout usage data showed that 70% of the patients are treated with 10 cm snouts. The cost of proton beam therapy depends largely on the type of machine, maximum beam energy and the choice of gantry versus fixed beam line. Our study indicates that for a 4-room center, only two gantry rooms could be needed at the present pattern of the patient cohorts, thus significantly reducing the initial capital cost. In the USA, 95% and 100% of patients can be treated with 200 and 230 MeV proton beam respectively. Use of multi-leaf collimators and pencil beam scanning may further reduce the operational cost of the facility. PMID:24988058

  1. Critical Function Models for Operation of the International Space Station

    SciTech Connect

    Nelson, William Roy; Bagian, T. M.

    2000-11-01

    Long duration and exploration class space missions will place new requirements on human performance when compared to current space shuttle missions. Specifically, assembly and operation of the International Space Station (ISS) will place significant new demands on the crew. For example, maintenance of systems that provide habitability will become an ongoing activity for the international flight crews. Tasks for maintaining space station habitability will need to be integrated with tasks associated with scientific research. In addition, tasks and resources will need to be prioritized and allocated dynamically in response to changing operational conditions and unplanned system breakdowns. This paper describes an ongoing program to develop a habitability index (HI) for space operations based on the critical function approach. This pilot project focuses on adaptation of the critical function approach to develop a habitability index specifically tailored for space operations. Further work will then be needed to expand and validate the habitability index for application in the ISS operational environment.

  2. Predicate argument structure frames for modeling information in operative notes.

    PubMed

    Wang, Yan; Pakhomov, Serguei; Melton, Genevieve B

    2013-01-01

    The rich information about surgical procedures contained in operative notes is a valuable data source for improving the clinical evidence base and clinical research. In this study, we propose a set of Predicate Argument Structure (PAS) frames for surgical action verbs to assist in the creation of an information extraction (IE) system to automatically extract details about the techniques, equipment, and operative steps from operative notes. We created PropBank style PAS frames for the 30 top surgical action verbs based on examination of randomly selected sample sentences from 3,000 Laparoscopic Cholecystectomy notes. To assess completeness of the PAS frames to represent usage of same action verbs, we evaluated the PAS frames created on sample sentences from operative notes of 6 other gastrointestinal surgical procedures. Our results showed that the PAS frames created with one type of surgery can successfully denote the usage of the same verbs in operative notes of broader surgical categories. PMID:23920664

  3. Operator function modeling: An approach to cognitive task analysis in supervisory control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1987-01-01

    In a study of models of operators in complex, automated space systems, an operator function model (OFM) methodology was extended to represent cognitive as well as manual operator activities. Development continued on a software tool called OFMdraw, which facilitates construction of an OFM by permitting construction of a heterarchic network of nodes and arcs. Emphasis was placed on development of OFMspert, an expert system designed both to model human operation and to assist real human operators. The system uses a blackboard method of problem solving to make an on-line representation of operator intentions, called ACTIN (actions interpreter).

  4. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Model Rule-Operating Limits for Wet Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish...

  5. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Model Rule-Operating Limits for Wet Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish...

  6. Does model structure limit the use of satellite data as hydrologic forcing for distributed operational models?

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2015-12-01

    We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.

  7. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-12

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  8. Collective operations in a file system based execution model

    DOEpatents

    Shinde, Pravin; Van Hensbergen, Eric

    2013-02-19

    A mechanism is provided for group communications using a MULTI-PIPE synthetic file system. A master application creates a multi-pipe synthetic file in the MULTI-PIPE synthetic file system, the master application indicating a multi-pipe operation to be performed. The master application then writes a header-control block of the multi-pipe synthetic file specifying at least one of a multi-pipe synthetic file system name, a message type, a message size, a specific destination, or a specification of the multi-pipe operation. Any other application participating in the group communications then opens the same multi-pipe synthetic file. A MULTI-PIPE file system module then implements the multi-pipe operation as identified by the master application. The master application and the other applications then either read or write operation messages to the multi-pipe synthetic file and the MULTI-PIPE synthetic file system module performs appropriate actions.

  9. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...

