Modelling radiation loads to detectors in a SNAP mission.
Mokhov, N V; Rakhno, I L; Striganov, S I; Peterson, T J
2005-01-01
In order to investigate the degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission because of irradiation, a three-dimensional model of the satellite has been developed. A realistic radiation environment at the satellite orbit, including both galactic cosmic rays and cosmic ray trapped in radiation belts, has been taken into account. The modelling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photo-detectors is shown to be due to trapped protons. The contribution of primary alpha particles is estimated. Predicted performance degradation for the photodetector for a four-year space mission is 40% and this can be reduced further by means of shielding optimisation. PMID:16604632
Modeling radiation loads to detectors in a SNAP mission
Nikolai V. Mokhov et al.
2004-05-12
In order to investigate degradation of optical detectors of the Supernova Acceleration Project (SNAP) space mission due to irradiation, a three-dimensional model of the satellite has been developed. Realistic radiation environment at the satellite orbit, including both galactic and trapped in radiation belts cosmic rays, has been taken into account. The modeling has been performed with the MARS14 Monte Carlo code. In a current design, the main contribution to dose accumulated in the photodetectors is shown to be due to trapped protons. A contribution of primary {alpha}-particles is estimated. Predicted performance degradation for the photo-detector for a 4-year space mission is 40% and can be reduced further by means of shielding optimization.
NASA Astrophysics Data System (ADS)
Oaida, C. M.; Xue, Y.; Painter, T. H.; Flanner, M. G.; De Sales, F.
2011-12-01
Radiative processes play an important role on both global and regional scales. This study focuses on their effects over snow-covered surfaces, both clean and dust loaded. It is well understood that dust in snow enhances solar radiation absorption, leading to a decrease in snow albedo. However, the quantitative assessment of dust's influence on radiative forcing and runoff timing in mountain snow packs has only been recently investigated. Painter et al. (2007) have shown that snow cover was shortened by 18 to 35 days due to dust radiative forcing in snow in the San Juan Mountains, Colorado, USA. This dust largely originates from the Colorado Plateau with increases of 5-7 fold in the last century and a half due to grazing and agricultural practices. For this study, we employ NCAR's WRF ARW v3.3+ model, which is coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB3). We first investigate the impact of different atmospheric radiative transfer schemes in WRF3.3+-SSiB3 on the regional climate downscaling. After conducting simulations over North America for the period March through June, we found substantial differences in the downscaling skills with different atmospheric radiative schemes. These differences indicate the uncertainty due to the atmospheric radiative transfer parameterizations. To develop a regional climate model that is capable of realistically simulating radiative forcing on snow covered areas with aerosol loading, we coupled WRF3.3+-SSiB3 with a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model. SNICAR considers the effects of snow grain size and aerosol on snow albedo evolution. Snow grain size and growth is important in snow albedo feedbacks, especially when aerosols in snow are considered, because larger snow grains decrease snow albedo, and in the presence of dust, grain growth rates increase, decreasing snow reflectance even further than if the snow was pure. Our previous version of WRF3.3+-SSi
David Chassin, Pavel Etingov
2013-04-30
The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to be provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.
Energy Science and Technology Software Center (ESTSC)
2013-04-30
The LMDT software automates the process of the load composite model data preparation in the format supported by the major power system software vendors (GE and Siemens). Proper representation of the load composite model in power system dynamic analysis is very important. Software tools for power system simulation like GE PSLF and Siemens PSSE already include algorithms for the load composite modeling. However, these tools require that the input information on composite load to bemore » provided in custom formats. Preparation of this data is time consuming and requires multiple manual operations. The LMDT software enables to automate this process. Software is designed to generate composite load model data. It uses the default load composition data, motor information, and bus information as an input. Software processes the input information and produces load composition model. Generated model can be stored in .dyd format supported by GE PSLF package or .dyr format supported by Siemens PSSE package.« less
Radiation load to the SNAP CCD
N. V. Mokhov, I. L. Rakhno and S. I. Striganov
2003-08-14
Results of an express Monte Carlo analysis with the MARS14 code of radiation load to the CCD optical detectors in the Supernova Acceleration Project (SNAP) mission presented for realistic radiation environment over the satellite orbit.
Composite Load Model Evaluation
Lu, Ning; Qiao, Hong
2007-09-30
The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.
ERIC Educational Resources Information Center
James, W. G. G.
1970-01-01
Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)
Indirect solar loading of waste heat radiators
Kirkpatrick, R.C.; Tabor, J.E.; Lindman, E.L.; Cooper, A.J.
1988-01-01
Waste heat from space based power systems must ultimately be radiated away into space. The local topology around the radiators must be considered from two stand-points: the scattering of sunlight onto the surfaces of the radiator and the heat load that the radiator may put on near-by components of the system. A view factor code (SNAP) developed at Los Alamos allows the computation of the steady-state radiation environment for complex 3-D geometries. An example of the code's utility is given. 4 refs., 2 figs., 1 tab.
Effect of wheel load on wheel vibration and sound radiation
NASA Astrophysics Data System (ADS)
Han, Jian; Wang, Ruiqian; Wang, Di; Guan, Qinghua; Zhang, Yumei; Xiao, Xinbiao; Jin, Xuesong
2015-01-01
The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty and worth studying. However, there are few studies on the effect of wheel load on wheel vibration and sound radiation. In this paper, laboratory test carried out in a semi-anechoic room investigates the effect of wheel load on wheel natural frequencies, damping ratios, wheel vibration and its sound radiation. The laboratory test results show that the vibration of the wheel and total sound radiation decrease significantly with the increase of the wheel load from 0 t to 1 t. The sound energy level of the wheel decreases by 3.7 dB. When the wheel load exceeds 1 t, the attenuation trend of the vibration and sound radiation of the wheel becomes slow. And the increase of the wheel load causes the growth of the wheel natural frequencies and the mode damping ratios. Based on the finite element method (FEM) and boundary element method (BEM), a rolling noise prediction model is developed to calculate the influence of wheel load on the wheel vibration and sound radiation. In the calculation, the used wheel/rail excitation is the measured wheel/rail roughness. The calculated results show that the sound power level of the wheel decreases by about 0.4 dB when the wheel load increases by 0.5 t. The sound radiation of the wheel decreases slowly with wheel load increase, and this conclusion is verified by the field test. This research systematically studies the effect of wheel load on wheel vibration and sound radiation, gives the relationship between the sound and wheel/rail contact and analyzes the reasons, therefore, it provides a reference for further research.
Electrical Load Modeling and Simulation
Chassin, David P.
2013-01-01
Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.
Thermal loading considerations for synchrotron radiation mirrors
Holdener, F.R.; Berglin, E.J.; Fuchs, B.A.; Humpal, H.H.; Karpenko, V.P.; Martin, R.W.; Tirsell, K.G.
1986-03-26
Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 6/sup 0/ grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm/sup 2/.
NASA Astrophysics Data System (ADS)
Soobbarayen, K.; Sinou, J.-J.; Besset, S.
2014-10-01
This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.
Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.
2014-01-01
Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.
Influence of dust loading on atmospheric ionizing radiation on Mars
NASA Astrophysics Data System (ADS)
Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.
2014-01-01
Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.
Cone Penetrometer Load Cell Temperature and Radiation Testing Results
Follett, Jordan R.
2013-08-28
This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.
Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas.
Alù, Andrea; Engheta, Nader
2008-07-25
Here we explore the radiation features of optical nanoantennas, analyzing the concepts of optical input impedance, optical radiation resistance, impedance matching, and loading of plasmonic nanodipoles. We discuss how the concept of antenna impedance may be applied to optical frequencies and how its quantity may be properly defined and evaluated. We exploit these concepts in the optimization of nanoantenna loading by optical nanocircuit elements, extending classic concepts of radio-frequency antenna theory to the visible regime for the proper design and matching of plasmonic nanoantennas. PMID:18764328
Saturn Radiation (SATRAD) Model
NASA Technical Reports Server (NTRS)
Garrett, H. B.; Ratliff, J. M.; Evans, R. W.
2005-01-01
The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.
Shumway, R.W.
1987-10-01
The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.
Radiation risk estimation models
Hoel, D.G.
1987-11-01
Cancer risk models and their relationship to ionizing radiation are discussed. There are many model assumptions and risk factors that have a large quantitative impact on the cancer risk estimates. Other health end points such as mental retardation may be an even more serious risk than cancer for those with in utero exposures. 8 references.
NASA Astrophysics Data System (ADS)
Smirnova, Olga
Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.
Final Project Report Load Modeling Transmission Research
Lesieutre, Bernard; Bravo, Richard; Yinger, Robert; Chassin, Dave; Huang, Henry; Lu, Ning; Hiskens, Ian; Venkataramanan, Giri
2012-03-31
The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.
Status of LDEF radiation modeling
NASA Technical Reports Server (NTRS)
Watts, John W.; Armstrong, T. W.; Colborn, B. L.
1995-01-01
The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
Changes in Frequency of Electromagnetic Radiation from Loaded Coal Rock
NASA Astrophysics Data System (ADS)
Song, Dazhao; Wang, Enyuan; Song, Xiaoyan; Jin, Peijian; Qiu, Liming
2016-01-01
To understand the relationship between the frequency of electromagnetic radiation (EMR) emitted from loaded coal rock and the micro-crack structures inside it, and assess the stress state and the stability of coal rock by analyzing frequency changes in characteristics of its emitted EMR, we first experimentally studied the changes in time sequence and the frequency spectrum characteristics of EMR during uniaxial compression, then theoretically derived the relationship between the principal frequency of EMR signals and the mechanical parameters of coal crack and analyzed the major factors causing the changes in the principal frequency, and lastly verified the results at Nuodong Coal Mine, Guizhou Province, China. The experimental results showed that (1) EMR intensity increased with the applied stress on loaded coal rock during its deformation and failure and could qualitatively reflect the coal's stress status; (2) with the applied stress increasing, the principal frequency gradually increased from near zero to about 60 kHz and then dropped to less than 20 kHz. During this period, coal rock first stepped into the linearly and elastically deformed stage and then ruptured around the peak load. Theoretical analysis showed that there was a negative correlation between the principle frequency and the size of internal cracks. Field detection showed that a lower principle frequency was generated from coal rock applied by a greater load, while a higher principal frequency was generated from coal rocks suffering a weaker load.
Modeling and control of thermostatically controlled loads
Backhaus, Scott N; Sinitsyn, Nikolai; Kundu, S.; Hiskens, I.
2011-01-04
As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.
Chandra Radiation Environment Modeling
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, W. C.
2003-01-01
CRMFLX (Chandra Radiation Model of ion FluX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operations times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space Chandra must operate, and on-board particle detectors do not measure proton flux levels of the required energy range. This presentation will describe the plasma environment data analysis and modeling basis of the CRMFLX engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. The recently released CRMFLX Version 2 implementation includes an algorithm that propagates flux from an observation location to other regions of the magnetosphere based on convective ExB and VB-curvature particle drift motions. This technique has the advantage of more completely filling out the database and makes maximum use of limited data obtained during high Kp periods or in areas of the magnetosphere with poor satellite flux measurement coverage.
Ground To Flight Extrapolation Of SRM Radiative Loads
NASA Astrophysics Data System (ADS)
Ferrara, V.; Paglia, F.; Mogavero, A.; Genito, M.; Bonnet, M.
2011-05-01
VEGA is a European launch vehicle under development by the Prime Contractor ELV S.p.A. in the frame of an ESA Contract. It is constituted by four stages, dedicated to the scientific/commercial market of small satellites (300 ÷ 2500 kg) into Low Earth Orbits, with inclinations ranging from 5.2° up to Sun Synchronous Orbits and with altitude ranging from 300 to 1500 km. In the framework of the development of the VEGA Launch vehicle a great effort has been spent in the development of all the three SRMs powering the LV. Even if this development is really challenging on the other hand a great amount of experimental data coming from SRM firing tests is available. Taking benefit of the up to date CFD methodology and of the existence of experimental data a verification/validation activity has been performed by Avio S.p.A. and ELV S.p.A., aimed at the estimation of in-flight radiative loads coming from the VEGA Solid Rocket motors. Numerical simulations have been performed by means of the multi-purpose code FLUENT 6.3 ® under the hypothesis of a steady state approach considering a turbulent flow. A multiphase numerical approach has been also developed and validated against experimental data coming from the bench firing tests showing a good level of numerical accuracy (1Fig.1). The study of the Vega motors plume has been identified in the class of dispersed flows, with the typical regime of particulate flow in which has been identified the configuration of solid particles in gas. The selected approach is two way coupled Eulerian-Lagrangian. The Navier-Stokes equations, including source term to take into account the presence of particulate, are solved at each time-step in conjunction with the radiation equation and particulate motion law and heat-transfer equations. The resulting system of equations is a fully coupled system solved with an explicit algorithm. The methodology, and particularly radiation properties settings, has been verified against available experimental
Improving residential miscellaneous electrical load modeling
NASA Astrophysics Data System (ADS)
Burgett, Joseph M.
Over the past 30 years, the intensity of all major energy use categories has decreased in the residential market with the exception of miscellaneous electrical loads (MELs). MELs include primarily 120V plug-loads and some hard wired loads. MELs stand alone as the only category in which energy intensity has steadily increased over time. While MELs constitute approximately 15% - 25% of a typical home's total energy use, it is projected to increase to 36% by 2020. Despite the significant percentage of the home's total load, MELs are the least researched energy end use category and most poorly modeled. The Home Energy Rating System (HERS) index is the most widely used residential energy rating system and uses a simple square foot multiplier to model MELs. This study improves upon the HERS model by including occupant characteristics as part of the MEL model. This "new model" was created by regressing and explanatory equation from the Energy Information Agency's Residential Energy Consumption Survey (RECS). The RECS has a very large sample size of 12,083 respondents who answered over 90 pages of questions related to home structure, appliances they own and demographical information. The information provided by the respondents was used to calculate a MEL for all the RECS households. A stepwise regression process was used to create a model that included size of the home, household income, number of household members and presence of a home business to predict the MEL. The new model was then tested on 24 actual homes to compare its predictive power with the HERS model. The new model more closely predicted the actual MEL for 17 of the 24 test houses (71%). Additionally, the standard deviation or the "tightness of fit" of the new model was less than half of the HERS model when used on the RECS respondents. What this study found was that using occupant characteristics to supplement a square foot multiplier significantly increased the precision of MEL modeling.
Ringing load models verified against experiments
Krokstad, J.R.; Stansberg, C.T.
1995-12-31
What is believed to be the main reason for discrepancies between measured and simulated loads in previous studies has been assessed. One has focused on the balance between second- and third-order load components in relation to what is called ``fat body`` load correction. It is important to understand that the use of Morison strip theory in combination with second-order wave theory give rise to second- as well as third-order components in the horizontal force. A proper balance between second- and third-order components in horizontal force is regarded as the most central requirements for a sufficient accurate ringing load model in irregular sea. It is also verified that simulated second-order components are largely overpredicted both in regular and irregular seas. Nonslender diffraction effects are important to incorporate in the FNV formulation in order to reduce the simulated second-order component and to match experiments more closely. A sufficient accurate ringing simulation model with the use of simplified methods is shown to be within close reach. Some further development and experimental verification must however be performed in order to take non-slender effects into account.
Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.
1985-10-01
The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.
Achieving Integrated FEA Model and Loads Management
NASA Astrophysics Data System (ADS)
Lauzon, Dominick; Huf, Brian; Hagstrom, Dustin
2012-07-01
Recent developments in enterprise level simulation tools now enable CAE engineers and managers to keep up with today’s accelerating rate in the number and complexity of simulation models. All simulation related activities including Finite Element Models (FEM) variants and their respective results datasets can now be captured and managed. This provides valuable model pedigree from the source geometry referenced in the PDM system, spacecraft design and FEM configurations, external loads, simulation results and internal loads down to key results with the final critical design review and test correlation reports. The process presented in this paper demonstrates how simulation data capture and relationships can be achieved. Moreover, process management from conceptual design to spacecraft final proto-flight tests can now be achieved systematically and efficiently while performing and ensuring model quality, all the way from assembly level down to component level. MSC Software’s SimXpert and SimManager, two commercial off-the-shelf software codes, are used to highlight the benefits of this approach. In addition, an automation process that performs model validation per aerospace engineering best practice standards is also presented.
Radiation tests for a single-GEM-loaded gaseous detector
NASA Astrophysics Data System (ADS)
Lee, Kyong Sei; Hong, Byungsik; Park, Sung Keun; Kim, Sang Yeol
2014-11-01
We report on a systematic study of a single-gas-electron-multiplier (GEM)-loaded gaseous detector developed for precision measurements of high-energy particle beams and for dose verification in particle therapy. In the present study, a 256-channel prototype detector having an active area of 16 × 16 cm2 and operating using a continuous current-integration-mode signal-processing method was manufactured and tested with X-rays emitted from a 70-kV X-ray generator and 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The amplified detector response was measured for X-rays with an intensity of about 5 × 106 Hz cm-2. The linearity of the detector response to the particle flux was examined and validated by using 43-MeV proton beams. The non-uniform development of the amplification for the gas electrons in space was corrected by applying a proper calibration to the channel responses of the measured beam-profile data. We conclude from the radiation tests that the detector developed in the present study will allow us to perform quality measurements of various high-energy particle beams and to apply the technology to dose-verification measurements in particle therapy.
Core/corona modeling of diode-imploded annular loads
NASA Astrophysics Data System (ADS)
Terry, R. E.; Guillory, J. U.
1980-11-01
The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.
Using NASTRAN to model missile inertia loads
NASA Technical Reports Server (NTRS)
Marvin, R.; Porter, C.
1985-01-01
An important use of NASTRAN is in the area of structural loads analysis on weapon systems carried aboard aircraft. The program is used to predict bending moments and shears in missile bodies, when subjected to aircraft induced accelerations. The missile, launcher and aircraft wing are idealized, using rod and beam type elements for solution economy. Using the inertia relief capability of NASTRAN, the model is subjected to various acceleration combinations. It is found to be difficult to model the launcher sway braces and hooks which transmit compression only or tension only type forces respectively. A simple, iterative process was developed to overcome this modeling difficulty. A proposed code modification would help model compression or tension only contact type problems.
[Calculation of radiation loads in a space station compartment with a secondary shielding].
Kartashov, D A; Tolochek, R V; Shurshakov, V A; Yarmanova, E N
2013-01-01
Doses from space ionizing radiation were estimated using a model of ISS cosmonaut's quarters (CQ) outfitted with secondary shielding ("Protective shutter" (PS) as part of experiment MATRYOSHKA-R). Protective shutter is a "blanket" of water-containing material with mass thickness of - 6 g/cm2 covering the CQ exterior wall. Calculation was performed specifically for locations of experimental dosimetry assemblies. Agreement of calculations and experimental data reaching accuracy - 15% proves model applicability to estimating protective effectiveness of secondary shielding in the present-day and future space vehicles. This shielding may reduce radiation loading onto crewmembers as an equivalent dose by more than 40% within a broad range of orbit altitudes equally during the solar minimum and maximum. PMID:24660246
Modeling the Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2006-01-01
There has been a renaissance of interest in space radiation environment modeling. This has been fueled by the growing need to replace long time standard AP-9 and AE-8 trapped particle models, the interplanetary exploration initiative, the modern satellite instrumentation that has led to unprecedented measurement accuracy, and the pervasive use of Commercial off the Shelf (COTS) microelectronics that require more accurate predictive capabilities. The objective of this viewgraph presentation was to provide basic understanding of the components of the space radiation environment and their variations, review traditional radiation effects application models, and present recent developments.
Kartashov, D A; Shurshakov, V A
2015-01-01
The paper presents the results of calculating doses from space ionizing radiation for a modeled orbital station cabin outfitted with an additional shield aimed to reduce radiation loads on cosmonaut. The shield is a layer with the mass thickness of -6 g/cm2 (mean density = 0.62 g/cm3) that covers the outer cabin wall and consists of wet tissues and towels used by cosmonauts for hygienic purposes. A tissue-equivalent anthropomorphic phantom imitates human body. Doses were calculated for the standard orbit of the International space station (ISS) with consideration of the longitudinal and transverse phantom orientation relative to the wall with or without the additional shield. Calculation of dose distribution in the human body improves prediction of radiation loads. The additional shield reduces radiation exposure of human critical organs by -20% depending on their depth and body spatial orientation in the ISS compartment. PMID:26554132
Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load
Jancaitis, Kenneth S.; Powell, Howard T.
1989-01-01
A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.
Modelling human eye under blast loading.
Esposito, L; Clemente, C; Bonora, N; Rossi, T
2015-01-01
Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues. PMID:23521031
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Dibley, Ryan P.
2003-01-01
Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.
Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads
Gerstl, S.A.W.; Zardecki, A.
1981-08-01
The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.
NASA Technical Reports Server (NTRS)
Horwitz, James L.
1992-01-01
The purpose of this work was to assist with the development of analytical techniques for the interpretation of infrared observations. We have done the following: (1) helped to develop models for continuum absorption calculations for water vapor in the far infrared spectral region; (2) worked on models for pressure-induced absorption for O2 and N2 and their comparison with available observations; and (3) developed preliminary studies of non-local thermal equilibrium effects in the upper stratosphere and mesosphere for infrared gases. These new techniques were employed for analysis of balloon-borne far infrared data by a group at the Harvard-Smithsonian Center for Astrophysics. The empirical continuum absorption model for water vapor in the far infrared spectral region and the pressure-induced N2 absorption model were found to give satisfactory results in the retrieval of the mixing ratios of a number of stratospheric trace constituents from balloon-borne far infrared observations.
Resonance hard radiation in a gas-loaded FEL
Gevorgian, L.A.
1995-12-31
The process of induced radiation under the condition when the relativistic beam oscillation frequency coincides with the plasma frequency of the FEL filling gas, is investigated. Such a resonance results in a giant enhancement of interaction between electrons and photons providing high gain in the hard FEL frequency region. Meanwhile the spectralwidth of the spontaneous radiation is broadened significantly. A method is proposed for maintaining the synchronism between the electron oscillation frequency and the medium plasma frequency, enabling to transform the electron energy into hard radiation with high efficiency.
Freire-Maia, A; Krieger, H
1975-01-01
The genetic load disclosed by inbreeding has been analyzed in a multiple regression model for a population involving several localities in the state of Espírito Santo, Brazil. The inbreeding load has been estimated for number of pregnancies, abortions, stillbirths, children born alive, anomalies in general, sex ratio, infant mortality, post-infant mortality, and sterility and infertility of the couple. There was no evidence of either maternal or paternal inbreeding effects on the variables analyzed. The effect of inbreeding of the zygote was significant only for anomalies in general (B = 2.29 +/- 0.45) and infant mortality (B = 3.19 +/- 1.39). The latter result must be accepted with caution because of the many environmental causes affecting infant mortality. The B/A ratio suggested a predominantly mutational load for anomalies in general (B/A = 25), but with respect to infant mortality (B/A = 6), the ratio is regarded as an underestimate because of the environmental contribution to A and therefore not supportive of the segregational interpretation. PMID:803018
An urban radiation obstruction model
NASA Astrophysics Data System (ADS)
Frank, Randall S.; Gerding, R. Bruce; O'Rourke, Patricia A.; Terjung, Werner H.
1981-03-01
An urban street canyon radiation obstruction model has been developed. The model can describe community structure in terms of the type and dimensions of every building, block, road, park, etc. The need for massive data acquisition in regard to obstruction modeling calls for computerized algorithms, relieving the researcher of the needless tedium of hand calculations and the accompanying high degree of error and labor costs. The model program OBSTRUCT was written in FORTRAN IV for use on the IBM 3033. To facilitate changes or modifications, OBSTRUCT was written in modular form.
Method for decreasing radiation load in puva therapy
Wolff, K.
1987-02-10
An improved method is described for treating a psoriatic subject undergoing treatment with a psoralen in conjection with ultraviolet A radiation of from wavelength of 3200 to 4000 angstroms. The improved method comprises prior to initiation of the treatment, pretreating the subject for a period of from 4 to 10 days with an effective amount of an anti-psoriatic polyene compound, and thereafter initiating the treatment with a psoralen in conjunction with ultraviolet A radiation and continuing the treatment concurrently with the administration of the anti-psoriatic polyene compound.
Modeling of Closed-Die Forging for Estimating Forging Load
NASA Astrophysics Data System (ADS)
Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban
2016-05-01
Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.
Learjet Model 55 Wing Analysis with Landing Loads
NASA Technical Reports Server (NTRS)
Boroughs, R. R.
1985-01-01
The NASTRAN analysis was used to determine the impact of new landing loads on the Learjet Model 55 wing. These new landing loads were the result of a performance improvement effort to increase the landing weight of the aircraft to 18,000 lbs. from 17,000 lbs. and extend the life of the tires and brakes by incorporating larger tires and heavy duty brakes. Landing loads for the original 17,000 lb. airplane landing configuration were applied to the full airplane NASTRAN model. The analytical results were correlated with the strain gage data from the original landing load static tests. The landing loads for the 18,000 lb. airplane were applied to the full airplane NASTRAN model, and a comparison was made with the original Model 55 data. The results of this comparison enable Learjet to determine the difference in stress distribution in the wing due to these two different sets of landing loads.
Modeling and Simulation of a Helicopter Slung Load Stabilization Device
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Ehlers, George E.
2002-01-01
This paper addresses the problem of simulation and stabilization of the yaw motions of a cargo container slung load. The study configuration is a UH-60 helicopter carrying a 6ft x 6 ft x 8 ft CONEX container. This load is limited to 60 KIAS in operations and flight testing indicates that it starts spinning in hover and that spin rate increases with airspeed. The simulation reproduced the load yaw motions seen in the flight data after augmenting the load model with terms representing unsteady load yaw moment effects acting to reinforce load oscillations, and augmenting the hook model to include yaw resistance at the hook. The use of a vertical fin to stabilize the load is considered. Results indicate that the CONEX airspeed can be extended to 110 kts using a 3x5 ft fin.
Global Earth Response to Loading by Ocean Tide Models
NASA Technical Reports Server (NTRS)
Estes, R. H.; Strayer, J. M.
1979-01-01
Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.
Models for infrared atmospheric radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.
1976-01-01
Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.
Slot Region Radiation Environment Models
NASA Astrophysics Data System (ADS)
Sandberg, Ingmar; Daglis, Ioannis; Heynderickx, Daniel; Evans, Hugh; Nieminen, Petteri
2013-04-01
Herein we present the main characteristics and first results of the Slot Region Radiation Environment Models (SRREMs) project. The statistical models developed in SRREMs aim to address the variability of trapped electron and proton fluxes in the region between the inner and the outer electron radiation belt. The energetic charged particle fluxes in the slot region are highly dynamic and are known to vary by several orders of magnitude on both short and long timescales. During quiet times, the particle fluxes are much lower than those found at the peak of the inner and outer belts and the region is considered benign. During geospace magnetic storms, though, this region can fill with energetic particles as the peak of the outer belt is pushed Earthwards and the fluxes can increase drastically. There has been a renewed interest in the potential operation of commercial satellites in orbits that are at least partially contained within the Slot Region. Hence, there is a need to improve the current radiation belt models, most of which do not model the extreme variability of the slot region and instead provide long-term averages between the better-known low and medium Earth orbits (LEO and MEO). The statistical models developed in the SRREMs project are based on the analysis of a large volume of available data and on the construction of a virtual database of slot region particle fluxes. The analysis that we have followed retains the long-term temporal, spatial and spectral variations in electron and proton fluxes as well as the short-term enhancement events at altitudes and inclinations relevant for satellites in the slot region. A large number of datasets have been used for the construction, evaluation and inter-calibration of the SRREMs virtual dataset. Special emphasis has been given on the use and analysis of ESA Standard Radiation Environment Monitor (SREM) data from the units on-board PROBA-1, INTEGRAL, and GIOVE-B due to the sufficient spatial and long temporal
Radiation dosimetry and biophysical models of space radiation effects
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry
2003-01-01
Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.
Modelling Continuing Load at Disaggregated Levels
ERIC Educational Resources Information Center
Seidel, Ewa
2014-01-01
The current methodology of estimating load in the following year at Flinders University has achieved reasonable accuracy in the previous capped funding environment, particularly at the university level, due largely to our university having stable intakes and student profiles. While historically within reasonable limits, variation in estimates at…
Space shuttle main engine plume radiation model
NASA Technical Reports Server (NTRS)
Reardon, J. E.; Lee, Y. C.
1978-01-01
The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.
Evaluation of Limb Load Asymmetry Using Two New Mathematical Models
Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.
2015-01-01
Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372
Experimental investigation on single person's jumping load model
NASA Astrophysics Data System (ADS)
Chen, Jun; Wang, Haoqi; Wang, Ling
2015-12-01
This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.
Load models for fatigue reliability from limited data
Winterstein, S.R.; Lange, C.H.
1995-09-01
Probability distributions of wind turbine loads are estimated from limited data. The impact of different models on fatigue damage is shown. Common one-parameter probability models, such as the Rayleigh and exponential, are found to give significantly different estimates of load distributions and damage. Greatest differences occur in materials with relatively high values of the S-N exponent b, such as composites. In such cases more accurate damage estimates are found by matching at least two moments of the load data (Weibull model), or still higher moments as well. For this purpose, a new, four-moment ``generalized Weibull`` model is introduced. For edge-wise loads it appears a notable improvement over the basic Weibull model, while it supports the Weibull model in the flapwise case. Uncertainty in damage estimates is also quantified, along with the implied data needs.
Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike
2010-02-01
Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate {sup 125}I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for {approx}4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.
Tectonics of planetary loading - A general model and results
NASA Technical Reports Server (NTRS)
Janes, D. M.; Melosh, H. J.
1990-01-01
The tectonics of planetary loading is investigated using an analytical model for determining the stresses in an arbitrarily thick spherical shell due to an idealized axisymmetric load. The model includes the flat plate and thin shell membrane approximations as end members, and makes it possible to determine the nature of the transition between them. Using this model, the stress states and the resulting tectonic patterns due to an idealized exponential load are determined as functions of five dimensionless parameters: the ratio of the lithospheric thickness to the planetary radius; the decay width of the load; the 'support parameter', which is the ratio of the buoyancy to the flexural support; the angular distance from the load center; and the normalized radial distance from the planet center.
A Workflow to Model Microbial Loadings in Watersheds
Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...
Modeling and Mitigating Loading Effects on Geodetic Sites
NASA Astrophysics Data System (ADS)
Gegout, Pascal
2013-04-01
This presentation is an overview of several issues encountered when modeling and mitigating loading effects on geodetic sites. It also presents deformation and ocean models and modeling enhancements developped at GRGS. Different point of views and methodological elements cover the following topics: reference and site-dependent Love numbers, reference constraints on the solid Earth applied by atmospheric oceanic and hydrological loadings, use of geodetic coordinates, extrapolation below orography and impacts of topography in meteorological models, degree 1 related issues, ray-traced tropospheric delays and mapping functions, oceanic loading in coastal areas, time series sampling and interpolation issues, atmospheric and oceanic thermal tides, hydrological loading. These models, aimed to be experimented in the repro2 IGS campaign by the CNES/CLS Analysis Center for IGS, illustrate these conceptual elements.
Non-invasive Loading Model of Murine Osteoarthritis.
Poulet, Blandine
2016-07-01
Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease. PMID:27177901
Enhance the terahertz Smith-Purcell superradiant radiation by using dielectric loaded grating
Cao, Miaomiao Li, Ke; Liu, Wenxin Wang, Yong
2015-08-15
A dielectric loaded grating (DLG) for terahertz Smith-Purcell (SP) device is proposed to enhance the radiation intensity. By using the theoretical analysis and particle-in-cell simulations, the dispersion characteristics and SP superradiant radiation are investigated. Compared with the general metal grating, the usage of DLG can improve the magnitude of electric field and, consequently, strengthen the interaction of the evanescent wave with electron beam, which can improve the growth rate, enhance the SP superradiant radiation, and lower the start current for the operation of SP free-electron laser.
Numerical modeling of elastodynamic radiation and scattering
Savic, M.; Ziolkowski, A.M.
1994-12-31
This paper presents a study on two problems: the two-dimensional distributed surface load problem, and the scattering of elastodynamic waves from fractures. The analysis is done with the aid of the finite-difference technique. If the dimensions of a surface mechanical source (vibrator or piezoelectric transducer) are not small compared to the wavelength, one should not use the point source or plane wave representation when modeling radiation from such sources. Here the authors demonstrate the solution of the uniformly distributed surface load problem using the finite-difference (FD) technique. The scattering of transient elasto-dynamic waves from a fracture whose extent is large compared with the wavelength and whose width is small compared with the wavelength and whose width is small compared with the wavelength is one of the classical problems in seismology and non-destructive testing (NDT). Many researchers have provided analytical solutions based on different approximations for the unknown field (displacement or particle velocity) scattered from an idealized half-plane or the a strip of finite extent. Again, the authors demonstrate the full wavefield solution using the finite-difference technique. The technique presented here is aimed for the interpretation of seismic data from hydraulic fracturing experiments.
Sze, H.; Banister, J.; Failor, B.H.; Levine, J.S.; Qi, N.; Sincerny, P.; Velikovich, A.L.; Davis, J.; Lojewski, D.
2005-09-02
We have proposed and demonstrated successfully a new approach for generating high-yield K-shell radiation with large-diameter gas-puff Z pinches. The novel load design consists of an outer region plasma that carries the current and couples energy from the driver, an inner region plasma that stabilizes the implosion, and a high-density center jet plasma that radiates. It increased the Ar K-shell yield at 3.46 MA in 200 ns implosions from 12 cm initial diameter by a factor of 2, to 21 kJ, matching the yields obtained earlier on the same accelerator with 100 ns implosions. A new ''pusher-stabilizer-radiator'' physical model is advanced to explain this result.
View west within the periphery of the load dispatch model ...
View west within the periphery of the load dispatch model board, operator's console is at lower center and button board is at lower right of the photograph; section of model board shown covers substation from Perryman (left) to Frankford (right); instruments at right center of photograph formerly monitored energy usage and were replaced by computerized monitoring system. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.
2007-03-01
We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.
Shirazi-Fard, Yasaman; Alwood, Joshua S; Schreurs, Ann-Sofie; Castillo, Alesha B; Globus, Ruth K
2015-12-01
During spaceflight, astronauts will be exposed to a complex mixture of ionizing radiation that poses a risk to their health. Exposure of rodents to ionizing radiation on Earth causes bone loss and increases osteoclasts in cancellous tissue, but also may cause persistent damage to stem cells and osteoprogenitors. We hypothesized that ionizing radiation damages skeletal tissue despite a prolonged recovery period, and depletes the ability of cells in the osteoblast lineage to respond at a later time. The goal of the current study was to test if irradiation prevents bone accrual and bone formation induced by an anabolic mechanical stimulus. Tibial axial compression was used as an anabolic stimulus after irradiation with heavy ions. Mice (male, C57BL/6J, 16 weeks) were exposed to high atomic number, high energy (HZE) iron ions ((56)Fe, 2 Gy, 600 MeV/ion) (IR, n=5) or sham-irradiated (Sham, n=5). In vivo axial loading was initiated 5 months post-irradiation; right tibiae in anesthetized mice were subjected to an established protocol known to stimulate bone formation (cyclic 9N compressive pulse, 60 cycles/day, 3 day/wk for 4 weeks). In vivo data showed no difference due to irradiation in the apparent stiffness of the lower limb at the initiation of the axial loading regimen. Axial loading increased cancellous bone volume by microcomputed tomography and bone formation rate by histomorphometry in both sham and irradiated animals, with a main effect of axial loading determined by two-factor ANOVA with repeated measure. There were no effects of radiation in cancellous bone microarchitecture and indices of bone formation. At the tibia diaphysis, results also revealed a main effect of axial loading on structure. Furthermore, irradiation prevented axial loading-induced stimulation of bone formation rate at the periosteal surface of cortical tissue. In summary, axial loading stimulated the net accrual of cancellous and cortical mass and increased cancellous bone formation rate
Estimating solar radiation for plant simulation models
NASA Technical Reports Server (NTRS)
Hodges, T.; French, V.; Leduc, S.
