Science.gov

Sample records for moderate muscle strain

  1. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  2. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  3. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  4. Molecular responses to moderate endurance exercise in skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined alterations in skeletal-muscle growth and atrophy-related molecular events after a single bout of moderate-intensity endurance exercise. Muscle biopsies were obtained from 10 men (23 +/- 1 yr, body mass 80 +/- 2 kg, and VO(2peak) 45 +/- 1 ml x kg'¹ x min'¹) immediately (0 hr) and...

  5. Rectus abdominis muscle strains in tennis players.

    PubMed

    Maquirriain, Javier; Ghisi, Juan P; Kokalj, Antonio M

    2007-11-01

    Rectus abdominis muscle strains are common and debilitating injuries among competitive tennis players. Eccentric overload, followed by forced contraction of the non-dominant rectus abdominis during the cocking phase of the service motion is the accepted injury mechanism. A tennis-specific rehabilitation program emphasising eccentrics and plyometric strengthening of the abdominal wall muscles, contributes to the complete functional recovery in tennis players, and could help reduce recurrences. PMID:17957025

  6. Rectus abdominis muscle strains in tennis players

    PubMed Central

    Maquirriain, Javier; Ghisi, Juan P; Kokalj, Antonio M

    2007-01-01

    Rectus abdominis muscle strains are common and debilitating injuries among competitive tennis players. Eccentric overload, followed by forced contraction of the non‐dominant rectus abdominis during the cocking phase of the service motion is the accepted injury mechanism. A tennis‐specific rehabilitation program emphasising eccentrics and plyometric strengthening of the abdominal wall muscles, contributes to the complete functional recovery in tennis players, and could help reduce recurrences. PMID:17957025

  7. Grounding after moderate eccentric contractions reduces muscle damage

    PubMed Central

    Brown, Richard; Chevalier, Gaétan; Hill, Michael

    2015-01-01

    Grounding a human to the earth has resulted in changes in the physiology of the body. A pilot study on grounding and eccentric contractions demonstrated shortened duration of pain, reduced creatine kinase (CK), and differences in blood parameters. This follow-up study was conducted to investigate the effects of grounding after moderate eccentric contractions on pain, CK, and complete blood counts. Thirty-two healthy young men were randomly divided into grounded (n=16) and sham-grounded (n=16) groups. On days 1 through 4, visual analog scale for pain evaluations and blood draws were accomplished. On day 1, the participants performed eccentric contractions of 200 half-knee bends. They were then grounded or sham-grounded to the earth for 4 hours on days 1 and 2. Both groups experienced pain on all posttest days. On day 2, the sham-grounded group experienced significant CK increase (P<0.01) while the CK of the grounded group did not increase significantly; the between-group difference was significant (P=0.04). There was also an increase in the neutrophils of the grounded group on day 3 (P=0.05) compared to the sham-grounded group. There was a significant increase in platelets in the grounded group on days 2 through 4. Grounding produced changes in CK and complete blood counts that were not shared by the sham-grounded group. Grounding significantly reduced the loss of CK from the injured muscles indicating reduced muscle damage. These results warrant further study on the effects of earthing on delayed onset muscle damage. PMID:26443876

  8. Angiogenesis is induced by airway smooth muscle strain.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD. PMID:17693481

  9. The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise.

    PubMed

    van Hall, Gerrit

    2015-11-01

    Energy substrates that are important to the working muscle at moderate intensities are the non-esterified fatty acids (NEFAs) taken up from the circulation and NEFAs originating from lipolysis of the intramuscular triacylglycerol (IMTAG). Moreover, NEFA from lipolysis via lipoprotein lipase (LPL) in the muscle of the very-low-density lipoproteins and in the (semi) post-prandial state chylomicrons may also contribute. In this review, the NEFA fluxes and oxidation by skeletal muscle during prolonged moderate-intensity exercise are described in terms of the integration of physiological systems. Steps involved in the regulation of the active muscle NEFA uptake include (1) increased energy demand; (2) delivery of NEFA to the muscle; (3) transport of NEFA into the muscle by NEFA transporters; and (4) activation of the NEFAs and either oxidation or re-esterification into IMTAG. The increased metabolic demand of the exercising muscle is the main driving force for all physiological regulatory processes. It elicits functional hyperemia, increasing the recruitment of capillaries and muscle blood flow resulting in increased NEFA delivery and accessibility to NEFA transporters and LPL. It also releases epinephrine that augments adipose tissue NEFA release and thereby NEFA delivery to the active muscle. Moreover, NEFA transporters translocate to the plasma membrane, further increasing the NEFA uptake. The majority of the NEFAs taken up by the active muscle is oxidized and a minor portion is re-esterified to IMTAG. Net IMTAG lipolysis occurs; however, the IMTAG contribution to total fat oxidation is rather limited compared to plasma-derived NEFA oxidation, suggesting a complex role and regulation of IMTAG utilization. PMID:26553490

  10. High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats.

    PubMed

    Moreira, José B N; Bechara, Luiz R G; Bozi, Luiz H M; Jannig, Paulo R; Monteiro, Alex W A; Dourado, Paulo M; Wisløff, Ulrik; Brum, Patricia C