  10. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  11. The Use of Behavior Models for Predicting Complex Operations

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2010-01-01

    Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.

  12. A knowledge based model of electric utility operations. Final report

    SciTech Connect

    1993-08-11

    This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

  13. Operational test and evaluation of the meter engineering development model

    NASA Astrophysics Data System (ADS)

    Damore, R. J.; Mah, C. P.

    1982-11-01

    The Operational Test and Evaluation (OT&E) of the Meaning Etraction Through Estimated Relevance (METER) System was conducted at Hq Military Airlift Command, Scott AFB, ILL. The Two year effort provided for continuing enhancement of the METER system, as well as tailoring it to interface with the operational message processing system. Analyst training and evaluation of METER's potential utility to the intelligence community were covered.

  14. Implications for modeling casualty sustainment during peacekeeping operations.

    PubMed

    Blood, Christopher G; Zhang, Jinjin; Walker, G Jay

    2002-10-01

    Projections of the casualties expected during peacekeeping operations allow medical planners to assess in advance the medical resources needed to support such operations. Data detailing fatalities incurred in previous peacekeeping operations were extracted from several U.N. sources. From these data, rates of killed-in-action were computed for the deployed forces. One hundred eighty-eight peacekeeping incidents in which casualties were sustained were also examined to derive wounded-in-action rates. The estimated mean wounded-in-action rate for these operations was 3.16 per 1,000 strength per year; the estimated wounded-in-action rate for individual operations ranged from 0.49 to 12.50. There were an average of 3.8 wounded and 0.86 killed in the 188 casualty incidents examined. Thirty-eight percent of the wounds were described as serious. The casualty incidence derived in this study can provide a basis for estimating the casualties likely in future peacekeeping operations. PMID:12392258

  15. An experimental study of a VVER reactor's steam generator model operating in the condensing mode

    NASA Astrophysics Data System (ADS)

    Morozov, A. V.; Remizov, O. V.

    2012-05-01

    Results obtained from an experimental study of a VVER reactor's steam generator model operating in the condensing mode are presented. The obtained empirical dependence for calculating the power of heat exchangers operating in the steam condensation mode is presented.

  16. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  17. A Framework of Operating Models for Interdisciplinary Research Programs in Clinical Service Organizations

    ERIC Educational Resources Information Center

    King, Gillian; Currie, Melissa; Smith, Linda; Servais, Michelle; McDougall, Janette

    2008-01-01

    A framework of operating models for interdisciplinary research programs in clinical service organizations is presented, consisting of a "clinician-researcher" skill development model, a program evaluation model, a researcher-led knowledge generation model, and a knowledge conduit model. Together, these models comprise a tailored, collaborative…

  18. Abstract Model of the SATS Concept of Operations: Initial Results and Recommendations

    NASA Technical Reports Server (NTRS)

    Dowek, Gilles; Munoz, Cesar; Carreno, Victor A.

    2004-01-01

    An abstract mathematical model of the concept of operations for the Small Aircraft Transportation System (SATS) is presented. The Concept of Operations consist of several procedures that describe nominal operations for SATS, Several safety properties of the system are proven using formal techniques. The final goal of the verification effort is to show that under nominal operations, aircraft are safely separated. The abstract model was written and formally verified in the Prototype Verification System (PVS).

  19. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  20. Modeling Yuba River Watershed using WEHY Model and Dam Operation Rules

    NASA Astrophysics Data System (ADS)