1985-01-01
Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna
2011-01-01
A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157
Radiation environment models and the atmospheric cutoff
NASA Technical Reports Server (NTRS)
Konradi, Andrei; Hardy, Alva C.; Atwell, William
1987-01-01
The limitations of radiation environment models are examined by applying the model to the South Atlantic anomaly (SAA). The local magnetic-field-intensity (in gauss) and McIlwain (1961) drift-shell-parameter contours in the SAA are analyzed. It is noted that it is necessary to decouple the atmospheric absorption effects from the trapped radiation models in order to obtain accurate radiation dose predictions. Two methods for obtaining more accurate results are proposed.
Model analysis of respiratory responses to inspiratory resistive loads.
Zin, W A; Rossi, A; Milic-Emili, J
1983-11-01
Based on experimental inspiratory driving pressure waveforms and active respiratory impedance data of anesthetized cats, we made model predictions of the factors that determine the immediate (first loaded breath) intrinsic (i.e., nonneural) tidal volume compensation to added inspiratory resistive loads. The time course of driving pressure (P) was given by P = atb, where a is the pressure at 1 s from onset of inspiration and represents the intensity of neuromuscular drive, t is time, and b is a dimensionless index of the shape of the driving pressure wave. For a given value of active respiratory impedance, tidal volume compensation to added resistive loads increases with increasing inspiratory duration and decreasing value of b but is independent of a. Model predictions of load compensation are compared to experimental results. PMID:6643192
A comparison of atmospheric loading models applied to SLR data
NASA Astrophysics Data System (ADS)
Koenig, Rolf; Dill, Robert; Raimondo, Jean-Claude; Vei, Margarita
2016-04-01
We compute displacements of global SLR station coordinates by atmospheric loading based on surface pressure data from European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim data. Inhouse we generate two branches: firstly straightforward following Farrel's theory but using updated load Love numbers, secondly from utilizing localized Green's functions instead of global ones. Externally provided displacements are available f.i. from the International Mass Loading Service (IMLS) based on different input data and modeling. We compare these displacements and apply them to Satellite Laser Ranging (SLR) data processing of a recent six years period of the LAGEOS, LARES, AJISAI, STARLETTE and STELLA geodetic missions. We assess the impact of the loading models on precise orbit determination and Earth parameters of interest.
Session on modeling of radiative transfer processes
NASA Technical Reports Server (NTRS)
Flatau, Piotr
1993-01-01
The session on modeling of radiative transfer processes is reviewed. Six critical issues surfaced in the discussion concerning scale-interactive radiative processes relevent to the mesoscale convective systems (MCS's). These issues are the need to expand basic knowledge of how MCS's influence climate through extensive cloud shields and increased humidity in the upper troposphere; to improve radiation parameterizations used in mesoscale and General Circulation Model (GCM) models; to improve our basic understanding of the influence of radiation on MCS dynamics due to diabatic heating, production of condensate, and vertical and horizontal heat fluxes; to quantify our understanding of radiative impacts of MCS's on the surface and free atmosphere energy budgets; to quantify and identify radiative and microphysical processes important in the evolution of MCS's; and to improve the capability to remotely sense MCS radiative properties from space and ground-based systems.
Modeling the responses of TSM resonators under various loading conditions
BANDEY,HELEN L.; MARTIN,STEPHEN J.; CERNOSEK,RICHARD W.; HILLMAN,A. ROBERT
1999-03-01
The authors developed a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface conditions. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media, and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite load is not a linear combination of the individual component responses. The authors discuss application of the model in a qualitative diagnostic fashion to gain insight into the nature of the interfacial structure, and in a quantitative fashion to extract appropriate physical parameters such as liquid viscosity and density, and polymer shear moduli.
Suppressing Side-Lobe Radiations of Horn Antenna by Loading Metamaterial Lens
Qi, Mei Qing; Tang, Wen Xuan; Ma, Hui Feng; Pan, Bai Cao; Tao, Zui; Sun, Yong Zhi; Cui, Tie Jun
2015-01-01
We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band. PMID:25766083
Suppressing side-lobe radiations of horn antenna by loading metamaterial lens.
Qi, Mei Qing; Tang, Wen Xuan; Ma, Hui Feng; Pan, Bai Cao; Tao, Zui; Sun, Yong Zhi; Cui, Tie Jun
2015-01-01
We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band. PMID:25766083
Modeling Escherichia coli removal in constructed wetlands under pulse loading.
Hamaamin, Yaseen A; Adhikari, Umesh; Nejadhashemi, A Pouyan; Harrigan, Timothy; Reinhold, Dawn M
2014-03-01
Manure-borne pathogens are a threat to water quality and have resulted in disease outbreaks globally. Land application of livestock manure to croplands may result in pathogen transport through surface runoff and tile drains, eventually entering water bodies such as rivers and wetlands. The goal of this study was to develop a robust model for estimating the pathogen removal in surface flow wetlands under pulse loading conditions. A new modeling approach was used to describe Escherichia coli removal in pulse-loaded constructed wetlands using adaptive neuro-fuzzy inference systems (ANFIS). Several ANFIS models were developed and validated using experimental data under pulse loading over two seasons (winter and summer). In addition to ANFIS, a mechanistic fecal coliform removal model was validated using the same sets of experimental data. The results showed that the ANFIS model significantly improved the ability to describe the dynamics of E. coli removal under pulse loading. The mechanistic model performed poorly as demonstrated by lower coefficient of determination and higher root mean squared error compared to the ANFIS models. The E. coli concentrations corresponding to the inflection points on the tracer study were keys to improving the predictability of the E. coli removal model. PMID:24231031
A Utility Model for Teaching Load Decisions in Academic Departments.
ERIC Educational Resources Information Center
Massey, William F.; Zemsky, Robert
1997-01-01
Presents a utility model for academic department decision making and describes the structural specifications for analyzing it. The model confirms the class-size utility asymmetry predicted by the authors' academic rachet theory, but shows that marginal utility associated with college teaching loads is always negative. Curricular structure and…
Cognitive Load and Modelling of an Algebra Problem
ERIC Educational Resources Information Center
Chinnappan, Mohan
2010-01-01
In the present study, I examine a modelling strategy as employed by a teacher in the context of an algebra lesson. The actions of this teacher suggest that a modelling approach will have a greater impact on enriching student learning if we do not lose sight of the need to manage associated cognitive loads that could either aid or hinder the…
Burner liner thermal-structural load modeling
NASA Technical Reports Server (NTRS)
Maffeo, R.
1986-01-01
The software package Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) was developed. The TRANCITS code is used to interface temperature data between thermal and structural analytical models. The use of this transfer module allows the heat transfer analyst to select the thermal mesh density and thermal analysis code best suited to solve the thermal problem and gives the same freedoms to the stress analyst, without the efficiency penalties associated with common meshes and the accuracy penalties associated with the manual transfer of thermal data.
Discrete element modelling of bed load transport
NASA Astrophysics Data System (ADS)
Maurin, Raphael; Chareyre, Bruno; Chauchat, Julien; Frey, Philippe
2013-04-01
Discrete element method (DEM) is a numerical method to simulate an assembly of particles, which has been widely used in mechanics (soil, rock) and granular physics. DEM consists in considering undeformable particles and modelling the intergranular interactions with simple laws (e.g. linear elastic and Coulomb friction law). The expression of the equation of motion on each particle considering the nearest neighbor interactions allows then to solve the dynamical behavior of the system explicitely. Since its introduction more than thirty years ago, this type of model has proven its ability to well describe the behavior of granular media in several different situations, from quasi-static system to flow of granular media. Bedload transport in streams is characterized by particle transport restricted to the interface between fluid flow and immerged granular media, where particles are rolling, sliding or in saltation over the bed. This situation corresponds to the larger particles transported on the bed in stream channels and has a great influence on geomorphology. Physical mechanisms and processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known. This is partly due to the small attention given to the role of granular interactions. Starting from these considerations, we used DEM to reproduce experiments carried out with spherical glass beads in an experimental steep and narrow flume. This was done in order to focus on granular interactions and to have access to parameters not available in the experiment. DEM open-source code Yade was coupled with a simplified fluid model, taking into account the different hydrodynamical interactions (buoyancy, drag, lift...) experienced by the particles. Numerical results obtained from the simulation are compared with an experimental data set established previously at the laboratory. It consists in monodisperse and bidisperse mixtures of coarse spherical glass beads entrained by a shallow
A computational model of blast loading on the human eye.
Bhardwaj, Rajneesh; Ziegler, Kimberly; Seo, Jung Hee; Ramesh, K T; Nguyen, Thao D
2014-01-01
Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid-structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit. PMID:23591604
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit
2012-07-19
The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.
Predictive models of radiative neutrino masses
NASA Astrophysics Data System (ADS)
Julio, J.
2016-06-01
We discuss two models of radiative neutrino mass generation. The first model features one-loop Zee model with Z4 symmetry. The second model is the two-loop neutrino mass model with singly- and doubly-charged scalars. These two models fit neutrino oscillation data well and predict some interesting rates for lepton flavor violation processes.
Modeling of density loaded two-phase flows
Mostafa, A.A. )
1991-01-01
In this paper a mathematical model for densely loaded particle-laden flows is proposed to account for particle collisions and particle-turbulence interaction. The coupled conservation equations are based on a Eulerian scheme for the gas and a stochastic Lagrangian technique for the particles. The model was validated against the experimental data of densely loaded particle-laden jet flows. The comparison between the computational results and measurements suggested that both turbulence modulation and particle collisions are important and should be considered in an accurate analysis of dense two-phase flows.
Regional ocean tide loading modelling around the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Benavent, M.; Arnoso, J.; Montesinos, F. G.
2009-12-01
We developed a new 1/12° resolution oceanic tide model in the complex region that surrounds the Iberian Peninsula. The model, named IBER01, allows us to obtain more accurate tidal loading computations for precise geodetic and gravimetric observations in this area. The modelling follows the scheme of data assimilation (coastal tide gauge, bottom pressure sensors and TOPEX/Poseidon altimetry) into a hydrodynamical model, which is based on two-dimensional barotropic depth averaged shallow-water equations. Detailed bathymetry data and quadratic bottom friction with a specific drag coefficient for the region have been considered. Improved ocean load maps for the Iberian Peninsula are obtained for eight harmonic constituents (Q1, P1, O1, K1, N2, M2, S2 and K2), after computing the load effect (Newtonian attraction and elastic contribution) using IBER01 and six present-day global oceanic tide models for comparison. The results achieved verify the quality of the new model. Our ocean loading computations reduce considerably the discrepancies between the theoretical Earth tide parameters and those from observations at the level of 0.3%.
Near-Earth Space Radiation Models
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul
2012-01-01
Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.
Load distributions in photoeleastic bolted-joint models
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Liu, D.
1982-01-01
An attempt is made to study the stresses in multiple-bolt connectors, focusing on the stress distribution in a two-pin connector, the two pins being in line and in parallel with the direction of the applied load. The photoelastic modeling approach with two-dimensional transmission photoelasticity is used. The joint models and model fringe patterns are discussed, with special attention given to the existence of a photoelastic isotropic point and to the separation of stresses.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lilibridge, Sean T.; Navarro, Moses
2012-01-01
Freezable Radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft?s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recov ering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TM) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested: MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Six-Tube Freezable Radiator Testing and Model Correlation
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the spacecraft s surroundings and because of different thermal loads rejected during different mission phases. However, freezing and thawing (recovering) a freezable radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. These predictions are a critical step in gaining the capability to quickly design and produce optimized freezable radiators for a range of mission requirements. This paper builds upon previous efforts made to correlate a Thermal Desktop(TradeMark) model with empirical testing data from two test articles, with additional model modifications and empirical data from a sub-component radiator for a full scale design. Two working fluids were tested, namely MultiTherm WB-58 and a 50-50 mixture of DI water and Amsoil ANT.
Attack robustness of cascading load model in interdependent networks
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Wu, Yuedan; Li, Yun
2015-08-01
Considering the weight of a node and the coupled strength of two interdependent nodes in the different networks, we propose a method to assign the initial load of a node and construct a new cascading load model in the interdependent networks. Assuming that a node in one network will fail if its degree is 0 or its dependent node in the other network is removed from the network or the load on it exceeds its capacity, we study the influences of the assortative link (AL) and the disassortative link (DL) patterns between two networks on the robustness of the interdependent networks against cascading failures. For better evaluating the network robustness, from the local perspective of a node we present a new measure to qualify the network resiliency after targeted attacks. We show that the AL patterns between two networks can improve the robust level of the entire interdependent networks. Moreover, we obtain how to efficiently allocate the initial load and select some nodes to be protected so as to maximize the network robustness against cascading failures. In addition, we find that some nodes with the lower load are more likely to trigger the cascading propagation when the distribution of the load is more even, and also give the reasonable explanation. Our findings can help to design the robust interdependent networks and give the reasonable suggestion to optimize the allocation of the protection resources.
A rapid radiative transfer model for reflection of solar radiation
NASA Technical Reports Server (NTRS)
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
Modeling bicortical screws under a cantilever bending load.
James, Thomas P; Andrade, Brendan A
2013-12-01
Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice. PMID:24105350
EFFECT OF LOAD SIMULATION ON AUTO EMISSIONS AND MODEL PERFORMANCE
The overall objective of this study was to identify sources which might contribute to errors in mobile source emission rate model predictions. The effect of road load simulation on exhaust emissions was examined and an evaluation of the U.S. Environmental Protection Agency's Auto...
Modeling the Responses of TSM Resonators under Various Loading Conditions
Bandey, H.L.; Cernosek, R.W.; Hillman, A.R.; Martin, S.J.
1998-12-04
We develop a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface loadkgs. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite is not a linear combination of the individual component responses. We discuss application of the model in a qualitative diagnostic fashion, to gain insight into the nature of the interracial structure, and in a quantitative fashion, to extract appropriate physical parameters, such as liquid viscosity and density and polymer shear moduli.
Development of a viscoelastic continuum damage model for cyclic loading
NASA Astrophysics Data System (ADS)
Sullivan, R. W.
2008-12-01
A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.
Dynamic response of scale models subjected to impact loading
NASA Astrophysics Data System (ADS)
Hillsdon, Graham K.
1997-05-01
Presented with the problem of possible failure of large structures due to dynamic loading, and the cost of staging full scale tests. The Oxford University's Department of Engineering Science, supported by British Gas and Rolls Royce, has been scale modeling these events experimentally. The paper looks at two areas of research: (1) The structural integrity of a particular type of Liquified Natural Gas Storage Tank, and its vulnerability to blast loading. (2) The ability of Large Aero Engine Fan blades to withstand impacts associated with birds, stones, ice etc.
Al Zaki, Ajlan; Joh, Daniel; Cheng, Zhiliang; De Barros, André Luís Branco; Kao, Gary; Dorsey, Jay; Tsourkas, Andrew
2014-01-28
Gold nanoparticles (AuNPs) have generated interest as both imaging and therapeutic agents. AuNPs are attractive for imaging applications since they are nontoxic and provide nearly three times greater X-ray attenuation per unit weight than iodine. As therapeutic agents, AuNPs can sensitize tumor cells to ionizing radiation. To create a nanoplatform that could simultaneously exhibit long circulation times, achieve appreciable tumor accumulation, generate computed tomography (CT) image contrast, and serve as a radiosensitizer, gold-loaded polymeric micelles (GPMs) were prepared. Specifically, 1.9 nm AuNPs were encapsulated within the hydrophobic core of micelles formed with the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ε-capralactone). GPMs were produced with low polydispersity and mean hydrodynamic diameters ranging from 25 to 150 nm. Following intravenous injection, GPMs provided blood pool contrast for up to 24 h and improved the delineation of tumor margins via CT. Thus, GPM-enhanced CT imaging was used to guide radiation therapy delivered via a small animal radiation research platform. In combination with the radiosensitizing capabilities of gold, tumor-bearing mice exhibited a 1.7-fold improvement in the median survival time, compared with mice receiving radiation alone. It is envisioned that translation of these capabilities to human cancer patients could guide and enhance the efficacy of radiation therapy. PMID:24377302
Disinfection and reduction of organic load of sewage water by electron beam radiation
NASA Astrophysics Data System (ADS)
Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.
2011-09-01
The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.
Modelling macrofaunal biomass in relation to hypoxia and nutrient loading
NASA Astrophysics Data System (ADS)
Timmermann, Karen; Norkko, Joanna; Janas, Urszula; Norkko, Alf; Gustafsson, Bo G.; Bonsdorff, Erik
2012-12-01
Nutrient loading of aquatic ecosystems results in more food for benthic macrofaunal communities but also increases the risk of hypoxia, resulting in a reduction or complete loss of benthic biomass. This study investigates the interaction between eutrophication, hypoxia and benthic biomass with emphasis on the balance between gains and loss of benthic biomass due to changes in nutrient loadings. A physiological fauna model with 5 functional groups was linked to a 3D coupled hydrodynamic-ecological Baltic Sea model. Model results revealed that benthic biomass increased between 0 and 700% after re-oxygenating bottom waters. Nutrient reduction scenarios indicated improved oxygen concentrations in bottom waters and decreased sedimentation of organic matter up to 40% after a nutrient load reduction following the Baltic Sea Action Plan. The lower food supply to benthos reduced the macrofaunal biomass up to 35% especially in areas not currently affected by hypoxia, whereas benthic biomass increased up to 200% in areas affected by eutrophication-induced hypoxia. The expected changes in benthic biomass resulting from nutrient load reductions and subsequent reduced hypoxia may not only increase the food supply for benthivorous fish, but also significantly affect the biogeochemical functioning of the ecosystem.
Application of Improved Radiation Modeling to General Circulation Models
Michael J Iacono
2011-04-07
This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.
Multipactor Modeling in Cylindrical Dielectric-Loaded Accelerators
Power, John G.; Gold, Steven H.
2006-11-27
The observation of strong multipactor loading of a cylindrical dielectric-loaded accelerator (DLA) structure with an alumina liner was previously reported. Conventional multipactor loading of dielectric rf windows is due to a tangential rf electric field and generally saturates at a few percent power loss. However, this resonant single-surface multipactor is driven by a combination of normal and tangential rf electric fields, is a strong function of the incident power, and is capable of absorbing a large fraction (over 1/2) of the incident rf power. Since the initial report, several additional structures have been tested, fabricated from a variety of materials, some with low secondary-emission surface coatings, and having different physical dimensions. In this paper, we summarize the results of these tests and analyze the results in terms of a physical model of the multipactor phenomenon.
The dynamic radiation environment assimilation model (DREAM)
Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L; Chen, Yue; Henderson, Michael G; Friedel, Reiner H
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.
Laboratory modeling of laterally-loaded drilled shafts in clay
Mayne, P.W.; Kulhawy, F.H.; Trautmann, C.H.
1995-12-01
The behavior of free-head rigid drilled shafts under static and cyclic lateral and moment loading was investigated using laboratory models in relatively large test chambers. This testing program represents perhaps one of the first larger-scale laboratory test series to utilize cast-in-place concrete shafts in consolidated and prestressed cohesive soil deposits for realistic simulation of prototype drilled shafts in clays. The construction procedure incorporated the actual effects of concrete curing and soil/concrete interface roughness, and the soil-deposit preparation included the characteristic anisotropy and overconsolidation associated with natural clays. A total of 28 cylindrical shafts having diameters of 51, 89, and 175 mm (2.0, 3.5, and 6.9 in.) and depth-do-diameter (D/B) ratios of 3--8 were constructed and tested. Many of the shafts were instrumented with total stress cells and pore-water stress transducers to permit both total and effective stress measurements during the load testing. The results of the lateral and moment load tests indicated a high degree of nonlinearity in the monotonic static load-displacement response, but it can be represented adequately by a hyperbola. This hyperbola also provides a reference backbone curve for the cyclic loading behavior.
Continuum modeling of neuronal cell under blast loading
Jérusalem, Antoine; Dao, Ming
2012-01-01
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus ongoing to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progresses are also being made at the experimental and modeling levels to better characterize many of the cell functions such as differentiation, growth, migration and death, among others. The work presented here aims at bridging both efforts by proposing a continuum model of neuronal cell submitted to blast loading. In this approach, cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different material constitutive models are adequately chosen for each one. The material parameters are calibrated against published experimental work of cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete fluid-structure interaction computational framework. The results are compared to the nanoindentation simulation and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during its deformation under blast loading and potentially leading to cell damage. It suggests more particularly the localization of damage at the nucleus membrane similarly to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. As a conclusion, the proposed model ultimately provides a new three dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014
Continuum modeling of a neuronal cell under blast loading.
Jérusalem, Antoine; Dao, Ming
2012-09-01
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus underway to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progress is also being made at the experimental and modeling levels to better characterize many of the cell functions, including differentiation, growth, migration and death. The work presented here aims to bridge both efforts by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different suitable material constitutive models are chosen for each one. The material parameters are calibrated against published experimental work on cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete computational framework of fluid-structure interaction. The results are compared to the nanoindentation simulation, and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during the cellular deformation under blast loading that potentially lead to cell damage. It suggests, more particularly, that the localization of damage at the nucleus membrane is similar to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. In conclusion, the proposed model ultimately provides a new three-dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014
Modelling of ground-level UV radiation
NASA Astrophysics Data System (ADS)
Koepke, P.; Schwander, H.; Thomalla, E.
1996-06-01
A number of modifications were made on the STAR radiation transmission model for greater ease of use while keeping its fault liability low. The improvements concern the entire aerosol description function of the model, the option of radiation calculation for different receiver geometries, the option of switching off temperature-dependent ozone absorption, and simplications of the STAR menu. The assets of using STAR are documented in the studies on the accuracy of the radiation transmission model. One of these studies gives a detailed comparison of the present model with a simple radiation model which reveals the limitations of approximation models. The other examines the error margin of radiation transmission models as a function of the input parameters available. It was found here that errors can be expected to range between 5 and 15% depending on the quality of the input data sets. A comparative study on the values obtained by measurement and through the model proved this judgement correct, the relative errors lying within the predicted range. Attached to this final report is a comprehensive sensitivity study which quantifies the action of various atmospheric parameters relevant to UV radiation, thus contributing to an elucidation of the process.
An Assessment of Radiation Damage Models and Methods
Stoller, Roger E; Mansur, Louis K
2005-05-01
The current state of development of the primary models used for investigating and simulating irradiation effects in structural alloys of interest to the U.S. DOE's Generation-IV reactor program are discussed. The underlying theory that supports model development is also described where appropriate. First, the key processes that underlie radiation-induced changes in material properties are summarized, and the types of radiation effects that subsequently arise are described. Future development work needed in order for theory, modeling, and computational materials science to support and add value to the Gen IV reactor materials program are then outlined. The expected specific outcomes and overall benefits of the required effort are: the knowledge to extrapolate material behavior to conditions for which there are no experimental data; systematic understanding of mechanisms and processes to enable confident interpolation between point-by-point experimental observations; acceleration of the development, selection, and qualification of materials for reactor service; and prediction of material response to real-world operating load histories which often involve a complicated superposition of time, temperature, radiation dose rate, and mechanical loading conditions. Opportunities for international collaboration to accelerate progress in all of the required research areas are briefly discussed, particularly in the context of two well coordinated, broad-based research projects on modeling and simulation of radiation effects on materials that are currently funded in Europe. In addition to providing the opportunity for substantial leveraging of the DOE-funded activities in this area, these projects may serve as models for future development within the Gen-IV program. The larger of these two projects, which involves 12 European research laboratories and 16 universities, is called PERFECT and is funded by the European Union. A smaller effort focusing on developing predictive
Unsteady pressure loads in a generic high speed engine model
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.
1992-01-01
Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.
Models of spinal cord injury: Part 3. Dynamic load technique.
Black, P; Markowitz, R S; Damjanov, I; Finkelstein, S D; Kushner, H; Gillespie, J; Feldman, M
1988-01-01
Having previously studied a static load model of cord injury in rats, we report here an evaluation of a dynamic (weight drop) technique. Under general anesthesia, Sprague-Dawley rats were subjected to a laminectomy at T12, after which a 10-g weight was dropped onto a force transducer and impounder resting on the spinal cord; the weight drop distances varied in different groups from 0 (control) in increments of 2.5 cm to a maximal height of 17.5 cm. A strain gauge attached to the force transducer yielded an oscilloscopic wave form from which force of impact (peak force and impulse) was calculated. Eighty-six animals were used in this parametric study. The animals were observed for 4 weeks postinjury with two tests of motor recovery (Tarlov score for locomotion and the inclined plane test). After sacrifice at 4 weeks, the spinal cords were removed and, with the use of preset criteria, qualitative histopathological scoring of the extent of tissue damage was carried out. We found that the variable height of weight drop was capable of producing a graded injury that correlated with the force of injury (as measured by the force transducer) and with the outcome parameters of functional recovery and degree of morphological damage in the spinal cord. Histopathologically, there was a tendency to central cavitation of the cord. Both the static load and the dynamic load techniques seem to be valid models of spinal cord injury. Pathologically, however, the tissue damage after static load injury involved primarily the dorsal half of the cord. By contrast, the dynamic load technique produced central cavitation comparable to that observed in human spinal cord injury. In this respect, the dynamic model seems to be superior and its use is therefore recommended for studies of therapeutic intervention for spinal cord injury. PMID:3344087
On the Effect of Heavy Aerosols Loads on Longwave Atmospheric Radiation, Theoretical Investigations
NASA Astrophysics Data System (ADS)
Maghrabi, Abdullrahman
2014-05-01
Dust particles affect both solar and terrestrial radiation by scattering and absorption and are therefore considered to be a significant climate-forcing factor. In this study, theoretical simulations were carried out using MODTRAN program to examine the changes in the atmospheric radiation (4- 100 μm) during dust storms occurred over Riyadah, central Saudi Arabia, between 1999-2000 . The Atmospheric Optical Depth (AOD) measurements at (500 nm) and meteorological parameters were used as an input into MODTRAN. The simulation results showed that the heavy aerosol loads brought by the dust storms increase the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.
NASA Astrophysics Data System (ADS)
Uhm, H. S.
1981-11-01
The stability properties of the free-streaming mode (space-charge wave) in a relativistic annular electron beam with radius R sub 0 propagating through a dielectric loaded waveguide is studied in connection with the Cherenkov radiation. The stability analysis is carried out within the framework of the linearized Vlasov-Maxwell equations for an electron distribution function, where all electrons have a Lorentzian distribution in the axial canonical momentum. One of the most significant features of the analysis is that, for some ranges of physical parameters, a strong mode coupling between the vacuum dielectric waveguide and free streaming modes occurs, exhibiting possibilities of a Cherenkov radiation. It is found that the typical maximum growth rate of instability is a few percent of c/R sub 0, c being the speed of light in vacuo.
Different aerosol loading and their radiative implication over Indo-Gangetic Basin
NASA Astrophysics Data System (ADS)
Tiwari, Shani; Singh, Abhay Kumar; Srivastava, Atul Kumar
Abstract: The climate and environmental effects of atmospheric aerosols are presently the most critical issues in global science community because of their various emission sources and different impacts to earth’s radiation budget. Different types of atmospheric aerosols have different optical as well as radiative properties which are crucial to reduce possible uncertainties in climate forcing. Indo-Gangetic Basin (IGB)in northern part of India has been recognized for different types of aerosol loading due to various emission sources (natural and anthropogenic) of aerosols and unique topography of the region. In the present study, we have identified different aerosol types using Aerosol Robotic NETwork (AERONET) level 2 aerosol products during 2010-2011 at four different locations in the Indo-Gangetic Basin (IGB) viz. Karachi (24.870N, 67.03 E), Lahore (31.540 N, 74.320 E), Jaipur (26.900 N, 75.900E), and Kanpur (26.4◦ N, 80.4◦ E). Five different aerosol types were identified using fine-mode fraction, (FMF) and single scattering albedo (SSA) at the stations over IGB viz. PD (polluted dust), PC (polluted continental), MBC (mostly black carbon), MOC (mostly organic carbon) and NA (non-absorbing). Very interesting results are observed which are discussed in terms of different aerosol types associated with their different optical as well as radiative properties. Keywords: aerosol types, radiative properties, IGB.
An Earth radiation budget climate model
NASA Technical Reports Server (NTRS)
Bartman, Fred L.
1988-01-01
A 2-D Earth Radiation Budget Climate Model has been constructed from an OLWR (Outgoing Longwave Radiation) model and an Earth albedo model. Each of these models uses the same cloud cover climatology modified by a factor GLCLC which adjusts the global annual average cloud cover. The two models are linked by a set of equations which relate the cloud albedos to the cloud top temperatures of the OLWR model. These equations are derived from simultaneous narrow band satellite measurements of cloud top temperature and albedo. Initial results include global annual average values of albedo and latitude/longitude radiation for 45 percent and 57 percent global annual average cloud cover and two different forms of the cloud albedo-cloud top temperature equations.
Band models and correlations for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.
1975-01-01
Absorption of infrared radiation by various line and band models are briefly reviewed. Narrow band model relations for absorptance are used to develop 'exact' formulations for total absorption by four wide band models. Application of a wide band model to a particular gas largely depends upon the spectroscopic characteristic of the absorbing-emitting molecule. Seven continuous correlations for the absorption of a wide band model are presented and each one of these is compared with the exact (numerical) solutions of the wide band models. Comparison of these results indicate the validity of a correlation for a particular radiative transfer application. In radiative transfer analyses, use of continuous correlations for total band absorptance provides flexibilities in various mathematical operations.
Radiation Environment Modeling for Spacecraft Design: New Model Developments
NASA Technical Reports Server (NTRS)
Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray
2006-01-01
A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.
NASA Astrophysics Data System (ADS)
Ceballos, Juan Carlos; de Souza, Juarez Dantas; da Silva, Bernardo Barbosa
2009-03-01
A two-flux method is presented, which describes propagation of solar radiation in the atmosphere as a random walk of diffuse photons among several atmospheric layers. Results are obtained in terms of absorption probabilities in each layer, at ground and within sky, allowing to easily introduce and to analyze influence of profiles of the main atmospheric absorbers (ozone, aerosols and water vapor). Global radiation is obtained by integration of monochromatic irradiances. Application of this model to cloudless situations in the extreme cases of rural environment and high aerosol load by burning biomass shows good results when compared with SBDART code (they have a systematic deviation of +10 Wṡm-2), and both differ from ground measurements of global radiation within 30 to 50 Wṡm-2. This difference could be lowered having a better definition of aerosol load during daytime. It is observed that the stochastic model performance is five times faster than SBDART.
Modelling mussel growth in ecosystems with low suspended matter loads
NASA Astrophysics Data System (ADS)
Duarte, P.; Fernández-Reiriz, M. J.; Filgueira, R.; Labarta, U.
2010-10-01
Over the last decades a large number of bivalve growth models were described in the literature with most emphasis on cultivated species with important economic value. These models describe the rates of energy absorption and utilization as a function of environmental conditions. Some of the most important issues in bivalve modelling are water pumping, filtration, pre-ingestive rejection/pseudofaeces production and ingestion of living and non-living organic and inorganic matter. According to some authors, bivalve suspension-feeders may selectively ingest and/or digest different food items whilst making adjustments to maximize the utilization of chlorophyll rich particles. In clear water ecosystems such as the Galician Rias (total particulate matter ( TPM) < 3 mg l - 1 ), where most of the available seston is phytoplankton, selective processes may be less important than in turbid waters with high TPM loads. The main objectives of this work were to develop, implement and calibrate an Individual Based Model of mussel growth, configured and parameterized for the environmental conditions of ecosystems with low suspended matter loads such as the Galician Rias. Model runs were made for a large number of individual mussels, each with a random parameter set, selected among possible parameter ranges reported in the literature, allowing a quick model calibration and an evaluation of those parameters explaining most of the variance in predicted mussel growth. Obtained results provide a useful feedback for upcoming experimental work where efforts should be concentrated on accurate estimates of these more influential parameters to improve model results.
Model analysis of tidal volume response to inspiratory elastic loads.
Zin, W A; Rossi, A; Zocchi, L; Milic-Emili, J
1984-07-01
Based on experimental inspiratory driving pressure waveforms and active respiratory impedance data of anesthetized cats, we made model predictions of the factors that determine the immediate (first loaded breath) intrinsic (i.e., nonneural) tidal volume compensation to added inspiratory elastic loads. The time course of driving pressure (P) was given by P = atb, where a is the pressure at 1 s from onset of inspiration and represents the intensity of neuromuscular drive, t is time, and b is an index of the shape of the driving pressure wave. For a given active respiratory impedance, tidal volume compensation to added elastic loads decreases with increasing inspiratory duration and decreasing value of b but is independent of a. We have also assessed the validity of the "effective elastance" (Lynne-Davies et al., J. Appl. Physiol. 30: 512-516, 1971) as a predictor of tidal volume responses to elastic loads. In absence of vagal feedback, the effective elastance appears to be a reliable predictor, except for short inspiratory duration and a very high intrinsic resistance. PMID:6469787
Analytical modeling of worldwide medical radiation use
Mettler, F.A. Jr.; Davis, M.; Kelsey, C.A.; Rosenberg, R.; Williams, A.
1987-02-01
An analytical model was developed to estimate the availability and frequency of medical radiation use on a worldwide basis. This model includes medical and dental x-ray, nuclear medicine, and radiation therapy. The development of an analytical model is necessary as the first step in estimating the radiation dose to the world's population from this source. Since there is no data about the frequency of medical radiation use in more than half the countries in the world and only fragmentary data in an additional one-fourth of the world's countries, such a model can be used to predict the uses of medical radiation in these countries. The model indicates that there are approximately 400,000 medical x-ray machines worldwide and that approximately 1.2 billion diagnostic medical x-ray examinations are performed annually. Dental x-ray examinations are estimated at 315 million annually and approximately 22 million in-vivo diagnostic nuclear medicine examinations. Approximately 4 million radiation therapy procedures or courses of treatment are undertaken annually.
Modeling of viscoplastic cyclic loading behavior of polymers
NASA Astrophysics Data System (ADS)
Spathis, G.; Kontou, E.
2015-08-01
A new theoretical approach, analyzed in previous works, is employed for the description of the nonlinear viscoelastic/viscoplastic response of high density polyethylene under tensile cyclic loading, experimentally studied elsewhere. The proposed analysis, developed for a 3-D problem, is applied for a uniaxial cyclic deformation, in a strain-controlled program, where tensile loading up to maximum strain is followed by unloading to zero stress. This procedure is repeated for ten cycles. The same model is also applied for the simulation of a stress-controlled program, where cyclic loading takes place between a and engineering stress. The hysteresis loops of both programs could be adequately captured, with a number of model parameters, related to both, nonlinear viscoelasticity and viscoplasticity. The simulated ratcheting strain as well as its evolution with number of cycles is a very good approximation of the experimental one. A systematic study of the values of the adjustable parameters has been performed in order to monitor the effect of every specific internal variable, responsible for either the nonlinear viscoelastic or viscoplastic path in the simulations. It was found that in the proposed analysis a rather low number of model parameters are required, compared to the works existing in the literature.
The NIAID Radiation Countermeasures Program business model.
Hafer, Nathaniel; Maidment, Bert W; Hatchett, Richard J
2010-12-01
The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a "virtual pharmaceutical firm," coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies. PMID:21142762
The NIAID Radiation Countermeasures Program Business Model
Hafer, Nathaniel; Maidment, Bert W.
