Science.gov

Sample records for modelling dissolved organic

  1. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON. PMID:27019968

  2. Molecular simulation of a model of dissolved organic matter

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  3. THERMODYNAMIC MODELING OF LIQUID AEROSOLS CONTAINING DISSOLVED ORGANICS AND ELECTROLYTES

    EPA Science Inventory

    Many tropospheric aerosols contain large fractions of soluble organic material, believed to derive from the oxidation of precursors such alpha-pinene. The chemical composition of aerosol organic matter is complex and not yet fully understood.

    The key properties of solu...

  4. Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation

    NASA Astrophysics Data System (ADS)

    Wu, H.; Peng, C.; Moore, T. R.; Hua, D.; Li, C.; Zhu, Q.; Peichl, M.; Arain, M. A.; Guo, Z.

    2014-05-01

    Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.

  5. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  6. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  7. Modeling the contribution of dissolved organic carbon to carbon sequestration during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Tian, Jun

    2014-10-01

    Dissolved organic carbon (DOC) is a carbon reservoir that is as large as the atmospheric CO2 pool, and its contribution to the global carbon cycle is gaining attention. As DOC is a dissolved tracer, its distribution can serve to trace the mixing of water masses and the pathways of ocean circulation. Published proxy and model reconstructions have revealed that, during the last glacial maximum (LGM), the pattern of deep ocean circulation differed from that of the modern ocean, whereby additional carbon is assumed to have been sequestered in stratified LGM deep water. The aim of this study is to explore the distribution of DOC and its production/removal rate during the LGM using the Grid ENabled Integrated Earth system model (GENIE). Modeled results reveal that increased salinity of bottom waters in the Southern Ocean is associated with stronger stratification and oxygen depletion. The stratified LGM deep ocean traps more nutrients, resulting in a decrease in the DOC reservoir size that, in turn, causes a negative feedback for carbon sequestration. This finding requires an increase in DOC lifetime to compensate for the negative feedback. The upper limit of DOC lifetime is assumed to be 20,000 years. Modeled results derive an increase (decrease) in DOC reservoir by 100 Pg C leading to an atmospheric CO2 decrease (increase) of 9.1 ppm and a dissolved inorganic carbon δ13C increase (decrease) of 0.06‰. The DOC removal rate is estimated to be 39.5 Tg C year-1 in the deep sea during the LGM. The contribution of DOC to the LGM carbon cycle elucidates potential carbon sink-increasing strategies.

  8. Agent-based modeling of hyporheic dissolved organic carbon transport and transformation

    NASA Astrophysics Data System (ADS)

    Gabrielsen, P. J.; Wilson, J. L.; Pullin, M.

    2011-12-01

    Dissolved organic carbon (DOC) is a complex suite of organic compounds present in natural ecosystems, and is particularly studied in river and stream systems. The hyporheic zone (HZ), a region of surface water-shallow groundwater exchange, has been identified as a hotspot of DOC processing and is generally regarded as a net sink of organic matter. More recent studies into stream DOC have shifted to examining DOC quality rather than bulk quantity. DOC quality variability has been linked to hydrologic and climatic variability, both focuses of current climate change research. A new agent-based model in the NetLogo modeling environment couples hydrologic transport with chemical and biological transformation of DOC to simulate changing DOC quality in hyporheic flow. A pore-scale model implements a Lattice Boltzmann fluid dynamic model and surficial interactions to simulate sorption and microbial uptake. Upscaled to a stream meander scale, this model displays spatial variation and evolution of DOC quality. Model output metrics are correlated to field sample analytical results from a hyporheic meander of the East Fork Jemez River, Sandoval Co., NM.

  9. Hydrochemical Modeling of Dissolved Organic Carbon in a Small, Undisturbed, Forested Watershed in Southern Chile

    NASA Astrophysics Data System (ADS)

    Valdivia, M. V.; Walter, M. T.; Salmon, C. D.; Hedin, L. O.; Walter, M. F.

    2004-12-01

    The objective of the present study is to model Dissolved Organic Carbon (DOC) concentrations in a stream draining a small, undisturbed, old-growth forested watershed in Southern Chile and test model results against measured data. DOC plays an important role in several processes in terrestrial and aquatic ecosystems. For example, through the formation of organic complexes, DOC can influence nutrient availability, affect the solubility, mobility, and toxicity of metals, and control the absorption of pesticides to soils. DOC also influences biological activity by absorbing UV-B radiation and can contribute significantly to freshwater acidity. Additionally, DOC is linked to the formation of trihalomethanes as by-products of the disinfection of drinking water with chlorine, which constitutes a potentially serious threat to human health. Despite plentiful research on biogeochemical processes controlling DOC production and consumption, there is little information from minimally impacted environments, which can provide valuable baseline information from which to evaluate the more impacted ecosystems. Our study focused on a virtually unpolluted old-growth forested watershed in Southern Chile. We developed a conceptual model that assumes DOC production in forest soils is a function of temperature and DOC transport from soil to stream water is a function of discharge and hydrological flow paths. The hydrological response of the catchment under study was simulated using a simple lumped model, based on two years of meteorological data previously collected. Three different equations were used to simulate DOC concentrations in soil water as a function of temperature, and ultimately to derive DOC concentrations in streamflow. Model results were tested against two years of measured DOC concentrations in streamflow, and all three models provided a reasonably good representation of the DOC response of the small studied watershed and a better agreement to the observed DOC than

  10. Comparing Modeled and Measured Mercury Speciation in Contaminated Groundwater: Importance of Dissolved Organic Matter Composition.

    PubMed

    Richard, Jan-Helge; Bischoff, Cornelia; Biester, Harald

    2016-07-19

    In addition to analytical speciation, reliable Hg species modeling is crucial for predicting the mobility and toxicity of Hg, but geochemical speciation codes have not yet been tested for their prediction accuracy. Our study compares analyses of Hg species in highly Hg-contaminated groundwater (Hgtot: 0.02-4 μmol·L(-1)) at three sites with predictions of Hg speciation obtained from three geochemical codes (WHAM, Visual MINTEQ, PHREEQC) with and without implementation of Hg complexation by dissolved organic matter (DOM). Samples were analyzed for chemical composition, elemental, inorganic, and DOM-bound Hg (Hg(0), Hginorg, HgDOM). Hg-DOM complexation was modeled using three approaches: binding to humic/fulvic acids, binding to thiol-groups, or a combination of both. Results of Hg(0) modeling were poor in all scenarios. Prediction accuracy for Hginorg and HgDOM strongly depended on the assumed DOM composition. Best results were achieved when weaker binding sites, simulated by WHAMs DOM submodel, were combined with strongly binding thiol groups. Indications were found that thiol-DOM ratios in groundwater are likely to be lower than in surface water, highlighting the need for analytical thiol quantification in groundwater DOM. This study shows that DOM quality is a crucial parameter for prediction of Hg speciation in groundwater by means of geochemical modeling. PMID:27328766

  11. Effects of asynchronous snowmelt on flushing of dissolved organic carbon: A mixing model approach

    USGS Publications Warehouse

    Boyer, E.W.; Hornberger, G.M.; Bencala, K.E.; McKnight, Diane M.

    2000-01-01

    In many snowmelt-dominated catchments, stream dissolved organic carbon (DOC) levels typically increase rapidly as spring melt commences, peak before maximum discharge, and decrease quickly as melting continues. We present data from Deer Creek (Summit County, CO) that shows this distinctive flushing response of DOC during snowmelt runoff, with DOC stored in landscape soils flushed to the stream in response to infiltrating melt waters. Our prior studies show that asynchronous melting of the snowpack across the landscape causes the spring DOC flush to be initiated at different times throughout the catchment. In this study we quantify characteristics of the asynchronous melt and its effect on DOC flushing. We investigated whether a simple mixing model can be used to capture the essentials of the asynchronous melting of a seasonal snowpack and its controls on DOC transport. We divided the catchment into zones of aspect and elevation, which largely determine spatial and temporal variations in the distribution of snow. TOPMODEL was used to simulate the hydrology in each zone, and the simulated flow paths were routed through a simple DOC mixing model to predict contributions of DOC to the stream. The zonal responses were aggregated to give a predicted response of hydrology and DOC fluxes for the entire catchment. Our results indicate that asynchronous melting-which determines the timing of contributions of discharge and DOC to streamflow from different areas of the landscape-can be quantified using a simple modeling approach. Copyright ?? 2000 John Wiley & Sons, Ltd.

  12. Modeling the Dynamics and Export of Dissolved Organic Matter in the Northeastern U.S. Continental Shelf

    NASA Technical Reports Server (NTRS)

    Druon, J.N.; Mannino, A.; Signorini, Sergio R.; McClain, Charles R.; Friedrichs, M.; Wilkin, J.; Fennel, K.

    2009-01-01

    Continental shelves are believed to play a major role in carbon cycling due to their high productivity. Particulate organic carbon (POC) burial has been included in models as a carbon sink, but we show here that seasonally produced dissolved organic carbon (DOC) on the shelf can be exported to the open ocean by horizontal transport at similar rates (1-2 mol C/sq m/yr) in the southern U.S. Mid-Atlantic Bight (MAB). The dissolved organic matter (DOM) model imbedded in a coupled circulation-biogeochemical model reveals a double dynamics: the progressive release of dissolved organic nitrogen (DON) in the upper layer during summer increases the regenerated primary production by 30 to 300%, which, in turns ; enhances the DOC production mainly from phytoplankton exudation in the upper layer and solubilization of particulate organic matter (POM) deeper in the water column. This analysis suggests that DOM is a key element for better representing the ecosystem functioning and organic fluxes in models because DOM (1) is a major organic pool directly related to primary production, (2) decouples partially the carbon and nitrogen cycles (through carbon excess uptake, POM solubilization and DOM mineralization) and (3) is intimately linked to the residence time of water masses for its distribution and export.

  13. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    NASA Astrophysics Data System (ADS)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  14. Modeling the production, decomposition, and transport of dissolved organic carbon in boreal soils

    USGS Publications Warehouse

    Fan, Zhaosheng; Neff, Jason C.; Wickland, Kimberly P.

    2010-01-01

    The movement of dissolved organic carbon (DOC) through boreal ecosystems has drawn increased attention because of its potential impact on the feedback of OC stocks to global environmental change in this region. Few models of boreal DOC exist. Here we present a one-dimensional model with simultaneous production, decomposition, sorption/desorption, and transport of DOC to describe the behavior of DOC in the OC layers above the mineral soils. The field-observed concentration profiles of DOC in two moderately well-drained black spruce forest sites (one with permafrost and one without permafrost), coupled with hourly measured soil temperature and moisture, were used to inversely estimate the unknown parameters associated with the sorption/desorption kinetics using a global optimization strategy. The model, along with the estimated parameters, reasonably reproduces the concentration profiles of DOC and highlights some important potential controls over DOC production and cycling in boreal settings. The values of estimated parameters suggest that humic OC has a larger potential production capacity for DOC than fine OC, and most of the DOC produced from fine OC was associated with instantaneous sorption/desorption whereas most of the DOC produced from humic OC was associated with time-dependent sorption/desorption. The simulated DOC efflux at the bottom of soil OC layers was highly dependent on the component and structure of the OC layers. The DOC efflux was controlled by advection at the site with no humic OC and moist conditions and controlled by diffusion at the site with the presence of humic OC and dry conditions.

  15. Understanding and modelling the variability in Dissolved Organic Carbon concentrations in catchment drainage

    NASA Astrophysics Data System (ADS)

    Coleman, Martin; Waldron, Susan; Scott, Marian; Drew, Simon

    2013-04-01

    Our knowledge of dynamic natural habitats could be improved through the deployment of automated sensor technology. Dissolved organic carbon concentrations, [DOC], are of interest to water companies as purification removes this pool and currently in environmental science, due in part to rising DOC levels and also as respiration of this C pool can lead to an increased CO2 efflux. Manual sampling of catchment drainage systems has revealed seasonal patterns in DOC (Williams, P.J.L., 1995) and that hydrological events export most DOC(Raymond, P.A. and J.E. Saiers, 2010). However, manual sampling precludes detailed characterisation of the dynamic fluctuation of DOC over shorter but important time periods e.g. immediately prior to an event; the transition from base flow to a surface run-off dominated system as surface flow pathways defrost. Such insight is only gained through deployment of continuous-monitoring equipment. Since autumn 2010 we have deployed an S::CAN Spectrolyser (which from absorbance gives a measurement of [DOC]) in a 7.5 kilometre squared peaty catchment draining Europe's largest windfarm, Whitelee. Since autumn 2011, we have an almost complete time series of [DOC] every 30. Here [DOC] has ranged from 12.2 to 58.4 mg/l C and during event flow DOC had a maximum variation of 23.5 mg/l within a single day. Simultaneously with the Spectrolyser, we have logged stage height, pH and conductivity using an In-Situ Inc MD Troll 9000. Generally there is an inverse relationship between [DOC] and both pH and conductivity, but a positive relationship (albeit with seasonal differences) with [DOC] and stage height, from which we can infer hydrological changes in the source of the DOC. Here, in addition to presenting the time series of the data, and a more accurate export budget estimate, I will explore statistical methods for the handling of large datasets. Trends in the data of such large and dynamic data sets are challenging to model. Simple relationships with stage

  16. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    NASA Astrophysics Data System (ADS)

    Ewing, S. A.; Paces, J. B.; O'Donnell, J. A.; Jorgenson, M. T.; Kanevskiy, M. Z.; Aiken, G. R.; Shur, Y.; Harden, J. W.; Striegl, R.

    2015-03-01

    climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.

  17. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    USGS Publications Warehouse

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Rob

    2015-01-01

    fluctuations in climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.

  18. Dissolved organic C export is highly dynamic - capturing this variability and challenges in modelling

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Coleman, M.; Scott, E. M.; Drew, S.

    2013-12-01

    High resolution, field-deployable sensors offer opportunities to deepen our understanding of natural environmental systems, and measure the ';riverine pulse'. Studies utilising high-resolution equipment have demonstrated that sampling hydrological variables on traditional low frequency rates (such as once a week) creates a simplified picture of conditions that does not capture a true reflection of how fluvial systems operate. Dissolved organic carbon (DOC) represents a large and diverse mixture of compounds (including sugars, amino acids and humic substances) and concentration and composition of this pool varies globally. Understanding transport of this C pool in fluvial systems is important as it 1) represents the lateral export of C no longer sequestered in the terrestrial system, 2) surface water concentrations have been observed to have increased globally and we need to know if this trend is continuing and 3) when water is abstracted the purification processes removing DOC from the water, can create harmful by-products and so prior knowledge of inflow loading is valuable. Traditionally [DOC] has been measured using manual sampling methods, where a water sample would be collected in the field and returned to the lab. This approach can provide reliable data but the resource required to sustain this make it nearly impossible to measure the ';riverine pulse' through the information in long and detailed time series. In recent years new technology designed to estimate [DOC] in-situ has been developed. We have used one of these devices, which measures absorption in both the visible and UV wavelength regions of the electromagnetic spectrum and from this absorbance profile an algorithm estimates [DOC]. We have deployed this system in the field environment and after overcoming initial challenges have an almost continuous time series of [DOC], measured at 30 minute intervals, since May 2012. The logger has been functioning over a temperature range of 0.5 - 23 °C and a

  19. PATTERNS AND CONTROLS OF DISSOLVED ORGANIC MATTER EXPORT BY MAJOR RIVERS: A NEW SEASONAL, SPATIALLY EXPLICIT, GLOBAL MODEL

    EPA Science Inventory

    River-derived dissolved organic matter (DOM) influences metabolism, light attenuation, and bioavailability of metals and nutrients in coastal ecosystems. Recent work suggests that DOM concentrations in surface waters vary seasonally because different organic matter pools are mobi...

  20. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition.

    PubMed

    Shimabuku, Kyle K; Cho, Hyukjin; Townsend, Eli B; Rosario-Ortiz, Fernando L; Summers, R Scott

    2014-12-01

    This study demonstrates that the ideal adsorbed solution theory-equivalent background compound (IAST-EBC) as a stand-alone model can simulate and predict the powdered activated carbon (PAC) adsorption of organic micropollutants found in drinking water sources in the presence of background dissolved organic matter (DOM) under nonequilibrium conditions. The IAST-EBC represents the DOM competitive effect as an equivalent background compound (EBC). When adsorbing 2-methylisoborneol (MIB) with PAC, the EBC initial concentration was a similar percentage, on average 0.51%, of the dissolved organic carbon in eight nonwastewater impacted surface waters. Using this average percentage in the IAST-EBC model yielded good predictions for MIB removal in two nonwastewater impacted waters. The percentage of competitive DOM was significantly greater in wastewater impacted surface waters, and varied markedly in DOM size fractions. Fluorescence parameters exhibited a strong correlation with the percentage of competitive DOM in these waters. Utilizing such correlations in the IAST-EBC successfully modeled MIB and sulfamethoxazole adsorption by three different PACs in the presence of DOM that varied in competitive effect. The influence of simultaneous coagulant addition on PAC adsorption of micropollutants was also investigated. Coagulation caused the DOM competitive effect to increase and decrease with MIB and sulfamethoxazole, respectively. PMID:25371136

  1. Understanding drivers of the export of dissolved organic carbon from a German headwater catchment using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Musolff, Andreas; Tittel, Jörg

    2016-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of nitrate stimulated the microbial reduction of ferric iron soil minerals and the mobilisation of DOC. Forested catchments are relatively unaffected by agricultural and urban nitrate inputs. In these catchments, decreasing depositions often resulted in a reduced availability of nitrate, which are preferred electron acceptors in microbial decomposition processes. As ferric iron minerals act as efficient sorbents of organic compounds in soils its reduction may cause a release of humic substances and hence an export of DOC. To test this hypothesis, time series of DOC, dissolved iron and nitrate from a forested headwater catchment in Germany were examined using Generalised Additive Models. We found that rising DOC concentrations most likely resulted from a reductive dissolution of iron(III) minerals in soils and the associated mobilisation of adsorbed organic carbon. Phosphate, which can trigger undesired algal growth and is also known to be adsorbed by particulate iron(III), was released as well.

  2. Understanding drivers of the export of dissolved organic carbon from headwater catchments in Germany using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Tittel, Jörg; Musolff, Andreas

    2015-04-01

    In the literature, several causes of recently increasing concentrations of dissolved organic carbon (DOC) in headwaters across eastern North America and northern and central Europe have been debated. One likely driver of the widespread increase of DOC concentrations since the early to mid 1990s are decreasing depositions of acid rain resulting in an increased solubility of organic carbon compounds including humic acids. Here, we tested the hypothesis if the reduced availability of both nitrate and sulfate stimulated the reduction of ferric iron soil minerals and the mobilisation of DOC. Decreasing depositions often resulted in a reduced availability of both nitrate and sulphate, which are preferred electron acceptors in microbial decomposition processes. As iron minerals act as efficient sorbents of organic compounds in soils its reduction may have caused a release of humic substances and hence an increasing export of DOC from headwater catchments. To test this hypothesis, time series of DOC, dissolved iron, sulfate and nitrate from several German headwater catchments were examined using Generalised Additive Models. Using this modelling technique, discharge corrected time series of concentrations were represented as a sum of a seasonal and a non-linear trend component. Both, the computed trends and seasonalities supported the redox hypothesis.

  3. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    PubMed

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. PMID:27017138

  4. Effect on pCO2 by phytoplankton uptake of dissolved organic nutrients in the Central and Northern Baltic Sea, a model study

    NASA Astrophysics Data System (ADS)

    Edman, Moa K.; Anderson, Leif G.

    2014-11-01

    Dissolved organic matter (DOM) has been added to an existing biogeochemical model and the phytoplankton were allowed to utilize the dissolved organic nutrients for primary production. The results show typical vertical structures for dissolved organic carbon (DOC), and improved or maintained model skill for both mean vertical profiles and mean seasonal variation of biogeochemical variables, evaluated by objective skill metrics. Due to scarce DOM measurements in the Baltic Sea it was hard to validate the new variables, but the model can recreate the general magnitude and distribution of terrestrial and in situ produced DOC, DON, and DOP, as far as we know them. The improvements are especially clear for the total nutrient levels and in recreating the biological drawdown of CO2 in the Eastern Gotland basin. Without phytoplankton uptake of dissolved organic nitrogen and phosphate, CO2 assimilation is lower during the summer months and the partial pressure of CO2 increases by about 200 μatm in the Eastern Gotland Basin, while in the Bothnian Bay, both the duration and magnitude of CO2 assimilation are halved. Thus the phytoplankton uptake of dissolved organic nutrients lowers pCO2 in both basins. Variations in the river transported DOM concentration mainly affect the magnitude of the summer cyanobacteria bloom.

  5. Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products

    NASA Astrophysics Data System (ADS)

    Mannino, Antonio; Signorini, Sergio R.; Novak, Michael G.; Wilkin, John; Friedrichs, Marjorie A. M.; Najjar, Raymond G.

    2016-02-01

    Continental margins play an important role in global carbon cycle, accounting for 15-21% of the global marine primary production. Since carbon fluxes across continental margins from land to the open ocean are not well constrained, we undertook a study to develop satellite algorithms to retrieve dissolved organic carbon (DOC) and combined these satellite data with physical circulation model products to quantify the shelf boundary fluxes of DOC for the U.S. Middle Atlantic Bight (MAB). Satellite DOC was computed through seasonal relationships of DOC with colored dissolved organic matter absorption coefficients, which were derived from an extensive set of in situ measurements. The multiyear time series of satellite-derived DOC stocks (4.9 Teragrams C; Tg) shows that freshwater discharge influences the magnitude and seasonal variability of DOC on the continental shelf. For the 2010-2012 period studied, the average total estuarine export of DOC into the MAB shelf is 0.77 Tg C yr-1 (year). The integrated DOC tracer fluxes across the shelf boundaries are 12.1 Tg C yr-1 entering the MAB from the southwest alongshore boundary, 18.5 Tg C yr-1 entering the MAB from the northeast alongshore boundary, and 29.0 Tg C yr-1 flowing out of the MAB across the entire length of the 100 m isobath. The magnitude of the cross-shelf DOC flux is quite variable in time (monthly) and space (north to south). The highly dynamic exchange of water along the shelf boundaries regulates the DOC budget of the MAB at subseasonal time scales.

  6. Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon

    PubMed Central

    Porcal, Petr; Dillon, Peter J.; Molot, Lewis A.

    2015-01-01

    Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or “in-situ” experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants. PMID:26106898

  7. Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model.

    PubMed

    Ryan, Adam C; Tomasso, Joseph R; Klaine, Stephen J

    2009-08-01

    The influence of pH, dissolved organic carbon (DOC) concentration, water hardness, and dissolved organic matter (DOM) source on the acute toxicity of copper were investigated with standardized 48-h Daphnia magna toxicity tests. Toxicity tests were conducted according to a four-factor complete factorial design. Nominal factor levels were as follows: pH 6 and 8; DOC, 2.5 and 10 mg/L; hardness, 10, 20, and 40 mg/L as CaCO3; and two DOM sources (collected from the Black River and Edisto River, SC, USA). The experimental design resulted in 24 different factor level combinations. Results indicated that all factors had significant effects on copper toxicity. Furthermore, a strong interactive effect of DOC concentration and pH was detected. Because the biotic ligand model (BLM) has become a widely used tool for predicting toxicity and interpreting toxicity test results, its performance with these data was evaluated. Seventy percent of BLM predictions were within twofold of the observed median lethal concentrations. However, BLM parameters could be adjusted to improve model performance with this data set. This analysis suggested that in soft waters, the CuOH+ complex binds more strongly with the biotic ligand and that the competitive effect of hardness cations should be increased. The results of the present study may have implications for application of the BLM to some types of surface waters. Furthermore, a comprehensive analysis of BLM performance with all available data should be performed, and necessary updates to model parameters should be made to produce the most robust and widely applicable model. PMID:19265455

  8. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    NASA Astrophysics Data System (ADS)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  9. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

    PubMed Central

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  10. Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System.

    PubMed

    Wagner, Sasha; Jaffé, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-01-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman's rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands. PMID:26636070

  11. Modeling the transport of freshwater and dissolved organic carbon in the Neuse River Estuary, NC, USA following Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Brown, Matthew M.; Mulligan, Ryan P.; Miller, Richard L.

    2014-02-01

    Numerical models are useful tools that aid in understanding complex flows and the distribution of suspended material over large geographic areas and during extreme weather events. Here we describe the use of a three-dimensional numerical model (Delft3D) to simulate freshwater and dissolved organic carbon (DOC) transport over a 3-week period, following intense precipitation that led to high river discharge into the brackish Neuse River Estuary (NRE), NC, from Hurricane Irene (Aug. 2011). The model was calibrated and validated using field measurements of water level elevations, vertical salinity profiles, and surface DOC concentrations in the estuary. DOC was simulated as a conservative tracer over the study period. Model results indicate differences in the intensity of the freshwater and DOC-laden plumes as they propagated along estuary due to a one week time lag between the maximum discharge of 540 m3 s-1 and maximum DOC concentration of 29.85 mg L-1 entering the NRE from the river. In the upper estuary, the surface DOC concentration increased by 18 mg L-1 above the pre-storm value of 7 mg L-1; the maximum concentration occurred 10 days after the passage of the storm. In the lower estuary, the outer edge of the DOC plume reached Pamlico Sound after 3 weeks with a surface DOC concentration that was 3 mg L-1 above the pre-storm value. Results also indicate cross-channel salinity differences up to 10 ppt and DOC concentration differences up to 15 mg L-1 in the upper NRE to due to wind-driven motion of the estuary. The methods described here could be applied to other coastal plain estuarine systems to simulate and characterize flow rates and DOC transport during and succeeding storm events where field measurements are often limited.

  12. Toxicity to embryo and adult zebrafish of copper complexes with two malonic acids as models for dissolved organic matter

    SciTech Connect

    Palmer, F.B.; Evans, C.W.; Butler, C.A.; Timperley, M.H.

    1998-08-01

    The toxicity to embryo and adult zebrafish (Danio rerio) of Cu complexes with two substituted malonic acids, benzyl- and n-hexadecyl-, chosen as models for low-molecular-weight natural dissolved organic matter, were investigated. Toxicity test solutions at pH 6.5 {+-} 0.1 with the required Cu ion-specific electrode. In the absence of malonic acids, concentrations of Cu{sup 2+} up to 1.13 {mu}mol/L increased the embryo hatching time from approx. 2 d in control solutions (no Cu or malonic acid) and solutions containing malonic acids without Cu to approx. 8 d. The Cu-benzylmalonic acid complex in the presence of inorganic Cu species did not delay hatching beyond that attributable to Cu{sup 2+}. In contrast, 0.60 {mu}mol/L Cu-n-hexadecylmalonic complexes delayed hatching by 5.5 d in excess of that attributable to 1.13 {mu}mol/L Cu{sup 2+}, assuming that the hatching delays caused by the different Cu species were additive, possibly because of Cu entry into the embryo as the lipophilic Cu-n-hexadecylmalonic complex. None of the Cu-malonic acid complexes was acutely toxic to adult zebrafish at concentrations up to 1.4 {mu}mol/L, possibly because Cu was removed from the Cu-malonic acid complexes by stronger chelating groups at the gill surface. Substituted malonic acids with similar proton and Cu association constants can be readily prepared with a variety of simple substituents, radiolabeled if required. Their results show that these acids could be useful ligands for investigating intracellular transport and metabolism of metal-organic complexes.

  13. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively. PMID:23925658

  14. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  15. Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles.

    PubMed

    Wang, Xilong; Ma, Enxing; Shen, Xiaofang; Guo, Xiaoying; Zhang, Meng; Zhang, Haiyun; Liu, Ye; Cai, Fei; Tao, Shu; Xing, Baoshan

    2014-11-01

    Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation. PMID:25089890

  16. An integrated Dissolved Organic Carbon Dynamics Model (DOCDM 1.0): model development and a case study in the Alaskan Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lu, X.; Zhuang, Q.

    2015-12-01

    Quantitative understanding of the variation in dissolved organic carbon (DOC) is important to studying the terrestrial ecosystem carbon cycle. This study presents a process-based, dissolved organic carbon dynamics model (DOCDM 1.0) that couples the soil heat conduction, water flow, DOC production, mineralization and transport in both surface and subsurface of soil profile to quantify DOC dynamics in boreal terrestrial ecosystems. The model is first evaluated and then applied for a watershed in Alaska to investigate its DOC production and transport. We find that 42 and 27 % of precipitation infiltrates to soils in 2004, a warmer year, and in 1976, a colder year, respectively. Under warming conditions, DOC transported via overland flow does not show the expected decrease trend while the overland DOC yield shows a 4 % increase. The horizontal subsurface flow only accounts for 1-2 % of total water flux, but transports 30-50 % of DOC into rivers. Water flush due to water infiltration controls DOC transport. Snowmelt plays a noticeable role in DOC flush-out and DOC transport significantly depends on flowpaths in the study region. High soil temperature stimulates DOC production. The overland DOC export does not necessarily follow the DOC downward trend in surface water transport. Overall, this study shows that DOC export behavior is complex under changing temperature and hydrological conditions in cold-region watersheds. To adequately quantify DOC dynamics in northern high latitudes, more DOC and hydrological data are needed to better parameterize and test the developed model before extrapolating it to the region.

  17. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    NASA Astrophysics Data System (ADS)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    models of different environmental compartments (soil chemistry, agricultural management practices, aquatic processes, costs and benefits for society) with explicit treatment of uncertainty. In order to achieve policy relevance, these models have to be integrated into resource management. We use a Bayesian belief net to describe the probabilistic dependencies among the driving forces, processes, and impacts relevant to dissolved organic matter in boreal waterways.

  18. Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling

    NASA Astrophysics Data System (ADS)

    Schelker, J.; Burns, D. A.; Weiler, M.; Laudon, H.

    2011-03-01

    The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ± 0.5 ng L-1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland areas, and the application of a flow algorithm based elevation-above-creek approach suggests that most wetlands become well connected during high flow. The dynamics of simulated saturated area and soil storage deficit were able to explain a large part of the variation of THg concentrations (r2 = 0.53 to 0.72). In contrast, the simulations were not able to explain DOC variations and DOC and THg concentrations were not correlated. These results indicate that all three constituents, THg, MeHg, and DOC, follow different patterns at the outlet: (1) the mobilization of THg is primarily controlled by the saturation state of the catchment, (2) the dilution of MeHg suggests flushing from a supply limited pool, and (3) DOC dynamics follow a pattern different from THg dynamics, which likely results from differing gain and/or loss processes for THg and/or DOC within the Fishing Brook catchment.

  19. Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling

    USGS Publications Warehouse

    Schelker, J.; Burns, Douglas A.; Weiler, M.; Laudon, H.

    2011-01-01

    The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ?? 0.5 ng L -1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland areas, and the application of a flow algorithm based elevation-above-creek approach suggests that most wetlands become well connected during high flow. The dynamics of simulated saturated area and soil storage deficit were able to explain a large part of the variation of THg concentrations (r2 = 0.53 to 0.72). In contrast, the simulations were not able to explain DOC variations and DOC and THg concentrations were not correlated. These results indicate that all three constituents, THg, MeHg, and DOC, follow different patterns at the outlet: (1) the mobilization of THg is primarily controlled by the saturation state of the catchment, (2) the dilution of MeHg suggests flushing from a supply limited pool, and (3) DOC dynamics follow a pattern different from THg dynamics, which likely results from differing gain and/or loss processes for THg and/or DOC within the Fishing Brook catchment. Copyright 2011 by the American Geophysical Union.

  20. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  1. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  2. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  3. Bioavailability and characterization of dissolved organic nitrogen and dissolved organic phosphorus in wastewater effluents.

    PubMed

    Qin, Chao; Liu, Haizhou; Liu, Lei; Smith, Scott; Sedlak, David L; Gu, April Z

    2015-04-01

    There is still a great knowledge gap in the understanding of characteristics and bioavailability of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) in wastewater effluents, which surmise implications related to both discharge regulation and treatment practice. In this study, we simultaneously investigated the characteristics and bioavailability of both DON and DOP, with separated hydrophilic versus hydrophobic fractions, in highly-treated wastewater effluents for the first time. The tertiary effluents from two wastewater treatment plants were separated into two fractions by XAD-8 resin coupled with anion exchange resin based on the hydrophobicity. Results showed that the majority of DON was present in hydrophilic forms while more DOP existed in hydrophobic forms. Hydrophilic DON contributed to 64.0%-72.2% of whole DON, while hydrophobic DOP accounted for 61.4%-80.7% of total DOP for the two plants evaluated. The effluents and their fractions were then subject to bioavailability assay based on 14-day algae growth. The results indicated that majority (~73-75%) of the effluent DOP, particularly the hydrophobic fraction with lower C/P ratio was more likely to be bioavailable for algal growth. The bioavailable fraction of DON varied widely (28%-61%) for the two plants studied and the hydrophilic fraction with lower C/N ratio seemed to exhibit higher bioavailability than the hydrophobic portion. The differences in bioavailable DON and DOP distributions of effluents from those two plants could be attributed to different receiving effluent compositions and wastewater treatment processes. In addition, fluorescence excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC) were used to characterize the dissolved organic matter (DOM) in wastewater effluent, which provided insights into the nature of organic matter in wastewater samples with different characteristics and originating sources. PMID:25527968

  4. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  5. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    USGS Publications Warehouse

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  6. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  7. Kinetics of desorption of organic compounds from dissolved organic matter.

    PubMed

    Kopinke, Frank-Dieter; Ramus, Ksenia; Poerschmann, Juergen; Georgi, Anett

    2011-12-01

    This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important. PMID:22035249

  8. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  9. Possible method for dissolved organic carbon speciation in forest soils

    NASA Astrophysics Data System (ADS)

    Drabek, O.; Tejnecký, V.; Ash, C.; Hubova, P.; Boruvka, L.

    2013-12-01

    Dissolved organic carbon (DOC) is a natural part of dissolved organic matter and it plays an important role in the biogeochemistry of soil processes. Low Molecular Mass Organic Acids (LMMOA) are an essential part of DOC. These acids play a key role in chemical processes that affect the entire soil environment. Knowing the amount of DOC and the speciation of LMMOA is required for realistic equilibrium modelling of soil chemical processes and transport mechanisms. There have been a number of proposed methods for the quantitative analysis of DOC and for speciation of LMMOA. The first aim of this contribution is to introduce and test a modified spectroscopic method for the determination of water-extractable organic carbon (WEOC) from forest soils. In general this method is based on the oxidization of WEOC by chromium-sulphuric acid. The presented method can be used as an economical alternative to the classical, more financially demanding elemental analysis. However, the main aim is to test the reliability of the method for LMMOA speciation. Ion exchange chromatography (IC) with hydroxide elution has proven to be a useful tool for the determination of LMMOA in many different water-based samples. However, the influence of multivalent cations (often present in environmental samples) on IC results has not yet been sufficiently studied. In order to assess the influence of Al, Fe, Mn, Mg and Ca on the amount of LMMOA determined by IC, an extensive set of model solutions was prepared and immediately analysed by means of IC. Moreover, the influence of pH on determined amounts of LMMOA in model solutions and representative soil aqueous extracts was investigated. These experimental results were compared to expected values and also to results provided by the chemical equilibrium model - PHREEQC. Based on the above listed research, some modifications to the common IC method for LMMOA speciation are presented.

  10. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  11. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  12. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  13. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  14. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    NASA Astrophysics Data System (ADS)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (<1 kDalton). Surprisingly, high-molecular-weight (>1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically

  15. Dissolved Organic Matter Transformations: Implications for Catchment-Scale Processes

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Hernes, P.; Montanez, I.; Eustis, B.

    2006-12-01

    Particulate and dissolved phase lignin parameters are used to understand sources and dynamics of terrigenous organic matter (OM) in freshwater and marine systems. Impacts of catchment properties, such as soil type and mineralogy, vegetation distribution and hydrologic conditions on terrestrial dissolved and particulate biomarker compositions have not been addressed. Our experimental approach deciphers relative contributions of these parameters on bulk DOM compositions. Carbon-normalized lignin yields (Λ8) are one means to assess contributions of lignin phenols to bulk organic carbon. Ratios of syringyl (S), vanillyl (V) and cinnamyl (C) lignin phenols distinguish angiosperm and gymnosperm woody and nonwoody tissues. Ratios of acids:aldehydes (ad:ac) within vanillyl groups indicate diagenetic alteration of OM. Interpretation of these ratios relies on the fundamental assumption that each lignin compound behaves similarly, despite differences in solubility and sorption. Fractionation due to leaching impacts C:V, ac:al and (Λ8). C:V ranges from 1/2 to 4 times original plant compositions, increasing proportions of DOM ascribed to nonwoody tissues. Shifts in C:V and S:V due to leaching, suggest that source ratios from plant materials may not be appropriate endmembers for dissolved phases. An ~2-fold increase in ac:al ratios between litters and leachates suggest that dissolved phases are more diagenetically altered than litters, although this is simply due to solubilization. Λ8 values, tracking lignin and bulk carbon solubility differences, indicate greater loss of bulk OM relative to lignin for most plant litters. During sorption of leachates to mineral soils, lignin compositional trends are more variable compared to leaching data. Sorption of angiosperm leachates resulted in significant enrichment of S phenols on soils, which would increase the inferred contribution of angiosperms obtained for mixtures. C:V fractionation during sorption decreased in 3 of 4 plant

  16. Estimating the Age Distribution of Oceanic Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Follett, C. L.; Forney, D. C.; Repeta, D.; Rothman, D.

    2010-12-01

    Dissolved organic carbon (DOC) is a large, ubiquitous component of open ocean water at all depths and impacts atmospheric carbon dioxide levels at both short and long timescales. It is currently believed that oceanic DOC contains a multi-thousand-year-old refractory deep-water component which is mixed with a young labile component in surface waters. Unfortunately, the only evidence for this comes from a few isolated depth profiles of both DOC concentration and bulk radiocarbon. Although the profile data is consistent with a two-component mixing model, directly separating the two components has proven to be a challenge. We explore the validity of the two component mixing model by directly estimating the age distribution of oceanic DOC. The two-component model suggests that the age distribution is composed of two distinct peaks. In order to obtain an estimate of the age distribution we first record changes in both concentration and percent radiocarbon as a sample is oxidized under ultra-violet radiation [1]. We formulate a mathematical model relating the age distribution to these changes, assuming that they result from components of different radiocarbon age and UV-reactivity. This allows us to numerically invert the data and estimate the age distribution. We apply our procedure to DOC samples collected from three distinct depths (50, 500, and 2000 meters) in the north-central Pacific Ocean. [1] S.R. Beaupre, E.R.M. Druffel, and S. Griffin. A low-blank photochemical extraction system for concentration and isotopic analyses of marine dissolved organic carbon. Limnol. Oceanogr. Methods, 5:174-184, 2007.

  17. Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    PubMed Central

    Arnosti, Carol; Steen, Andrew D.; Ziervogel, Kai; Ghobrial, Sherif; Jeffrey, Wade H.

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle. PMID:22216139

  18. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  19. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  20. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  1. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  2. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types. PMID:25055664

  3. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. PMID:24839192

  4. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.

    PubMed

    Arnaldos, Marina; Pagilla, Krishna

    2010-10-01

    Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results. PMID:20643469

  5. Unimodal response of fish yield to dissolved organic carbon.

    PubMed

    Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Hesthagen, Trygve; Hessen, Dag O

    2014-01-01

    Here, we demonstrate a contrasting effect of terrestrial coloured dissolved organic material on the secondary production of boreal nutrient poor lakes. Using fish yield from standardised brown trout gill-net catches as a proxy, we show a unimodal response of lake secondary productivity to dissolved organic carbon (DOC). This suggests a trade-off between positive and negative effects, where the initial increase may hinge upon several factors such as energy subsidising, screening of UV-radiation or P and N load being associated with organic carbon. The subsequent decline in production with further increase in DOC is likely associated with light limitations of primary production. We also show that shallow lakes switch from positive to negative effects at higher carbon loads than deeper lakes. These results underpin the major role of organic carbon for structuring productivity of boreal lake ecosystems. PMID:24165396

  6. Dissolved Organic Matter: a Master Variable for Predicting and Modeling the Effects of Climatic and Environmental Change on Mercury Transport and Reactivity

    NASA Astrophysics Data System (ADS)

    Aiken, G.

    2013-12-01

    It is known that dissolved organic matter (DOM) exerts strong controls on the transport and reactivity of Hg in aquatic systems. Our research has demonstrated that DOM binds Hg strongly, interacts with nanoparticulate HgS to stabilize and enhance reactivity, and controls, in part, the availability of Hg for methylation by micro-organisms. In many rivers and streams, DOM and dissolved Hg concentrations are strongly positively correlated and DOM optical properties have been shown to be excellent proxies for Hg concentration. Of particular importance is the hydrophobic acid fraction of DOM that contains primarily terrestrially derived aquatic humic substances. This fraction is derived, in large part, from watershed soils and plant litter, is chromophore-rich, and strongly influences DOM optical properties, such as ultraviolet (UV) absorbance, fluorescence, and specific UV absorbance (SUVA - an indicator of DOM aromaticity). In most rivers and streams studied by our group, the relationships between total dissolved Hg concentration and hydrophobic organic acid (HPOA) content are often stronger than those observed between dissolved Hg and DOM. These results and those of lab studies support the hypothesis that interactions between Hg and the HPOA fraction are important drivers for the transport and reactivity of dissolved Hg in aquatic systems. Therefore, understanding how climate or land use related changes may influence DOM and HPOA export and yield within a particular watershed is key to predicting in the fate and bioaccumulation of Hg in that system. Watershed hydrology, the nature of source materials, and biogeochemical processes throughout the entire ecosystem drive DOM composition. In particular, the abundance of wetlands within a river basin is an excellent indicator of DOM concentration, DOM optical properties, and the concentration of HPOA. For instance, for 17 major North American rivers we found significant positive correlations between basin wetland-cover and

  7. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1). PMID:24083647

  8. Predicting dissolved organic nitrogen export from a drained loblolly pine plantation

    NASA Astrophysics Data System (ADS)

    Tian, Shiying; Youssef, Mohamed A.; Skaggs, R. Wayne; Chescheir, G. M.; Amatya, Devendra M.