    2013-04-01

    Poor skeletal muscle performance was shown to strongly predict mortality and long-term prognosis in a variety of diseases, including heart failure (HF). Despite the known benefits of aerobic exercise training (AET) in improving the skeletal muscle phenotype in HF, the optimal exercise intensity to elicit maximal outcomes is still under debate. Therefore, the aim of the present study was to compare the effects of high-intensity AET with those of a moderate-intensity protocol on skeletal muscle of infarcted rats. Wistar rats underwent myocardial infarction (MI) or sham surgery. MI groups were submitted either to an untrained (MI-UNT); moderate-intensity (MI-CMT, 60% Vo(2)(max)); or matched volume, high-intensity AET (MI-HIT, intervals at 85% Vo(2)(max)) protocol. High-intensity AET (HIT) was superior to moderate-intensity AET (CMT) in improving aerobic capacity, assessed by treadmill running tests. Cardiac contractile function, measured by echocardiography, was equally improved by both AET protocols. CMT and HIT prevented the MI-induced decay of skeletal muscle citrate synthase and hexokinase maximal activities, and increased glycogen content, without significant differences between protocols. Similar improvements in skeletal muscle redox balance and deactivation of the ubiquitin-proteasome system were also observed after CMT and HIT. Such intracellular findings were accompanied by prevented skeletal muscle atrophy in both MI-CMT and MI-HIT groups, whereas no major differences were observed between protocols. Taken together, our data suggest that despite superior effects of HIT in improving functional capacity, skeletal muscle adaptations were remarkably similar among protocols, leading to the conclusion that skeletal myopathy in infarcted rats was equally prevented by either moderate-intensity or high-intensity AET. PMID:23429866

  11. Flexible strain sensor for air muscles using polypyrrole coated rubber

    NASA Astrophysics Data System (ADS)

    Tjahyono, Arief P.; Aw, Kean C.; Travas-Sejdic, Jadranka; Li, K. C.

    2010-04-01

    A novel flexible large strain sensor was developed to be use with an air muscle. A piece of butyl rubber was coated with the conducting polymer, polypyrrole through bulk solution and chemical vapour deposition method. The strain sensor was able to response to sudden movements represented by the multiple step functions of the applied strain. Consistency of the sensor's output was studied and the average error in the change of resistance was calculated to be 0.32% and 0.72% for elongation and contraction respectively for the sample made using chemical vapour deposition. However, a hysteresis was observed for this sample for a single cycle of elongation and contraction with the highest error calculated to be 3.2% at a 0% applied strain. SEM images showed the propagation of surface micro-cracks as the cause of the variation in surface resistance with applied strain. In addition, slower relaxation rate of the rubber prevented the surface micro-cracks to open and close at the same rate. The idea of utilizing conducting polymer coating can be applied to the inner rubber tube of the air muscle. As such, a complete integration between actuator and sensor can be realized.

  12. Effects of moderate heart failure and functional overload on rat plantaris muscle.

    PubMed

    Spangenburg, Espen E; Lees, Simon J; Otis, Jeff S; Musch, Timothy I; Talmadge, Robert J; Williams, Jay H

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression. PMID:11744638

  13. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  14. Draft Genome Sequence of the Moderately Halophilic Bacterium Marinobacter lipolyticus Strain SM19

    PubMed Central

    Papke, R. Thane; de la Haba, Rafael R.; Infante-Domínguez, Carmen; Pérez, Dolores; Sánchez-Porro, Cristina; Lapierre, Pascal

    2013-01-01

    Marinobacter lipolyticus strain SM19, isolated from saline soil in Spain, is a moderately halophilic bacterium belonging to the class Gammaproteobacteria. Here, we report the draft genome sequence of this strain, which consists of a 4.0-Mb chromosome and which is able to produce the halophilic enzyme lipase LipBL. PMID:23814106

  15. Mechanistic role of movement and strain sensitivity in muscle contraction

    PubMed Central

    Davis, Julien S.; Epstein, Neal D.

    2009-01-01

    Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy–entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done. PMID:19325123

  16. Mechanistic role of movement and strain sensitivity in muscle contraction.

    PubMed

    Davis, Julien S; Epstein, Neal D

    2009-04-14

    Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca(2+)-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done. PMID:19325123

  17. Beyond debt. A moderator analysis of the relationship between perceived financial strain and mental health.

    PubMed

    Selenko, Eva; Batinic, Bernad

    2011-12-01

    Heavy debt not only has economic consequences, but has also been related to severe psychological and physical distress. The present study investigates the relationship between perceived financial strain and mental health, and individual-level variables that moderate this relationship. Specifically it was expected that employment, access to the latent benefits of work, and self-efficacy would buffer the relationship between perceived financial strain and mental health. In a 2009 study conducted in Austria, among 106 people on the verge of bankruptcy, perceived financial strain appeared as the strongest predictor of distress. This effect was moderated by two out of five latent benefits of work and self-efficacy, but employment status failed to have a significant effect. The findings show the importance of subjective economic stress for the prediction of mental health among people in serious financial strain and indicate significant moderators of this relationship. PMID:22019305

  18. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The effects of essential amino acid (EAA) supplementation during moderate steady state (ie, endurance) exercise on postexercise skeletal muscle metabolism are not well described, and the potential role of supplemental leucine on muscle protein synthesis (MPS) and associated molecular re...

  19. Draft Genome Sequence of the Moderately Halophilic Methanotroph Methylohalobius crimeensis Strain 10Ki

    PubMed Central

    Sharp, Christine E.; Smirnova, Angela V.; Kalyuzhnaya, Marina G.; Bringel, Françoise; Hirayama, Hisako; Jetten, Mike S. M.; Khmelenina, Valentina N.; Klotz, Martin G.; Knief, Claudia; Kyrpides, Nikos; Op den Camp, Huub J. M.; Reshetnikov, Alexander S.; Sakai, Yasuyoshi; Shapiro, Nicole; Trotsenko, Yuri A.; Vuilleumier, Stéphane; Woyke, Tanja

    2015-01-01

    Methylohalobius crimeensis strain 10Ki is a moderately halophilic aerobic methanotroph isolated from a hypersaline lake in the Crimean Peninsula, Ukraine. This organism has the highest salt tolerance of any cultured methanotroph. Here, we present a draft genome sequence of this bacterium. PMID:26067976