2010-01-01
The National Institute of Allergy and Infectious Diseases (NIAID) Radiation/Nuclear Medical Countermeasures Development Program has developed an integrated approach to providing the resources and expertise required for the research, discovery, and development of radiation/nuclear medical countermeasures (MCMs). These resources and services lower the opportunity costs and reduce the barriers to entry for companies interested in working in this area and accelerate translational progress by providing goal-oriented stewardship of promising projects. In many ways, the radiation countermeasures program functions as a “virtual pharmaceutical firm,” coordinating the early and mid-stage development of a wide array of radiation/nuclear MCMs. This commentary describes the radiation countermeasures program and discusses a novel business model that has facilitated product development partnerships between the federal government and academic investigators and biopharmaceutical companies. PMID:21142762
Model-Based Diagnostics for Propellant Loading Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.
2011-01-01
The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.
Planetary gear profile modification design based on load sharing modelling
NASA Astrophysics Data System (ADS)
Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando
2015-07-01
In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.
Effects of Radiation and a High Iron Load on Bone Mineral Density
NASA Technical Reports Server (NTRS)
Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.
2012-01-01
Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.
Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.
Cacao, Eliedonna; Cucinotta, Francis A
2016-03-01
Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed. PMID:26943452
The JPL Uranian Radiation Model (UMOD)
NASA Technical Reports Server (NTRS)
Garrett, Henry; Martinez-Sierra, Luz Maria; Evans, Robin
2015-01-01
The objective of this study is the development of a comprehensive radiation model (UMOD) of the Uranian environment for JPL mission planning. The ultimate goal is to provide a description of the high energy electron and proton environments and the magnetic field at Uranus that can be used for engineering design. Currently no model exists at JPL. A preliminary electron radiation model employing Voyager 2 data was developed by Selesnick and Stone in 1991. The JPL Uranian Radiation Model extends that analysis, which modeled electrons between 0.7 MeV and 2.5 MeV based on the Voyager Cosmic Ray Subsystem electron telescope, down to an energy of 0.022 MeV for electrons and from 0.028 MeV to 3.5 MeV for protons. These latter energy ranges are based on measurements by the Applied Physics Laboratory Low Energy Charged Particle Detector on Voyager 2. As in previous JPL radiation models, the form of the Uranian model is based on magnetic field coordinates and requires a conversion from spacecraft coordinates to Uranian-centered magnetic "B-L" coordinates. Two magnetic field models have been developed for Uranus: 1) a simple "offset, tilted dipole" (OTD), and 2) a complex, multi-pole expansion model ("Q3"). A review of the existing data on Uranus and a search of the NASA Planetary Data System (PDS) were completed to obtain the latest, up to date descriptions of the Uranian high energy particle environment. These data were fit in terms of the Q3 B-L coordinates to extend and update the original Selesnick and Stone electron model in energy and to develop the companion proton flux model. The flux predictions of the new model were used to estimate the total ionizing dose for the Voyager 2 flyby, and a movie illustrating the complex radiation belt variations was produced to document the uses of the model for planning purposes.
Modeling of Anisotropic Rock Joints Under Cyclic Loading (Invited)
NASA Astrophysics Data System (ADS)
White, J. A.
2013-12-01
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear-induced anisotropy. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters, but shows good agreement with laboratory tests.
Freezable Radiator Model Correlation and Full Scale Design
NASA Technical Reports Server (NTRS)
Lillibridge, Sean T.; Navarro, Moses
2010-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes efforts made to correlate a Thermal Desktop (TM) model with empirical testing data from two test articles. A 50-50 mixture of DowFrost HD and water is used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed.
NASA Astrophysics Data System (ADS)
Zhang, X.; Kondragunta, S.; Kogan, F.; Tarpley, J. D.; Guo, W.; Wiedinmyer, C.; Schmidt, C.
2005-12-01
Biomass burning is the second largest source of aerosols, which affects air quality and the Earth's radiation budget. Because the emissions of aerosols is strongly influenced by factors such as biomass density, combustion efficiency, and burned area, current burning emission estimates are rather imprecise and vary markedly with different methodologies. The aim of this study is to model biomass burning emissions using satellite-derived vegetative fuel loadings, fuel moisture, and burned areas in the USA. For this purpose, we first developed an approach for mapping vegetative fuel loadings using Moderate-Resolution Imaging Spectroradiometer (MODIS) data at a spatial resolution of 1 km. MODIS data used in this study are land cover types, vegetation continuous fields, and a time series of leaf-area index (LAI). The LAI data were used to produce live leaf fuel loadings varying with vegetation types and vegetation fractions. For forest regions, the maximum leaf fuel loading within a year was applied to calculate branch fuel loadings and total tree fuel loadings using tree allometric models. Since fuel combustion efficiency and emission factors are functions of fuel moisture, we then determined weekly fuel moisture categories from AVHRR-based vegetation condition index (VCI). The VCI was calculated by normalizing the NDVI (normalized difference vegetation index) to the difference of the extreme NDVI fluctuations (maximum and minimum) from 1982-2004. This dataset is reliable since it is calibrated using post-launch algorithms and temporally smoothed. Further, we derived sub-pixel fire size from GOES WF-ABBA fire product. This fire product is available at 30 minutes interval. We used all these inputs to estimate aerosols (PM2.5, particulate mass for particles with diameter < 2.5 μ-m) for each individual fire in 2002 across the USA. We will present the algorithm details and the analysis of the derived emissions.
National Launch System cycle 1 loads and models data book
NASA Technical Reports Server (NTRS)
Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.
1992-01-01
This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.
Assessment of diffuse radiation models in Azores
NASA Astrophysics Data System (ADS)
Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo
2014-05-01
Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different
The simplest models of radiative neutrino mass
NASA Astrophysics Data System (ADS)
Law, Sandy S. C.; McDonald, Kristian L.
2014-04-01
The complexity of radiative neutrino-mass models can be judged by: (i) whether they require the imposition of ad hoc symmetries, (ii) the number of new multiplets they introduce and (iii) the number of arbitrary parameters that appear. Considering models that do not employ new symmetries, the simplest models have two new multiplets and a minimal number of new parameters. With this in mind, we search for the simplest models of radiative neutrino mass. We are led to two models, containing a real scalar triplet and a charged scalar doublet (respectively), in addition to the charged singlet scalar considered by Zee [h+ (1, 1, 2)]. These models are essentially simplified versions of the Zee model and appear to be the simplest models of radiative neutrino mass. However, despite successfully generating nonzero masses, present-day data is sufficient to rule these simple models out. The Zee and Zee-Babu models therefore remain as the simplest viable models. Moving beyond the minimal cases, we find a new model of two-loop masses that employs the charged doublet Φ (1, 2, 3) and the doubly-charged scalar k++ (1, 1, 4). This is the sole remaining model that employs only three new noncolored multiplets.
Radiation budget measurement/model interface
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.
1983-01-01
This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.
Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations
NASA Technical Reports Server (NTRS)
Chrisochoides, Nikos
1995-01-01
We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.
Local structural excitations in model glass systems under applied load
NASA Astrophysics Data System (ADS)
Swayamjyoti, S.; Löffler, J. F.; Derlet, P. M.
2016-04-01
The potential-energy landscape of a model binary Lennard-Jones structural glass is investigated as a function of applied external strain, in terms of how local structural excitations (LSEs) respond to the load. Using the activation relaxation technique and nudged elastic band methods, the evolving structure and barrier energy of such LSEs are studied in detail. For the case of a tensile/compressive strain, the LSE barrier energies generally decrease/increase, whereas under pure shear, it may either increase or decrease resulting in a broadening of the barrier energy distribution. It is found that how a particular LSE responds to an applied strain is strongly controlled by the LSE's far-field internal stress signature prior to loading.
Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading
NASA Astrophysics Data System (ADS)
Sun, Yuanxiang
Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).
String Fragmentation Model in Space Radiation Problems
NASA Technical Reports Server (NTRS)
Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.
2002-01-01
String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.
Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald; Dash, Sanford M.
2009-01-01
A computational fluid dynamics (CFD) model that includes representations of effects of unsteady cavitation and associated dynamic loads has been developed to increase the accuracy of simulations of the performances of turbopumps. Although the model was originally intended to serve as a means of analyzing preliminary designs of turbopumps that supply cryogenic propellant liquids to rocket engines, the model could also be applied to turbopumping of other liquids: this can be considered to have been already demonstrated, in that the validation of the model was performed by comparing results of simulations performed by use of the model with results of sub-scale experiments in water. The need for this or a similar model arises as follows: Cavitation instabilities in a turbopump are generated as inlet pressure drops and vapor cavities grow on inducer blades, eventually becoming unsteady. The unsteady vapor cavities lead to rotation cavitation, in which the cavities detach from the blades and become part of a fluid mass that rotates relative to the inducer, thereby generating a fluctuating load. Other instabilities (e.g., surge instabilities) can couple with cavitation instabilities, thereby compounding the deleterious effects of unsteadiness on other components of the fluid-handling system of which the turbopump is a part and thereby, further, adversely affecting the mechanical integrity and safety of the system. Therefore, an ability to predict cavitation- instability-induced dynamic pressure loads on the blades, the shaft, and other pump parts would be valuable in helping to quantify safe margins of inducer operation and in contributing to understanding of design compromises. Prior CFD models do not afford this ability. Heretofore, the primary parameter used in quantifying cavitation performance of a turbopump inducer has been the critical suction specific speed at which head breakdown occurs. This parameter is a mean quantity calculated on the basis of assumed steady
Modelling the martian cosmic radiation environment
NASA Astrophysics Data System (ADS)
Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J.
2013-09-01
The martian surface is no longer protected by a global magnetic field or substantial atmosphere and so is essentially unshielded to the flux of cosmic rays. This creates an ionising radiation field on the surface and subsurface that is hazardous to life and the operation of spacecraft instruments. Here we report the modelling approach used to characterise this complex and time-variable radiation environment and discuss the wider applications of the results generated.
Dynamic Radiation Environment Assimilation Model: DREAM
NASA Astrophysics Data System (ADS)
Reeves, G. D.; Chen, Y.; Cunningham, G. S.; Friedel, R. W. H.; Henderson, M. G.; Jordanova, V. K.; Koller, J.; Morley, S. K.; Thomsen, M. F.; Zaharia, S.
2012-03-01
The Dynamic Radiation Environment Assimilation Model (DREAM) was developed to provide accurate, global specification of the Earth's radiation belts and to better understand the physical processes that control radiation belt structure and dynamics. DREAM is designed using a modular software approach in order to provide a computational framework that makes it easy to change components such as the global magnetic field model, radiation belt dynamics model, boundary conditions, etc. This paper provides a broad overview of the DREAM model and a summary of some of the principal results to date. We describe the structure of the DREAM model, describe the five major components, and illustrate the various options that are available for each component. We discuss how the data assimilation is performed and the data preprocessing and postprocessing that are required for producing the final DREAM outputs. We describe how we apply global magnetic field models for conversion between flux and phase space density and, in particular, the benefits of using a self-consistent, coupled ring current-magnetic field model. We discuss some of the results from DREAM including testing of boundary condition assumptions and effects of adding a source term to radial diffusion models. We also describe some of the testing and validation of DREAM and prospects for future development.
RRTM: A rapid radiative transfer model
Mlawer, E.J.; Taubman, S.J.; Clough, S.A.
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
Infrared radiation models for atmospheric ozone
NASA Technical Reports Server (NTRS)
Kratz, David P.; Ces, Robert D.
1988-01-01
A hierarchy of line-by-line, narrow-band, and broadband infrared radiation models are discussed for ozone, a radiatively important atmospheric trace gas. It is shown that the narrow-band (Malkmus) model is in near-precise agreement with the line-by-line model, thus providing a means of testing narrow-band Curtis-Godson scaling, and it is found that this scaling procedure leads to errors in atmospheric fluxes of up to 10 percent. Moreover, this is a direct consequence of the altitude dependence of the ozone mixing ratio. Somewhat greater flux errors arise with use of the broadband model, due to both a lesser accuracy of the broadband scaling procedure and to inherent errors within the broadband model, despite the fact that this model has been tuned to the line-by-line model.
NASA Astrophysics Data System (ADS)
Sizyuk, V.; Hassanein, A.
2015-01-01
A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.
Modelling of current loads on aquaculture net cages
NASA Astrophysics Data System (ADS)
Kristiansen, Trygve; Faltinsen, Odd M.
2012-10-01
In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.
Numerical Modeling of Flow through Phloem Considering Active Loading
NASA Astrophysics Data System (ADS)
Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta
2013-11-01
Transport through phloem is of significant interest in engineering applications including self-powered microfluidic pumps. We present a phloem model, combining protein level mechanics with cellular level fluid transport. Fluid flow and sucrose transport through a petiole sieve tube are simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Governing equations are solved using the finite volume method with dynamically calculated boundary conditions. Sieve tube cell structure consisting of sieve plates is included in a two dimensional model by computational cell blocking. Sucrose transport is incorporated as a boundary condition through a six-state model, bringing in active loading mechanisms with consideration of physical plant properties. The effects of reaction rates and leaf sucrose concentration are investigated to understand the transport mechanism in petiole sieve tubes. Numerical results show that increasing forward reactions of the proton sucrose transporter significantly promotes the pumping ability. A lower leaf sieve sucrose concentration results in a lower wall inflow velocity, but yields a higher inflow of water due to the active loading mechanism. The overall effect is higher outflow velocity for lower leaf sieve sucrose concentration because the increase in inflow velocity outweighs wall velocity. This new phloem model provides new insights on mechanisms potentially useful for fluidic pumping in self-powered microfluidic pumps. This work is supported in part by the National Science Fundation grant CBET-1250107.
Spatial correlations in bed load transport: Evidence, importance, and modeling
NASA Astrophysics Data System (ADS)
Heyman, J.; Ma, H. B.; Mettra, F.; Ancey, C.
2014-08-01
This article examines the spatial dynamics of bed load particles in water. We focus particularly on the fluctuations of particle activity, which is defined as the number of moving particles per unit bed length. Based on a stochastic model recently proposed by Ancey and Heyman (2014), we derive the second moment of particle activity analytically, that is, the spatial correlation functions of particle activity. From these expressions, we show that large moving particle clusters can develop spatially. Also, we provide evidence that fluctuations of particle activity are scale dependent. Two characteristic lengths emerge from the model: a saturation length ℓsat describing the length needed for a perturbation in particle activity to relax to the homogeneous solution and a correlation length ℓc describing the typical size of moving particle clusters. A dimensionless Péclet number can also be defined according to the transport model. Three different experimental data sets are used to test the theoretical results. We show that the stochastic model describes spatial patterns of particle activity well at all scales. In particular, we show that ℓc and ℓsat may be relatively large compared to typical scales encountered in bed load experiments (grain diameter, water depth, bed form wavelength, flume length, etc.) suggesting that the spatial fluctuations of particle activity have a nonnegligible impact on the average transport process.
Threshold models in radiation carcinogenesis
Hoel, D.G.; Li, P.
1998-09-01
Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.
Applying modern measurements of Pleistocene loads to model lithospheric rheology
NASA Astrophysics Data System (ADS)
Beard, E. P.; Hoggan, J. R.; Lowry, A. R.
2011-12-01
The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper
Model for Prioritizing Best Management Practice Implementation: Sediment Load Reduction
NASA Astrophysics Data System (ADS)
Jang, Taeil; Vellidis, George; Hyman, Jeffrey B.; Brooks, Erin; Kurkalova, Lyubov A.; Boll, Jan; Cho, Jaepil
2013-01-01
Understanding the best way to allocate limited resources is a constant challenge for water quality improvement efforts. The synoptic approach is a tool for geographic prioritization of these efforts. It uses a benefit-cost framework to calculate indices for functional criteria in subunits (watersheds, counties) of a region and then rank the subunits. The synoptic approach was specifically designed to incorporate best professional judgment in cases where information and resources are limited. To date, the synoptic approach has been applied primarily to local or regional wetland restoration prioritization projects. The goal of this work was to develop a synoptic model for prioritizing watersheds within which suites of agricultural best management practices (BMPs) can be implemented to reduce sediment load at the watershed outlets. The model ranks candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most sediment load reduction per conservation dollar invested. The model can be applied anywhere and at many scales provided that the selected suite of BMPs is appropriate for the evaluation area's biophysical and climatic conditions. The model was specifically developed as a tool for prioritizing BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS conservation effects assessment project (CEAP). This paper presents the testing of the model in the little river experimental watershed (LREW) which is located near Tifton, Georgia, USA and is the CEAP watershed representing the southeastern coastal plain. The application of the model to the LREW demonstrated that the model represents the physical drivers of erosion and sediment loading well. The application also showed that the model is quite responsive to social and economic drivers and is, therefore, best applied at a scale large enough to ensure differences in social and economic drivers across the
Mesoscale numerical modeling of plastic bonded explosives under shock loading
NASA Astrophysics Data System (ADS)
Shang, Hailin; Zhao, Feng; Ji, Guangfu; Fu, Hua
2015-09-01
Mesoscale responses of plastic bonded explosives under shock loading are investigated using material point method as implemented in the Uintah Computational Framework. The two-dimensional geometrical model which can approximately reflect the mesoscopic structure of plastic bonded explosives was created based on the Voronoi tessellation. Shock loading for the explosive was performed by a piston moving at a constant velocity. For the purpose of investigating the influence of shock strength on the responses of explosives, two different velocities for the piston were used, 200 m/s and 400 m/s, respectively. The simulation results indicate that under shock loading there forms some stress localizations on the grain boundary of explosive. These stress localizations lead to large plastic deformations, and the plastic strain energy transforms to thermal energy immediately, causing temperature to rise rapidly and form some hot spots on grain boundary areas. The comparison between two different piston velocities shows that with increasing shock strength, the distribution of plastic strain and temperature does not have significant change, but their values increase obviously. Namely, the higher the shock strength is, the higher the hot spot temperature will be.
Density Functional Theory Models for Radiation Damage
NASA Astrophysics Data System (ADS)
Dudarev, S. L.
2013-07-01
Density functional theory models developed over the past decade provide unique information about the structure of nanoscale defects produced by irradiation and about the nature of short-range interaction between radiation defects, clustering of defects, and their migration pathways. These ab initio models, involving no experimental input parameters, appear to be as quantitatively accurate and informative as the most advanced experimental techniques developed for the observation of radiation damage phenomena. Density functional theory models have effectively created a new paradigm for the scientific investigation and assessment of radiation damage effects, offering new insight into the origin of temperature- and dose-dependent response of materials to irradiation, a problem of pivotal significance for applications.
Design and Modeling of a Variable Heat Rejection Radiator
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan
2011-01-01
Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila
2008-01-01
Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load
Unsteady wind loads for TMT: replacing parametric models with CFD
NASA Astrophysics Data System (ADS)
MacMartin, Douglas G.; Vogiatzis, Konstantinos
2014-08-01
Unsteady wind loads due to turbulence inside the telescope enclosure result in image jitter and higher-order image degradation due to M1 segment motion. Advances in computational fluid dynamics (CFD) allow unsteady simulations of the flow around realistic telescope geometry, in order to compute the unsteady forces due to wind turbulence. These simulations can then be used to understand the characteristics of the wind loads. Previous estimates used a parametric model based on a number of assumptions about the wind characteristics, such as a von Karman spectrum and frozen-flow turbulence across M1, and relied on CFD only to estimate parameters such as mean wind speed and turbulent kinetic energy. Using the CFD-computed forces avoids the need for assumptions regarding the flow. We discuss here both the loads on the telescope that lead to image jitter, and the spatially-varying force distribution across the primary mirror, using simulations with the Thirty Meter Telescope (TMT) geometry. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are all estimated; these are then used to compute the resulting image motion and degradation. There are several key differences relative to our earlier parametric model. First, the TMT enclosure provides sufficient wind reduction at the top end (near M2) to render the larger cross-sectional structural areas further inside the enclosure (including M1) significant in determining the overall image jitter. Second, the temporal spectrum is not von Karman as the turbulence is not fully developed; this applies both in predicting image jitter and M1 segment motion. And third, for loads on M1, the spatial characteristics are not consistent with propagating a frozen-flow turbulence screen across the mirror: Frozen flow would result in a relationship between temporal frequency content and spatial frequency content that does not hold in the CFD predictions. Incorporating the new estimates of wind load characteristics
Hulbert, S.L.; Sharma, S.
1987-10-21
At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beam lines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the NSLS) and the effects of these figure errors on a class of soft x-ray beam lines are presented. 17 refs., 5 figs., 2 tabs.
Hulbert, S.L.; Sharma, S.
1987-01-01
At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.
Shchegolkov, Dmitry; Azad, Abul K; O' Hara, John F; Smirnova, Evgenya I
2009-01-01
The authors have recently proposed an experiment on verification of the Reverse Cherenkov Radiation (RCR) effect in a Left-Handed-Material-loaded waveguide. Applications of the RCR effect may range from novel higher-order-mode suppressors in microwave and millimeter-wave sources to improved particle detectors for satellite non-proliferation missions. The experimental configuration includes a circular waveguide filled with an artificial metamaterial with simultaneously negative permittivity and permeability, in which the electromagnetic wave with a frequency of 95 GHz will interact with an electron beam. They have demonstrated that for certain values of effective permittivity and permeability only the backward-propagating mode can be exited by the electron beam. At the conference they will present some newly developed metamaterial designs, which they plan to employ for producing the proper effective medium parameters for this experiment.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832
Atmospheric radiation model for water surfaces
NASA Technical Reports Server (NTRS)
Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.
1982-01-01
An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.
Radiation model for row crops: II. Model evaluation
Technology Transfer Automated Retrieval System (TEKTRAN)
Relatively few radiation transfer studies have considered the impact of varying vegetation cover that typifies row crops, and meth¬ods to account for partial row crop cover have not been well investigated. Our objective was to evaluate a widely used radiation model that was modified for row crops ha...
On predicting and modeling material failure under impact loading
Lewis, M.W.
1998-09-01
A method for predicting and modeling material failure in solids subjected to impact loading is outlined. The method uses classical void growth models of Gurson and Tvergaard in a material point method (MPM). Because of material softening, material stability is lost. At this point, the character of the governing partial differential equations changes, and localization occurs. This localization results in mesh dependence for many problems of interest. For many problems, predicting the occurrence of material failure and its extent is necessary. To enable this modeling, it is proposed that a discontinuity be introduced into the displacement field. By including a dissipation-based force-displacement relationship, the mesh dependence of energy dissipation can be avoided. Additionally, the material point method provides a means of allowing large deformations without mesh distortion or introduction of error through remapping.
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
Modeling of Radiative Transfer in Protostellar Disks
NASA Technical Reports Server (NTRS)
VonAllmen, Paul; Turner, Neal
2007-01-01
This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.
Infrared radiation models for atmospheric methane
NASA Technical Reports Server (NTRS)
Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.
1986-01-01
Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.
Jovian S emission: Model of radiation source
NASA Astrophysics Data System (ADS)
Ryabov, B. P.
1994-04-01
A physical model of the radiation source and an excitation mechanism have been suggested for the S component in Jupiter's sporadic radio emission. The model provides a unique explanation for most of the interrelated phenomena observed, allowing a consistent interpretation of the emission cone structure, behavior of the integrated radio spectrum, occurrence probability of S bursts, location and size of the radiation source, and fine structure of the dynamic spectra. The mechanism responsible for the S bursts is also discussed in connection with the L type emission. Relations are traced between parameters of the radio emission and geometry of the Io flux tube. Fluctuations in the current amplitude through the tube are estimated, along with the refractive index value and mass density of the plasma near the radiation source.
Shuttle Spacesuit (Radiation) Model Development
NASA Technical Reports Server (NTRS)
Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.
2001-01-01
A detailed spacesuit computational model is being developed at the Langley Research Center for exposure evaluation studies. The details of the construction of the spacesuit are critical to an estimate of exposures and for assessing the health risk to the astronaut during extravehicular activity (EVA). Fine detail of the basic fabric structure, helmet, and backpack is required to assure a valid evaluation. The exposure fields within the Computerized Anatomical Male (CAM) and Female (CAF) are evaluated at 148 and 156 points, respectively, to determine the dose fluctuations within critical organs. Exposure evaluations for ambient environments will be given and potential implications for geomagnetic storm conditions discussed.
Status of Galileo interim radiation electron model
NASA Technical Reports Server (NTRS)
Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.
2003-01-01
Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EDP) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii.
Some analytical models of radiating collapsing spheres
Herrera, L.; Di Prisco, A; Ospino, J.
2006-08-15
We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.
Streamlining and Refining FEDS Loads Models - Final Report
Dahowski, Robert T.; Dirks, James A.
2013-02-05
The Facility Energy Decision System (FEDS) software is a powerful buildings energy analysis tool developed by Battelle at the Pacific Northwest National Laboratory with support from numerous organizations including several within the U.S. Department of Energy (DOE) and U.S. Department of Defense (DoD). FEDS is used extensively throughout the federal sector to examine building energy efficiency potential and recommend energy saving retrofit projects. The focus of this CRADA was to update the foundation of the FEDS loads models, to improve the core functionality and calculation methods and position the building efficiency analysis software for continued growth. The broader intent was to increase FEDS utility and user satisfaction via improving modeling accuracy, facilitating development and making possible a wide range of new and desired capability enhancements. This report provides an summary of the various tasks performed under the CRADA.
Modeling and Laboratory Investigations of Radiative Shocks
NASA Astrophysics Data System (ADS)
Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel
2001-10-01
Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)
Numerical Modelling of Fibre Metal Laminates Subjected to Blast Loading
NASA Astrophysics Data System (ADS)
Guan, Z. W.; Cantwell, W. J.
2010-05-01
In this paper, finite element models were developed to simulate fibre metal laminates subjected to various blast loadings with typical pressure-time patterns. The aluminium (alloy grade 2024-0) layer was modelled as an isotropic elasto-plastic material up to the on-set of post failure stage, followed by shear failure and tensile failure to simulate its failure mechanism. The glass fibre laminate (woven glass-fibre/polypropylene matrix composite) layer was modelled as an orthotropic material up to its on-set of damage, followed by damage initiation and evolution using the Hashin criterion. The damage initiation was controlled by failure tensile and compressive stresses within the lamina plane which were primarily determined by tests. The damage evolution was controlled by tensile/compressive fracture energies combined both fibre and matrix. Discussions were given to cover difficulties faced during development of the modelling. The FE models developed for 2/1 and 3/2 fibre metal laminates with different GFPP layer thicknesses were validated against the corresponding experimental results. Good correlation was obtained in terms of failure modes and permanent displacements. Using validated models, parametric studies may be further carried out to cover FMLs made with various stack sequences and layer thicknesses.
Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response
Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.
2012-07-22
Due to the potentially large number of Distributed Energy Resources (DERs) – demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.
NASA Astrophysics Data System (ADS)
Puskas, C. M.; Meertens, C. M.; Phillips, D. A.
2015-12-01
UNAVCO is currently developing forward displacement models from surface water stored in soil moisture, snowpack, and vegetation based on the National Land Data Assimilation System (NLDAS). UNAVCO already produces hydrological models from the Global Land Data Assimilation System (GLDAS), estimating the elastic loading from surface water at GPS coordinates for stations and processed by the GAGE Analysis Center. GLDAS incorporates satellite and ground observations into forcing parameters to be used for climate and weather models. The GLDAS forcing parameters include temperature, humidity, precipitation, radiation, wind, and pressure data at global 1º grid squares, excluding the oceanic surface. NLDAS uses the same set of forcing parameters but in an area restricted to the continental United States plus parts of Canada and Mexico and with a 0.125º grid. Research groups contribute Land Surface Models (LSMs) based on NLDAS or GLDAS to produce time series of modeled environmental parameters. Individual LSMs differ based on model equations and soil and vegetation properties. In this study we extract the parameters from the NLDAS LSMs to produce hydrologic displacement models at GPS station coordinates within the conterminous US. We check whether NLDAS displacement models can resolve regional variations due to topography that are smoothed in the GLDAS models. We compare the soil moisture, snowpack, and vegetation mass per area directly between the GLDAS and NLDAS LSMs, to see whether the mass variations between GLDAS and NLDAS are large enough to cause significant deformation changes. By comparing the hydrologic displacement models with GPS time series, we estimate how well the surface water loading predicts observed seasonal and secular GPS signals as opposed to tectonic signals. These comparisons will help us evaluate the NLDAS-derived displacement models as part of the process of developing a new model product for use in time series analysis, tectonic or hydrologic
Development of an infrared radiative heating model
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Helmle, L. C.
1979-01-01
Infrared radiative transfer solution algorithms used in global circulation models were assessed. Computation techniques applicable to the Ames circulation model are identified. Transmission properties of gaseous CO2, H2O, and O3 are gathered, and a computer program is developed, using the line parameter tape and Voight profile subroutine, which computes the transmission of CO2, H2O, and O3. A computer code designed to compute atmospheric cooling rates was developed.
Xie, X F; Ding, Q; Hou, J G; Chen, G
2015-01-01
Herein, the preparation of a dendritic cell (DC) vaccine with radiation-induced apoptotic tumor cells and its immunological effects on bladder cancer in C57BL/6 mice was investigated. We used radiation to obtain a MB49 cell antigen that was sensitive to bone marrow-derived DCs to prepare a DC vaccine. An animal model of tumor-bearing mice was established with the MB49 mouse bladder cancer cell line. Animals were randomly allocated to an experimental group or control group. DC vaccine or phosphate-buffered saline was given 7 days before inoculation with tumor cells. Each group consisted of 2 subgroups in which tumor volume and the survival of tumor-bearing mice were recorded. Tumor volumes and average tumor masses of mice administered DC vaccine loaded with radiation-induced apoptotic cells were significantly lower than those in the control group (P < 0.01). Survival in the experimental group was also longer than that in the control group, and 2 mice survived without tumor formation. In the DC vaccine group, 2 mice were alive without tumor growth after 30 days, and no tumor was observed at 30 days after subcutaneous inoculation of MB49 cells. The DC vaccine loaded with radiation-induced apoptotic tumor cells had an anti-tumor effect and was associated with increased survival in a bladder cancer model in mice. PMID:26214433
Numerical Model for Conduction-Cooled Current Lead Heat Loads
White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY
2011-06-10
Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
An evaluation of inside surface heat balance models for cooling load calculations
Liesen, R.J.; Pedersen, C.O.
1997-12-31
The heat balance method is a fundamental procedure that can be used for a specified control volume to describe building physics. With a better understanding of building physics and the cost-effectiveness of computers, these types of procedures are accessible to all practicing engineers. The heat balance method describes the processes using the three fundamental modes of heat transfer: conduction, convection, and radiation. The control volumes naturally divide the building processes into an outside balance, an inside balance, an air balance, and conduction through the building elements. This allows the building heat balance to be solved in a number of fundamental ways. This paper looks at the general formulation of the inside surface heat balance from the conduction through the building elements to the radiant exchange and convection to the air in the zone. Development of many radiant exchange models is shown; these models range from the exact solutions using uniform radiosity networks and exact view factors to mean radiant temperature (MRT) and area-weighted view factors. These radiant exchange models are directly compared to each other for a simple zone with varying aspect ratios. The radiant exchange models are then compared to determine their effect on the cooling load. Finally, other parameters that affect the inside surface heat balance are investigated to determine their sensitivity to the cooling load.
Liesen, R.J.; Strand, R.K.; Pedersen, C.O.
1998-10-01
Two new methods for calculating cooling loads have just been introduced. The first algorithm, called the heat balance (HB) method, is a complete formulation of fundamental heat balance principles. The second is called the radiant time series (RTS) method. While based on the HB method, the RTS method is an approximate procedure that separates some of the processes to better show the influence of individual heat gain components. In the HB method, all of the heat transfer mechanisms participate in three simultaneous heat balances: the balance on the outside face of all the building elements that enclose the space, the balance on the inside face of the building elements, and the balance between the surfaces inside the space and the zone air. The focus of this paper is on the second heat balance. It has been customary to define a radiative/convective split for the heat introduced into a zone from such sources as equipment, lights, people, etc. The radiative part is then distributed over the surfaces within the zone in some prescribed manner, and the convective part is assumed to go immediately into the air. Simplified techniques simply cannot accurately portray the complex interaction of building surfaces, so previously used load calculation procedures were not up to the task of analyzing the effect of internal load radiant/convective split variation. This paper will present an investigation of the influence of the radiative/convective split on cooling loads obtained using the heat balance procedure. It will begin with an overview of the model used for a heat balance procedure and then present an exhaustive case study of the effects of changing the mode split on load calculations for Wedge 1 of the Pentagon building.
On Modeling Hydrogen-Induced Crack Propagation Under Sustained Load
NASA Astrophysics Data System (ADS)
Dadfarnia, Mohsen; Somerday, Brian p.; Schembri, Philip E.; Sofronis, Petros; Foulk, James W.; Nibur, Kevin A.; Balch, Dorian K.
2014-08-01
The failure of hydrogen containment components is generally associated with subcritical cracking. Understanding subcritical crack growth behavior and its dependence on material and environmental variables can lead to methods for designing structural components in a hydrogen environment and will be beneficial in developing materials resistant to hydrogen embrittlement. In order to identify the issues underlying crack propagation and arrest, we present a model for hydrogen-induced stress-controlled crack propagation under sustained loading. The model is based on the assumptions that (I) hydrogen reduces the material fracture strength and (II) crack propagation takes place when the opening stress over the characteristic distance ahead of a crack tip is greater than the local fracture strength. The model is used in a finite-element simulation of crack propagation coupled with simultaneous hydrogen diffusion in a model material through nodal release. The numerical simulations show that the same physics, i.e., diffusion-controlled crack propagation, can explain the existence of both stages I and II in the velocity versus stress intensity factor ( V- K) curve.
Model of plastic deformation for extreme loading conditions
NASA Astrophysics Data System (ADS)
Preston, Dean L.; Tonks, Davis L.; Wallace, Duane C.
2003-01-01
We present a model of metallic plastic flow suitable for numerical simulations of explosive loading and high velocity impacts. The dependence of the plastic strain rate on applied stress at low strain rates is of the Arrhenius form but with an activation energy that is singular at zero stress so that the deformation rate vanishes in that limit. Work hardening is modeled as a generalized Voce law. At strain rates exceeding 109s-1, work hardening is neglected, and the rate dependence of the flow stress is calculated using Wallace's theory of overdriven shocks in metals [D.C. Wallace, Phys. Rev. B 24, 5597 (1981); 24, 5607 (1981)]. The thermal-activation regime is continuously merged into the strong shock limit, yielding a model applicable over the 15 decades in strain rate from 10-3 to 1012 s-1. The model represents all aspects of constitutive behavior seen in Hopkinson bar and low-rate data, including a rapid increase in the constant-strain rate sensitivity, with 10% accuracy. High-pressure behavior is controlled by the shear modulus, G(ρ,T), and the melting temperature, Tm(ρ). There are eleven material parameters in addition to G(ρ,T) and Tm(ρ). Parameters for Cu, U, Ta, Mo, V, Be, 304 SS, and 21-6-9 SS are provided.
Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions
Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.
2013-11-01
Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause
Impact of load geometry on plasma formation and radiative properties of Z-pinches at stagnation
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Velikovich, A. L.; Rudakov, L. I.; Chuvatin, A. S.; Williamson, K. M.; Yilmaz, M. F.; Osborne, G. C.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.
2009-11-01
The double planar wire array (DPWA) is the best x-ray radiator at 1 MA [V. Kantsyrev et al., HEDP 5 (2009), in press]. To improve its radiative performance by reducing the MRT instability growth rate, Al, brass and W DPWAs were skewed to produce initial axial magnetic field Bz. The diagnostics included x-ray devices and laser shadowgraphy. Experiments on 1.6 MA Zebra generator at UNR and MHD modeling have shown that Bz mitigated the MRT instability in the precursor. The stagnation starts in the middle of the A-K gap, and more uniform plasma column with a higher temperature Te is formed compared to a standard DPWA. The yield and power were comparable with standard DPWA. Highest yield and power were for W and brass, respectively. Feasibility of the x-ray pulse shaping was demonstrated in experiments. Research plans are discussed.
Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.
2014-12-01
GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.
Mouse models for radiation-induced cancers.
Rivina, Leena; Davoren, Michael J; Schiestl, Robert H
2016-09-01
Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205
Diffusion model for lightning radiative transfer
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewicz, Richard J.; Phanord, Dieudonne D.; Blakeslee, Richard J.
1994-01-01
A one-speed Boltzmann transport theory, with diffusion approximations, is applied to study the radiative transfer properties of lightning in optically thick thunderclouds. Near-infrared (lambda = 0.7774 micrometers) photons associated with a prominent oxygen emission triplet in the lightning spectrum are considered. Transient and spatially complex lightning radiation sources are placed inside a rectangular parallelepiped thundercloud geometry and the effects of multiple scattering are studied. The cloud is assumed to be composed of a homogeneous collection of identical spherical water droplets, each droplet a nearly conservative, anisotropic scatterer. Conceptually, we treat the thundercloud like a nuclear reactor, with photons replaced by neutrons, and utilize standard one-speed neutron diffusion techniques common in nuclear reactor analyses. Valid analytic results for the intensity distribution (expanded in spherical harmonics) are obtained for regions sufficiently far from sources. Model estimates of the arrival-time delay and pulse width broadening of lightning signals radiated from within the cloud are determined and the results are in good agreement with both experimental data and previous Monte Carlo estimates. Additional model studies of this kind will be used to study the general information content of cloud top lightning radiation signatures.
A Strain-Based Load Identification Model for Beams in Building Structures
Hong, Kappyo; Lee, Jihoon; Choi, Se Woon; Kim, Yousok; Park, Hyo Seon
2013-01-01
A strain-based load identification model for beam structures subjected to multiple loads is presented. The number of sensors for the load identification model is the same as the number of load conditions acting on a beam structure. In the model, the contribution of each load to the strains measured by strain sensors is defined. In this paper, the longitudinal strains measured from multiplexed fiber Bragg grating (FBG) strain sensors are used in the load identification. To avoid the dependency on the selection of locations for FBG sensors installed on a beam structure, the measured strain is expressed by a general form of a strain sensing model defined by superimposing the distribution shapes for strains from multiple loads. Numerical simulation is conducted to verify the model. Then, the load identification model is applied to monitoring of applied loads on a 4 m-long steel beam subjected to two concentrated loads. In the experiment, seven FBG sensors and nine electrical strain gages (ESGs) were installed on the surface of the bottom flange. The experimental results indicate a good agreement between estimated loadings from the model and the loads applied by a hydraulic jack. PMID:23921825
Biologically based multistage modeling of radiation effects
William Hazelton; Suresh Moolgavkar; E. Georg Luebeck
2005-08-30
This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage
Analogue modelling of salt diapirism induced by differential loading
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kley, Jonas; Kukowski, Nina; Jähne, Fabian
2010-05-01
In salt tectonics, two general concepts exist to explain salt diapirism. First, the theory of active piercement by Trusheim (1960) states that salt rises up and pierces its overburden autonomously by buoyancy forces. Second, the theory of reactive piercement by Vendeville and Jackson (1992) considers a tectonic stress field responsible for initiation of salt uplift and has been tested in many analogue experiments. In this study, we investigated the hypothesis in which salt diapir formation is activated by sedimentary processes alone, i.e. without a tectonic trigger. Our models consisted of a viscous silicone layer simulating rock salt overlain by layers of sand that mimic brittle behaviour in natural overburden sediments. The experiments were monitored with a high-resolution strain analysis tool based on digital image correlation (particle image velocimetry, PIV). Deformation in the silicone was initiated by a lateral variation in the thickness or density of the overburden, which established a differential loading on the silicone layer. Subsequent sedimentation in certain time intervals forced the silicone to rise up and break through the initial sand layer by buoyancy forces. The model results support the hypothesis of active piercement of diapirs. Uplift of the silicone and creation of a pillow structure with a significant elevation can be achieved if the overburden does not exceed a critical thickness and if the load gradient in the overburden reaches a minimum value. Then, ongoing sedimentation in adjacent areas increases the lateral load gradient until the buoyancy force in the silicone is high enough to overcome the shear strength of the sand. Synkinematic sedimentation produces some typical strata geometries in the sand layer that can also be observed in nature, e.g. drag folds bordering the diapirs and layer thickening in the peripherical rim synclines. The creation of one diapir and its peripherical sinks induces a lateral migration of the deformation to
Pulsar Radiation Models - Radio to High Energies
NASA Astrophysics Data System (ADS)
Venter, Christo; Harding, Alice
Rotation-powered pulsars emit over nearly 19 decades of energy. Although an all-encompassing answer as to the origin of this broad-band emission remains elusive nearly 50 years after their discovery, the theorist does have a few tools in his / her toolkit to aid investigation. Phase-averaged spectra give clues as to the emitting particles, their acceleration, environment, and the radiation mechanism. Moreover, the phase-evolution of spectra constrains the radiation energetics and environment as different parts of the magnetosphere are exposed to the observer during the pulsar's rotation. A detailed model furthermore critically depends on the specification of the emission geometry. Modeling the light curves probes this fundamental geometric assumption, which is closely tied to the posited magnetospheric structure. Studying many versions of the same system helps to constrain critical population-averaged quantities, discover population trends, and probe model performance for different regions of phase space. When coupled with population synthesis, such modeling can provide powerful discrimination between competing emission models. Polarization properties may provide complementary constraints on the magnetic field orientation and pulsar geometry. Lastly, comparison of parameters inferred from independent models for the different wavebands yields necessary crosschecks. It is indeed fortunate that the past few years have witnessed an incredible increase in number and improved characterization of rotation-powered pulsars. We will review how the enhanced quality and quantity of data are providing impetus for further model refinement.
Analytical modeling of the steady radiative shock
NASA Astrophysics Data System (ADS)
Boireau, L.; Bouquet, S.; Michaut, C.; Clique, C.
2006-06-01
In a paper dated 2000 [1], a fully analytical theory of the radiative shock has been presented. This early model had been used to design [2] radiative shock experiments at the Laboratory for the Use of Intense Lasers (LULI) [3 5]. It became obvious from numerical simulations [6, 7] that this model had to be improved in order to accurately recover experiments. In this communication, we present a new theory in which the ionization rates in the unshocked (bar{Z_1}) and shocked (bar{Z_2} neq bar{Z_1}) material, respectively, are included. Associated changes in excitation energy are also taken into account. We study the influence of these effects on the compression and temperature in the shocked medium.
Electron beam excitation of a CSRR loaded waveguide for Cherenkov radiation
NASA Astrophysics Data System (ADS)
Sharples, Emmy; Letizia, Rosa
2015-09-01
A novel metamaterial structure is presented for applications as a backward propagating Cherenkov source or Cherenkov detector. The structure comprises of a complementary split ring resonator (CSRR) metasurface loaded waveguide, which exhibits left handed behaviour between 5-6 GHz. When the left handed, TM-like mode couples with an incident electron beam, backward propagating Cherenkov radiation is observed. The structure is suitable for beam-based applications, exhibiting strong beam coupling parameters and significant excitation of longitudinal wakefields. Three dimensional particle in cell simulations are performed to identify a suitable beam for operation. High and low energy beams, with different bunch dimensions from the literature, are considered and compared to investigate the nature of the beam-wave interaction this structure can support, and to identify any required modification before beam tests can be performed. This structure can lead to new solutions for non-destructive beam diagnostics, wakefield acceleration and backward wave oscillators which can potentially be scaled to higher frequency ranges.
Modeling Early Galaxies Using Radiation Hydrodynamics
2011-01-01
This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.
Cao, Miaomiao Li, Ke; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Wenxin Wang, Yong
2014-02-15
In this paper, a dielectric-loaded grating for Smith-Purcell device is proposed. The three-dimensional (3D) analytical theory for hot dispersion relation is obtained by using field matched method, which is solved by numerical simulations. The first and second order growth rates for the proposal model are analyzed, which is obtained by expanding hot dispersion equation at the operating point. The results show that the dispersion can be effectively weakened by introducing dielectric-loaded grating, in which the cutoff frequency is affected by the grating thickness. The dispersion curve becomes flatter and shifts towards lower frequency at the optimum grating parameters. The 3D particle-in-cell (PIC) simulation is also performed and the results are in good agreement with theoretical calculations. Comparing the first order growth rate with the second one, it reveals that the discrepancy is small when electron beam parameters are selected with small values. Otherwise, the discrepancy is large and cannot be ignored. To accurately describe the process of beam-wave interaction, the second order growth rate is necessary to apply.
Introductory Tools for Radiative Transfer Models
NASA Astrophysics Data System (ADS)
Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.
2006-12-01
Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.
Evaluation of Atmospheric Loading and Improved Troposphere Modelling
NASA Technical Reports Server (NTRS)
Zelensky, Nikita P.; Chinn, Douglas S.; Lemoine, F. G.; Le Bail, Karine; Pavlis, Despina E.
2012-01-01
Forward modeling of non-tidal atmospheric loading displacements at geodetic tracking stations have not routinely been included in Doppler Orbitography and Radiopositionning Integrated by Satellite (DORIS) or Satellite Laser Ranging (SLR) station analyses for either POD applications or reference frame determination. The displacements which are computed from 6-hourly models such as the ECMWF and can amount to 3-10 mm in the east, north and up components depending on the tracking station locations. We evaluate the application of atmospheric loading in a number ways using the NASA GSFC GEODYN software: First we assess the impact on SLR & DORIS-determined orbits such as Jason-2, where we evaluate the impact on the tracking data RMS of fit and how the total orbits are changed with the application of this correction. Preliminary results show an RMS radial change of 0.5 mm for Jason-2 over 54 cycles and a total change in the Z-centering of the orbit of 3 mm peak-to-peak over one year. We also evaluate the effects on other DORIS-satellites such as Cryosat-2, Envisat and the SPOT satellites. In the second step, we produce two SINEX time series based on data from available DORIS satellites and assess the differences in WRMS, scale and Helmert translation parameters. Troposphere refraction is obviously an important correction for radiometric data types such as DORIS. We evaluate recent improvements in DORIS processing at GSFC including the application of the Vienna Mapping Function (VMF1) grids with a-priori hydrostatic (VZHDs) and wet (VZWDs) zenith delays. We reduce the gridded VZHD at the stations height using pressure and temperature derived from GPT (strategy 1) and Saastamoinen. We discuss the validation of the VMF1 implementation and its application to the Jason-2 POD processing, compared to corrections using the Niell mapping function and the GMF. Using one year of data, we also assess the impact of the new troposphere corrections on the DORIS-only solutions, most
Earthquake nucleation mechanisms and periodic loading: Models, Experiments, and Observations
NASA Astrophysics Data System (ADS)
Dahmen, K.; Brinkman, B.; Tsekenis, G.; Ben-Zion, Y.; Uhl, J.
2010-12-01
The project has two main goals: (a) Improve the understanding of how earthquakes are nucleated ¬ with specific focus on seismic response to periodic stresses (such as tidal or seasonal variations) (b) Use the results of (a) to infer on the possible existence of precursory activity before large earthquakes. A number of mechanisms have been proposed for the nucleation of earthquakes, including frictional nucleation (Dieterich 1987) and fracture (Lockner 1999, Beeler 2003). We study the relation between the observed rates of triggered seismicity, the period and amplitude of cyclic loadings and whether the observed seismic activity in response to periodic stresses can be used to identify the correct nucleation mechanism (or combination of mechanisms). A generalized version of the Ben-Zion and Rice model for disordered fault zones and results from related recent studies on dislocation dynamics and magnetization avalanches in slowly magnetized materials are used in the analysis (Ben-Zion et al. 2010; Dahmen et al. 2009). The analysis makes predictions for the statistics of macroscopic failure events of sheared materials in the presence of added cyclic loading, as a function of the period, amplitude, and noise in the system. The employed tools include analytical methods from statistical physics, the theory of phase transitions, and numerical simulations. The results will be compared to laboratory experiments and observations. References: Beeler, N.M., D.A. Lockner (2003). Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res.-Solid Earth 108, 2391-2407. Ben-Zion, Y. (2008). Collective Behavior of Earthquakes and Faults: Continuum-Discrete Transitions, Evolutionary Changes and Corresponding Dynamic Regimes, Rev. Geophysics, 46, RG4006, doi:10.1029/2008RG000260. Ben-Zion, Y., Dahmen, K. A. and J. T. Uhl (2010). A unifying phase diagram for the dynamics of sheared solids
An Earth longwave radiation climate model
NASA Technical Reports Server (NTRS)
Yang, S. K.
1984-01-01
An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget study. Required information is provided by on empirical 100mb water vapor mixing ratio equation of the mixing ratio interpolation scheme. Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesian and the Congo.
A model of human walking energetics with an elastically-suspended load.
Ackerman, Jeffrey; Seipel, Justin
2014-06-01
Elastically-suspended loads have been shown to reduce the peak forces acting on the body while walking with a load when the suspension stiffness and damping are minimized. However, it is not well understood how elastically-suspended loads can affect the energetic cost of walking. Prior work shows that elastically suspending a load can yield either an increase or decrease in the energetic cost of human walking, depending primarily on the suspension stiffness, load, and walking speed. It would be useful to have a simple explanation that reconciles apparent differences in existing data. The objective of this paper is to help explain different energetic outcomes found with experimental load suspension backpacks and to systematically investigate the effect of load suspension parameters on the energetic cost of human walking. A simple two-degree-of-freedom model is used to approximate the energetic cost of human walking with a suspended load. The energetic predictions of the model are consistent with existing experimental data and show how the suspension parameters, load mass, and walking speed can affect the energetic cost of walking. In general, the energetic cost of walking with a load is decreased compared to that of a stiffly-attached load when the natural frequency of a load suspension is tuned significantly below the resonant walking frequency. The model also shows that a compliant load suspension is more effective in reducing the energetic cost of walking with low suspension damping, high load mass, and fast walking speed. This simple model could improve our understanding of how elastic load-carrying devices affect the energetic cost of walking with a load. PMID:24709566
A new Markov model for base-loaded units for use in production costing
Ansari, S.H.; Patton, A.D. )
1990-08-01
This paper describes a new Markov model for base-loaded units henceforth to be called the LLM (load linked Markov) model for use in a probabilistic production costing algorithm. This new LLM model recognizes the relationship between the need for operating a base-loaded unit and the system load cycle. A comparison of the results obtained by using a traditional production costing method, the Opcost method with explicit consideration of unit duty cycle effects and the new method using the LLM model for base-loaded units to be called Procop method show significant differences in the energies produced by the base-loaded units and consequently the other units. The linkage of a base-loaded unit's need for operation to the load cycle avoids the assumption of the traditional model that the base-loaded units are equally needed all times. It also avoids the ad hoc treatment of outage postponability of base-loaded units. Hence the Procop method is more physically based and is likely to be more accurately responsive to changes in the load cycle and other system parameters.
NASA Astrophysics Data System (ADS)
Messiaen, A.; Swain, D.; Ongena, J.; Vervier, M.
2015-12-01
The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode Vmax amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of Vmax of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k// computed by means of the coupling code ANTITER II remains small for the considered cases.
Messiaen, A. Ongena, J.; Vervier, M.; Swain, D.
2015-12-10
The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Deformations in the Shoulder Tissues During Load Carriage: A Computational Model.
Hadid, Amir; Belzer, Noa; Shabshin, Nogah; Epstein, Yoram; Gefen, Amit
2015-11-01
Shoulder soft tissue deformations seem to be one of the limiting factors of load carriage among soldiers and recreational backpackers that are required to carry heavy loads. Yet, there are no loading limits related to the forces borne by the shoulders, and the backpacks designs are not consistent with providing pressure relief from this sensitive anatomical region. The aim of this study was to develop a model that will enable to study the biomechanical loads that develop in the shoulder under heavy loads and to help in optimizing load carriage systems design. A 3-dimensional, anatomically accurate finite element model of a human shoulder was constructed based on MRI scans. The model was developed to calculate the effective stresses on the skin below the shoulder strap (superficial loads) and the effective strain in the brachial plexus region (inner tissue deformation) for loads of up to 35 kg. The model successfully predicted deformations in the soft tissue surrounding the brachial plexus when compared with deformations measured from load-bearing MRI scans. The model yielded a skin pressure mapping, which showed pressure hotspots in the clavicle region. Inner tissue deformations mapping, as assessed by brachial plexus envelop strains, were found to peak at 30% effective strain at the lateral aspect below the pectoralis muscle. The newly developed model successfully predicted soft tissue deformations in the shoulder related to backpacks. This model can be used to optimize load carriage systems for better distribution of pressure over the shoulders and lower inner tissue deformations. PMID:26506178
Modeling of failure and response to laminated composites subjected to in-plane loads
NASA Technical Reports Server (NTRS)
Shahid, Iqbal; Chang, Fu-Kuo
1993-01-01
An analytical model was developed for predicting the response of laminated composites with or without a cutout and subjected to in-plane tensile and shear loads. Material damage resulting from the loads in terms of matrix cracking, fiber-matrix shearing, and fiber breakage was considered in the model. Delamination, an out-of-plane failure mode, was excluded from the model.
A compressive failure model for anisotropic plates with a cutout under compressive and shear loads
NASA Technical Reports Server (NTRS)
Gurdal, Z.; Haftka, R. T.
1986-01-01
The paper introduces a failure model for laminated composite plates with a cutout under combined compressive and shear loads. The model is based on kinking failure of the load-carrying fibers around a cutout, and includes the effect of local shearing and compressive stresses. Comparison of predictions of the model with available experimental results for quasi-isotropic and orthotropic plates with a circular hole indicated a good agreement. Predictions for orthotropic plates under combined loading are compared with the predictions of a point-stress model. The present model indicates significant reductions in axial load-carrying capacity due to shearing loads for plates with principal axis of orthotropy oriented along the axial load direction. A gain in strength is achieved by rotating the axis of orthotropy to counteract the shearing stress, or by eliminating the compressive-shear deformation coupling.
Modeling stochastic wind loads on vertical axis wind turbines
Veers, P.S.
1984-01-01
The Vertical Axis Wind Turbine (VAWT) is a machine which extracts energy from the wind. Since random turbulence is always present, the effect of this turbulence on the wind turbine fatigue life must be evaluated. This problem is approached by numerically simulating the turbulence and calculating, in the time domain, the aerodynamic loads on the turbine blades. These loads are reduced to the form of power and cross spectral densities which can be used in standard linear structural analysis codes. The relative importance of the turbulence on blade loads is determined.
Modeling stochastic wind loads on vertical axis wind turbines
Veers, P.S.
1984-09-01
The Vertical Axis Wind Turbine (VAWT) is a machine which extracts energy from the wind. Since random turbulence is always present, the effect of this turbulence on the wind turbine fatigue life must be evaluated. This problem is approached by numerically simulating the turbulence and calculating, in the time domain, the aerodynamic loads on the turbine blades. These loads are reduced to the form of power and cross spectral densities which can be used in standard linear structural analysis codes. The relative importance of the turbulence on blade loads is determined.
A servo controlled gradient loading triaxial model test system for deep-buried cavern.
Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai
2015-10-01
A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures. PMID
A servo controlled gradient loading triaxial model test system for deep-buried cavern
NASA Astrophysics Data System (ADS)
Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai
2015-10-01
A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.
A servo controlled gradient loading triaxial model test system for deep-buried cavern
Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai
2015-10-15
A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the “real” geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.
Polar firn layering in radiative transfer models
NASA Astrophysics Data System (ADS)
Linow, Stefanie; Hoerhold, Maria
2016-04-01
For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of
Surface loading effects for precise geodetic observations: models and error estimates
NASA Astrophysics Data System (ADS)
Boy, J. P.
2015-12-01
The precision reached by modern geodetic techniques requires an accurate modeling of surface loading processes in order to reach the millimeter-level for displacements, the nanogal-level for surface gravity observations. Over the past decade, many operational loading services have been established, allowing researchers to access atmospheric, tidal and non-tidal oceanic, hydrological loading models and correct geodetic observations. We present here an overview of the EOST loading service (http://loading.u-strasbg.fr) providing different products of atmospheric, non-tidal oceanic and hydrological loading effects on displacements and surface gravity. We also investigate and assess the different sources of errors in loading computations: The choice of the reference frame for displacement computations (Center-of-Figure versus Center-of-Mass). The differences between different atmospheric (reanalysis versus operational models), non-tidal oceanic (low resolution versus eddy-resolving models) and hydrological models. The model of ocean response to pressure forcing (inverted barometer versus a dynamic model). The resolution of the land/sea mask used for the loading computations. The choice of an Earth model to compute Green's functions. The differences between interpolated loading grids and station computations.
NASA Technical Reports Server (NTRS)
Yates, J. E.
1984-01-01
A method is developed for calculating the surface load and radiated sound from a vibrating surface in a compressible viscous fluid. The method is applied to a thin two-dimensional elliptic cross-section. For large values of the viscous diffusion parameter, the surface load tends to an elliptic distribution in agreement with the results of inviscid theory when edge pressure continuity is enforced. For thin surfaces, the surface load is insensitive to variations in the thickness ratio. A three-dimensional spectral technique is developed to calculate the inviscid surface load and radiated sound from a thin vibrating airfoil. The inviscid theory predicts the correct form of the far field sound pressure and its phase. The actual levels are somewhat sensitive to the choice of theoretical spanwise surface pressure mode but are in better agreement with the experiment than the surface pressure. The comparison of theoretical and experimental surface pressure indicates that the viscous theory, used to validate the inviscid theory, is either inadequate or there is a source of experimental error.
Evaluation of radiation partitioning models at Bushland, Texas
Technology Transfer Automated Retrieval System (TEKTRAN)
Crop growth and soil-vegetation-atmosphere continuum energy transfer models often require estimates of net radiation components, such as photosynthetic, solar, and longwave radiation to both the canopy and soil. We evaluated the 1998 radiation partitioning model of Campbell and Norman, herein referr...
R.L. Campbell; S.A. Hambric
2002-06-24
Predicting structural radiated noise is a process that involves several steps, often including the development of a finite element (FE) model to provide structural response predictions. Limitations of these FE models often govern the success of overall noise predictions. The purpose of the present investigation is to identify the effects of real world attachments on edge-stiffened plates and identify advanced modeling methods to facilitate vibroacoustic analyses of such complex structures. A combination of experimental and numerical methods is used in the evaluation. The results show the effects of adding attachments to the edge-stiffened plate in terms of mode shape mass loading, creation of new mode shapes, modifications to original mode shapes, and variations in damping levels. A finite element model of the edge-stiffened plate with simplified attachments has been developed and is used in conjunction with experimental data to aid in the developments. The investigation presented here represents a necessary first step toward implementing an advanced modeling technique.
NASA Astrophysics Data System (ADS)
Green, Richard N.
1980-10-01
A parameter estimation technique is presented to estimate the radiative flux density distribution over the earn from a set of radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view, horizon to horizon. nadir pointing sensor with a mathematical technique to derive the radiative flux density estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation.The errors resulting from the assumed directional radiation model, spatial model and random measurement error have little effect an the global mean radiation. Zonal estimates were found to be more sensitive, to the spatial model than to the directional radiation model. Results from analysing medium field of view measurements showed a much greater sensitivity to the directional radiation model, even on a global scale.
Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles
Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila
2009-06-28
This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.
A new radiation model for Baltic Sea ecosystem modelling
NASA Astrophysics Data System (ADS)
Neumann, Thomas; Siegel, Herbert; Gerth, Monika
2015-12-01
Photosynthetically available radiation (PAR) is one of the key requirements for primary production in the ocean. The ambient PAR is determined by incoming solar radiation and optical properties of sea water and the optically active water constituents along the radiation pathway. Especially in coastal waters, the optical properties are affected by terrigenous constituents like yellow substances as well as high primary production. Numerical models for marine ecosystems account for the optical attenuation process in different ways and details. For the consideration of coloured dissolved organic matter (CDOM) and shading effects of phytoplankton particles, we propose a dynamic parametrization for the Baltic Sea. Furthermore, products from biological turnover processes are implemented. Besides PAR and its attenuation coefficient, the model calculates the Secchi disk depth, a simple measurable parameter describing the transparency of the water column and a water quality parameter in the European Water Framework Directive. The components of the proposed optical model are partly implemented from other publications respectively derived from our own measurements for the area of investigation. The model allows a better representation of PAR with a more realistic spatial and temporal variability compared to former parametrizations. The effect is that regional changes of primary production, especially in the northern part of the Baltic Sea, show reduced productivity due to higher CDOM concentrations. The model estimates for Secchi disk depth are much more realistic now. In the northern Baltic Sea, simulated oxygen concentrations in deep water have improved considerably.
On dynamic loads in parallel shaft transmissions. 1: Modelling and analysis
NASA Technical Reports Server (NTRS)
Lin, Edward Hsiang-Hsi; Huston, Ronald L.; Coy, John J.
1987-01-01
A model of a simple parallel-shaft, spur-gear transmission is presented. The model is developed to simulate dynamic loads in power transmissions. Factors affecting these loads are identified. Included are shaft stiffness, local compliance due to contact stress, load sharing, and friction. Governing differential equations are developed and a solution procedure is outlined. A parameter study of the solutions is presented in NASA TM-100181 (AVSCOM TM-87-C-3).
Kalsi, Karanjit; Elizondo, Marcelo A.; Fuller, Jason C.; Lu, Shuai; Chassin, David P.
2012-01-04
Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated control models for a population of thermostatically controlled loads. The effects of demand response on the load population dynamics are investigated.
Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods
NASA Astrophysics Data System (ADS)
Sohn, Ilyoup
During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of
Radiation Belt Electron Dynamics: Modeling Atmospheric Losses
NASA Technical Reports Server (NTRS)
Selesnick, R. S.
2003-01-01
The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .
Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012
NASA Astrophysics Data System (ADS)
Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G. L.
2013-12-01
We investigated a severe dust storm that developed over vast areas of the Middle East on 18-19 March 2012 and affected Saudi Arabia, Sudan, Egypt, Jordan, United Arab Emirates, Bahrain, Qatar, Oman, Kuwait, Iraq, Iran, Israel, and Pakistan. The visible aerosol optical depth recorded by the AERONET station on the KAUST campus (22.30o N 39.10o E) during the storm reached 4.5, exceeding the average level by an order of magnitude. To quantify the effects of the dust on atmospheric radiation and dynamics, we analyzed available ground-based and satellite observations and conducted numerical simulations using a fully coupled meteorology-chemistry-aerosol model (WRF-Chem). The model was able to reproduce the spatial and temporal patterns of the aerosol optical depths (AOD) observed by airborne and ground-based instruments. The major dust sources included river valleys of lower Tigris and Euphrates in Iraq, desert areas in Kuwait, Iran, United Arab Emirates, central Arabia including Rub' al Khali, An Nafud, and Ad Dahna, as well as the Red Sea coast of the Arabian Peninsula. The total amount of dust generated across the entire domain during the period of the simulation reached 93.76 Mt; 73.04 Mt of dust was deposited within the domain; 6.56 Mt of dust sunk in the adjacent sea waters, including 1.20 Mt that sedimented into the Red Sea. The model predicted a well-mixed boundary layer expanding up to 3.5 km in the afternoon. Some dust plumes were seen above the Planetary Boundary layer. In our simulations, mineral dust heated the lower atmosphere with a maximum heating rate of 9 K/day. The dust storm reduced the downwelling shortwave radiation at the surface to a maximum daily average value of -134 Wm-2 and the daily averaged long-wave forcing at the surface increased to 43 Wm-2. The combined short-wave cooling and long-wave warming effects of dust aerosols caused significant reduction in the surface air temperature -6.7 K at 1200 UTC on 19 March 2013.
THE COMPARISON OF TWO WATERSHEDS USING A WATERSHED NUTRIENT LOADING MODEL
Monitoring data, collected from the Yaquina River, Oregon, from 1999 through 2002 were used as the basis for developing the nutrient flux model as part of a larger agency program for quantifying nutrient processes. The PNWL nitrate loading model indicates that the nitrate load is...
Testing for Heterogeneous Factor Loadings Using Mixtures of Confirmatory Factor Analysis Models
Buzick, Heather M.
2010-01-01
The current study assessed the viability of mixture confirmatory factor analysis (CFA) for measurement invariance testing by evaluating the ability of mixture CFA models to identify differences in factor loadings across populations with identical mean structures. Using simulated data from a model with known parameters, convergence rates, parameter recovery, and the power of the likelihood-ratio test were investigated as impacted by sample size, latent class proportions, magnitude of factor loading differences, percentage of non-invariant factor loadings, and pattern of non-invariant factor loadings. Results suggest that mixture CFA models may be a viable option for testing the invariance of factor loadings; however, without differences in latent means and measurement intercepts, results suggest that larger sample sizes, more non-invariant factor loadings, and larger amounts of heterogeneity are needed to successfully estimate parameters and detect differences across latent classes. PMID:21833229
An extended model for determining dynamic loads in spur gearing
NASA Technical Reports Server (NTRS)
Kasuba, R.; Evans, J. W.
1981-01-01
In this study a large scale digitized approach is used for an uninterrupted static and dynamic analysis of spur gearing. An interactive method was developed to calculate directly the variable gear mesh stiffness as a function of transmitted load, gear profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed methods are applicable to both the normal and high contact ratio gearing. Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the normal gear mesh stiffness function and, thus, increase the dynamic loads in gearing.
Future directions for LDEF ionizing radiation modeling and assessments
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1993-01-01
A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.
Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT
Schilling, K.E.; Wolter, C.F.
2009-01-01
The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.
Model Fidelity Study of Dynamic Transient Loads in a Wind Turbine Gearbox: Preprint
Guo, Y.; Keller, J.; Moan, T.; Xing, Y.
2013-04-01
Transient events cause high loads in the drivetrain components so measuring and calculating these loads can improve confidence in drivetrain design. This paper studies the Gearbox Reliability Collaborative 750kW wind turbine gearbox response during transient events using a combined experimental and modeling approach. The transient events include emergency shut-downs and start-ups measured during a field testing period in 2009. The drivetrain model is established in the multibody simulation tool Simpack. A detailed study of modeling fidelity required for accurate load prediction is performed and results are compared against measured loads. A high fidelity model that includes shaft and housing flexibility and accurate bearing stiffnesses is important for the higher-speed stage bearing loads. Each of the transient events has different modeling requirements.
Angular radiation models for earth-atmosphere system. Volume 2: Longwave radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; Stowe, L. L.
1989-01-01
The longwave angular radiation models that are required for analysis of satellite measurements of Earth radiation, such as those from the Earth Radiation Budget Experiment (ERBE) are presented. The models contain limb-darkening characteristics and mean fluxes. Limb-darkening characteristics are the longwave anisotropic factor and the standard deviation of the longwave radiance. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) data set is described. Tabulated values and computer-generated plots are included for the limb-darkening and mean-flux models.
Flavour dependent gauged radiative neutrino mass model
NASA Astrophysics Data System (ADS)
Baek, Seungwon; Okada, Hiroshi; Yagyu, Kei
2015-04-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: μ minus τ symmetry U(1) μ- τ . A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks U(1) μ- τ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases from five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the additional neutral gauge boson loop contribution with mass of order 100 MeV and new gauge coupling of order 10-3.
Ultraviolet radiation therapy and UVR dose models
Grimes, David Robert
2015-01-15
Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.
2005-01-01
Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.
Radiative models for the evaluation of the UV radiation at the ground.
Koepke, P
2009-12-01
The variety of radiative models for solar UV radiation is discussed. For the evaluation of measured UV radiation at the ground the basic problem is the availability of actual values of the atmospheric parameters that influence the UV radiation. The largest uncertainties are due to clouds and aerosol, which are highly variable. In the case of tilted receivers, like the human skin for most orientations, and for conditions like a street canyon or tree shadow, besides the classical radiative transfer in the atmosphere additional modelling is necessary. PMID:19828720
NASA Technical Reports Server (NTRS)
Krizmanic, John F.
2013-01-01
We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.
Modeling of controlled flexible structures with impulsive loads
NASA Technical Reports Server (NTRS)
Zak, M.
1987-01-01
The characteristic wave approach is developed as an alternative to modal methods which may lead to significant errors in the presence of impulsive or concentrated loads. The method is applied to periodic structures. Some special phenomena like cumulation effects and transitions to ergodicity are analyzed.
Modeling of cross-spring pivots subjected to generalized planar loads
NASA Astrophysics Data System (ADS)
Bi, Shusheng; Yao, Yanbin; Zhao, Shanshan; Yu, Jingjun
2012-11-01
Cross-spring pivots, formed by crossing two identical flexural beams at their midpoint, have been broadly used in precision engineering and aerospace fields. Many researches have been conducted on modeling and analysis of cross-spring pivots. However the influence of application position and magnitude of the external loads on the load-rotation and parasitic motion characteristics has not yet been discussed. In order to reveal the effect of the external loads, this paper develops the accurate load-rotation and center shift models of cross-spring pivots, with generalized planar loads applied including bending moment, horizontal and vertical forces. Firstly, by using the energy method, the load-displacement models of the pivot are derived with the assumption of small rotational angles. Based on the models, the influence of generalized planar loads on the load-rotation relationship is discussed, which shows that both application position and magnitude of the vertical and horizontal forces influence the load-rotation behaviors. Then the accurate center shift expressions of the pivot with generalized planar loads are developed, which shows that the rotational angle is the dominant term for both components of the center shift while the vertical and horizontal forces are small. Finally, the accuracy of the proposed model is validated by finite element analysis(FEA). Comparing the model data with the results obtained from FEA, the relative error of the load-rotation is less than 6% even if the rotational angle reaches 20°; the relative errors of the two components of center shift are less than 5% and 10% respectively when the rotational angle reaches 10°. The proposed model and analytical conclusions can be used to analyze and preliminarily design the compliant mechanisms containing cross-spring pivots.
Dispersion model maps spread of Fukushima radiation
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-01-01
When water flooded the Japanese Fukushima Daiichi nuclear power plant on 11 March 2011, killing power to the plant and destroying its backup generators, the earthquake-triggered disaster resulted in a major nuclear accident, with the plant pouring radioactive material into the air and the water. Research into the effects of the radiation on humans and the environment has been ongoing, but to ensure the accuracy of these aftermath investigations requires understanding the precise concentrations, distribution patterns, and timing of the radionuclide emissions. To provide such an assessment for the marine environment, Estournel et al. used an ocean and atmosphere dispersion model to simulate the movements of radioactive cesium-137 throughout the Japanese coastal waters for 3.5 months following the earthquake.
Cavity radiation model for solar central receivers
Lipps, F.W.
1981-01-01
The Energy Laboratory of the University of Houston has developed a computer simulation program called CREAM (i.e., Cavity Radiations Exchange Analysis Model) for application to the solar central receiver system. The zone generating capability of CREAM has been used in several solar re-powering studies. CREAM contains a geometric configuration factor generator based on Nusselt's method. A formulation of Nusselt's method provides support for the FORTRAN subroutine NUSSELT. Numerical results from NUSSELT are compared to analytic values and values from Sparrow's method. Sparrow's method is based on a double contour integral and its reduction to a single integral which is approximated by Guassian methods. Nusselt's method is adequate for the intended engineering applications, but Sparrow's method is found to be an order of magnitude more efficient in many situations.
Radiation Transfer Model for Aerosol Events in the Earth Atmosphere
NASA Astrophysics Data System (ADS)
Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru
Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.
A three-dimensional finite element model of maximal grip loading in the human wrist.