    2013-04-01

    Dissolved organic nitrogen (DON) export from terrestrial ecosystems influences the ecology of receiving surface waters. The soil carbon (C) and nitrogen (N) model, DRAINMOD-N II, was modified to simulate key processes associated with DON transformations and transport in the soil profile. DON production is modeled by tracking dynamic C:N ratios of dissolved organic matter originating from various organic matter pools. The Langmuir isotherm was used to quantify the assumed instantaneous equilibrium between potentially soluble organic N in solid and aqueous phases. DON transport with soil water was simulated using a numerical solution to the advection-dispersion reaction equation. The modified model was used for simulating temporal variations of DON export from three loblolly pine (Pinus taeda L.) plantations located in eastern North Carolina. Results showed that the model can accurately predict DON export dynamics during storm events with Nash-Sutcliffe efficiency (E) of 0.5, seasonal DON losses with E above 0.6, and annual DON losses with E above 0.7. In addition to the well-recognized role of hydrological processes, reasonable quantifications of the seasonal changes in the potentially soluble soil organic matter, the DON sorption to soil particles, and the dynamic C:N ratios of dissolved organic matter were found to be essential for mechanistic representation of DON export dynamics. Specifically, adapting the dynamic C:N ratios enabled the model to reasonably describe the temporal variations of correlations between DON and dissolved organic carbon in drainage water.

  9. Dissolved organic carbon reduces the toxicity of aluminum to three tropical freshwater organisms.

    PubMed

    Trenfield, Melanie A; Markich, Scott J; Ng, Jack C; Noller, Barry; van Dam, Rick A

    2012-02-01

    The influence of dissolved organic carbon (DOC) on the toxicity of aluminum (Al) at pH 5 (relevant to acid mine drainage conditions), to the tropical green hydra (Hydra viridissima), green alga (Chlorella sp.), and cladoceran (Moinodaphnia macleayi) was assessed. Two DOC sources, a natural in situ DOC in soft billabong water (SBW) and Suwannee River fulvic acid (SRFA) standard, were compared. The order of sensitivity of the test organisms to dissolved Al (0.1 µm fraction) was Hydra viridissima > Moinodaphnia macleayi > Chlorella sp. with DOC reducing dissolved Al toxicity most for Hydra viridissima. However, colloidal or precipitated Al may contribute indirectly to the toxicity for M. macleayi and Chlorella sp. The toxicity of dissolved Al was up to six times lower in test waters containing 10 mg L(-1) DOC (in the form of SRFA), relative to toxicity observed at 1 mg L(-1) DOC. In contrast, the toxicity of Al was up to two times lower in SBW containing 10 mg L(-1) DOC, relative to water containing 1 mg L(-1) DOC. The increased ability of SRFA in reducing Al toxicity was linked to its greater affinity for complexing Al compared with the in situ DOC. This has important implications for studies that use commercial standards of humic substances to predict Al toxicity in local environments. Speciation modeling demonstrated that Al(3+) and AlOH(2+) provided a strong relationship with toxicity. An empirical relationship is provided for each organism that can be used to predict Al toxicity at a given Al and DOC concentration. PMID:22105345

  10. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  11. Photochemical flocculation of terrestrial dissolved organic matter and iron

    NASA Astrophysics Data System (ADS)

    Helms, John R.; Mao, Jingdong; Schmidt-Rohr, Klaus; Abdulla, Hussain; Mopper, Kenneth

    2013-11-01

    Dissolved organic matter (DOM) rich water samples (Great Dismal Swamp, Virginia) were 0.1-μm filtered and UV-irradiated in a solar simulator for 30 days. During the irradiation, pH increased, particulate organic matter (POM) and particulate iron formed. After 30 days, 7% of the dissolved organic carbon (DOC) was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present or the pH was low enough to keep iron in solution. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that photochemically flocculated POM was more aliphatic than the residual non-flocculated DOM. Photochemically flocculated POM was also enriched in amide functionality, while carbohydrate-like material was resistant to both photochemical degradation and flocculation. Abiotic photochemical flocculation likely removes a significant fraction of terrestrial DOM from the upper water column between headwaters and the ocean, but has previously been ignored. Preliminary evidence suggests that this process may significantly impact the transport of DOM and POM in ocean margin environments including estuaries.

  12. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  13. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    USGS Publications Warehouse

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, R.G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  14. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    NASA Astrophysics Data System (ADS)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  15. Effect of bacteria and dissolved organics on mineral dissolution kinetics:

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg; Shirokova, Liudmila; Benezeth, Pascale; Zabelina, Svetlana

    2010-05-01

    Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling of water-rock interactions under earth surface and subsurface environments. This is especially true for deep underground settings within the context of CO2 capture, sequestration and storage. First, elevated CO2 pressures create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, reactivity of main rock-forming minerals in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of microbial habitats of the subsurface biosphere are not suitable for routine culturing in the laboratory, many of them are anaerobic and even strictly anaerobic, and many bacteria and archae cultures can live only in the consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration. For experimental modeling of bio-mineral interactions in the laboratory, two other main conceptual challenges exist. Typical concentration of dissolved organic carbon that serves as a main nutrient for heterotrophic bacteria in underground waters rarely exceeds 3-5 mg/L. Typical concentration of DOC in nutrient media used for bacteria culturing is between 100 and 10,000 mg/L. Therefore, performing mineral-bacteria interactions in the laboratory under environmentally-sound conditions requires significant dilution of the nutrient media or the use of flow-through reactors. Concerning the effect of organic ligands and bacterial excudates on rock-forming mineral dissolution, at the present time, mostly empirical (phenomenological) approach can be used. Indeed, the pioneering studies of Stumm and co-workers have established a firm basis for modeling the catalyzing and inhibiting effects of ligands on metal oxide dissolution rate. This approach, very efficient for studying the interaction of organic and

  16. Meridional fluxes of dissolved organic matter in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.

    1992-01-01

    Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.

  17. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  18. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    SciTech Connect

    Jagadamma, Sindhu; Mayes, Melanie; Phillips, Jana Randolph

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  19. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    SciTech Connect

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

  20. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Stubbins, Aron; Hernes, Peter J.; Baker, Andy; Mopper, Kenneth; Aufdenkampe, Anthony K.; Dyda, Rachael Y.; Mwamba, Vincent L.; Mangangu, Arthur M.; Wabakanghanzi, Jose N.; Six, Johan

    2009-09-01

    Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (Σ8) and carbon-normalized yields (Λ8), equivalent to losses of ˜45, 85-95, >95 and >95% of initial values, respectively, and a +3.1 ‰ enrichment of the δ13C-DOC signature. The loss of Λ8 and enrichment of δ13C-DOC during irradiation was strongly correlated (r = 0.99, p < 0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of Λ8 (e.g., a355 versus Λ8; r = 0.98, p < 0.01) and δ13C-DOC (e.g., a355 versus δ13C; r = 0.97, p < 0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean.

  1. Importance of Dissolved Organic Nitrogen to Water Quality in Narragansett Bay

    EPA Science Inventory

    This preliminary analysis of the importance of the dissolved organic nitrogen (DON) pool in Narragansett Bay is being conducted as part of a five-year study of Narragansett Bay and its watershed. This larger study includes water quality and ecological modeling components that foc...

  2. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

  3. Spatial and temporal variation of dissolved organic matter in the Changjiang: Fluvial transport and flux estimation

    NASA Astrophysics Data System (ADS)

    Bao, Hongyan; Wu, Ying; Zhang, Jing

    2015-09-01

    The Changjiang is the most important source of freshwater and dissolved organic matter (DOM) for the East China Sea. However, knowledge regarding the sources, seasonal fluxes, and fluvial transport of terrigenous DOM (tDOM) in the Changjiang is lacking. To fill this knowledge gap, we measured dissolved organic carbon (DOC) and dissolved lignin in water samples collected in the middle and lower Changjiang under different hydrological conditions. Additional samples were collected biweekly in the lower Changjiang. Through comparisons with other rivers, we found that the DOC in the Changjiang is mainly from soil organic matter and has a higher fraction of tDOM during flood. Mass balance model results indicate that approximately 33% of the dissolved lignin discharged into the middle and lower Changjiang is removed during its transport to the lower reach during both low-discharge and flood periods. Based on a comparison of the removal rates under these two contrasting hydrological conditions and considering the lower organic carbon content and fine grain size of the Changjiang's suspended particles, we speculate that the major process for the removal of dissolved lignin is sorption, and potentially flocculation by suspended particles. Changjiang discharges 1.4 ± 0.10 Tg yr-1 and 8.6 ± 0.30 Gg yr-1 DOC and dissolved lignin to the estuary during the period of July 2010 to June 2011, respectively. Seasonal distributions of DOC and dissolved lignin fluxes are controlled by water discharge, which will be affected by future climate change and the Three Gorges Dam.

  4. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    PubMed Central

    Jagadamma, Sindhu; Mayes, Melanie A.; Phillips, Jana R.

    2012-01-01

    Background Physico-chemical sorption onto soil minerals is one of the major processes of dissolved organic carbon (OC) stabilization in deeper soils. The interaction of DOC on soil solids is related to the reactivity of soil minerals, the chemistry of sorbate functional groups, and the stability of sorbate to microbial degradation. This study was conducted to examine the sorption of diverse OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols). Methodology Equilibrium batch experiments were conducted using 0–100 mg C L−1 at a solid-solution ratio of 1∶60 for 48 hrs on natural soils and on soils sterilized by γ-irradiation. The maximum sorption capacity, Qmax and binding coefficient, k were calculated by fitting to the Langmuir model. Results Ultisols appeared to sorb more glucose, alanine, and salicylic acid than did Alfisols or Mollisols and the isotherms followed a non-linear pattern (higher k). Sterile experiments revealed that glucose and alanine were both readily degraded and/or incorporated into microbial biomass because the observed Qmax under sterile conditions decreased by 22–46% for glucose and 17–77% for alanine as compared to non-sterile conditions. Mollisols, in contrast, more readily reacted with oxalic acid (Qmax of 886 mg kg−1) and sinapyl alcohol (Qmax of 2031 mg kg−1), and no degradation was observed. The reactivity of Alfisols to DOC was intermediate to that of Ultisols and Mollisols, and degradation followed similar patterns as for Ultisols. Conclusion This study demonstrated that three common temperate soil orders experienced differential sorption and degradation of simple OC compounds, indicating that sorbate chemistry plays a significant role in the sorptive stabilization of DOC. PMID:23209742

  5. Metabolomics confirms that dissolved organic carbon mitigates copper toxicity.

    PubMed

    Taylor, Nadine S; Kirwan, Jennifer A; Yan, Norman D; Viant, Mark R; Gunn, John M; McGeer, James C

    2016-03-01

    Reductions in atmospheric emissions from the metal smelters in Sudbury, Canada, produced major improvements in acid and metal contamination of local lakes and indirectly increased dissolved organic carbon (DOC) concentrations. Metal toxicity, however, has remained a persistent problem for aquatic biota. Integrating high-throughput, nontargeted mass spectrometry metabolomics with conventional toxicological measures elucidated the mediating effects of dissolved organic matter (DOM) on the toxicity of Cu to Daphnia pulex-pulicaria, a hybrid isolated from these soft water lakes. Two generations of daphniids were exposed to Cu (0-20 μg/L) at increasing levels of natural DOM (0-4 mg DOC/L). Added DOM reduced Cu toxicity monotonically with median lethal concentration values increasing from 2.3 μg/L Cu without DOM to 22.7 μg/L Cu at 4 mg DOC/L. Reproductive output similarly benefited, increasing with DOM, yet falling with increases in Cu. Second generation reproduction was more impaired than the first generation. Dissolved organic matter had a greater influence than Cu on the metabolic status of the daphniids. Putative identification of metabolite peaks indicated that DOM elevation increased the metabolic energy status of the first generation animals, but this benefit was reduced in the second generation, although evidence of increased oxidative stress was detected. These results indicate that Sudbury's terrestrial ecosystems should be managed to increase aquatic DOM supply to enable daphniid colonists to both survive and foster stable populations. Environ Toxicol Chem 2016;35:635-644. © 2015 SETAC. PMID:26274843

  6. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  7. Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Bowers, David G.; Autio, Riitta; Kaartokallio, Hermanni; Thomas, David N.

    2014-10-01

    The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities (<2) in the estuarine samples of dissolved organic carbon (DOC), UV absorption (a(CDOM254)), and humic-like fluorescence. The maximum deviation from conservative mixing for DOC concentration was -16%, at salinities between 1 and 2. An associated laboratory experiment was conducted where an artificial salinity gradient between 0 and 6 was created. The experiment confirmed the findings from the estuarine transects, since part of the DOC and dissolved iron pools were transformed to particulate fraction (>0.2 µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.

  8. Dissolved organic matter export from a forested watershed during Hurricane Irene

    NASA Astrophysics Data System (ADS)

    Yoon, Byungman; Raymond, Peter A.

    2012-09-01

    We incorporate high-resolution time-series data to calculate the total amount of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) transported during Hurricane Irene in Esopus Creek in New York (August 2011). During this 200-yr event the Esopus Creek experienced a 330-fold discharge increase and a 4-fold increase in concentration, resulting in the export of roughly 43% and 31% of its average annual DOC and DON fluxes, respectively, in just 5 days. The source of this large dissolved organic matter (DOM) flux also shifted during its course and showed an increased contribution of aromatic organic matter. We conclude that more frequent large events due to climate change will increase the export of terrigenous dissolved organic matter, and potentially impact the water quality and biogeochemistry of lakes and coastal systems. In addition, we show that the use of conventional models for extreme events lead to erroneous flux calculations, unless supported by high resolution data collected during the events.

  9. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  10. Groundwater-transported dissolved organic nitrogen exports from coastal watersheds

    USGS Publications Warehouse

    Kroeger, K.D.; Cole, Marci L.; Valiela, I.

    2006-01-01

    We analyzed groundwater-transported nitrogen (N) exports from 41 watershed segments that comprised 10 Cape Cod, Massachusetts watersheds to test the hypotheses that chemical form of N exports is related to land use and to length of flow paths through watersheds. In the absence of human habitation, these glacial outwash-plain watersheds exported largely dissolved organic N (DON) but at relatively low annual rate. Addition of people to watersheds increased rates of both total dissolved N (TDN) and DON export through groundwater. Percent of TDN as DON in groundwater was negatively related to path length of groundwater through aquifers, but %DON was not significantly related to population density on the watersheds. DON was often the dominant form of N exported from the watersheds, even at high population densities. Our results suggest that natural sources are not entirely responsible for organic N exports from watersheds, but, instead, a substantial portion of anthropogenic N introduced to watersheds is exported as DON. This finding is in disagreement with previous results, which suggest that anthropogenic N is exported from watersheds largely as NO 3- and that DON exported from watersheds is from natural sources. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  11. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  12. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  13. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  14. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters. PMID:24828085

  15. Dissolved organic nitrogen in precipitation: Collection, analysis and atmospheric flux

    SciTech Connect

    Scudlark, J.R.; Church, T.M.; Russell, K.M.; Montag, J.A.; Maben, J.R.; Keene, W.C.; Galloway, J.N.

    1995-12-31

    Recent studies have documented the importance of atmosphere inorganic nitrogen deposition to coastal waters. However, due to the limited number of field measurements and concerns about the reliability of measurement techniques, the aeolian flux of organic N is very uncertain. Coordinated studies have been initiated at Lewes, DE and Charlottesville, VA to evaluate collection and analysis techniques for dissolved organic nitrogen (DON) in precipitation and to provide preliminary estimate of DON wet fluxes. Sampling was conducted both manually and employing an automated wet-only collector (ACM) on a daily basis. A total of 37 events were analyzed from October 1993 through December 1994. Side-by-side comparisons of standard white HDPE buckets and stainless steel and glass collection vessels indicate sampling artifacts associate with plastic buckets. DON in precipitation appears to be highly labile, with significant losses observed in some samples within 12 hours. Analytical methods evaluated include persulfate wet chemical oxidation, UV photo-oxidation and a modified high temperature instrumental (ANTEK 7000) technique. Based on preliminary results, the volume-weighted average concentration of DON in precipitation at the mid-Atlantic coast is 9.1 {micro}moles/1. On an annual basis, DON compromises 23% of the total dissolved nitrogen in precipitation, varying from 0--64% on an event basis. From an ecological perspective, DON wet flux represents a quantitatively important exogenous source of N to coastal waters such as Chesapeake Bay.

  16. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  17. Release of biodegradable dissolved organic matter from ancient sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Schillawski, Sarah; Petsch, Steven

    2008-09-01

    Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis of shale-derived DOM reveals a highly aliphatic, carbohydrate-poor material distinct from other natural DOM pools. Shale-derived DOM is rapidly assimilated and biodegraded by aerobic heterotrophic bacteria. Consequently, no compositional signature of shale-derived DOM other than 14C-depletion is likely to persist in rivers or other surface reservoirs. Combined, these efforts show that dissolution provides a mechanism for the conversion of refractory kerogen into labile biomass, linking rock weathering with sedimentary OM oxidation and the delivery of aged OM to rivers and ocean margins.

  18. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  19. Dilution limits dissolved organic carbon utilization in the deep ocean

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesús M.; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-04-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored.

  20. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  1. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    PubMed

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. PMID:26580726

  2. Use of Passive Samplers to Measure Dissolved Organic Contaminants in a Temperate Estuary

    EPA Science Inventory

    Measuring dissolved concentrations of organic contaminants can be challenging given their low solubilities and high particle association. However, to perform accurate risk assessments of these chemicals, knowing the dissolved concentration is critical since it is considered to b...

  3. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    EPA Science Inventory

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  4. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  5. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  6. Radiocarbon in dissolved organic carbon of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R. M.; Griffin, S.; Coppola, A. I.; Walker, B. D.

    2016-05-01

    Marine dissolved organic carbon (DOC) is produced in the surface ocean though its radiocarbon (14C) age in the deep ocean is thousands of years old. Here we show that ≥10% of the DOC in the deep North Atlantic is of postbomb origin and that the 14C age of the prebomb DOC is ≥4900 14C year, ~900 14C year older than previous estimates. We report 14C ages of DOC in the deep South Atlantic that are intermediate between values in the North Atlantic and the Southern Ocean. Finally, we conclude that prebomb DOC 14C ages are older and a portion of deep DOC is more dynamic than previously reported.

  7. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  8. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  9. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-05-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr‑1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr‑1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  10. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-01-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  11. Dissolved organic carbon (DOC) in Arctic ground ice

    NASA Astrophysics Data System (ADS)

    Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H.

    2015-04-01

    Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  12. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  13. Export Fluxes of Dissolved Organic Carbon From the Yukon River

    NASA Astrophysics Data System (ADS)

    Guo, L.; Cai, Y.; Belzile, C.; MacDonald, R.

    2005-12-01

    Quantitative determination of export fluxes of carbon species through Arctic rivers is required to constrain the carbon budget in the Arctic Ocean and to understand the biogeochemical consequence of climate change in Northern drainage basins. In order to quantify the annual riverine export flux from the Yukon River, monthly or bimonthly water samples were collected at Pilot Station from July 2004 to July 2005 and analyzed for concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved inorganic carbon (DIC). Concentration of DOC varied from 182 to 1683 uM (average 441 uM), with the highest concentration during river ice opening and the lowest in April under the ice. In contrast, DIC concentration increased from ice opening in May (1178 uM) to winter frozen season (2128 uM), with an average of 1588 uM. In addition to the DOC maximum during ice opening, an elevated DOC concentration was observed during the early stage of river ice formation, suggesting the rejection of DOC from ice during its formation. There was a positive correlation of DOC with freshwater flow rate whereas DIC correlated negatively with flow, indicating a hydrological control on both components but different source terms and transport mechanisms. Integrated annual export flux during 2004/2005 was 2.78x1012 g-C/y for DOC and 4.53x1012 g-C/y for DIC. Within the annual fluxes, only 5% of DOC and 17% of DIC were exported during the winter period when the river was frozen over. Long-term observations of DOC and DIC together with their molecular and isotopic signatures are needed to understand how the Yukon River Basin responds to a changing climate.

  14. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    PubMed

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. PMID:27318445

  15. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates

    SciTech Connect

    Meima, J.A.; Van Zomeren, A.; Comans, R.N.J.

    1999-05-01

    The complexation of Cu with dissolved organic carbon (DOC) in leachates from fresh and 1.5-year old municipal solid waste incinerator (MSWI) bottom ash was studied using a competitive ligands-exchange solvent extraction procedure. At least two different ligands appear to be involved in the complexation of copper with DOC. The dissolved Cu appears to be 95--100% organically bound in leachates from both the fresh and the weathered bottom ash, and geochemical modeling indicates that the leaching of Cu from these ashes is primarily controlled by the availability of the organic ligands in the bottom ash. The mechanism that binds Cu to the solid phase is likely to be tenorite in the fresh bottom ash, and sorption to amorphous Fe/Al-(hydr)-oxides in the weathered bottom ash.

  16. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin W.; Larouche, Julia R.; Jones, Jeremy B.; Bowden, William B.; Balser, Andrew W.

    2014-10-01

    As high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If permafrost DOC is biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC (BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope of Alaska and tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. However, elevated BDOC only persisted during active permafrost degradation, with a return to predisturbance levels once thermokarst features stabilized. Biodegradability was correlated with background nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical composition may be a more important control on DOC processing. Despite its high biodegradability, permafrost DOC showed evidence of substantial previous microbial processing, and we present four hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks and lake shores and can remain active for decades, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the Arctic warms.

  17. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  18. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  19. When dissolved is not truly dissolved--the importance of colloids in studies of metal sorption on organic matter.

    PubMed

    Schijf, Johan; Zoll, Alison M

    2011-09-01

    In controlled metal sorption experiments, the equilibrium distribution coefficient is a key variable quantifying sorbate partitioning across the solid-solution interface. Separation of metals into 'dissolved' and 'particulate' fractions is commonly achieved with syringe filtration, where the boundary is somewhat arbitrarily dictated by the limited selection of available pore sizes. Investigations involving natural organic matter, such as bacterial cells or plant tissues, are especially prone to experimental artifacts if the substrate releases abundant colloidal compounds that contribute to sorption by binding free metal cations in a pH-dependent fashion yet pass through conventional filters, causing the truly dissolved fraction to be grossly overestimated. We observed this phenomenon during a study of lanthanide sorption on a marine macroalga, Ulva lactuca, as a function of pH. At low ionic strength, distribution coefficients calculated for a 0.22-μm size cutoff falsely imply that metal sorption reverses to gradual release above pH 4.6, instead of continuing to increase. Centrifuging the filtrates in Amicon® Ultra units (30 and 3 kDa molecular weight cutoff) revealed a mounting proportion of colloid-bound metal, constituting up to 95% of the 'dissolved' (<0.22 μm) fraction near pH 8. Measurements of DOC concentrations suggest this being due to pH-dependent binding of free metal cations to a fixed pool of organic colloids. The process is well described with a simple 2-site Langmuir isotherm in 0.05, 0.5, and 5.0M NaCl. Using this model to correct the original distribution coefficients not only removed the spurious reversal at low ionic strength, but also uncovered a prominent suppressive effect on the intermediate and high ionic strength data that had initially gone undetected. Ultra-filtration may thus be an essential analytical tool for proper characterization and interpretation of metal sorption on organic matter over a wide range of experimental conditions

  20. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids

    SciTech Connect

    Han, N.; Thompson, M.L.

    1999-05-01

    The fate of metals in soils where soluble organic compound are present may be strongly influenced by the degree to which they are complexed by organic ligands. The authors undertook this study to determine the combined effect of molecular weight (MW) and hydrophobicity on the Cu-binding ability of dissolved organic compounds in biosolids (i.e., sewage sludge). Dissolved organic matter (DOM) from anaerobically digested sewage biosolids was fractionated by using a combination of MW fractionation and XAD-8 resin chromatography. The Cu-binding abilities of the DOM fractions were obtained by using a Cu{sup 2+}-ion-selective electrode (Cu-ISE) technique. The Cu-binding ability of fractionated DOM decreased significantly with increasing molecular weight, indicating that low-MW DOM had more metal-binding sites than high-MW DOM. Within each MW fraction, the hydrophilic and the hydrophobic components also exhibited differences in Cu-binding ability. For the DOM with MW 500--3,500 Da, the hydrophilic fraction showed a greater Cu-binding capacity than did the hydrophobic fraction, whereas the hydrophobic acid components were most important in binding Cu for DOM with MW > 3,500 Da. The maximum Cu-binding capacities of different biosolids-derived DOM fractions, estimated by employing a Langmuir model, ranged from 1.85 to 14.3 mmol Cu mol{sup {minus}1} dissolved organic C (DOC), which is the same order of magnitude as similar measurements of DOM from other sources.

  1. Changes in dissolved organic matter during stream drying and rewetting

    NASA Astrophysics Data System (ADS)

    von Schiller, D.; Acuña, V.; Graeber, D.; Martí, E.; Ribot, M.; Sabater, S.; Timoner, X.; Tockner, K.

    2012-04-01

    Dissolved organic matter (DOM) is a complex mixture of organic compounds, which represents an essential source of carbon (C) and nutrients in aquatic ecosystems. In addition, DOM can play a key ecological role by modifying the optical properties of waters, mediating the availability of metals and influencing trophic food web structure. While the effects of drying and rewetting on DOM dynamics in terrestrial soils is a well studied subject, less is known about its effects in aquatic ecosystems, especially in streams. This is an important gap of knowledge since temporary streams that naturally cease to flow are found worldwide. Moreover, many streams with perennial flow are currently facing flow intermittency due to the effects of water extraction or changes in land-use and climate. The aim of this study was to evaluate the effects of stream flow intermittency on the spatial and temporal variability of DOM. The study was performed in a 300-m long reach of the Fuirosos stream (Catalonia, NE Spain) during the drying (June to July) and rewetting (October to November) phases. We sampled at several points along the study reach every 3 to 4 days. We assessed DOM amount by measuring the concentration of dissolved organic C and nitrogen (N). We characterized DOM composition using spectroscopic measurements, size-exclusion chromatography and C:N stoichiometry. Results showed two markedly distinct biogeochemical shifts between the drying and the rewetting phases. During the transition from continuous to fragmented flow we observed an increase in the magnitude and spatial variability of DOM concentrations and DOM was dominated by compounds from aquatic origin. After flow recovery, we also observed a pronounced increase in DOM concentration, but during this hydrologic phase DOM was dominated by compounds of terrestrial origin. Taken together, these results emphasize the relevance of flow intermittency in regulating stream DOM dynamics not only in terms of its availability but

  2. Annual Cycling of Dissolved Organic Matter in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; McLoughlin, R.; McKnight, D. M.

    2009-12-01

    Boulder Creek, an alpine stream in the Colorado Front Range, runs through glacially-scoured landscapes and various alpine ecosystems from its headwaters at around 12,500 ft to the city of Boulder at around 6,000 ft. The flow in the lower potions of the creek is controlled by Barker Reservoir. As part of the Boulder Creek Critical Zone Observatory, water samples were collected from several sites along Boulder Creek at regular time intervals since May 2008. The concentration and quality of the Dissolved Organic Matter (DOM) in these samples was analyzed to understand the response to seasonal changes and variations in flow rates. Filtered samples were fractionated to isolate the humic material and both whole water and fulvic acid fractions were analyzed for dissolved organic carbon concentration as well as with fluorescence and UV-VIS spectroscopy. DOM concentration reached a maximum just before peak stream flow, likely due to dilution from the reservoir release. Near the end of summer, as flow slowed down and the dilution impact was minimized, the concentration began to rise again. In addition, the fluorescence index (FI), which can represent variations in DOM source, indicated a much higher microbial source during early snowmelt, likely due to microbial communities growing beneath the ice in the reservoir and lack of terrestrial runoff during the winter. The FI showed a slowly increasing terrestrial input throughout the summer as snowmelt and runoff from the watershed entered the stream. During late summer and fall the FI shifted back to a predominately microbial signal, indicative of less runoff and a greater percentage of DOM created in situ. In addition to stream measurements, surface soil samples along several transects were collected from a section of the watershed, as well as deeper samples from soil pits on both north-facing and south-facing slopes. DOM from these samples was leached with potassium sulfate and analyzed using the same techniques as the stream

  3. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

  4. Benthic bacterial biomass supported by streamwater dissolved organic matter.

    PubMed

    Bott, T L; Kaplan, L A; Kuserk, F T

    1984-12-01

    Bacterial biomass in surface sediments of a headwater stream was measured as a function of dissolved organic carbon (DOC) flux and temperature. Bacterial biomass was estimated using epifluorescence microscopic counts (EMC) and ATP determinations during exposure to streamwater containing 1,788μg DOC/liter and after transfer to groundwater containing 693μg DOC/liter. Numbers of bacteria and ATP concentrations averaged 1.36×10(9) cells and 1,064 ng per gram dry sediment, respectively, under initial DOC exposure. After transfer to low DOC water, biomass estimates dropped by 53 and 55% from EMC and ATP, respectively. The decline to a new steady state occurred within 4 days from ATP assays and within 11 days from EMC measures. A 4°C difference during these exposures had little effect on generation times. The experiment indicated that 27.59 mg/hour of natural DOC supported a steady state bacterial biomass of approximately 10μg C/g dry weight of sediment (from EMC determinations). Steady state bacterial biomass estimates on sediments that were previously muffled to remove organic matter were approximately 20-fold lower. The ratio of GTP∶ATP indicated differences in physiological condition or community composition between natural and muffled sediments. PMID:24221176

  5. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  6. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  7. Relationships between Nitrate and Dissolved Organic Nitrogen and Watershed Characteristics in a Rural Temperate Basin

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2002-05-01

    Global models have been developed to predict nitrate export, a main component of dissolved inorganic nitrogen (DIN) export, based on human population density and human activity. Controls on dissolved organic nitrogen (DON) export are largely unknown. We tested several global nitrate models and examined potential sources of riverine DON in the Lamprey River basin (479 km2) located in rural southeastern New Hampshire, and 11 of its sub-catchments. Dissolved organic nitrogen dominated total N export. Export of nitrate and DON from the Lamprey was 0.53 and 1.28 kg/ha/yr respectively. Mean annual nitrate and DON concentration in the Lamprey was 0.11 and 0.30 mg/L respectively. The global nitrate models over predicted (>200% difference) nitrate export for the Lamprey and all its sub-catchments except for the smallest most populated catchment. Population density (R2>0.89, p<0.00001) and riparian percentage agriculture (R2>0.90, p<0.00001) showed strong positive relationships with nitrate concentration and export. Dissolved organic nitrogen was not related to factors that control inorganic nitrogen (human population density or percentage agriculture). Non-purgeable organic carbon (NPOC) concentration and export (R2>0.84, p<0.0001), percentage wetland (R2=0.79, p<0.001) and riparian carbon storage (R2=0.84, p<0.0001) all showed strong positive relationships with DON. We conclude from the results of this study that human population density and activity are the main factors controlling DIN export and that wetlands and riparian soils are main sources of DON.

  8. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  9. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.

    PubMed

    Bateman, Adam P; Nizkorodov, Sergey A; Laskin, Julia; Laskin, Alexander

    2011-07-14

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05-1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300-400 nm radiation for up to 24 h. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly decreased by photolysis relative to the monomeric compounds. Direct pH measurements showed that acidic compounds increased in abundance upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and the formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonyls was further confirmed by the UV/Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ∼0.03. The total concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content. Photolysis of dry limonene SOA deposited on substrates was investigated in a separate set of experiments. The observed effects on the average O/C and DBE were similar to the aqueous photolysis, but the extent of chemical change was smaller in dry SOA. Our results suggest

  10. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  11. Dissolved inorganic and organic selenium in the Orca Basin

    NASA Astrophysics Data System (ADS)

    Takayanagi, Kazufumi; Wong, George T. F.

    1985-02-01

    The vertical distributions of Se (IV), Se (VI) and dissolved organic Se have been determined in the oxic and non-sulfide-bearing anoxic zones of the Orca Basin. In the oxic waters, the concentration of Se (IV) increases with depth gradually from 0.25 nmole/kg at the surface to a maximum of 0.46 nmole/kg at 750 m and then decreases with depth to a relatively constant concentration of 0.39 nmole/ kg below 1,230 m. The concentration of Se (VI) is rather uniform in the top 250 m at about 0.24 nmole/ kg. Below 250 m it increases with depth to 0.50 nmole/kg at 1.230 m, and it stays relatively constant below this depth. The concentration of organic Se increases from 0.50 nmole/kg at the surface to 1.39 nmole/kg at 78 m. A pronounced broad maximum of organic Se exists between 78 and 250 m. The concentration decreases with depth below 250 m, dropping sharply between 250 and 380 m and more gradually at greater depths. It becomes undetectable at 1,230 m. Organic Se is the dominant species above 250 m. Se (IV) is the most abundant between 250 and 1,000 m while Se (VI) becomes the dominant species below 1,000 m. The distributions of these three species can be explained by the biological uptake of Se in the surface waters and the multi-step regeneration of Se from biogenic particles at greater depths. In suboxic waters at the oxic-anoxic interface, the concentration of Se (IV) increases while that of Se (VI) decreases reflecting a change in redox conditions in the environment. In the anoxic brine, the concentration of Se (IV) is around 0.25 nmole/kg while Se (VI) is undetectable. The concentration of organic Se increases sharply in the suboxic waters and reaches 2.6 nmole/kg in the anoxic brines probably as a result of the decomposition of organic matter and/or a diffusive flux from the underlying sediment.

  12. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts.

    PubMed

    Mossad, Mohamed; Zou, Linda

    2013-01-15

    In this work, fouling, scaling and cleaning of the capacitive deionisation (CDI) with activated carbon electrodes were systematically investigated for the first time. Electrode fouling caused by dissolved organic matter using sodium salt of humic acid as a model foulant (measured by total organic carbon concentration, TOC) and inorganic salt (NaCl, MgCl(2), CaCl(2) and FeCl(3)) in the CDI feed solutions was investigated in a series of controlled fouling experiments. After each CDI experiment, a series of cleaning steps was performed to understand the reversibility of fouling accumulated on the electrode surface by analysing the cleaning solutions. The higher the TOC concentration in the CDI feed solution, the more the reduction of salt removal efficiency, declination in the production rate and energy consumption. Dissolved organic matter is the main cause of electrode fouling, as it blocks the activated carbon pores and reduces their electrosorption capacitance. Ca and Mg have no noticeable effect on the CDI treatment performance. However, Fe seemed to have a greater effect on CDI electrode fouling. Alkaline and acid cleaning solutions were able to restore the recovery of the CDI performance from fouling. Pre-treatment to reduce the dissolved organic matter levels is recommended to achieve sustainable treatment performance. PMID:23274796

  13. Dissolved Organic Carbon in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Striegl, R.; Schuster, P.

    2003-12-01

    A critical question in carbon cycling is how climate change could alter the fate and chemical nature of dissolved organic carbon (DOC) released from watersheds and transported to rivers, lakes, estuaries and coastal waters. The spatial and temporal variability of DOC in surface waters associated with the Yukon River Basin is being studied to better define the processes controlling DOC in this system. The Yukon River Basin, a large and diverse ecosystem in northwestern Canada and central Alaska, is experiencing increasing temperatures, partial melting of permafrost, drying of upland soils and changing wetland environments. However, little is known about DOC transported in the system. Specific ultraviolet absorbance (SUVA) measurements, in combination with DOC and DOC fractionation analyses, were used to determine both the amount and nature of DOC in the Yukon River and major tributaries. DOC transported in the Yukon River and its tributaries was seasonally dependent. For example, DOC concentrations in the Yukon River at Steven's Village ranged from 2 to 17 mg C/L during 2003, and SUVA ranged from 2.0 to 3.5 L/mg C m, indicating a large variation in amount and nature of organic matter in the river. Lowest DOC concentrations and SUVA values were observed in winter under low flow conditions. Greatest DOC concentrations were measured on samples collected during the spring on the leading part of the hydrograph. These samples were also found to have the greatest SUVA values indicating that the organic matter transported during this period was more aromatic than DOC transported under low flow conditions. High SUVA values are indicative of greater amounts of organic material originating in soils and wetlands of the watershed. The amount and nature of organic matter transported by the tributaries appeared to be related to relief and wetland contribution to the watershed of the tributary. Based on DOC and SUVA data, the Yukon River tributaries can be classified as dark water

  14. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  15. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  16. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  17. Variations in dissolved organic carbon concentrations across peatland hillslopes

    NASA Astrophysics Data System (ADS)

    Boothroyd, I. M.; Worrall, F.; Allott, T. E. H.

    2015-11-01

    Peatlands are important terrestrial carbon stores and dissolved organic carbon (DOC) is one of the most important contributors to carbon budgets in peatland systems. Many studies have investigated factors affecting DOC concentration in peatland systems, yet hillslope position has been thus far overlooked as a variable that could influence DOC cycling. This study investigates the importance of hillslope position with regard to DOC cycling. Two upland peat hillslopes were studied in the Peak District, UK, to determine what impact, if any, hillslope position had upon DOC concentration. Hillslope position was found to be a significant factor affecting variation in soil pore water DOC concentration, with bottom-slope positions having significantly lower DOC concentrations than up-slope because of dilution of DOC as water moves down-slope and is flushed out of the system via lateral throughflow. Water table drawdown on steeper mid-slopes increased DOC concentrations through increased DOC production and extended residence times allowing a build-up of humic-rich DOC compounds. Hillslope position did not significantly affect DOC concentrations in surface runoff water because of the dilution of near-surface soil pore water by precipitation inputs, while stream water had similar water chemistry properties to soil pore water under low-flow conditions.

  18. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  19. Hidden cycle of dissolved organic carbon in the deep ocean

    PubMed Central

    Follett, Christopher L.; Repeta, Daniel J.; Rothman, Daniel H.; Xu, Li; Santinelli, Chiara

    2014-01-01

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ13C and age via Δ14C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle. PMID:25385632

  20. Chemical Characterization of Dissolved Organic Matter in Hiroshima Bay, Japan

    NASA Astrophysics Data System (ADS)

    Fukushima, T.; Ishibashi, T.; Imai, A.

    2001-07-01

    The concentrations of dissolved organic carbon (DOC) and hydrophilic DOC (Hil-DOC) in Hiroshima Bay showed clear seasonal changes (high in summer and low in winter), suggesting the autochthonous production of Hil-DOC. The percentages of hydrophobic DOC (Hob-DOC) fractionated by XAD-8 resin were 33% for the bay waters and 41% for the river waters, whereas those of labile DOC (which decomposed during an incubation period of 100 days) were 20% and 24%, respectively. The increment of DOC to Chlorophyll a was calculated to be (0·014 mgl -1)/(μgl -1). The mixing experiments suggested a negligible deposition of DOC at the estuaries of inflowing rivers. The Hob-DOC went through the bay with negligible changes in concentration in both summer and winter, but its chemical characteristics, e.g. spectrophotometric properties and mean molecular weight, differed from those of riverine origin. In contrast, both labile and refractory components of Hil-DOC were produced mainly in the inner part of the bay during summer, and although a significant percentage of the labile component was subjected to biodegradation during transport to the outer part of the bay, its chemical characteristics did not change dramatically.

  1. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  2. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  3. Dissolved Organic Carbon In Precipitation At A Coastal Rural Site

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Daley, M.; Sive, B. C.; Talbot, R. W.; McDowell, W. H.

    2013-12-01

    Dissolved organic carbon (DOC) is a ubiquitous component of precipitation. This DOC is a complex mixture of compounds from biogenic and anthropogenic sources. The amount and chemistry of the DOC in precipitation has been studied for a variety of reasons: as a source of acidity, as a source of C to marine and terrestrial ecosystems, or to track the fate of individual compounds or pollutants. In most cases, past studies have focused on particular compounds or a limited number of precipitation events. Very little is known about the temporal trends in DOC or the relationship between DOC and other constituents of precipitation. We collected precipitation events for more than five years at a rural coastal site in New Hampshire. We evaluated the seasonal patterns and compared the DOC concentrations to other typical measures of the wet atmospheric deposition (ammonium, nitrate, sulfate, and chloride). In addition, we compared the DOC in precipitation to the concentrations of various organic constituents of the atmosphere. The volume weighted mean C concentration was 0.75 mg C/L with concentrations in the summer significantly higher than in the other three seasons. The DOC concentration was most strongly associated with ammonium concentrations (r=0.81), but was also significantly related to nitrate (r=0.50) and sulfate (r=0.63) concentrations. There was no significant association between DOC and chloride concentrations. Preliminary regression tree analysis suggests that the DOC concentration in precipitation was best predicted by the atmospheric concentration of methyl vinyl ketone, an oxidation product of isoprene. These results suggest that both terrestrial biogenic and anthropogenic sources may be important precursors to the C removed from the atmosphere during precipitation events.

  4. Photolytic processing of secondary organic aerosols dissolved in cloud droplets

    SciTech Connect

    Bateman, Adam P; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2011-05-26

    The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n→π* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

  5. Dissolved organic carbon losses from tile drained agroecosystems.

    PubMed

    Ruark, Matthew D; Brouder, Sylvie M; Turco, Ronald F

    2009-01-01

    Artificial subsurface drainage is commonly used in midwestern agriculture and drainage losses of dissolved organic carbon (DOC) from such systems are an under-quantified portion of the terrestrial carbon (C) cycle. The objectives of this study were to determine the effect of common agricultural management practices on DOC losses from subsurface tile drains and to assess patterns of loss as a function of year, time of year, and drainflow. Daily drainflow was collected across six water years (1999-2004) from a restored prairie grass system and cropping systems which include continuous corn (Zea mays L.) and corn-soybean [Glycine max (L.) Merr.] rotations fertilized with urea-ammonium-nitrate (UAN) or swine (Sus scrofa) manure lagoon effluent. The DOC concentrations in tile drainflow were low, typically <2 mg L(-1). Yearly DOC losses, which ranged from 1.78 to 8.61 kg ha(-1), were not affected by management practices and were small compared to organic C inputs. Spring application of lagoon effluent increased yearly flow-weighted (FW)-DOC concentrations relative to other cropping systems in three of the years and increased monthly FW-DOC concentrations when drainflow occurred within 1 mo of application. Drainflow was significantly and positively correlated with DOC loss. Drainflow also affected DOC concentrations as greater 6-yr cumulative drainflow was associated with lower 6-yr FW-DOC concentrations and greater daily drainflow was associated with higher daily DOC concentrations. Our results indicate that lagoon effluent application and fertilizer N rates do not affect long-term losses of DOC from tile drains and that drainflow is the main driver of DOC losses. PMID:19398518

  6. Dissolved organic matter sources in large Arctic rivers

    NASA Astrophysics Data System (ADS)

    Amon, Rainer; Walker, Sally; Prokushkin, Anatoly; Guggenberger, Georg

    2013-04-01

    The composition of dissolved organic carbon (DOC) of the six largest Arctic rivers was studied between 2003 and 2007 as part of the PARTNERS Project. Samples were collected over seasonal cycles relatively close to the river mouths. Here we report the lignin phenol and p-hydroxybenzene composition along with optical properties of Arctic river DOC in order to identify major sources of carbon. Arctic river DOC represents an important carbon conduit linking the large pools of organic carbon in the Arctic/Subarctic watersheds to the Arctic Ocean. Most of the annual lignin discharge (>75%) occurs during the two month of spring freshet with extremely high lignin concentrations and a lignin phenol composition indicative of fresh vegetation from boreal forests. The three large Siberian rivers, Lena, Yenisei, and Ob, which also have the highest proportion of forests within their watersheds, contribute about 90% of the total lignin discharge to the Arctic Ocean. The composition of river DOC is also characterized by elevated levels of p-hydroxybenzenes, particularly during the low flow season, which indicates a larger contribution from mosses and peat bogs. The lignin composition was strongly related to the average 14C-age of DOC supporting the abundance of young, boreal-vegetation-derived leachates during spring flood, and older, soil-, peat-, and wetland-derived DOC during groundwater dominated low flow conditions, particularly in the Ob and Yukon Rivers. We observed significant differences in DOC concentration and composition between the rivers over the seasonal cycles with the Mackenzie River being the most unique, the Lena River being similar to the Yenisei, and the Yukon being most similar to the Ob. The observed relationship between the lignin phenol composition and watershed characteristics suggests that DOC discharge from these rivers could increase in a warmer climate under otherwise undisturbed conditions.