  20. Buffering or Strengthening: The Moderating Effect of Self-Efficacy on Stressor-Strain Relationship

    ERIC Educational Resources Information Center

    Xie, Dong

    2007-01-01

    This study investigated the moderating effect of self-efficacy on stressor-strain relationship among 30 telephone interviewers in an academic survey research center. Participants filled out measures of the Skills Confidence Inventory and the Scale of Perceived Social Self-Efficacy. They reported their state anxiety and recorded the number of…

  1. On-call work and physicians' turnover intention: the moderating effect of job strain.

    PubMed

    Heponiemi, Tarja; Presseau, Justin; Elovainio, Marko

    2016-01-01

    Physician shortage and turnover are major problems worldwide. On-call duties may be among the risk factors of high turnover rates among physicians. We investigated whether having on-call duties is associated with physicians' turnover intention and whether job strain variables moderate this association. The present study was a cross-sectional questionnaire study among 3324 (61.6% women) Finnish physicians. The analyses were conducted using analyses of covariance adjusted for age, gender, response format, specialization status and employment sector. The results showed that job strain moderated the association between being on-call and turnover intention. The highest levels of turnover intention were among those who had on-call duties and high level of job strain characterized by high demands and low control opportunities. The lowest levels of turnover intention were among those who were not on-call and who had low strain involving low demands and high control. Also, job demands moderated the association between being on-call and turnover intention; turnover intention levels were higher among those with on-call duties and high demands than those being on-call and low demands. To conclude, working on-call was related to physicians' turnover intention particularly in those with high job strain. Health care organizations should focus more attention on working arrangements and scheduling of on-call work, provide a suitable working pace and implement means to increase physicians' participation and control over their job. PMID:26072662

  2. Effect of Strain on Actomyosin Kinetics in Isometric Muscle Fibers

    PubMed Central

    Siththanandan, V. B.; Donnelly, J. L.; Ferenczi, M. A.

    2006-01-01

    Investigations were conducted into the biochemical and mechanical states of cross-bridges during isometric muscle contraction. Rapid length steps (3 or 6 nm hs−1) were applied to rabbit psoas fibers, permeabilized and isometric, at either 12°C or 20°C. Fibers were activated by photolysis of P3-1-(2-nitrophenyl)-ethyl ester of ATP infused into rigor fibers at saturating Ca2+. Sarcomere length, tension, and phosphate release were recorded—the latter using the MDCC-PBP fluorescent probe. A reduction in strain, induced by a rapid release step, produced a short-lived acceleration of phosphate release. Rates of the phosphate transient and that of phases 3 and 4 of tension recovery were unaffected by step size but were elevated at higher temperatures. In contrast the amplitude of the phosphate transient was smaller at 20°C than 12°C. The presence of 0.5 or 1.0 mM added ADP during a release step reduced both the rate of tension recovery and the poststep isometric tension. A kinetic scheme is presented to simulate the observed data and to precisely determine the rate constants for the elementary steps of the ATPase cycle. PMID:16513783

  3. The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure.

    PubMed

    Spee, Ruud F; Niemeijer, Victor M; Schoots, Thijs; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M

    2016-07-01

    Oxygen uptake (V̇o2) kinetics are prolonged in patients with chronic heart failure (CHF). This may be caused by impaired oxygen delivery or skeletal muscle derangements. We investigated whether impaired cardiac output (Q̇) kinetics limit skeletal muscle oxygen delivery relative to the metabolic demands at submaximal exercise in CHF patients by evaluating the relation between Q̇ kinetics and skeletal muscle deoxygenation. Forty-three CHF patients, NYHA II-III, performed a constant-load exercise test at 80% of the ventilatory aerobic threshold (VAT) to assess V̇o2 kinetics (τV̇o2). Q̇ kinetics (τQ̇) were assessed by a radial artery pulse contour analysis method. Skeletal muscle deoxygenation was assessed by near infrared spectroscopy at the m. vastus lateralis, using the minimal value of the tissue saturation index during onset of exercise (TSImin). Patients were categorized in slow and normal Q̇ responders relative to metabolic demands (τQ̇/V̇o2 ≥1 and τQ̇/V̇o2 <1, respectively), τQ̇ (62 ± 29 s), and τV̇o2 (60 ± 21 s) were significantly related (r = 0.66, P = 0.001). There was a significant correlation between τQ̇ and TSImin in the slow Q̇ responders [rs= -0.57, P = 0.005, n = 22 (51%)]. In conclusion, in moderately impaired CHF patients with relatively slow Q̇ kinetics, central hemodynamics may limit skeletal muscle oxygenation during moderate-intensity exercise. PMID:27283909

  4. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    PubMed

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. PMID:25169864

  5. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    PubMed Central

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Schuster, Stephan C.; Steinke, Laurey

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons. PMID:25169864

  6. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains.

    PubMed

    Wright-Carpenter, T; Klein, P; Schäferhoff, P; Appell, H J; Mir, L M; Wehling, P

    2004-11-01

    Muscle injuries represent a major part of sports injuries and are a challenging problem in traumatology. Strain injuries are the most common muscle injuries after contusions. These injuries can lead to significant pain and disability causing time to be lost to training and competition. Despite the frequency of strain injuries the treatment available is limited and is generally not sufficient to enhance muscle regeneration efficiently when fast resumption of sport activity is a primary target. A number of growth factors play a specific role in regeneration and it has been proven that a previously described method of physically and chemically stimulating whole blood (to produce autologous conditioned serum) induces concentration increases in FGF-2, HGF, and TGF-beta1. A preliminary study was conducted on muscle strain injuries in professional sportsmen receiving either: 1. autologous conditioned serum (ACS) or 2. Actovegin/Traumeel treatment as control. Assessment of recovery from injury was done by: 1. sport professional's ability to participate to 100 % under competition conditions in their respective sport and 2. MRI analysis. A significant difference in the recovery time from injury was demonstrated: 16.6 +/- 0.9 in the ACS treated instead of 22.3 +/- 1.2 (mean +/- SEM) days in the Actovegin/Traumeel control group (p = 0.001). MRI analysis supported the observed acceleration of the lesion recovery time. We conclude that ACS injection is a promising approach to reduce the time to recovery from muscle injury. PMID:15532001