Gislason, M K; Nash, D H; Nicol, A; Kanellopoulos, A; Bransby-Zachary, M; Hems, T; Condon, B; Stansfield, B
2009-10-01
The aim of this work was to create an anatomically accurate three-dimensional finite element model of the wrist, applying subject-specific loading and quantifying the internal load transfer through the joint during maximal grip. For three subjects, representing the anatomical variation at the wrist, loading on each digit was measured during a maximal grip strength test with simultaneous motion capture. The internal metacarpophalangeal joint load was calculated using a biomechanical model. High-resolution magnetic resonance scans were acquired to quantify bone geometry. Finite element analysis was performed, with ligaments and tendons added, to calculate the internal load distribution. It was found that for the maximal grip the thumb carried the highest load, an average of 72.2 +/- 20.1 N in the neutral position. Results from the finite element model suggested that the highest regions of stress were located at the radial aspect of the carpus. Most of the load was transmitted through the radius, 87.5 per cent, as opposed to 12.5 per cent through the ulna with the wrist in a neutral position. A fully three-dimensional finite element analysis of the wrist using subject-specific anatomy and loading conditions was performed. The study emphasizes the importance of modelling a large ensemble of subjects in order to capture the spectrum of the load transfer through the wrist due to anatomical variation. PMID:19908424
Probabilistic Water quality trading model conditioned on season-ahead nutrient load forecasts
NASA Astrophysics Data System (ADS)
Arumugam, S.; Oh, J.
2010-12-01
Successful water quality trading programs in the country rely on expected point and nonpoint nutrient loadings from multiple sources. Pollutant sources, through nutrient transactions, are in pursuit of minimum allocation strategies that can keep both the loadings and the associated concentrations under the target limit. It is well established in the hydroclimatic literature that interannual variability in seasonal streamflow could be explained partially using SST conditions. Similarly, it is widely known that streamflow is the most important predictor in estimating nutrient loadings and the associated concentration. We intend to bridge these two findings to develop probabilistic nutrient loading model for supporting water quality trading in the Tar River basin, NC. Utilizing the precipitation forecasts derived from ECHAM4.5 General Circulation Model, we develop season-ahead forecasts of total nitrogen (TN) and total phosphorus (TP) by forcing the calibrated water quality model with seasonal streamflow forecasts. Based on the season-head loadings, the probability of violation of desired nutrient concentration for the currently allowed loadings is also estimated. Through retrospective analyses using forecasted streamflow and the associated loadings, the probabilistic water quality trading model estimates the nutrient reduction strategies that can ensure the net loadings from both sources being below the target loadings. Challenges in applying the proposed framework for actual trading are also discussed.
The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture
NASA Technical Reports Server (NTRS)
Reeder, James R.
2014-01-01
Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.
Integration of MHD load models with circuit representations the Z generator.
Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.
2013-03-01
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
NASA Technical Reports Server (NTRS)
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
NASA Astrophysics Data System (ADS)
Spera, David A.
1995-05-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Aggregated Modeling of Thermostatic Loads in Demand Response: A Systems and Control Perspective
Kalsi, Karanjit; Chassin, Forrest S.; Chassin, David P.
2011-12-12
Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated models for a homogeneous population of thermostatically controlled loads. The different types of loads considered in this paper include, but are not limited to, water heaters and HVAC units. The effects of demand response and user over-ride on the load population dynamics are investigated. The controllability of the developed lumped models is validated which forms the basis for designing different control strategies.
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, H.; Wellman, B.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.
A linear programming model for reducing system peak through customer load control programs
Kurucz, C.N.; Brandt, D.; Sim, S.
1996-11-01
A Linear Programming (LP) model was developed to optimize the amount of system peak load reduction through scheduling of control periods in commercial/industrial and residential load control programs at Florida Power and Light Company. The LP model can be used to determine both long and short term control scheduling strategies and for planning the number of customers which should be enrolled in each program. Results of applying the model to a forecasted late 1990s summer peak day load shape are presented. It is concluded that LP solutions provide a relatively inexpensive and powerful approach to planning and scheduling load control. Also, it is not necessary to model completely general scheduling of control periods in order to obtain near best solutions to peak load reduction.
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Analysis for Regression Model Behavior by Sampling Strategy for Annual Pollutant Load Estimation.
Park, Youn Shik; Engel, Bernie A
2015-11-01
Water quality data are typically collected less frequently than streamflow data due to the cost of collection and analysis, and therefore water quality data may need to be estimated for additional days. Regression models are applicable to interpolate water quality data associated with streamflow data and have come to be extensively used, requiring relatively small amounts of data. There is a need to evaluate how well the regression models represent pollutant loads from intermittent water quality data sets. Both the specific regression model and water quality data frequency are important factors in pollutant load estimation. In this study, nine regression models from the Load Estimator (LOADEST) and one regression model from the Web-based Load Interpolation Tool (LOADIN) were evaluated with subsampled water quality data sets from daily measured water quality data sets for N, P, and sediment. Each water quality parameter had different correlations with streamflow, and the subsampled water quality data sets had various proportions of storm samples. The behaviors of the regression models differed not only by water quality parameter but also by proportion of storm samples. The regression models from LOADEST provided accurate and precise annual sediment and P load estimates using the water quality data of 20 to 40% storm samples. LOADIN provided more accurate and precise annual N load estimates than LOADEST. In addition, the results indicate that avoidance of water quality data extrapolation and availability of water quality data from storm events were crucial in annual pollutant load estimation using pollutant regression models. PMID:26641336
Cimino, R; Baglin, V; Schäfers, F
2015-12-31
We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable. PMID:26764998
NASA Astrophysics Data System (ADS)
Cimino, R.; Baglin, V.; Schäfers, F.
2015-12-01
We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.
Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.
1988-01-01
Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.
Computational methods for structural load and resistance modeling
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Millwater, H. R.; Harren, S. V.
1991-01-01
An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
Borodkin, P.G.; Borodkin, G.I.; Khrennikov, N.N.
2011-07-01
The approach of improved uncertainty-accounted conservative evaluation of vodo-vodyanoi energetichesky reactor (VVER) (reactor-) pressure-vessel (RPV) radiation loading parameters has been proposed. This approach is based on the calculational-experimental procedure, which takes into account C/E ratio, depending on over- or underestimation, and uncertainties of measured and calculated results. An application of elaborated approach to the full-scale ex-vessel neutron dosimetry experiments on Russian VVERs combined with neutron-transport calculations has been demonstrated in the paper. (authors)
Predictive model of radiative neutrino masses
NASA Astrophysics Data System (ADS)
Babu, K. S.; Julio, J.
2014-03-01
We present a simple and predictive model of radiative neutrino masses. It is a special case of the Zee model which introduces two Higgs doublets and a charged singlet. We impose a family-dependent Z4 symmetry acting on the leptons, which reduces the number of parameters describing neutrino oscillations to four. A variety of predictions follow: the hierarchy of neutrino masses must be inverted; the lightest neutrino mass is extremely small and calculable; one of the neutrino mixing angles is determined in terms of the other two; the phase parameters take CP-conserving values with δCP=π; and the effective mass in neutrinoless double beta decay lies in a narrow range, mββ=(17.6-18.5) meV. The ratio of vacuum expectation values of the two Higgs doublets, tanβ, is determined to be either 1.9 or 0.19 from neutrino oscillation data. Flavor-conserving and flavor-changing couplings of the Higgs doublets are also determined from neutrino data. The nonstandard neutral Higgs bosons, if they are moderately heavy, would decay dominantly into μ and τ with prescribed branching ratios. Observable rates for the decays μ →eγ and τ→3μ are predicted if these scalars have masses in the range of 150-500 GeV.
Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2006-01-01
Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.
Modeling a constant power load for nickel-hydrogen battery testing using SPICE
NASA Technical Reports Server (NTRS)
Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.
1990-01-01
The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.
The work/exchange model: A generalized approach to dynamic load balancing
Wikstrom, M.C.
1991-12-20
A crucial concern in software development is reducing program execution time. Parallel processing is often used to meet this goal. However, parallel processing efforts can lead to many pitfalls and problems. One such problem is to distribute the workload among processors in such a way that minimum execution time is obtained. The common approach is to use a load balancer to distribute equal or nearly equal quantities of workload on each processor. Unfortunately, this approach relies on a naive definition of load imbalance and often fails to achieve the desired goal. A more sophisticated definition should account for the affects of additional factors including communication delay costs, network contention, and architectural issues. Consideration of additional factors led us to the realization that optical load distribution does not always result from equal load distribution. In this dissertation, we tackle the difficult problem of defining load imbalance. This is accomplished through the development of a parallel program model called the Generalized Work/Exchange Model. Associated with the model are equations for a restricted set of deterministically balanced programs that characterize idle time, elapsed time, and potential speedup. With the aid of the model, several common myths about load imbalance are exposed. A useful application called a load balancer enhancer is also presented which is applicable to the more general, quasi-static load unbalanced program.
Dual-band reactively loaded microstrip antenna
NASA Technical Reports Server (NTRS)
Richards, W. F.; Long, S. A.; Davidson, S. E.
1985-01-01
A previously derived theory is applied to a microstrip antenna with a reactive load to produce a dual-band radiator. A model consisting of a rectangular patch radiator loaded with a variable length short-circuited coaxial stub was investigated experimentally. Comparisons of theoretical predictions and experimental data are made for the impedance and resonant frequencies as a function of the position of the load, the length of the stub, and the characteristic impedance of the stub.
A Multi-layer Radiation Model for Urban Neighbourhoods with Trees
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Christen, A.; Martilli, A.; Oke, T. R.
2014-04-01
-infrared shortwave bands is shown to be important in some cases. Increased canyon height-to-width ratio and/or tree cover diminishes the net longwave radiation loss of individual canyon elements (e.g., floor, walls), but, notably, has little effect on the net longwave loss of the whole urban canopy. When combined with parametrizations for the impacts of trees on airflow and hydrological processes in the urban surface layer, the new radiation model extends the applicability of urban canopy models and permits more robust assessment of trees as tools to manage urban climate, air quality, human comfort and building energy loads.
NASA Astrophysics Data System (ADS)
Li, Longbiao
2016-06-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
Influence of acoustic loading on an effective single mass model of the vocal folds.
Zañartu, Matías; Mongeau, Luc; Wodicka, George R
2007-02-01
Three-way interactions between sound waves in the subglottal and supraglottal tracts, the vibrations of the vocal folds, and laryngeal flow were investigated. Sound wave propagation was modeled using a wave reflection analog method. An effective single-degree-of-freedom model was designed to model vocal-fold vibrations. The effects of orifice geometry changes on the flow were considered by enforcing a time-varying discharge coefficient within a Bernoulli flow model. The resulting single-degree-of-freedom model allowed for energy transfer from flow to structural vibrations, an essential feature usually incorporated through the use of higher order models. The relative importance of acoustic loading and the time-varying flow resistance for fluid-structure energy transfer was established for various configurations. The results showed that acoustic loading contributed more significantly to the net energy transfer than the time-varying flow resistance, especially for less inertive supraglottal loads. The contribution of supraglottal loading was found to be more significant than that of subglottal loading. Subglottal loading was found to reduce the net energy transfer to the vocal-fold oscillation during phonation, balancing the effects of the supraglottal load. PMID:17348533
NASA Astrophysics Data System (ADS)
Li, Longbiao
2015-09-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
Valiant load-balanced robust routing under hose model for WDM mesh networks
NASA Astrophysics Data System (ADS)
Zhang, Xiaoning; Li, Lemin; Wang, Sheng
2006-09-01
In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.
Effective UV radiation from model calculations and measurements
NASA Technical Reports Server (NTRS)
Feister, Uwe; Grewe, Rolf
1994-01-01
Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.
Huang, Hong-Zhong; Yuan, Rong
2014-01-01
Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866
The effect of muscle loading on flexor tendon-to-bone healing in a canine model
Thomopoulos, Stavros; Zampiakis, Emmanouil; Das, Rosalina; Silva, Matthew J.; Gelberman, Richard H.
2008-01-01
SUMMARY Previous tendon and ligament studies demonstrated a role for mechanical loading in tissue homeostasis and healing. In uninjured musculoskeletal tissues, increased loading leads to an increase in mechanical properties, while decreased loading leads to a decrease in properties. The role of loading on healing tissues is less clear. We studied tendon-to-bone healing in a canine flexor tendon-to-bone injury and repair model. To examine the effect of muscle loading on healing, repaired tendons were either cut proximally to remove all load from the distal phalanx repair site (unloaded group) or left intact proximally (loaded group). All paws were cast post-operatively and subjected to daily passive motion rehabilitation. Specimens were tested to determine functional properties, biomechanical properties, repair-site gapping, and bone mineral density. Loading across the repair site led to improved functional and biomechanical properties (e.g., stiffness for the loaded group was 8.2 ± 3.9 vs. 5.1 ± 2.5 N/mm for the unloaded group). Loading did not affect bone mineral density or gapping. The formation of a gap between the healing tendon and bone correlated with failure properties. Using a clinically relevant model of flexor tendon injury and repair, we found that muscle loading was beneficial to healing. Complete removal of load by proximal transection resulted in tendon-to-bone repairs with less range of motion and lower biomechanical properties compared to repairs in which the muscle-tendon-bone unit was left intact. PMID:18524009
Optimization and modeling of the remote loading of luciferin into liposomes.
Hansen, Anders Højgaard; Lomholt, Michael A; Hansen, Per Lyngs; Mouritsen, Ole G; Arouri, Ahmad
2016-07-11
We carried out a mechanistic study to characterize and optimize the remote loading of luciferin into preformed liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPC/DPPG) 7:3 mixtures. The influence of the loading agent (acetate, propionate, butyrate), the metal counterion (Na(+), K(+), Ca(+2), Mg(+2)), and the initial extra-liposomal amount of luciferin (nL(add)) on the luciferin Loading Efficiency (LE%) and luciferin-to-lipid weight ratio, i.e., Loading Capacity (LC), in the final formulation was determined. In addition, the effect of the loading process on the colloidal stability and phase behavior of the liposomes was monitored. Based on our experimental results, a theoretical model was developed to describe the course of luciferin remote loading. It was found that the highest luciferin loading was obtained with magnesium acetate. The use of longer aliphatic carboxylates or inorganic proton donors pronouncedly reduced luciferin loading, whereas the effect of the counterion was modest. The remote-loading process barely affected the colloidal stability and drug retention of the liposomes, albeit with moderate luciferin-induced membrane perturbations. The correlation between luciferin loading, expressed as LE% and LC, and nL(add) was established, and under our conditions the maximum LC was attained using an nL(add) of around 2.6μmol. Higher amounts of luciferin tend to pronouncedly perturb the liposome stability and luciferin retention. Our theoretical model furnishes a fair quantitative description of the correlation between nL(add) and luciferin loading, and a membrane permeability coefficient for uncharged luciferin of 1×10(-8)cm/s could be determined. We believe that our study will prove very useful to optimize the remote-loading strategies of moderately polar carboxylic acid drugs in general. PMID:27163524
NASA Astrophysics Data System (ADS)
Lockard, David Patrick
This thesis makes contributions towards the use of computational aeroacoustics (CAA) as a tool for noise analysis. CAA uses numerical methods to simulate acoustic phenomena. CAA algorithms have been shown to reproduce wave propagation much better than traditional computational fluid dynamics (CFD) methods. In the current approach, a finite-difference, time-domain algorithm is used to simulate unsteady, compressible flows. Dispersion-relation-preserving methodology is used to extend the range of frequencies that can be represented properly by the scheme. Since CAA algorithms are relatively inefficient at obtaining a steady-state solution, multigrid methods are applied to accelerate the convergence. All of the calculations are performed on parallel computers. Excellent speedup ratios are obtained for the explicit, time-stepping algorithm used in this research. A common problem in the area of broadband noise is the prediction of the acoustic field generated by a vortical gust impinging on a solid body. The problem is modeled initially in two-dimensions by a flat plate experiencing a uniform mean flow with a sinusoidal, vertical velocity perturbation. Good agreement is obtained with results from semi-analytic methods for several gust frequencies. Then, a cascade of plates is used to simulate a turbomachinery blade row. A new approach is used to impose the vortical disturbance inside the computational domain rather than imposing it at the computational boundary. The influence of the mean flow on the radiated noise is examined by considering NACA0012 and RAE2822 airfoils. After a steady-state is obtained from the multigrid method, the un-steady simulation is used to model the vortical gust's interaction with the airfoil. The mean loading on the airfoil is shown to have a significant effect on the directivity of the sound with the strongest influence observed for high frequencies. Camber is shown to have a similar effect as the angle of attack. A three-dimensional problem
A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.
2006-01-01
The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.
LDEF geometry/mass model for radiation analyses
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A three-dimensional geometry/mass model of LDEF is under development for ionizing radiation analyses. This model, together with ray tracing algorithms, is being programmed for use both as a stand alone code in determining three-dimensional shielding distributions at dosimetry locations and as a geometry module that can be interfaced with radiation transport codes.
General cloud cover modifier for clear sky solar radiation models
NASA Astrophysics Data System (ADS)
Myers, Daryl R.
2007-09-01
Worldwide lack of comprehensive measured solar radiation resource data for solar system design is well known. Several simple clear sky solar radiation models for computing hourly direct, diffuse and global hemispherical solar radiation have been developed over the past 25 years. The simple model of Richard Bird, Iqbal's parameterization C, and Gueymard's REST model are popular for estimating maximum hourly solar resources. We describe a simple polynomial in cloud cover (octa) modifier for these models that produces realistic time series of hourly solar radiation data representative of naturally occurring solar radiation conditions under all sky conditions. Surface cloud cover observations (Integrated Surface Hourly Data) from the National Climatic Data Center are the only additional (hourly) input data to model total hemispherical solar radiation under all sky conditions. Performance was evaluated using three years of hourly solar radiation data from 31 sites in the 1961-1990 National Solar Radiation Data Base. Mean bias errors range from - 10% to -20%, and are clear sky model dependant. Root mean square error of about 40%, are also dependent upon the particular model used and the uncertainty in the specific clear sky model inputs and lack of information on cloud type and spatial distributions.
Modelling of Radiation Heat Transfer in Reacting Hot Gas Flows
NASA Astrophysics Data System (ADS)
Thellmann, A.; Mundt, C.
2009-01-01
In this work the interaction between a turbulent flow including chemical reactions and radiation transport is investigated. As a first step, the state-of-the art radiation models P1 based on the moment method and Discrete Transfer Model (DTM) based on the discrete ordinate method are used in conjunction with the CFD code ANSYS CFX. The absorbing and emitting medium (water vapor) is modeled by Weighted Sum of Gray Gases. For the chemical reactions the standard Eddy dissipation model combined with the two equation turbulence model k-epsilon is employed. A demonstration experiment is identified which delivers temperature distribution, species concentration and radiative intensity distribution in the investigated combustion enclosure. The simulation results are compared with the experiment and reveals that the P1 model predicts the location of the maximal radiation intensity unphysically. On the other hand the DTM model does better but over predicts the maximum value of the radiation intensity. This radiation sensitivity study is a first step on the way to identify a suitable radiation transport and spectral model in order to implement both in an existing 3D Navier-Stokes Code. Including radiation heat transfer we intend to investigate the influence on the overall energy balance in a hydrogen/oxygen rocket combustion chamber.
NASA Astrophysics Data System (ADS)
Dass, W.; Merkle, D. H.; Bratton, J. L.
1983-04-01
Constitutive modeling of cohesionless soil for both standard static test conditions and insitu impulsive dynamic load conditions is discussed in this annual report. Predicted laboratory response for several different types of models is evaluated using data from a coordinated testing program. The modeling of insitu soil response to explosive events (CIST and DISC Test) is considered, and the laboratory-derived models are tested for their convenience and accuracy in predicting ground motions. Several important laboratory and insitu phenomena which were not reflected by the model exercises are discussed. Based on the conclusions from this study, testing and modeling requirements for dynamic loading situations are proposed.
Application of Hierarchy Theory to Cross-Scale Hydrologic Modeling of Nutrient Loads
We describe a model called Regional Hydrologic Modeling for Environmental Evaluation 16 (RHyME^{2}) for quantifying annual nutrient loads in stream networks and watersheds. RHyME^{2} is 17 a cross-scale statistical and process-based water-quality model. The model ...
Fluctuating loads measured on an over-the-wing supersonic jet model
NASA Technical Reports Server (NTRS)
Willis, C. M.
1979-01-01
Fluctuating pressure loads on the wing and flap of an over-the-wing supersonic jet model were measured. The model was tested statically and at a Mach number of 0.1 in a small free jet to simulate forward speed. Test parameters were impingement angle, nozzle height, and flap deflection. Load levels as high as 170 db were measured at the center of the impingement region during static tests. Forward speed reduced the loading about 1 db. Load level increased with increasing impingement angle and decreasing nozzle height above the wing. The effect of flap deflection was small. When scaled to full-size aircraft conditions, the maximum amplitude of the one-third-octave fluctuating pressure spectra was about 154 db at about 160 Hz. Maximum load level occurred near the intersection of the nozzle center line with the impinged surface. Downstream of the maximum the fluctuating pressure is inversely proportional to the distance downstream of the nozzle.
Shock Layer Radiation Modeling and Uncertainty for Mars Entry
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Brandis, Aaron M.; Sutton, Kenneth
2012-01-01
A model for simulating nonequilibrium radiation from Mars entry shock layers is presented. A new chemical kinetic rate model is developed that provides good agreement with recent EAST and X2 shock tube radiation measurements. This model includes a CO dissociation rate that is a factor of 13 larger than the rate used widely in previous models. Uncertainties in the proposed rates are assessed along with uncertainties in translational-vibrational relaxation modeling parameters. The stagnation point radiative flux uncertainty due to these flowfield modeling parameter uncertainties is computed to vary from 50 to 200% for a range of free-stream conditions, with densities ranging from 5e-5 to 5e-4 kg/m3 and velocities ranging from of 6.3 to 7.7 km/s. These conditions cover the range of anticipated peak radiative heating conditions for proposed hypersonic inflatable aerodynamic decelerators (HIADs). Modeling parameters for the radiative spectrum are compiled along with a non-Boltzmann rate model for the dominant radiating molecules, CO, CN, and C2. A method for treating non-local absorption in the non-Boltzmann model is developed, which is shown to result in up to a 50% increase in the radiative flux through absorption by the CO 4th Positive band. The sensitivity of the radiative flux to the radiation modeling parameters is presented and the uncertainty for each parameter is assessed. The stagnation point radiative flux uncertainty due to these radiation modeling parameter uncertainties is computed to vary from 18 to 167% for the considered range of free-stream conditions. The total radiative flux uncertainty is computed as the root sum square of the flowfield and radiation parametric uncertainties, which results in total uncertainties ranging from 50 to 260%. The main contributors to these significant uncertainties are the CO dissociation rate and the CO heavy-particle excitation rates. Applying the baseline flowfield and radiation models developed in this work, the
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
The continued development and improvement of the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code, the incorporation in a coupled manner of radiation models into the VSL code, and the initial development of appropriate precursor models are presented.
Computer modelling of statistical properties of SASE FEL radiation
NASA Astrophysics Data System (ADS)
Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.
1997-06-01
The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY.
Finite element modelling of plantar pressure beneath the second ray with flexor muscle loading.
Lemmon, DR; Cavanagh, PR
1997-04-01
INTRODUCTION:: Little is understood about the effects of flexor loading on plantar pressure distribution. The goal of the current work is to model flexor muscle loading applied to the distal phalanges in order to study the effect of these loads on plantar normal stress (pressure) beneath the metatarsal head. METHODS:: The finite element model is a two-dimensional, plane strain sagittal section incorporating the second metatarsal, proximal phalanx, and plantar and dorsal soft tissue (Figure 1). The metatarsophalangeal joint is simulated by a nodal hinge that transfers loads and produces reasonable kinematic motion between the articular surfaces of the proximal[Figure: see text] phalanx and metatarsal head. Soft tissues are simulated by a uniform continuum. A single flexor tendon passes over the condyle of the metatarsal heads with sliding contact against intervening soft tissue, and is attached to the distal end of the proximal phalanx. A rigid element at the proximal end is fixed by boundary conditions to simulate reactions at the distal cuneiform joint. Material properties of bone are from published values, one tenth the stiffness of bone is used for the flexor tendon, and the soft tissue continuum is hyperelastic using coefficients obtained from compression of the heel plantar fat pad. A 188 N vertical ground reaction force and a flexor tendon load at a 10 degree angle from the X (horizontal) axis are applied to the model. RESULTS:: Figure 2 shows Y direction normal stress distribution along the plantar surface for two load cases: no load and a 250 N load to the flexor tendon. DISCUSSION:: Bending moments at the proximal metatarsal correspond to values obtained by Sharkey et al. Tension in the flexor tendon served to counter the moment in the metatarsal created by the vertical load, and at the same time, to apply an additional axial load. Under flexor loading, focal plantar pressure shifts toward the proximal phalanx and yields a 60% reduction in peak pressure
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
Recent advances in the modelling of crack growth under fatigue loading conditions
NASA Technical Reports Server (NTRS)
Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.
1994-01-01
Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.
A unified creep-plasticity model suitable for thermo-mechanical loading
NASA Technical Reports Server (NTRS)
Slavik, D.; Sehitoglu, H.
1988-01-01
An experimentally based unified creep-plasticity constitutive model was implemented for 1070 steel. Accurate rate and temperature effects were obtained for isothermal and thermo-mechanical loading by incorporating deformation mechanisms into the constitutive equations in a simple way.
A mechanical model for giant radiating dike swarms
NASA Astrophysics Data System (ADS)
Minakov, Alexander; Yarushina, Viktoriya; Faleide, Jan Inge
2016-04-01
The Large Igneous Provinces (LIP) is believed to form as results of plume-lithosphere interaction. A recognizable diagnostic feature of the LIP is a swarm of dikes (100 - 1000 km -long) radiating from a single or several focal regions. The models for formation of these dike swarms are mainly based on Venusian analogues (associated with coronae structures) since on Earth these paleo-structures are presumably less likely to preserve due to erosion and later tectonics. The existing explanation for the geometry of dikes (in horizontal plane) is based on assumption that in a far-field shear stress the dikes are normal to the least principal stress. A small overpressure related to the lithospheric magma reservoir is also assumed. However, this type of models implies several limitations: 1) the dike emplacement is considered as a purely elastic process, 2) all dikes are assumed to intrude simultaneously (no interaction with neighboring dikes). On the other hand, recent geophysical observations suggest that the dikes that apparently belong to the same magmatic event can intersect and can be affected by each other and local crustal heterogeneity. In this study, we attribute the geometry of dikes to irreversible plastic deformation including the path-dependence. We use finite-element elastoplastic simulations to predict the fracture pattern related to the plume-lithosphere interaction. The rheology is governed by a non-associated Mohr-Coulomb plastic flow law. The accuracy of the numerical results is benchmarked versus 2D plane strain analytical solutions for combined shear and internal pressure loads. We apply our model to the case of the High Arctic LIP. Here, the location of the dike intrusions is based on the interpretation of magnetic anomalies supported by geological and seismic data in the Barents Sea together with timing constraints using U-Pb isotopic ages. The developed model provides a framework for future high-resolution structural and geochronological studies to
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.
FAST Mast Structural Response to Axial Loading: Modeling and Verification
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Elliott, Kenny B.; Templeton, Justin D.; Song, Kyongchan; Rayburn, Jeffery T.
2012-01-01
The International Space Station s solar array wing mast shadowing problem is the focus of this paper. A building-block approach to modeling and analysis is pursued for the primary structural components of the solar array wing mast structure. Starting with an ANSYS (Registered Trademark) finite element model, a verified MSC.Nastran (Trademark) model is established for a single longeron. This finite element model translation requires the conversion of several modeling and analysis features for the two structural analysis tools to produce comparable results for the single-longeron configuration. The model is then reconciled using test data. The resulting MSC.Nastran (Trademark) model is then extended to a single-bay configuration and verified using single-bay test data. Conversion of the MSC. Nastran (Trademark) single-bay model to Abaqus (Trademark) is also performed to simulate the elastic-plastic longeron buckling response of the single bay prior to folding.
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. PMID:25583872
Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.
Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J
2016-04-11
Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. PMID:26684431
NASA Technical Reports Server (NTRS)
Holland, D. B.; Virgin, L. N.; Belvin, W. K.
2003-01-01
This paper presents a parameter study of the effect of boom axial loading on the global dynamics of a 2-meter solar sail scale model. The experimental model used is meant for building expertise in finite element analysis and experimental execution, not as a predecessor to any planned flight mission or particular design concept. The results here are to demonstrate the ability to predict and measure structural dynamics and mode shapes in the presence of axial loading.
McNiff, B.; Guo, Y.; Keller, J.; Sethuraman, L.
2014-12-01
Bearing failures in the high speed output stage of the gearbox are plaguing the wind turbine industry. Accordingly, the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) has performed an experimental and theoretical investigation of loads within these bearings. The purpose of this paper is to describe the instrumentation, calibrations, data post-processing and initial results from this testing and modeling effort. Measured HSS torque, bending, and bearing loads are related to model predictions. Of additional interest is examining if the shaft measurements can be simply related to bearing load measurements, eliminating the need for invasive modifications of the bearing races for such instrumentation.
Study of external dynamic flap loads on a 6 percent B-1B model
NASA Technical Reports Server (NTRS)
Seiner, John M.; Manning, James C.; Capone, Francis J.; Pendergraft, Odis C., Jr.
1991-01-01
The origin of dynamic pressure loads on external divergent engine nozzle flaps of the B-1B aircraft was investigated in the NASA/LaRC 16 foot transonic tunnel using a 6 percent full span model with powered engine nacelles. External flap dynamic loads and afterbody drag associated with flap removal were measured using this model. Both dry and max. A/B power nozzles were evaluated in this study. As a result of this study, the principal mechanisms responsible for high dynamic external flap loads were determined along with performance penalty associated with flap removal.
Aulenbach, Brent T.
2013-01-01
A regression-model based approach is a commonly used, efficient method for estimating streamwater constituent load when there is a relationship between streamwater constituent concentration and continuous variables such as streamwater discharge, season and time. A subsetting experiment using a 30-year dataset of daily suspended sediment observations from the Mississippi River at Thebes, Illinois, was performed to determine optimal sampling frequency, model calibration period length, and regression model methodology, as well as to determine the effect of serial correlation of model residuals on load estimate precision. Two regression-based methods were used to estimate streamwater loads, the Adjusted Maximum Likelihood Estimator (AMLE), and the composite method, a hybrid load estimation approach. While both methods accurately and precisely estimated loads at the model’s calibration period time scale, precisions were progressively worse at shorter reporting periods, from annually to monthly. Serial correlation in model residuals resulted in observed AMLE precision to be significantly worse than the model calculated standard errors of prediction. The composite method effectively improved upon AMLE loads for shorter reporting periods, but required a sampling interval of at least 15-days or shorter, when the serial correlations in the observed load residuals were greater than 0.15. AMLE precision was better at shorter sampling intervals and when using the shortest model calibration periods, such that the regression models better fit the temporal changes in the concentration–discharge relationship. The models with the largest errors typically had poor high flow sampling coverage resulting in unrepresentative models. Increasing sampling frequency and/or targeted high flow sampling are more efficient approaches to ensure sufficient sampling and to avoid poorly performing models, than increasing calibration period length.
Electrical Lumped Model Examination for Load Variation of Circulation System
NASA Astrophysics Data System (ADS)
Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao
Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.
Granato, Gregory E.; Jones, Susan C.
2014-01-01
In cooperation with FHWA, the U.S. Geological Survey developed the stochastic empirical loading and dilution model (SELDM) to supersede the 1990 FHWA runoff quality model. The SELDM tool is designed to transform disparate and complex scientific data into meaningful information about the adverse risks of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such measures for reducing such risks. The SELDM tool is easy to use because much of the information and data needed to run it are embedded in the model and obtained by defining the site location and five simple basin properties. Information and data from thousands of sites across the country were compiled to facilitate the use of the SELDM tool. A case study illustrates how to use the SELDM tool for conducting the types of sensitivity analyses needed to properly assess water quality risks. For example, the use of deterministic values to model upstream stormflows instead of representative variations in prestorm flow and runoff may substantially overestimate the proportion of highway runoff in downstream flows. Also, the risks for total phosphorus excursions are substantially affected by the selected criteria and the modeling methods used. For example, if a single deterministic concentration is used rather than a stochastic population of values to model upstream concentrations, then the percentage of water quality excursions in the downstream receiving waters may depend entirely on the selected upstream concentration.
NASA Astrophysics Data System (ADS)
Khattak, Khanzadi Fatima
2012-06-01
Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1-10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.
Colonic and tail skin temperature of the unrestrained Fischer rat were measured immediately after a 90 min exposure to 600 MHz radiofrequency radiation in a waveguide-type system. Ambient temperature (Ta) was maintained at either 20, 28, or 35 C. The specific absorption rate (SAR...
Computational knee ligament modeling using experimentally determined zero-load lengths.
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522
Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths
Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin
2012-01-01
This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522
Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation
NASA Astrophysics Data System (ADS)
Luchinskiy, Dmitry G.; Ponizovskaya-Devine, Ekaterina; Hafiychuk, Vasyl; Kashani, Ali; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara
2015-12-01
We report on the development of a hierarchy of models of cryogenic two-phase flow motivated by NASA plans to develop and maturate technology of cryogenic propellant loading on the ground and in space. The solution of this problem requires models that are fast and accurate enough to identify flow conditions, detect faults, and to propose optimal recovery strategy. The hierarchy of models described in this presentation is ranging from homogeneous moving- front approximation to separated non-equilibrium two-phase cryogenic flow. We compare model predictions with experimental data and discuss possible application of these models to on-line integrated health management and control of cryogenic loading operation.
Mechatronic FEM model of an electromagnetic-force-compensated load cell
NASA Astrophysics Data System (ADS)
Weis, Hanna; Hilbrunner, Falko; Fröhlich, Thomas; Jäger, Gerd
2012-07-01
In this paper, a mechatronic model for an electromagnetic-force-compensated (EMC) load cell is presented. Designed in ANSYS Mechanical APDL®, the model consists of two modules: the mechanical behaviour of the load cell is represented by a FEM model. The electronic and the electromagnetic parts, consisting of a position indicator, controller and electromagnetic actuator, are implemented into the model as a set of differential equations via ANSYS Parametric Design Language (APDL). Optimization of the mechanical, electromagnetic and controller components can be performed using this model, as well as experiments to determine the sensitivity of the complete system to changes of environmental properties, e.g., the stiffness of the support.
Radiation exposure modeling and project schedule visualization
Jaquish, W.R.; Enderlin, V.R.
1995-10-01
This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility.
Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.
Vigiak, O; Rattray, D; McInnes, J; Newham, L T H; Roberts, A M
2012-11-15
Phosphorus pollution severely impairs the water quality of rivers in Australia and worldwide. Conceptual models have proved useful to assess management impact on phosphorus loads, particularly in data-sparse environments. This paper develops and evaluates the coupling of a point-scale model (HowLeaky2008) to a catchment scale model (CatchMODS) to enhance modelling of farm management impacts on in-stream phosphorus loads. The model was tested in two adjacent catchments in northern Victoria (Avon-Richardson and Avoca), Australia. After calibration of the in-stream attenuation parameter against measurements at gauging stations, the model simulated specific annual phosphorus loads across the catchments well (Nash-Sutcliffe model efficiency of 0.52 in the Avon-Richardson and 0.83 for the Avoca catchment). Phosphorus loads at both catchment outlets under current conditions were estimated at 7 t y(-1) and were dominated by field exports. Changes to farm management practices, i.e. the use of perennial pastures in grazing systems and zero-tillage in cropping systems were estimated to reduce phosphorus load by 31% in the Avon-Richardson catchment and 19% in the Avoca catchment, relative to current practices (annual pasture and minimum tillage). The model afforded a major improvement in conceptual modelling by explicit simulation of the impacts of soil and climatic conditions on field-scale exports and by placing them in the context of landscape processes. PMID:22796756
Validation of the Poisson Stochastic Radiative Transfer Model
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana; Marshak, Alexander
2004-01-01
A new approach to validation of the Poisson stochastic radiative transfer method is proposed. In contrast to other validations of stochastic models, the main parameter of the Poisson model responsible for cloud geometrical structure - cloud aspect ratio - is determined entirely by matching measurements and calculations of the direct solar radiation. If the measurements of the direct solar radiation is unavailable, it was shown that there is a range of the aspect ratios that allows the stochastic model to accurately approximate the average measurements of surface downward and cloud top upward fluxes. Realizations of the fractionally integrated cascade model are taken as a prototype of real measurements.