  7. Fluxes of dissolved organic carbon from Chesapeake Bay sediments

    SciTech Connect

    Burdige, D.J.; Homstead, J. )

    1994-08-01

    Benthic fluxes of dissolved organic carbon (DOC) were measured over an annual cycle at two contrasting sites in Chesapeake Bay. At an organic-rich, sulfidic site in the mesohaline portion of the Bay (site M) DOC fluxes from the sediments ranged from 1.4 to 2.9 mmol/m[sup 2]/d. Measured benthic DOC fluxes at site M corresponded to [approximately]3-13% of the depth-integrated benthic C remineralization rates ([Sigma]OCR), and agreed well with calculated diffusive DOC fluxes based on porewater DOC profiles. This agreement suggests that DOC fluxes from site M sediments were likely controlled by molecular diffusion. The second site that was studied is a heavily bioturbated site in the southern Bay (site S). The activity of macrobenthos did not appear to enhance DOC fluxes from these sediments, since measured benthic DOC fluxes (>0.5 mmol/m[sup 2]/d) were lower than those at site M. The ratios of benthic DOC fluxes to [Sigma]OCR values at site S were also slightly smaller than those observed at site M. Benthic DOC fluxes from Chesapeake Bay sediments do not appear to significantly affect the transport of DOC through this estuary, although uncertainties in the reactivity of DOC in estuaries makes this conclusion somewhat tentative at this time. However, when these results are used to make a lower limit estimate of the globally integrated benthic DOC flux from marine sediments, a value similar to that previously calculated by Burdige et al. is obtained. This observation further supports suggestions in this paper about the importance of benthic DOC fluxes in the oceanic C cycle.

  8. Dissolved Organic Carbon in Groundwater Overlain by Irrigated Sugarcane.

    PubMed

    Thayalakumaran, Thabo; Lenahan, Matthew J; Bristow, Keith L

    2015-01-01

    Elevated dissolved organic carbon (DOC) has been detected in groundwater beneath irrigated sugarcane on the Burdekin coastal plain of tropical northeast Australia. The maximum value of 82 mg/L is to our knowledge the highest DOC reported for groundwater beneath irrigated cropping systems. More than half of the groundwater sampled in January 2004 (n = 46) exhibited DOC concentrations greater than 30 mg/L. DOC was progressively lower in October 2004 and January 2005, with a total decrease greater than 90% indicating varying load(s) to the aquifer. It was hypothesized that the elevated DOC found in this groundwater system is sourced at or near the soil surface and supplied to the aquifer via vertical recharge following above average rainfall. Possible sources of DOC include organic-rich sugar mill by-products applied as fertilizer and/or sugarcane sap released during harvest. CFC-12 vertical flow rates supported the hypothesis that elevated DOC (>40 mg/L) in the groundwater results from recharge events in which annual precipitation exceeds 1500 mm/year (average = 960 mm/year). Occurrence of elevated DOC concentrations, absence of electron acceptors (O2 and NO3 (-) ) and both Fe(2+) and Mn(2+) greater than 1 mg/L in shallow groundwater suggest that the DOC compounds are chemically labile. The consequence of high concentrations of labile DOC may be positive (e.g., denitrification) or negative (e.g., enhanced metal mobility and biofouling), and highlights the need to account for a wider range of water quality parameters when considering the impacts of land use on the ecology of receiving waters and/or suitability of groundwater for irrigated agriculture. PMID:25213667

  9. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  10. Temperature and Hydrological Controls on Dissolved Organic Matter Mobilization and Transport within forest soils

    NASA Astrophysics Data System (ADS)

    Xu, N.; Saiers, J. E.

    2009-12-01

    Natural dissolved organic matter (DOM) influences nutrients cycling and contaminants mobility, provides an energy source for heterotrophic production, and regulates soil and water pH. The objectives of this laboratory study were (i) to investigate the relative influence of temperature and rainfall characteristics on the mobilization and transport of DOM (quantity and composition) in forest soils; (ii) to evaluate the possible difference between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) dynamics; and (iii) to elucidate the importance of biotic and physico-chemical mechanisms that govern DOM mobilization and transport during rainfall events. We applied intermittent rainfalls to unsaturated topsoil columns. The experimental treatments were distinguished on the basis of rainfall intensity, rainfall frequency, temperature, soil biotic activity (i.e., sterile vs unsterile soil), and soil storage time before rainfall initiation. A mathematical model incorporating reversible linear kinetics expressions for DOC release at soil-water interfaces closely describes the DOC breakthrough-curve data. Our results show that temperature significantly affects the release rate and composition of leached DOM, while changes in rainfall intensity and frequency only affect the quantity of mobilized DOM. Effluent concentrations of DON showed broadly similar temporal patterns with DOC during rainfall events. Differences between the quantity of DOC and DON were reflected in the C:N ratios of effluent DOM. Our results also indicate the relative importance of physico-chemical mechanisms for the DOM export process.

  11. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic matter can affect the oxidizing capacity, nutrient dynamics, trace gas exchange, and color of surface waters. This study focuses on factors that affect the photoreactions of the colored dissolved organic matter (CDOM) in the Satilla River, a co...

  12. DISSOLVED ORGANIC CARBON (DOC) CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Dissolved organic matter (DOM) supports microbial activity and contributes to transport of N and P in streams. We have studied the impact of land uses on dissolved organic carbon (DOC) concentrations in 17 Georgia Piedmont headwater streams since January 2001. We classified the w...

  13. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  14. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Very little is known about dissolved organic matter (DOM) originating from fine roots in forest soils in comparison to DOM originating from leaf litter. To compare the fate of root- versus leaf-derived dissolved organic carbon (DOC), we added 14C-labeled root litter at depths of 10 cm, a “shallow r...

  15. Soil dissolved organic matter export to coastal temperate rainforest streams

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; D'Amore, D. V.; Hood, E.; Johnson, A.

    2006-12-01

    The north coastal temperate rainforest is a dynamic area of biogeochemical exchange between terrestrial and aquatic ecosystems. Wetlands and poorly drained soils dominate the landscape, where wetlands alone comprise 30% of the watersheds. The region is experiencing warming with potentially profound impacts on soil processes, forest structure, stream productivity, and the large and valuable salmon fishery. There are few data on stream chemistry, biological productivity, or discharge among soils and streams in the region. To predict the impact of climate change, management practices or land use on streams we need better baseline data on soil-stream interactions in temperate rainforest watersheds. We measured weekly export of dissolved organic matter from 3 dominant soil vegetation communities (peat bogs, forested wetlands and mineral soil uplands) during spring through fall of 2006. Three replicate sites for each soil type were gauged with weirs and fluxes of major forms of carbon, nitrogen and phosphorus measured. Discharge dominated the seasonal flux dynamics but major differences in export and area-specific export emphasized differences in soil-specific transformations on nutrient export potential. Export per unit soil area varied from 0.01 to 25 kg C/ha/day. Peat bogs exported 2-5 times as much per unit area as the other two soils. Forested wetlands were intermediate between bogs and uplands in export per unit area. Mean daily carbon fluxes from gauged subcatchments ranged from 0.01 to 75 kg C/day. Because they are larger than bogs, forested wetlands exported the greatest amount of DOC at our study locations, with uplands exporting intermediate amounts during spring floods. Uplands and bogs exported far less than forested wetlands during normal flow conditions. Total nitrogen fluxes were dominated by organic forms and seasonal trends closely followed the patterns observed for DOC. Although wetlands of either type export more organic matter per unit area, the

  16. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  17. Adsorption of dissolved natural organic matter by modified activated carbons.

    PubMed

    Cheng, Wei; Dastgheib, Seyed A; Karanfil, Tanju

    2005-06-01

    Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs. PMID:15927230

  18. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter.

    PubMed

    Fleck, Jacob A; Gill, Gary; Bergamaschi, Brian A; Kraus, Tamara E C; Downing, Bryan D; Alpers, Charles N

    2014-06-15

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems. PMID:23642571

  19. Microbial dissolved organic phosphorus utilization in the Hudson River Estuary

    SciTech Connect

    Ammerman, J.W. ); Angel, D.L. )

    1990-01-09

    The Hudson River Estuary has large inputs of phosphorus and other nutrients from sewage discharge. Concentrations of soluble reactive phosphorus (SRP) reach at least 4 uM during the summer low-flow period. Biological utilization of phosphorus and other nutrients is usually minimal because of the high turbidity and short residence time of the water. Therefore SRP is normally a conservative tracer of salinity, with maximum concentrations found off Manhattan and decreasing to the north. Despite this abundance of SRP, some components of the dissolved organic phosphorus (DOP) appear to be rapidly cycled by microbes. The objective of this study was to measure this DIP cycling during both the high- and low-flow periods. We measured the concentrations of SRP and DOP, the SRP turnover rate, algal and bacterial biomass, and the substrate turnover rates of two microbial cell-surface phosphatases, alkaline phosphatase (AP) and 5[prime] - nucleotidase (5PN). SRP concentrations ranged from about 0.5-4 uM, DOP was usually less than 1 uM. SRP and AP turnover were slow (generally < 5%/h), but 5PN substrate turnover was high with a median rate of 100%/h. Furthermore, over 30% of the phosphate hydrolyzed by 5PN was immediately taken up. If the nucleotide-P concentration is conservatively assumed to be 5 nM, than the rate of phosphate utilization from DOP is nearly equal to that from SRP. That is paradoxical considering the large SRP concentration, but suggests that much of this SRP may be biologically unavailable due to complexation with iron or other processes.

  20. Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter

    USGS Publications Warehouse

    Fleck, Jacob A.; Gill, Gary W.; Bergamaschi, Brian A.; Kraus, Tamara E.C.; Downing, Bryan D.; Alpers, Charles N.

    2014-01-01

    Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5 × 10-3 m2 mol-1 (s.d. 3.5 × 10-3) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg–DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.

  1. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  2. Dissolved organic matter kinetically controls mercury bioavailability to bacteria.

    PubMed

    Chiasson-Gould, Sophie A; Blais, Jules M; Poulain, Alexandre J

    2014-03-18

    Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic matter (DOM) affects mercury methylation due to its influence on cell physiology (as a potential nutrient) and its influence on Hg(II) speciation in solution (as a complexing agent), therefore controlling Hg bioavailability. We assessed the role of DOM on Hg(II) bioavailability to a gram-negative bacterium bioreporter under oxic pseudo- and nonequilibrium conditions, using defined media and field samples spanning a wide range of DOM levels. Our results showed that Hg(II) was considerably more bioavailable under nonequilibrium conditions than when DOM was absent or when Hg(II) and DOM had reached pseudoequilibrium (24 h) prior to cell exposure. Under these enhanced uptake conditions, Hg(II) bioavailability followed a bell shaped curve as DOM concentrations increased, both for defined media and natural water samples, consistent with bioaccumulation results in a companion paper (this issue) observed for amphipods. Experiments also suggest that DOM may not only provide shuttle molecules facilitating Hg uptake, but also alter cell wall properties to facilitate the first steps toward Hg(II) internalization. We propose the existence of a short-lived yet critical time window (<24 h) during which DOM facilitates the entry of newly deposited Hg(II) into aquatic food webs, suggesting that the bulk of mercury incorporation in aquatic food webs would occur within hours following its deposition from the atmosphere. PMID:24524696

  3. Complexation of trace organic contaminants with fractionated dissolved organic matter: implications for mass spectrometric quantification.

    PubMed

    Ruiz, Selene Hernandez; Wickramasekara, Samanthi; Abrell, Leif; Gao, Xiaodong; Chefetz, Benny; Chorover, Jon

    2013-04-01

    Interaction with aqueous phase dissolved organic matter (DOM) can alter the fate of trace organic contaminants of emerging concern once they enter the water cycle. In order to probe possible DOM binding mechanisms and their consequences for contaminant detection and quantification in natural waters, a set of laboratory experiments was conducted with aqueous solutions containing various operationally-defined "hydrophilic" and "hydrophobic" freshwater DOM fractions isolated by resin adsorption techniques from reference Suwannee River natural organic matter (SROM). Per unit mass of SROM carbon, hydrophobic acids (HoA) comprised the largest C fraction (0.63±0.029), followed by hydrophilic-neutrals (HiN, 0.11±0.01) and acids (HiA, 0.09±0.017). Aqueous solutions comprising 8mgL(-1) DOC of each SROM fraction were spiked with a concentration range (10-1000μgL(-1)) of bisphenol A (BPA), carbamazepine (CBZ), or ibuprofen (IBU) as model target compounds in 24mM NH4HCO3 background electrolyte at pH 7.4. Contaminant interaction with the SROM fractions was probed using fluorescence spectroscopy, and effects on quantitative analysis of the target compounds were measured using direct aqueous-injection liquid chromatography tandem mass spectrometry (LC-MS/MS). Total quenching was greater for the hydrophilic fractions of SROM and associations were principally with protein-like and fulvic acid-like constituents. Whereas LC-MS/MS recoveries indicated relatively weak interactions with most SROM factions, an important exception was the HiA fraction, which diminished recovery of CBZ and IBU by ca. 30% and 70%, respectively, indicating relatively strong molecular interactions. PMID:23276460

  4. Seqestration of dissolved organic carbon in the deep sea

    SciTech Connect

    Daniel J. Repeta

    2006-03-01

    There are 600 GT of dissolved organic carbon (DOC) sequestered in seawater. The marine inventory of DOC is set by its concentration in the deep sea, which is nearly constant at 35+2µM C, irrespective of sample location or depth. Isotopic measurements show deep sea DOC to be depleted in radiocarbon, with an apparent radiocarbon age of between 4000ybp (Atlantic) and 6000ybp (Pacific). From the radiocarbon data, we can infer that deep sea DOC is inert and does not cycle on less than millennial time scales. However, high precision DOC measurements show deep sea concentrations are variable at the + 1-2µM DOC level, suggesting a fraction of deep sea DOC, equivalent to 15-30Gt C, is cycling on short time scales, acting as a sink for new, atmospheric carbon. This project is designed to identify and quantify the biological and physical processes that sequester DOM in the deep sea by making compound specific radiocarbon measurements on sugars and proteins extracted from deep sea DOC. Our Hawaii surface seawater sample has a DIC Δ14C value of 72 + 7 ‰ and shows the influence of bomb radiocarbon on surface water DIC values. HMWDOC Δ14C is 10 ‰, significantly depleted in radiocarbon relative to DIC. Purification of HMWDOC by reverse phase HPLC yields seven neutral sugars with radiocarbon values of 47 – 67‰. Assuming the radiocarbon determinations of individual sugars in HMWDOC serve as replicates, then the average Δ14C for neutral sugars in HMWDOC is 57 + 6 ‰(1 SD, n=11), only slightly depleted in 14C relative to DIC. There has been a sharp decrease in radiocarbon values for DIC in the North Pacific Ocean over the past few decades. If neutral sugars cycle more slowly than DIC, we would expect them to have correspondingly higher radiocarbon values. Previous studies have modeled upper ocean DOC as a two component mixture of newly synthesized DOC with a radiocarbon value equal to DIC, and an old component with a radiocarbon value equal to deep sea DO14C. In order to

  5. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    NASA Astrophysics Data System (ADS)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  6. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  7. Dissolved organic carbon pools and export from the coastal ocean

    NASA Astrophysics Data System (ADS)

    Barrón, Cristina; Duarte, Carlos M.

    2015-10-01

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr-1 to 27.0 ± 1.8 Pg C yr-1 (7.0 ± 5.8 Pg C yr-1 to 29.0 ± 8.0 Pg C yr-1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr-1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr-1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  8. Composition of dissolved organic nitrogen in rivers associated with wetlands.

    PubMed

    Watanabe, Akira; Tsutsuki, Kiyoshi; Inoue, Yudzuru; Maie, Nagamitsu; Melling, Lulie; Jaffé, Rudolf

    2014-09-15

    As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season. PMID:24946034

  9. Analytical Determinations of the Phenolic Content of Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Pagano, T.; Kenny, J. E.

    2010-12-01

    Indicators suggest that the amount of dissolved organic matter (DOM) in natural waters is increasing. Climate Change has been proposed as a potential contributor to the trend, and under this mechanism, the phenolic content of DOM may also be increasing. We have explored the possibility of assessing the phenolic character of DOM using fluorescence spectroscopy as a more convenient alternative to wet chemistry methods. In this work, parallel factor analysis (PARAFAC) was applied to fluorescence excitation emission matrices (EEMs) of humic samples in an attempt to analyze their phenolic content. The PARAFAC results were correlated with phenol concentrations derived from the Folin-Ciocalteau reagent-based method. The reagent-based method showed that the phenolic content of five International Humic Substance Society (IHSS) DOM samples vary from approximately 5 to 22 ppm Tannic Acid Equivalents (TAE) in phenol concentration. A five-component PARAFAC fit was applied to the EEMs of the IHSS sample dataset and it was determined by PARAFAC score correlations with phenol concentrations from the reagent-based method that components C1 (R2=0.78), C4 (R2=0.82), and C5 (R2=0.88) have the highest probability of containing phenolic groups. Furthermore, when the scores of components C4 and C5 were summed, the correlation improved (R2=0.99). Likewise, when the scores of C1, C4, and C5 were summed, their correlations were stronger than their individual parts (R2=0.89). Since the reagent-based method is providing an indicator of “total phenol” amount, regardless of the exact molecular structure of C1, C4, and C5, it seems reasonable that each of these components individually contributes a portion to the summed “total phenol” profile, and that the sum of their phenol-related spectral parts represents a larger portion of the “total phenol” index. However, when the sum of all five components were plotted against the reagent-based phenol concentrations, due to the considerable

  10. Geochemistry and Reactivity of Exported Congo Riverine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Stubbins, A. P.; Hernes, P. J.; Aufdenkampe, A. K.; Gulliver, P.; Mopper, K.; Baker, A.; Dyda, R. Y.; Six, J. W.

    2008-12-01

    The Congo River basin drains the second largest area of rainforest in the world and is also the second largest river in terms of catchment size (3,680,000 km2) and freshwater discharge (42,000 m3 s- 1). Congo riverine dissolved organic carbon (DOC) export is estimated at 12.4 Tg DOC yr -1 or approximately 5 % of global riverine DOC export to the ocean. The sheer scale of this export makes further study of this system imperative for increased quantification and understanding of the terrestrial-ocean linkages in the global C cycle. Samples were collected in January and February 2008 from the Congo river- system and analyzed for a suite of compositional and degradation related measurements and its reactivity investigated. Our initial analyses of Congo riverine DOM yielded 14C ages of modern origin (fraction modern of 14C = 107.14 ± 0.50)) as expected for a large tropical river with a highly productive basin. Lignin phenol concentrations (Σ8 = 76.6 μgL-1) and compositions (Λ8 = 0.72 mg (100 mg OC)-1) are also indicative of fresh vascular plant derived DOM inputs, as are the 13C- DOC values (approximately -28.9), UV-vis spectral slope and slope ratio values and the fluorescence EEM data. Congo riverine DOM was shown to be highly photoreactive with fractional losses of DOC, colored DOM (CDOM) and lignin phenols equivalent to approximately 45 %, 95 % and 95 % respectively during the course of a 57 day irradiation experiment. CDOM spectral slope ratio values trended towards open ocean values during the irradiation (S275-295:S350-400 changed from 0.81 to 1.38). These spectral shifts have previously been shown to be indicative of a reduction in DOM aromaticity and average molecular weight. Lignin phenol data also trends towards typical carbon-normalized yield values of those observed previously in surface marine waters upon irradiation from 0.72 mg (100 mg OC)-1) at the start of the irradiation to 0.03 mg (100 mg OC)-1) after 57 days. Lignin phenols also showed increases

  11. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    SciTech Connect

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22/sup 0/C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90/sup 0/C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22/sup 0/C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables.

  12. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.

    PubMed

    Neale, Peta A; Antony, Alice; Gernjak, Wolfgang; Leslie, Greg; Escher, Beate I

    2011-08-01

    The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems. PMID:21703657

  13. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal.

    PubMed

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2016-02-24

    Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN. PMID:26888033

  14. Influence of dissolved organic matter on dissolved vanadium speciation in the Churchill River estuary (Manitoba, Canada).

    PubMed

    Shi, Yong Xiang; Mangal, Vaughn; Guéguen, Céline

    2016-07-01

    Diffusive gradients in thin films (DGT) devices were used to investigate the temporal and spatial changes in vanadium (V) speciation in the Churchill estuary system (Manitoba). Thirty-six DGT sets and 95 discrete water samples were collected at 8 river and 3 estuary sites during spring freshet and summer base flow. Dissolved V concentration in the Churchill River at summer base flow was approximately 5 times higher than those during the spring high flow (27.3 ± 18.9 nM vs 4.8 ± 3.5 nM). DGT-labile V showed an opposite trend with greater values found during the spring high flow (2.6 ± 1.8 nM vs 1.4 ± 0.3 nM). Parallel factor analysis (PARAFAC) conducted on 95 excitation-emission matrix spectra validated four humic-like (C1C4) and one protein-like (C5) fluorescent components. Significant positive relationship was found between protein-like DOM and DGT-labile V (r = 0.53, p < 0.05), indicating that protein-like DOM possibly affected the DGT-labile V concentration in Churchill River. Sediment leachates were enriched in DGT-labile V and protein-like DOM, which can be readily released when river sediment began to thaw during spring freshet. PMID:27065459

  15. EFFECTS OF REVERSE OSMOSIS ISOLATION ON REACTIVITY OF NATURALLY OCCURRING DISSOLVED ORGANIC MATTER IN PHYSICOCHEMICAL PROCESSES. (R828045)

    EPA Science Inventory

    A field reverse osmosis system was used to isolate dissolved organic matter (DOM) from two lacustrine and two riverine surface water sources. The rejection of DOM was on the order of 99% and did not vary significantly with pressure. A simple mass balance model using a single m...

  16. Effect of dissolved organic matter source on phytotoxicity to Lemna aequinoctialis.

    PubMed

    Shoji, Ryo

    2008-05-01

    The effect of dissolved organic matter (DOM) on metal toxicity to aquatic organisms has been reported. Biotic ligand model (BLM) can account for this factor to predict metal toxicity. However, few attempts have been made to assess the effect of the DOM on metal phytotoxicity to duckweeds. The objectives of this study were to examine the effect of DOM on copper toxicity to the duckweed Lemna aequinoctialis, and to determine if DOM concentration alone, regardless of DOM source, is an acceptable input parameter for the BLM for copper. Nine different DOM isolates from nine different sites in Japan were used in this study. A significant difference was observed between the lowest and the highest copper binding capacity. Phytotoxicity for copper decreased with increasing DOM concentration. These observations support use of the copper biotic ligand model (BLM) with AFA% (active fulvic acid percent) as a regulatory tool to predict copper phytotoxicity on duckweeds. PMID:18359523

  17. Characteristics and transformations of dissolved organic nitrogen in municipal biological nitrogen removal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Huo, Shouliang; Xi, Beidou; Yu, Honglei; Qin, Yanwen; Zan, Fengyu; Zhang, Jingtian

    2013-12-01

    Dissolved organic nitrogen (DON) represents most of the dissolved nitrogen in the effluent of biological nitrogen removal (BNR) wastewater treatment plants (WWTPs). The characteristics of wastewater-derived DON in two different WWTPs were investigated by several different methods. The major removals of DON and biodegradable dissolved organic nitrogen (BDON) along the treatment train were observed in the anaerobic process. Dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in the effluent accounted approximately for less than 4% and 1% of the effluent DON, respectively. Approximately half of wastewater-derived DON was capable of passing through a 1 kDa ultrafilter, and low MW DON cannot effectively be removed by BNR processes. More than 80% of effluent DON was composed of hydrophilic compounds, which stimulate algal growth. The study provided important information for future upgrading of WWTPs or the selection of DON removal systems to meet more demanding nitrogen discharge limits.

  18. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.

    2011-01-01

    Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  19. Sources and Fates of Dissolved Organic Matter in the Mid-Atlantic Bight

    SciTech Connect

    Hopkinson, C. S.

    2000-08-16

    The objectives of the research program were to identify and determine the relative importance of various sources of dissolved organic matter to the continental shelf, and to estimate the net carbon balance for the Middle Atlantic Bight.

  20. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...

  1. CHANGES IN SPECTRAL AND PHOTOCHEMICAL PROPERTIES OF COLORED DISSOLVED ORGANIC MATTER IN A COASTAL ESTUARY

    EPA Science Inventory

    Colored dissolved organic matter (CDOM) is the primary determinant of UV penetration and exposure in freshwater and coastal environments. CDOM is photochemically reactive and its photoreactions can lead to reductions in UV absorbance and increased UV exposure in aquatic ecosystem...

  2. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  3. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) SOURCE CHARACTERIZATION IN THE LOUISIANA BIGHT

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in the Mississippi plume region may have several distinct sources: riverine (terrestrial soils), wetland (terrestrial plants), biological production (phytoplankton, zooplankton, microbial), and sediments. Complex mixing, photodegradati...

  4. DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY

    EPA Science Inventory

    Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...

  5. Sulfamethazine sorption to soil: vegetative management, pH, and dissolved organic matter effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidating veterinary antibiotic (VA) interactions with soil is important for assessing and mitigating possible environmental hazards. Objectives of this study were to investigate the effects of vegetative management, soil physical and chemical properties, and manure-derived dissolved organic matte...

  6. Photobleaching Kinetics of Chromophoric Dissolved Organic Matter Derived from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    We examined the photoreactivity of chromophoric dissolved organic matter (CDOM) derived from Rhizophora mangle (red mangrove) leaf litter and floating Sargassum colonies as these marine plants can be important contributors to coastal and open ocean CDOM pools, respectively. Mangr...

  7. PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS

    EPA Science Inventory

    We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...

  8. Northern Gulf of Mexico estuarine coloured dissolved organic matter derived from MODIS data

    EPA Science Inventory

    Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed...

  9. Chromatographic methods for the isolation, separation and characterisation of dissolved organic matter.

    PubMed

    Sandron, Sara; Rojas, Alfonso; Wilson, Richard; Davies, Noel W; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Kelleher, Brian P; Paull, Brett

    2015-09-01

    This review presents an overview of the separation techniques applied to the complex challenge of dissolved organic matter characterisation. The review discusses methods for isolation of dissolved organic matter from natural waters, and the range of separation techniques used to further fractionate this complex material. The review covers both liquid and gas chromatographic techniques, in their various modes, and electrophoretic based approaches. For each, the challenges that the separation and fractionation of such an immensely complex sample poses is critically reviewed. PMID:26290053

  10. Mechanisms of dissolved organic carbon cycling in an ocean margin. Final technical report

    SciTech Connect

    Benner, R.

    1997-11-24

    Dissolved organic carbon (DOC) is the largest reservoir of organic carbon in the ocean, and the objectives of this project were to investigate the mechanisms and pathways of DOC formation and consumption in seawater. Carbohydrates are the most abundant form of DOC, and this project included measurements of dissolved carbohydrates as well as DOC to help delineate the cycling of DOC. Many of the methods and approaches for investigating DOC production were developed as part of this project.

  11. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  12. Effect of dissolved organic matter from treated effluents on sorption of atrazine and prometryn by soils

    SciTech Connect

    Seol, Y.; Lee, L.S.

    2000-01-02

    The apparent enhanced transport of soil-applied atrazine following irrigation of treated effluents has been hypothesized to be from complexation of atrazine with effluent-borne dissolved organic matter (DOM). Under long-term effluent irrigation, even small DOM-induced decreases in pesticide sorption can result in significant enhanced pesticide movement due to cumulative effects. The effect of atrazine and prometryn association with DOM extracted from municipal wastewater (MW), swine-derived lagoon wastewater (SW), and dissolved Aldrich humic acid (HA) on sorption by two soils was measured in batch equilibration studies. Individual association of pesticides to DOM, sorption of DOM to soil, and pesticide sorption by soil were also quantified. Pesticide association to DOM normalized to organic carbon (OC) ranged from 30 to 1000 L/kg OC. DOM sorption by soil ranged from 1.5 to 10 L/kg with a silt loam having a higher affinity for the DOM than the sandy loam. DOM up to 150 mg OC/L did not significantly suppress sorption by soils of either atrazine or prometryne in agreement with predictions using the independently measured binary distribution coefficients in a model that assumed linear equilibrium behavior among pesticide, soil, and DOM. A sensitivity analysis was performed using the same model to identify what combination of soil, pesticide, and DOC variables may suppress sorption, resulting in facilitated transport. Results from the sensitivity analysis are presented and the potential for effluent properties other than DOM to facilitate pesticide transport is discussed.

  13. The removal kinetics of dissolved organic matter and the optical clarity of groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Shen, Yuan; Strom, Eric W.; Benner, Ronald

    2016-04-01

    Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d-1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d-1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20-75 μM; 0.26-1 mg L-1) and ultraviolet absorption coefficient values (a 254 < 5 m-1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.

  14. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  15. Chemical characterization of dissolved organic compounds from coastal sea surface microlayers (Baltic Sea, Germany).

    PubMed

    van Pinxteren, Manuela; Müller, Conny; Iinuma, Yoshiteru; Stolle, Christian; Herrmann, Hartmut

    2012-10-01

    The physicochemical properties of the sea surface microlayer (SML), i.e. the boundary layer between the air and the sea, and its impact on air-sea exchange processes have been investigated for decades. However, a detailed description about these processes remains incomplete. In order to obtain a better chemical characterization of the SML, in a case study three pairs of SML and corresponding bulk water samples were taken in the southern Baltic Sea. The samples were analyzed for dissolved organic carbon and dissolved total nitrogen, as well as for several organic nitrogen containing compounds and carbohydrates, namely aliphatic amines, dissolved free amino acids, dissolved free monosaccharides, sugar alcohols, and monosaccharide anhydrates. Therefore, reasonable analytical procedures with respect to desalting and enrichment were established. All aliphatic amines and the majority of the investigated amino acids (11 out of 18) were found in the samples with average concentrations between 53 ng L(-1) and 1574 ng L(-1). The concentrations of carbohydrates were slightly higher, averaging 2900 ng L(-1). Calculation of the enrichment factor (EF) between the sea surface microlayer and the bulk water showed that dissolved total nitrogen was more enriched (EF: 1.1 and 1.2) in the SML than dissolved organic carbon (EF: 1.0 and 1.1). The nitrogen containing organic compounds were generally found to be enriched in the SML (EF: 1.9-9.2), whereas dissolved carbohydrates were not enriched or even depleted (EF: 0.7-1.2). Although the investigated compounds contributed on average only 0.3% to the dissolved organic carbon and 0.4% to the total dissolved nitrogen fraction, these results underline the importance of single compound analysis to determine SML structure, function, and its potential for a transfer of compounds into the atmosphere. PMID:22475414

  16. Predicting Sources of Dissolved Organic Nitrogen to an Estuary from an Agro-Urban Coastal Watershed.

    PubMed

    Osburn, Christopher L; Handsel, Lauren T; Peierls, Benjamin L; Paerl, Hans W

    2016-08-16

    Dissolved organic nitrogen (DON) is the nitrogen (N)-containing component of dissolved organic matter (DOM) and in aquatic ecosystems is part of the biologically reactive nitrogen pool that can degrade water quality in N-sensitive waters. Unlike inorganic N (nitrate and ammonium) DON is comprised of many different molecules of variable reactivity. Few methods exist to track the sources of DON in watersheds. In this study, DOM excitation-emission matrix (EEM) fluorescence of eight discrete DON sources was measured and modeled with parallel factor analysis (PARAFAC) and the resulting model ("FluorMod") was fit to 516 EEMs measured in surface waters from the main stem of the Neuse River and its tributaries, located in eastern North Carolina. PARAFAC components were positively correlated to DON concentration. Principle components analysis (PCA) was used to confirm separation of the eight sources and model validation was achieved by measurement of source samples not included in the model development with an error of <10%. Application of FluorMod to surface waters of streams within the Neuse River Basin showed that while >70% of DON was attributed to natural sources, nonpoint sources, such as soil and poultry litter leachates and street runoff, accounted for the remaining 30%. This result was consistent with changes in land use from urbanized Raleigh metropolitan area to the largely agricultural Southeastern coastal plain. Overall, the predicted fraction of nonpoint DON sources was consistent with previous reports of increased organic N inputs in this river basin, which are suspected of impacting the water quality of its estuary. PMID:27404466

  17. Landscape controls on dissolved nutrients, organic matter and major ions in a suburbanizing watershed

    NASA Astrophysics Data System (ADS)

    Daley, M. L.; McDowell, W. H.

    2010-12-01

    differently to hydrologic events. Concentrations of DON were negatively correlated with discharge (r2= 0.06, p < 0.01), but DOC concentrations did not respond to discharge, suggesting there is much to learn about the decoupling of C and N rich dissolved organic matter (DOM). Our landscape models do not account for spatial variability in dissolved inorganic carbon (DIC), dissolved organic P (DOP) or particulate C, N and P; however, at our site with the longest record, the Lamprey River, DIC and particulate C account for only 25% and 5% respectively of the total C flux. Among three sites ranging from 3-16% development, particulate N only accounted for 12-18% of total N, but particulate P accounted for 30-50% and DOP accounted for an additional 40-50% of total P. Landscape characteristics may in fact be better predictors of spatial variability in particulate-P and DOP than PO4-P. Nonetheless, the landscape models that we have developed for DIN and DOM flux can be used by local watershed managers to predict changes in water quality in response to changes in land use.

  18. Direct estimation of dissolved organic carbon using synchronous fluorescence and independent component analysis (ICA): advantages of a multivariate calibration.

    PubMed

    De Almeida Brehm, Franciane; de Azevedo, Julio Cesar R; da Costa Pereira, Jorge; Burrows, Hugh D

    2015-11-01

    Dissolved organic carbon (DOC) is frequently used as a diagnostic parameter for the identification of environmental contamination in aqueous systems. Since this organic matter is evolving and decaying over time. If samples are collected under environmental conditions, some sample stabilization process is needed until the corresponding analysis can be made. This may affect the analysis results. This problem can be avoided using the direct determination of DOC. We report a study using in situ synchronous fluorescence spectra, with independent component analysis to retrieve relevant major spectral contributions and their respective component contributions, for the direct determination of DOC. Fluorescence spectroscopy is a very powerful and sensitive technique to evaluate vestigial organic matter dissolved in water and is thus suited for the analytical task of direct monitoring of dissolved organic matter in water, thus avoiding the need for the stabilization step. We also report the development of an accurate calibration model for dissolved organic carbon determinations using environmental samples of humic and fulvic acids. The method described opens the opportunity for a fast, in locus, DOC estimation in environmental or other field studies using a portable fluorescence spectrometer. This combines the benefits of the use of fresh samples, without the need of stabilizers, and also allows the interpretation of various additional spectral contributions based on their respective estimated properties. We show how independent component analysis may be used to describe tyrosine, tryptophan, humic acid and fulvic acid spectra and, thus, to retrieve the respective individual component contribution to the DOC. PMID:26497563

  19. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures

    PubMed Central

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-01-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  20. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures.

    PubMed

    Sosa, Oscar A; Gifford, Scott M; Repeta, Daniel J; DeLong, Edward F

    2015-12-01

    The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4-6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them. PMID:25978545

  1. Radioacarbon in dissolved organic carbon, a possible groundwater dating method: Case studies from western Canada

    SciTech Connect

    Wassenaar, L.; Aravena, R. ); Hendry, J. ); Fritz, P. )

    1991-08-01

    This paper explores the feasibility of using {sup 14}C in dissolved organic carbon (DOC) as an alternative isotopic groundwater dating method. Two hydrogeologically contrasting groundwater systems were tested; the Cretaceous age Milk River aquifer, and low-permeability, organic rich, Wisconsinan age Prairie tills in southern Alberta, Canada. Comparisons of radiocarbon data were made between DOC fractions, dissolved inorganic carbon (DIC), and several DIC geochemical age correction models along well defined flow paths. The data presented demonstrate that {sup 14}C dating of DOC fractions can indeed provide an alternative method for determining isotopic groundwater ages, under suitable conditions. However, detailed information may be required regarding (1) the geologic nature of the aquifer and its flow system, (2) the isotopically conservative behavior of DOC, (3) the initial {sup 14}C activity of DOC in recharge, and (4) the effect of bacterial redox processes on the {sup 14}C activity of DOC. In the Milk River aquifer, DOC {sup 14}C ages were successfully used to estimate groundwater residence times, as well as to further refine input parameter assumptions for the DIC method. In the Prairie tills, DOC {sup 14}C ages were used to establish a maximum age for the pore waters in an environment where the DIC method is especially problematic.

  2. Geomorphic controls on riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Grabs, T.; Ledesma, J.; Laudon, H.; Seibert, J.; Kohler, S. J.; Bishop, K. H.

    2014-12-01

    Near stream (riparian) zones are an important link between terrestrial and aquatic ecosystems and influence a wide range of processes including solute transport or hydrologic behavior of headwater catchments. Understanding the links between geomorphology and riparian soils, vegetation and hydrology is, thus, a prerequisite for relating small scale processes to observations at the watershed scale. Geographic information systems (GIS) have traditionally been used to study links between geomorphology and properties of terrestrial ecosystems. Applying this approach to riparian zones, however, has only recently become feasible with the availability of high-resolution digital elevation models and the new development of suitable computational methods. In this study we present links between geomorphology and riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon. Geomorphometric attributes were successfully used to predict (1) riparian groundwater levels and flow pathways, (2) the size of riparian soil carbon pools, (3) the vertical variation of dissolved organic carbon (DOC) in riparian soil profiles, as well as (4) riparian carbon fluxes and turnover times.

  3. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  4. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  5. Estimating dissolved organic carbon inventories in the East China Sea using remote-sensing data

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Pan, Delu; Bai, Yan; Wu, Kai; Chen, Chen-Tung Authur; Liu, Zhiliang; Zhang, Lin

    2014-10-01

    The coastal ocean is characterized by a high dissolved organic carbon (DOC) concentration due to large terrestrial inputs and high primary production. Monitoring the dynamic variation of DOC inventories in coastal oceans provide more information on carbon flux, but is very challenging in practice. We propose a method of estimating DOC inventories in the East China Sea (ECS) by integrating the surface DOC distribution with a vertical model of the DOC profile via satellite data. Surface DOC concentration was retrieved from satellite-derived chromophoric dissolved organic matter and chlorophyll concentration. Two vertical DOC profile models (uniform model and stratified model) were established based on water-density profiles, and the usage of these two models was corresponded to water mass classification determined by a water mass index. The average bias of the satellite-derived DOC inventory, in the euphotic layer was 23.8% in spring, 24.8% in autumn and 14.7% in winter, and in the water column was 15.6% in spring, 12.3% in autumn, and 10.2% in winter. The total satellite-derived DOC inventory integrated in the water column was about 31.84, 31.96, 28.59, and 31.18 Tg in four seasons in the ECS (5.84 × 105 km2). Sensitivity analysis indicated that the remote-sensing method of estimating DOC inventory is stable and reliable. The available long-term and large-scale satellite-derived DOC inventories in marginal sea would provide us basic information on carbon cycle, and the difference between the seasonal DOC inventories would help to understand the DOC export and relative biogeochemical processes in the ECS.

  6. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical

  7. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  8. Improved analysis of dissolved organic nitrogen in water via electrodialysis pretreatment.

    PubMed

    Zhu, Anbang; Chen, Baiyang; Zhang, Liang; Westerhoff, Paul

    2015-02-17

    This study evaluated electrodialysis (ED) for direct, accurate, and precise dissolved organic nitrogen (DON) analysis in water. Unlike conventional methods that calculate DON as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN), we designed a compact ED reactor as a pretreatment tool that completely separates DIN from DON in water and then measures DON by equating DON to TDN. The experiments confirmed that the ED pretreatment process can achieve 99% removal of all three major DIN species (i.e., ammonia, nitrite, and nitrate) and an average recovery rate of 88% for an array of model DON compounds of varying characteristics (e.g., urea, amino acids, tripeptide, protein, and humic substances). Variations in nitrogen removal and recovery might be explained by a combined effect of molecular weight, acid dissociation ability (pK(a)), aromaticity, and ED reactor configurations. For model solutions with DIN/DON ratios varying from 1 to 10 mg-N/mg-N, the relative standard deviations in DON concentrations were considerably lower with ED pretreatment (<10%) than without pretreatment (47%). A survey of seven field samples, including lake water, tap water, and treated wastewater, also demonstrated the benefits of using ED pretreatment as compared with a conventional DON analysis method. Overall, this study provides evidence and mechanistic insight for a new DON detection method that uses ED pretreatment. The ED unit is robust for separating DIN and DON, and thus it may facilitate more frequent detection of DON and ultimately enhances understanding of DON issues in the environmental studies. PMID:25621718

  9. Spatial and temporal variation in dissolved organic carbon composition in a peaty catchment draining a windfarm

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2015-04-01

    Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams

  10. Technical Note: Dissolved organic matter fluorescence - a finite mixture approach to deconvolve excitation-emission matrices

    NASA Astrophysics Data System (ADS)

    Butturini, A.; Ejarque, E.

    2013-09-01

    The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves individual EEMs is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimisation algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. The EEMs of a simple artificial mixture of fluorophores and DOM samples collected in a Mediterranean river are used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.

  11. Technical Note: Dissolved organic matter fluorescence - a finite mixture approach to deconvolve excitation-emission matrices

    NASA Astrophysics Data System (ADS)

    Butturini, A.; Ejarque, E.

    2013-03-01

    The analysis of the shape of excitation-emission matrices (EEMs) is a relevant tool for exploring the origin, transport and fate of dissolved organic matter (DOM) in aquatic ecosystems. Within this context, the decomposition of EEMs is acquiring a notable relevance. A simple mathematical algorithm that automatically deconvolves single EEM is described, creating new possibilities for the comparison of DOM fluorescence properties and EEMs that are very different from each other. A mixture model approach is adopted to decompose complex surfaces into sub-peaks. The laplacian operator and the Nelder-Mead optimization algorithm are implemented to individuate and automatically locate potential peaks in the EEM landscape. A small heterogeneous data set of 21 EEMs from a human-impacted Mediterranean river is used to describe the model application and to illustrate a strategy that optimises the search for the optimal output.