  7. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  8. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl). PMID:18506896

  9. Static strain and vibration characteristics of a metal semimonocoque helicopter tail cone of moderate size

    NASA Technical Reports Server (NTRS)

    Bielawa, Richard L.; Hefner, Rachel E.; Castagna, Andre

    1991-01-01

    The results are presented of an analytic and experimental research program involving a Sikorsky S-55 helicopter tail cone directed ultimately to the improved structural analysis of airframe substructures typical of moderate sized helicopters of metal semimonocoque construction. Experimental static strain and dynamic shake-testing measurements are presented. Correlation studies of each of these tests with a PC-based finite element analysis (COSMOS/M) are described. The tests included static loadings at the end of the tail cone supported in the cantilever configuration as well as vibrational shake-testing in both the cantilever and free-free configurations.

  10. Draft Genome Sequence of Staphylococcus succinus Strain CSM-77, a Moderately Halophilic Bacterium Isolated from a Triassic Salt Mine.

    PubMed

    Megaw, Julianne; Gilmore, Brendan F

    2016-01-01

    Here, we report the draft genome sequence of Staphylococcus succinus strain CSM-77. This moderately halophilic bacterium was isolated from the surface of a halite sample obtained from a Triassic salt mine. PMID:27284152

  11. Draft Genome Sequence of Staphylococcus succinus Strain CSM-77, a Moderately Halophilic Bacterium Isolated from a Triassic Salt Mine

    PubMed Central

    Gilmore, Brendan F.

    2016-01-01

    Here, we report the draft genome sequence of Staphylococcus succinus strain CSM-77. This moderately halophilic bacterium was isolated from the surface of a halite sample obtained from a Triassic salt mine. PMID:27284152

  12. X-ray diffraction of strained muscle fibers in rigor.

    PubMed Central

    Naylor, G R; Podolsky, R J

    1981-01-01

    The effect of strain on the equatorial x-ray diffraction pattern of glycerinated rabbit psoas fibers was studied in the rigor (ATP free) state. Strains between 30 and 100 A per half sarcomere, measured directly by laser diffraction, did not change the intensity ratio, (10)/ . (11). Because the intensity ratio depends on the distribution of mass within the myofilament lattice, the negative result indicates that strain does not change the angle of attachment of the subfragment 1 (S1) moiety of the myosin molecule to the actin filament. The effect of strain on the ordering of the actin filaments also was considered and judged to be negligible. Images PMID:6946493

  13. Femoral strain during walking predicted with muscle forces from static and dynamic optimization.

    PubMed

    Edwards, W Brent; Miller, Ross H; Derrick, Timothy R

    2016-05-01

    Mechanical strain plays an important role in skeletal health, and the ability to accurately and noninvasively quantify bone strain in vivo may be used to develop preventive measures that improve bone quality and decrease fracture risk. A non-invasive estimation of bone strain requires combined musculoskeletal - finite element modeling, for which the applied muscle forces are usually obtained from static optimization (SO) methods. In this study, we compared finite element predicted femoral strains in walking using muscle forces obtained from SO to those obtained from forward dynamics (FD) simulation. The general trends in strain distributions were similar between FD and SO derived conditions and both agreed well with previously reported in vivo strain gage measurements. On the other hand, differences in peak maximum (εmax) and minimum (εmin) principal strain magnitudes were as high as 32% between FD (εmax/εmin=945/-1271με) and SO (εmax/εmin=752/-859με). These large differences in strain magnitudes were observed during the first half of stance, where SO predicted lower gluteal muscle forces and virtually no co-contraction of the hip adductors compared to FD. The importance of these results will likely depend on the purpose/application of the modeling procedure. If the goal is to obtain a generalized strain distribution for adaptive bone remodeling algorithms, then traditional SO is likely sufficient. In cases were strain magnitudes are critical, as is the case with fracture risk assessment, bone strain estimation may benefit by including muscle activation and contractile dynamics in SO, or by using FD when practical. PMID:26994784

  14. Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers.

    PubMed Central

    Homsher, E; Lacktis, J; Regnier, M

    1997-01-01

    When inorganic phosphate (Pi) is photogenerated from caged Pi during isometric contractions of glycerinated rabbit psoas muscle fibers, the released Pi binds to cross-bridges and reverses the working stroke of cross-bridges. The consequent force decline, the Pi-transient, is exponential and probes the kinetics of the power-stroke and Pi release. During muscle shortening, the fraction of attached cross-bridges and the average strain on them decreases (Ford, L. E., A.F. Huxley, and R.M. Simmons, 1977. Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. (Lond.). 269:441-515; Ford, L. E., A. F. Huxley, and R.M. Simmons, 1985. Tension transients during steady state shortening of frog muscle fibers. J. Physiol. (Lond.). 361:131-150. To learn to what extent the Pi transient is strain dependent, muscle fibers were activated and shortened or lengthened at a fixed velocity during the photogeneration of Pi. The Pi transients observed during changes in muscle length showed three primary characteristics: 1) during shortening the Pi transient rate, Kpi, increased and its amplitude decreased with shortening velocity; Kpi increased linearly with velocity to > 110 s-1 at 0.3 muscle lengths per second (ML/s). 2) At a specific shortening velocity, increases in [Pi] produce increases in Kpi that are nonlinear with [Pi] and approach an asymptote. 3) During forced lengthening Kpi and the amplitude of the Pi transient are little different from the isometric contractions. These data can be approximated by a strain-dependent three-state cross-bridge model. The results show that the power stroke's rate is strain-dependent, and are consistent with biochemical studies indicating that the rate-limiting step at low strains is a transition from a weakly to a strongly bound cross-bridge state. PMID:9083682

  15. Constitutive Modeling of Skeletal Muscle Tissue with an Explicit Strain-Energy Function

    PubMed Central

    Odegard, G.M.; Donahue, T.L. Haut; Morrow, D.A.; Kaufman, K.R.