Linear radiation model for phase of thermal emission spectroscopy
NASA Astrophysics Data System (ADS)
Bennett, Ted D.; Yu, Fengling
2005-11-01
A linear radiation model is developed that overcomes the analytical complexity in phase of thermal emission spectroscopy. It is shown that the linear radiation model can result in a simple algebraic relation between the phase of thermal emission and four coating properties, enabling these properties to be determined by nonlinear regression analysis of experimental measurements. Suitability of the linear radiation model to various measurement conditions is explored, and the model is applied to the phase of thermal emission measurements performed on a thermal barrier coating.
Canopy radiation transmission for an energy balance snowmelt model
NASA Astrophysics Data System (ADS)
Mahat, Vinod; Tarboton, David G.
2012-01-01
To better estimate the radiation energy within and beneath the forest canopy for energy balance snowmelt models, a two stream radiation transfer model that explicitly accounts for canopy scattering, absorption and reflection was developed. Upward and downward radiation streams represented by two differential equations using a single path assumption were solved analytically to approximate the radiation transmitted through or reflected by the canopy with multiple scattering. This approximation results in an exponential decrease of radiation intensity with canopy depth, similar to Beer's law for a deep canopy. The solution for a finite canopy is obtained by applying recursive superposition of this two stream single path deep canopy solution. This solution enhances capability for modeling energy balance processes of the snowpack in forested environments, which is important when quantifying the sensitivity of hydrologic response to input changes using physically based modeling. The radiation model was included in a distributed energy balance snowmelt model and results compared with observations made in three different vegetation classes (open, coniferous forest, deciduous forest) at a forest study area in the Rocky Mountains in Utah, USA. The model was able to capture the sensitivity of beneath canopy net radiation and snowmelt to vegetation class consistent with observations and achieve satisfactory predictions of snowmelt from forested areas from parsimonious practically available information. The model is simple enough to be applied in a spatially distributed way, but still relatively rigorously and explicitly represent variability in canopy properties in the simulation of snowmelt over a watershed.
SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS
MICHAEL T. ITAMUA AND CLIFFORD K. HO
1998-06-04
The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment.
Modeling and Testing of Unbalanced Loading and Voltage Regulation
Davis, M. W.; Broadwater, R.; Hambrick, J.
2007-07-01
This report covers work to (1) develop and validate distribution circuit models, (2) determine optimum distributed generator operating conditions, and (3) determine distributed generation penetration limits.
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
Maevskii, K. K. Kinelovskii, S. A.
2015-10-27
The numerical results of modeling of shock wave loading of mixtures with the SiO{sub 2} component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described.
Maximum-load predictions in the Dugdale model using critical CTOA criterion
Inhoy Gu . Dept. of Mechanical Engineering)
1993-11-01
An engineering method of elastic-plastic fracture analysis is suggested for plane-strain specimens under tension. The condition for an increment of crack extension is set by a critical increment of crack tip opening displacement (CTOD). The CTOD increment divided by the incremental crack extension is a critical crack tip opening angle (CTOA), assumed to be constant for a material of a given thickness, characterizing the tearing resistance of material. Based on a finite-element analysis of crack tip deformation, a load term in the CTOD equation of the Dugdale strip yield model is modified to accommodate large and small scale yielding, for which cohesive stress in the strip is assumed greater than that for the plane-stress model. Approximate generalization of the Dugdale model is suggested for finite-size specimens. A definition of CTOD is reviewed with a round and sharp crack tip. In a successive application of the CTOA is reviewed with a round and sharp crack tip. In a successive application of the CTOA criterion at a current extending crack tip, the integration of the incremental crack extensions and load increments after fracture initiation gives a relationship in which a maximum load is either a peak load or a limit load on an unbroken ligament. Material constants are evaluated so that the calculated loads agree with test loads at each crack extension. The proposed method is applied to various specimens of 304 stainless steel for which test data are available.
Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.
2008-04-01
A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.
NASA Technical Reports Server (NTRS)
Regan, Timothy F.
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at the NASA Glenn Research Center has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor: the Stirling cycle engine, heat source, linear alternator, controller, and load. So far, it has been used in evaluating the performance of electronic controller designs. Three different controller design concepts were simulated using the model: 1) Controllers with parasitic direct current loading. 2) Controllers with parasitic alternating current loading. 3) Controllers that maintain a reference current. The free-piston Stirling convertor is an electromechanical device that operates at resonance. It is the function of the electronic load controller to ensure that the electrical load seen by the machine is always great enough to keep the amplitude of the piston and alternator oscillation at the rated value. This is done by regulating the load on the output bus. The controller monitors the instantaneous voltage, regulating it by switching loads called parasitic loads onto the bus whenever the bus voltage is too high and removing them whenever the voltage is too low. In the first type of controller, the monitor-ing and switching are done on the direct-current (dc) bus. In the second type, the alternating current bus is used. The model allows designers to test a controller concept before investing time in hardware. The simulation code used to develop the model also offers detailed models of digital and analog electronic components so that the resulting designs are realistic enough to translate directly into hardware circuits.
Numerical investigations of rib fracture failure models in different dynamic loading conditions.
Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam
2016-01-01
Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions. PMID:26214136
SELECTION OF CANDIDATE EUTROPHICATION MODELS FOR TOTAL MAXIMUM DAILY LOADS ANALYSES
A tiered approach was developed to evaluate candidate eutrophication models to select a common suite of models that could be used for Total Maximum Daily Loads (TMDL) analyses in estuaries, rivers, and lakes/reservoirs. Consideration for linkage to watershed models and ecologica...
Modeling Clinical Radiation Responses in the IMRT Era
NASA Astrophysics Data System (ADS)
Schwartz, J. L.; Murray, D.; Stewart, R. D.; Phillips, M. H.
2014-03-01
The purpose of this review is to highlight the critical issues of radiobiological models, particularly as they apply to clinical radiation therapy. Developing models of radiation responses has a long history that continues to the present time. Many different models have been proposed, but in the field of radiation oncology, the linear-quadratic (LQ) model has had the most impact on the design of treatment protocols. Questions have been raised as to the value of the LQ model given that the biological assumption underlying it has been challenged by molecular analyses of cell and tissue responses to radiation. There are also questions as to use of the LQ model for hypofractionation, especially for high dose treatments using a single fraction. While the LQ model might over-estimate the effects of large radiation dose fractions, there is insufficient information to fully justify the adoption of alternative models. However, there is increasing evidence in the literature that non-targeted and other indirect effects of radiation sometimes produce substantial deviations from LQ-like dose-response curves. As preclinical and clinical hypofractionation studies accumulate, new or refined dose-response models that incorporate high-dose/fraction non-targeted and indirect effects may be required, but for now the LQ model remains a simple, useful tool to guide the design of treatment protocols.
Econometric model for age- and population-dependent radiation exposures
Sandquist, G.M.; Slaughter, D.M. ); Rogers, V.C.
1991-01-01
The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.
Treatment of cloud radiative effects in general circulation models
Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M.
1996-04-01
We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.
Assessment on transient sound radiation of a vibrating steel bridge due to traffic loading
NASA Astrophysics Data System (ADS)
Zhang, He; Xie, Xu; Jiang, Jiqing; Yamashita, Mikio
2015-02-01
Structure-borne noise induced by vehicle-bridge coupling vibration is harmful to human health and living environment. Investigating the sound pressure level and the radiation mechanism of structure-borne noise is of great significance for the assessment of environmental noise pollution and noise control. In this paper, the transient noise induced by vehicle-bridge coupling vibration is investigated by employing the hybrid finite element method (FEM) and boundary element method (BEM). The effect of local vibration of the bridge deck is taken into account and the sound responses of the structure-borne noise in time domain is obtained. The precision of the proposed method is validated by comparing numerical results to the on-site measurements of a steel girder-plate bridge in service. It implies that the sound pressure level and its distribution in both time and frequency domains may be predicted by the hybrid approach of FEM-BEM with satisfactory accuracy. Numerical results indicate that the vibrating steel bridge radiates high-level noise because of its extreme flexibility and large surface area for sound radiation. The impact effects of the vehicle on the sound pressure when leaving the bridge are observed. The shape of the contour lines in the area around the bridge deck could be explained by the mode shapes of the bridge. The moving speed of the vehicle only affects the sound pressure components with frequencies lower than 10 Hz.
Gordon, C.J.; Ali, J.S.
1987-01-01
Colonic and tail-skin temperature of the unrestrained Fischer rat were measured immediately after a 90-min exposure to 600-MHz radiofrequency radiation in a waveguide-type system. Ambient temperature (Ta) was maintained at either 20, 28, or 35 C. The specific absorption rate (SAR) in dimensions of W/kg was controlled at a constant level through a feedback control circuit. The SAR needed to elevate colonic and tail-skin temperature decreased with increasing Ta. For example, a 0.5 C elevation in colonic temperature occurred at SAR's of 4.3, 0.9, and 0.5 W/kg when Ta was maintained at 20, 28, and 35 C, respectively. Data from this study were combined with data from earlier studies to assess the impact of varying Ta on the thermogenic effect of RF radiation in different species. In species ranging in mass from 0.02 to 3.2 kg, a double logarithmic plot of body mass versus SAR needed to elevate colonic temperature by 0.5 C was linear and inverse with a high goodness of fit (r(2) = -0.94). The highly correlated allometric relationship shows that, as body mass decreases, the relative impact of Ta on the thermogenic effect of RF radiation increases.
Survey of current situation in radiation belt modeling
NASA Technical Reports Server (NTRS)
Fung, Shing F.
2004-01-01
The study of Earth's radiation belts is one of the oldest subjects in space physics. Despite the tremendous progress made in the last four decades, we still lack a complete understanding of the radiation belts in terms of their configurations, dynamics, and detailed physical accounts of their sources and sinks. The static nature of early empirical trapped radiation models, for examples, the NASA AP-8 and AE-8 models, renders those models inappropriate for predicting short-term radiation belt behaviors associated with geomagnetic storms and substorms. Due to incomplete data coverage, these models are also inaccurate at low altitudes (e.g., <1000 km) where many robotic and human space flights occur. The availability of radiation data from modern space missions and advancement in physical modeling and data management techniques have now allowed the development of new empirical and physical radiation belt models. In this paper, we will review the status of modern radiation belt modeling. Published by Elsevier Ltd on behalf of COSPAR.
Empirical and theoretical models of terrestrial trapped radiation
Panasyuk, M.I.
1996-07-01
A survey of current Skobeltsyn Institute of Nuclear Physics, Moscow State University (INP MSU) empirical and theoretical models of particles (electrons, protons and heavier irons) of the Earth{close_quote}s radiation belts developed to date is presented. Results of intercomparison of the different models as well as comparison with experimental data are reported. Aspects of further development of radiation condition modelling in near-Earth space are discussed. {copyright} {ital 1996 American Institute of Physics.}
Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System
NASA Technical Reports Server (NTRS)
Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann
2013-01-01
We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
NASA Astrophysics Data System (ADS)
Merkle, D. H.; Dass, W. C.
1985-04-01
This study sought to develop a general soil stress-strain model which can be used to solve a wide range of soil dynamics problems. The approach used was to review existing soil constitutive models used to predict the response of soil masses to complex dynamic loads, and then formulate a new model for that purpose. Eight existing soil dynamic stress-strain models were studied. The Lade model was selected as the best point of departure for developing a new soil stress-strain model for complex dynamic loading, because of its accuracy and flexibility in representing soil stress-strain behavior, ease of parameter determination, and ease of developing intuition for parameter physical significance and accuracy. The new conic model is so called because its principal mathematical surfaces are conic sections. The computer code used to exercise all nine soil constitutive models under eleven stress and strain paths is called the Soil Element Model (SEM). It can be incorporated in large finite difference or finite element codes for analyzing the response of soil masses to complex dynamic loads. The conic model performs well over a wide range of loading conditions. The parameters are determined in a straightforward manner, and the model reflects the influence of the intermediate principal stress on shear strength through a shear failure surface involving three independent stress invariants: the first total stress invariant and the second and third deviator stress invariants.
Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs.
Salonen, J; Laitinen, L; Kaukonen, A M; Tuura, J; Björkqvist, M; Heikkilä, T; Vähä-Heikkilä, K; Hirvonen, J; Lehto, V-P
2005-11-28
Mesoporous silicon (PSi) microparticles were produced using thermal carbonization (TCPSi) or thermal oxidation (TOPSi) to obtain surfaces suitable for oral drug administration applications. The loading of five model drugs (antipyrine, ibuprofen, griseofulvin, ranitidine and furosemide) into the microparticles and their subsequent release behaviour were studied. Loading of drugs into TCPSi and TOPSi microparticles showed, that in addition to effects regarding the stability of the particles in the presence of aqueous or organic solvents, surface properties will affect compound affinity towards the particle. In addition to the surface properties, the chemical nature of the drug and the loading solution seems to be critical to the loading process. This was reflected in the obtained loading efficiencies, which varied between 9% and 45% with TCPSi particles. The release rate of a loaded drug from TCPSi microparticles was found to depend on the characteristic dissolution behaviour of the drug substance. When the dissolution rate of the free/unloaded drug was high, the microparticles caused a delayed release. However, with poorly dissolving drugs, the loading into the mesoporous microparticles clearly improved dissolution. In addition, pH dependency of the dissolution was reduced when the drug substance was loaded into the microparticles. PMID:16169628
Computational Model of the Chilldown and Propellant Loading of the Space Shuttle External Tank
NASA Technical Reports Server (NTRS)
LeClair, Andre C.; Majumdar, Alok K.
2010-01-01
This paper describes a computational model of the chilldown and propellant loading of the Space Shuttle External Tank liquid oxygen and hydrogen tanks at Launch Complex 39B at Kennedy Space Center. The purpose of the computational model is to predict the time required to chilldown the entire assembly consisting of the ground system transfer line and propellant tanks in order to compare with observed loading times, to evaluate the feasibility of similar models developed for the Ares I Upper Stage. The model also predicts the history of inflow and outflow from the tank, pressure and temperature inside the tank, and heat leak through the walls. The Generalized Fluid System Simulation Program (GFSSP), a general purpose network flow analysis code, has been used to develop this computational model. The paper describes the simulation of the loading process for both tanks and compares the resulting predictions to measurements
Models of Jovian decametric radiation. [astronomical models of decametric waves
NASA Technical Reports Server (NTRS)
Smith, R. A.
1975-01-01
A critical review is presented of theoretical models of Jovian decametric radiation, with particular emphasis on the Io-modulated emission. The problem is divided into three broad aspects: (1) the mechanism coupling Io's orbital motion to the inner exosphere, (2) the consequent instability mechanism by which electromagnetic waves are amplified, and (3) the subsequent propagation of the waves in the source region and the Jovian plasmasphere. At present there exists no comprehensive theory that treats all of these aspects quantitatively within a single framework. Acceleration of particles by plasma sheaths near Io is proposed as an explanation for the coupling mechanism, while most of the properties of the emission may be explained in the context of cyclotron instability of a highly anisotropic distribution of streaming particles.
Models of radiation yield from wire array implosion at 1 MA Zebra generator
Esaulov, Andrey
2006-04-15
The snowplow and thin shell models that have the analytical solutions in zero dimensions are linked with the ideal magnetohydrodynamic (MHD) and radiation MHD codes to calculate the radiation yield from the imploding wire array loads at 1 MA Zebra generator. Radiation MHD simulations show that the strong radiation cooling affects plasma dynamics at all stages of the implosion and drives plasma into the radiative collapse at the final stage of the implosion. Being applied to the implosion of an Al wire array with the mass per unit length 3.82 {mu}g/mm, these simulations show that the thermalization of the kinetic energy can be essentially completed when the radius of the imploding pinch shrinks below {approx}10 {mu}m. If we assume such a perfect compression, then the plasma energy gain will be 10 kJ with total radiation yield of about 5 kJ, while the emitted radiation spectrum will be blackbody-like with an equilibrium temperature of 200 eV. The only effective mechanism of energy coupling for the imploding plasma, driven by the magnetic piston, is the inductive work of the magnetic field due to the motional impedance. However, the mechanism of anomalous plasma heating, acting in the plasma fraction that was left behind the collapsing current sheath, can couple additional energy into the plasma and can explain the variety of radiation performance features. An adequate model of the radiation yield should consider the stagnating z pinch as an object with strong density and temperature gradients.
Freezable Radiator Model Correlation Improvements and Fluids Study
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Navarro, Moses
2011-01-01
Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal rejection requirements during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. To attempt to improve this, tests were conducted in 2009 to determine whether the behavior of a simple stagnating radiator could be predicted or emulated in a Thermal Desktop(trademark) numerical model. A 50-50 mixture of DowFrost HD and water was used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed. Previous testing and modeling efforts showed that freezable radiators could be operated as intended, and be fairly, if not perfectly predicted by numerical models. This paper documents the improvements made to the numerical model, and outcomes of fluid studies that were determined necessary to go forward with further radiator testing.
Blast Loading Experiments of Surrogate Models for Tbi Scenarios
NASA Astrophysics Data System (ADS)
Alley, M. D.; Son, S. F.
2009-12-01
This study aims to characterize the interaction of explosive blast waves through simulated anatomical models. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical PMMA shells housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory test cell setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head near material interfaces due to impedance mismatches. In addition, significant relative displacement was observed between the interacting materials suggesting large strain values of nearly 5%. Further quantitative results were obtained through shadowgraph imaging of the blasts confirming a separation of time scales between blast interaction and bulk movement. These results lead to the conclusion that primary blast effects could cause TBI occurrences.
Radiative seesaw in left-right symmetric model
Gu Peihong; Sarkar, Utpal
2008-10-01
There are some radiative origins for the neutrino masses in the conventional left-right symmetric models with the usual bidoublet and triplet Higgs scalars. These radiative contributions could dominate over the tree-level seesaw and could explain the observed neutrino masses.
Analytical catch-slip bond model for arbitrary forces and loading rates.
Bullerjahn, J T; Kroy, K
2016-01-01
Some biological bonds exhibit a so-called catch regime, where the bond strengthens with increasing load. We build upon recent advances in slip-bond kinetics to develop an analytically tractable, microscopic catch-slip bond model. To facilitate the analysis of force-spectroscopy data, we calculate the bond's mean lifetime and the rupture-force distribution for static loading and linear force ramps. Our results are applicable for arbitrary forces and loading rates, covering the whole range of conditions found in experiments and all-atom simulations. A generalization to account for force transducers of finite stiffness is also provided. PMID:26871098
Analytical catch-slip bond model for arbitrary forces and loading rates
NASA Astrophysics Data System (ADS)
Bullerjahn, J. T.; Kroy, K.
2016-01-01
Some biological bonds exhibit a so-called catch regime, where the bond strengthens with increasing load. We build upon recent advances in slip-bond kinetics to develop an analytically tractable, microscopic catch-slip bond model. To facilitate the analysis of force-spectroscopy data, we calculate the bond's mean lifetime and the rupture-force distribution for static loading and linear force ramps. Our results are applicable for arbitrary forces and loading rates, covering the whole range of conditions found in experiments and all-atom simulations. A generalization to account for force transducers of finite stiffness is also provided.
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit
The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements
Future directions for LDEF ionizing radiation modeling and assessments
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
1992-01-01
Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.
An approximate local thermodynamic nonequilibrium radiation model for air
NASA Technical Reports Server (NTRS)
Gally, Thomas A.; Carlson, Leland A.
1992-01-01
A radiatively coupled viscous shock layer analysis program which includes chemical and thermal nonequilibrium is used to calculate stagnation point flow profiles for typical aeroassisted orbital transfer vehicle conditions. Two methods of predicting local thermodynamic nonequilibrium radiation effects are used as a first and second order approximation to this phenomena. Tabulated results for both nitrogen and air freestreams are given with temperature, species, and radiation profiles for some air conditions. Two body solution results are shown for 45 and 60 degree hyperboloid bodies at 12 km/sec and 80 km altitude. The presented results constitute an advancement in the engineering modeling of radiating nonequilibrium reentry flows.
High fidelity chemistry and radiation modeling for oxy -- combustion scenarios
NASA Astrophysics Data System (ADS)
Abdul Sater, Hassan A.
To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy
LAKE MICHIGAN MASS BALANCE: ATRAZINE MODELING AND LOADS
The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...
Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec
Bessette, Greg C.
2008-01-01
A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.
Blast Loading Experiments of Developed Surrogate Models for TBI Scenarios
NASA Astrophysics Data System (ADS)
Alley, Matthew; Son, Steven
2009-06-01
This study aims to characterize the interaction of explosive blast waves through simulated anatomical systems. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical PMMA shells followed by SLA prototyped skulls housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted with the simple geometries to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head due to impedance mismatches. Results from the strain correlations added to the theory of internal shearing between tissues.
Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines
NASA Astrophysics Data System (ADS)
Luhmann, B.; Cheng, P. W.
2014-06-01
A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body
Toon, O.B.
1996-12-31
We conducted modeling work in radiative transfer and cloud microphysics. Our work in radiative transfer included performance tests to other high accuracy methods and to measurements under cloudy, partial cloudy and cloud-free conditions. Our modeling efforts have been aimed to (1) develop an accurate and rapid radiative transfer model; (2) develop three-dimensional radiative transfer models; and (3) develop microphysics resolving cloud and aerosol models. We applied our models to investigate solar clear-sky model biases, investigate aerosol direct effects, investigate aerosol indirect effects, investigate microphysical properties of cirrus, investigate microphysical properties of stratus, investigate relationships between cloud properties, and investigate the effects of cloud structure.
A Physical Model of Electron Radiation Belts of Saturn
NASA Astrophysics Data System (ADS)
Lorenzato, L.; Sicard-Piet, A.; Bourdarie, S.
2012-04-01
Radiation belts causes irreversible damages on on-board instruments materials. That's why for two decades, ONERA proposes studies about radiation belts of magnetized planets. First, in the 90's, the development of a physical model, named Salammbô, carried out a model of the radiation belts of the Earth. Then, for few years, analysis of the magnetosphere of Jupiter and in-situ data (Pioneer, Voyager, Galileo) allow to build a physical model of the radiation belts of Jupiter. Enrolling on the Cassini age and thanks to all information collected, this study permits to adapt Salammbô jovian radiation belts model to the case of Saturn environment. Indeed, some physical processes present in the kronian magnetosphere are similar to those present in the magnetosphere of Jupiter (radial diffusion; interaction of energetic electrons with rings, moons, atmosphere; synchrotron emission). However, some physical processes have to be added to the kronian model (compared to the jovian model) because of the particularity of the magnetosphere of Saturn: interaction of energetic electrons with neutral particles from Enceladus, and wave-particle interaction. This last physical process has been studied in details with the analysis of CASSINI/RPWS (Radio and Plasma Waves Science) data. The major importance of the wave particles interaction is now well known in the case of the radiation belts of the Earth but it is important to investigate on its role in the case of Saturn. So, importance of each physical process has been studied and analysis of Cassini MIMI-LEMMS and CAPS data allows to build a model boundary condition (at L = 6). Finally, results of this study lead to a kronian electrons radiation belts model including radial diffusion, interactions of energetic electrons with rings, moons and neutrals particles and wave-particle interaction (interactions of electrons with atmosphere particles and synchrotron emission are too weak to be taken into account in this model). Then, to
Estimation of loads on human lumbar spine: A review of in vivo and computational model studies.
Dreischarf, Marcel; Shirazi-Adl, Aboulfazl; Arjmand, Navid; Rohlmann, Antonius; Schmidt, Hendrik
2016-04-11
Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. During the last few decades, researchers have used a number of techniques to estimate spinal loads by measuring in vivo changes in the intradiscal pressure, body height, or forces and moments transmitted via instrumented vertebral implants. In parallel, computational models have been employed to estimate muscle forces and spinal loads under various static and dynamic conditions. Noteworthy is the increasing growth in latter computational investigations. This paper aims to review, compare and critically evaluate the existing literature on in vivo measurements and computational model studies of lumbar spinal loads to lay the foundation for future biomechanical studies. Towards this goal, the paper reviews in separate sections models dealing with static postures (standing, sitting, lying) as well as slow and fast dynamic activities (lifting, sudden perturbations and vibrations). The findings are helpful in many areas such as work place safety design and ergonomics, injury prevention, performance enhancement, implant design and rehabilitation management. PMID:26873281
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2013-07-25
This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
Using a Support Vector Machine (SVM) to Improve Generalization Ability of Load Model Parameters
Ma, Jian; Dong, Zhao Yang; Zhang, Pei
2009-04-24
Load modeling plays an important role in power system stability analysis and planning studies. The parameters of load models may experience variations in different application situations. Choosing appropriate parameters is critical for dynamic simulation and stability studies in power system. This paper presents a method to select the parameters with good generalization ability based on a given large number of available parameters that have been identified from dynamic simulation data in different scenarios. Principal component analysis is used to extract the major features of the given parameter sets. Reduced feature vectors are obtained by mapping the given parameter sets into principal component space. Then support vectors are found by implementing a classification problem. Load model parameters based on the obtained support vectors are built to reflect the dynamic property of the load. All of the given parameter sets were identified from simulation data based on the New England 10-machine 39-bus system, by taking into account different situations, such as load types, fault locations, fault types, and fault clearing time. The parameters obtained by support vector machine have good generalization capability, and can represent the load more accurately in most situations.
ARX model-based gearbox fault detection and localization under varying load conditions
NASA Astrophysics Data System (ADS)
Yang, Ming; Makis, Viliam
2010-11-01
The development of the fault detection schemes for gearbox systems has received considerable attention in recent years. Both time series modeling and feature extraction based on wavelet methods have been considered, mostly under constant load. Constant load assumption implies that changes in vibration data are caused only by deterioration of the gearbox. However, most real gearbox systems operate under varying load and speed which affect the vibration signature of the system and in general make it difficult to recognize the occurrence of an impending fault. This paper presents a novel approach to detect and localize the gear failure occurrence for a gearbox operating under varying load conditions. First, residual signal is calculated using an autoregressive model with exogenous variables (ARX) fitted to the time-synchronously averaged (TSA) vibration data and filtered TSA envelopes when the gearbox operated under various load conditions in the healthy state. The gear of interest is divided into several sections so that each section includes the same number of adjacent teeth. Then, the fault detection and localization indicator is calculated by applying F-test to the residual signal of the ARX model. The proposed fault detection scheme indicates not only when the gear fault occurs, but also in which section of the gear. Finally, the performance of the fault detection scheme is checked using full lifetime vibration data obtained from the gearbox operating from a new condition to a breakdown under varying load.
Preliminary results of a three-dimensional radiative transfer model
O`Hirok, W.
1995-09-01
Clouds act as the primary modulator of the Earth`s radiation at the top of the atmosphere, within the atmospheric column, and at the Earth`s surface. They interact with both shortwave and longwave radiation, but it is primarily in the case of shortwave where most of the uncertainty lies because of the difficulties in treating scattered solar radiation. To understand cloud-radiative interactions, radiative transfer models portray clouds as plane-parallel homogeneous entities to ease the computational physics. Unfortunately, clouds are far from being homogeneous, and large differences between measurement and theory point to a stronger need to understand and model cloud macrophysical properties. In an attempt to better comprehend the role of cloud morphology on the 3-dimensional radiation field, a Monte Carlo model has been developed. This model can simulate broadband shortwave radiation fluxes while incorporating all of the major atmospheric constituents. The model is used to investigate the cloud absorption anomaly where cloud absorption measurements exceed theoretical estimates and to examine the efficacy of ERBE measurements and cloud field experiments. 3 figs.
MODELING ACUTE EXPOSURE TO SOLAR RADIATION
One of the major technical challenges in calculating solar flux on the human form has been the complexity of the surface geometry (i.e., the surface normal vis a vis the incident radiation). The American Cancer Society reports that over 80% of skin cancers occur on the face, he...
A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty
Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2013-12-18
This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.
Mesoscale modeling of metal-loaded high explosives
Bdzil, John Bohdan; Lieberthal, Brandon; Srewart, Donald S
2010-01-01
We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.
Idealized radiation efficiency model for a porous radiant burner
Fu, X.; Viskanta, R.; Gore, J.P.
1999-07-01
A simple, highly idealized radiation efficiency model has been developed for a porous radiant burner with or without a screen to assess the thermal performance of an ideal porous burner that yields the highest radiation efficiency and against which test results and/or more realistic model predictions could be benchmarked. The model is based on thermodynamics principles (first law of thermodynamics) with idealizations made for some of the physical processes. Empirical information, where necessary, is then used to close the model equations. The maximum radiation efficiency at a given firing rate is predicted. The effects of input parameters such as the firing rate, the equivalence ratio, and the effective emittance of the burner on the radiation efficiency of the porous radiant burner are reported.
Radiation Belt Environment Model: Application to Space Weather and Beyond
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching H.
2011-01-01
Understanding the dynamics and variability of the radiation belts are of great scientific and space weather significance. A physics-based Radiation Belt Environment (RBE) model has been developed to simulate and predict the radiation particle intensities. The RBE model considers the influences from the solar wind, ring current and plasmasphere. It takes into account the particle drift in realistic, time-varying magnetic and electric field, and includes diffusive effects of wave-particle interactions with various wave modes in the magnetosphere. The RBE model has been used to perform event studies and real-time prediction of energetic electron fluxes. In this talk, we will describe the RBE model equation, inputs and capabilities. Recent advancement in space weather application and artificial radiation belt study will be discussed as well.
A Physical Model of Electron Radiation Belts of Saturn
NASA Astrophysics Data System (ADS)
Lorenzato, L.; Sicard-Piet, A.; Bourdarie, S.
2012-09-01
Enrolling on the Cassini age, a physical Salammbô model for the radiation belts of Saturn have been developed including several physical processes governing the kronian magnetosphere. Results have been compared with Cassini MIMI LEMMS data.
Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded with Electropolymers
NASA Technical Reports Server (NTRS)
McKay, Chris; Chen, Bin
2012-01-01
Single-wall carbon nanotubes (SWCNTs) coated with a hydrogen-rich, electrically conducting polymer such as polyethylene, receive and dissipate a portion of incoming radiation pulse energy to electrical signals that are transmitted along the CNT axes, and are received at energy-dissipating terminals. In this innovation, an array of highly aligned nanowires is grown using a strong electric field or another suitable orientation procedure. Polyethylene (PE), polymethymlethacrylate (PMMA), or other electrically conducting polymer is spin-coated onto the SWCNTs with an average thickness of a few hundred nanometers to a few tenths of micrometers to form a PE/SWCNT composite. Alternatively, the polymer is spin-coated onto the nanowire array or an anodized alumina membrane (AAM) to form a PE/metal core shell structure, or PE can be electropolymerized using the SWCNTs or the metal nanowires as an electrode to form a PE/SWCNT core shell structure. The core shell structures can be extruded as anisotropic fibers. A monomer can be polymerized in the presence of SWCNTs to form highly cross-linked PE/SWCNT films. Alternatively, Pb colloid solution can be impregnated into a three-dimensional PE/SWCNT nanostructure to form a PW/SWCNT/Pb composite structure. A face-centered cubic (FCC) arrangement provides up to 12 interconnection channels connected to each core, with transverse channel dimensions up to 20 nm, with adequate mechanical compressive strength, and with an associated electrical conductivity of around 3 Seimens/cm for currents ranging from 0.01 to 10 mA. This threedimensional nanostructure is used as a host material to house appropriate radiation shielding material such as hydrogen- rich polymer/CNT structures, metal nanoparticles, and nanowires. Thicknesses of this material required to attenuate 10 percent, 50 percent, and 90 percent of an incident beam (gamma, X-ray, ultraviolet, neutron, proton, and electron) at energies in the range of 0 440 MeV are being determined
A model to predict annual bed load transport in ungauged watersheds
NASA Astrophysics Data System (ADS)
Segura, C.; Pitlick, J.
2014-12-01
The prediction of bed load transport is relevant to many aspects of river management such as river engineering, channel stability, and stream ecology. However, given that the functions used to predict bed load transport are very sensitive to input values, the uncertainty associated with estimates of transport at a specific place or point in time can be quite large. In addition, if the goal is to predict annual loads, a distribution characterizing the frequency of sediment-transporting flows must also be known. In this work we develop a model to predict annual bed load transport in ungauged catchments by computing the sediment movement associated with discharge levels between ½ of bankfull and bankfull flow. The model incorporates both the prediction of daily flows based on a power function, and a field-based parameterization of the spatial-temporal distribution of boundary shear stress based on two-dimensional flow modelling. The data inputs for the model are channel geometry (depth, width, and slope), grain size distribution, and drainage area. We will present the results sites in Colorado and Idaho. The model can be used to explore how changes in the frequency of extreme events impacts the total annual bed load and the spatial-temporal disturbance regime of aquatic ecosystems.
Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-01-01
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932
Aggregated Modeling and Control of Air Conditioning Loads for Demand Response
Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit
2013-06-21
Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.
Statistical modelling and power analysis for detecting trends in total suspended sediment loads
NASA Astrophysics Data System (ADS)
Wang, You-Gan; Wang, Shen S. J.; Dunlop, Jason
2015-01-01
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature.
An Improved Radiative Transfer Model for Climate Calculations
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.
1998-01-01
This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.
A watershed modeling framework for phosphorus loading from residential and agricultural sources.
Sinclair, Andrew; Jamieson, Rob; Madani, Ali; Gordon, Robert J; Hart, William; Hebb, Dale
2014-07-01
Phosphorus (P) loading from residential onsite wastewater systems (OWSs) into neighboring surface waters is a poorly understood process in rural watersheds; this can be further challenged when rural residential dwellings are intermixed with agricultural land use. The objectives of this research were (i) to design a P onsite wastewater simulator (POWSIM) to assess P loads from individual or clusters of residential OWSs typically used in Nova Scotia, Canada; and (ii) to simulate OWS P loads in a mixed agricultural watershed (Thomas Brook Watershed [TBW], NS) using the Soil and Water Assessment Tool (SWAT) model in conjunction with POWSIM, to predict and compare P loading from agricultural and residential sources. The POWSIM loading tool has three computational components: (i) disposal field selection and treatment media mass calculation, (ii) disposal field P treatment dynamics, and (iii) soil subsurface plume P treatment dynamics. The combination TBW POWSIM and SWAT modeling approach produced a better simulation of baseflow total P (TP) loads in both a predominantly residential subcatchment and one dominated by agriculture than the SWAT model without POWSIM. The residential subcatchment had 48% of its average annual land use TP load (simulated) contributed by OWSs, whereas the agricultural subcatchment had 39%. Watershed-scale sensitivity analyses of POWSIM input parameters for 18- and 50-yr OWS operation periods found the P loading rate into the disposal field, long-term P removal rates in the disposal field and soil systems, soil maximum P sorption capacity, and mass of native soil involved in P treatment to be most sensitive. PMID:25603083
A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...
Compressive Loading and Modeling of Stitched Composite Stiffeners
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.