  12. Abiotic effects on effluent dissolved organic nitrogen along an estuarine transect.

    PubMed

    Funkey, Carolina P; Latour, Robert J; Bronk, Deborah A

    2015-03-01

    Biological nutrient removal is a process commonly used in water resource recovery facilities to reduce dissolved inorganic nitrogen (DIN) concentrations in effluent; this process is less effective at removing all of the effluent dissolved organic nitrogen (EDON). The goal of this study was to investigate the fate of EDON after it undergoes the disinfection process and enters receiving waters. The authors quantified the abiotic effects of effluent exposure to sunlight, increased salinity, and a combination of the two factors. Effluent dissolved organic nitrogen showed significant breakdown during the disinfection process (UV and chlorine) and when exposed to sunlight and increasing salinity. Approximately 7% of the EDON was transformed to DIN and dissolved primary amines after exposure to 9 hours of sunlight and a salinity increase from 0 to 33. The production of DIN and primary amines should be taken into account when considering sources of labile nitrogen to aquatic ecosystems. PMID:25842537

  13. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    NASA Astrophysics Data System (ADS)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  14. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    EPA Science Inventory

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  15. DISTRIBUTION AND COMPOSITION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN NORTHERN SAN FRANCISCO BAY DURING LOW FRESHWATER FLOW CONDITIONS

    EPA Science Inventory

    The distribution of organic matter was studied in northern San Francisco Bay monthly through spring and summer 1996 along the salinity gradient from the Sacramento River to Central Bay. Dissolved constituents included monosaccharides (MONO), total carbohydrates (TCHO), dissolved ...

  16. Determination of migration pathways of DNAPL and dissolved phase volatile organic compounds in heterogeneous aquifer systems

    SciTech Connect

    Lamb, B. ); Prucha, R.

    1993-10-01

    Before an effective ground-water extraction system can be designed, it is essential to determine the distribution of chemicals of concern in ground-water and preferential pathways for chemical migration. At the study site, determining the chemical migration pathways and spatial distribution of chemicals are complicated by the presence of halogenated volatile organic compounds (VOCs) and dense nonaqueous phase liquids (DNAPL) coupled with the heterogeneous nature of the aquifer. DNAPL is denser than ground water and therefore sinks due to gravity while the dissolved components tend to be dominated by regional ground-water advective flow. The study area is a former industrial site. The aquifer is a low permeability unit with thin lenses of sandy material. Dissolved phase chemicals preferentially migrate in these sand units. To determine pathways for the migration of chemicals both laterally and horizontally, borehole lithologic data, hydraulic data, and chemical data were synthesized into a computer database and used as input for graphical illustrations using computer aided drafting (CAD). The CAD software was also used to provide the basis for 2-D and 3-D visualization to interpret field data which aided in development of a detailed conceptual site model and in construction of a numerical ground-water flow model for the site.

  17. Fluorescence spectroscopy: considerations for highly absorbing dissolved organic matter samples

    NASA Astrophysics Data System (ADS)

    Simone, B. E.; Miller, M.; McKnight, D. M.

    2009-12-01

    Fluorescence spectroscopy is a robust method for characterizing organic matter (OM). However, proper collection and correction of spectra are necessary to provide useful data. One important correction is the inner-filter correction, which primarily accounts for the inner-filter effect by adjusting for the wavelength dependent attenuation of emitted light by the solution prior to detection by the fluorometer. The most commonly used correction is based on an assumption that light is emitted at the center of the pathlength. Thus, the inner-filter effect is more pronounced in highly absorbing samples, and has the potential to skew the fluorescence spectra. For this study, the terrestrially derived Suwannee River fulvic acid (SRFA) and microbially derived Pony Lake fulvic acid (PLFA), from the International Humic Substances Society (IHSS), were diluted to incremental absorbances at a wavelength of 254 nm from 0.05 to 1.0 at pH 4 and 7. Three dimensional fluorescence spectra were measured and modeled with the Cory and McKnight (2005) parallel factor analysis (PARAFAC) model which resolves the fluorescence spectra into 13 components, including quinone-like and protein-like components. In the absence of inner-filter effects, plots of absorbance vs. loadings should be linear. Using the data from absorbance of 0.05 to 0.3, where the inner-filter affect is least pronounced, a linear regression was created and used as a baseline to predict component loadings at higher absorbance values in the absence of inner-filter effects. Results indicate that at absorbance values greater than 0.3, the commonly-used inner-filter correction is not able to remove the inner-filter effect. Therefore, in order to obtain reliable component loadings and correctly interpret the spectra, samples should be diluted to absorbance values less than 0.3 at 254 nm prior to collection of three dimensional fluorescence scans. The recommendation of a maximum absorbance of 0.3 agrees with the results of a

  18. Dissolved organic carbon in rainwater: Glassware decontamination and sample preservation and volatile organic carbon

    NASA Astrophysics Data System (ADS)

    Campos, M. L. A. M.; Nogueira, R. F. P.; Dametto, P. R.; Francisco, J. G.; Coelho, C. H.

    The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L -1 Fe 2+ and 100 mmol L -1 H 2O 2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultra-pure water reached concentrations below the limit of detection (0.19 μmol C L -1). Filtered (0.7 μm) rain samples maintained the DOC integrity for at least 7 days when stored at 4 °C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally.

  19. Dissolved organic matter transport reflects hillslope to stream connectivity during snowmelt in a montane catchment

    NASA Astrophysics Data System (ADS)

    Burns, Margaret A.; Barnard, Holly R.; Gabor, Rachel S.; McKnight, Diane M.; Brooks, Paul D.

    2016-06-01

    Dissolved organic matter (DOM) transport is a key biogeochemical linkage across the terrestrial-aquatic interface in headwater catchments, and quantifying the biological and hydrological controls on DOM composition provides insight into DOM cycling at the catchment scale. We evaluated the mobility of DOM components during snowmelt in a montane, semiarid catchment. DOM composition was evaluated on a near-daily basis within the soil and the stream during snowmelt, and was compared to groundwater samples using a site-specific parallel factor analysis (PARAFAC) model derived from soil extracts. The fluorescent component loadings in the interstitial soil water and in the groundwater were significantly different and did not temporally change during snowmelt. In the stream, a transition occurred during snowmelt from fluorescent DOM with higher contributions of amino acid-like components indicative of groundwater to higher humic-like contributions indicative of soil water. Furthermore, we identified a humic-like fluorescent component in the soil water and the stream that is typically only observed in extracted water soluble organic matter from soil which may suggest hillslope to stream connectivity over very short time scales. Qualitative interpretations of changes in stream fluorescent DOM were supported by two end-member mixing analyses of conservative tracers. After normalizing fluorescent DOM loadings for dissolved organic carbon (DOC) concentration, we found that the peak in DOC concentration in the stream was driven by the nonfluorescent fraction of DOM. This study demonstrated how PARAFAC analysis can be used to refine our conceptual models of runoff generation sources, as well as provide a more detailed understanding of stream chemistry dynamics.

  20. Dissolved Organic Matter Dynamics in a Suburbanizing Watershed: The Importance of Wetlands, People, and Flowpaths

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Daley, M. L.; Potter, J.; McDowell, W. H.

    2013-12-01

    Human development of a watershed often yields fundamental and quantifiable changes in water quality and inorganic nutrient cycling. The effects of suburban development on the cycling of dissolved organic matter (DOM), however, have received relatively less attention, and the understanding of local dissolved organic matter dynamics is rarely a stated goal of watershed management. In this study, we examine the effects of suburbanization on concentrations of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) as well as the optical properties of DOM using 17 study sites in the Lamprey River watershed, NH that integrate varying levels of human development and population density. We show that concentration of DOC and DON is related to wetland cover but is not correlated with population density. Further, we observed no response in DOC concentration with increased flow at the mainstem site, while DON concentration is diluted. The optical properties of dissolved organic matter, however, showed different trends. Fluorescence Index (FI) decreases with increasing wetland cover and lower population density. We show that in a coastal watershed, while DOM quantity is driven by the presence of wetlands, DOM quality changes with both wetland cover and human development. The decoupling of DOM quantity and quality in this suburbanizing watershed indicate that DOM quality may be an important yet overlooked control on watershed-scale biogeochemical cycling and nutrient export.

  1. EFFECT OF ACID TREATMENT ON DISSOLVED ORGANIC CARBON RETENTION BY A SPODIC HORIZON

    EPA Science Inventory

    Processes involving the movement of organic substances in forest soils are not well understood. This study was conducted to examine the role of acidic inputs on dissolved organic carbon (DOC) mobility, processes affecting the retention of DOV by a B horizon, and SO2-4 adsorption....

  2. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  3. Characterization of Plant-derived Dissolved Organic Matter by Multiple Spectroscopic Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) derived from fresh or early-stage decomposing soil amendment materials may play an important role in the process of organic matter accumulation. In this study, eight DOM samples from alfalfa, corn, crimson clover, hairy vetch, lupin, soybean, wheat and dairy manure wer...

  4. Effects of Low Dissolved Oxygen on Organisms Used in Freshwater Sediment Toxicity Tests

    EPA Science Inventory

    This manuscript describes the results of tests to determine the tolerance of three benthic organisms to reduced dissolved oxygen (DO). These three organisms are those recommended by EPA for use in toxicity testing of contaminated sediments. The results of the exposures indicate ...

  5. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  6. Transport of dissolved organic carbon from soil to surface water: Identifying the transport pathways

    NASA Astrophysics Data System (ADS)

    Van Gaelen, Nele

    2013-04-01

    Over the last decades, increasing concentrations of dissolved organic carbon (DOC) have been found in surface waters. It has also become clear that land use is an important driver for DOC export. However, causal factors controlling this temporal and spatial variation are not clear. Efforts to model DOC export on a catchment scale are rare. In this research, we aim to determine the factors controlling variations in DOC concentration and quality in surface waters. Secondly, the importance of the different pathways (surface runoff, subsurface flow and groundwater flow) for the transport of dissolved organic matter from the soil to the surface water is investigated. Six headwater catchments (100 - 400 ha) were selected in Belgium, representing three different types of land use, namely forest, grassland and arable land. At the outlet of each catchment, a flow-proportional sampler has been collecting samples of base flow and peak discharge since January 2010. In addition, samples of groundwater, subsurface water and precipitation water were collected on a regular base in three of the catchments. Samples were analyzed for DOC, specific UV absorbance (SUVA) and dissolved silica (DSi). Elemental analysis was carried out using ICP-OES. Since 2012, precipitation water and a selection of river water samples was also analyzed for O and H isotopes. Overall, DOC concentrations were highest in forest catchments and lowest in grassland catchments. For all land use types, measured DOC concentrations were highest during peak discharge. The rise in DOC concentrations was associated with a change in DOC quality. During periods of greater discharge, higher SUVA values were measured, indicating DOC with higher aromaticity (humic and fulvic fractions) reaches the outlet. ICP and DSi results also showed a significant difference in geochemical composition of the river water if peak events are compared to base flow samples. During an event, Ca, Mg, Na, S and DSi concentrations were lowered

  7. Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons

    SciTech Connect

    Victoria-Rueda, C.H.

    1991-01-01

    Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity, and (3) test the model response to variable organic loads in a pilot-scale plant. Removal of DOM by the biofilm was quantified in continuous-flow water hyacinth tanks at ten concentrations ranging from 45 to 330 g COD m {sup {minus}3} . Total DOM removal in the denitrifying, acetate-based experimental system was measured and partitioned into two fractions associated with the activity of biofilm and suspended bacteria. Calculated DOM removal by the biofilm was adjusted for the release of organic compounds by debris decomposition. Values of DOM removal were used to calculate oxygen transfer rates from the water hyacinth roots. A model of DOM removal in water hyacinth lagoons was formulated. The model, composed of four differential equations, was solved at steady-state conditions and the validity of its simulation results was tested in pilot-scale tanks. Hydraulic detection times ranging from 2 to 28 days were evaluated using biofilm density and concentrations of DOM and particulate organics as monitoring parameters of the model response. The observed decrease of suspended bacterial biomass along the tank was correctly simulated by the model, but predictions of effluent concentrations were not always consistent. Predicted values of biofilm bacterial mass were similar to those measured in the tanks, except when large algal populations were present in the film.

  8. Influence of subsurface drainage on quantity and quality of dissolved organic matter export from agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Dalzell, Brent J.; King, Jennifer Y.; Mulla, David J.; Finlay, Jacques C.; Sands, Gary R.

    2011-06-01

    Despite its importance for aquatic ecosystem function and watershed carbon budgets, little is known about how land use influences dissolved organic matter (DOM) export. We investigated the influence of subsurface soil drainage, widespread in the Midwestern United States, on DOM export from agricultural fields designed to drain water at either 13 mm d-1 (conventional) or 51 mm d-1 (intense). Intense drainage exported 55% (±22%) more dissolved organic carbon (DOC) per year than conventional drainage due to both increased concentration and water yield. DOC export from plots was strongly dependent on precipitation and showed considerable interannual variability. Mean DOC concentrations in drainage water were low (1.62 and 1.87 mg L-1 for conventional and intense treatments), and fluorescence index (FI) measurements showed that it had a microbial source with little evidence of terrestrially derived material, suggesting that flow through deeper, organic-poor soil horizons is important in regulating DOC export from these plots. We compared DOM in subsurface drains with downstream ditch and stream sites. Increases in DOC concentration and molecular weight accompanied by decreasing FI values at downstream sites showed that streams gain a large amount of terrestrially derived DOM during base flow transport through agricultural landscapes, probably from riparian zones. These results show that DOM compositional characteristics change with catchment area and that the relevant observation scale for DOM dynamics is likely to vary among watersheds. This study also demonstrates that land management practices can directly affect DOC via changes to water flow paths. These results are critical for improving model estimates of DOM export from agricultural landscapes as well as predicting how DOC export will respond to changing land use and climate.

  9. Dissolved Organic Matter Composition of Arctic Rivers: Linking Permafrost, Parent Material, and Groundwater to Riverine Carbon

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Aiken, G.; Butler, K. D.; Swanson, D. K.

    2015-12-01

    Recent warming in the Arctic is modifying the chemical composition of riverine dissolved organic matter (DOM) through changes in growing season length, wildfire, and permafrost thaw. In arctic rivers, DOM composition is an important control on nutrient availability, trace metal mobilization, and greenhouse gas emissions. As a result, shifts in DOM associated with a changing arctic landscape may alter how aquatic ecosystems function in this region. Here, we examined spatial variation in DOM composition in 72 rivers in the Brooks Range and Seward Peninsula of northern Alaska. We characterized DOM using a suite of techniques, including dissolved organic carbon (DOC) concentration, absorbance spectra, fluorescence, and chemical fractionation. Watersheds were classified based on traits that influence subsurface hydrology, including parent material (volcanic deposits, loess, sand, glacial moraine, bedrock) and permafrost extent (continuous vs. discontinuous zone) and state (ice-rich vs. ice-poor). We observed considerable variability in DOM composition across rivers. DOC concentrations were lowest in rivers influenced by glacial deposits (<2 mgC L-1) and highest in rivers draining lowland tundra or extensive wetlands (>10 mgC L-1). Specific ultraviolet absorbance (SUVA254), which serves as an index of DOM aromaticity, was also variable across rivers; spring-fed mountain streams had the lowest SUVA254 values (<1.5 L mgC-1 m-1), whereas tundra and wetland-dominated streams had the highest values (>4 L mgC-1 m-1). While hydrophobic organic acids were the dominant DOM fraction in all rivers, we observed a significant increase in the proportion of hydrophilic compounds during winter flow and in groundwater-fed systems. We also observed variation in DOM composition with permafrost extent and ground ice distribution across the region. Model projections over the next century suggest a heterogeneous response of DOM to thaw, likely mediated by spatial variations in ground ice and

  10. Non-conservative behavior of fluorescent dissolved organic matter (FDOM) within a subterranean estuary

    NASA Astrophysics Data System (ADS)

    Suryaputra, I. G. N. A.; Santos, I. R.; Huettel, M.; Burnett, W. C.; Dittmar, T.

    2015-11-01

    The role of submarine groundwater discharge (SGD) in releasing fluorescent dissolved organic matter (FDOM) to the coastal ocean and the possibility of using FDOM as a proxy for dissolved organic carbon (DOC) was investigated in a subterranean estuary in the northeastern Gulf of Mexico (Turkey Point, Florida). FDOM was continuously monitored for three weeks in shallow beach groundwater and in the adjacent coastal ocean. Radon (222Rn) was used as a natural groundwater tracer. FDOM and DOC correlated in groundwater and seawater samples, implying that FDOM may be a proxy of DOC in waters influenced by SGD. A mixing model using salinity as a seawater tracer revealed FDOM production in the high salinity region of the subterranean estuary. This production was probably a result of infiltration and transformation of labile marine organic matter in the beach sediments. The non-conservative FDOM behavior in this subterranean estuary differs from most surface estuaries where FDOM typically behaves conservatively. At the study site, fresh and saline SGD delivered about 1800 mg d-1 of FDOM (quinine equivalents) to the coastal ocean per meter of shoreline. About 11% of this input was related to fresh SGD, while 89% were related to saline SGD resulting from FDOM production within the shallow aquifer. If these fluxes are representative of the Florida Gulf Coast, SGD-derived FDOM fluxes would be equivalent to at least 18% of the potential regional riverine FDOM inputs. To reduce uncertainties related to the scarcity of FDOM data, further investigations of river and groundwater FDOM inputs in Florida and elsewhere are necessary.

  11. Inefficient microbial production of refractory dissolved organic matter in the ocean.

    PubMed

    Osterholz, Helena; Niggemann, Jutta; Giebel, Helge-Ansgar; Simon, Meinhard; Dittmar, Thorsten

    2015-01-01

    Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into stable forms of DOM has been shown previously, implying that microorganisms apparently produce far more RDOM than needed to sustain the global pool. Here we show, by assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, that most of the microbial DOM is different from RDOM in the ocean. Only <0.4% of the net community production is channelled into a form of DOM that is undistinguishable from oceanic RDOM. Our study provides a molecular background for global models on the production, turnover and accumulation of marine DOM. PMID:26084883

  12. Complexation of silver and dissolved organic matter in soil water extracts.

    PubMed

    Settimio, Lara; McLaughlin, Mike J; Kirby, Jason K; Langdon, Kate A; Janik, Les; Smith, Scott

    2015-04-01

    An important aspect of the behaviour and fate of silver (Ag) in soils is the interaction with dissolved organic matter (DOM). The complexation and strength of binding of Ag(+) with DOM in soil water extracts was examined and modelled based on a range of chemical and quality DOM measurements. Silver ion binding measured by addition of the (110m)Ag radioisotope in addition to a cation exchange resin technique were used to determine strongly complexed Ag in solutions. Silver was found to be up to 70% strongly complexed. The variability in Ag(+) binding by DOM across different soils was closely related (R(2) = 0.8) to the mid-infrared spectra of these extracts. The affinity of Ag(+) for DOM was stronger in solutions containing a greater content of humic and aromatic structures. The ability of Ag(+) to complex with DOM could result in increased mobilisation of this metal in the soil environment. PMID:25660071

  13. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    . Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.

  14. Degradation of terrigenous dissolved organic carbon in the western Arctic Ocean.

    PubMed

    Hansell, Dennis A; Kadko, David; Bates, Nicholas R

    2004-05-01

    The largest flux of terrigenous organic carbon into the ocean occurs in dissolved form by way of rivers. The fate of this material is enigmatic; there are numerous reports of conservative behavior over continental shelves, but the only knowledge we have about removal is that it occurs on long unknown time scales in the deep ocean. To investigate the removal process, we evaluated terrigenous dissolved organic carbon concentration gradients in the Beaufort Gyre of the western Arctic Ocean, which allowed us to observe the carbon's slow degradation. Using isotopic tracers of water-mass age, we determined that terrigenous dissolved organic carbon is mineralized with a half-life of 7.1 +/- 3.0 years, thus allowing only 21 to 32% of it to be exported to the North Atlantic Ocean. PMID:15131302

  15. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay.

    PubMed

    Neale, Peta A; Escher, Beate I

    2013-07-01

    The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended. PMID:23424099

  16. Relationships between land cover and dissolved organic matter change along the river to lake transition

    USGS Publications Warehouse

    Larson, James H.; Frost, Paul C.; Xenopoulos, Marguerite A.; Williams, Clayton J.; Morales-Williams, Ana M.; Vallazza, Jonathan M.; Nelson, J. C.; Richardson, William B.

    2014-01-01

    Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.

  17. Effect of pH on dynamic and equilibrium surface tension of dissolve organic matter

    NASA Astrophysics Data System (ADS)

    Arye, Gilboa; Trifonov, Pavel; Ilani, Talli

    2014-05-01

    Dissolved organic matter (DOM) in the terrestrial environment may originate from the decomposition of soil organic matter accumulated from the degradation of vegetative residues, the release of root exudates, the lysis of microorganisms and addition of organic wastes, such as livestock manure, biosolids, and different composted organic residues, or from irrigation with wastewater. The structure of DOM macromolecules is known to vary with the following aqueous solution properties: ionic strength, the nature of the inorganic ions, pH and dissolved organic carbon (DOC) concentration. In aqueous solution, the DOM molecules are amphiphilic, that is, it possesses both hydrophilic and hydrophobic functional groups in the same molecule. This simultaneous presence, gave rise to the conceptual surfactant like model for DOM which has been studies in conjunction with the equilibrium surface tension at the liquid-air interface (STeq, mN/m). Measurements of STeq of DOM solution were reported in a relatively small number of studies for the conditions of the aqueous solution (e.g., temperature, pH, ionic strength, the valence of the metal ions, and DOC concentration). All studies demonstrate the decrease in STeq with increase aqueous concentration of the DOC. The effect of pH, however, exhibit contradictory results. Specifically, for a given DOC concentration, the patterns reported for STeq versus pH were different. With increasing pH values, STeq has been reported to decrease, increase or exhibit a minimum. These contradictory results have been attributed to the different DOC concentration examined in each of the studies. In current study we hypothesized that the inconsistent results of STeq vs. pH may also stem from the adsorption kinetics of the DOM amphiphilic molecules at the liquid air interface, which can be evaluated form dynamic surface tension measurements (STt). The STt is approaching STeq values and commonly exhibiting an exponential decay pattern. If for different p

  18. Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America

    NASA Astrophysics Data System (ADS)

    Lauerwald, Ronny; Hartmann, Jens; Ludwig, Wolfgang; Moosdorf, Nils

    2012-03-01

    Fluvial transport of dissolved organic carbon (DOC) is an important link in the global carbon cycle. Previous studies largely increased our knowledge of fluvial exports of carbon to the marine system, but considerable uncertainty remains about in-stream/in-river losses of organic carbon. This study presents an empirical method to assess the nonconservative behavior of fluvial DOC at continental scale. An empirical DOC flux model was trained on two different subsets of training catchments, one with catchments smaller than 2,000 km2 (n = 246, avg. 494 km2) and one with catchments larger than 2,000 km2 (n = 207, avg. 26,525 km2). A variety of potential predictors and controlling factors of fluvial DOC fluxes is discussed. The predictors retained for the final DOC flux models are runoff, slope gradient, land cover, and areal proportions of wetlands. According to the spatially explicit extrapolation of the models, in North America south of 60°N, the total fluvial DOC flux from small catchments (25.8 Mt C a-1, std. err.: 12%) is higher than that from large catchments (19.9 Mt C a-1, std. err.: 10%), giving a total DOC loss of 5.9 Mt C a-1 (std. err.: 78%). As DOC losses in headwaters are not represented in this budget, the estimated DOC loss is rather a minimum value for the total DOC loss within the fluvial network.

  19. Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Luo, Ya-Wei; Ducklow, Hugh W.; Friedrichs, Marjorie A. M.; Church, Matthew J.; Karl, David M.; Doney, Scott C.

    2012-09-01

    The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991-1998, significantly increased in 1999-2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.

  20. Seasonal losses of dissolved organic carbon and total dissolved solids from rice production systems in northern California.

    PubMed

    Ruark, Matthew D; Linquist, Bruce A; Six, Johan; van Kessel, Chris; Greer, Chris A; Mutters, Randall G; Hill, James E

    2010-01-01

    Water quality concerns have arisen related to rice (Oryza sativa L.) field drain water, which has the potential to contribute large amounts of dissolved organic carbon (DOC) and total dissolved solids (TDS) to the Sacramento River. Field-scale losses of DOC or TDS have yet to be quantified. The objectives of this study were to evaluate the seasonal concentrations of DOC and TDS in rice field drain water and irrigation canals, quantify seasonal fluxes and flow-weighted (FW) concentrations of DOC and TDS, and determine the main drivers of DOC and TDS fluxes. Two rice fields with different straw management practices (incorporation vs. burning) were monitored at each of four locations in the Sacramento Valley. Fluxes of DOC ranged from 3.7 to 34.6 kg ha(-1) during the growing season (GS) and from 0 to 202 kg ha(-1) during the winter season (WS). Straw management had a significant interaction effect with season, as the greatest DOC concentrations were observed during winter flooding of straw incorporated fields. Fluxes and concentrations of TDS were not significantly affected by either straw management or season. Total seasonal water flux accounted for 90 and 88% of the variability in DOC flux during the GS and WS, respectively. Peak DOC concentrations occurred at the onset of drainflow; therefore, changes in irrigation management may reduce peak DOC concentrations and thereby DOC losses. However, the timing of peak DOC concentrations from rice fields suggest that rice field drainage water is not the cause of peak DOC concentrations in the Sacramento River. PMID:20048318

  1. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages

    NASA Astrophysics Data System (ADS)

    Yan, Junhua; Li, Kun; Wang, Wantong; Zhang, Deqiang; Zhou, Guoyi

    2015-05-01

    Lateral transports of carbon and nitrogen are important processes linking terrestrial ecosystems and aquatic systems. Most previous studies made in temperate forests found that fluxes of carbon and nitrogen by runoff water varied in different forests, but few studies have been made in subtropical forests. This study was to investigate dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes at the catchment scale along a subtropical forest succession gradient from pine forest (pioneer) to coniferous and broadleaved mixed forest (transitional) to broadleaved forest (mature). Our results showed that DOC concentration significantly decreased (p<0.001) while TDN concentration significantly increased (p<0.001) in runoff water from pioneer to mature forests, which in turn resulted in a decrease in DOC flux and an increase in TDN flux, as mean annual runoff did not vary significantly among three succession forest catchments. The mean (±standard deviation) annual DOC flux was 118.1±43.6, 88.3±16.7 and 77.2±11.7 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively; and the mean annual TDN flux was 9.9 ±2.7, 18.2±3.0 and 21.2 ±4.5 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively. The mature forest reduced DOC flux by increased soil chemical adsorption and physical protection. An increase in TDN flux from pioneer to mature forests was consistent with the previous finding that mature forest was nitrogen saturated while pioneer forest was nitrogen limited. Therefore large-scale conversion of pioneer forests to transitional or mature forests in subtropical China will reduce DOC concentration and increase TDN concentration in the down-stream water, which may have significant impact on its water quality and aquatic biological activities.

  2. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  3. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater

    NASA Astrophysics Data System (ADS)

    Ruttenberg, K. C.; Sulak, D. J.

    2011-08-01

    Sorption of phosphorus (P) onto particulate surfaces significantly influences dissolved P concentrations in aquatic environments. We present results of a study contrasting the sorption behavior of several dissolved organic phosphorus (DOP) compounds and phosphate onto three commonly occurring iron (oxyhydr)oxides (Fe ox): ferrihydrite, goethite, and hematite. The DOP compounds were chosen to represent a range of molecular weights and structures, and include: adenosine triphosphate (ATP), adenosine monophosphate (AMP), glucose-6-phosphate (G6P), and aminoethylphosphonic acid (AEP). All P compounds displayed decreasing sorption as a function of crystallinity of the Fe ox substrate, with ferrihydrite adsorbing the most, hematite the least. In general, maximum sorption density decreased with increasing molecular weight of P compound; sorption of G6P onto goethite and hematite excepted. P compound size and structure, and the nature of the Fe ox substrate all appear to play a role dictating relative sorption capacity. Failure of a simple, 1-step sorption-desorption model to describe the data suggests that P sorption cannot be explained by a simple balance between sorption and desorption. Instead, the data are consistent with a 2-step sorption model consisting of an initial rapid surface sorption, followed by a slow, solid-state diffusion of P from surface sites into particle interiors. Desorption experiments provide additional support for the 2-step sorption model. Without exception, DOP compounds showed less efficient sorption than did orthophosphate. This suggests that in aquatic systems enriched in reactive Fe ox, whether as suspended particulates in the water column or in benthic sediments, DOP bioavailability may exceed that of orthophosphate. Since biological uptake of P from DOP requires enzymatic cleavage of orthophosphate, a system enriched in DOP relative to orthophosphate may impact ecosystem community structure.

  4. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter

    USGS Publications Warehouse

    Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.

    2003-01-01

    Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.

  5. Temporal patterns of dissolved organic matter biodegradability are similar across three rivers of varying size

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Marcarelli, Amy M.; Kane, Evan S.; Toczydlowski, David; Stottlemyer, Robert

    2016-06-01

    Dissolved organic matter (DOM) composition may be an important determinant of its fate in freshwaters, but little is known about temporal variability in DOM composition and the biodegradability of DOM in northern temperate watersheds. We measured biodegradable dissolved organic carbon (BDOC) via incubation assays and DOM composition using optical indices on 11 dates in three Lake Superior tributaries. Percent BDOC (%BDOC) and BDOC concentrations were seasonally synchronous across these watersheds, despite that they vary in size by orders of magnitude (1.7 to 3400 km2). Relative to %BDOC, BDOC concentrations were more tightly constrained among sites on any given date. BDOC also varied within seasons; for example, %BDOC on two different dates in winter were among the highest (29% and 54%) and lowest (0%) values observed for each site (overall %BDOC range: 0 to 72%). DOM composition varied the most among tributaries during a summer storm event when BDOC (both as percent and concentration) was elevated but was remarkably similar among tributaries during fall, spring, and winter. Multivariate models identified humic-like and tryptophan-like fluorophores as predictors of %BDOC, but DOM composition only described 21% of the overall variation in %BDOC. Collectively, these three rivers exported ~18 Gg C yr-1 as DOC and ~2 Gg C yr-1 as BDOC, which corresponded to 9 to 17% of annual DOC exported in biodegradable form. Our results suggest much of the C exported from these northern temperate watersheds may be biodegradable within 28 days and that large pulses of labile DOM can be exported during storm events and spring snowmelt.

  6. Dissolved organic carbon reduces uranium bioavailability and toxicity. 2. Uranium[VI] speciation and toxicity to three tropical freshwater organisms.

    PubMed

    Trenfield, Melanie A; Ng, Jack C; Noller, Barry N; Markich, Scott J; Dam, Rick A van

    2011-04-01

    The influence of dissolved organic carbon (DOC) on the toxicity of uranium (U) to three Australian tropical freshwater species, the Northern Trout Gudgeon (Mogurnda mogurnda), green hydra (Hydra viridissima) and unicellular green alga (Chlorella sp.) was assessed. Exposures were conducted in synthetic soft water without DOC and with DOC added in the form of standard Suwannee River Fulvic Acid (SRFA). Organisms were exposed to a range of U concentrations at a range of DOC concentrations (0-20 mg L(-1)). U toxicity was up to 20 times less in water containing 20 mg L(-1) DOC, relative to DOC-free test waters. U toxicity was also assessed using natural water from a tropical Australian billabong containing 10 mg L(-1) DOC. U toxicity was up to ten times less in the billabong water, relative to DOC--free test waters. SRFA was twice as effective at reducing U toxicity as the billabong water at equivalent DOC concentrations. Geochemical speciation modeling confirmed the decreased U toxicity that resulted from both DOC sources was primarily due to a decrease in the free uranyl ion (UO2(2+)) through complexation with DOC. A predictive model is presented for each of the organisms that can be used to predict U toxicity at a given U and DOC concentration. PMID:21351800

  7. Dissolving efficacy of some organic solvents on gutta-percha.

    PubMed

    Magalhães, Bianca Silva; Johann, Julia Elis; Lund, Rafael Guerra; Martos, Josué; Del Pino, Francisco Augusto Burkert

    2007-01-01

    The aim of this study was to evaluate the solubility of gutta-percha in four organic solvents used in endodontics. The solubility of gutta-percha (Dentsply) was assessed in xylol, orange oil, eucalyptol, chloroform and distilled water. A hundred and fifty samples of gutta-percha were prepared using a standardized stainless steel mould and divided into five groups for immersion in the different solvents tested and in distilled water (control group) for 2, 5 and 10 minutes. The means of gutta-percha dissolution in the solvents were obtained by the difference between the pre-immersion original weight and the post-immersion weight in a digital analytical scale (Gehaka-AG2000). Data were statistically analyzed by Analysis of Variance (ANOVA) and multiple comparisons with Scheffes test (p<0.05). The best solvency capacity was obtained with xylol. Chloroform, orange oil and eucalyptol presented similar results, and distilled water did not promote alterations in the gutta-percha. PMID:18060255

  8. Results of the 2008 dissolved organic matter fluorescence intercalibration study

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Butler, K.; Spencer, R. G.; Boehme, J.; Aiken, G.

    2009-12-01

    In 2008, 20 laboratories around the world participated in an intercalibration study of organic matter fluorescence measurements via Excitation-Emission Matrix Spectroscopy (EEMS). The goal was to assess the variability of fluorescence measurements obtained for identical samples (n = 5 natural samples, Suwanee River Fulvic Acid, quinine sulphate and four Starna Fluorescence Reference cells) by different laboratories, and to examine potential sources of this variability. Operator error was found to be a significant source of variability, with 6 laboratories submitting erroneous EEMs in an initial round. Uncorrected EEMs were significantly different from corrected EEMs, particularly at relatively low and relatively high excitation (λex) and emission (λem) wavelengths. When data from each lab were corrected according to a standard set of algorithms, the variability between EEMs for the same sample measured by different labs was wavelength dependent, with EEMs normalized to raman areas more similar at low λex and λem, and EEMs normalized to quinine sulphate equivalents more similar at higher wavelengths. The results confirm the importance of (1) applying spectral corrections prior to comparing fluorescence data acquired on different instruments, (2) full reporting of correction procedures and implementation according to an agreed standard protocol, and (3) strict implementation of quality assurance protocols prior to reporting EEMs.

  9. Functional and Structural Responses of Hyporheic Biofilms to Varying Sources of Dissolved Organic Matter

    PubMed Central

    Wagner, Karoline; Bengtsson, Mia M.; Besemer, Katharina; Sieczko, Anna; Burns, Nancy R.; Herberg, Erik R.

    2014-01-01

    Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the “active” community composition) and of the 16S rRNA gene (targeting the “bulk” community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems. PMID:25063654

  10. Interactions between dissolved organic matter and mercury in the Florida Everglades

    USGS Publications Warehouse

    Aiken, G.; Haitzer, M.; Ryan, J.N.; Nagy, K.

    2003-01-01

    Experiments were conducted using organic matter isolated from various surface waters in the Florida Everglades to study the interactions between dissolved organic matter (DOM) and Hg(II). Conditional distribution coefficients (KDOM???), obtained using an equilibrium dialysis ligand exchange method, were strongly affected by the Hg/DOM concentration ratio. Very strong interactions (KDOM??? = 1023.2??0.5 L kg-1), indicative of Hg-thiol bonds, were observed at Hg/DOM ratios below approximately 1 ??g per mg DOM. Above approximately 10 ??g Hg per mg DOM much lower KDOM??? values (1010.7??0.5 L kg-1) were obtained DOM-Hg interactions were also studied by HgS (log Ksp = -52.4) dissolution and precipitation experiments. In the dissolution experiments, a significant amount of Hg was released from cinnabar in the presence of DOM, suggesting strong interactions. Conversely, precipitation of HgS was strongly inhibited in the presence of low concentrations (???3 mg C/L) of DOM. In both the dissolution and precipitation experiments, organic matter rich in aromatic moieties was more reactive with HgS than less aromatic fractions and sulfur-containing model compounds. These results suggest that DOM can influence the geochemistry of inorganic complexes of Hg in the Everglades, especially HgS, by strong Hg-DOM binding and colloidal stabilization.

  11. Functional and structural responses of hyporheic biofilms to varying sources of dissolved organic matter.

    PubMed

    Wagner, Karoline; Bengtsson, Mia M; Besemer, Katharina; Sieczko, Anna; Burns, Nancy R; Herberg, Erik R; Battin, Tom J

    2014-10-01

    Headwater streams are tightly connected with the terrestrial milieu from which they receive deliveries of organic matter, often through the hyporheic zone, the transition between groundwater and streamwater. Dissolved organic matter (DOM) from terrestrial sources (that is, allochthonous) enters the hyporheic zone, where it may mix with DOM from in situ production (that is, autochthonous) and where most of the microbial activity takes place. Allochthonous DOM is typically considered resistant to microbial metabolism compared to autochthonous DOM. The composition and functioning of microbial biofilm communities in the hyporheic zone may therefore be controlled by the relative availability of allochthonous and autochthonous DOM, which can have implications for organic matter processing in stream ecosystems. Experimenting with hyporheic biofilms exposed to model allochthonous and autochthonous DOM and using 454 pyrosequencing of the 16S rRNA (targeting the "active" community composition) and of the 16S rRNA gene (targeting the "bulk" community composition), we found that allochthonous DOM may drive shifts in community composition whereas autochthonous DOM seems to affect community composition only transiently. Our results suggest that priority effects based on resource-driven stochasticity shape the community composition in the hyporheic zone. Furthermore, measurements of extracellular enzymatic activities suggest that the additions of allochthonous and autochthonous DOM had no clear effect on the function of the hyporheic biofilms, indicative of functional redundancy. Our findings unravel possible microbial mechanisms that underlie the buffering capacity of the hyporheic zone and that may confer stability to stream ecosystems. PMID:25063654

  12. Production of photo-oxidants by dissolved organic matter during UV water treatment.

    PubMed

    Lester, Yaal; Sharpless, Charles M; Mamane, Hadas; Linden, Karl G

    2013-10-15

    Dissolved organic matter (DOM) irradiated by sunlight generates photo-oxidants that can accelerate organic contaminant degradation in surface waters. However, the significance of this process to contaminant removal during engineered UV water treatment has not been demonstrated, partly due to a lack of suitable methods in the deep UV range. This work expands methods previously established to detect (1)O2, HO•, H2O2, and DOM triplet states ((3)DOM*) at solar wavelengths to irradiation at 254 nm, typical of UV water treatment. For transient intermediates, the methods include a photostable probe combined with selective scavengers. Quantum yields for (1)O2, (3)DOM* and H2O2 were in the same range as for solar-driven reactions but were an order of magnitude higher for HO•, which other experiments indicate is due to H2O2 reduction. With the quantum yields, the degradation of metoxuron was successfully predicted in a DOM solution irradiated at 254 nm. Further modeling showed that the contribution of DOM sensitization to organic contaminant removal during UV treatment should be significant only at high UV fluence, characteristic of advanced oxidation processes. Of the reactive species studied, (3)DOM* is predicted to have the greatest general influence on UV degradation of contaminants. PMID:24011169

  13. Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures.

    PubMed

    Liu, Peng; Ptacek, Carol J; Blowes, David W; Berti, William R; Landis, Richard C

    2015-03-01

    Biochar has been used as a soil amendment, as a water treatment material, and for carbon (C) sequestration. Thirty-six biochars, produced from wood, agricultural residue, and manure feedstocks at different temperatures, were evaluated for the aqueous leaching of different forms of soluble C. The release of inorganic C (alkalinity), organic acids (OAs), and total dissolved organic C (DOC) was highly variable and dependent on the feedstock and pyrolysis temperature. The pH and alkalinity increased for the majority of samples. Higher pH values were associated with high-temperature (high-T) (600 and 700°C) biochars. Statistically significant differences in alkalinity were not observed between low-temperature (low-T) (300°C) and high-T biochars, whereas alkalinity released from wood-based biochar was significantly lower than from others. Concentrations of OAs and DOC released from low-T biochars were greater than from high-T biochars. The C in the OAs represented 1 to 60% of the total DOC released, indicating the presence of other DOC forms. The C released as DOC represented up to 3% (majority <0.1%) of the total C in the biochar. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed the high-T biochars had a greater proportion of micropores. Fourier transform infrared spectroscopy showed that hydroxyl, aliphatic, and quinone were the predominant functional groups of all biochars and that the abundance of other functional groups was dependent on the feedstock. The release of DOC, especially bioavailable forms such as OAs, may promote growth of organisms and heavy metal complexation and diminish the potential effectiveness of various biochars for C sequestration. PMID:26023986

  14. Fluorescence-based proxies for lignin in freshwater dissolved organic matter

    USGS Publications Warehouse

    Hernes, Peter J.; Bergamaschi, Brian A.; Eckard, Robert S.; Spencer, Robert G.M.

    2009-01-01

    Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento River/San Joaquin River Delta in California, United States. These models were subsequently used to predict lignin composition and concentration from fluorescence measurements collected during a diurnal study in the San Joaquin River. While modeled lignin composition remained largely unchanged over the diurnal cycle, changes in modeled lignin concentrations were much greater than expected and indicate that the sensitivity of fluorescence-based proxies for lignin may prove invaluable as a tool for selecting the most informative samples for detailed lignin characterization. With adequate calibration, similar models could be used to significantly expand our ability to study sources and processing of DOM in complex surface water systems.

  15. Universal molecular features of refractory dissolved organic matter in fresh- and seawater

    NASA Astrophysics Data System (ADS)

    Dittmar, T.; Blasius, B.; Steinbrink, C.; Feenders, C.; Stumm, M.; Christoffers, J.; Niggemann, J.; Gerdts, G.; Osterholz, H.; Seibt, M.; Seidel, M.; Vähätalo, A.