    Pahwa, Prince

    Water is an essential requirement for human existence. However, due to economic and social developments as well as climate change, both water withdrawals and water supplies are changing significantly. Water consumption has an increasing tendency in all the sectors mainly in agricultural use, industrial and power generation use, and domestic use. The total water demand of US is projected to increase by about 12.3 percent between 2000 and 2050. In the meantime, water supplies are being impacted by climate change and anthropogenic impacts. It has, thus, become a necessity to be able to model and predict the water flow based on integration of spatial elements and atmospheric/climatic changes. The purpose of this project is to model the surface run off in the Yuba River Watershed, California, given the geographic and geomorphologic complexities and the presence of dams that regulate the water discharge. The model used, the Watershed Environmental Hydrology Model, WEHY, utilizes upscaled hydrologic conservation equations to describe the evolution of the hydrologic processes and environmental processes within a watershed in time and space. It is capable of accounting for the effect of heterogeneity within natural watersheds. With the development of modern geographic information system (GIS) and remote sensing technologies, increasingly more watershed physical attributes are digitally available, such as topography, geology, soils, land/vegetation cover, and so on. Because the WEHY model parameters are related to the physical properties of the watershed, it is possible to estimate the geomorphologic parameters and the soil hydraulic parameters of the WEHY model by means of existing GIS data sets that describe the geomorphologic features and the soil conditions. So the geographic and geomorphologic complexities are addressed by WEHY and GIS. Presence of big dams makes it necessary to define operation rules taking care of all the constraints including downstream water demand

  1. Modeling the wind-fields of accidental releases with an operational regional forecast model

    SciTech Connect

    Albritton, J.R.; Lee, R.L.; Sugiyama, G.

    1995-09-11

    The Atmospheric Release Advisory Capability (ARAC) is an operational emergency preparedness and response organization supported primarily by the Departments of Energy and Defense. ARAC can provide real-time assessments of atmospheric releases of radioactive materials at any location in the world. ARAC uses robust three-dimensional atmospheric transport and dispersion models, extensive geophysical and dose-factor databases, meteorological data-acquisition systems, and an experienced staff. Although it was originally conceived and developed as an emergency response and assessment service for nuclear accidents, the ARAC system has been adapted to also simulate non-radiological hazardous releases. For example, in 1991 ARAC responded to three major events: the oil fires in Kuwait, the eruption of Mt. Pinatubo in the Philippines, and the herbicide spill into the upper Sacramento River in California. ARAC`s operational simulation system, includes two three-dimensional finite-difference models: a diagnostic wind-field scheme, and a Lagrangian particle-in-cell transport and dispersion scheme. The meteorological component of ARAC`s real-time response system employs models using real-time data from all available stations near the accident site to generate a wind-field for input to the transport and dispersion model. Here we report on simulation studies of past and potential release sites to show that even in the absence of local meteorological observational data, readily available gridded analysis and forecast data and a prognostic model, the Navy Operational Regional Atmospheric Prediction System, applied at an appropriate grid resolution can successfully simulate complex local flows.

  2. Improving reservoir operations modeling for integration in a regional Earth system model

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Li, H.; Ward, D. L.; Huang, M.; Leung, L.; Wigmosta, M. S.

    2012-12-01

    In integrated Earth system models (EaSMs), accurate hydrologic information in all of its components including socio-economy, atmosphere, land, and energy infrastructure is needed to represent the interactions between human and Earth system processes. The hydrology processes regulate the water, energy and carbon fluxes in this integrated framework. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of EaSMs in hydrologic and climate predictions, as well as impact studies such as integrated assessment activities at regional to global scales. Dynamic programming approaches to optimize operations of reservoir systems have been widely used for water resources management planning at local and regional scales and recently have emerged in global-scale applications; albeit they are performed offline from the EaSMs , and require accurate knowledge of future flow for the upcoming water year. Other emerging large-scale research reservoir models use generic operating rules that are more flexible for coupling with EaSMs. Those generic operating rules have been successful in reproducing overall regulated flow at large basin scales. Improved generic operating rules are presented and evaluated across multiple spatial scales and objectives (flow but also storage and supply) over the complex multi-objective Columbia River Regulation System, which is representative of large river systems with increasing competitive reservoir purposes in the future. Challenges due to the difference in time and spatial scales between the physical processes versus reservoir operations and targets (irrigation, flood control, hydropower, environmental flow, navigation) are then discussed in the context of improving hydrology and evapotranspiration fluxes within an integrated EaSM.

  3. Modeling of operating history of the research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  4. Terrestrial Food-Chain Model for Normal Operations.

    Energy Science and Technology Software Center (ESTSC)

    1991-10-01

    Version 00 TERFOC-N calculates radiation doses to the public due to atmospheric releases of radionuclides in normal operations of nuclear facilities. The code estimates the highest individual dose and the collective dose from four exposure highways: internal doses from ingestion and inhalation, external doses from cloudshine and groundshine.