Reduction of Solar UV Radiation Due to Urban High-Rise Buildings – A Coupled Modelling Study
Wai, Ka-Ming; Yu, Peter K. N.; Lam, Ka-Se
2015-01-01
Solar UV radiation has both adverse and beneficial effects to human health. Using models (a radiative transfer model coupled to a building shading model), together with satellite and surface measurements, we studied the un-obstructed and obstructed UV environments in a sub-tropical urban environment featured with relatively high pollution (aerosol) loadings and high-rise buildings. Seasonal patterns of the erythemal UV exposure rates were governed by solar zenith angles, seasonal variations of aerosol loadings and cloud effects. The radiative transfer modelling results agreed with measurements of erythemal UV exposure rates and spectral irradiances in UVA and UVB ranges. High-rise buildings and narrow road width (height to width, H/W, ratios up to 15) reduced the modelled total UV (UVA+UVB) radiation and leave 10% of the un-obstructed exposure rate at ground-level at noon. No more than 80% of the un-obstructed exposure rate was received in the open area surrounded by 20-storey buildings. Our modelled reduction of UVB radiation in the urban environment was consistent with similar measurements obtained for Australia. However, our results in more extreme environments (higher H/W ratios) were for the first time reported, with 18% of the un-obstructed exposure rate remained at the ground-level center of the street canyon. PMID:26263507
Parameterization of clouds and radiation in climate models
Roeckner, E.
1995-09-01
Clouds are a very important, yet poorly modeled element in the climate system. There are many potential cloud feedbacks, including those related to cloud cover, height, water content, phase change, and droplet concentration and size distribution. As a prerequisite to studying the cloud feedback issue, this research reports on the simulation and validation of cloud radiative forcing under present climate conditions using the ECHAM general circulation model and ERBE top-of-atmosphere radiative fluxes.
Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis
Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping
2016-01-01
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498
Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis.
Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping
2016-01-01
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498
A space radiation shielding model of the Martian radiation environment experiment (MARIE)
NASA Technical Reports Server (NTRS)
Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
A space radiation shielding model of the Martian radiation environment experiment (MARIE).
Atwell, W; Saganti, P; Cucinotta, F A; Zeitlin, C J
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. PMID:15791735
An approximate analytic solution for the radiation from a line-driven fluid-loaded plate
NASA Astrophysics Data System (ADS)
Diperna, Daniel T.; Feit, David
2001-12-01
In the analysis of a fluid loaded line-driven plate, the fields in the structure and the fluid are often expressed in terms of a Fourier transform. Once the boundary conditions are matched, the structural displacement can be expressed as an inverse transform, which can be evaluated using contour integration. The result is then a sum of propagating or decaying waves, each arising from poles in the complex plane, plus a branch cut integral. The branch cut is due to a square root in the transform of the acoustic impedance. The complex layer analysis (CLA) used here eliminates the branch cut singularity by approximating the square root with a rational function, causing the characteristic equation to become a polynomial in the transform variable. An approximate analytic solution to the characteristic equation is then found using a perturbation method. The result is four poles corresponding to the roots of the in vacuo plate, modified by the presence of the fluid, plus an infinity of poles located along the branch cut of the acoustic impedance. The solution is then found analytically using contour integration, with the integrand containing only simple poles.
Start current of dielectric-loaded grating in Smith-Purcell radiation
NASA Astrophysics Data System (ADS)
Liu, Wenxin; Cao, Miaomiao; Wang, Yong; Li, Ke
2016-03-01
In this paper, a three-dimensional dielectric loaded grating (DLG) is proposed for the Smith-Purcell (SP) device. Taking into the considerations of thickness and width of electron beam, the dispersion equation is derived by using field matches method. The complex frequency is obtained by the numerical solution of dispersion equation, in which the imaginary part represents linear growth rate. The impacts of the electron beam filling factor (EBFF) on growth rate are discussed under the condition that the beam current and beam current density are kept as constants, respectively. In addition, the start current for SP oscillator is obtained by using the dispersion relation combined with boundary conditions. The relationship between the start current and other parameters is discussed and compared with the conventional metal grating. The results show that with the increasing of EBFF, the peak growth rate increases rapidly firstly and then decreases slowly, in which the current and current density are kept as constants, respectively. For the SP oscillator, the start current is increased with the shifting up beam voltage, but it is decreased with the improved EBFF, and only it has a slightly increasing trend when EBFF is close to 1. In addition, the start current is decreased with the increasing of relative dielectric constant, which indicates that by introducing DLG, the start current can be effectively reduced. Theoretical results are in good agreement with that of the simulations.
Parallelization and load balancing of a comprehensive atmospheric chemistry transport model
NASA Astrophysics Data System (ADS)
Elbern, Hendrik
Chemistry transport models are generally claimed to be well suited for massively parallel processing on distributed memory architectures since the arithmetic-to-communication ratio is usually high. However, this observation proves insufficient to account for an efficient parallel performance with increasing complexity of the model. The modeling of the local state of the atmosphere ensues very different branches of the modules' code and greater differences in the computational work load and, consequently, runtime of individual processors occur to a much larger extent during a time step than reported for meteorological models. Variable emissions, changes in actinic fluxes, and all processes associated with cloud modeling are highly variable in time and space and are identified to induce large load imbalances which severely affect the parallel efficiency. This is more so, when the model domain encompasses more heterogeneous meteorological or regional regimes, which impinge dissimilarly on simulations of atmospheric chemistry processes. These conditions hold for the EURAD model applied in this study, which covers the European continental scale as integration domain. Based on a master-worker configuration with a horizontal grid partitioning approach, a method is proposed where the integration domain of the individual processors is locally adjusted to accommodate for load imbalances. This ensures a minimal communication volume and data exchange only with the next neighbors. The interior boundary adjustments of the processors are combined with routine boundary exchange which is required each time step anyway. Two dynamic load balancing schemes were implemented and compared against a conventional equal area partition and a static load balancing scheme. The methods are devised for massively parallel distributed memory computers of both, Single and Multiple Instruction stream Multiple Data stream (SIMD, MIMD) types. A midsummer episode of highly elevated ozone concentrations
Zamulaeva, I A; Pronyushkina, K A; Matchuk, O N; Yabbarov, N G; Nikolskaya, E D; Kondrasheva, I G
2015-01-01
The dendritic polymers (dendrimers) are perspective nanocontainers for transportation of anticancer drugs into cells and a controlled release of the delivered substances. However, the combined effect of ionizing radiation and dendrimers loaded with anticancer drugs has been poorly studied and is the aim of this research. We used poliamidoamin (PAMAM) dendrimers of the second generation (G2) covalently conjugated with doxorubicin (Dox) via an acid labile linker, cis-aconitic anhydride. We compared the intracellular accumulation of Dox and growth rate of the MCF-7 cell culture under the single and combined action of ionizing radiation at a dose of 4 Gy, free Dox and G2-Dox. It was found that within 2 hours free Dox accumulated in cancer cells better than Dox connected with G2 dendrimers (p < 0.05 in the concentration range of 1-5 μmol/l). The intracellular accumulation of Dox was higher by 1.7 times for the free Dox than that connected with dendrimers (for concentration 0.5 μmol/l p = 0.02) after 26 hours of incubation. Like the intracellular accumulation of Dox, inhibition of the cell culture growth was more pronounced when using free Dox than G2-Dox in the case of both a single and combined action of these drugs. Subadditivity effects of the combined action of both drugs and ionizing radiation are shown in terms of reducing the number of tumor cells 24 hours after irradiation. The results indicate the need for further development of selective delivery systems for Doxin tumor cells, providing a more intense accumulation of anticancer drug in target cells. PMID:26964344
Modeling of fracture of protective concrete structures under impact loads
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-10-01
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.
Modeling of fracture of protective concrete structures under impact loads
Radchenko, P. A. Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-10-27
This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.
Diffusion models for Jupiter's radiation belt
NASA Technical Reports Server (NTRS)
Jacques, S. A.; Davis, L., Jr.
1972-01-01
Solutions are given for the diffusion of trapped particles in a planetary magnetic field in which the first and second adiabatic invariants are preserved but the third is not, using as boundary conditions a fixed density at the outer boundary (the magnetopause) and a zero density at an inner boundary (the planetary surface). Losses to an orbiting natural satellite are included and an approximate evaluation is made of the effects of the synchrotron radiation on the energy of relativistic electrons. Choosing parameters appropriate to Jupiter, the electrons required to produce the observed synchrotron radiation are explained. If a speculative mechanism in which the diffusion is driven by ionospheric wind is the true explanation of the electrons producing the synchrotron emission it can be concluded that Jupiter's inner magnetosphere is occupied by an energetic proton flux that would be a serious hazard to spacecraft.
Improved Solar-Radiation-Pressure Models for GPS Satellites
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz; Kuang, Da
2006-01-01
A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.
Modeling radiation forces acting on satellites for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Antreasian, P. G.; Rosborough, G. W.; Putney, B. H.
1992-01-01
Models of the TOPEX/Poseidon spacecraft are developed by means of finite-element analyses for use in generating acceleration histories for various orbit orientations which account for nonconservative radiation forces. The acceleration profiles are developed with an analysis based on the use of the 'box-wing' model in which the satellite is modeled as a combination of flat plates. The models account for the effects of solar, earth-albedo, earth-IR, and spacecraft-thermal radiation. The finite-element analysis gives the total force and induced accelerations acting on the satellite. The plate types used in the analysis have parameters that can be adjusted to optimize model performance according to the micromodel analysis and tracking observations. Acceleration related to solar radiation pressure is modeled effectively, and the techniques are shown to be useful for the precise orbit determinations required for spacecraft such as the TOPEX/Poseidon.
Uses and Abuses of Models in Radiation Risk Management
Strom, Daniel J.
1998-12-10
This paper is a high-level overview of managing risks to workers, public, and the environment. It discusses the difference between a model and a hypothesis. The need for models in risk assessment is justified, and then it is shown that radiation risk models that are useable in risk management are highly simplistic. The weight of evidence is considered for and against the linear non-threshold (LNT) model for carcinogenesis and heritable ill-health that is currently the basis for radiation risk management. Finally, uses and misuses of this model are considered. It is concluded that the LNT model continues to be suitable for use as the basis for radiation protection.
A micro-mechanical model to determine changes of collagen fibrils under cyclic loading
NASA Astrophysics Data System (ADS)
Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.
Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.
Measurement and modelling of spectral solar radiation.
NASA Astrophysics Data System (ADS)
Dehne, K.; Czeplak, G.
1996-03-01
Small band measurements of spectral solar radiation by means of commercially available spectral radiometers, which are generally designed for laboratory work, require thorough aptitude tests and mostly special fitting measures. For the already available DM 150, first of all an entrance optics to correct cosine errors, a thermostatted weathercasing, as well as a special control lamp device for field use were developped. An international IEA-field intercomparison of 12 spectral radiometers in the Oberpfaffenhofen area of DLR showed deviations between the global radiation spectra of (+/-)15% and (+/-)40% for the best and the worst case, resp. The latter was caused by the operational requirements in the field and the mechanical instabilities of some radiometers (including the DM 150). Generally a remarkable portion of the deviations belongs to calibration uncertainties and imperfect cosine corrections. With regard to the summarized experience only principal recommendations on the use of spectral radiometers are given. Measured data of atmospheric heat radiation A and other meteorological data of 16 IEA stations were compiled in a data base at MOH to facilitate the fast uniform validation of 30 formulae for parametrization of A. For the case of sky clouded in 3 layers a parametrization formula was improved and successfully validated. A special reliable A-formula could be developped from the sufficiently high number of data of station Schleswig for the case of low cloudiness only.
Measurements and modelling of base station power consumption under real traffic loads.
Lorincz, Josip; Garma, Tonko; Petrovic, Goran
2012-01-01
Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026
Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads †
Lorincz, Josip; Garma, Tonko; Petrovic, Goran
2012-01-01
Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient. PMID:22666026
Proposal of Load Leveling Model for Implementing Mass Customization in Automobile Industry
NASA Astrophysics Data System (ADS)
Matsumoto, Shimpei; Ueno, Nobuyuki; Okuhara, Koji; Ishii, Hiroaki
Along with the diversification of customers' demand, there is an urgent need for a business model to realize the mass customization in automobile industry. When the volume and quantity of orders from customers is changing dynamically, it is difficult for a maker to realize both productivity and a variety of customers' specification by itself. So, we propose a new collaboration between the maker and supplier in a supply chain structure about ”load leveling” to supplier. Firstly, we describe a framework about the cost structure in accordance with ”load leveling” to the supplier and estimate the increased cost. Specially, we formulate the volume about load leveling and the maker's increased cost. Next, we derive the total increased cost estimator in the supply chain and analyze it. Finally, we get the optimal load leveling with minimum increased cost and get some information about designing the supply chain structure between the maker and supplier to realize mass customization.
Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies
Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Lu, Ning
2014-04-14
To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation. We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.
N2O emissions: modeling the effect of process configuration and diurnal loading patterns.
Houweling, Dwight; Wunderlin, Pascal; Dold, Peter; Bye, Chris; Joss, Adriano; Siegrist, Hansruedi
2011-12-01
The objective of this research was to develop a mechanistic model for quantifying N2O emissions from activated sludge plants and demonstrate how this may be used to evaluate the effects of process configuration and diurnal loading patterns. The model describes the mechanistic link between the factors recognized to correlate positively with N2O emissions. The primary factors are the presence of ammonia and nitrite accumulation. Low dissolved oxygen concentrations also may be implicated through differential impacts on ammonia-oxidizing bacteria (AOB) versus nitrite-oxidizing bacteria (NOB) activity. Factors promoting N2O emissions at treatment plants are discussed below. The model was applied to data from laboratory and pilot-scale systems. From a practical standpoint, plant configuration (e.g., plug-flow versus complete-mix), influent loading patterns (and peak load), and certain operating strategies (e.g., handling of return streams) are all important in determining N2O emissions. PMID:22368954
Gao, Jie; Esaki, Daisuke; Matsuzaki, Tatsuya; Koyano, Kiyoshi
2014-01-01
Stress distribution in peri-implant bone in an edentulous maxilla following delayed and immediate loading implant and the effect of implant length on the maximum stress were evaluated by using two kinds of finite element analyses. A threaded implant was loaded with a 100 N vertical force, either immediately or delayed, and examined by finite element analysis with a simple contact relation or a bonding interaction between the implant and the bone, respectively. Higher stresses were observed in cortical bone around the implant neck following delayed loading and in the trabecular bone around the implant threading in the immediate loading model. The maximum stress in the immediate loading model was dramatically higher than in delayed loading. Increased implant length caused decrease in bone stresses in both loading models. Though the stress level was higher, the decrease in the maximum trabecular bone stress in immediate loading was profound. PMID:25342982
Dana, S.; Damiani, R.; vanDam, J.
2015-05-18
As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.
Radiation transport phenomena and modeling - part A: Codes
Lorence, L.J.
1997-06-01
The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped.
Frequency Integrated Radiation Models for Absorbing and Scattering Media
NASA Technical Reports Server (NTRS)
Ripoll, J. F.; Wray, A. A.
2004-01-01
The objective of this work is to contribute to the simplification of existing radiation models used in complex emitting, absorbing, scattering media. The application in view is the computation of flows occurring in such complex media, such as certain stellar interiors or combusting gases. In these problems, especially when scattering is present, the complexity of the radiative transfer leads to a high numerical cost, which is often avoided by simply neglecting it. The complexity lies partly in the strong dependence of the spectral coefficients on frequency. Models are then needed to capture the effects of the radiation when one cannot afford to directly solve for it. In this work, the frequency dependence will be modeled and integrated out in order retain only the average effects. A frequency-integrated radiative transfer equation (RTE) will be derived.
Recent Developments in the Radiation Belt Environment Model
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Glocer, A.; Zheng, Q.; Horne, R. B.; Meredith, N. P.; Albert, J. M.; Nagai, T.
2010-01-01
The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied.Weare able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.
Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods
NASA Astrophysics Data System (ADS)
Sohn, Ilyoup
During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of
Implosion dynamics and radiative characteristics of a high yield structured gas puff load
Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Sze, H. M.; Velikovich, A. L.; Commisso, R. J.; Davis, J.; Lojewski, D.
2006-08-15
A large diameter gas puff nozzle, designed to produce a radial mass profile with a substantial fraction of the injected mass on the axis, has demonstrated an increase in K shell yield by nearly a factor of 2, to 21 kJ, in an argon Z pinch at 3.5 MA peak current and 205 ns implosion time [H. Sze, J. Banister, B. H. Failor, J. S. Levine, N. Qi, A. L. Velikovich, J. Davis, D. Lojewski, and P. Sincerny, Phys. Rev. Lett. 95, 105001 (2005)] and 80 kJ at 6 MA and 227 ns implosion time. The initial gas distribution produced by this nozzle has been determined and related to measured plasma dynamics during the implosion run-in phase. The role of two gas shells and the center jet are elucidated by the inclusion of a tracer element sequentially into each of the three independent plenums and by evacuating each plenum. The implosion dynamics and radiative characteristics of the Z pinches are presented.
NASA Astrophysics Data System (ADS)
Bandi, Tobias; Baborowski, Jacek; Dommann, Alex; Shea, Herbert R.; Cardot, Francis; Neels, Antonia
2014-10-01
This work reports on mechanical tests and irradiations made on silicon bulk-acoustic wave resonators. The resonators were based on a tuning fork geometry and actuated by a piezoelectric aluminum nitride layer. They had a resonance frequency of 150 kHz and a quality factor of about 20,000 under vacuum. The susceptibility of the devices to radiation-induced degradation was investigated using Co60 γ-rays and 50 MeV protons with space-relevant doses of up to 170 krad. The performance of the devices after irradiation indicated a high tolerance to both ionizing damage and displacement damage effects. In addition, the device characteristics were evaluated after mechanical shock and vibration tests and only small effects on the devices were observed. In all experiments, no significant changes of the resonance characteristics were observed within the experimental uncertainty, which was below 100 ppm for the resonance frequency. The results support the efforts toward design and fabrication of highly reliable MEMS devices for space applications.
Evaluating load model errors by comparison to a global GPS time series solution (Invited)
NASA Astrophysics Data System (ADS)
van Dam, T. M.; Collilieux, X.; Rebischung, P.; Ray, J.; Altamimi, Z.
2013-12-01
Various space geodetic studies over the past two decades have shown that temporal variations in the distribution of non-tidal oceanic, atmospheric, and continental water masses cause small, but detectable vertical displacements of the Earth's surface. Unlike most past research that focused only on the vertical load component, we have included the horizontal, as well as vertical, components and considered non-tidal atmosphere, ocean, and surface water load models. Our geodetic solution is the most current reprocessed station time series from the International GNSS Service (IGS) for a global set of 706 stations, each having more than 100 weekly observations. The long-term stacking of the weekly frame solutions has taken utmost care to minimize aliasing of local load signals into the frame parameters to ensure reliable time series of individual station motions. Our reference load model consists of components from NCEP atmosphere (corrected for high resolution topographic variations), ECCO non-tidal ocean, and GLDAS surface water (cubic detrended over 1998 to 2011 to remove inter-annual artifacts), then combined, linearly detrended, and averaged to the middle of each GPS week as a posteriori corrections. This reference model reduces the WRMS scatters of about 72, 63, and 87% of GPS station dN, dE, and dU components, respectively. Alternative load models, for individual components or the total, can be tested against the same set of GPS time series to determine their relative accuracy. For example, not removing a cubic trend from the GLDAS surface water loads causes a global average quadratic increase in WRMS scatters of about 0.1, 0.1, and 0.5 mm in dN, dE, and dU. The method is sensitive to load model error differences at the level of about 0.1 mm in the horizontal components and about 0.2 to 0.3 mm in the vertical due to residual load aliasing and other sources of systematic error in the GPS time series. We will report relative accuracy differences for a range of load
Occultation Modeling for Radiation Obstruction Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
de Carufel, Guy; Li, Zu Qun; Harvey, Jason; Crues, Edwin Z.; Bielski, Paul
2016-01-01
A geometric occultation model has been developed to determine line-of-sight obstruction of radiation sources expected for different NASA space exploration mission designs. Example applications includes fidelity improvements for surface lighting conditions, radiation pressure, thermal and power subsystem modeling. The model makes use of geometric two dimensional shape primitives to most effectively model space vehicles. A set of these primitives is used to represent three dimensional obstructing objects as a two dimensional outline from the perspective of an observing point of interest. Radiation sources, such as the Sun or a Moon's albedo is represented as a collection of points, each of which is assigned a flux value to represent a section of the radiation source. Planetary bodies, such as a Martian moon, is represented as a collection of triangular facets which are distributed in spherical height fields for optimization. These design aspects and the overall model architecture will be presented. Specific uses to be presented includes a study of the lighting condition on Phobos for a possible future surface mission, and computing the incident flux on a spacecraft's solar panels and radiators from direct and reflected solar radiation subject to self-shadowing or shadowing by third bodies.
Modeling and parameterization of horizontally inhomogeneous cloud radiative properties
NASA Technical Reports Server (NTRS)
Welch, R. M.
1995-01-01
One of the fundamental difficulties in modeling cloud fields is the large variability of cloud optical properties (liquid water content, reflectance, emissivity). The stratocumulus and cirrus clouds, under special consideration for FIRE, exhibit spatial variability on scales of 1 km or less. While it is impractical to model individual cloud elements, the research direction is to model a statistical ensembles of cloud elements with mean-cloud properties specified. The major areas of this investigation are: (1) analysis of cloud field properties; (2) intercomparison of cloud radiative model results with satellite observations; (3) radiative parameterization of cloud fields; and (4) development of improved cloud classification algorithms.
Radiation-induced myeloid leukemia in murine models
2014-01-01
The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865
Modeling of stress-strain dependences for Berea sandstone under quasistatic loading
NASA Astrophysics Data System (ADS)
Vakhnenko, Vyacheslav O.; Vakhnenko, Oleksiy O.; Tencate, James A.; Shankland, Thomas J.
2007-11-01
In this work, a phenomenological model to describe the complex stress-strain properties of a sandstone sample under slow loading is presented. We consider a combination of three methods to treat the elastic and nonlinear behavior observed in stress cycling experiments. The mechanisms to treat interior equilibration processes in sandstone are termed the standard solid relaxation mechanism, the sticky-spring mechanism, and the permanent plastic deformation mechanism. With a small number of parameters, the overall model displays both qualitatively and quantitatively the principal experimental observations of the stress-strain trajectories for Berea sandstone, in particular, the details of end-point memory under quasistatic loading.
A crack-closure model for predicting fatigue-crack growth under aircraft spectrum loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1981-01-01
The development and application of an analytical model of cycle crack growth is presented that includes the effects of crack closure. The model was used to correlate crack growth rates under constant amplitude loading and to predict crack growth under aircraft spectrum loading on 2219-T851 aluminum alloy sheet material. The predicted crack growth lives agreed well with experimental data. The ratio of predicted to experimental lives ranged from 0.66 to 1.48. These predictions were made using data from an ASTM E24.06.01 Round Robin.
ERIC Educational Resources Information Center
Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred
2014-01-01
Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…
NASA Astrophysics Data System (ADS)
Santapuri, Sushma; Bechtel, Stephen E.
2014-05-01
This paper (i) presents a mathematical approach to formulate leading-order models for complex multifunctional systems with coupled thermomechanical and electromagnetic field interactions, and (ii) demonstrates its applicability to the modeling and analysis of a load-bearing antenna, a multifunctional sensing and transmitting device integrated with a load-bearing structure. Starting from first-principle equations, i.e. the thermomechanical balance laws coupled with Maxwell’s equations, nondimensionalization and perturbation techniques are employed to formulate a leading-order model for the coupled system. Depending on the design of the structure and nature of the excitation, the nondimensional numbers arising in the coupled multifunctional system are quantified, and through a relative ordering of these quantities, the dominant physical effects are extracted. The resulting dominant effects determine the regime of operation of the structure, and in turn dictate the appropriate computational model. This approach is demonstrated through an application to a load-bearing antenna for a prototypical design. The resulting leading-order model is subsequently solved, and the electrical and structural response of the load-bearing antenna is analyzed and compared for different combinations of material properties. The framework introduced in this paper is envisioned to have applications in developing leading-order models for a wide range of complex multifunctional systems and can be utilized for their efficient design.
AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES
Robinson, Tyler D.; Catling, David C.
2012-09-20
We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.
NASA Astrophysics Data System (ADS)
Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago
Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.
A hybrid modelling approach for assessing solar radiation
NASA Astrophysics Data System (ADS)
Shamim, M. A.; Bray, M.; Remesan, R.; Han, D.
2015-11-01
A hybrid technique for solar radiation estimation, a core part of hydrological cycle, is presented in this study which parameterises the cloud cover effect (cloud cover index) not just from the geostationary satellites but also the PSU/NCAR's Mesoscale Modelling system (MM5) model. This, together with output from a global clear sky radiation model and observed datasets of temperature and precipitation are used as inputs within the Gamma test (GT) environment for the development of nonlinear models for global solar radiation estimation. The study also explores the ability of Gamma test to determine the optimum input combination and data length selection. Artificial neural network- and local linear regression-based nonlinear techniques are used to test the proposed methodology, and the results have shown a high degree of correlation between the observed and estimated values. It is believed that this study will initiate further exploration of GT for improving informed data and model selection.
Christian, Joshua M.; Ho, Clifford Kuofei
2010-04-01
Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.
Discrete sensing and actuation in a simulation model of frequency responsive loads
Nutaro, James J; Protopopescu, Vladimir A
2012-01-01
Loads acting autonomously on a local frequency signal can improve the response of a power system to sudden changes in supply, demand, or both. In this paper we address the use of load for regulating frequency by using feedback control. We extend prior research that focused on continuous proportional control, whereby one assumes that the load responds instantaneously, continuously, and in direct proportion to the changing frequency. However, sensors employed in any practical system have a finite sensitivity which introduces quantization effects into the control. As a result, a critical factor in the design of such a control is the relationship between the sensitivity of the sensor and the gain of the actuator. To study this issue, our model is constructed in two parts. The continuous dynamics of the power system is coupled to discrete event models of the sensors by state events that describe the detection points available to them. The quantized signals from the sensors are transformed by the actuators into discrete changes of load which, in turn, change the frequency and thereby complete the control loop. We illustrate the model with a scenario that involves a sudden, unanticipated change in load and the combined response of the control and power system to recover from the event.
NASA Astrophysics Data System (ADS)
Montoya, L. J.; Barco, J.
2014-12-01
Sedimentation is a complex process that varies with watershed characteristics, climate dynamics, human watershed intervention, etc. The sediment load is a concern as it reduces the operating capacity of reservoirs. In this study a statistical modelling for the estimation of sediment yield based on observations of water discharge and suspended sediment concentration was performed. A multivariate model was used to analyze a 33 years period of daily suspended sediments load available at the La Garrucha gauging station. A regional analysis was conducted to develop a non-dimensional sediment load duration curves. These duration curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir, scaling the suspended sediment load by the basin area. The observed data of sediments in the reservoir were used to validate the model results. The obtained non-dimensional sediment load duration curve was used to estimate the sediment concentration during high flow regimen (10% of time the values were met or exceeded).A periodical reservoir flushing, by the opening of the bottom gate, it is necessary to maintain it at the best operating capacity. The sediment concentration during high flows has been assumed as a concentration that allows an 'environmental flushing'. The sediment transport capacity for the sediment load was verified with a 1D model in order to include the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics into the reservoir and downstream of the dam. The model allows to define an operation rules for the flushing to minimize the environmental effects.
NASA Technical Reports Server (NTRS)
Kalt, A. C.
1975-01-01
Certain climatic tests which require solar and sky radiation were carried out in the laboratory by using simulated global radiation. The advantages of such a method of measurement and the possibilities and limitations resulting from the simulation of global radiation are described. Experiments concerning the thermal load in rooms were conducted in order to test the procedure. In particular, the heat gain through a window with sunshade is discussed, a venetian blind between the panes of a double-glazed window being used in most cases.
Simplified analytical model of penetration with lateral loading -- User`s guide
Young, C.W.
1998-05-01
The SAMPLL (Simplified Analytical Model of Penetration with Lateral Loading) computer code was originally developed in 1984 to realistically yet economically predict penetrator/target interactions. Since the code`s inception, its use has spread throughout the conventional and nuclear penetrating weapons community. During the penetrator/target interaction, the resistance of the material being penetrated imparts both lateral and axial loads on the penetrator. These loads cause changes to the penetrator`s motion (kinematics). SAMPLL uses empirically based algorithms, formulated from an extensive experimental data base, to replicate the loads the penetrator experiences during penetration. The lateral loads resulting from angle of attack and trajectory angle of the penetrator are explicitly treated in SAMPLL. The loads are summed and the kinematics calculated at each time step. SAMPLL has been continually improved, and the current version, Version 6.0, can handle cratering and spall effects, multiple target layers, penetrator damage/failure, and complex penetrator shapes. Version 6 uses the latest empirical penetration equations, and also automatically adjusts the penetrability index for certain target layers to account for layer thickness and confinement. This report describes the SAMPLL code, including assumptions and limitations, and includes a user`s guide.
A radiation model for geocentric trajectory calculations
NASA Technical Reports Server (NTRS)
Malchow, H. L.; Whitney, C. K.
1975-01-01
A solar cell degradation model developed for the SECKSPOT trajectory optimization code is presented. The model is based on two analytic expressions, one describing solar cell power degradation as a function of 1 MeV equivalent fluence and cell base resistivity and thickness, and one describing a spatial field of 1 MeV equivalent electron flux. The model extends the latitude range, provides a continuous and smooth representation of the flux field, and provides for changing the cell characteristics. Construction of a 1 MeV electron flux model and of a power loss model are described. It is shown that modeling the 1 MeV flux field as a separate entity allows simple consideration of both front and back shielding, and that the coefficients relating to specific cell damage data can be simply updated using the latest cell damage data once the general analytical characteristics of the model have been established.
Radiation Belt Modeling for Spacecraft Design: Model Comparisons for Common Orbits
NASA Technical Reports Server (NTRS)
Lauenstein, J.-M.; Barth, J. L.
2005-01-01
We present the current status of radiation belt modeling, providing model details and comparisons with AP-8 and AE-8 for commonly used orbits. Improved modeling of the particle environment enables smarter space system design.
Event Tracking Model of Adhesion Identifies Load-bearing Bonds in Rolling Leukocytes
POSPIESZALSKA, MARIA K.; ZARBOCK, ALEXANDER; PICKARD, JOHN E.; LEY, KLAUS
2009-01-01
Objectives P-selectin binding to P-selectin glycoprotein ligand (PSGL)-1 mediates leukocyte rolling under conditions of inflammation and injury. The objectives were to develop an efficient, high temporal resolution model for direct simulation of leukocyte rolling, and then to conduct a study of load-bearing bonds using the model. Methods A stochastic π-calculus-driven Event Tracking Model of Adhesion was developed and compared with experimental data. Multiple simulations for each case were conducted to obtain high confidence numerical characteristics of leukocyte rolling. Results Leukocyte rolling and the underlying P-selectin—PSGL-1 bonds were studied under low wall shear rate (25-50 s-1) conditions from measured parameters of leukocyte rolling and bond properties. For the first time, the location, number, lifetime, history, and kinetics of load-bearing bonds and their influence on cell rolling are identified. Instantaneous cell displacements, translational and rotational velocities, and cell-endothelium distances are derived. The model explains the commonly observed “stop-start” type rolling behavior and reveals that a few load-bearing bonds are sufficient to support rolling while a large number of bonds dissociate before becoming load-bearing. Conclusions The presented model provides a method for precise and direct simulation of leukocyte rolling, and sets a foundation upon which further refinements can be introduced. PMID:19023690
A clustering-based fuzzy wavelet neural network model for short-term load forecasting.
Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias
2013-10-01
Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models. PMID:23924415
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots.
Rucker, D Caleb; Jones, Bryan A; Webster, Robert J
2010-01-01
Continuum robots, which are composed of multiple concentric, precurved elastic tubes, can provide dexterity at diameters equivalent to standard surgical needles. Recent mechanics-based models of these "active cannulas" are able to accurately describe the curve of the robot in free space, given the preformed tube curves and the linear and angular positions of the tube bases. However, in practical applications, where the active cannula must interact with its environment or apply controlled forces, a model that accounts for deformation under external loading is required. In this paper, we apply geometrically exact rod theory to produce a forward kinematic model that accurately describes large deflections due to a general collection of externally applied point and/or distributed wrench loads. This model accommodates arbitrarily many tubes, with each having a general preshaped curve. It also describes the independent torsional deformation of the individual tubes. Experimental results are provided for both point and distributed loads. Average tip error under load was 2.91 mm (1.5%-3% of total robot length), which is similar to the accuracy of existing free-space models. PMID:21566688
NASA Astrophysics Data System (ADS)
Li, Qizhen
2015-09-01
Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s-1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.
Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Park, Jonggu; Spencer, Paulette
2013-11-01
The aim of this study is to investigate the mechanical behavior of model methacrylate-based dentin adhesives under conditions that simulate the wet oral environment. A series of monotonic and creep experiments were performed on rectangular beam samples of dentin adhesive in three-point bending configuration under different moisture conditions. The monotonic test results show a significant effect of loading rate on the failure strength and the linear limit (yield point) of the stress-strain response. In addition, these tests show that the failure strength is low, and the failure occurs at a smaller deformation when the test is performed under continuously changing moisture conditions. The creep test results show that under constant moisture conditions, the model dentin adhesives can have a viscoelastic response under certain low loading levels. However, when the moisture conditions vary under the same low loading levels, the dentin adhesives have an anomalous creep response accompanied by large secondary creep and high strain accumulation. PMID:23744598
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2015-03-01
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors. Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.
Wind models for the NSTS ascent trajectory biasing for wind load alleviation
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.
1989-01-01
New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.
Wind models for the NSTS ascent trajectory biasing for wind load alleviation
NASA Technical Reports Server (NTRS)
Smith, O. E.; Adelfang, S. I.; Batts, G. W.
1990-01-01
New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.
Radiation Environment Variations at Mars - Model Calculations and Measurements
NASA Astrophysics Data System (ADS)
Saganti, Premkumar; Cucinotta, Francis
Variations in the space radiation environment due to changes in the GCR (Galactic Cosmic Ray) from the past (#23) solar cycle to the current one (#24) has been intriguing in many ways, with an unprecedented long duration of the recent solar minimum condition and a very low peak activity of the current solar maximum. Model calculated radiation data and assessment of variations in the particle flux - protons, alpha particles, and heavy ions of the GCR environment is essential for understanding radiation risk and for any future intended long-duration human exploration missions. During the past solar cycle, we have had most active and higher solar maximum (2001-2003) condition. In the beginning of the current solar cycle (#24), we experienced a very long duration of solar minimum (2009-2011) condition with a lower peak activity (2013-2014). At Mars, radiation measurements in orbit were obtained (onboard the 2001 Mars Odyssey spacecraft) during the past (#23) solar maximum condition. Radiation measurements on the surface of Mars are being currently measured (onboard the Mars Science Laboratory, 2012 - Curiosity) during the current (#24) solar peak activity (August 2012 - present). We present our model calculated radiation environment at Mars during solar maxima for solar cycles #23 and #24. We compare our earlier model calculations (Cucinotta et al., J. Radiat. Res., 43, S35-S39, 2002; Saganti et al., J. Radiat. Res., 43, S119-S124, 2002; and Saganti et al., Space Science Reviews, 110, 143-156, 2004) with the most recent radiation measurements on the surface of Mars (2012 - present).
A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads.
Östh, Jonas; Brolin, Karin; Svensson, Mats Y; Linder, Astrid
2016-06-01
Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic-elastic. The model has geometrical features representative of the female cervical spine-the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion-extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion-extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model. PMID:26974520
Radiosity Modeling of Radiation Transport in Z Hohlraum Configurations
NASA Astrophysics Data System (ADS)
Vesey, R. A.; Mehlhorn, T. A.