    2012-04-01

    Dissolved organic matter (DOM) is among the largest pools of reduced carbon on Earth's surface. Its molecular structure and the reasons behind its stability in the aquatic environment are unknown. We present a mathematical model that predicts essential molecular features of refractory dissolved organic matter in fresh- and seawater. The model has only eight input variables and can accurately reproduce the presence and abundance of up to 10,000 molecular formulae in aquatic systems. The model was established with ultrahigh-resolution mass spectrometry data of North Pacific deep water (obtained on a 15 Tesla Fourier-transform ion cyclotron resonance mass spectrometer, FT-ICR-MS). We determined the molecular formulae of DOM with help of FT-ICR-MS in >1,000 samples from around the globe, covering a wide variety of open ocean, freshwater and coastal systems. The molecular formulae predicted from our North Pacific deep water model were present in all sea- and fresh water samples. In terrigenous DOM, we detected a second group of compounds that could also accurately be predicted with our model, by using a different set of eight input variables. This exclusively terrigenous compound group was more photo-reactive than the universal compound group. During a two-year sampling period at a continental shelf station, the universal DOM compounds were always present at their predicted abundance. During plankton blooms, additional compounds were produced that did not match our model and that did not persist on a longer term. The universal DOM pattern was also not observed in mesocosm experiments where algae and bacteria blooms were artificially induced. Refractory DOM in any aquatic system not only shares the same molecular formulae at the same relative abundance, but compounds with the same molecular formulae most likely have the same molecular structure, independent of the origin of DOM. Fragmentation experiments in the FT-ICR-MS on a wide range of molecular formulae revealed

  16. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy; Varunan, Theenathayalan; Nagendra Jaiganesh, S. N.; Sahay, Arvind; Chauhan, Prakash

    2016-06-01

    Prediction of the curve of the absorption coefficient of colored dissolved organic matter (CDOM) and differentiation between marine and terrestrially derived CDOM pools in coastal environments are hampered by a high degree of variability in the composition and concentration of CDOM, uncertainties in retrieved remote sensing reflectance and the weak signal-to-noise ratio of space-borne instruments. In the present study, a hybrid model is presented along with empirical methods to remotely determine the amount and type of CDOM in coastal and inland water environments. A large set of in-situ data collected on several oceanographic cruises and field campaigns from different regional waters was used to develop empirical methods for studying the distribution and dynamics of CDOM, dissolved organic carbon (DOC) and salinity. Our validation analyses demonstrated that the hybrid model is a better descriptor of CDOM absorption spectra compared to the existing models. Additional spectral slope parameters included in the present model to differentiate between terrestrially derived and marine CDOM pools make a substantial improvement over those existing models. Empirical algorithms to derive CDOM, DOC and salinity from remote sensing reflectance data demonstrated success in retrieval of these products with significantly low mean relative percent differences from large in-situ measurements. The performance of these algorithms was further assessed using three hyperspectral HICO images acquired simultaneously with our field measurements in productive coastal and lagoon waters on the southeast part of India. The validation match-ups of CDOM and salinity showed good agreement between HICO retrievals and field observations. Further analyses of these data showed significant temporal changes in CDOM and phytoplankton absorption coefficients with a distinct phase shift between these two products. Healthy phytoplankton cells and macrophytes were recognized to directly contribute to the

  17. The XAS model of dissolved Cu(II) and its significance to biological electron transfer

    NASA Astrophysics Data System (ADS)

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O.

    2009-11-01

    The standard model for dissolved Cu(II) portrays the complex ion as an axially elongated, equatorially planar octahedron. Using EXAFS and MXAN analyses of copper K-edge XAS spectra, new structural models for dissolved [Cu(aq)]2+ and [Cu(amm)]2+ have been determined. These structures uniformly depart from the octahedral model in favour of an axially elongated square pyramidal core. MXAN results also indicate that the equatorial ligands need not be coplanar with copper. Further structural elements include a -z axially localized scatterer at ~3 Å. Even more distant scatterers imply second shell solvent organization, which can vary with the medium. Preliminary results from new extended, k = 18 Å-1, higher resolution copper K-edge XAS data sets are reported. The low symmetry of dissolved Cu(II) ion contradicts the central thesis of the rack-induced bonding hypothesis of copper electron transfer proteins. The asymmetry of biological copper is not a frozen vibronic excited state enforced by a rigid protein scaffold, but is entirely in harmony with the structural ground state of the dissolved aqueous Cu(II) complex ion.

  18. Removal of terrestrial dissolved organic carbon in aquatic ecosystems of a temperate river network.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Aiken, G.; Butler, K. D.; Morse, N.; Salisbury, J.

    2015-12-01

    Surface waters play an important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the net removal of terrestrial DOC in aquatic systems is poorly constrained. We used a combination of spatially distributed sampling of three DOC fractions, nitrate, and chloride in streams of different size throughout a river network and modeling to quantify the net removal of terrestrial DOC relative to other constituents during a summer base flow period. The approach was applied to the 400 km2 Ipswich River watershed, MA, USA. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal of DOC occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change. Model fits were improved using the different DOC fractions than when using bulk DOC, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  19. ISOLATION OF DISSOLVED ORGANIC MATTER FROM THE SUWANNEE RIVER USING REVERSE OSMOSIS

    EPA Science Inventory

    A portable reverse osmosis (RO) system was constructed and used to concentrate dissolved organic matter (DOM) from the Suwannee River in southeastern Georgia. sing this RO system, 150-180 1/h of river water could be processed with 90% recovery of DOM. fter further cation exchange...

  20. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  1. Response to Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”

    NASA Astrophysics Data System (ADS)

    Arrieta, Jesús M.; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-12-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  2. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    DOEpatents

    Case, F.N.; Ketchen, E.E.

    1975-10-14

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid.

  3. Organic carbon and dissolved oxygen budgets for a commerical-size, in-pond raceway system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive production of Ictalurid catfish in the United States has increased over the past several years and a better understanding of the amount of organic carbon (OC) and dissolved oxygen (DO) in these culture environments is needed. Budgets for OC and DO were estimated over a production season (M...

  4. PHOTOCHEICAL PRODUCTION OF HYDROXYL RADICAL IN NATURAL WATER - THE ROLE OF IRON AND DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...

  5. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  6. Production of Chromophoric Dissolved Organic Matter from Mangrove Leaf Litter and Floating Sargassum Colonies

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) strongly absorbs solar radiation in the blue-green and serves as the primary attenuator of water column ultraviolet radiation (UV-R). CDOM interferes with remote sensing of ocean chlorophyll and can control UV-R-induced damage to light...

  7. ESTIMATING THE POTENTIAL FOR FACILITATED TRANSPORT OF NAPROPAMIDE BY DISSOLVED ORGANIC MATTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) has been found to significantly affect the soil sorption/desorption of napropamide [2-(a-naphthoxy-N, N-diethylpropionamide] and to enhance its transport through soil columns. A method to qualitatively predict if DOM will enhance the transport of napropamide based on e...

  8. PHOTOCHEMICAL MINERALIZATION OF DISSOLVED ORGANIC NITROGEN TO AMMONIUM IN THE BALTIC SEA

    EPA Science Inventory

    Solar radiation-induced photochemistry can be considered as a new source of nutrients when photochemical reactions release bioavailable nitrogen from biologically non-reactive dissolved organic nitrogen (DON). Pretreatments of Baltic Sea waters in the dark indicated that >72% of ...

  9. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    EPA Science Inventory

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  10. Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”

    NASA Astrophysics Data System (ADS)

    Jiao, Nianzhi; Legendre, Louis; Robinson, Carol; Thomas, Helmuth; Luo, Ya-Wei; Dang, Hongyue; Liu, Jihua; Zhang, Rui; Tang, Kai; Luo, Tingwei; Li, Chao; Wang, Xiaoxue; Zhang, Chuanlun

    2015-12-01

    Arrieta et al. (Reports, 17 April 2015, p. 331) propose that low concentrations of labile dissolved organic carbon (DOC) preclude prokaryotic consumption of a substantial fraction of DOC in the deep ocean and that this dilution acts as an alternative mechanism to recalcitrance for long-term DOC storage. Here, we show that the authors’ data do not support their claims.

  11. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  12. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited information is available to understand the chemical structure of biochar’s labile dissolved organic carbon (DOC) fraction that will change amended soil’s DOC composition. This study utilized the high sensitivity of fluorescence excitation-emission (EEM) spectrophotometry to understand the s...

  13. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  14. ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)

    EPA Science Inventory

    We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters, 15N values for DON from lacustrine samples and data suggesting that this technique will be a...

  15. PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS

    EPA Science Inventory

    Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...

  16. Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams

    NASA Astrophysics Data System (ADS)

    Oni, Stephen K.; Futter, Martyn N.; Teutschbein, Claudia; Laudon, Hjalmar

    2014-05-01

    Climate is an important driver of dissolved organic carbon (DOC) dynamics in boreal catchments characterized by networks of streams within forest-wetland landscape mosaics. In this paper, we assess how climate change may affect stream DOC concentrations ([DOC]) and export from boreal forest streams with a multi-model ensemble approach. First, we apply an ensemble of regional climate models (RCMs) to project soil temperatures and stream-flows. These data are then used to drive two biogeochemical models of surface water DOC: (1) The Integrated Catchment model for Carbon (INCA-C), a detailed process-based model of DOC operating at the catchment scale, and (2) The Riparian Integration Model (RIM), a simple dynamic hillslope scale model of stream [DOC]. All RCMs project a consistent increase in temperature and precipitation as well as a shift in spring runoff peaks from May to April. However, they present a considerable range of possible future runoff conditions with an ensemble median increase of 31 % between current and future (2061-2090) conditions. Both biogeochemical models perform well in describing the dynamics of present-day stream [DOC] and fluxes, but disagree in their future projections. Here, we assess possible futures in three boreal catchments representative of forest, mire and mixed landscape elements. INCA-C projects a wider range of stream [DOC] due to its temperature sensitivity, whereas RIM gives consistently larger inter-annual variation and a wider range of exports due to its sensitivity to hydrological variations. The uncertainties associated with modeling complex processes that control future DOC dynamics in boreal and temperate catchments are still the main limitation to our understanding of DOC mechanisms under changing climate conditions. Novel, currently overlooked or unknown drivers may appear that will present new challenges to modelling DOC in the future.

  17. [Temporal and Spatial Distribution Characteristics of Dissolved Organic Matter and Influencing Factors in Lake Chaohu].

    PubMed

    Ye, Lin-lin; Wu, Xiao-dong; Liu, Bo; Yan, De-zhi; Zhang, Mei-qi; Zhou, Yang

    2015-09-01

    To study the temporal and spatial distribution of dissolved organic matter (DOM) and the related influencing factors of Lake Chaohu, surface water samples were collected at seventeen sites in three different regions of the Lake from April 2013 to April 2014. The concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were then analyzed. A significance difference in DON concentration was observed among the sampling sites (P <0. 01, n = 13), which was caused by the terrestrial input from the western rivers and the bioavailability of DON. The ratio of total nitrogen to total phosphorus, total dissolved nitrogen to total dissolved phosphorus, and dissolved inorganic nitrogen to soluble reactive phosphorus (DIN/SRP) declined gradually during the phytoplankton bloom period, especially the ratio of DIN/SRP dropped to 5 ± 7 in August 2013, indicating the nitrogen was limited in lake water. Moreover, the concentration of DON was decreased and a significant negative correlation was observed between DON and Chl-a (r = - 0. 265, P < 0. 05, n = 91), suggesting that DON is bioavailable, and can be utilized by phytoplankton directly or indirectly during nitrogen limitation. No significant difference in DOC concentration was observed and water temperature was the major factor related to the variation of DOC. Chl-a and nitrate concentrations can also affect the dynamics of DOC. In addition, the ratio of DOC/DON was considerably varied, the concentration of DON contributed to the variation of DOC/DON, and DON was the major component contributed to the bioavailability of DOM. PMID:26717677

  18. STREAM PRODUCTIVITY ANALYSIS WITH DORM (DISSOLVED OXYGEN ROUTING MODEL) - 2: PARAMETER ESTIMATION AND SENSITIVITY

    EPA Science Inventory

    The dissolved oxygen routing model DORM, which determines productivity and respiration of a stream biological community, requires in addition to stream geometry and stream flow, parameter values for reaeration coefficients and temperature and dissolved oxygen (DO) limitations on ...

  19. Investigation of organic carbon transformation in soils of dominant dissolved organic carbon source zones

    NASA Astrophysics Data System (ADS)

    Pissarello, Anna; Miltner, Anja; Oosterwoud, Marieke; Fleckenstein, Jan; Kästner, Matthias

    2014-05-01

    Over the past 20 years both a decrease in soil organic matter (SOM) and an increase in the dissolved organic carbon (DOC) concentrations in surface water bodies, including drinking water reservoirs, have been recorded in the northern hemisphere. This development has severe consequences for soil fertility and for drinking water purification. As both processes occur simultaneously, we assume that microbial SOM degradation, which transforms SOM into CO2 and DOC, is a possible source of the additional DOC in the surface water. In addition we speculate that both processes are initially triggered by physical mechanisms, resulting in a modification of the organic matter solubility equilibria and thus in higher SOM availability and DOC mobilization. The general hypothesis of the study is therefore that SOM loss and DOC increase are combined consequences of enhanced microbial degradation of SOM and that this is a result of climate variations and global change, e.g. the increase of the temperature, the alteration of the water regime (i.e. increase of the frequency of drying and rewetting cycles and a higher number of heavy rain events), but also the decrease of the atmospheric acid deposition resulting in an increase of soil pH values. The general goal of the study is the identification of the dominant processes and controlling factors involved in soil microbial carbon turnover and mobilization of DOC in soils from catchment areas that contribute DOC to the receiving waters and the downstream Rappbode reservoir, which showed a pronounced increase in DOC concentration in recent years. This reservoir is the source of drinking water for about one million people in northern Germany. Preliminary screening experiments, consisting of 65-day soil batch incubation experiments, have been conducted in order to select the parameters (and the parameter ranges) of relevance for further in-depth experiments. During the experiments, different soil systems were exposed to different

  20. Release dynamics of dissolved organic matter in soil amended with biosolids

    NASA Astrophysics Data System (ADS)

    Trifonov, Pavel; Ilani, Talli; Arye, Gilboa

    2014-05-01

    Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion

  1. A Comparison of Dissolved and Particulate Organic Material in Two Southwestern Desert River Systems

    NASA Astrophysics Data System (ADS)

    Haas, P. A.; Brooks, P.

    2001-12-01

    Desert river systems of the southwestern U.S. acquire a substantial fraction of their dissolved organic matter (DOM) from the terrestrial environment during episodic rain events. This DOM provides carbon for stream metabolism and nitrogen, which is limiting in lower order streams in this environment. The San Pedro and Rio Grande Rivers represent two endpoints of catchment scale, discharge, and land use in the southwest. The San Pedro is a protected riparian corridor (San Pedro Riparian National Conservation Area), while the middle Rio Grande is a large river with extensive agriculture, irrigation, and reservoirs. Relative abundance and spectral properties of fulvic acids isolated from filtered samples were used to determine the source of dissolved organic carbon (DOC). Total DOC and particulate organic carbon (POC) changes with respect to episodic flooding events were compared for the two river systems. The San Pedro River DOC concentrations remain low approximately 2.2 to 3.3 ppm unless a relatively large storm event occurs when concentrations may go above 5.5 ppm (1000cfs flow). In contrast typical concentrations for the Rio Grande were approximately 5 ppm during the monsoon season. Particulate organic matter (POM) appears to be a more significant source of organic matter to the San Pedro than DOM. The relative importance of terrestrial vs. aquatic and dissolved vs. particulate organic matter with respect to aquatic ecosystems will be discussed.

  2. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    SciTech Connect

    Ravichandran, M.; Ryan, J.N.; Aiken, G.R.; Reddy, M.M.

    1998-11-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  3. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  4. Dissolved total hydrolyzable enantiomeric amino acids in precipitation: Implications on bacterial contributions to atmospheric organic matter

    NASA Astrophysics Data System (ADS)

    Yan, Ge; Kim, Guebuem; Kim, Jeonghyun; Jeong, Yu-Sik; Kim, Young Il

    2015-03-01

    We analyzed dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved enantiomeric amino acids in precipitation samples collected at two sites in Korea over a one-year period. The average concentrations of DOC, DON, and total hydrolyzable amino acids at Seoul (an inland urban area) were lower than those at Uljin (a coastal rural area). The different bulk compositions of dissolved organic matter (DOM) at these two sites (reflected by qualitative indicators) were mainly attributed to differences in contributing sources. The D-enantiomers of four individual amino acids (aspartic acid, glutamic acid, serine, and alanine) were ubiquitously present, with average enantiomeric (D/L) ratios of 0.34, 0.26, 0.21, and 0.61 for Seoul, and 0.18, 0.11, 0.09, and 0.31 for Uljin, respectively. The much higher D/L ratios observed at Seoul than at Uljin might result from more advanced diagenetic stages as well as higher contributions from bacteria inhabiting terrestrial environments. The C- and N-normalized yields of D-alanine in DOM of our samples were found to be comparable to literature values reported for aquatic systems, where a significant portion of DOM was suggested to be of bacterial origin. Our study suggests that bacteria and their remnants might constitute an important fraction of OM in the atmosphere, contributing significantly to the quality of atmospheric OM and its post-depositional bioavailability in the surface ecosystems.

  5. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

    PubMed Central

    Dick, Jonathan J.; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry. PMID:27556278

  6. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams.

    PubMed

    Dick, Jonathan J; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry. PMID:27556278

  7. Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces.

    PubMed

    Armanious, Antonius; Münch, Melanie; Kohn, Tamar; Sander, Michael

    2016-04-01

    Adsorption onto solid-water interfaces is a key process governing the fate and transport of waterborne viruses. Although negatively charged viruses are known to extensively adsorb onto positively charged adsorbent surfaces, virus adsorption in such systems in the presence of negatively charged dissolved organic matter (DOM) as coadsorbate remains poorly studied and understood. This work provides a systematic assessment of the adsorption dynamics of negatively charged viruses (i.e., bacteriophages MS2, fr, GA, and Qβ) and polystyrene nanospheres onto a positively charged model sorbent surface in the presence of varying DOM concentrations. In all systems studied, DOM competitively suppressed the adsorption of the viruses and nanospheres onto the model surface. Electrostatic repulsion of the highly negatively charged MS2, fr, and the nanospheres impaired their adsorption onto DOM adlayers that formed during the coadsorption process. In contrast, the effect of competition on overall adsorption was attenuated for less-negatively charged GA and Qβ because these viruses also adsorbed onto DOM adlayer surfaces. Competition in MS2-DOM coadsorbate systems were accurately described by a random sequential adsorption model that explicitly accounts for the unfolding of adsorbed DOM. Consistent findings for viruses and nanospheres suggest that the coadsorbate effects described herein generally apply to systems containing negatively charged nanoparticles and DOM. PMID:26901121

  8. Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland

    USGS Publications Warehouse

    Burow, K.R.; Constantz, J.; Fujii, R.

    2005-01-01

    Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.

  9. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    PubMed Central

    Liu, Ning; Hui, Juan; Sun, Cunqiang; Dong, Junhang; Zhang, Luzheng; Xiao, Hai

    2006-01-01

    A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical thickness of the zeolite thin film was measured by white light interferometry. Using methanol, 2-propanol, and toluene as the model chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolved organics in water with high sensitivity.

  10. The Effects of Acid Rock Drainage (ARD) on Fluorescent Dissolved Organic Matter (DOM)

    NASA Astrophysics Data System (ADS)

    Lee, R. H.; Gabor, R. S.; SanClements, M.; McKnight, D. M.

    2011-12-01

    Located in the Rocky Mountains of central Colorado, the catchments drained by the headwaters of the Snake River are dominated by metal- and sulfide-rich bedrock. The breakdown of these minerals results in acidic metal-rich waters in the Snake (pH ~3) that persist until the confluence with Deer Creek (pH ~7). Previous research has been conducted examining the interactions of acid-rock drainage (ARD) and dissolved organic matter (DOM), but the effects of ARD on DOM production is not as well understood. In a synoptic study, samples of creek water were collected at evenly spaced intervals along the length of a tributary to the Snake River which drains an area with ARD. At each sampling location, water samples were collected and pH, conductivity, and temperature were measured. Water samples were analyzed for metal chemistry, and the DOM was analyzed with UV-Vis and fluorescence spectroscopy. The character of the DOM was described using PARAFAC and index calculations. This work demonstrates that the introduction of acid and dissolved metal species has notable effects on DOM composition. Preliminary data suggests that the introduction of acid drainage is responsible for the formation of a fluorophore not accounted for in the Cory and McKnight PARAFAC model. Both high concentrations of heavy metals (e.g. zinc) and the novel fluorophore are present downstream from a mining site, which indicates it as a possible source of both species. The data suggest a link between the introduction of fluorophores in acidic waters and acidophile populations at the source of the acid rock drainage.

  11. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  12. Interaction of bisphenol A with dissolved organic matter in extractive and adsorptive removal processes.

    PubMed

    Zhu, Fei-Die; Choo, Kwang-Ho; Chang, Hyun-Shik; Lee, Byunghwan

    2012-05-01

    The fate of endocrine disrupting chemicals (EDCs) in natural and engineered systems is complicated due to their interactions with various water constituents. This study investigated the interaction of bisphenol A (BPA) with dissolved organic matter (DOM) and colloids present in surface water and secondary effluent as well as its adsorptive removal by powdered activated carbons. The solid phase micro-extraction (SPME) method followed by thermal desorption and gas chromatography-mass spectrometry (GC-MS) was utilized for determining the distribution of BPA molecules in water. The BPA removal by SPME decreased with the increased DOM content, where the formation of BPA-DOM complexes in an aqueous matrix was responsible for the reduced extraction of BPA. Colloidal particles in water samples sorbed BPA leading to the marked reduction of liquid phase BPA. BPA-DOM complexes had a negative impact on the adsorptive removal of BPA by powered activated carbons. The complex formation was characterized based on Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, along with the calculation of molecular interactions between BPA and functional groups in DOM. It was found that the hydrogen bonding between DOM and BPA would be preferred over aromatic interactions. A pseudo-equilibrium molecular coordination model for the complexation between a BPA molecule and a hydroxyl group of the DOM was developed, which enabled estimation of the maximum sorption site and complex formation constant as well as prediction of organic complexes at various DOM levels. PMID:22330311

  13. Water Dynamics and Its Role in Structural Hysteresis of Dissolved Organic Matter.

    PubMed

    Conte, Pellegrino; Kucerik, Jiri

    2016-03-01

    Knowledge of structural dynamics of dissolved organic matter (DOM) is of paramount importance for understanding DOM stability and role in the fate of solubilized organic and inorganic compounds (e.g., nutrients and pollutants), either in soils or aquatic systems. In this study, fast field cycling (FFC) (1)H NMR relaxometry was applied to elucidate structural dynamics of terrestrial DOM, represented by two structurally contrasting DOM models such as Suwanee River (SRFA) and Pahokee peat (PPFA) fulvic acids purchased by the International Humic Substance Society. Measurement of NMR relaxation rate of water protons in heating-cooling cycles revealed structural hysteresis in both fulvic acids. In particular, structural hysteresis was related to the delay in re-establishing water network around fulvic molecules as a result of temperature fluctuations. The experiments revealed that the structural temperature dependency and hysteresis were more pronounced in SRFA than in PPFA. This was attributed to the larger content of hydrogel-like structure in SRFA stabilized, at a larger extent, by H-bonds between carboxylic and phenolic groups. Moreover, results supported the view that terrestrial DOM consist of a hydrophobic rigid core surrounded by progressively assembling amphiphilic and polar molecules, which form an elastic structure that can mediate reactivity of the whole DOM. PMID:26815011

  14. Influence of pH on fluorescent dissolved organic matter photo-degradation.

    PubMed

    Timko, Stephen A; Gonsior, Michael; Cooper, William J

    2015-11-15

    A novel semi-continuous excitation emission matrix (EEM) fluorescence and absorbance monitoring system has been developed. Full EEMs were collected simultaneously with absorbance spectra every 20 min during 24 h solar-simulated irradiation experiments, and the kinetic change of fluorescence of Suwannee River natural organic matter IHSS standard material (SRNOM) at various pH values was investigated. Parallel factor analysis (PARAFAC) was then used to isolate the photo-labile and pH-influenced fluorescent components of SRNOM. Kinetic analysis showed increasing rates of fluorescence loss with increasing pH. This has significant implications for the photo-degradation of dissolved natural organic matter during estuarine mixing, when large increases of pH are common. The influence of pH on fluorescence and photo-degradation kinetics emphasizes the need for pH to be monitored and accurately controlled during laboratory experiments. It is also highly recommended that when constructing PARAFAC models or monitoring changes in fluorescence data between samples of different origins, that the pH be held constant to remove any potential artifacts or misinterpretation of data. PMID:26342180

  15. Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates

    NASA Astrophysics Data System (ADS)

    Winterdahl, Mattias; Laudon, Hjalmar; Lyon, Steve W.; Pers, Charlotta; Bishop, Kevin

    2016-01-01

    Dissolved organic carbon (DOC) is a significant constituent in aquatic ecosystems with concentrations in streams influenced by both temperature and water flow pathway dynamics associated with changes in discharge (streamflow). We investigated the sensitivity of DOC concentrations in 12 high-latitude headwater streams to changes in temperature and discharge using a mathematical model. The implications of differences in sensitivities were explored by using downscaled projections of air temperature and discharge to simulate possible trajectories of DOC concentrations in a changing climate. We found two distinct responses: (i) catchments where stream DOC sensitivity was high to temperature but low to discharge and (ii) catchments where stream DOC sensitivity was low to temperature but high to discharge. Streams with strong seasonal DOC dynamics were more sensitive to temperature changes than nonseasonal systems. In addition, stream DOC sensitivity to discharge was strongly correlated with vertical soil water DOC differences in the near-stream zone. Simulations of possible future changes in DOC concentrations indicated median increases of about 4-24% compared to current levels when using projections of air temperature and discharge but even larger increases were observed for base flow concentrations (13-42%). Streams with high-temperature sensitivity showed the largest increases in DOC concentrations. Our results suggest that future climatic changes could bring significant increases in surface water DOC concentrations in boreal and hemiboreal areas but that the response ultimately is dependent on vertical soil solution DOC differences and soil organic carbon distribution.

  16. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, P.-G.; Mitchell, M. J.; McHale, P. J.; Driscoll, C. T.; McHale, M. R.; Inamdar, S.; Park, J.-H.

    2015-10-01

    Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State, USA. We observed no significant long-term changes of concentrations and fluxes of DOC and DON in the Lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the Lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass-balances between inlet and outlet for the period from 2000 to 2009 suggested that the Lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 μmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: +87 μmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low % retention ((influx - outflux) / influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating a lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different biogeochemical

  17. Organic amendments' dissolved organic carbon influences bioavailability of agricultural soil DOC

    NASA Astrophysics Data System (ADS)

    Straathof, Angela L.; Chincarini, Riccardo; Hoffland, Ellis; Comans, Rob N. J.

    2013-04-01

    Agricultural soils benefit from additions of organic amendments because they improve soil structure, are a source of plant nutrients, and increase concentrations of soil organic carbon (SOC). The latter fuels microbial processes important for plant growth, including nutrient mineralization and the suppression of plant diseases. However, these amendment additions range in quality and quantity of C and little is known about how their properties interact with native soil C and affect turnover. The dissolved pool of SOC (DOC) may be the most important C source for these processes as it is more biologically available and thus relatively easily turned over by the soil microbial biomass. Using a rapid-batch DOC fractionation procedure, we studied the composition of different organic amendments' DOC pools and measured how their additions change the quantity and turnover of soil DOC. Fractions isolated and quantified with this procedure include humic and fulvic acids, hydrophobic neutral and hydrophilic compounds. We hypothesized that these range from biologically recalcitrant to readily available, respectively. Amendments analysed included composts of different source materials and maturation stages collected from two different compost facilities in the Netherlands. Both total DOC concentrations and proportions of the aforementioned fractions ranged highly between composts. Composts cured for >10 days had a lower proportion of hydrophilic C compounds, suggesting that these are the most bioavailable and released as CO2 via microbial activity during maturation. To measure the effects of compost DOC on soil DOC, we extracted the former and added it to a sandy soil in an incubation experiment. The amendment increased soil total DOC, CO2 production from the soil, and the pools of humic and fulvic acids as a proportion of total DOC. Turnover of C from the incubated soil was measured by substrate-induced CO2 production (an indicator of microbial activity) from a 96-well

  18. Advanced Residuals Analysis for Determining the Number of PARAFAC Components in Dissolved Organic Matter.

    PubMed

    Cuss, Chad W; Guéguen, Céline; Andersson, Per; Porcelli, Don; Maximov, Trofim; Kutscher, Liselott

    2016-02-01

    Parallel factor analysis (PARAFAC) has facilitated an explosion in research connecting the fluorescence properties of dissolved organic matter (DOM) to its functions and biogeochemical cycling in natural and engineered systems. However, the validation of robust PARAFAC models using split-half analysis requires an oft unrealistically large number (hundreds to thousands) of excitation-emission matrices (EEMs), and models with too few components may not adequately describe differences between DOM. This study used self-organizing maps (SOM) and comparing changes in residuals with the effects of adding components to estimate the number of PARAFAC components in DOM from two data sets: MS (110 EEMs from nine leaf leachates and headwaters) and LR (64 EEMs from the Lena River). Clustering by SOM demonstrated that peaks clearly persisted in model residuals after validation by split-half analysis. Plotting the changes to residuals was an effective method for visualizing the removal of fluorophore-like fluorescence caused by increasing the number of PARAFAC components. Extracting additional PARAFAC components via residuals analysis increased the proportion of correctly identified size-fractionated leaf leachates from 56.0 ± 0.8 to 75.2 ± 0.9%, and from 51.7 ± 1.4 to 92.9 ± 0.0% for whole leachates. Model overfitting was assessed by considering the correlations between components, and their distributions amongst samples. Advanced residuals analysis improved the ability of PARAFAC to resolve the variation in DOM fluorescence, and presents an enhanced validation approach for assessing the number of components that can be used to supplement the potentially misleading results of split-half analysis. PMID:26783366

  19. Isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif

    2013-04-01

    Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation

  20. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.; Middelboe, Mathias

    2014-04-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27-52% removal of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially force microbes to degrade less labile substrates, thereby increasing RDOM production and stimulating ocean carbon storage.

  1. Coupled ocean-atmosphere loss of marine refractory dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Kieber, David J.; Keene, William C.; Frossard, Amanda A.; Long, Michael S.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Tyssebotn, Inger Marie B.; Quinn, Patricia K.; Bates, Timothy S.

    2016-03-01

    The oceans hold a massive quantity of organic carbon, nearly all of which is dissolved and more than 95% is refractory, cycling through the oceans several times before complete removal. The vast reservoir of refractory dissolved organic carbon (RDOC) is a critical component of the global carbon cycle that is relevant to our understanding of fundamental marine biogeochemical processes and the role of the oceans in climate change with respect to long-term storage and sequestration of atmospheric carbon dioxide. Here we show that RDOC includes surface-active organic matter that can be incorporated into primary marine aerosol produced by bursting bubbles at the sea surface. We propose that this process will deliver RDOC from the sea surface to the atmosphere wherein its photochemical oxidation corresponds to a potentially important and hitherto unknown removal mechanism for marine RDOC.

  2. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053

  3. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lobbes, Jörg M.; Fitznar, Hans Peter; Kattner, Gerhard

    2000-09-01

    The biogeochemical signature of riverine matter in the Russian Arctic was investigated to establish a background for tracing terrestrial organic material in the Arctic Ocean. Elemental and lignin compositions of particulate and dissolved organic matter (POM, DOM), stable carbon isotope ratios of POM and nutrient concentrations are reported for 12 Russian rivers along 4000 km of coastline. The 12 rivers account for about 43% of the freshwater supply to the Arctic Ocean. Nine rivers drain both tundra and taiga areas and three rivers only tundra. Concentrations of nitrogenous nutrients and phosphate were low, whereas silicate values were generally high with only few exceptions. The concentrations of particulate organic carbon (POC) varied between 25.5 and 291 μmol/L C, contributing 0.4-2.1% to the total suspended sediment (TSS). Dissolved organic carbon (DOC) ranging from 230 to 1006 μmol/L C was on average eight times higher than POC. The concentrations of particulate and dissolved organic nitrogen were similar (ca. 11 μmol/L N) resulting in four times higher C/N ratios in the dissolved fraction (48) compared to the particulate fraction (11). The δ 13C ratios were uniform (-25.6 to -27.4‰) and similar in taiga and tundra draining rivers. The exclusively terrestrial component lignin, determined as lignin phenols after cupric oxide oxidation, ranged from 5.6 to 37.6 nmol/L in the particulate fraction and from 34 to 319 nmol/L in the dissolved fraction. The syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ratios of the particulate and dissolved lignin phenols were significantly correlated with the proportion of tundra and taiga in the drainage areas. This is true despite different formation processes and diagenetic degree of POM and DOM, as evident from acid/aldehyde ratios of vanillyl phenols [(Ad/Al)v]. Export rates were calculated from the carbon and lignin data. The 12 rivers studied transport about 10 × 10 12 g of total organic carbon per year into the

  4. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the

  5. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  6. Optical signatures of dissolved organic matter from the Endeavour and Axial vent fields

    NASA Astrophysics Data System (ADS)

    Stubbins, A.; Butterfield, D.; Rossel, P. E.; Dittmar, T.

    2011-12-01

    Recent studies have revealed that hydrothermal systems in the deep ocean are both sources and processors of dissolved organic matter (DOM). Sub-floor stores of fossil organic carbon may be exported to the deep ocean directly adding fossil C to the deep ocean dissolved organic carbon (DOC) pool and altering its apparent age. Fossil methane and carbon dioxide are also exported from vents. These C sources can then be utilized by chemotrophs and later enter the DOM pool as fossil DOC. Finally, when deep ocean waters are entrained into vent systems, the resultant heating may alter the chemical and optical properties of the DOM in these deep ocean waters. Dissolved organic matter (DOM) samples were collected from vents ranging in temperature from 10 to over 300 degrees centigrade across the Endeavour and Axial fields along the Juan de Fuca ridge. Elevated DOC and protein-like fluorescence reveal the vents to fuel the chemotrophic production of organic matter either in the adjacent water column or local sediments. High DOC and increased humic-like fluorescence in the hottest vent fluids, suggests the thermal degradation of DOM either from buried fossil sources or the entrainment of local waters enriched in DOC due to chemotrophic productivity. Natural and radio-carbon analyses are underway and will provide further insight into the ultimate source of this colored, fluorescent hydrothermal DOM.

  7. A major biopolymeric component to dissolved organic carbon in surface sea water

    NASA Astrophysics Data System (ADS)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    1997-05-01

    Organic carbon dissolved in sea water is an important component of the global carbon cycle1. Concentrations of dissolved organic carbon (DOC) in the ocean's surface mixed layer are at least twice those in the deep sea2,3, because of the production of soluble carbon compounds by marine algae in the euphotic zone4,5. But very little is known about the chemical composition of DOC, and the connection between photosynthetic production and DOC accumulation is not well understood6,7. Here we report the chemical characterization of macromolecular DOC at several sites in the Atlantic and Pacific oceans. Neutral sugars, acetate and lipids show similar distributions, suggesting that these constituents are linked together in a common macromolecular structure. Chemical linkage patterns between the oligosaccharide portions of dissolved organic matter subjected to ultrafiltration are highly specific, with little variation between ocean basins. We show that laboratory culture experiments on the decomposition of algal exudate produce macromolecular organic matter with similar compositions and linkage characteristics. We propose that a significant fraction of DOC in sea surface water consists of structurally related and biosynthetically derived acyl oligosaccharides that persist after more labile organic matter has been degraded.

  8. INFLUENCE OF METHOD FOR REMOVAL OF SESTON ON THE DISSOLVED ORGANIC MATTER(1).

    PubMed

    Parker, B C

    1967-12-01

    Comparisons of various methods and method modifications for treating water samples to render them free of seston prior to analysis of dissolved organic matter have corroborated a number of suspected sources of error. Among the more important points arising from this study arc: 1. All cellulose ester filters must be washed to remove elutable carbon. 2. In some instances filtration to dryness may produce artifacts resulting from cell injury. 3. A significant difference in filter retention can result between 0.45 and 0.22 μ membranes. 4. Among the methods most satisfactory are wet filtration through 0.22 μ pre-washed Millipore membranes and continuous-flow centrifugation at ca. 10,000 x g and 100 cc/min flow rate, both of which have their inherent weaknesses and limitations. 5. Regular centrifugation does not remove some planktonic organisms which have considerable buoyancy, or organic substances may somehow be released by cells without producing morphological damage. The newly developed bio dialysis technique for dissolved organic matter collection consistently yielded lower values than continuous-flow centrifugation. In contrast, biodialysis yielded lower values for pond water and higher values for Scenedesmus cultures than the best filtration method. Evidence suggests that biodialysis will be useful as both a supplementary and, in some zuays, more accurate method in studies of dissolved organic matter. PMID:27065026

  9. Pan-arctic trends in terrestrial dissolved organic matter from optical measurements

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Spencer, Robert; Hernes, Peter; Six, Johan; Aiken, George; Tank, Suzanne; McClelland, James; Butler, Kenna; Dyda, Rachael; Holmes, Robert

    2016-03-01

    Climate change is causing extensive warming across arctic regions resulting in permafrost degradation, alterations to regional hydrology, and shifting amounts and composition of dissolved organic matter (DOM) transported by streams and rivers. Here, we characterize the DOM composition and optical properties of the six largest arctic rivers draining into the Arctic Ocean to examine the ability of optical measurements to provide meaningful insights into terrigenous carbon export patterns and biogeochemical cycling. The chemical composition of aquatic DOM varied with season, spring months were typified by highest lignin phenol and dissolved organic carbon (DOC) concentrations with greater hydrophobic acid content, and lower proportions of hydrophilic compounds, relative to summer and winter months. Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM composition across river basins. Fluorescence and parallel factor analysis identified seven components across the six Arctic rivers. The ratios of 'terrestrial humic-like' versus 'marine humic-like' fluorescent components co-varied with lignin monomer ratios over summer and winter months, suggesting fluorescence may provide information on the age and degradation state of riverine DOM. CDOM absorbance (a350) proved a sensitive proxy for lignin phenol concentrations across all six river basins and over the hydrograph, enabling for the first time the development of a single pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more constrained estimates of terrigenous DOM residence times in the Arctic Ocean (spanning 7 months to 2½ years). Furthermore, multiple linear regression models incorporating both absorbance and fluorescence variables proved capable of explaining much of the variability in

  10. Exchanges and photo-biogeochemical transformation of dissolved organic compounds in Eastern US tidal marsh ecosystems.

    NASA Astrophysics Data System (ADS)

    Tzortziou, Maria; Neale, Patrick; Megonigal, Patrick; Butterworth, Megan; Jaffe, Rudolf

    2010-05-01

    The role of tidal marshes as sources, sinks and/or transformers of biologically important nutrients, carbon and pollutants has been studied in various marsh-estuarine environments and geomorphological settings. Although there is no consensus on the magnitude and direction of marsh-estuary net (particulate and dissolved) organic fluxes, most previous studies suggest that salt marshes export dissolved organic carbon (DOC) to the surrounding estuarine waters. There has been less attention, however, to the influence of transformations on marsh-exported organic carbon composition or "quality". Yet, carbon composition affects a wide variety of estuarine processes, including microbial respiration and photochemistry. Our objectives in this study were to quantify the photo-reactivity and bio-availability of dissolved organic carbon compounds exported from tidal wetlands of the Chesapeake Bay and determine their effects on the optical properties of colored organic matter (CDOM). We quantified DOC bioavailability with two assays of microbial mineralization: the traditional batch incubation approach in which a suspension of DOM and microbial cells (1 µm filtrate) was incubated in bottles for 7 d, and a continuous-flow bioreactor approach in which DOC (0.2 µm filtrate) was passed through a microbial community that had been pre-established on glass beads from the same source water. Photochemical degradation was measured after a 10h exposure to filtered xenon irradiance simulating midday surface exposure. We measured decreases in CDOM absorption and fluorescence spectra, DOC concentrations, changes in molecular weight distribution, and increases in dissolved inorganic carbon (DIC) and CO2. Results provide important insights on the transformation, fate and cycling of marsh-exported organic compounds, and the role of tidal marsh systems as major regulators of short-scale biological, optical and biogeochemical variability in highly dynamic coastal margins and catchment areas.

  11. The characterization and bioavailability of dissolved organic carbon in deep subsurface and surface waters

    SciTech Connect

    Palumbo, A.V.; Jardine, P.M.; McCarthy, J.F. ); Zaidi, B.R. . Dept. of Marine Sciences)

    1990-01-01

    We characterized and compared the bioavailability of chemical fractions of dissolved organic carbon (DOC) from deep wells at the US Department of Energy Savannah River Plant (SRP) site with that from South Carolina surface waters. Experiments with three bacterial cultures (Corynebacterium sp., Pseudomonas sp., and a bacteria included isolated from the surface water) indicated that the bioavailability of the carbon in the near surface water may be limited by inorganic nutrients. Associated with well-defined organic compounds. The purpose of this preliminary investigation was to improve our understanding of the organic matter in groundwater by characterizing the natural organic matter in water recovered from different formations in the Deep Probe Subsurface Microbiology program and by determining if the natural organic carbon can support growth of bacterial populations. The characterization was directed at elucidating the properties of of dissolved or colloidal organic matter that are relevant to the transport and mobility of the organic matter (and contaminants sorbed to the organic matter) and that may also be relevant to the potential role of organic matter in groundwater as a nutrient source supporting microbial productivity in the deep subsurface. A secondary objective of this study was to determine the factors limiting microbial growth in surface waters and near surface groundwaters and to determine the response of the microbial community to a mixing of these waters.

  12. Modeling impact of storage zones on stream dissolved oxygen

    USGS Publications Warehouse

    Chapra, S.C.; Runkel, R.L.

    1999-01-01

    The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.

  13. Effects of soil dissolved organic matter inputs on high-elevation lake metabolism

    NASA Astrophysics Data System (ADS)

    Sadro, S.; De La Rosa, G. T.; Nelson, C. E.; Homyak, P. M.; Sickman, J. O.