  5. Quantitative, steady-state properties of Catania's computational model of the operant reserve.

    PubMed

    Berg, John P; McDowell, J J

    2011-05-01

    Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced realistic behavior in initial, exploratory analyses. Although Catania's operant reserve computational model demonstrated potential to simulate varied behavioral phenomena, the model was not systematically tested. The current project replicated and extended the Catania model, clarified its capabilities through systematic testing, and determined the extent to which it produces behavior corresponding to matching theory. Significant departures from both classic and modern matching theory were found in behavior generated by the model across all conditions. The results suggest that a simple, dynamic operant model of the reflex reserve does not simulate realistic steady state behavior. PMID:21238552

  6. Instructional Developer as Content Specialist: Three Case Studies Utilizing the Instructional Development-Operations Research Model.

    ERIC Educational Resources Information Center

    Faust, Stephen M.

    1980-01-01

    Presents a 3-phase model (content research, specification, delivery) for instructional development-operations research and describes its application in developing courses in zoology, geology, and paleontology. (MER)

  7. Information Flow Model of Human Extravehicular Activity Operations

    NASA Technical Reports Server (NTRS)

    Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.

    2014-01-01

    Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.

  8. Computerized operating cost model for industrial steam generation

    SciTech Connect

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  9. Development of Dam Operation Scheme in a Hydrology Model

    NASA Astrophysics Data System (ADS)

    He, Y.; Liang, X.

    2013-12-01

    A novel scheme for dam operation has been developed based on the artificial neural network approach to predict the reservoir management and hydrologic effects in response to climate variation and change. The scheme is built upon the historic management information of operating each dam, including climate, ecology properties and attributes (e.g., storage, surface area) for all relevant reservoirs. The scheme implicitly introduces the relationship between water demand and supply for downstream fluvial ecosystem, agriculture irrigation, and hydropower. This study will first present the fundamental formulation of the predictive scheme along with detailed analysis of the historical management data, and then evaluate the performance for its application in the Colorado River basin. Caveats and merits will also be discussed.

  10. Operation of the computer model for microenvironment solar exposure

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironmental solar exposure was developed to predict solar exposure to satellite surfaces which may shadow or reflect on one another. This document describes the technical features of the model as well as instructions for the installation and use of the program.

  11. Linking Geomechanical Models with Observations of Microseismicity during CCS Operations

    NASA Astrophysics Data System (ADS)

    Verdon, J.; Kendall, J.; White, D.

    2012-12-01

    During CO2 injection for the purposes of carbon capture and storage (CCS), injection-induced fracturing of the overburden represents a key risk to storage integrity. Fractures in a caprock provide a pathway along which buoyant CO2 can rise and escape the storage zone. Therefore the ability to link field-scale geomechanical models with field geophysical observations is of paramount importance to guarantee secure CO2 storage. Accurate location of microseismic events identifies where brittle failure has occurred on fracture planes. This is a manifestation of the deformation induced by CO2 injection. As the pore pressure is increased during injection, effective stress is decreased, leading to inflation of the reservoir and deformation of surrounding rocks, which creates microseismicity. The deformation induced by injection can be simulated using finite-element mechanical models. Such a model can be used to predict when and where microseismicity is expected to occur. However, typical elements in a field scale mechanical models have decameter scales, while the rupture size for microseismic events are typically of the order of 1 square meter. This means that mapping modeled stress changes to predictions of microseismic activity can be challenging. Where larger scale faults have been identified, they can be included explicitly in the geomechanical model. Where movement is simulated along these discrete features, it can be assumed that microseismicity will occur. However, microseismic events typically occur on fracture networks that are too small to be simulated explicitly in a field-scale model. Therefore, the likelihood of microseismicity occurring must be estimated within a finite element that does not contain explicitly modeled discontinuities. This can be done in a number of ways, including the utilization of measures such as closeness on the stress state to predetermined failure criteria, either for planes with a defined orientation (the Mohr-Coulomb criteria) for

  12. A Student Operated Animated Infrared Spectroscopy Teaching Model

    ERIC Educational Resources Information Center

    Hartman, Karel

    1976-01-01

    Describes a teaching model that consists of a plywood box containing mechanisms that instruct the student about the technical aspects of an infrared spectrophotometer and how a spectrum is generated. (MLH)

  13. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    SciTech Connect

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  14. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  15. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  16. MODIS-derived Potential Evapotranspiration Estimates for Operational Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Kim, J.; Hogue, T.