    2010-01-01

    While much work has previously been done in the modeling of skeletal muscle, no model has, to date, been developed that describes the mechanical behavior with an explicit strain-energy function associated with the active response of skeletal muscle tissue. A model is presented herein that has been developed to accommodate this design consideration using a robust dynamical approach. The model shows excellent agreement with a previously published model of both the active and passive length-tension properties of skeletal muscle. PMID:19045546

  16. When confidence comes and goes: How variation in self-efficacy moderates stressor-strain relationships.

    PubMed

    Peng, Ann C; Schaubroeck, John M; Xie, Jia Lin

    2015-07-01

    Inconsistent published findings regarding a proposed buffering role of self-efficacy in stress coping led us to develop a model in which within-person variability in self-efficacy over time affects how individuals' mean levels of self-efficacy moderate the relationship between demands and psychological symptoms. Results from two independent samples (manufacturing workers and college students) supported the hypothesized interaction between demands, self-efficacy mean level, and self-efficacy variability. Demands were more positively associated with psychological strain among those with high and stable self-efficacy than those with high and variable self-efficacy. We discuss the implications of intrapersonal variability in self-efficacy for research on stress coping. PMID:25602277

  17. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    PubMed Central

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  18. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction.

    PubMed

    Watanabe, Kohei; Holobar, Aleš; Kouzaki, Motoki; Ogawa, Madoka; Akima, Hiroshi; Moritani, Toshio

    2016-06-01

    Age-related changes in motor unit activation properties remain unclear for locomotor muscles such as quadriceps muscles, although these muscles are preferentially atrophied with aging and play important roles in daily living movements. The present study investigated and compared detailed motor unit firing characteristics for the vastus lateralis muscle during isometric contraction at low to moderate force levels in the elderly and young. Fourteen healthy elderly men and 15 healthy young men performed isometric ramp-up contraction to 70 % of the maximal voluntary contractions (MVC) during knee extension. Multichannel surface electromyograms were recorded from the vastus lateralis muscle using a two-dimensional grid of 64 electrodes and decomposed with the convolution kernel compensation technique to extract individual motor units. Motor unit firing rates in the young were significantly higher (~+29.7 %) than in the elderly (p < 0.05). There were significant differences in firing rates among motor units with different recruitment thresholds at each force level in the young (p < 0.05) but not in the elderly (p > 0.05). Firing rates at 60 % of the MVC force level for the motor units recruited at <20 % of MVC were significantly correlated with MVC force in the elderly (r = 0.885, p < 0.0001) but not in the young (r = 0.127, p > 0.05). These results suggest that the motor unit firing rate in the vastus lateralis muscle is affected by aging and muscle strength in the elderly and/or age-related strength loss is related to motor unit firing/recruitment properties. PMID:27084115

  19. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  20. An enterovirus 71 strain causes skeletal muscle damage in infected mice

    PubMed Central

    Lin, Peixin; Gao, Lulu; Huang, Yeen; Chen, Qing; Shen, Hong

    2015-01-01

    Objective: To study the target organs for enterovirus 71 (EV71) in infected suckling mice. Methods: 5-day-old BALB/c suckling mice were infected with an EV71 strain. Tissues of the infected mice were processed for histopathological examination, including immunohistochemistry, in situ hybridization, ultrastructural observation. Results: Some mice developed limb paralysis, trouble walking and loss of balance. Results of the histopathological study showed that a large amount of EV71 existed in the skeletal muscle tissues, accounting for the damage of the skeletal muscles. Conclusion: The EV71 clinical isolate used in this study presented evident myotropism. Skeletal muscles are important target organs for EV71 in the infected suckling mice. To clarify the relationship between EV71 infection and muscle diseases may contribute to a better understanding of the pathogenesis of EV71. PMID:26097530

  1. Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior.

    PubMed Central

    Smith, D A; Geeves, M A

    1995-01-01

    Quantitative predictions of steady-state muscle properties from the strain-dependent cross-bridge for muscle are presented. With a stiffness of 5.4 x 10(-4) N/m per head, a throw distance of 11 nm, and three allowed actin sites/head, isometric properties and their dependence on phosphate and nucleotide levels are well described if the tension-generating step occurs before phosphate release. At very low ATP levels, rigorlike states with negative strain are predicted. The rate-limiting step for cycling and ATP consumption is strain-blocked ADP release for isometric and slowly shortening muscle. Under rapid shortening, ATP hydrolysis on detached heads is the rate-limiting step, and the ratio of bound ATP to bound ADP.Pi increases by a factor of 7. At large positive strains, bound heads must be forcibly detached from actin to account for tension in rapid extension, but forced detachment in shortening has no effect without destroying isometric attached states. Strain-blocked phosphate release as proposed produces modest inhibition of the ATPase rate under rapid shortening, sufficient to give a maximum for one actin site per helix turn. Alternative cross-bridge models are discussed in the light of these predictions. PMID:8527668

  2. THE EFFECTS OF APONEUROSIS GEOMETRY ON STRAIN INJURY SUSCEPTIBILITY EXPLORED WITH A 3D MUSCLE MODEL

    PubMed Central

    Rehorn, Michael R.; Blemker, Silvia S.