    2015-12-01

    Concentrations of dissolved organic matter (DOM) have been increasing in many aquatic ecosystems. In snow-dominated systems, longer growing seasons and shifts in precipitation from snow to rain are expected to increase terrestrial DOM loading in lakes. In particular, high-elevation lakes are susceptible to the effects of rain-induced loading because they are often located in steep catchments with thin soils and impermeable rock outcrops that rapidly channel runoff. Observational studies have linked rain-induced loading with increased lake DOM and nutrient concentrations, altering ecosystem metabolic rates. However, the aquatic ecosystem response to different magnitudes of terrestrial DOM loading remains unclear. We hypothesize that low levels of DOM loading will stimulate rates of primary production to a greater extent than heterotrophic respiration as phytoplankton in these oligotrophic lakes exploit increased inorganic nutrient availability, ultimately increasing net ecosystem production. In contrast, we expect high levels of loading to suppress rates of gross primary production through reduced transparency of photosynthetically active radiation, while stimulating heterotrophic respiration through increased DOM substrate availability for bacterioplankton. We predict there will be a threshold DOM-loading level above which net ecosystem metabolism becomes heterotrophic. To test these hypotheses we conducted a series of in situ incubations of lake water amended with soil DOM extracted from catchment Entisols and Inceptisols. Background concentrations of dissolved organic carbon (DOC) in these lakes are typically ~60 - 80 μM during the ice-free season. Incubation treatments included a control with ambient DOC concentration, soil DOM additions targeting +10 μM, +20 μM, +60 μM, +190 μM, +440 μM, and +940 μM DOC, and a nutrient amendment matching inorganic N and P concentrations in the highest soil DOM treatment. We develop models that predict phytoplankton and

  14. Influence of dissolved organic matter on acute toxicity of zinc to larval fathead minnows (Pimephales promelas).

    PubMed

    Bringolf, Robert B; Morris, Brady A; Boese, Connie J; Santore, Robert C; Allen, Herbert E; Meyer, Joseph S

    2006-10-01

    We conducted laboratory toxicity tests in support of the development of a biotic ligand model (BLM) to predict acute toxicity of zinc (Zn) to fathead minnows (Pimephales promelas). To test the effect of dissolved organic matter (DOM) on Zn toxicity, we exposed larval fathead minnows to Zn in water containing elevated concentrations of dissolved organic carbon (DOC) in 96-h static-renewal toxicity tests. We tested DOM isolated from four surface waters: Cypress Swamp, Delaware; Edisto River, South Carolina; Suwannee River, Georgia; and Wilmington, Delaware, wastewater treatment effluent. The DOM isolates from the Edisto River and Wilmington wastewater treatment effluent contained elevated concentrations of NaCl (20-110x control NaCl) due to the use of a Na+-exchange resin to remove Ca2+ and Mg2+ during the DOM isolation process. Therefore, we also performed Zn toxicity tests in which we added up to 20 mM NaCl to exposure solutions containing Cypress Swamp and Suwannee River DOM. A threshold concentration of 11 mg DOC/L was needed to decrease Zn toxicity, after which the 96 h Zn LC50 was positively correlated with DOC concentration. Elevated NaCl concentrations did not alter Zn toxicity in the presence of DOM. In conjunction with data from other studies with fish and invertebrates, results of this study were used to calibrate Version 2.1.1 of the Zn BLM. BLM-predicted LC50s for our exposure waters containing elevated DOM concentrations were within the range of acceptable deviation relative to the observed LC50s (i.e., 0.5-2x observed LC50s); however, BLM-predicted LC50s for our exposure waters containing < 1 mg DOC/L were 2-3x lower than the observed LC50s (i.e., the BLM over-predicted the toxicity). Therefore, the current composite-species BLM for Zn could be improved for fathead minnows if that species were modeled separately from the other species used to calibrate Version 2.1.1. PMID:16788742

  15. Variation of dissolved organic carbon transported by two Chinese rivers: The Changjiang River and Yellow River.

    PubMed

    Liu, Dong; Pan, Delu; Bai, Yan; He, Xianqiang; Wang, Difeng; Zhang, Lin

    2015-11-15

    Real-time monitoring of riverine dissolved organic carbon (DOC) and the associated controlling factors is essential to coastal ocean management. This study was the first to simulate the monthly DOC concentrations at the Datong Hydrometric Station for the Changjiang River and at the Lijin Hydrometric Station for the Yellow River from 2000 to 2013 using a multilayer back-propagation neural network (MBPNN), along with basin remote-sensing products and river in situ data. The average absolute error between the modeled values and in situ values was 9.98% for the Changjiang River and 10.84% for the Yellow River. As an effect of water dilution, the variations of DOC concentrations in the two rivers were significantly negatively affected by discharge, with lower values reported during the wet season. Moreover, vegetation growth status and agricultural activities, represented by the gross primary product (GPP) and cropland area percent (CropPer) in the river basin, respectively, also significantly affected the DOC concentration in the Changjiang River, but not the Yellow River. The monthly riverine DOC flux was calculated using modeled DOC concentrations. In particular, the riverine DOC fluxes were affected by discharge, with 71.06% being reported for the Changjiang River and 90.71% for the Yellow River. Over the past decade, both DOC concentration and flux in the two rivers have not shown significant changes. PMID:26404069

  16. Geomorphic controls on the export of dissolved organic carbon from forested catchments in central Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Creed, I. F.; Lynch, M. D.; Sanford, S. E.; Beall, F. D.; Jeffries, D. S.

    2001-12-01

    Dissolved organic carbon (DOC) is a complex mixture of hydrophobic and hydrophilic compounds that has significant implications for the quality of surface water. In forests, wetlands have been shown to be a significant source of the natural variation in DOC export to streams; however, ephemeral wetlands (or surface saturated areas, SSAs) have not yet been considered as a potential source. For catchments in the Turkey Lakes Watershed (TLW) in central Ontario, Canada, the natural variation in DOC export was established and a statistical model to predict this natural variation was developed. For 12 catchments in the TLW, the natural variation in DOC export was significant, with annual averages ranging from 13.8 to 23.2 kg Chayr and catchment averages ranging from 11.9 to 31.5 kg Chayr. It was hypothesised that geomorphic controls on the distribution and organisation of SSAs within catchments influence DOC export. Three SSA indices were derived: (1) SSA size; (2) SSA connectivity to streams (reflecting the hydrologic efficiency of DOC transport); and (3) SSA curvature (reflecting the potential for hydrologic flushing into areas of replenished DOC sources). A multiple linear model indicated that the majority of the natural variation in DOC export was explained by a combination of the hydrologic efficiency and flushing potentials of the SSAs (R-sqr.=0.717, Adjusted R-sqr.4=0.654, p<0.05). To improve predictions of DOC export from forested catchments, the role of both permanent and ephemeral wetlands must be considered.

  17. Quantifying dissolved organic carbon concentrations in upland catchments using phenolic proxy measurements

    NASA Astrophysics Data System (ADS)

    Peacock, Mike; Burden, Annette; Cooper, Mark; Dunn, Christian; Evans, Chris D.; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Hughes, David; Hughes, Steve; Jones, Tim; Lebron, Inma; West, Mike; Zieliński, Piotr

    2013-01-01

    SummaryConcentrations of dissolved organic carbon (DOC) in soil and stream waters in upland catchments are widely monitored, in part due to the potential of DOC to form harmful by-products when chlorinated during treatment of water for public supply. DOC can be measured directly, though this is expensive and time-consuming. Light absorbance in the UV-vis spectrum is often used as a surrogate measurement from which a colour-carbon relationship between absorbance and DOC can be derived, but this relationship can be confounded by numerous variables. Through the analysis of data from eight sites in England and Wales we investigate the possibility of using the concentration of phenolic compounds in water samples as a proxy for DOC concentration. A general model using data from all the sites allowed DOC to be calculated from phenolics at an accuracy of 81-86%. A detailed analysis at one site revealed that a site-specific calibration was more accurate than the general model, and that this compared favourably with a colour-carbon calibration. We therefore recommend this method for use where estimates of DOC concentration are needed, but where time and money are limiting factors, or as an additional method to calculate DOC alongside colour-carbon calibrations. Tests demonstrated only small amounts of phenolic degradation over time; a loss of 0.92 mg L-1 after 8 months in storage, and so this method can be used on older samples with limited loss of accuracy.

  18. Fluorescence characteristics of size-fractionated dissolved organic matter: implications for a molecular assembly based structure?

    PubMed

    Romera-Castillo, Cristina; Chen, Meilian; Yamashita, Youhei; Jaffé, Rudolf

    2014-05-15

    Surface freshwater samples from Everglades National Park, Florida, were used to investigate the size distributions of natural dissolved organic matter (DOM) and associated fluorescence characteristics along the molecular weight continuum. Samples were fractionated using size exclusion chromatography (SEC) and characterized by spectroscopic means, in particular Excitation-Emission Matrix fluorescence modeled with parallel factor analysis (EEM-PARAFAC). Most of the eight components obtained from PARAFAC modeling were broadly distributed across the DOM molecular weight range, and the optical properties of the eight size fractions for all samples studied were quite consistent among each other. Humic-like components presented a similar distribution in all the samples, with enrichment in the middle molecular weight range. Some variability in the relative distribution of the different humic-like components was observed among the different size fractions and among samples. The protein like fluorescence, although also generally present in all fractions, was more variable but generally enriched in the highest and lowest molecular weight fractions. These observations are in agreement with the hypothesis of a supramolecular structure for DOM, and suggest that DOM fluorescence characteristics may be controlled by molecular assemblies with similar optical properties, distributed along the molecular weight continuum. This study highlights the importance of studying the molecular structure of DOM on a molecular size distribution perspective, which may have important implications in understanding the environmental dynamics such materials. PMID:24602859

  19. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition.

    PubMed

    Edokpa, D A; Evans, M G; Rothwell, J J

    2015-11-01

    This study investigates seasonal concentrations and fluxes of nitrogen (N) species under stormflow and baseflow conditions in the peat dominated Kinder River catchment, south Pennines, UK. This upland region has experienced decades of high atmospheric inorganic N deposition. Water samples were collected fortnightly over one year, in combination with high resolution stormflow sampling and discharge monitoring. The results reveal that dissolved organic nitrogen (DON) constitutes ~54% of the estimated annual total dissolved nitrogen (TDN) flux (14.3 kg N ha(-1) yr(-1)). DON cycling in the catchment is influenced by hydrological and biological controls, with greater concentrations under summer stormflow conditions. Dissolved organic carbon (DOC) and DON are closely coupled, with positive correlations observed during spring, summer and autumn stormflow conditions. A low annual mean DOC:DON ratio (<25) and elevated dissolved inorganic N concentrations (up to 63μmoll(-1) in summer) suggest that the Kinder catchment is at an advanced stage of N saturation. This study reveals that DON is a significant component of TDN in peatland fluvial systems that receive high atmospheric inputs of inorganic N. PMID:26119385

  20. PHOTOREACTIVITY OF CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organi...

  1. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  2. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  3. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect

    Lutz, Brian D; Bernhardt, Emily; Roberts, Brian; Mulholland, Patrick J

    2011-01-01

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two

  4. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). PMID:23466281

  5. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    PubMed

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. PMID:26991278

  6. Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.

    2006-12-01

    The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a

  7. Plant diversity effects on leaching of nitrate, ammonium, and dissolved organic nitrogen from an experimental grassland

    NASA Astrophysics Data System (ADS)

    Leimer, Sophia; Oelmann, Yvonne; Wirth, Christian; Wilcke, Wolfgang

    2014-05-01

    Leaching of nitrogen (N) from soil represents a resource loss and, in particular leaching of nitrate, can threaten drinking water quality. As plant diversity leads to a more exhaustive resource use, we investigated the effects of plant species richness, functional group richness, and the presence of specific functional groups on nitrate, ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from an experimental grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. The experiment is located in Jena, Germany, and consists of 82 plots with 1, 2, 4, 8, 16, or 60 plant species and 1-4 functional groups (legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs). Nitrate, ammonium, and TDN concentrations in soil solution in the 0-0.3 m soil layer were measured every second week during 4 years on 62 plots and DON concentrations were calculated as difference between TDN and inorganic N. Missing concentrations in soil solution were estimated using a Bayesian statistical model. Downward water fluxes (DF) per plot from the 0-0.3 m soil layer were simulated in weekly resolution with a water balance model in connection with a Bayesian model for simulating missing soil water content measurements. To obtain annual nitrate, ammonium, and DON leaching from the 0-0.3 m soil layer per plot, we multiplied the respective concentrations in soil solution with DF and aggregated the data to annual sums. TDN leaching resulted from summation of nitrate, ammonium, and DON leaching. DON leaching contributed most to TDN leaching, particularly in plots without legumes. Dissolved inorganic N leaching in this grassland was dominated by nitrate. The amount of annual ammonium leaching was small and little influenced by plant diversity. Species richness affected DON leaching only in the fourth and last investigated year, possibly because of a delayed soil biota effect that increased microbial transformation of organic

  8. Probing the oxidation reduction properties of terrestrially and microbially derived dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Fimmen, Ryan L.; Cory, Rose M.; Chin, Yu-Ping; Trouts, Tamara D.; McKnight, Diane M.

    2007-06-01

    Dissolved organic matter (DOM) has been shown to be an integral component in biogeochemical electron transfer reactions due to its demonstrated ability to facilitate redox reactions. While the role of DOM as a facilitator of electron transfer processes has been demonstrated, greater knowledge would lead to better understanding of the structural components responsible for redox behavior, such as quinones and nitrogen and sulfur (N/S) functional groups. This investigation uses direct scan voltammetry (DSV) coupled with fluorescence and NMR spectroscopy as well as thermochemolysis gas chromatography mass spectrometry (GC-MS) and X-ray photoelectron spectroscopy (XPS) to elucidate the organic moieties responsible for facilitating electron transfer reactions. We contrast electrochemical properties and structural details of three organic matter isolates from diverse sources; Great Dismal Swamp DOM (terrestrially derived, highly aromatic), Pony Lake DOM (microbially derived, highly aliphatic) and Toolik Lake (terrestrially derived, photochemically and microbially altered) with juglone (a redox-active model quinone). Aromatic and phenolic constituents were detected (by 13C NMR) and recovered (by thermochemolysis GC-MS) from all three fulvic acid samples, highlighting the ubiquity of these compounds and suggesting that the quinone-phenol redox couple is not limited to DOM derived from lignin precursors. The range of hydroxy-benzene and benzoic acid derivatives may explain the lack of a single pair of well-defined oxidation and reduction peaks in the DSV scans. The presence of a wide-range of hydroxylated benzoic acid isomers and other redox-active aromatic residues implies that native DOM possesses overlapping redox potentials analogous to their characteristic range of p Ka values.

  9. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline

    NASA Astrophysics Data System (ADS)

    Hagedorn, Frank; van Hees, Patrick A. W.; Handa, I. Tanya; HäTtenschwiler, Stephan

    2008-06-01

    Dissolved organic matter (DOM), the mobile form of soil organic matter (SOM), plays an important role in soil C cycling and in nutrient transport. We investigated the effects of 5 years of CO2 enrichment (370 versus 570 μmol CO2 mol-1) on DOM dynamics at the alpine treeline, including the analysis of fast-cycling components such as low molecular weight organic acids (LMWOAs), dissolved organic carbon (DOC) biodegradability, and the decomposition of 14C-labeled oxalate. Concentrations of DOC in canopy throughfall were 20% higher at elevated CO2, probably driven by higher carbohydrate concentrations in leaves. In the organic soil layer, 5 years of CO2 enrichment increased water-extractable organic C by 17% and soil solution DOC at 5 cm depth by 20%. The 13C tracing of recently assimilated CO2 revealed that the input of recent plant-derived C (<15% of total DOC) was smaller than the CO2-induced increase in DOC. This strongly suggests that CO2 enrichment enhanced the mobilization of native DOC, which is supported by significant increases in dissolved organic nitrogen (DON). We mainly attribute these increases to a stimulated microbial activity as indicated by higher basal and soil respiration rates (+27%). The 14C-labeled oxalate was more rapidly mineralized from high CO2 soils. The concentrations of LMWOAs, but also those of "hydrophilic" DOC and biodegradable DOC (6% of total DOC), were, however, not affected by elevated CO2, suggesting that production and consumption of "labile" DOC were in balance. In summary, our data suggest that 5 years of CO2 enrichment speeded up the cycling of "labile" DOM and SOM in a late successional treeline ecosystem and increased the mobilization of older DOM through a stimulated microbial activity. Such a "priming effect" implies that elevated CO2 can accelerate the turnover of native SOM, and thus, it may induce increasing losses of old C from thick organic layers.

  10. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  11. Fluxes of dissolved organic matter and mineral weathering products from Corn Belt landscapes dominated by subsurface drainage: large-scale soil and hydrologic change

    NASA Astrophysics Data System (ADS)

    Jelinski, N. A.; Yoo, K.; Strock, J.; Dalzell, B. J.; Finlay, J. C.

    2011-12-01

    The human alteration of agricultural landscapes is one of the most important factors in pedologic and geomorphic change, and can influence hydrology and aquatic chemistry at large scales. Most of the Midwestern Corn Belt that is currently dominated by subsurface tile drainage (such as southern Minnesota) was historically prairie and wetland which had hydrologic flow-paths through organic-rich surface soil horizons, a condition that favored the export of dissolved organic matter. When hydrology is altered through subsurface drainage, adsorption of organic materials to mineral surfaces and increases in mineral weathering may result because more water is flowing through subsurface mineral soils. We suggest that the alteration of hydrologic flowpaths in agricultural landscapes can dramatically alter the rate of mineral weathering as well as surface export of weathering products and dissolved organic matter. This could be at least one contributing factor to observed increases in Mississippi River alkalinity over the past four decades. Here, we examine trends in dissolved organic carbon, total dissolved nitrogen, dissolved organic nitrogen, total suspended solids, and indicators of mineral weathering (Si, Ca, Na, K) from subsurface drainage systems located in southwestern MN. Then, using a simple conceptual model, we estimate the effects of subsurface drainage on the regional fluxes of these parameters and present directions for future research.

  12. Photodegradation of dissolved organic matter in two contrasting reaches of a regulated river

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Dahlgren, R. A.; Spencer, R. G.

    2010-12-01

    standard plating and colony count methods. Water was analyzed for dissolved organic carbon (DOC), nutrients, and pH, UV-absorbance properties, including specific UV absorbance (SUVA) and selected spectral slopes (275-295 nm slope and 350-400 nm slope), were used to investigate changes in DOM characteristics. Spectrofluorometric techniques were used to determine the fluorescence index (emission at wavelength 450 nm to 500 nm at an excitation wavelength of 370 nm) for investigation of source material and transformations. Preliminary results suggest little to no change in DOC or nutrient concentrations. However, shifts in SUVA, spectral slope, and fluorescence index were apparent in both reservoir and river samples incubated at both sites, with larger changes observed for river samples incubated within the river reach at 70% light transmittance. These results provide information on how photodegradation may affect DOM recycling and regeneration as an energy source within different compartmentalized reaches of the Klamath River. This information will subsequently aid in developing models for predicting DOM dynamics over larger spatial and temporal scales, including predictions and implications for conditions following dam removal.

  13. Spatial and temporal controls on stream water dissolved organic carbon fluxes under hydrological extremes

    NASA Astrophysics Data System (ADS)

    Dick, J.; Tetzlaff, D.; Lessels, J.; Soulsby, C.

    2013-12-01

    Dissolved organic carbon (DOC) is a highly important component of river water draining Northern peatlands which exerts an important control on water quality and in-stream ecology. DOC generation depends on the complex interaction of hydrological and biogeochemical processes which in turn are driven by hydroclimatic factors that govern catchment wetness and soil temperatures. Here, we present temporally intensive DOC monitoring - coupled with spatially extensive sampling - over an 18 month period (Jan 2012-July 2013) in a 3.6 km2 watershed in the Scottish Highlands with an extensive riparian peatland. The monitoring period coincided with three contrasting extreme hydroclimatic events; a very wet (20 year return period) summer in 2012, the 2013 spring which was the coldest for 50 years and a dry early summer (10 year return period) in 2013. Over these periods we sampled stream water at daily intervals for DOC determination and coupled this with continuous measurement using a water quality sonde (In Situ Sensor for Dissolved Organic Matter Fluorescence). We complemented these measurements with spatially distributed (110 sampling locations) synoptic sampling of peatland surface waters and stream water on four occasions during the contrasting hydroclimatic conditions. During the wetter summer DOC was highly variable; small events produced extremely high DOC concentrations in surface waters as the riparian peatland was quasi-continuously connected to the stream. DOC was diluted in larger events as more minerogenic hillslope soils became increasingly connected, implying supply limited conditions. In contrast, during the drier summer of 2013, DOC showed a stronger correlation with flow as connectivity with the riparian peats was intermittent, rendering DOC as transport-limited despite very high concentrations in disconnected peatland surface waters. The cold spring of 2013 was followed by anomalously high spring DOC concentrations in stream waters. It is hypothesised that

  14. Natural Variability in Dissolved Organic Carbon and Dissolved Organic Nitrogen Transport in Artificially Drained Landscapes of the U.S. Midwest.

    NASA Astrophysics Data System (ADS)

    Cuadra, P. E.; Vidon, P.

    2009-05-01

    Nutrient inputs into coastal ecosystems have become a major issue with serious consequences for water quality; nonetheless, few studies focus on N and C transport during storms in Midwestern tile-drained fields in spite of the known importance of N and C export from artificially drained landscapes of the U.S. Midwest on the development of the "Dead Zone" in the Gulf of Mexico in the summer. Monitoring tile-drain flow at a high temporal resolution during storms is difficult and expensive and little information is therefore available on natural spatial and temporal variability in dissolved organic nitrogen (DON) and carbon (DOC) concentration dynamics in tile drains during storms. This lack of information on DON and DOC export patterns from tile drains hinders our ability to accurately and precisely estimate total nutrient loads and hydrological processes regulating the movement of these nutrients from the watershed to streams via tile flow. The objective of this research is therefore to characterize natural variability in DOC and DON export in two seemingly identical tile drains (length, contributing area) in Leary Weber Ditch; a small (7.6 km2) artificially drained agricultural watershed near Indianapolis, IN. Four storms with various characteristics (intensity-duration) were sampled in May and June 2008. The two studied tile-drains showed different flow and discharge patterns but similar spatial and temporal patterns of DOC and DON concentrations. Large inter-storm variability in DOC and DON concentration patterns were attributed to different storm intensities and soil pre-event moisture conditions. Multiple other storms are currently being monitored to further characterize natural variability in nitrogen and carbon exports in the studied tile drains and identify primary hydrological controls (season, vegetation development stage, antecedent moisture conditions) regulating N and C export in tile drains over a 12-month period. This work will inform model

  15. Composition, removal, redox, and metal complexation properties of dissolved organic nitrogen in composting leachates.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Zhang, Zong-Yong; Gao, Ru-Tai; Tan, Wen-Bing; Cui, Dong-Yu; Yuan, Ying

    2015-01-01

    This study investigated the composition, removal, redox, and metal complexation characteristics of dissolved organic nitrogen (DON) in composting leachates. Results showed that the leachate-derived DON comprised proteinaceous compounds and amines, and most of them were integrated into the fulvic- and humic-like substances. Neutral, basic, acidic, hydroxylic, aromatic, and sulfuric amino acids all were detected in the influent leachates. However, most of them were removed by the biological and physical processes, and only neutral amino acids were detected in the effluent. The DON was not the main contributor to the redox capability of the leachate dissolved organic matter (DOM). However, it exhibited a strong capability for metal complexation. The amines formed strong complexes with the metals Mo, Co, Cr, and Ni, while the proteinaceous matter interacted with the metals Cr and Ni. PMID:25282175

  16. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation.

    PubMed

    Lee, Wontae; Westerhoff, Paul

    2006-12-01

    Coagulation of three surface waters was conducted with aluminum salt and/or cationic polymer to assess dissolved organic nitrogen (DON) removal. Coagulation with aluminum sulfate removed equal or slightly lower amounts of DON as compared to dissolved organic carbon (DOC). At aluminum sulfate dosages up to 5mg per mg DOC, the cationic polymer improved DON removal by an additional 15% to 20% over aluminum sulfate alone. At very high aluminum sulfate dosages (>8 mg aluminum sulfate per mg DOC), however, the cationic polymer addition negligibly increased DON removal. Molecular weight fractionation before and after coagulation experiments indicated that cationic polymer addition can increase the removal of all molecular weight fractions of DON with the highest molecular weight fraction (>10,000 Da) being preferentially removed. Results indicated that the DON added as part of the cationic polymer was almost completely removed at optimum aluminum sulfate and polymer doses. PMID:17023020

  17. Effects of dissolved organic matter size fractions on trihalomethanes formation in MBR effluents during chlorine disinfection.

    PubMed

    Ma, Defang; Gao, Baoyu; Sun, Shenglei; Wang, Yan; Yue, Qinyan; Li, Qian

    2013-05-01

    In this study, effects of dissolved organic matter (DOM) size fractions on trihalomethanes (THMs) formation in MBR effluents during chlorination were investigated by fractionating DOM into >100, 30-100, 10-30, 5-10 and <5 kDa fractions using ultrafiltration (UF) membranes based on molecular weight (MW). Fractions of MW>30 kDa constituted 87% of DOM and were the main THMs precursors, which exhibited higher specific ultraviolet absorbance (SUVA) and THMs formation potential (THMFP) and should be reduced to control THMs formation. For these fractions, THMs formation was mostly attributed to slow chlorine decay, and THMs yield coefficients were low because halogenated intermediates derived from the macromolecular DOM were difficult to decompose to produce THMs. Moreover, there was a strong linear correlation between dissolved organic carbon (DOC) concentration and THMFP (R(2)=0.981), as well as between the SUVA and specific THMFP (R(2)=0.993) in all fractions. PMID:23567728

  18. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  19. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept.

    PubMed

    Raymond, Peter A; Saiers, James E; Sobczak, William V

    2016-01-01

    Hydrological precipitation and snowmelt events trigger large "pulse" releases of terrestrial dissolved organic matter (DOM) into drainage networks due to an increase in DOM concentration with discharge. Thus, low-frequency large events, which are predicted to increase with climate change, are responsible for a significant percentage of annual terrestrial DOM input to drainage networks. These same events are accompanied by marked and rapid increases in headwater stream velocity; thus they also "shunt" a large proportion of the pulsed DOM to downstream, higher-order rivers and aquatic ecosystems geographically removed from the DOM source of origin. Here we merge these ideas into the "pulse-shunt concept" (PSC) to explain and quantify how infrequent, yet major hydrologic events may drive the timing, flux, geographical dispersion, and regional metabolism of terrestrial DOM. The PSC also helps reconcile long-standing discrepancies in C cycling theory and provides a robust framework for better quantifying its highly dynamic role in the global C cycle. The PSC adds a critical temporal dimension to linear organic matter removal dynamics postulated by the river continuum concept. It also can be represented mathematically through a model that is based on stream scaling approaches suitable for quantifying the important role of streams and rivers in the global C cycle. Initial hypotheses generated by the PSC include: (1) Infrequent large storms and snowmelt events account for a large and underappreciated percentage of the terrestrial DOM flux to drainage networks at annual and decadal time scales and therefore event statistics are equally important to total discharge when determining terrestrial fluxes. (2) Episodic hydrologic events result in DOM bypassing headwater streams and being metabolized in large rivers and exported to coastal systems. We propose that the PSC provides a framework for watershed biogeochemical modeling and predictions and discuss implications to

  20. Abiotic Dissolved Organic Matter-Mineral Interaction in the Karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A.

    2007-12-01

    Dissolved organic matter (DOM)-mineral interaction (e.g. adsorption, desorption, mineral dissolution) in groundwater is a significant factor controlling geochemical, environmental and microbial processes and may be helpful in efforts to track groundwater sources or contaminant fate. Despite its importance, the dynamics and consequences of these abiotic interactions remain poorly understood, largely due to the inaccessibility and heterogeneity of the subsurface, as well as the chemical complexity of DOM. This study models the OM-mineral interactions that takes place in the Floridan aquifer through laboratory adsorption-desorption experiments using DOM (groundwater, river water, soil extracts) and carbonate minerals (calcite, dolomite) collected in north Florida. High performance liquid chromatography-size exclusion chromatography (HPLC-SEC) and UV-fluorescence excitation-emission matrix (EEM) spectrophotometry was used to examine the organic compound types exhibiting preferential affinity for carbonate minerals. Our results show that the DOM-carbonate adsorption/desorption isotherms are well described by the Freundlich model. Freundlich exponents (average value: 0.6488) less than one indicated a filling of adsorption sites. Minerals from Ocala tend to have higher adsorption affinity as well as adsorption capacity than those from Suwannee River Basin; however, both were found to have mineral dissolution. Two fluorescent signals, indicative of a fulvic-like (at excitation wavelength 295-310 nm, emission 400-420 nm) and a protein-like (275/345nm) moiety, were detected in DOM. A reduction in the fulvic-like peak intensity occurred following carbonate adsorption while the protein-like peaks remain almost unchanged indicating the preferential adsorption of fulvic acids. HPLC-SEC results (DOM properties as a function of molecular weight) will be discussed. The chemical properties of DOM in environmental groundwater samples will also be presented and evaluated in light of

  1. Fate of terrestrial colored dissolved organic matter (CDOM) in the Arctic Ocean: exported or removed?

    NASA Astrophysics Data System (ADS)

    Granskog, M. A.; Stedmon, C. A.; Dodd, P. A.; Amon, R. M. W.; Pavlov, A. K.; de Steur, L.; Hansen, E.

    2012-04-01

    Colored dissolved organic matter (CDOM) was measured with hydrographic parameters (salinity, d18O and inorganic nutrients) across Fram Strait. East Greenland Current (EGC) surface waters showed a pronounced CDOM absorption maximum between 30 and 120 m depth associated with both river and sea ice brine-enriched water, characteristic of polar mixed layer water and upper halocline water. Lowest CDOM was found in the Atlantic inflow within the West Spitsbergen Current (WSC). Although applied elsewhere in the Arctic, we show that the salinity-CDOM relationship not suitable for evaluating the mixing behavior of CDOM (conservative vs. non-conservative) in Fram Strait. The strong correlation between meteoric water and optical properties of CDOM are indicative of the terrigenous origin of CDOM in the EGC and marine origin in WSC. Based on CDOM absorption in Polar Water and comparison with an Arctic river discharge weighted mean, we estimate that a 68% integrated loss of CDOM absorption across 250-600 nm has occurred, with a preferential removal of absorption at longer wavelengths reflecting the loss of high molecular weight material. Budget calculations of CDOM exports through Fram Strait using modeled volume transports indicate that the net southward export of CDOM in Fram Strait equals to 8 to 14% of the total riverine CDOM inputs to the Arctic Ocean, thus physical export is not a major sink of CDOM. We propose that CDOM can aid in discriminating glacial melt waters from Arctic riverine freshwater on the east Greenland shelf.

  2. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    PubMed

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean. PMID:25723123

  3. Differential utilization patterns of dissolved organic phosphorus compounds by heterotrophic bacteria in two mountain lakes

    PubMed Central

    Rofner, Carina; Sommaruga, Ruben; Pérez, María Teresa

    2016-01-01

    Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed concentration-dependent patterns. We determined bulk uptake rates by the bacterioplankton and examined bacterial taxon-specific substrate uptake patterns using microautoradiography combined with catalyzed reporter deposition–fluorescence in situ hybridization. Our results show that in the oligotrophic alpine lake, bacteria took up ATP, glucose-6-phosphate and glycerol-3-phosphate to similar extents (mean 29.7 ± 4.3% Bacteria), whereas in the subalpine mesotrophic lake, ca. 40% of bacteria took up glucose-6-phosphate, but only ∼20% took up ATP or glycerol-3-phosphate. In both lakes, the R-BT cluster of Betaproteobacteria (lineage of genus Limnohabitans) was over-represented in glucose-6-phosphate and glycerol-3-phosphate uptake, whereas AcI Actinobacteria were under-represented in the uptake of those substrates. Alphaproteobacteria and Bacteroidetes contributed to DOP uptake proportionally to their in situ abundance. Our results demonstrate that R-BT Betaproteobacteria are the most active bacteria in DOP acquisition, whereas the abundant AcI Actinobacteria may either lack high affinity DOP uptake systems or have reduced phosphorus requirements. PMID:27312963

  4. Fluorescence Characterization of Dissolved Organic Matter (DOC) from Marine and Terrestrial Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.; Coe, J. D.; Smith, Z. P.

    2013-12-01

    Hydrothermal ecosystems exhibit a wide range in temperature, pH, and solute concentrations, including dissolved organic carbon (DOC). Here we compare DOC concentrations among marine (Iheya North Field, East China Sea) and terrestrial (Yunnan Province, China and Yellowstone National Park, USA) hydrothermal systems. We further characterize DOC fluorescence in these three systems using 3D excitation-emission matrix spectroscopy (EEMs) and PARAFAC modeling. DOC concentrations in pore waters from the Iheya North hydrothermal field are always extremely low (<1 mg/L) and EEMs analysis suggests the DOC is of microbial origin. DOC concentrations in terrestrial springs from both China and Yellowstone have somewhat consistent variations with pH; generally, there are lower DOC concentrations in alkaline springs and higher, but more variable, DOC concentrations in acidic springs. DOC concentrations in alkaline springs are generally <2 mg/L, but in acidic hot springs DOC can be >100 mg/L. Fluorescence analysis of DOC from terrestrial hot springs reveals that some, but by no means all, of the fluorophores exhibit relationships with pH similar to those of the bulk DOC. In contrast, other fluorophores vary independently of the bulk DOC concentration. The DOC in hot springs from both China and Yellowstone appears to be predominantly of microbial origin but there are as yet unidentified fluorophores in both regions that could be unique tracers for DOC in hydrothermal systems.

  5. Reductive transformation of dioxins: An assessment of the contribution of dissolved organic matter to dechlorination reactions

    SciTech Connect

    Fu, Q.S.; Barkovskii, A.L.; Adriaens, P.

    1999-11-01

    The susceptibility of dioxins to dissolved organic carbon (DOC)-mediated dechlorination reactions was investigated using 1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (HpCDD), Aldrich humic acid (AHA), and polymaleic acid (PMA) as model compounds. The dechlorination yields were on the order of 4--20% which, when normalized to phenolic acidity, was comparable to yields observed in the presence of the humic constituents catechol and resorcinol. Based on the ratio of dechlorination yields as a function of phenolic acidity and electron transfer capacity, differences in electron transfer efficiency to dioxins are likely combined effects of specific interactions with the functional groups and nonspecific hydrophobic interactions. Hexa- and pentaCDD homologues were dominant in all incubations, and diCDD constituted the final product of dechlorination. The rates of appearance of lesser chlorinated products were similar to those observed in sediment systems and followed thermodynamic considerations as they decreased with a decrease in level of chlorination. Generally, both absolute and phenolic acidity-normalized rate constants for AHA-mediated reactions were up to 2-fold higher than those effected by PMA. These results indicate that the electron shuttling capacity of sediment DOC may significantly affect the fate of dioxins, in part through dechlorination reactions.

  6. Impact of Chromophoric Dissolved Organic Matter on UV Inhibition of Primary Productivity in the Sea

    NASA Technical Reports Server (NTRS)

    Arrigo, Kevin R.; Brown, Christopher W.

    1996-01-01

    A model was developed to assess the impact of chromophoric dissolved organic matter (CDOM) on phytoplankton production within the euphotic zone. The rate of depth-integrated daily gross primary productivity within the euphotic zone was evaluated as a function of date, latitude, CDONI absorption characteristics, chlorophyll a (chl a) concentration, vertical stratification, and phytoplankton sensitivity to UV radiation (UVR). Results demonstrated that primary production was enhanced in the upper 30 m of the water column by the presence of CDOM, where predicted increases in production due to the removal of damaging UVR more than offset its reduction resulting from the absorption of photosynthetically usable radiation. At greater depths, where little UVR remained, primary production was always reduced due to removal by CDOM of photosynthetically usable radiation. When CDOM was distributed homogeneously within the euphotic zone, the integral over z [(GPP)(sub ez)], was reduced under most bio-optical (i.e. solar zenith angle, and CDOM absorption, and ozone concentration) and photophysiological production at depth was greater than the enhancement of production at the surface.

  7. Differential utilization patterns of dissolved organic phosphorus compounds by heterotrophic bacteria in two mountain lakes.

    PubMed

    Rofner, Carina; Sommaruga, Ruben; Pérez, María Teresa

    2016-09-01

    Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed concentration-dependent patterns. We determined bulk uptake rates by the bacterioplankton and examined bacterial taxon-specific substrate uptake patterns using microautoradiography combined with catalyzed reporter deposition-fluorescence in situ hybridization. Our results show that in the oligotrophic alpine lake, bacteria took up ATP, glucose-6-phosphate and glycerol-3-phosphate to similar extents (mean 29.7 ± 4.3% Bacteria), whereas in the subalpine mesotrophic lake, ca. 40% of bacteria took up glucose-6-phosphate, but only ∼20% took up ATP or glycerol-3-phosphate. In both lakes, the R-BT cluster of Betaproteobacteria (lineage of genus Limnohabitans) was over-represented in glucose-6-phosphate and glycerol-3-phosphate uptake, whereas AcI Actinobacteria were under-represented in the uptake of those substrates. Alphaproteobacteria and Bacteroidetes contributed to DOP uptake proportionally to their in situ abundance. Our results demonstrate that R-BT Betaproteobacteria are the most active bacteria in DOP acquisition, whereas the abundant AcI Actinobacteria may either lack high affinity DOP uptake systems or have reduced phosphorus requirements. PMID:27312963

  8. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter.

    PubMed

    Li, Yingjie; Chen, Jingwen; Qiao, Xianliang; Zhang, Heming; Zhang, Ya-nan; Zhou, Chengzhi

    2016-03-01

    The ubiquity of sulfonamide antibiotics (SAs) in natural waters urges insights into their fate for ecological risk assessment in the aqueous euphotic zone. In this study, we investigated the effect of dissolved organic matter (DOM) on the photolysis of SAs with sulfapyridine as a reprentative. Results show that excited triplet state DOM ((3)DOM(∗)) is largely responsible for the photodegradation of sulfapyridine. The reaction of (3)DOM(∗) with a substructure model compound of SAs confirmed that sulfapyridine has one reaction site (aniline-N). Density functional theory (DFT) calculation was performed, which indicates that the anionic sulfapyridine has higher (3)DOM(∗) reactivity than that of the neutral form, which was also confirmed by steady state photolytic experiments. In the reaction, electrons of the aniline-N transfer to the carbonyl oxygen atom of (3)DOM(∗) moiety, followed by proton transfer, and leading to the formation of sulfapyridine radicals. The photolytic mechansim of sulfapyridine initiated by (3)DOM(∗) is helpful in understanding the photochemical fate and assessing the ecological risks of SAs in the aquatic environment. PMID:26766369

  9. Contrasting UV-Vis Spectra of Terrestrial and Algal Derived Dissolved Organic Matter.

    NASA Astrophysics Data System (ADS)

    Adams, Jessica; Tipping, Edward; Scholefield, Paul; Feuchtmayr, Heidrun; Carter, Heather; Keenan, Patrick

    2016-04-01

    Dissolved organic matter (DOM) is an important freshwater component. It controls aquatic ecological and biochemical cycling, and can be problematic in industrial water treatment. Thus, the demand for effective and reliable monitoring is growing. The heterogeneity of the spectroscopic properties of DOM are such that measurements of absorbance at a single wavelength cannot provide accurate predictions of [DOC]. Previous construction of a two-component model, based on the combination of absorbance at two wavelengths and a constant accountable for non-absorbing DOM, resulted in good predictions of [DOC] across approximately 1800 different freshwater systems (R2=0.99). However, there were isolated cases where the model appreciably underestimated [DOC], including shallow lakes and reservoirs in the Yangtze basin, China where waters were deemed to be highly eutrophic. Here, we used a revised series of samples, from small scale algal dominated microcosms, mesocosms and catchment scale field samples to explore the capability of the two component model in situations where algae may be the dominant producer of aquatic DOC. Absorbances were measured using a laboratory based UV-Vis spectrometer and subsamples were also analysed through combustion and infra-red detection. In both the microcosms and mesocosms, the model failed to provide a reliable fit, and [DOC] was considerably underestimated. At the field scale, analysis of 55 samples from a combination of reservoirs, arable ponds, streams and rivers produced mostly reliable predictions of [DOC] (R2=0.96), which can be attributed to the dominant input of terrestrial DOM. Samples of shallow, enclosed meres from the North-West of the UK showed hints of similar behaviour to that of the Chinese lakes, suggesting some influences from algal DOM. Our results therefore provide evidence that algae may produce complex forms of DOM that harbour different spectroscopic properties to terrestrially derived material, in the UV spectral range.

  10. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades

    PubMed Central

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Abstract Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  11. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    PubMed

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. PMID:26309797

  12. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    NASA Astrophysics Data System (ADS)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  13. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts.

    PubMed

    Rodríguez-Liébana, José A; Mingorance, Ma Dolores; Peña, Aránzazu

    2011-03-01

    Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution. PMID:20980092

  14. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank

    NASA Astrophysics Data System (ADS)

    Seidel, Michael; Beck, Melanie; Riedel, Thomas; Waska, Hannelore; Suryaputra, I. G. N. A.; Schnetger, Bernhard; Niggemann, Jutta; Simon, Meinhard; Dittmar, Thorsten

    2014-09-01

    Seawater circulation in permeable coastal sediments is driven by tidal changes in hydraulic gradients. The resulting submarine groundwater discharge is a source of nutrients and dissolved organic matter (DOM) to the water column. Yet, little is known about the cycling of DOM within tidal sediments, because the molecular DOM characterization remains analytically challenging. One technique that can dissect the multitude of molecules in DOM is ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). To aim at a high resolution DOM analysis we study the seasonal turnover and marine and terrestrial sources of DOM in an intertidal creek bank of the southern North Sea down to 3 m depth and link the biogeochemical processes to FT-ICR-MS data and the analyses of inorganic porewater chemistry, δ13C of solid-phase extracted dissolved organic carbon (SPE-DOC), dissolved black carbon (DBC) and dissolved carbohydrates (DCHO). Increasing concentrations of dissolved Fe, Mn, P, total alkalinity, dissolved nitrogen, DOC and a concomitant decrease of sulfate along the seawater circulation path from the upper tidal flat to the tidal flat margin indicate continuous microbial activity. The relative increase of Si concentrations, unsaturated aliphatics, peptide molecular formulae and isotopically more 13C-enriched SPE-DOC towards the tidal flat margin suggests that remineralization processes mobilize DOM from buried algal (diatoms) and microbial biomass. Porewater in sediments <100 cm depth contains 13C-depleted SPE-DOC and highly unsaturated compounds which are probably derived from eroded peats, suggesting rapid removal of bioavailable marine DOM such as DCHO from the water column and selective enrichment of terrestrial DOM. DBC concentrations are highest in the discharging porewater close to the tidal creek suggesting that the intertidal flat is an important DBC source to the coastal ocean. Porewater DOM accumulating at the low water line is

  15. Dissolved Organic Matter Quality in a Shallow Aquifer of Bangladesh: Implications for Arsenic Mobility.

    PubMed

    Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin

    2015-09-15

    In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility. PMID:26192081

  16. Groundwater cleanup by in-situ sparging. VIII. Effect of air channeling on dissolved volatile organic compounds removal efficiency

    SciTech Connect

    Wilson, D.J.; Gomez-Lahoz, C.; Rodriguez-Maroto, J.M. )

    1994-12-01

    A mathematical model for removal of dissolved volatile organic compounds (VOCs) from contaminated aquifers by in-situ air sparging is described. The model assumes that the sparging air moves through persistent channels in the aquifer, and that VOC transport to the sparging air is by diffusion/dispersion and air-induced circulation of the water in the vicinity of the sparging well. The dependence of model results on the parameters of the model is explored. The use of pulsed air flow in sparging as a means to increase VOC transport by dispersion is suggested. An extension and modification of the Sellers-Schreiber preliminary screening model for in-situ air sparging is also described. The revised model includes an improved method for calculating bubble residence times in the aquifer, and also permits the modeling of nonaqueous phase liquid (NAPL) removal.