    2005-12-01

    The current SACramento Soil Moisture Accounting Model (SAC-SMA), used by the National Weather Service, is the primarily model for hydrologic forecasting across the United States. Potential evapotranspiration (PET), one of the required inputs, remains rather simplistic. The model traditionally uses a regional pan evaporation estimate due to the difficulty in acquiring more sophisticated measurements. This study explores an alternative methodology using only remote sensing information to capture the monthly mean distribution of potential evapotranspiration (PET) for the SAC-SMA model. We apply a simple scheme proposed by Jiang and Islam (2005) to estimate the net radiation and estimate PET within the context of the Priestley-Taylor equation using data gathered from the MODIS Terra platform. PET estimates from the MODIS data are compared with those derived from Oklahoma Mesonet ground-based measurements and traditional pan evaporation estimates. Preliminary results will be presented for the Illinois River basin at Watts (OK) identified as part of the National Weather Service's Distributed Modeling Intercomparison Project (DMIP). The resultant streamflow simulations will illustrate the sensitivity of the SAC-SMA model to potential evaporation inputs from different sources and the possibility of the application of a stand-alone PET method for un-gauged basins.

  17. Toward an operant model of power in organizations

    PubMed Central

    Goltz, Sonia M.

    2003-01-01

    The purpose of this paper is to suggest that behavior analysis can help to explain social power. In this approach, an individual's potential for influence is thought to be partially a function of his or her access to stimuli that can be used as consequences. This access can occur either through direct authority or indirectly through social networks and exchanges. Social power is also thought to be a function of an individual's skill in delivering the stimuli in ways that will have the most impact on behavior. A number of predictions about power based on an operant approach are offered. PMID:22478398

  18. Modeling the operational risk in Iranian commercial banks: case study of a private bank

    NASA Astrophysics Data System (ADS)

    Momen, Omid; Kimiagari, Alimohammad; Noorbakhsh, Eaman

    2012-08-01

    The Basel Committee on Banking Supervision from the Bank for International Settlement classifies banking risks into three main categories including credit risk, market risk, and operational risk. The focus of this study is on the operational risk measurement in Iranian banks. Therefore, issues arising when trying to implement operational risk models in Iran are discussed, and then, some solutions are recommended. Moreover, all steps of operational risk measurement based on Loss Distribution Approach with Iran's specific modifications are presented. We employed the approach of this study to model the operational risk of an Iranian private bank. The results are quite reasonable, comparing the scale of bank and other risk categories.

  19. Applications Of Algebraic Image Operators To Model-Based Vision

    NASA Astrophysics Data System (ADS)

    Lerner, Bao-Ting; Morelli, Michael V.; Thomas, Hans J.

    1989-03-01

    This paper extends our previous research on a highly structured and compact algebraic representation of grey-level images. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, we have devised an innovative, efficient edge detection scheme.We have developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower with this new edge detection scheme. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The feature extractor and model matcher are being incorporated into a distributed robot control system. Model matching is accomplished using both top-down and bottom-up processing: a priori sensor and world model information are used to constrain the search of the image space for features, while extracted image information is used to update the model.

  20. Operational advances in ring current modeling using RAM-SCB

    SciTech Connect

    Welling, Daniel T; Jordanova, Vania K; Zaharia, Sorin G; Morley, Steven K

    2010-12-03

    The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.

  1. An Empirically Developed Model for Evaluating the Central Office Operations of a School System.

    ERIC Educational Resources Information Center

    Carriker, Don

    This model provides a structure for uniformly evaluating all operations of a school central office, where the assumption that those offices exist to provide services is tenable. The model provides a means for assessing the importance as well as the efficiency with which the tasks of central office operations are carried out. Formative data is…

  2. Alternative Models of Service, Centralized Machine Operations. Phase II Report. Volume II.

    ERIC Educational Resources Information Center

    Technology Management Corp., Alexandria, VA.