    2010-01-01

    In the musculoskeletal system, some muscles are injured more frequently than others. For example, the biceps femoris longhead (BFLH) is the most commonly injured hamstring muscle. It is thought that acute injuries result from large strains within the muscle tissue, but the mechanism behind this type of strain injury is still poorly understood. The purpose of this study was to build computational models to analyze the stretch distributions within the BFLH muscle and to explore the effects of aponeurosis geometry on the magnitude and location of peak stretches within the model. We created a three-dimensional finite element (FE) model of the BFLH based on magnetic resonance (MR) images. We also created a series of simplified models with a similar geometry to the MR-based model. We analyzed the stretches predicted by the MR-based model during lengthening contractions to determine the region of peak local fiber stretch. The peak along-fiber stretch was 1.64 and was located adjacent to the proximal myotendinous junction (MTJ). In contrast, the average along-fiber stretch across all the muscle tissue was 0.95. By analyzing the simple models, we found that varying the dimensions of the aponeuroses (width, length, and thickness) had a substantial impact on the location and magnitude of peak stretches within the muscle. Specifically, the difference in widths between the proximal and distal aponeurosis in the BFLH contributed most to the location and magnitude of peak stretch, as decreasing the proximal aponeurosis width by 80% increased peak average stretches along the proximal MTJ by greater than 60% while slightly decreasing stretches along the distal MTJ. These results suggest that the aponeurosis morphology of the BFLH plays a significant role in determining stretch distributions throughout the muscle. Furthermore, this study introduces the new hypothesis that aponeurosis widths may be important in determining muscle injury susceptibility. PMID:20541207

  3. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction.

    PubMed

    Rashedi, Ehsan; Nussbaum, Maury A

    2016-06-01

    Localized muscle fatigue (LMF) during a repetitive task can be influenced by several aspects such as the level and duration of exertions. Among these aspects, though, the influence of cycle time remains unclear. Here, the effect of cycle time on LMF and performance was examined for a simple biomechanical system during repetitive static efforts. Participants performed 1-h trials of intermittent isometric index finger abduction with a duty cycle of 50% in all combinations of two cycle times (30 and 60s) and two exertion levels (15% and 25% of maximum voluntary capacity). Measures of discomfort, performance (force fluctuations), and muscle capacity (voluntary strength and low-frequency twitch responses) were obtained, all of which demonstrated a beneficial effect of the 30s cycle time. Specifically, the shorter cycle time led to lower rates of increase in perceived discomfort, lower rates of increase in force fluctuations, lower rates of decrease in voluntary capacity, and smaller changes in twitch responses. These benefits, reflecting less LMF development in the shorter cycle time, were quite consistent between genders and the two levels of effort. Results of this study can be used to modify current models predicting work-rest allowance and/or LMF, helping to enhance performance and reduce the risk of adverse musculoskeletal outcomes. PMID:26995711

  4. Differential segmental strain during active lengthening in a large biarticular thigh muscle during running

    PubMed Central

    Carr, Jennifer A.; Ellerby, David J.; Marsh, Richard L.

    2011-01-01

    SUMMARY The iliotibialis lateralis pars postacetabularis (ILPO) is the largest muscle in the hindlimb of the guinea fowl and is thought to play an important role during the stance phase of running, both absorbing and producing work. Using sonomicrometry and electromyography, we examined whether the ILPO experiences differential strain between proximal, central and distal portions of the posterior fascicles. When the ILPO is being lengthened while active, the distal portion was found to lengthen significantly more than either the proximal or central portions of the muscle. Our data support the hypothesis that the distal segment lengthened farther and faster because it began activity at shorter sarcomere lengths on the ascending limb of the length–tension curve. Probably because of the self-stabilizing effects of operating on the ascending limb of the length–tension curve, all segments reached the end of lengthening and started shortening at the same sarcomere length. During shortening, this similarity in sarcomere length among the segments was maintained, as predicted from force–velocity effects, and shortening strain was similar in all segments. The differential active strain during active lengthening is thus ultimately determined by differences in strain during the passive portion of the cycle. The sarcomere lengths of all segments of the fascicles were similar at the end of active shortening, but after the passive portion of the cycle the distal segment was shorter. Differential strain in the segments during the passive portion of the cycle may be caused by differential joint excursions at the knee and hip acting on the ends of the muscle and being transmitted differentially by the passive visco-elastic properties of the muscle. Alternatively, the differential passive strain could be due to the action of active or passive muscles in the thigh that transmit force to the IPLO in shear. Based on basic sarcomere dynamics we predict that differential strain is

  5. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Balachandar, S.

    2003-04-01

    The focus of this paper is the effect of spatial non-uniformity in the ambient flow on the forces acting on a rigid sphere when the sphere Reynolds number, Re, is in the range 10 to 300. Direct numerical simulations (DNS) based on a pseudospectral methodology are carried out to solve for the unsteady three-dimensional flow field around a sphere which is either held stationary or allowed to translate freely under the hydrodynamic forces. The various components of the total force, namely the inertial, steady viscous, and history forces, are systematically estimated in the context of linearly varying straining flows. The inertial forces are isolated by computing the rapid changes in the drag and lift forces in response to a rapid acceleration of the ambient flow. It is shown that the inertial forces arising due to convective acceleration at moderate Reynolds numbers follow the inviscid flow result. While the effect of temporal acceleration depends only on the sign and magnitude of the acceleration, the effect of convective acceleration is shown to depend also on the initial state of the ambient flow. A simple theoretical argument is presented to support the numerical observations. It is also shown that the effect of convective acceleration on the steady viscous force can be realized on a slower time scale. The results show that the history kernels currently available in the literature are not adequate to represent the effect of non-uniformity on the history force.