  17. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  18. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  19. Effect of biomass adaptation to biodegradation of dissolved organic carbon in water.

    PubMed

    Tihomirova, K; Briedis, A; Rubulis, J; Juhna, T

    2012-04-01

    In the present study the time of adaptation of fixed biomass for biodegradation of natural organic matter was investigated. The experiments were done in columns that are usually used for rapid determination of biodegradable dissolved organic carbon (BDOC). The biomass was adapted to samples with different concentrations of organic substances before measurements by pumping water to be investigated through the columns for several days. The time of adaptation was dependent on the initial concentration of the organic matter in the water sample. The adaptation time increased from 6 to 24 h with increase of concentration of acetate solution from 2 to 10 mg/l, thus adaptation rate decreased simultaneously from 0.28 to 0.11 min(-1). In natural water samples with the initial concentration in the range from 4.61-10.82 mg/l of dissolved organic carbon (DOC) the maximal adaptation time was less than 24 h. During the adaptation period the increase in reproducibility and decrease in the standard deviation was observed. The study showed that adaptation of column to the different concentration of organic matter in water sample is necessary in order to decrease the bias in BDOC measurements when using columns tests. PMID:21892664

  20. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  1. Association of dissolved mercury with dissolved organic carbon in U.S. rivers and streams: The role of watershed soil organic carbon

    NASA Astrophysics Data System (ADS)

    Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.

    2016-04-01

    Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.

  2. Spatial and temporal variations in dissolved and particulate organic nitrogen in the equatorial Pacific: biological regulations and physical influences

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Le Borgne, R.; Murtugudde, R.; Busalacchi, A. J.; Behrenfeld, M.

    2008-08-01

    To quote Libby and Wheeler (1997), "we have only a cursory knowledge of the distributions of dissolved and particulate organic nitrogen" in the equatorial Pacific. A decade later, we are still in need of spatial and temporal analyses of these organic nitrogen pools. To address this issue, we employ a basin scale physical-biogeochemical model to study the spatial and temporal variations of dissolved organic nitrogen (DON) and particulate organic nitrogen (PON). The model is able to reproduce many observed features of nitrate, ammonium, DON and PON in the central and eastern equatorial Pacific, including the asymmetries of nitrate and ammonium, and the meridional distributions of DON and PON. Modeled DON (5 8 mmol m-3) shows small zonal and meridional variations in the mixed layer whereas modeled PON (0.4 1.5 mmol m-3) shows considerable spatial variability. While there is a moderate seasonality in both DON and PON in the mixed layer, there is a much weaker interannual variability in DON than in PON. The interannual variability in PON is largely associated with the El Niño/Southern Oscillation (ENSO) phenomenon, showing high values during cold ENSO phase but low values during warm ENSO phase. Overall, DON and PON have significant positive correlations with phytoplankton and zooplankton in the mixed layer. However, the relationships with phytoplankton and zooplankton are much weaker for DON (r=0.18 0.71) than for PON (r=0.25 0.97). Such a difference is ascribed to a larger degree of physical control (e.g., upwelling of low-organic-N deep waters into the surface) on DON than PON. On the whole, distribution of organic nitrogen appears to be controlled by biological influences in the equatorial Pacific.

  3. Spatial and temporal variations in dissolved and particulate organic nitrogen in the equatorial Pacific: biological and physical influences

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Le Borgne, R.; Murtugudde, R.; Busalacchi, A. J.; Behrenfeld, M.

    2008-12-01

    To quote Libby and Wheeler (1997), "we have only a cursory knowledge of the distributions of dissolved and particulate organic nitrogen" in the equatorial Pacific. A decade later, we are still in need of spatial and temporal analyses of these organic nitrogen pools. To address this issue, we employ a basin scale physical-biogeochemical model to study the spatial and temporal variations of dissolved organic nitrogen (DON) and particulate organic nitrogen (PON). The model is able to reproduce many observed features of nitrate, ammonium, DON and PON in the central and eastern equatorial Pacific, including the asymmetries of nitrate and ammonium, and the meridional distributions of DON and PON. Modeled DON (5-8 mmol m-3) shows small zonal and meridional variations in the mixed layer whereas modeled PON (0.4-1.5 mmol m-3) shows considerable spatial variability. While there is a moderate seasonality in both DON and PON in the mixed layer, there is a much weaker interannual variability in DON than in PON. The interannual variability in PON is largely associated with the El Niño/Southern Oscillation (ENSO) phenomenon, showing high values during cold ENSO phase but low values during warm ENSO phase. Overall, DON and PON have significant positive correlations with phytoplankton and zooplankton in the mixed layer, indicting the biological regulation on distribution of organic nitrogen. However, the relationships with phytoplankton and zooplankton are much weaker for DON (r=0.18-0.71) than for PON (r=0.25-0.97). Such a difference is ascribed to a relatively larger degree of physical control (e.g., upwelling of low-organic-N deep waters into the surface) on DON than PON.

  4. Sources, behaviors and degradation of dissolved organic matter in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song

    2016-03-01

    Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.

  5. Abundance and Characterization of Dissolved Organic Carbon in Suburban Streams of Baltimore, Maryland, USA

    NASA Astrophysics Data System (ADS)

    Mora, G.; Fazekas, M.

    2014-12-01

    The contribution of streams and rivers to the carbon cycle is significant, transporting to the oceans ~1.4 Pg C/yr, with dissolved carbon corresponding to as much as 0.7 Pg C/yr. Changes in land use have the potential effect of modifying this flux, particularly in urban areas where impervious areas are common. To investigate the effect of urbanization on riverine carbon transport, we studied four first-order streams in Towson, a suburb of Baltimore, Maryland, USA. The watersheds from the studied streams exhibit different levels of urbanization as measured by the percentage of impervious areas. Samples from these four streams were taken weekly, and several chemical constituents were measured either in the field or in the laboratory. These constituents included nitrate, dissolved organic nitrogen, pH, dissolved organic carbon (DOC), total carbon, dissolved inorganic carbon (DIC), phosphate, the carbon isotopic compositions of DOC and DIC, and fluorescence intensity of the DOC. Results show that DOC concentrations were consistently below 5 mg C/L regardless of the level of imperviousness of the watershed. Similarly, carbon isotope ratios were consistent across the studied streams, with values centered around -26.4 per mil, thus suggesting a significant influx of soil-derived organic carbon originated from C3 plants that are common in the watersheds. Confirming this interpretation, fluorescence spectroscopy data suggest a humic-like origin for the DOC of the streams, thus pointing to the heterotrophic nature of the streams. The combined results suggest that the studied streams exhibit similar DOC concentrations, carbon isotopic values, and fluorescence spectra, despite their level of impervious surfaces in their watersheds.

  6. The Influence of Kinetics on the Formation of Complexes Between Mercury and Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Miller, C. L.; Gu, B.; Brooks, S.; Southworth, G.

    2008-12-01

    Strong complexes between mercury (Hg) and dissolved organic matter (DOM) dominate the speciation of Hg(II) in most oxygenated aquatic systems but the rate of formation of these complexes has not be thoroughly investigated. Kinetic experiments were used to measure the formation rate of strong Hg(II)-DOM complexes in water collected from the Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, TN and in solution prepared using various DOM isolates. The loss of reactive mercury (HgR), defined as the amount of Hg reducible by stannous chloride (SnCl2), was used to examine the formation rates of strong Hg-DOM complexes which are nonreactive with SnCl2. We found that the formation of nonreactive Hg complexes followed first-order reaction kinetics, and the rate constant for the formation these complexes is similar both in creek water and solutions containing unfractionated DOM isolates ( ~4.8 day-1 ). C-18 Solid phase extractions were also used to examine the association of Hg(II) with different fractions of DOM as the mercury transformed from reactive, inorganic complexes to strong Hg-DOM complexes. In both the UEFPC and in laboratory solutions containing Hg and an unfractionated DOM isolate, the complexation of Hg shifted from hydrophilic to hydrophobic complexes as the strong Hg-DOM complexes were formed. This study concludes that, while equilibrium models suggest that strong Hg-DOM complexes dominate the speciation of Hg under equilibrium conditions, the formation of these complexes is kinetically limited. The slow formation of strong Hg-DOM complexes may have important implications in understanding the cycling, transport and bioavailability of Hg in systems such as the UEFPC with varying input sources of organic and inorganic Hg complexes.

  7. Determination of Dissolved Organic Sulfur in Seawater, and its Distribution in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Chavous, B.; Filippino, K. C.; Cutter, G. A.

    2001-12-01

    Although there are measurements of specific organic sulfur compounds in marine waters, the total concentration of dissolved organic sulfur (DOS) is unknown. However, this poorly quantified component in the global sulfur cycle is the precursor to the radiatively important gas, carbonyl sulfide, and contains very strong ligands that complex trace metals, affecting their bioavailability/cycling. Nevertheless, the high concentration of sulfate in seawater (28 mM) has hampered efforts to determine DOS. In order to obtain DOS data for different marine regimes, we have developed a novel analytical method that employs: (1) sulfate removal using Ba, followed by ion exchange; (2) determination of the nanomolar concentrations of residual sulfate; and (3) reductive pyrolysis (combustion at 1050 C in pure hydrogen) of a treated (as in (1)) sample to quantitatively produce hydrogen sulfide from all forms of sulfur, which is then quantified using GC/flame photometric detection. A wide variety of model S compounds (e.g., DMSP, glutathione, taurine, marine and freshwater humics) have been analyzed to test the efficiency of the method with good results. The method's detection limit is 15 nM S, the precision is <10% RSD at 100 nM S, and it is highly linear (>2000 nM S). To examine the estuarine distribution of DOS, water samples from the Chesapeake Bay were taken in July 1997 (earlier version of the method) and June 2001. These were 0.4 um filtered, placed in glass vials, and quick frozen for temporary storage (<2 months). In 2001, DOS concentrations in the Bay averaged 312+/-75 nM S, in close agreement with those in 1997 except in the uppermost (riverine) Bay. The distributions show slightly decreasing concentrations from the riverine to the seaward end of the Bay. No obvious correlations with nutrients or chlorophyll are apparent. However, the distributions do appear to be affected by higher concentrations in the rivers (S-containing humic acids?).

  8. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  9. The mysteriously variable half-life of dissolved organic matter in aquatic ecosystems: artefact or insight?

    NASA Astrophysics Data System (ADS)

    Evans, Chris; Fovet, Ophelie; Jones, Tim; Jones, Davey; Moldan, Filip; Futter, Martyn

    2016-04-01

    Dissolved organic matter (DOM) fluxes from land to water represent an important loss term in the terrestrial carbon balance, a major pathway in the global carbon cycle, a significant influence on aquatic light, nutrient and energy regimes, and an important concern for drinking water production. Although freshwaters are now recognised as zones of active carbon cycling, rather than passive conduits for carbon transport, evidence regarding the magnitude of, and controls on, DOM cycling in aquatic systems is incomplete and in some cases seemingly contradictory, with DOM 'half-lives' ranging from a few days to many years. Bringing together experimental, isotopic, catchment mass balance and modelling data, we suggest that apparently conflicting results can be reconciled through understanding of differences in: i) the terrestrial sources of DOM within heterogeneous landscapes, and consequent differences in its reactivity and stoichiometry; ii) experimental methodologies (i.e. which reactions are actually being measured), and iii) the extent of prior transformation of DOM upstream of the point of study. We argue that rapid photo-degradation, particularly of peat-derived DOM, is a key process in headwaters, whilst apparently slow DOM turnover in downstream, agriculturally-influenced lakes and rivers can partly be explained by the offsetting effect of in situ DOM production. This production appears to be strongly constrained by nutrient supply, thus linking DOM turnover and composition to the supply of inorganic nutrient inputs from diffuse agricultural pollution, and also providing a possible mechanistic link between aquatic DOM production and terrestrial DOM breakdown via the mineralisation and re-assimilation of organic nutrients. A more complete conceptual understanding of these interlinked processes will provide an improved understanding of the sources and fate of aquatic DOM, its role in the global carbon cycle, and the impact of anthropogenic activities, for example

  10. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  11. Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon.

    PubMed

    Uchimiya, Minori; Liu, Zhongzhen; Sistani, Karamat

    2016-03-15

    Biochar continues to receive worldwide enthusiasm as means of augmenting recalcitrant organic carbon in agricultural soils. Realistic biochar amendment rate (typically less than 1 wt%) in the field scale, and subsequent loss by sizing, rain, and other transport events demand reliable methods to quantify the remaining portions of amended biochar. This study employed fluorescence excitation-emission (EEM) spectrophotometry and parallel factor analysis (PARAFAC) to specifically target pyrogenic dissolved organic carbon (DOC) released by amended biochar during the course of a field trial at Bowling Green, KY experimental site. Toluene/methanol (1:6 v/v) extracts of surface (0-15 cm) soils amended with 21.28 t ha(-1) fast pyrolysis biochar afforded PARAFAC fingerprints representing different degrees of aromaticity. Compared to the control without treatments, biochar treatment (with and without poultry manure or chemical fertilizer) increased the relative contribution of PARAFAC fingerprint attributable to labile polyaromatic DOC structures. Poultry manure or chemical fertilizer alone (without biochar) did not influence the amounts of polyaromatic DOC structures. Existence of biochar could be further validated by the changes in %DOC (relative to the total carbon), fixed C content, and UV absorbance (360 nm), whereas FTIR, %O, and sorption of model agrochemical (deisopropylatrazine) did not reflect the presence of biochar in the soil samples. Developed toluene/methanol-based EEM-PARAFAC technique will provide a sensitive, rapid, and cost-competitive method to validate the long-term carbon sequestration by the biochar soil amendment. PMID:26751812

  12. Spatial and Temporal Variations of Dissolved Organic Matter in Florida Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Chen, M.; Maie, N.; Jaffe, R.

    2010-12-01

    The Florida Everglades is a coastal wetland, which is characterized by a freshwater to marine gradient ranging from freshwater marshes, through mangrove fringe to the seagrass dominated Florida Bay estuary. Dissolved organic matter (DOM) in this system is am important biogeochemical component as most of the N and P are in an organic form. The dynamics of DOM in the Everglades is complex given its versatile sources and the effects of geomorphology, hydrology, water chemistry, and degradation processes on DOM composition and fate. Here we present long-term DOM characterization data (4 yrs) from monthly surface water samples collected at fourteen sampling stations within the Everglades. We applied a high throughput and sensitive spectroscopic method, namely Excitation Emission Matrix (EEM) fluorescence coupled with Parallel Factor Analysis (PARAFAC) in an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales. Eight fluorescence components were modeled through PARAFAC with six humic-like and two protein-like components being identified. The results presented clear spatial clustering and seasonal variations. For example, freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, while estuarine sites were more enriched in algae- and microbial-derived humic-like and protein-like inputs. Coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. Peat-based sites could be clearly differentiated from marl-based sites based on EEM-PARAFAC data. Bulk DOC data and proxies like FI, SR, and a (254nm m-1)* displayed clear spatial and seasonal variations as well. This study highlights the use of optical properties monitoring and in particular EEM-PARAFAC as an effective technique to investigate the DOM dynamics in the aquatic ecosystems.

  13. Mobility of Dissolved Organic Matter from the Suwannee River (Georgia, USA) in Sand-Packed Columns

    PubMed Central

    McInnis, Daniel P.; Bolster, Diogo; Maurice, Patricia A.

    2015-01-01

    Abstract Transport of dissolved organic matter (DOM) from the Suwannee River and of synthetic polystyrene sulfonates (PSSs) was investigated in columns packed with naturally Fe/Al-oxide-coated sands from Oyster, Virginia. Surface-water samples were collected in May 2012 and processed by XAD-8 (humic substances; HPOA), XAD-4 (transphilic acids [TPIAs]), and reverse osmosis (broad range of components; NOM). Median transport time (Ro) of PSSs increased with molecular weight (MW) from 1,000 to 8,000 Da but decreased for the largest PSS (18,000 Da), which is consistent with previous observations of MW effects on DOM adsorption and transport. Breakthrough curves (BTCs) of HPOAs and NOM were similar whereas TPIA transport was distinct; although all DOM samples had similar Ro values, BTC asymmetry and dispersivity were greater for TPIAs. All samples exhibited power-law tailing that is characteristic of heterogeneous sorbent/sorbate interactions, potentially including kinetic effects. The one-dimensional advection-dispersion equation was unable to capture the tailing but it was captured well using a continuous-time random walk (CTRW) model. CTRW parameters were similar for the NOM and HPOA samples but distinctly different for TPIAs, which had more pronounced tailing. While retardation of organics generally tends to increase with MW, the lower average MW of TPIAs did not result in decreased overall retardation, which suggests the importance of compositional differences. Results suggest that while TPIAs tend to be a relatively minor component of DOM, their transport behavior differs from that of the predominant HPOA fraction, and they might thus have different impacts on pollutant transport. PMID:25565760

  14. Microbial assimilation of dissolved organic matter in shallow aquitards constrained using organic speciation and stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Hartland, Adam; Timms, Wendy

    2016-04-01

    Low-permeability aquifer sediments (aquitards) are globally widespread and exert important controls on groundwater quality by decreasing flow rates and limiting gas exchange. Dissolved organic matter (DOM) in aquitards is likely to be a prime substrate for anaerobic microbial metabolism, with potential to facilitate the reduction of important groundwater contaminants, such as nitrate (NO3-). However, it is difficult to estimate microbial assimilation based solely on DOM stable isotope composition (d13C) because interactions with the aquifer matrix (e.g. DOM adsorption/desorption) also alter d13C values. We constrained the extent of microbial fractionation of DOM by modelling the proportion of DOM fractionation due to changes in (13C enriched) hydrophilic DOM (HiDOM) and (13C depleted) hydrophobic DOM (HoDOM) in two shallow aquitard systems (0 to ~40 m depth) with contrasting vadose zone (VZ) thicknesses, overlying deep gravel aquifers (~40 to ~150 m depth). Results indicate that adsorption of HoDOM was most important in the aquitard with a 20m VZ, but minimally important in the system with 1-2m VZ. Microbial fractionation of DOM in deep, anaerobic groundwater coincided with decreases in terminal electron acceptor concentrations at the same depth. The availability of reactive DOM, influenced by unsaturated zone thickness and flow rates, is therefore likely to be an important control on aquitard redox chemistry.

  15. Storm event exports of dissolved organic nitrogen (DON) across multiple catchments in a glaciated forested watershed

    NASA Astrophysics Data System (ADS)

    Inamdar, Shreeram P.; Mitchell, Myron J.

    2007-06-01

    Storm event patterns of dissolved organic nitrogen (DON) were studied for multiple events across four catchments (1.6-696 ha) in a forested, glaciated watershed in western New York State. Highest concentrations of DON in the watershed were recorded for litter leachate followed by throughfall. Storm event concentrations of DON consistently peaked at or before peak discharge while dissolved organic carbon (DOC) concentrations peaked on the hydrograph recession limbs. Concentrations of DON in stream water were derived from throughfall and litter layer while the DOC expression was attributed to throughfall, litter, and the flushing of the mineral soil by a rising water table. Temporal patterns of ammonium (NH4+) concentrations during events consistently matched those of DON indicating similar sources and flow paths. A previously validated end-member mixing analysis (EMMA) for NO3- failed to predict the DON concentrations observed in streamflow. DON concentrations and DON as % of total dissolved nitrogen (TDN) differed considerably between baseflow (% DON: 6 to 19%) and storm events (% DON: 6 to 64%). DON concentrations and % DON of TDN increased with catchment size and amount of saturated/wetland areas. A wetland catchment that consistently yielded high storm-event DOC concentrations produced variable amounts of DON, indicating a decoupling of DOC and DON dynamics in the wetland. Our study suggests that storm events and watershed characteristics, especially the proportion of saturated and wetland areas, may have a greater influence on DON exports than atmospheric N deposition.

  16. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water

    NASA Astrophysics Data System (ADS)

    Meyers-Schulte, Kathleen J.; Hedges, John I.

    1986-05-01

    Dissolved organic matter (DOM) in seawater represents one of the largest active carbon reservoirs on Earth1. Although mass-balance calculations suggest a substantial riverine input to the marine DOM pool2, a terrestrial organic component has not been positively identified in open-ocean water. By using lignin-derived phenols as molecular-level probes of DOM (analogous to previous studies in sediments3-5), we report here the first unambiguous evidence for the presence of terrestrially derived DOM in open ocean water. Dissolved humic substances, isolated by resin adsorption from near-surface water of the eastern equatorial Pacific, yield lignin-derived phenols in compositional patterns which resemble those obtained from Amazon River water6,7. Total phenol yields from these open-ocean humic isolates are, on average, ~10% of those from Amazon humic substances, indicating that ~10% of dissolved marine humic material (and at least 0.5% of the bulk marine DOM) is terrestrially derived.

  17. Tracing origins of sewage and organic matter using dissolved sterols in Masan and Haengam Bay, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jin; Hong, Sang Hee; Kim, Moonkoo; Ha, Sung Yong; An, Soon Mo; Shim, Won Joon

    2011-06-01

    Masan and Haengam Bays in Korea are highly polluted and semi-enclosed. Domestic and industrial effluents are directly or indirectly discharged into the bays through sewage treatment plants (STP) and creeks. In this study, 15 dissolved sterol compounds were determined in order to understand their sources and relative contribution. Freshwater samples were taken from 13 creeks and at two STP sites on a monthly basis. Total dissolved sterol concentrations ranged from 993 to 4158 ng/L. The concentrations of sterols in winter were higher than in summer. Among the sterols analyzed, cholesterol, β-sitosterol, coprostanol and cholestanone were major compounds in creek water. Seawater samples were concurrently collected at 21 stations in Masan Bay. Total sterol concentrations ranged 118-6,956 ng/L. Inner bay showed high concentrations of sterols in summer, while outer bay showed high sterol concentrations in winter. Among the sterols, cholesterol, β-sitosterol and brassicasterol were major compounds in seawater. In order to examine the contribution of urban sewage, the concentration of coprostanol and fecal sterol ratios were calculated. Most of the creek water, inner bay and near STP outlet samples were affected by sewage. Terrestrial organic matters accounted for a high proportion of dissolved organic matter origin. Fecal origins were relatively high in the inner bay areas and in the STP outlet, while sterols of marine origin were high in the outer bay areas.

  18. Low contribution of litter derived carbon to dissolved organic matter in soils

    NASA Astrophysics Data System (ADS)

    Scheibe, A.; Krantz, L.; Gleixner, G.

    2010-12-01

    This study investigates the contribution of litter derived carbon to dissolved organic matter (DOM) pool because our knowledge on sources of dissolved organic carbon (DOC) is still very controversial. Here, a labeled litter exchange experiment was started in the National Park Hainich, Germany, in November 2008. In this experiment the native litter was exchanged with 13C and 15N labeled litter of ash (Fraxinus excelsior) and beech (Fagus sylvatica). Soil water was collected biweekly with glass suction plates (1 µm pore size, UMS, Munich, Germany), installed in a depth of 5 cm. The amount and isotopic content of the DOC in natural samples was measured using a newly developed method: a high pressure liquid chromatography which was on-line coupled to isotope ratio mass spectrometry (HPLC-IRMS) via wet chemical combustion. Reference measurements proved the excellent performance of the method. Unexpected was the very low contribution of litter 13C into the dissolved carbon pool. The highest contribution with up to 5% DOC labeled by ash litter derived carbon was found in the first month of application. Furthermore we found that only 1.1% and 2.8% (mean values) of DOC was labeled by carbon of the beech and ash litter, respectively. These results suggest that litter derived carbon is of low importance for DOM formation and consequently root / rhizosphere and soil derived carbon drives the DOM loss.

  19. Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns

    SciTech Connect

    Mannino, A.; Harvey, H.R.

    1999-08-01

    Dissolved organic matter (DOM) was isolated from surface waters of Delaware Bay along a transect from freshwater to the coastal ocean and fractionated by tangential flow ultrafiltration into high (1--30 kDa; HDOM) and very high (30 kDa--0.2 {micro}m; VHDOM) nominal molecular mass fractions. Carbon content, stable carbon isotopes, and lipid composition were measured for each DOM fraction, and particles collected in parallel. Lipids, excluding hydrocarbons, comprised up to 0.33% of HDOM organic carbon, 1.6% of VHDOM carbon, and 10% of POC, the majority of which were fatty acids. Although lipids comprised a small fraction of HDOM, fatty acids and sterols provided valuable information on the origins of DOM. Molecular composition of particulate and dissolved lipids and bulk stable carbon isotopes demonstrated differences in organic sources along the estuarine gradient with distinct terrestrial signals in the river and turbid middle estuary and an algal signal in the lower estuary and coastal ocean. Both particulate organic matter and VHDOM samples were enriched in lipids on a carbon basis compared to the HDOM fraction, which suggests that the HDOM fraction was less labile than particulate organic matter or VHDOM. Selective degradation of labile lipids by the microbial community can account for the depletions of unsaturated fatty acids, sterols, and phytol within HDOM relative to particles.

  20. Poultry manure runoff and its influence on fluorescence characteristics of dissolved organic matter (DOM)

    NASA Astrophysics Data System (ADS)

    Singh, S.; Dutta, S.; Inamdar, S. P.

    2013-12-01

    Land application of poultry manure as a substitute for synthetic fertilizer is a common practice in states like Delaware which have a surplus of this animal waste. However, this practice can generate large amounts of labile DOM and nutrients in agricultural runoff that can cause eutrophication of downstream aquatic ecosystems. We determined the concentrations of dissolved organic carbon (DOC) and dissolved inorganic nitrogen (DIN) and the quality of DOM for a cropland receiving poultry manure in the coastal plain soils of Delaware. Manure was applied at the rate of 9 Mg ha-1 in the spring (March 10) of 2010 to an agricultural field planted in corn. Sampling was performed for surface runoff and soil waters at four landscape positions - field edge, upper and lower riparian zones and the stream. Sampling was conducted for eight storm events, one before manure application and seven after (March through July spanning over 100 days). DOM quality was characterized using spectrofluorometric techniques and the development of a site-specific PARAFAC model. DOC and DIN concentrations in surface runoff ranged from 18.1 to 77.2 mg/l and 4.2 to 22.6 mg/l, respectively. The percent of protein-like and humic-like DOM in surface runoff ranged between 3.9 to 23.5% and 12.3 to 41.6%, respectively. Highest concentrations of DOC and DIN were observed at the field edge and lowest in the stream. Protein-like and humic-like DOM decreased from the field edge to stream in surface runoff and soil waters. Temporally, both humic-like and protein-like DOM showed significant increases in storm runoff following manure application. After manure application, humic-like DOM increased by 70% while protein-like DOM increased by more than 200% in surface runoff indicating elevated content of labile DOM in poultry manure. These concentrations remained high for more than 60 days following manure application. Protein-like DOM was significantly correlated with nitrate-nitrogen (r = 0.43; p < 0

  1. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  2. Hydro-climatic control of stream dissolved organic carbon in headwater catchment

    NASA Astrophysics Data System (ADS)

    Humbert, Guillaume; Jaffrezic, Anne; Fovet, Ophélie; Gruau, Gérard; Durand, Patrick

    2014-05-01

    Dissolved organic matter (DOM) is a key form of the organic matter linking together the water and the carbon cycles and interconnecting the biosphere (terrestrial and marine) and the soil. At the landscape scale, land use and hydrology are the main factors controlling the amount of DOM transferred from soils to the stream. In an intensively cultivated catchment, a recent work using isotopic composition of DOM as a marker has identified two different sources of DOM. The uppermost soil horizons of the riparian wetland appear as a quasi-infinite source while the topsoil of the hillslope forms a limited one mobilized by water-table rise and exported to the stream across the upland-riparian wetland-stream continuum. In addition to the exportation of DOM via water fluxes, climatic factors like temperature and precipitation regulate the DOM production by influencing microbial activity and soil organic matter degradation. The small headwater catchment (5 km²) of Kervidy-Naizin located in Brittany is part of the Environment Research Observatory (ORE) AgrHys. Weather and the hydro-chemistry of the stream, and the groundwater levels are daily recorded since 1993, 2000 and 2001 respectively. Over 13 contrasted hydrological years, the annual flow weighted mean concentration of dissolved organic carbon (DOC) is 5.6 mg.L-1 (sd = 0.7) for annual precipitation varying from 488mm to 1327mm and annual mean temperatures of 11°C (sd = 0.6). Based on this considerable dataset and this annual variability, we tried to understand how the hydro-climatic conditions determinate the stream DOC concentrations along the year. From the fluctuations of water table depth, each hydrologic year has been divided into three main period: i) progressive rewetting of the riparian wetland soils, ii) rising and holding high of the water table in the hillslope, iii) drawdown of the water-table, with less and less topsoil connected to the stream. Within each period base flow and storm flow data were first

  3. Decomposition of dissolved organic matter released by an isolate of Microcystis aeruginosa and morphological profile of the associated bacterial community.

    PubMed

    Moreira, I C; Bianchini Jr, I; Vieira, A A H

    2011-02-01

    This study concerns the kinetics of bacterial degradation of two fractions (molecular mass) of dissolved organic matter (DOM) released by Microcystis aeruginosa. Barra Bonita Reservoir (SP, Brazil) conditions were simulated in the laboratory using the associated local bacterial community. The extent of degradation was quantified as the amount of organic carbon transferred from each DOM fraction (< 3 kDa and 3-30 kDa) to bacteria. The variation of bacteria morphotypes associated with the decomposition of each fraction was observed. To find the degradation rate constants (kT), the time profiles of the total, dissolved and particulate organic carbon concentrations were fitted to a first-order kinetic model. These rate constants were higher for the 3-30 kDa fraction than for the lighter fraction. Only in the latter fraction the formation of refractory dissolved organic carbon (DOCR) compounds could be detected and its rate of mass loss was low. The higher bacterial density was reached at 24 and 48 hours for small and higher fractions, respectively. In the first 48 hours of decomposition of both fractions, there was an early predominance of bacillus, succeeded by coccobacillus, vibrios and coccus, and from day 5 to 27, the bacterial density declined and there was greater evenness among the morphotypes. Both fractions of DOM were consumed rapidly, corroborating the hypothesis that DOM is readily available in the environment. This also suggests that the bacterial community in the inocula readily uses the labile part of the DOM, until this community is able to metabolise efficiently the remaining of DOM not degraded in the first moment. Given that M. aeruginosa blooms recur throughout the year in some eutrophic reservoirs, there is a constant supply of the same DOM which could maintain a consortium of bacterial morphotypes adapted to consuming this substrate. PMID:21437399

  4. Multidimensional spectrofluorometry characterization of dissolved organic matter in arsenic-contaminated shallow groundwater.

    PubMed

    Huang, Shuangbing; Wang, Yanxin; Cao, Ling; Pi, Kunfu; Yu, Mei; Even, Emilie

    2012-01-01

    Multidimensional spectrofluorometry was employed to characterize dissolved organic matter (DOM) in arsenic-contaminated shallow aquifers at Jianghan Plain (JHP), central China, to better understand the effect of biogeochemical processes on arsenic mobilization. The microbial humic quinone and amino acid components identified indicate the importance of microbially mediated processes in the reduction of iron oxyhydroxides. The relationship of quinone and amino acid-like components with Fe(2+) and S(2-) helps us understand the sequential redox transformation (SRT) in the high arsenic aquifer system and the origin of bicarbonate in groundwater. Correlation between DOM components and dissolved arsenic and Fe suggests that arsenic mobilization could be linked to the microbial reduction of iron oxyhydroxides with liable DOM as electron donors as well as to the electron shuttling function served by humic quinones. PMID:22571533

  5. Noncrystalline Condensation of Densely Dissolved Optically Nonlinear Organic Compound in Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Hiraga, Takashi; Tanaka, Norio; Hayamizu, Kikuko; Mito, Akihiro; Takarada, Shigeru; Yamasaki, Yuuichi; Nakamura, Michie; Hoshino, Nobuo; Moriya, Tetsuo

    1993-04-01

    Optical properties and condensed states of the densely dissolved optically nonlinear organic compound in polymer matrices were investigated by means of optical measurements, structural analysis and pressure tuning spectroscopy. In the investigation of the absorption peak wavelength, 2-methyl-4-nitroaniline (MNA) in poly(methyl methacrylate) (PMMA) exhibited characteristics intermediate between the crystal and the MNA dissolved in solvents, i.e., noncrystalline condensation. This result was consistent with those of X-ray diffraction analysis, second- and third-harmonics generation, IR absorption and 13C-NMR spectroscopies. It has also been revealed that such a system provides the most suitable measuring method of the third optical nonlinear constant for a variety of compounds.

  6. Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Ranville, James F.; Hendry, M. Jim; Reszat, Thorsten N.; Xie, Qianli; Honeyman, Bruce D.

    2007-05-01

    The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 μg/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 μL) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested that ≤ 2% of the U, likely present as U(VI), was complexed with the DOC. This result was in good agreement with the U speciation modeling performed on the sample taken from the 2.3 m depth, which predicted approximately 3% DOC-complexed U. This good agreement suggests that the AsFlFFF-ICP-MS method may be very useful for determining U-organic matter association in small volume samples. Because the pH (7.0-8.1) and carbonate concentrations of these waters

  7. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching.

    PubMed

    Carstea, Elfrida M; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M; Bridgeman, John

    2014-09-15

    The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation - emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on the fluorescence of DOM from a wide range of environmental samples, in the range 20 °C - 0 °C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0 °C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2 presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ. PMID:24908578

  8. Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach

    PubMed Central

    Hanson, Paul C.; Hamilton, David P.; Stanley, Emily H.; Preston, Nicholas; Langman, Owen C.; Kara, Emily L.

    2011-01-01

    Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC. PMID:21779347

  9. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  10. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-12-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L -1 within the Sacramento River to 39.9 mg L -1 at the outfall from an island drain (median 3.0 mg L -1), while lignin concentrations ranged from 3.0 μg L -1 within the Sacramento River to 111 μg L -1 at the outfall from an island drain (median 11.6 μg L -1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC) -1 at an island drain to 0.84 mg (100 mg OC) -1 for a wetland (median 0.36 mg (100 mg OC) -1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of

  11. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    USGS Publications Warehouse

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  12. Bacterial Contribution to Dissolved Organic Matter in Eutrophic Lake Kasumigaura, Japan

    PubMed Central

    Komatsu, Kazuhiro; Kohzu, Ayato; Tomioka, Noriko; Shinohara, Ryuichiro; Satou, Takayuki; Watanabe, Fumiko Nara; Tada, Yuya; Hamasaki, Koji; Kushairi, M. R. M.; Imai, Akio

    2013-01-01

    Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed. PMID:24038686

  13. Carbon dynamics and their link to dissolved organic matter quality across contrasting stream ecosystems.

    PubMed

    Bodmer, Pascal; Heinz, Marlen; Pusch, Martin; Singer, Gabriel; Premke, Katrin

    2016-05-15

    Streams represent active components of the carbon cycle as emitters of carbon dioxide (CO2) and methane to the atmosphere at a global scale. However, the mechanisms and governing factors of these emissions are still largely unknown, especially concerning the effect of land use. We compared dissolved and gaseous carbon dynamics in streams bordered by contrasting types of land use, specifically agriculture and forest. Carbon dioxide and methane partial pressures (pCO2 and pCH4, respectively) in the water body and carbon emissions via both gases were studied for 24h during four field expeditions. pCH4 did not differ between the two system types. pCO2 was constantly oversaturated in all streams and significantly higher in agricultural streams (annual mean 4282ppm) compared to forest streams (annual mean 2189ppm) during all seasons. However, emissions of CO2 were not significantly different between the stream types due to significantly higher gas transfer velocity in forest compared to agricultural streams. pCO2 was significantly positively correlated to the concentrations of dissolved organic carbon, dissolved nitrogen and soluble reactive phosphorus in the water. Furthermore, pCO2 was correlated to optical parameters of dissolved organic matter (DOM) quality, e.g., it increased with indicators of molecular size and an allochthonous fluorescent component identified by Parallel Factor Analysis (PARAFAC). This study demonstrates that different forms of land use may trigger a cascade of effects on the carbon production and emission of streams linked to changes in DOM quality. PMID:26938320

  14. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  15. Using water chemistry time series to model dissolved inorganic carbon dynamics in the western Amazon basin

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan; Newton, Jason

    2013-04-01

    Two small streams (New Colpita and Main Trail) and two rivers (Tambopata and La Torre), in the Tambopata National Reserve, Madre de Dios, Peru, were sampled for water chemistry (conductivity, pH and dissolved oxygen) and hydrology (stage height and flow velocity). In the small streams water chemistry and hydrology variables were logged at 15 minute intervals from Feb 2011 to November 2012. Water samples were collected from all four channels during field campaigns spanning different seasons and targeting the hydrological extremes. All the samples were analysed for dissolved inorganic carbon (DIC) concentration and δ13C (sample size ranging from 77 to 172 depending on the drainage system) and a smaller subset for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. Strong positive relationships were found between conductivity and both DIC concentration and δ13C in the New Colpita stream and the La Torre river. In Tambopata river the trends were less clear and in the Main Trail stream there was very little change in DIC and isotopic composition. The conductivity data was used to model continuous DIC time series for the New Colpita stream. The modelled DIC data agreed well with the measurements; the concordance correlation coefficients between predicted and measured data were 0.91 and 0.87 for mM-DIC and δ13C-DIC, respectively. The predictions of δ13C-DIC were improved when calendar month was included in the model, which indicates seasonal differences in the δ13C-DIC conductivity relationship. At present, continuous DIC sampling still requires expensive instrumentation. Therefore, modelling DIC from a proxy variable which can be monitored continuously with ease and at relatively low cost, such as conductivity, provides a powerful alternative method of DIC determination.

  16. From litter decomposition to soil organic matter formation: using leaf traits to predict dissolved organic carbon leaching

    NASA Astrophysics Data System (ADS)

    Soong, Jennifer; Parton, William; Calderon, Francisco; Guilbert, Kathleen; Campbell, Nell; Cotrufo, M. Francesca

    2014-05-01

    New evidence suggests that leaching of dissolved organic carbon (DOC) during litter decomposition is a major process by which decomposing litter forms stabilized soil organic matter (Cotrufo et al. 2013). Understanding this DOC flux based on plant leaf litter traits would strengthen our ability to predict ecosystem carbon (C) cycling across different vegetation types. In this study we aim to quantify the proportional relationship between CO2 and DOC partitioning during decomposition of fresh leaf litter from five different plant species, alfalfa, ash, bluestem grass, oak and pine, ranging in structural and chemical composition. The results from this laboratory incubation show a clear relationship between the lignin to cellulose ratios of litter and DOC to CO2 partitioning during four distinct phases of litter decomposition. For example, bluestem grass litter with a low lignin to cellulose ratio loses almost 50% of its C as DOC whereas pine needles with a high lignin to cellulose ratio loses much less C as DOC, indicating a potential ligno-cellulose complexation effect on carbon use efficiency and CO2 vs. DOC fluxes during litter decomposition. DOC production also decreases with time during decomposition, correlating with increasing lignin to cellulose ratios and decreasing availability of soluble, non-structural, leaf compounds (based on FTIR analysis). Initial DOC leaching can be predicted based on the amount of labile fraction in each litter type. Field data using stable isotope labeled bluestem grass show that while 18% of the surface litter C lost in 18 months of decomposition enters the soil, over 50% of litter derived C in the soil is recovered in mineral associated heavy SOM fractions, not as litter fragments in the light fraction, confirming the relative importance of the DOC flux of C from the litter layer to the soil for soil organic matter formation. These results are being used to parameterize a new litter decomposition sub-model to more accurately

  17. Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter.

    PubMed

    Liu, Ruixia; Lead, Jamie R; Baker, Andy

    2007-07-01

    3-D fluorescence excitation-emission matrix (EEM) spectrophotometry was applied to investigate the fluorescence characterization of colloidal organic matter (COM) and truly dissolved organic matter (DOM) from an urban lake and a rural river fractionated by the cross flow ultrafiltration (CFUF) process with a 1kDa membrane. Relatively high tryptophan-like fluorescence intensity is found in the urban water, although the fluorescence of both water samples is mainly dominated by humic/fulvic-like fluorophores. During CFUF processing, the fluorescence intensities of humic/fulvic-like materials in the retentate increased rapidly, but a slight increase is also observed in the permeate fluorescence intensity. Very different ultrafiltration behaviour occurred with respect to the tryptophan-like fluorophore, where both permeate and retentate fluorescence intensities increase substantially at the beginning of the CFUF process, then tend to remain constant at high concentration factor (cf) values. Comparison with tryptophan standards demonstrates that freshwater tryptophan-like fluorescence is not dissolved and 'free', but is, in part, colloidal and related to the ultrafiltration behaviour of fulvic/humic-like matter. A good linear relationship between the retentate humic/fulvic-like fluorescence intensity and organic carbon concentration further reveals that fluorescent humic/fulvic-like substances are the dominant contributors to colloidal organic carbon, mainly in the colloidal fraction. PMID:17350076

  18. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping

    NASA Astrophysics Data System (ADS)

    Graham, P. W.; Baker, A.; Andersen, M. S.

    2015-12-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC).

  19. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping

    PubMed Central

    Graham, P. W.; Baker, A.; Andersen, M. S.