    A study was conducted to determine if the centralization of playback machine operations for the national free library program would be feasible, economical, and desirable. An alternative model of playback machine services was constructed and compared with existing network operations considering both cost and service. The alternative model was…

  3. New Model of a Solar Wind Airplane for Geomatic Operations

    NASA Astrophysics Data System (ADS)

    Achachi, A.; Benatia, D.

    2015-08-01

    The ability for an aircraft to fly during a much extended period of time has become a key issue and a target of research, both in the domain of civilian aviation and unmanned aerial vehicles. This paper describes a new design and evaluating of solar wind aircraft with the objective to assess the impact of a new system design on overall flight crew performance. The required endurance is in the range of some hours in the case of law enforcement, border surveillance, forest fire fighting or power line inspection. However, other applications at high altitudes, such as geomatic operations for delivering geographic information, weather research and forecast, environmental monitoring, would require remaining airborne during days, weeks or even months. The design of GNSS non precision approach procedure for different airports is based on geomatic data.

  4. MEASURE AND MOBILE-MEASURE MODELS - RESEARCH/OPERATION/SUPPORT

    EPA Science Inventory

    EPA's Office of Research and Development (ORD) has been working in cooperation with the Georgia Institute of Technology, EPA's Office of Transportation and Air Quality (OTAQ), and the Federal Highway Administration to develop a new concept in mobile source emissions modeling. Thi...

  5. Maximizing the Effectiveness of Leadership Inservice Education: An Operational Model.

    ERIC Educational Resources Information Center

    Sommerville, Joseph C.

    This paper includes a functional model for upgrading the effectiveness of inservice training for school administrators. It is based on the writer's contention that most inservice programs for administrators do not relate to the leadership concerns of each participant, skills developed in those programs often are not applied to the participant's…

  6. Molecular Modeling of Estrogen Receptor Using Molecular Operating Environment

    ERIC Educational Resources Information Center

    Roy, Urmi; Luck, Linda A.

    2007-01-01

    Molecular modeling is pervasive in the pharmaceutical industry that employs many of our students from Biology, Chemistry and the interdisciplinary majors. To expose our students to this important aspect of their education we have incorporated a set of tutorials in our Biochemistry class. The present article describes one of our tutorials where…

  7. Application of First Principles Model to Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar; DiStefano, Salvidor

    1996-01-01

    Previous models use a single phase reaction; cycled cell predicts cannot be met with a single phase; interphase conversion provides means for film aging; aging cells predictions display typical behaviors: pressure changes in NiH² cells; voltage fading upon cycling; second plateau on discharge of cycled cells; negative limited behavior for Ni-Cds.

  8. Vehicular pollution modeling using the operational street pollution model (OSPM) for Chembur, Mumbai (India).

    PubMed

    Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole

    2016-06-01

    Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter. PMID:27178051

  9. Applications of algebraic image operators to model-based vision

    NASA Technical Reports Server (NTRS)

    Lerner, Bao-Ting; Morelli, Michael V.; Thomas, Hans J.

    1989-01-01

    A highly structured and compact algebraic representation of grey-level images is expanded. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, an innovative, efficient edge-detection scheme is devised. A robust method for linear feature extraction is developed by combining the techniques of a Hough transform and a line follower with this new edge detection scheme. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The feature extractor and model matcher are being incorporated into a distributed robot-control system.

  10. New techniques for the analysis of manual control systems. [mathematical models of human operator behavior

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.

    1971-01-01

    Studies are summarized on the application of advanced analytical and computational methods to the development of mathematical models of human controllers in multiaxis manual control systems. Specific accomplishments include the following: (1) The development of analytical and computer methods for the measurement of random parameters in linear models of human operators. (2) Discrete models of human operator behavior in a multiple display situation were developed. (3) Sensitivity techniques were developed which make possible the identification of unknown sampling intervals in linear systems. (4) The adaptive behavior of human operators following particular classes of vehicle failures was studied and a model structure proposed.