1998-11-01
Vacuum radiation transport in three-dimensional geometry has been modeled, with simple physics assumptions, using the Lightscape^TM commercial radiosity code. This code utilizes progressive, hierarchical radiosity techniques and adaptive mesh refinement to allow greater spatial resolution and unlimited geometric model complexity compared to traditional radiosity methods. Applications to current Z experiments at Sandia will be presented, including (a) uniformity of the radiation flux driving shock physics samples in offset and direct-viewing secondary hohlraums, (b) radiation temperature gradients and capsule illumination in on-axis secondaries driven by static-walled primary hohlraums, and (c) radiation loss from primary hohlraums into the Z anode-cathode gap and feed hardware.
Numerical modeling of radiation physics in kinetic plasmas [II
NASA Astrophysics Data System (ADS)
Paraschiv, Ioana; Sentoku, Yasuhiko; Mancini, Roberto
2014-10-01
X-ray radiation is an important feature of ultra-intense laser interactions with high Z materials. In order to take into account the radiation effects in the high energy density plasmas created by such interactions, we have modified the collisional particle-in-cell code PICLS to self-consistently model the x-ray radiation transport (RT). Solving the equation of radiation transport requires the creation of a non-LTE database of emissivities and opacities as functions of photon frequency for given densities, bulk electron temperatures, hot electron temperatures, and hot electron fractions. The database was generated using results computed by a non-equilibrium, collisional-radiative atomic kinetics code. Using the two-dimensional RT-PICLS code we have studied the X-ray transport in an ultrafast heated target and the dependence of the emitted K- α radiation on the fast electron dynamics in the solid target. The details of these results obtained from the implementation of the radiation transport model into the PICLS calculations will be reported in this presentation. Work supported by the DOE Office of Science Grant No. DE-SC0008827 and by the NNSA/DOE Grants No. DE-FC52-06NA27616 and DE-NA0002075.
Radiation dose modeling using IGRIP and Deneb/ERGO
Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.
1995-12-31
The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.
Virgilio, M.; Schroeder, T.; Yamamoto, Y.; Capellini, G.
2015-12-21
Tensile germanium microstrips are candidate as gain material in Si-based light emitting devices due to the beneficial effect of the strain field on the radiative recombination rate. In this work, we thoroughly investigate their radiative recombination spectra by means of micro-photoluminescence experiments at different temperatures and excitation powers carried out on samples featuring different tensile strain values. For sake of comparison, bulk Ge(001) photoluminescence is also discussed. The experimental findings are interpreted in light of a numerical modeling based on a multi-valley effective mass approach, taking in to account the depth dependence of the photo-induced carrier density and of the self-absorption effect. The theoretical modeling allowed us to quantitatively describe the observed increase of the photoluminescence intensity for increasing values of strain, excitation power, and temperature. The temperature dependence of the non-radiative recombination time in this material has been inferred thanks to the model calibration procedure.
A model of human knee ligaments in the sagittal plane. Part 2: Fibre recruitment under load.
Zavatsky, A B; O'Connor, J J
1992-01-01
A mathematical model of the knee ligaments in the sagittal plane is used to study the forces in the cruciate and collateral ligaments produced by anterior/posterior tibial translation. The model is based on ligament fibre functional architecture. Geometric analysis of the deformed configurations of the model ligaments provides the additional compatibility conditions necessary for calculation of the statically indeterminate distributions of strain and stress within the ligaments and the sharing of load between ligaments. The investigation quantifies the process of ligament fibre recruitment, which occurs when fibres made slack by passive flexion/extension of the knee stretch and change their spatial positions in order to resist applied loads. The calculated ligament forces are in reasonable agreement with experimental results reported in the literature. The model explains some subtleties of ligament function not incorporated in models that represent the ligaments by a small number of lines. PMID:1482509
Modeling and Simulation of the Effects of Cyclic Loading on Articular Cartilage Lesion Formation
Wang, Xiayi; Ayati, Bruce P.; Brouillete, Marc J.; Graham, Jason M.; Ramakrishnan, Prem S.; Martin, James A.
2015-01-01
We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement. PMID:24753483
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
Modeling of Radiation Risks for Human Space Missions
NASA Technical Reports Server (NTRS)
Fletcher, Graham
2004-01-01
Prior to any human space flight, calculations of radiation risks are used to determine the acceptable scope of astronaut activity. Using the supercomputing facilities at NASA Ames Research Center, Ames researchers have determined the damage probabilities of DNA functional groups by space radiation. The data supercede those used in the current Monte Carlo model for risk assessment. One example is the reaction of DNA with hydroxyl radical produced by the interaction of highly energetic particles from space radiation with water molecules in the human body. This reaction is considered an important cause of DNA mutations, although its mechanism is not well understood.
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. PMID:26188990
Macrophages loaded with gold nanoshells for photothermal ablation of glioma: An in vitro model
NASA Astrophysics Data System (ADS)
Makkouk, Amani Riad
The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in the tumor with magnetic resonance imaging (MRI) prior to laser irradiation. The feasibility of this approach was studied in an in vitro model of glioma spheroids with the use of continuous wave (CW) laser light for ablation. The optimal loading of both murine and rat macrophages with Ferumoxides was determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Higher concentrations of SPIO were observed in rat macrophages, and the optimal concentration was chosen at 100 microg Fe/ml. Macrophages were found to be very sensitive to near infra-red (NIR) laser irradiation, and their use as vehicles was thus not expected to hinder the function of loaded nanoshells as tumor-ablating tools. The intracellular presence of gold nanoshells in macrophages was confirmed with TEM imaging. Next, the loading of both murine and rat macrophages with gold nanoshells was studied using UV/Vis spectrophotometry, where higher nanoshell uptake was found in rat macrophages. Incubation of loaded murine and rat macrophages with rat C-6 and human ACBT spheroids, respectively, resulted in their infiltration of the spheroids. Subsequent laser irradiation at 55 W/cm2 for 10 min and follow-up of spheroid average diameter size over 14 days post-irradiation showed that
A model code for the radiative theta pinch
Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.
2014-07-15
A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.
Planetary and Interplanetary Environmental Models for Radiation Analysis
NASA Technical Reports Server (NTRS)
DeAngelis, G.; Cucinotta, F. A.
2005-01-01
The essence of environmental modeling is presented as suited for radiation analysis purposes. The variables of fundamental importance for radiation environmental assessment are discussed. The characterization is performed by dividing modeling into three areas, namely the interplanetary medium, the circumplanetary environment, and the planetary or satellite surface. In the first area, the galactic cosmic rays (GCR) and their modulation by the heliospheric magnetic field as well as and solar particle events (SPE) are considered, in the second area the magnetospheres are taken into account, and in the third area the effect of the planetary environment is also considered. Planetary surfaces and atmospheres are modeled based on results from the most recent targeted spacecraft. The results are coupled with suited visualization techniques and radiation transport models in support of trade studies of health risks for future exploration missions.
MCNP model for the many KE-Basin radiation sources
Rittmann, P.D.
1997-05-21
This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with.
A model for the volumetric radiation characteristics of cellular ceramics
Fu, X.; Viskanta, R.; Gore, J.P.
1997-12-01
A unit cell based model for cellular ceramics was developed in conjunction with the discrete ordinates method for radiative transfer to predict theoretically the effective volumetric radiation characteristics of the cellular ceramics. Model input parameters include the porosity, pores per centimeter (PPC) and reflectivity of the solid material. Numerical calculations of the extinction coefficients and single scattering albedo are reported over the range of reflectivities from 0 to 1, porosities from 0.6 to 0.95 and PPC from 4 to 26. A comparison between model predictions and spectral emittance data for cellular ceramics reported in the literature shows agreement within 5 to 10% which is within experimental uncertainty.
Evaluation of Stream Loads Used to Calibrate a SPARROW Model for California, USA
NASA Astrophysics Data System (ADS)
Domagalski, J. L.; Saleh, D.
2012-12-01
A SPARROW (Spatially Referenced Regression on Watershed Attributes) Model is being developed for California. The model will be used to understand how Total Nitrogen (TN) and Total Phosphorus (TP) are transported from land to water from sources such as the atmosphere, fertilizer, soils, wastewater treatment facilities, etc., and relies on accurate calibration of mass loads obtained from water sampling at gauging stations in order to link mass at a location to upstream sources. Prior to input to the SPARROW model, the mass loads are calculated separately using a five-parameter log linear multi-regression model utilizing discharge, chemical measurements, time, and seasonal adjustments to obtain the best fit for the relationship of discharge and concentration. The gauging stations are situated in three ecological management zones as defined by the U.S. Environmental Protection Agency: the Western Forested Mountains, the Central Valley, and the Xeric West. Load models for nitrogen have at times been shown to be positively biased when the form of TN is predominately nitrate. The regions under study have different sources of nitrogen, which will affect the form of TN transported. Some stream segments are natural settings (forested), while others are highly influenced by agriculture and urban (Central Valley) settings and others by arid climate (Xeric). These differences affect the form of TN transported (dissolved as nitrate or suspended in the form of organic nitrogen), and hence it is expected that the efficiency of the discharge-load model may not be uniform at all locations. Less than 10% of the TN is in the form of nitrate in streams of the western forested mountains, but about 30% is nitrate in the Central Valley and about 40% in the arid region. Model efficiency was evaluated using the Nash Sutcliffe (NS) equation, which examines the square of the residuals of modeled results and observed values after transforming the logarithm of loads back to the actual data
A Self-Consistent Beam Loaded Travelling Wave Accelerator Model for use in TRACE-3D
NASA Astrophysics Data System (ADS)
Lampel, M. C.
1997-05-01
An optics model of a constant gradient traveling wave (CGTW) accelerator structure has been implemented for TRACE-3D. TRACE-3D is an envelope code including space charge that is used to model bunched beams in magnetic transport systems and radio frequency (rf) accelerators when the effects of beam current might be significant. The new matrix model has been developed to allow incorporation of particle beam loading (current) effects on the accelerator gradient and the accelerator structure's beam focusing properties in a self-consistent manner. The beam loaded electric field for a CGTW accelerator structure is constant for only a particular design current (e.g., 0 current), otherwise it can be written as a function of accelerator attenuation and axial position along the structure. The variation of the electric field through the structure has been taken into account in the new model. CGTW structures differ substantially in focusing properties and beam loading properties from standing wave structures. Examples will be presented using the new TW model, propagating electron beams with different currents through the Stanford Linear Accelerator Center's 3 m structure. The results will be compared to the zero current TW structure model in TRANSPORT and the Tank model (a standing wave structure model) in TRACE-3D. A computer demonstration of the code with the new element will also be presented.
Automated wind load characterization of wind turbine structures by embedded model updating
NASA Astrophysics Data System (ADS)
Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.
2010-04-01
The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.
Prediction of fatique crack growth under flight-simulation loading with the modified CORPUS model
NASA Technical Reports Server (NTRS)
Padmadinata, U. H.; Schijve, J.
1994-01-01
The CORPUS (Computation Of Retarded Propagation Under Spectrum loading) crack growth prediction model for variable-amplitude loading, as introduced by De Koning, was based on crack closure. It includes a multiple-overload effect and a transition from plane strain to plane stress. In the modified CORPUS model an underload affected zone (ULZ) is introduced, which is significant for flight-simulation loading in view of the once per flight compressive ground load. The ULZ is associated with reversed plastic deformation induced by the underloads after crack closure has already occurred. Predictions of the crack growth fatigue life are presented for a large variety of flight-simulation test series on 2024-T3 sheet specimens in order to reveal the effects of a number of variables: the design stress level, the gust spectrum severity, the truncation level (clipping), omission of small cycles, and the ground stress level. Tests with different load sequences are also included. The trends of the effects induced by the variables are correctly predicted. The quantitative agreement between the predictions and the test results is also satisfactory.
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
Diffusion approximation for modeling of 3-D radiation distributions
Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.
1985-01-01
A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs.
Highly physical penumbra solar radiation pressure modeling with atmospheric effects
NASA Astrophysics Data System (ADS)
Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel
2015-10-01
We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests
NASA Astrophysics Data System (ADS)
Luscz, E.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.
2011-12-01
Watershed nutrient loading models are important tools used to address issues including eutrophication, harmful algal blooms, and decreases in aquatic species diversity. Such approaches have been developed to assess the level and source of nutrient loading across a wide range of scales, yet there is typically a tradeoff between the scale of the model and the level of detail regarding the individual sources of nutrients. To avoid this tradeoff, we developed a detailed source nutrient loading model for every watershed in Michigan's lower peninsula. Sources considered include atmospheric deposition, septic tanks, waste water treatment plants, combined sewer overflows, animal waste from confined animal feeding operations and pastured animals, as well as fertilizer from agricultural, residential, and commercial sources and industrial effluents . Each source is related to readily-available GIS inputs that may vary through time. This loading model was used to assess the importance of sources and landscape factors in nutrient loading rates to watersheds, and how these have changed in recent decades. The results showed the value of detailed source inputs, revealing regional trends while still providing insight to the existence of variability at smaller scales.
Modeling quasar central engine as a relativistic radiating star
NASA Astrophysics Data System (ADS)
Singh, Ksh. Newton; Pant, Neeraj
2015-01-01
Long ago Hoyle & Fowler attempted to model the central engine of quasars as hot super-massive stars supported by radiation pressure. Whereas the model of Hoyle & Fowler was Newtonian, here we make a toy model of quasar central engines as ultra relativistic ultrahot plasma or as a ball of radiation. Accordingly, we consider general relativistic gravitational collapse including emission of radiation. More specifically, we discuss a new class of radiating fluid ball exact solution in conformally-flat metric which is quasi-static and contracting at negligible rate. The problem is solved by assuming that the metric potential is separable in to radial and time dependent parts. It is found the gravitational mass of the radiating ball M→0 as comoving time t→∞ in conformity of the idea of an "Eternally Collapsing Object" (ECO) which has been claimed to be the true nature of the so-called "Black Holes". In particular, we consider here a quasi-static radiation ball having M≈9.507×107 M ⊙, a radius of ≈2×1014 km, and a luminosity L ∞≈9.1×1046 erg/s. Prima-facie, such an ECO solution is compatible with the central compact object of a quasar having comoving lifetime of ≈107 yr and a distantly observed lifetime ( u) which could be higher by many orders of magnitude.
Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform
Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.
2010-02-01
This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.
Kumaresan, S; Yoganandan, N; Pintar, F A; Maiman, D J
1999-12-01
An anatomically accurate, three-dimensional, nonlinear finite element model of the human cervical spine was developed using computed tomography images and cryomicrotome sections. The detailed model included the cortical bone, cancellous core, endplate, lamina, pedicle, transverse processes and spinous processes of the vertebrae; the annulus fibrosus and nucleus pulposus of the intervertebral discs; the uncovertebral joints; the articular cartilage, the synovial fluid and synovial membrane of the facet joints; and the anterior and posterior longitudinal ligaments, interspinous ligaments, capsular ligaments and ligamentum flavum. The finite element model was validated with experimental results: force-displacement and localized strain responses of the vertebral body and lateral masses under pure compression, and varying eccentric anterior-compression and posterior-compression loading modes. This experimentally validated finite element model was used to study the biomechanics of the cervical spine intervertebral disc by quantifying the internal axial and shear forces resisted by the ventral, middle, and dorsal regions of the disc under the above axial and eccentric loading modes. Results indicated that higher axial forces (compared to shear forces) were transmitted through different regions of the disc under all loading modes. While the ventral region of the disc resisted higher variations in axial force, the dorsal region transmitted higher shear forces under all loading modes. These findings may offer an insight to better understand the biomechanical role of the human cervical spine intervertebral disc. PMID:10717549
Numerical modeling and experiments of creep crack growth under cyclic loading
Brust, F.W.
1995-12-31
This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.
A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...
Modeling of Effects of Climate and Land Cover Change on Thermal Loading to Puget Sound
NASA Astrophysics Data System (ADS)
Cao, Q.; Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.
2014-12-01
We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM to examine the response of riverine thermal loading to Puget Sound as affected by land cover and climate change. We represent the 15 major river basins and the discharge and temperature of the streams that drain them. DHSVM-RBM integrates the Distributed Hydrologic Soil Vegetation Model (DHSVM) which represents the hydrologic response (river discharge) of the basins with the distributed stream temperature model RBM, which represents thermal dynamics of the streams at high temporal and spatial resolutions. We first show that the model construct is able to represent observed historic streamflow and stream temperature variations at sub-daily, seasonal, and interannual time scales. We find that the thermal load to Puget Sound varies season to season, increasing in fall and winter and decreasing in spring and summer compared with long-term base temperature. The estimated annual thermal load is around 2791 cms·K, accounted for mostly by the Skagit and Snohomish Rivers. We also explore the relative effect of projected future climate and land cover change on Puget Sound riverine thermal loadings.
Modeling Loading/Unloading Hysteresis Behavior of Unidirectional C/SiC Ceramic Matrix Composites
NASA Astrophysics Data System (ADS)
Longbiao, Li; Yingdong, Song; Youchao, Sun
2013-08-01
The loading/unloading tensile behavior of unidirectional C/SiC ceramic matrix composites at room temperature has been investigated. The loading/unloading stress-strain curve exhibits obvious hysteresis behavior. An approach to model the hysteresis loops of ceramic matrix composites including the effect of fiber failure during tensile loading has been developed. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix cracking space and interface debonded length are obtained by matrix statistical cracking model and fracture mechanics interface debonded criterion. The two-parameter Weibull model is used to describe the fiber strength distribution. The stress carried by the intact and fracture fibers on the matrix crack plane during unloading and subsequent reloading is determined by the Global Load Sharing criterion. Based on the damage mechanisms of fiber sliding relative to matrix during unloading and subsequent reloading, the unloading interface reverse slip length and reloading interface new slip length are obtained by the fracture mechanics approach. The hysteresis loops of unidirectional C/SiC ceramic matrix composites corresponding to different stress have been predicted.
Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...
GPU acceleration experience with RRTMG long wave radiation model
NASA Astrophysics Data System (ADS)
Price, Erik; Mielikainen, Jarno; Huang, Bormin; Huang, HungLung A.; Lee, Tsengdar
2013-10-01
An Atmospheric radiative transfer model calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. Both shortwave radiance and longwave radiance parameterizations in an atmospheric model calculate radiation fluxes and heating rates in the earth-atmospheric system. One radiative transfer model is the rapid radiative transfer model (RRTM), which calculates of longwave and shortwave atmospheric radiative fluxes and heating rates. Longwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, is based on the single-column reference code, RRTM. The RRTMG is a validated, correlated k-distribution band model for the calculation of longwave and shortwave atmospheric radiative fluxes and heating rates. The focus of this paper is on the RRTMG long wave (RRTMG_LW) model. In order to improve computational efficiency, RRTMG_LW incorporates several modifications compared to RRTM. In RRTM_LW there are 16 g points in each of the spectral bands for a total of 256 g points. In RRTMG_LW, the number of g points in each spectral band varies from 2 to 16 depending on the absorption in each band. RRTMG_LW employs a computationally efficient correlated-k method for radiative transfer calculations. It contains 16 spectral bands with various number of quadrature points (g points) in each of the bands. In total, there are 140 g points. The radiative effects of all significant atmospheric gases are included in RRTMG_LW. Active gas absorbers include H2O, O3, CO2, CH4, N2O, O2 and four types of halocarbons: CFC-11, CFC-12, CFC-22, and CCL4. RRTMG_LW also treats the absorption and scattering from liquid and ice clouds and aerosols. For cloudysky radiative transfer, a maximum-random cloud overlapping scheme is used. Small scale cloud variability, such as cloud fraction and the vertical overlap of clouds can be represented using a statistical technique in RRTMG_LW. Due to its accuracy, RRTMG_LW has been implemented operationally
A coupled dynamical-radiational model of stratocumulus
NASA Astrophysics Data System (ADS)
Ye, Weizuo
1990-05-01
A model dealing with interactions between the air and low stratiform clouds is presented based on the mixed-layer model Lilly (1968) pioneered and on Deardorff's three dimensional numerical model results. Its main new aspects lie in 1) consideration of the natures of both the atmosphere and cloud; 2) a new entrainment velocity scheme with few arbitrary assumptions; 3) transition from one-mixed layer to two-mixed layer model; and 4) parameterization of radiation and precipitation calculations. The model results for radiation, moisture, and heat turbulent fluxes turn out to be in good agreement with those calculated or observed by Kawa (1988), Nicholls (1984), and Schmets et al. (1981) in California, the North Sea, and the North Atlantic, respectively. Basically, this paper furnishes the theoretical basis for a model to address questions concerning the time-evolution of thermodynamical profiles both in cloud and out of cloud. The applications of this model wil be in a separate paper.
Mustafy, Tanvir; El-Rich, Marwan; Mesfar, Wissal; Moglo, Kodjo
2014-09-22
The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact. PMID:25129167
Predicting Chandra CCD Degradation with the Chandra Radiation Model
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.
2008-01-01
Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This
NASA Astrophysics Data System (ADS)
Treutenaere, S.; Lauro, F.; Bennani, B.; Matsumoto, T.; Mottola, E.
2015-09-01
The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.
Statistical Modeling for Radiation Hardness Assurance
NASA Technical Reports Server (NTRS)
Ladbury, Raymond L.
2014-01-01
We cover the models and statistics associated with single event effects (and total ionizing dose), why we need them, and how to use them: What models are used, what errors exist in real test data, and what the model allows us to say about the DUT will be discussed. In addition, how to use other sources of data such as historical, heritage, and similar part and how to apply experience, physics, and expert opinion to the analysis will be covered. Also included will be concepts of Bayesian statistics, data fitting, and bounding rates.
NASA Technical Reports Server (NTRS)
Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.
2006-01-01
Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low
Radiative neutralino production in low energy supersymmetric models
Basu, Rahul; Sharma, Chandradew; Pandita, P. N.
2008-06-01
We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.
Physics based model for online fault detection in autonomous cryogenic loading system
Kashani, Ali; Ponizhovskaya, Ekaterina; Luchinsky, Dmitry; Smelyanskiy, Vadim; Patterson-Hine, Anna; Sass, Jared; Brown, Barbara
2014-01-29
We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.
A review of failure models for unidirectional ceramic matrix composites under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
A review of failure models for ceramic matrix composite laminates under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
Evaluation of an aeroelastic model technique for predicting airplane buffet loads
NASA Technical Reports Server (NTRS)
Hanson, P. W.
1973-01-01
A wind-tunnel technique which makes use of a dynamically scaled aeroelastic model to predict full-scale airplane buffet loads during buffet boundary penetration is evaluated. A 1/8-scale flutter model of a fighter airplane with remotely controllable variable-sweep wings and trimming surfaces was used for the evaluation. The model was flown on a cable-mount system which permitted high lift forces comparable to those in maneuvering flight. Bending moments and accelerations due to buffet were measured on the flutter model and compared with those measured on the full-scale airplane in an independent flight buffet research study. It is concluded that the technique can provide valuable information on airplane buffet load characteristics not available from any other source except flight test.
Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions
Chang, Chin-Yao; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit
2013-02-24
Demand-side control is playing an increasingly important role in smart grid control strategies. Modeling the dynamical behavior of a large population of appliances is especially important to evaluate the effectiveness of various load control strategies. In this paper, a high accuracy aggregated model is first developed for a population of HVAC units. The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. Furthermore, the model takes into account the lockout effect of the compressor in order to represent the dynamics of the system under control more accurately. Then, a novel closed loop load control strategy is designed to track a desired demand curve and to ensure a stable and smooth response.
Atmospheric transmittance model for photosynthetically active radiation
Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia
2013-11-13
A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.
[Modelling pollutant loads and management alternatives in Jiulong River watershed with AnnAGNPS].
Hong, Hua-Sheng; Huang, Jin-Liang; Zhang, Luo-Ping; Du, Peng-Fei
2005-07-01
The modelling package Annualized Agricultural Nonpoint Source Model (AnnAGNPS) was used to predict pollutant loads, and simulate catchment processes and management practices in Jiulong River watershed, a medium-sized mountainous watershed in southeast of China. Four typical sub-watersheds were primarily chosen to calibrate AnnAGNPS model by data collected from storm events during the period of April to September, 2003. The model was further validated in the two biggest branches of Jiulong River watershed, i.e. West river and North river by the data regarding climate, and land using condition in 2002 - 2003. The simulation results show that annual total nitrogen load was 24.76kg/(hm2 x a) and 10.28kg/(hm2 x a) in the West river and North river, respectively, and annual total phosphorus load was 0.67 kg/(hm2 x a) and 0.40 kg/(hm2 x a) in the West river and North river, respectively. With the support of AnnAGNPS model, several management alternatives were separately simulated in the typical sub-watersheds, West river and North river. In the specific cell with cell-ID of 92 in Tianbao and Xiandu sub-watershed, after reforesting in sloping field, runoff surface, sediment yield, total nitrogen load and total phosphorus load cut down with 21.6%, 25.9%, 96% and 79.2%, respectively. In West river, with the cultivation plant changing from banana into rice, the total nitrogen, dissolved nitrogen, total phosphorus and dissolved phosphorus cut down with 23.83%, 25.44%, 9.08% and 19.84%, respectively. In North river, when removing all the hoggerys, nitrogen and dissolved nitrogen cut down with 63.54% and 76.92% , respectively. PMID:16212170
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Cloud-radiation interactions and their parameterization in climate models
NASA Technical Reports Server (NTRS)
1994-01-01
This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18-20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth's surface, and to refine the process models which are used to develop advanced cloud parameterizations.
Cloud-radiation interactions and their parameterization in climate models
1994-11-01
This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18--20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the. themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth`s surface, and to refine the process models which are used to develop advanced cloud parameterizations.
NASA Astrophysics Data System (ADS)
Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko; Watanabe, Masao
2015-12-01
Development of a physically accurate and computationally efficient photon migration model for turbid media is crucial for optical computed tomography such as diffuse optical tomography. For the development, this paper constructs a space-time coupling model of the radiative transport equation with the photon diffusion equation. In the coupling model, a space-time regime of the photon migration is divided into the ballistic and diffusive regimes with the interaction between the both regimes to improve the accuracy of the results and the efficiency of computation. The coupling model provides an accurate description of the photon migration in various turbid media in a wide range of the optical properties, and reduces computational loads when compared with those of full calculation of the RTE.
NASA Astrophysics Data System (ADS)
Salamanca, Francisco; Tonse, Shaheen; Menon, Surabi; Garg, Vishal; Singh, Krishna P.; Naja, Manish; Fischer, Marc L.
2012-12-01
We evaluate differences in clear-sky upwelling shortwave radiation reaching the top of the atmosphere in response to increasing the albedo of roof surfaces in an area of India with moderately high aerosol loading. Treated (painted white) and untreated (unpainted) roofs on two buildings in northeast India were analyzed on five cloudless days using radiometric imagery from the IKONOS satellite. Comparison of a radiative transfer model (RRTMG) and radiometric satellite observations shows good agreement (R2 = 0.927). Results show a mean increase of ˜50 W m-2 outgoing at the top of the atmosphere for each 0.1 increase of the albedo at the time of the observations and a strong dependence on atmospheric transmissivity.
A Computational Model of Cellular Response to Modulated Radiation Fields
McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.
2012-09-01
Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
Construction of homogeneous loading functions for elastoplastic damage models for concrete
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Jie
2014-03-01
Over the past 2 decades, tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory. The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states. Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian, cylindrical, mixed cylindrical-Cartesian, and other forms, and the homogeneity of loading functions discussed. It is found that under certain supplementary conditions from physical meanings, an unambiguous definition of the cohesion in a strength criterion, which is demanded in an elastoplastic damage model, is usually available in an explicit or implicit form, and in each case the loading function is still homogeneous. To apply and validate the presented theory, we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete, and their performances in triaxial compression prove to have improved significantly.
Radiation Hydrodynamics Modeling of Hohlraum Energetics
NASA Astrophysics Data System (ADS)
Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.
2015-11-01
Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.
Wang, Pengfei; Liu, Shaobao; Zhou, Jinxiong; Xu, Feng; Lu, Tianjian
2013-09-01
Chemomechanically responsive gels, with great potential applications in the fields of smart structures and biomedicines, present autonomously oscillatory deformation driven by the Belousov-Zhabotinsky chemical reaction. The dynamic behavior of the responsive gels is obviously affected by the external mechanical load. This approach proposed a kinetic model with an ordinary differential equation to describe the oscillatory deformation of the gels under the mechanical load. Then the periodic solutions and phase diagrams of the oscillation are obtained using the improved Runge-Kutta and shooting methods. The results demonstrated that bifurcations are typically existent in the system and the characters of the oscillatory deformation regularly depend on the mechanical load as well as the concentration of reactants and the stoichiometric coefficient of chemical reaction. This development is supposed to promote the practical applications of the chemomechanically responsive gels. PMID:24072466
Experimental and analytical investigation of a monocoque wing model loaded in bending
NASA Technical Reports Server (NTRS)
Schapitz, E; Feller, H; Koller, H
1939-01-01
Bending tests with transverse loads and with pure bending were undertaken on a double-web monocoque wing model in order to establish the relation between the state of stress and the results from the elementary bending theory. The longitudinal stresses in the stiffeners were measured with tensiometers and the shear stresses in the sheet were calculated from them. The measurements were made at both moderate loads with no buckles in the covering and at loads with which the critical stress in the individual panels was exceeded. For the comparison, the wing skin was considered as stiffened sheet according to the shear panel scheme. In this way, the statistically indeterminate calculation was confirmed by the test results.
Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current
NASA Astrophysics Data System (ADS)
Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.
2015-12-01
Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the
A model for resource-aware load balancing on heterogeneous clusters.
Devine, Karen Dragon; Flaherty, Joseph E.; Teresco, James Douglas; Gervasio Luis G.; Faik, Jamal
2005-05-01
We address the problem of partitioning and dynamic load balancing on clusters with heterogeneous hardware resources. We propose DRUM, a model that encapsulates hardware resources and their interconnection topology. DRUM provides monitoring facilities for dynamic evaluation of communication, memory, and processing capabilities. Heterogeneity is quantified by merging the information from the monitors to produce a scalar number called 'power.' This power allows DRUM to be used easily by existing load-balancing procedures such as those in the Zoltan Toolkit while placing minimal burden on application programmers. We demonstrate the use of DRUM to guide load balancing in the adaptive solution of a Laplace equation on a heterogeneous cluster. We observed a significant reduction in execution time compared to traditional methods.
General analysis of dark radiation in sequestered string models
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Muia, Francesco
2015-12-01
We perform a general analysis of axionic dark radiation produced from the decay of the lightest modulus in the sequestered LARGE Volume Scenario. We discuss several cases depending on the form of the Kähler metric for visible sector matter fields and the mechanism responsible for achieving a de Sitter vacuum. The leading decay channels which determine dark radiation predictions are to hidden sector axions, visible sector Higgses and SUSY scalars depending on their mass. We show that in most of the parameter space of split SUSY-like models squarks and sleptons are heavier than the lightest modulus. Hence dark radiation predictions previously obtained for MSSM-like cases hold more generally also for split SUSY-like cases since the decay channel to SUSY scalars is kinematically forbidden. However the inclusion of string loop corrections to the Kähler potential gives rise to a parameter space region where the decay channel to SUSY scalars opens up, leading to a significant reduction of dark radiation production. In this case, the simplest model with a shift-symmetric Higgs sector can suppress the excess of dark radiation Δ N eff to values as small as 0 .14, in perfect agreement with current experimental bounds. Depending on the exact mass of the SUSY scalars all values in the range 0 .14 ≲ Δ N eff ≲ 1 .6 are allowed. Interestingly dark radiation overproduction can be avoided also in the absence of a Giudice-Masiero coupling.
Chen Yiping; Wang, F. Q.; Hu, L. Q.; Guo, H. Y.; Wu, Z. W.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Zha, X. J.
2013-02-15
In order to actively control power load on the divertor target plates and study the effect of radiative divertor on plasma parameters in divertor plasmas and heat fluxes to the targets, dedicated experiments with Ar impurity seeding have been performed on experimental advanced superconducting tokamak in typical L-mode discharge with single null divertor configuration, ohmic heating power of 0.5 MW, and lower hybrid wave heating power of 1.0 MW. Ar is puffed into the divertor plasma at the outer target plate near the separatrix strike point with the puffing rate 1.26 Multiplication-Sign 10{sup 20} s{sup -1}. The radiative divertor is formed during the Ar puffing. The SOL/divertor plasma in the L-mode discharge with radiative divertor has been modelled by using SOLPS5.2 code package [V. Rozhansky et al., Nucl. Fusion 49, 025007 (2009)]. The modelling shows the cooling of the divertor plasma due to Ar seeding and is compared with the experimental measurement. The changes of peak electron temperature and heat fluxes at the targets with the shot time from the modelling results are similar to the experimental measurement before and during the Ar impurity seeding, but there is a major difference in time scales when Ar affects the plasma in between experiment and modelling.
Evaluating seasonal loading models and their impact on global and regional reference frame alignment
NASA Astrophysics Data System (ADS)
Zou, Rong; Freymueller, Jeffrey T.; Ding, Kaihua; Yang, Shaomin; Wang, Qi
2014-02-01
Seasonal variations are observed in GPS time series, but are not included in the International Terrestrial Reference Frame (ITRF) models. Unmodeled seasonal variations at sites used for reference frame alignment are aliased into the reference frame parameters and bias all coordinates in the transformed solution. We augment ITRF2008 with seasonal loading models based either on Gravity Recovery and Climate Experiment (GRACE) measurements or a suite of models for atmospheric pressure, continental hydrology, and nontidal ocean loading. We model the seasonal components using either annual and semiannual terms or a nonparametric approach. When we include a seasonal variation model, the weighted root-mean-square misfit after seven-parameter transformation decreases for 70-90% of the daily GPS solutions depending on the network and seasonal model used, relative to a baseline case using ITRF2008. When seasonal variations are included in the reference frame solution, the observed seasonal variations are more consistent with the GRACE-based model at 80-85% of the GPS sites that were not used in the frame alignment. The suite of forward models performs nearly as well as the GRACE-based model for North America, but substantially worse for other parts of the world. We interpret these findings to mean that the use of ITRF2008 without seasonal terms causes the amplitude of seasonal variations in the coordinate time series to be damped down relative to the true loading deformation and that the observed GPS time series are more consistent with a TRF model that includes seasonal variations. At present, a seasonal model derived from GRACE captures seasonal variations more faithfully than one based on hydrologic models.
Accurate spectral modeling for infrared radiation
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gupta, S. K.
1977-01-01
Direct line-by-line integration and quasi-random band model techniques are employed to calculate the spectral transmittance and total band absorptance of 4.7 micron CO, 4.3 micron CO2, 15 micron CO2, and 5.35 micron NO bands. Results are obtained for different pressures, temperatures, and path lengths. These are compared with available theoretical and experimental investigations. For each gas, extensive tabulations of results are presented for comparative purposes. In almost all cases, line-by-line results are found to be in excellent agreement with the experimental values. The range of validity of other models and correlations are discussed.
Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers.
Rajaee, Taher
2011-07-01
In this research, a new wavelet artificial neural network (WANN) model was proposed for daily suspended sediment load (SSL) prediction in rivers. In the developed model, wavelet analysis was linked to an artificial neural network (ANN). For this purpose, daily observed time series of river discharge (Q) and SSL in Yadkin River at Yadkin College, NC station in the USA were decomposed to some sub-time series at different levels by wavelet analysis. Then, these sub-time series were imposed to the ANN technique for SSL time series modeling. To evaluate the model accuracy, the proposed model was compared with ANN, multi linear regression (MLR), and conventional sediment rating curve (SRC) models. The comparison of prediction accuracy of the models illustrated that the WANN was the most accurate model in SSL prediction. Results presented that the WANN model could satisfactorily simulate hysteresis phenomenon, acceptably estimate cumulative SSL, and reasonably predict high SSL values. PMID:21546062
Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach
Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.
2005-01-01
A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Sheth, Rubik; Bannon, Erika; Bower, Chad
2009-01-01
In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.