    2015-01-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238

  20. Dissolved Organic Carbon Mobilisation in a Groundwater System Stressed by Pumping.

    PubMed

    Graham, P W; Baker, A; Andersen, M S

    2015-01-01

    The concentration and flux of organic carbon in aquifers is influenced by recharge and abstraction, and surface and subsurface processing. In this study groundwater was abstracted from a shallow fractured rock aquifer and dissolved organic carbon (DOC) was measured in observation bores at different distances from the abstraction bore. Groundwater abstraction at rates exceeding the aquifers yield resulted in increased DOC concentration up to 3,500 percent of initial concentrations. Potential sources of this increased DOC were determined using optical fluorescence and absorbance analysis. Groundwater fluorescent dissolved organic material (FDOM) were found to be a combination of terrestrial-derived humic material and microbial or protein sourced material. Relative molecular weight of FDOM within four metres of the abstraction well increased during the experiment, while the relative molecular weight of FDOM between four and ten metres from the abstraction well decreased. When the aquifer is not being pumped, DOC mobilisation in the aquifer is low. We hypothesise that the physical shear stress on aquifer materials caused by intense abstraction significantly increases the temporary release of DOC from sloughing of biofilms and release of otherwise bound colloidal and sedimentary organic carbon (SOC). PMID:26691238

  1. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  2. Isotopic investigations of dissolved organic N in soils identifies N mineralization as a major sink process

    NASA Astrophysics Data System (ADS)

    Wanek, Wolfgang; Prommer, Judith; Hofhansl, Florian

    2016-04-01

    Dissolved organic nitrogen (DON) is a major component of transfer processes in the global nitrogen (N) cycle, contributing to atmospheric N deposition, terrestrial N losses and aquatic N inputs. In terrestrial ecosystems several sources and sinks contribute to belowground DON pools but yet are hard to quantify. In soils, DON is released by desorption of soil organic N and by microbial lysis. Major losses from the DON pool occur via sorption, hydrological losses and by soil N mineralization. Sorption/desorption, lysis and hydrological losses are expected to exhibit no 15N fractionation therefore allowing to trace different DON sources. Soil N mineralization of DON has been commonly assumed to have no or only a small isotope effect of between 0-4‰, however isotope fractionation by N mineralization has rarely been measured and might be larger than anticipated. Depending on the degree of 15N fractionation by soil N mineralization, we would expect DON to become 15N-enriched relative to bulk soil N, and dissolved inorganic N (DIN; ammonium and nitrate) to become 15N-depleted relative to both, bulk soil N and DON. Isotopic analyses of soil organic N, DON and DIN might therefore provide insights into the relative contributions of different sources and sink processes. This study therefore aimed at a better understanding of the isotopic signatures of DON and its controls in soils. We investigated the concentration and isotopic composition of bulk soil N, DON and DIN in a wide range of sites, covering arable, grassland and forest ecosystems in Austria across an altitudinal transect. Isotopic composition of ammonium, nitrate and DON were measured in soil extracts after chemical conversion to N2O by purge-and-trap isotope ratio mass spectrometry. We found that delta15N values of DON ranged between -0.4 and 7.6‰, closely tracking the delta15N values of bulk soils. However, DON was 15N-enriched relative to bulk soil N by 1.5±1.3‰ (1 SD), and inorganic N was 15N

  3. Using Dissolved Organic Carbon Isotopes for Groundwater Age Dating in Southern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Thomas, James; Hershey, Ronald; Fereday, Wyatt

    2016-04-01

    Dissolved organic carbon (DOC) 14C offers a method to calculate groundwater ages that is more straightforward than dissolved inorganic carbon (DIC) 14C. To obtain corrected DIC 14C groundwater ages requires models that account for chemical and physical processes that affect both 13C and 14C. This is especially true in carbonate-rock aquifers where a fair amount of dissolution and precipitation of carbonate minerals can occur. A first important step in calculating 14C DOC groundwater ages is to determine the initial 14C DOC (A0) values of the groundwater recharge. For this study, recharge area groundwater samples of DOC 14C, collected from 14 different sites, were used to determine the recharge DOC 14C values. These values ranged from 96 to 120 percent modern carbon (pmc), with an average value of 106.2 pmc. These 14C A0 values support the use of a 100 pmc 14C A0 pre-bomb value to calculate DOC 14C groundwater ages for southern Nevada. Several conditions to successfully use DOC 14C to date groundwater need to be met. First, soluble organic carbon content of aquifers needs to be low, so that little DOC is added to the groundwater as it flows from recharge areas down gradient in an aquifer. For this study, volcanic and carbonate aquifer outcrop rocks showed that these rocks contained low soluble organic carbon. Second, it is important that the DOC does not change character down a flow path, which could indicate transformation of DOC along a flow path and/or addition of DOC to the groundwater. Although specific DOC compounds could not be identified for samples collected at four sites, all four groundwater sample spectra show the same general shape over the duration of the HPLC run indicating that the DOC compound composition of groundwater does not significantly change from up-gradient to down-gradient. Third, another factor that could greatly affect DOC 14C groundwater age calculations is matrix diffusion/adsorption of DOC 14C. Laboratory experiments showed that

  4. Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Oliver J.; Kattner, Gerhard; Flerus, Ruth; McCallister, S. Leigh; Schmitt-Kopplin, Philippe; Koch, Boris P.

    2014-02-01

    More than 90% of the global ocean dissolved organic carbon (DOC) is refractory, has an average age of 4000-6000 years and a lifespan from months to millennia. The fraction of dissolved organic matter (DOM) that is resistant to degradation is a long-term buffer in the global carbon cycle but its chemical composition, structure, and biochemical formation and degradation mechanisms are still unresolved. We have compiled the most comprehensive molecular dataset of 197 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses from solid-phase extracted marine DOM covering two major oceans, the Atlantic sector of the Southern Ocean and the East Atlantic Ocean (ranging from 50° N to 70° S). Molecular trends and radiocarbon dating of 34 DOM samples (comprising Δ14C values from -229‰ to -495‰) were combined to model an integrated degradation rate for bulk DOC resulting in a predicted age of >24 ka for the most persistent DOM fraction. First order kinetic degradation rates for 1557 mass peaks indicate that numerous DOM molecules cycle on timescales much longer than the turnover of the bulk DOC pool (estimated residence times of up to ~100 ka) and the range of validity of radiocarbon dating. Changes in elemental composition were determined by assigning molecular formulae to the detected mass peaks. The combination of residence times with molecular information enabled modelling of the average elemental composition of the slowest degrading fraction of the DOM pool. In our dataset, a group of 361 molecular formulae represented the most stable composition in the oceanic environment (“island of stability”). These most persistent compounds encompass only a narrow range of the molecular elemental ratios H/C (average of 1.17 ± 0.13), and O/C (average of 0.52 ± 0.10) and molecular masses (360 ± 28 and 497 ± 51 Da). In the Weddell Sea DOC concentrations in the surface waters were low (46.3 ± 3.3 μM) while the organic radiocarbon was significantly

  5. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    EPA Science Inventory

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  6. INTERACTIONS BETWEEN PHOTOCHEMICAL AND MICROBIAL DECOMPOSITION IN MODIFYING THE BIOLOGICAL AVAILABILITY AND OPTICAL PROPERTIES OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Direct photodecomposition and photochemically-mediated bacterial degradation (via photochemical modification of otherwise refractory DOM into biologically labile forms) provide
    important pathways for the loss of dissolved organic matter in coastal waters. Here we report
    lab...

  7. EFFECTS OF PHOTOCHEMICAL, MICROBIAL AND SORPTION PROCESSES ON THE OPTICAL PROPERTIES AND DEGRADATION OF DISSOLVED ORGANIC MATTER FROM COASTAL WETLANDS

    EPA Science Inventory

    The dissolved organic matter (DOM) exported from rivers and intertidal marshes to coastal oceans is rich in light-absorbing, fluorescent constituents, including humic substances and other polyphenolic moieties. Interactions between microbial and photochemical processes have impor...

  8. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  9. SPATIAL AND TEMPORAL DISTRIBUTION OF COLOURED DISSOLVED ORGANIC MATTER (CDOM) IN NARRAGANSETT BAY, RI: IMPLICATIONS FOR PHYTOPLANKTON IN COASTAL WATERS

    EPA Science Inventory

    One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecti...

  10. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications.

    PubMed

    Michael-Kordatou, I; Michael, C; Duan, X; He, X; Dionysiou, D D; Mills, M A; Fatta-Kassinos, D

    2015-06-15

    Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology. PMID:25917290

  11. Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.

    2013-12-01

    Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the

  12. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7

  13. Interactions Between Dissolved Organic Matter and Mercury in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Haitzer, M.; Ryan, J.; Nagy, K.

    2002-12-01

    Interactions of mercury (Hg) with dissolved organic matter (DOM) play important roles in controlling reactivity, bioavailability and transport of Hg in aquatic systems. To better define the nature and magnitude of these interactions, experiments were designed using organic matter isolated from various surface waters in the Florida Everglades to determine Hg-DOM binding constants and to study the interactions between DOM and cinnabar (HgS). The isolates, obtained using XAD resins, exhibited a wide range of elemental compositions, aromatic carbon contents, reduced sulfur contents, and molecular weights. Chemical composition of the DOM, especially aromatic carbon and reduced sulfur functional group content, was found to be important in controlling DOM interactions with Hg(II). Conditional distribution coefficients (KDOM'), measured using an equilibrium dialysis ligand exchange method, were strongly affected by the Hg/DOM concentration ratio. Very strong interactions (KDOM' = 1023.2 L kg-1 at pH = 7.0 and I = 0.1), indicative of Hg-thiol bonds, were observed at Hg/DOM ratios below approximately 1 μg Hg per mg DOM. Hg/DOM ratios above approximately 10 μg Hg per mg DOM gave much lower KDOM' values (10{10.7 }L kg-1 at pH 4.9 to 5.6 and I = 0.1), consistent with Hg binding mainly to oxygen functional groups. These results suggest that the binding of Hg to DOM under natural conditions (very low Hg/DOM ratios) is controlled by a small fraction of DOM molecules containing reactive thiol functional groups. DOM-Hg interactions were also studied by HgS (log Ksp = -52.4) dissolution and precipitation experiments. In the dissolution experiments, a significant amount of Hg was released from cinnabar in the presence of DOM, suggesting strong interactions. Conversely, precipitation of metacinnabar (black HgS) was strongly inhibited in the presence of low concentrations (<3 mg C/L) of DOM. In both the dissolution and precipitation experiments, organic matter rich in aromatic

  14. Characterization of dissolved organic materials in surface waters within the blast zone of Mount St Helens, Washington

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, W.E.; Ceazan, M.L.; Wissmar, Robert C.

    1982-01-01

    After the May 18, 1980, eruption of Mount St Helens, the concentration of dissolved organic material in surface waters near the volcano increased significantly as a result of the destruction of the surrounding conifer forest. Low molecular weight organic compounds identified in the blast zone surface waters were derived from pyrolysis of plant and soil organic materials incorporated into pyroclastic flow, mud flow and debris avalanche deposits. A major fraction of the dissolved organic material consisted of high molecular weight, colored, organic acids that are similar in their general properties to aquatic fulvic acids found in more typical surface waters except for greater sulfur contents. The other major fraction of the dissolved organic material consisted of hydrophilic acids, which may include compounds capable of supporting heterotrophic microorganisms, and precursors in the formation of aquatic fulvic acids. The organic chemistry of blast zone surface waters will probably be greatly influenced by the May 18, 1980, eruption for many years. ?? 1982.

  15. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  16. Dissolved Organic Matter (DOM) Transport in Watersheds: Controls of Sources, Flowpaths and DOM Quality

    NASA Astrophysics Data System (ADS)

    Inamdar, S.; Finger, N.; Mitchell, M.

    2008-12-01

    We investigated the factors and processes influencing the transport of dissolved organic carbon (DOC) and nitrogen (DON) in forested watersheds. Key questions that we addressed are: What are the sources and flowpaths for DOC and DON in the watershed? Does DOM quality influence the concentrations and transport of DOC and DON? How do DOC and DON concentrations change between baseflow and storm event conditions and across the seasons? How do DOM concentrations and quality change with catchment scale? These questions are being addressed in a 12 ha unglaciated, forested watershed located in the Piedmont province of Maryland, USA. Watershed sources being sampled include - rainfall, throughfall, litter, soil water, groundwater, hillslope seeps and hyporheic zone water. Watershed sources are sampled manually during non-storm periods (every two weeks) while automated samplers are used for storm events. Water samples are analyzed for cations, anions, DOC, DON, Silica and O18. DOM quality is characterized using specific ultraviolet absorbance (SUVA), Fluorescence Index (FI), Excitation-Emission Matrices (EMMs), hydrophobic and hydrophilic fractions, and concentrations of phenols, carboxylic acids, flavanoids, and amino acids. Hydrologic monitoring includes discharge and groundwater elevations. Our initial results from endmember mixing analysis (EMMA) indicate that stream chemistry is regulated by seep runoff, litter, and riparian soil water with individual endmember contributions varying with size of the storm events and wetness conditions. Highest DOC and DON concentrations were recorded for throughfall and litter layer. SUVA values were highest and most variable for litter leachate followed by riparian water. Concentrations of DOC and DON in streamflow increased dramatically during events and peaked at or after the discharge peak. While SUVA values followed a similar trend, there were slight differences among events. DOM concentrations in stream baseflow were influenced

  17. Dissolved organic carbon export and internal cycling in small, headwater lakes

    USGS Publications Warehouse

    Stets, Edward G.; Striegl, Rob; Aiken, George R.

    2010-01-01

    Carbon (C) cycling in freshwater lakes is intense but poorly integrated into our current understanding of overall C transport from the land to the oceans. We quantified dissolved organic carbon export (DOCX) and compared it with modeled gross DOC mineralization (DOCR) to determine whether hydrologic or within-lake processes dominated DOC cycling in a small headwaters watershed in Minnesota, USA. We also used DOC optical properties to gather information about DOC sources. We then compared our results to a data set of approximately 1500 lakes in the Eastern USA (Eastern Lake Survey, ELS, data set) to place our results in context of lakes more broadly. In the open-basin lakes in our watershed (n = 5), DOCX ranged from 60 to 183 g C m−2 lake area yr−1, whereas DOCR ranged from 15 to 21 g C m−2 lake area yr−1, emphasizing that lateral DOC fluxes dominated. DOCX calculated in our study watershed clustered near the 75th percentile of open-basin lakes in the ELS data set, suggesting that these results were not unusual. In contrast, DOCX in closed-basin lakes (n = 2) was approximately 5 g C m−2 lake area yr−1, whereas DOCR was 37 to 42 g C m−2 lake area yr−1, suggesting that internal C cycling dominated. In the ELS data set, median DOCX was 32 and 12 g C m−2 yr−1 in open-basin and closed-basin lakes, respectively. Although not as high as what was observed in our study watershed, DOCX is an important component of lake C flux more generally, particularly in open-basin lakes.

  18. Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin.

    PubMed

    Yan, Mingquan; Korshin, Gregory V; Claret, Francis; Croué, Jean-Philippe; Fabbricino, Massimiliano; Gallard, Hervé; Schäfer, Thorsten; Benedetti, Marc F

    2014-08-01

    This study demonstrates that the deprotonation of dissolved organic matter (DOM) originating from a small creek characteristic for DOM-rich waters located in the Rio Negro basin can be quantified based on measurements of pH effects on its absorbance spectra. The method was ascertained by the data of Near-Edge X-Ray Absorbance Spectroscopy (NEXAFS), potentiometric titration to quantify the structural and compositional differences between the colloidal and hydrophobic fractions that contribute 91% of black-water creek DOM. Changes in the absorbance spectra of the DOM fractions caused by deprotonation quantified via numeric deconvolution which indicated the presence of six well-resolved Gaussian bands in the differential spectra. The emergence of these bands was determined to be associated with the engagement of carboxylic and phenolic functionalities and changes of inter-chromophore interactions in DOM molecules. Interpretation of the data based on the NICA-Donnan approach showed that behavior of DOM chromophores was consistent with results of potentiometric titrations. Similar trends were observed for changes of the spectral slope of the DOM absorbance spectra in the range of wavelengths 325-375 nm (DSlope325-375). The behavior of DSlope325-375 values was modeled based on the NICA-Donnan approach and correlated with potentiometrically-estimated charges attributed to the carboxylic and phenolic groups. The correlations between DSlope325-375 and charges of low- and high-affinity protonation-active groups in DOM were monotonic but not linear and had important differences between the colloidal and hydrophobic fractions. PMID:24793113

  19. Transport and Transformation of Dissolved Organic Matter in Soil Interstitial Water Across Forested, Montane Hillslopes

    NASA Astrophysics Data System (ADS)

    Burns, M. A.; McKnight, D. M.; Gabor, R. S.; Brooks, P. D.; Barnard, H. R.

    2013-12-01

    Dissolved organic matter (DOM) is a ubiquitous mixture of compounds formed from the degradation of both terrestrial and microbial material. The abundance and composition of the DOM present in stream water is important to stream processes such as UV light attenuation, nutrient supply and metal sorption. However, an excess of DOM can cause reactions with chlorination compounds at drinking water treatment plants, creating potentially harmful disinfection byproducts. Currently, little is known regarding the influence of soil interstitial water on stream DOM composition. In this study, we explore the role of interstitial water on DOM transport and transformation from the hillslope to the stream in a montane catchment within the Boulder Creek Critical Zone Observatory in Colorado. We installed a suite of tension lysimeters located within the rooting zone across representative north- and south-facing slopes. Interstitial water and stream samples were collected daily for approximately seven weeks during the 2013 spring snow melt period and analyzed for DOM composition using fluorescence spectroscopy. To date, we have used fluorescence index (FI) to evaluate differences between microbial and terrestrial DOM inputs and humification index (HIX) to assess degree of humification undergone by the DOM. Preliminary results indicate that FI was significantly correlated with hillslope aspect (p<.01), with higher FI on north-facing slopes, suggesting more microbial precursor material. Stream samples reveal greater humification throughout the snowmelt period (p<.01). This increase could suggest a transition from deeper groundwater sources to shallow soil interstitial water inputs into the stream during snowmelt. These preliminary results suggest that changes in DOM composition through the catchment during snowmelt can be linked to hydrologic transport. Further site specific model development will reveal explicit changes in the DOM chemistry and will increase our understanding of

  20. Dissolved Organic Matter Composition and Microbial Diversity In The Lake Tahoe Basin, Sierra Nevada, California.

    NASA Astrophysics Data System (ADS)

    Aluwihare, L.; Goldberg, S. J.; Ball, G. I.; Mendoza, W. G.; Simpson, A.; Kharbush, J.; Nelson, C. E.

    2014-12-01

    Dissolved organic matter (DOM) inputs into high elevation lakes of the Sierra Nevada, California are seasonally segregated, and this enables an examination of the dominant compositional features and microbial responses associated with allochthonous versus autochthonous DOM inputs. Furthermore, because lakes within this watershed have very different hydraulic residence times, extending from days (e.g., Upper Angora Lake) to centuries (Lake Tahoe), the Tahoe Basin represents an ideal experimental system in which to characterize long-lived DOM. We used a variety of analytical tools, including elemental, stable isotope and radiocarbon measurements, nuclear magnetic resonance (NMR) spectroscopy, comprehensive 2D gas chromatography coupled to time of flight (TOF) mass spectrometry and fluorescence measurements, to characterize solid phase extracted (SPE) DOM, and in some cases, whole DOM. Our data show that DOM with typical terrestrial characteristics is quickly removed in lakes with >annual water residence time, leaving behind SPE DOM that is extremely N-rich, with a functional group distribution that is consistent with protein. Furthermore, our radiocarbon measurements estimate a 100-200 year residence time for the N-rich DOM accumulating in Lake Tahoe. All of the analytical techniques distinguish samples based on lake water residence time, which indicates that the lacustrine reactor plays an important role in determining the composition of DOM that accumulates on long timescales. We also examined temporal variations in the microbial community of Lake Tahoe to identify taxa that may be involved in processing DOM from distinct sources. Our results confirm the importance of DOM as a currency for carbon and nitrogen exchange between different compartments of the terrestrial ecosystem and argue for its inclusion in models that examine the response of lake ecosystems to global change.

  1. Influence of light, temperature and salinity on dissolved organic carbon exudation rates in Zostera marina L.

    PubMed Central

    2012-01-01

    Background Marine angiosperms, seagrasses, are sentinel species of marine ecosystem health and function. Seagrass carbon budgets provide insight on the minimum requirements needed to maintain this valuable resource. Carbon budgets are a balance between C fixation, growth, storage and loss rates, most of which are well characterized. However, relatively few measurements of dissolved organic carbon (DOC) leaf exudation or rhizodeposition rates exist for most seagrass species. Here I evaluate how eelgrass (Zostera marina L.) DOC exudation is affected by a single factor manipulation (light, temperature or salinity). Eelgrass plants were hydroponically exposed to treatments in experimental chambers (separate leaf and rhizome/root compartments) with artificial seawater medium. Regression analysis of changes in the DOC concentration through time was used to calculate DOC exudation rates. Results Exudation rates were similar across all treatments in all experiments. For all experiments, pooled leaf DOC exudation ranged between 0.032 and 0.069 mg C gdw-1 h-1, while rhizodeposition ranged between 0.024 and 0.045 mg C gdw-1 h-1. These rates are consistent with previously published values and provide first-order estimates for mechanistic models. Conclusions Zostera marina carbon losses from either leaf exudation or rhizodeposition account for a small proportion of gross primary production (1.2-4.6%) and appear to be insensitive to short-term (e.g., hours to days) environmental variations in chamber experiments. Based on these preliminary experiments, I suggest that Z. marina DOC exudation may be a passive process and not an active transport process. PMID:22938529

  2. The effect of surface-groundwater interaction on dissolved organic carbon transformation

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2014-05-01

    The preservation and improvement of water quality in streams is a challenging task, limited by our partial understanding of the coupling between biogeochemical and hydrological processes occurring in stream ecosystems. High potential for biogeochemical activity is found in the hyporheic zone, the saturated sediments where surface water and ground water mixes and degradation activities occur. The aim of the study was to quantifythe effect of losing and gaining flow conditions on the degradation of dissolved organic carbon (DOC). Experiments were conducted in a recirculating flume that is equipped with a drainage system that enables the control on losing and gaining fluxes. The degradation of DOC under losing and gaining conditions was studied by spiking the water with benzoic acid and monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, the spatial and temporal change in oxygen concentrations within the benthic biofilm was measured using a Clark-type oxygen microelectrode. Preliminary results showed that DOC degradation rate was faster under higher overlying water velocity, due to enhanced delivery of DOC to the biofilm. Under both gaining and losing conditions, the DOC degradation was slower than under neutral condition, probably as a consequence of the reduction of the hyporheic exchange zone. Series of oxygen profiles under losing conditions showed a complete depletion of oxygen within the first 3 millimeters of sediment. In contrast, oxygen profiles under gaining condition showed a incomplete consumption of oxygen (usually within 1 mm), followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the size of the active aerobic region within the hyporheic zone is changing dynamically with the flow conditions. The effect of flow conditions on redox zonation in the hyporheic zone is expected to

  3. [Dynamics of soil microbial biomass and dissolved organic carbon and nitrogen under flooded condition].

    PubMed

    Qiu, Shaojun; Peng, Peiqin; Rong, Xiangmin; Liu, Qiang; Tang, Qi

    2006-11-01

    With reddish yellow soil (RYS) and alluvial purple soil (APS), the two typical paddy soils in the Dongting Lake floodplain of China as test soils, an incubation test was conducted at 25 degrees C to study the dynamic changes of soil microbial biomass and dissolved organic carbon and nitrogen under flooded condition. Three treatments were installed, i.e., control (CK), ammonium sulfate (N), and rice straw powder plus ammonium sulfate (S-N). The results showed that during incubation, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil dissolved organic carbon (SDOC), and soil dissolved organic nitrogen (SDON) reached their maximum initially, decreased thereafter, and tended to be stable. After amending the substrates to the two soils, the averages of SMBC to soil total carbon, SMBN to soil total nitrogen, SDOC to soil total carbon, and SDON to soil total nitrogen were 2% - 3%, 2% - 3%, 1% or so, and 5% - 6%, respectively. In the two soils, the peak values of SMBC in treatment N and those of SMBN, SDOC and SDON in treatment S-N were the highest, while those of SMBC in treatments N and S-N had no significant difference. The peak values of SMBN, SDOC and SDON in RYS were significantly different between treatments N and S-N, while no significant difference was observed between the peak values of SMBN and SDOC in APS, because the fertility of RYS was lower than that of APS. In the first 7 days of incubation, SMBC/SMBN ratio was < 10, while after 14 days of incubation, this ratio was higher in treatment N than in treatment S-N at the same time in the same soil. The SDOC/SDON ratio in all treatments was the highest at the 3rd d, and the lowest at the 28th d of incubation. PMID:17269325

  4. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Wegley Kelly, Linda; Carlson, Craig A; Rohwer, Forest; Leichter, James J; Wyatt, Alex; Smith, Jennifer E

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻²), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹) and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻²). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial

  5. Redox reactions of dissolved organic matter contribute to anaerobic sulphur cycling in peatland soils

    NASA Astrophysics Data System (ADS)

    Blodau, C.; Margit, R.; Bernhard, M.; Moore, T. R.

    2004-05-01

    Sulphate reduction rates in wetland soils typically account for a large fraction of the anaerobic electron flow, despite small pool sizes of sulphate in the pore waters. The studies objective was to test the hypothesis that recycling of sulphur occurs and that redox-reactions of dissolved organic matter (DOM) are involved in the recycling process. To examine the recycling process we used peat mesocosm from two peatlands in Ontario, Canada and subjected them to sulphur deposition and vertical water flow of about 2 mm/day. Depth profiles of DOC and sulphate concentrations were determined and vertical mass balances calculated. In addition we determined 34S sulphate profiles of pore waters. Batch experiments with addition of H2S to solutions of standard peat humic acid (Pahokee Peat, IHSS) were used to determine whether H2S was oxidized by humic acids, and what the reaction products were. Enrichment with 34S at intermediate depths, constant sulphate concentrations with depth and absence of oxygen suggested that sulphate reduction and anaerobic sulphate release concurrently occurred. In the batch experiments two apparent reactions of H2S with DOM were observed. In the fast initial reaction, H2S was oxidized mostly to elemental sulphur and secondarily to sulphate. Production of thiosulfate was not observed. In a slower reaction step H2S was further consumed and the sum of dissolved inorganic forms of sulphur in the pore water decreased. This was interpreted as H2S being incorporated into the organic substance. No systematic relationship between pH and the oxidation process was found. Overall the results suggest that dissolved organic matter is involved in an anaerobic sulphur cycle allowing for high rates of sulphate reduction in sulphate-poor peatlands.

  6. Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    PubMed Central

    Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef

  7. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet.

    PubMed

    Antony, Runa; Grannas, Amanda M; Willoughby, Amanda S; Sleighter, Rachel L; Thamban, Meloth; Hatcher, Patrick G

    2014-06-01

    Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate. PMID:24804819

  8. Dissolved organic matter in newly formed sea ice and surface seawater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista

    2015-12-01

    Changes in sea ice in the Arctic will have ramifications on regional and global carbon cycling. Research to date has primarily focused on the regional impacts to biological activity and global impacts on atmospheric processes. The current project considers the molecular-level composition of organic carbon within sea ice compared to the organic matter in seawater. The project revealed that the composition of organic matter within sea ice was more variable than the composition of organic matter within the surface ocean. Furthermore, sea ice samples presented two distinct patterns in the composition of organic matter with a portion of the sea ice samples containing protein-like organic matter. Yet, the samples were collected in the early winter period when little biological activity is expected. Thus, one hypothesis is that physical processes acting during the formation of sea ice selectively transferred organic matter from seawater into sea ice. The present project expands our understanding of dissolved organic matter in sea ice and surface seawater and thereby increases our knowledge of carbon cycling in polar regions.

  9. Characteristics of riverine dissolved organic carbon export in subtropical island, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Li-Chin; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Lin, Chuan-Yao; Jien, Shih-Hao

    2016-04-01

    Carbon transporting from the terrestrial to the marine systems via rivers represents a crucial link in the global carbon cycle. Riverine dissolved organic carbon (DOC) which is responsible for maintaining the estuarine, coastal and marine ecosystems, is one of the main concerns in nutrient flux from land to ocean. Numerous studies have shown that the POC export in small mountainous rivers, like Taiwan, is disproportionally higher compared with global rivers; however, few studies have focused on the contribution of riverine DOC from the small mountainous tropical/sub-tropical islands. In this study, an intensive and extensive sampling scheme of DOC was conducted in Dan-Shui (DS), Chi-Chia-Wan (CJW) and Li-Wu (LW) River in Taiwan, and the characteristics of DOC concentration and flux were investigated. Meanwhile, the regressive estimation of DOC flux based on the landscape setting was applied and compared with research results proposed worldwide. Our results show that the annual mean DOC concentration in LW is ~0.51 ppm, thelowest among the three watersheds while the other two, DS and CJW, are ~0.97 ppm and ~0.90ppm, respectively. The seasonal variation in DS watershed is significant, yet insignificant for the other two watersheds with higher elevation. In terms of flux, the DOC yield in LW is ~1.01 ton-C km-2 yr-1, and the DOC yield in DS and CJW are ~3.01 ton-C km-2 yr-1 and ~4.28 ton-C km-2 yr-1, respectively. The DOC yield in CJW presents a distinct seasonal variability. Since the DOC concentration in CJW is stable, the seasonal variation in DOC yield is strongly controlled by streamflow, revealing hydrological regulation at work. Besides, the multiple regressive model (Ludwig et al., 1996) which includes the variables of runoff, soil organic carbon and slope was applied. The model gave a good relationship between observation and simulation with a high R2 = 0.72, yet it overestimated the yield by ~3.5 times. It suggests that the controlling factors in small

  10. Constraining The Radiocarbon Distribution Within Major Components of Marine Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Zigah, P.; Repeta, D.; McNichol, A. P.; Beaupre, S. R.; Xu, L.; Aluwihare, L.; Hemingway, J. D.

    2015-12-01

    Dissolved organic carbon (DOC) is one of the largest active carbon pools on Earth with a carbon inventory similar to that of the atmosphere. The sources and cycling of DOC in the ocean is not well-constrained. However, knowledge of the cycling and annual flux of carbon through DOC is critical to understanding the global carbon cycle and feedback mechanisms in the global climate system. Natural-abundance radiocarbon and stable carbon isotopic values can be used to infer the sources and cycling of DOC in the oceans. Past measurements for the most part have been made on bulk DOC, which represents an average of all DOC components. There is, however, good evidence that the actual range of values within the average is quite large, and recent serial oxidation measurements of the surface and deep ocean total DOC [1, 2, 3] reveal isotopic heterogeneity in the DOC pool with a radiocarbon-enriched modern component and a radiocarbon-depleted older component co-cycling in the surface ocean. Also, modeled data from the serial oxidation of the total DOC suggest the presence of a significant amount of modern DOC in the deep ocean [3]. In this study, we used a detailed size and chemical fractionation approach to examine the isotopic distribution within different size and molecular constituents of DOC. We also used a novel thermal serial oxidation approach to link the isotopic diversity of DOC to its concurrent major structural composition in order to build upon and refine the insights from the total DOC isotopic work. Our data show that, in the deep ocean, a major component of the heteropolysaccharide (HPS)-rich DOC isolated by ultrafiltration has radiocarbon value similar to co-occurring DIC indicating either a chemosynthetic source or conservative transport. In contrast, the fraction of DOC rich in the carboxylic -rich compounds isolated by solid phase extraction was much older than the DIC and also exhibit remarkable isotopic diversity in its constituent organic compounds. Our

  11. Development of gas chromatographic system for dissolved organic carbon analysis in seawater. Annual progress report

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO{sub 2}.

  12. Development of gas chromatographic system for dissolved organic carbon analysis in seawater

    SciTech Connect

    Chipman, D.W.; Takahashi, T.

    1992-12-01

    During the first six months of this two-year grant, we have completed the construction of the analytical portion of a prototype gas chromatograph-based system for the analysis of dissolved organic carbon in seawater. We also have begun testing the procedures to be used to cryogenically concentrate and transfer carbon dioxide from the oxidizing atmosphere of the high-temperature furnace into the reducing hydrogen carrier gas of the gas chromatograph. During the second half of the first year, we will construct the high-temperature catalytic oxidation furnace and test the entire system on laboratory-prepared aqueous solutions of various organic compounds. Also during this period, we will take part in an initial scoping study within the Cape Hatteras field area on board the R/V Gyre. This study will involve both the collection of samples of seawater for organic and inorganic carbon analysis and the measurement of surface-water pCO[sub 2].

  13. Dissolved and particulate organic carbon fluxes from an agricultural watershed during consecutive tropical storms

    NASA Astrophysics Data System (ADS)

    Caverly, Emma; Kaste, James M.; Hancock, Gregory S.; Chambers, Randolph M.

    2013-10-01

    Low-frequency high-magnitude hydrologic events mobilize a disproportionate amount of dissolved organic carbon (DOC) from watersheds, but few studies measure the role of extreme storms in exporting organic carbon from croplands. We use high-resolution measurements of storm runoff to quantify DOC and particulate organic carbon (POC) fluxes from an agricultural field during consecutive tropical storms that delivered 41 cm of rainfall to the Virginia Coastal Plain. Over a 2 week period, we measured exports of 22 kg DOC ha-1 and 11.3 kg POC ha-1. Ultraviolet absorbance measurements indicate that the aromatic DOC fraction systematically increased as plant-derived aliphatic carbon was depleted during the initial event. Croplands can have event-scale carbon losses that equal or exceed published estimates of annual export for perennial streams draining forested and mixed land use watersheds. We quantify aromatic DOC fractions approaching 50%, indicating that agricultural stormflow can produce a significant load of relatively photoreactive carbon.

  14. Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer

    USGS Publications Warehouse

    Aravena, R.; Wassenaar, L.I.; Spiker, E. C.

    2004-01-01

    This study demonstrates the advantage of a combined use of chemical and isotopic tools to understand the dissolved organic carbon (DOC) cycle in a regional confined methanogenic aquifer. DOC concentration and carbon isotopic data demonstrate that the soil zone is a primary carbon source of groundwater DOC in areas close to recharge zones. An in-situ DOC source linked to organic rich sediments present in the aquifer matrix is controlling the DOC pool in the central part of the groundwater flow system. DOC fractions, 13C-NMR on fulvic acids and 14C data on DOC and CH4 support the hypothesis that the in-situ DOC source is a terrestrial organic matter and discard the Ordovician bedrock as a source of DOC. ?? 2004 Taylor and Francis Ltd.

  15. Linking soils and streams: Sources and chemistry of dissolved organic matter in a small coastal watershed

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Lohse, Kathleen A.; Baldock, Jeffrey A.; Amundson, Ronald

    2009-03-01

    To understand the hydrologic and biogeochemical controls on the age and recalcitrance of dissolved organic matter (DOM) found in stream waters, we combined hydrometric monitoring along a topographic gradient from ridge to channel with isotopic (13C and 14C) and spectroscopic (UV and 13C nuclear magnetic resonance) analyses of soil and stream water samples in a small coastal watershed in California. With increasing discharge, dissolved organic carbon concentrations increased from 2.2 to 10.9 mg C L-1, Δ14C values increased from -125 to +120‰, δ13C values decreased from -24 to -29‰, C:N ratios increased from 6.5 to 15.4, and specific UV adsorption increased from 1.4 to 3.8 L mg C-1 m-1. These changes in DOM composition are consistent with a shift in source from old and recalcitrant soil organic matter (OM) sources found in deep soil horizons to young and relatively fresh OM sources found in the surface horizons. Results from this study suggest upland soils of the watershed become DOM production limited as indicated by a seasonal depletion and chemical shift in soil DOM, whereas highly productive soils in the hollow act as a near-infinite DOM source. Hydrologic connectivity of this DOM-rich riparian source region to the stream ultimately constrains DOM export, and the stream DOM composition reflects the combined influence of soil biogeochemical cycling of OM and hydrologic routing of water through the landscape.

  16. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Harms, Tamara K.; Edmonds, Jennifer W.; Genet, Hélène; Creed, Irena F.; Aldred, David; Balser, Andrew; Jones, Jeremy B.

    2016-02-01

    Spatial patterns in carbon (C) and nitrogen (N) cycles of high-latitude catchments have been linked to climate and permafrost and used to infer potential changes in biogeochemical cycles under climate warming. However, inconsistent spatial patterns across regions indicate that factors in addition to permafrost and regional climate may shape responses of C and N cycles to climate change. We hypothesized that physical attributes of catchments modify responses of C and N cycles to climate and permafrost. We measured dissolved organic C (DOC) and nitrate (NO3-) concentrations, and composition of dissolved organic matter (DOM) in 21 streams spanning boreal to arctic Alaska, and assessed permafrost, topography, and attributes of soils and vegetation as predictors of stream chemistry. Multiple regression analyses indicated that catchment slope is a primary driver, with lower DOC and higher NO3- concentration in streams draining steeper catchments, respectively. Depth of the active layer explained additional variation in concentration of DOC and NO3-. Vegetation type explained regional variation in concentration and composition of DOM, which was characterized by optical methods. Composition of DOM was further correlated with attributes of soils, including moisture, temperature, and thickness of the organic layer. Regional patterns of DOC and NO3- concentrations in boreal to arctic Alaska were driven primarily by catchment topography and modified by permafrost, whereas composition of DOM was driven by attributes of soils and vegetation, suggesting that predicting changes to C and N cycling from permafrost-influenced regions should consider catchment setting in addition to dynamics of climate and permafrost.

  17. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B., II

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  18. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. PMID:26874770

  19. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  20. BOREAS TGB-5 Dissolved Organic Carbon Data from NSA Beaver Ponds

    NASA Technical Reports Server (NTRS)

    Bourbonniere, Rick; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected several data sets related to carbon and trace gas fluxes and concentrations in the Northern Study Area (NSA). This data set contains concentrations of dissolved organic and inorganic carbon species from water samples collected at various NSA sites. In particular, this set covers the NSA Tower Beaver Pond Site and the NSA Gillam Road Beaver Pond Site, including data from all visits to open water sampling locations during the BOREAS field campaigns from April to September 1994. The data are provided in tabular ASCII files.

  1. Revealing Aquatic Dissolved Organic Matter Composition using Direct 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Burns, D. C.; Gueguen, C.

    2009-05-01

    Dissolved organic matter (DOM) is ubiquitous in all aquatic ecosystems, and comprises a variety of chemically heterogeneous molecular structures and functional groups. DOM is often considered to be a major ligand for metals in most natural waters. However DOM reactivity is thought to be strongly dependent on its chemical structure. The purpose of this study is to evaluate the variability in molecular composition of aquatic DOM from different sources. Quantitative proton NMR spectra were obtained without any preconcentration using water suppression techniques. The reproducibility on the determination of aromatic and aliphatic proton was better than 3%. The structural information of DOM from northern rivers was compared to IHSS humic substances.

  2. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    NASA Astrophysics Data System (ADS)

    Pinho, L.; Duarte, C. M.; Marotta, H.; Enrich-Prast, A.

    2016-02-01

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  3. Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget

    NASA Astrophysics Data System (ADS)

    Torres-Valdés, Sinhué; Tsubouchi, Takamasa; Davey, Emily; Yashayaev, Igor; Bacon, Sheldon

    2016-06-01

    We ask whether dissolved organic nitrogen (DON) and phosphorus (DOP) could account for previously identified Arctic Ocean (AO) inorganic nutrient budget imbalances. We assess transports to/from the AO by calculating indicative budgets. Marked DON:DOP ratio differences between the Amerasian and Eurasian AO reflect different physical and biogeochemical pathways. DON and DOP are exported to the North Atlantic via Davis Strait potentially being enhanced in transit from Bering Strait. Fram Strait transports are balanced. Barents Sea Opening transports may provide an additional nutrient source to the Barents Sea or may be locked within the wider AO Atlantic Water circulation. Gaps in our knowledge are identified and discussed.

  4. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François

    2015-07-01

    Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  5. Dissolved organic carbon and disinfection by-product precursor release from managed peat soils.

    PubMed

    Fleck, J A; Bossio, D A; Fujii, R

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices. PMID:15074797

  6. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  7. Detrital control on the release of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) from the forest floor under chronic N deposition.

    PubMed

    Park, Ji-Hyung; Matzner, Egbert

    2006-09-01

    The role of detrital quantity and quality in forest floor N leaching was investigated in a litter manipulation experiment at a deciduous forest under chronic N deposition. Dissolved inorganic nitrogen (DIN) comprised the bulk of nitrogen leaching from the control except a short period following autumn litterfall. The dominance of DIN was strengthened by litter exclusion, whereas the addition of glucose or fresh litter led to a small increase in dissolved organic nitrogen (DON) and either a temporary or gradual reduction in NO(3)(-) release, respectively. Changes in soluble organic C and microbial C in the forest floor implied that increased availability of C sources might have enhanced microbial immobilization of DIN, either temporarily following glucose application or over the longer term following litter addition. The results suggest that detrital quantity and quality can play a crucial role in determining the balance between DIN and DON in N-enriched forest soils. PMID:16406164

  8. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    standards do not specify whether the numeric criteria are based on depth-averaged dissolved oxygen concentration; this was an interpretation of the standards rule by the Oregon Department of Environmental Quality (ODEQ). In this study, both depth-averaged and volume-averaged dissolved oxygen concentrations were calculated from model output. Results showed that modeled depth-averaged concentrations typically were lower than volume-averaged dissolved oxygen concentrations because depth-averaging gives a higher weight to small volume areas near the channel bottom that often have lower dissolved oxygen concentrations. Results from model scenarios in this study are reported using volume-averaged dissolved oxygen concentrations. * Under all scenarios analyzed, violations of the dissolved oxygen standard occurred most often in summer. Of the three dissolved oxygen criteria that must be met, the 30-day standard was violated most frequently. Under the base case (current conditions), fewer violations occurred in the upstream part of the reach. More violations occurred in the down-stream direction, due in part to oxygen demand from the decay of algae and organic matter from Link River and other inflows. * A condition in which Upper Klamath Lake and its Link River outflow achieved Upper Klamath Lake TMDL water-quality targets was most effective in reducing the number of violations of the dissolved oxygen standard in the Link River to Keno Dam reach of the Klamath River. The condition in which point and nonpoint sources within the Link River to Keno Dam reach met Klamath River TMDL allocations had no effect on dissolved oxygen compliance in some locations and a small effect in others under current conditions. On the other hand, meeting TMDL allocations for nonpoint and point sources was predicted to be important in meeting dissolved oxygen criteria when Upper Klamath Lake and Link River also met Upper Klamath TMDL water-quality targets. * The location of greatest dissolved oxygen

  9. Characterization of Dissolved Organic Carbon in Deep Groundwater from the Witwatersrand Basin

    NASA Astrophysics Data System (ADS)

    Pullin, M. J.; Hendrickson, S.; Simon, P.; Sherwood Lollar, B.; Wilkie, K.; Onstott, T. C.; Washton, N.; Clewett, C.

    2013-12-01

    This work describes the isolation, fractionation, and chemical analysis of dissolved organic carbon (DOC) in deep groundwater in the Witwatersrand Basin, South Africa. The groundwater was accessed through mining boreholes in gold and diamond mine shafts. Filtered water samples were collected and preserved for later analysis. In some cases, the organic carbon was also collected on DAX-8 and XAD-4 adsorption resins in situ and then transported to the surface for removal, clean-up, and lyophilization. Solid state C-13 NMR analysis of that organic carbon was conducted. Organic compounds were also isolated from the water using solid phase extraction cartridges for later analysis by GC-MS. Absorbance, fluorescence, and HPLC analyses was were used to analyze the DOC in the filtered water samples. C-14 and C-13 isotopic analysis of the o