  6. A Novel Fiber Bragg Grating Based Sensing Methodology for Direct Measurement of Surface Strain on Body Muscles during Physical Exercises

    NASA Astrophysics Data System (ADS)

    Prasad Arudi Subbarao, Guru; Subbaramajois Narasipur, Omkar; Kalegowda, Anand; Asokan, Sundarrajan

    2012-07-01

    The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

  7. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury.

    PubMed

    Bourne, M N; Opar, D A; Williams, M D; Al Najjar, A; Shield, A J

    2016-06-01

    This study aimed to determine: (a) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); (b) whether previously injured hamstrings display activation deficits during the NHE; and (c) whether previously injured hamstrings exhibit altered cross-sectional area (CSA). Ten healthy, recreationally active men with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging of their thighs before and after six sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles [biceps femoris long head (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)] were measured at rest and immediately after the NHE and CSA was measured at rest. For the uninjured limb, the ST's percentage increase in T2 with exercise was 16.8%, 15.8%, and 20.2% greater than the increases exhibited by the BFlh, BFsh, and SM, respectively (P < 0.002 for all). Previously injured hamstring muscles (n = 10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, P = 0.001). No muscles displayed significant between-limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared with uninjured contralateral muscles. PMID:26059634

  8. Pennation angle dependency in skeletal muscle tissue doppler strain in dynamic contractions.

    PubMed

    Lindberg, Frida; Öhberg, Fredrik; Granåsen, Gabriel; Brodin, Lars-Åke; Grönlund, Christer

    2011-07-01

    Tissue velocity imaging (TVI) is a Doppler based ultrasound technique that can be used to study regional deformation in skeletal muscle tissue. The aim of this study was to develop a biomechanical model to describe the TVI strain's dependency on the pennation angle. We demonstrate its impact as the subsequent strain measurement error using dynamic elbow contractions from the medial and the lateral part of biceps brachii at two different loadings; 5% and 25% of maximum voluntary contraction (MVC). The estimated pennation angles were on average about 4° in extended position and increased to a maximal of 13° in flexed elbow position. The corresponding relative angular error spread from around 7% up to around 40%. To accurately apply TVI on skeletal muscles, the error due to angle changes should be compensated for. As a suggestion, this could be done according to the presented model. PMID:21640478

  9. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.

    PubMed

    Gillis, Gary B; Flynn, John P; McGuigan, Polly; Biewener, Andrew A

    2005-12-01

    Unlike homologous muscles in many vertebrates, which appear to function similarly during a particular mode of locomotion (e.g. red muscle in swimming fish, pectoralis muscle in flying birds, limb extensors in jumping and swimming frogs), a major knee extensor in mammalian quadrupeds, the vastus lateralis, appears to operate differently in different species studied to date. In rats, the vastus undergoes more stretching early in stance than shortening in later stance. In dogs, the reverse is true; more substantial shortening follows small amounts of initial stretching. And in horses, while the vastus strain trajectory is complex, it is characterized mainly by shortening during stance. In this study, we use sonomicrometry and electromyography to study the vastus lateralis and biceps femoris of goats, with three goals in mind: (1) to see how these muscles work in comparison to homologous muscles studied previously in other taxa; (2) to address how speed and gait impact muscle actions and (3) to test whether fascicles in different parts of the same muscle undergo similar length changes. Results indicate that the biceps femoris undergoes substantial shortening through much of stance, with higher strains in walking and trotting [32-33% resting length (L0)] than galloping (22% L0). These length changes occur with increasing biceps EMG intensities as animals increase speed from walking to galloping. The vastus undergoes a stretch-shorten cycle during stance. Stretching strains are higher during galloping (15% L0) than walking and trotting (9% L0). Shortening strains follow a reverse pattern and are greatest in walking (24% L0), intermediate in trotting (20% L0) and lowest during galloping (17% L0). As a result, the ratio of stretching to shortening increases from below 0.5 in walking and trotting to near 1.0 during galloping. This increasing ratio suggests that the vastus does relatively more positive work than energy absorption at the slower speeds compared with galloping

  10. Genomic Diversity of Mycobacterium tuberculosis Complex Strains in Cantabria (Spain), a Moderate TB Incidence Setting

    PubMed Central

    Pérez del Molino Bernal, Inmaculada C.; Lillebaek, Troels; Pedersen, Mathias K.; Martinez-Martinez, Luis; Folkvardsen, Dorte B.; Agüero, Jesús; Rasmussen, E. Michael

    2016-01-01

    Background Tuberculosis (TB) control strategies are focused mainly on prevention, early diagnosis, compliance to treatment and contact tracing. The objectives of this study were to explore the frequency and risk factors of recent transmission of clinical isolates of Mycobacterium tuberculosis complex (MTBC) in Cantabria in Northern Spain from 2012 through 2013 and to analyze their clonal complexity for better understanding of the transmission dynamics in a moderate TB incidence setting. Methods DNA from 85 out of 87 isolates from bacteriologically confirmed cases of MTBC infection were extracted directly from frozen stocks and genotyped using the mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) method. The MIRU-VNTRplus database tool was used to identify clusters and lineages and to build a neighbor joining (NJ) phylogenetic tree. In addition, data were compared to the SITVIT2 database at the Pasteur Institute of Guadeloupe. Results The rate of recent transmission was calculated to 24%. Clustering was associated with being Spanish-born. A high prevalence of isolates of the Euro-American lineage was found. In addition, MIRU-VNTR profiles of the studied isolates corresponded to previously found MIRU-VNTR types in other countries, including Spain, Belgium, Great Britain, USA, Croatia, South Africa and The Netherlands. Six of the strains analyzed represented clonal variants. Conclusion Transmission of MTBC is well controlled in Cantabria. The majority of TB patients were born in Spain. The population structure of MTBC in Cantabria has a low diversity of major clonal lineages with the Euro-American lineage predominating. PMID:27315243

  11. Effect of Tai Chi exercise in combination with auricular plaster on patients with lumbar muscle strain

    PubMed Central

    Lu, Tao; Song, Qing-Hua; Xu, Rong-Mei; Zhang, Li-Yan

    2015-01-01

    Objective: observe the effect of Tai Chi exercise on the patients with the chronic lumbar muscle strain under the intervention treatment of auricular plaster. Methods: 74 middle-aged and elderly patients, suffering from the chronic lumbar muscle strain, are randomly and equally divided into an observation group and a control group, with 37 patients in each group. The patients in the control group do Tai Chi exercise, while those in the observation group are treated by the auricular plaster therapy in addition to Tai Chi exercise. Evaluate and compare the disease conditions of the patients in the two groups before the treatment and after 12 weeks’ treatment. Results: after 12 weeks’ treatment, the patients in the two groups have been improved differently in comparison with those before the treatment (P < 0.05). However, the cure rate, the excellence rate and total effective rate of the observation group are superior to those of the control group, respectively P < 0.05 or P < 0.01, thus their difference shows statistic significance. Conclusion: after 12 weeks’ Tai Chi exercise, it exercises an obvious curative effect on the patients with lumbar muscle strain but the curative effect is more remarkable if it is combined with auricular plaster therapy. PMID:25932261

  12. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  13. Effects of Cyclic Strain and Growth Factors on Vascular Smooth Muscle Cell Responses

    PubMed Central

    Kona, Soujanya; Chellamuthu, Prithiviraj; Xu, Hao; Hills, Seth R; Nguyen, Kytai Truong

    2009-01-01

    Under physiological and pathological conditions, vascular smooth muscle cells (SMC) are exposed to different biochemical factors and biomechanical forces. Previous studies pertaining to SMC responses have not investigated the effects of both factors on SMCs. Thus, in our research we investigated the combined effects of growth factors like Bfgf (basic fibroblast growth factor), TGF-β (transforming growth factor β) and PDGF (platelet-derived growth factor) along with physiological cyclic strain on SMC responses. Physiological cyclic strain (10% strain) significantly reduced SMC proliferation compared to static controls while addition of growth factors bFGF, TGF-β or PDGF-AB had a positive influence on SMC growth compared to strain alone. Microarray analysis of SMCs exposed to these growth factors and cyclic strain showed that several bioactive genes (vascular endothelial growth factor, epidermal growth factor receptor, etc.) were altered upon exposure. Further work involving biochemical and pathological cyclic strain stimulation will help us better understand the role of cyclic strain and growth factors in vascular functions and development of vascular disorders. PMID:19812708

  14. Strengthening of back muscles using a module of flexible strain sensors.

    PubMed

    Chuang, Wan-Chun; Lin, Hwai-Ting; Chen, Wei-Long

    2015-01-01

    This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening. PMID:25671513

  15. Islamic Personal Religiosity as a Moderator of Job Strain and Employee's Well-Being: The Case of Malaysian Academic and Administrative Staff.

    PubMed

    Achour, Meguellati; Mohd Nor, Mohd Roslan; MohdYusoff, Mohd Yakub Zulkifli

    2016-08-01

    Presently, there is increased in research on job strain and the effects of religiosity on employee well-being. Despite increased recognition of religiosity as a moderator of well-being, limited research has focused on Islamic perspective of moderating job strain. This study examines the moderating effects of Islamic personal religiosity on the relationship between job strain and employee well-being in Malaysian universities. One hundred and seventeen (117) Muslim academic and administrative staff from four public universities were sampled. Data were collected via questionnaires, and our findings show that the effect of job strain on well-being is significant for employees and that personal religiosity of employees contributed to alleviating job strain and enhancing well-being. Thus, the study concludes that Islamic personal religiosity moderates the relationship between job strain and employee well-being. PMID:25835985

  16. Does Race/Ethnicity Moderate the Association Between Job Strain and Leisure Time Physical Activity?

    PubMed Central

    Bennett, Gary G.; Wolin, Kathleen Y.; Avrunin, Jill S.; Stoddard, Anne M.; Sorensen, Glorian; Barbeau, Elizabeth; Emmons, Karen M.

    2009-01-01

    Background Racial/ethnic minorities report myriad barriers to regular leisure time physical activity (LTPA), including the stress and fatigue resulting from their occupational activities. Purpose We sought to investigate whether an association exists between job strain and LTPA, and whether it is modified by race or ethnicity. Methods Data were collected from 1,740 adults employed in 26 small manufacturing businesses in eastern Massachusetts. LTPA and job strain data were self-reported. Adjusted mean hours of LTPA per week are reported. Results In age and gender adjusted analyses, reports of job strain were associated with LTPA. There was a significant interaction between job strain and race or ethnicity (p = .04). Whites experiencing job strain reported 1 less hr of LTPA per week compared to Whites not reporting job strain. Collectively, racial/ethnic minorities reporting job strain exhibited comparatively higher levels of LTPA compared to their counterparts with no job strain, although patterns for individual groups did not significantly differ. Conclusions Job strain was associated with LTPA in a lower income, multiethnic population of healthy adult men and women. The association between job strain and LTPA was modified by race or ethnicity, highlighting the importance of investigating the differential effects of psychosocial occupational factors on LTPA levels by race or ethnicity. PMID:16827630

  17. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    PubMed

    Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch-Góngora, Juan G; Galilea, Pedro A; Riera, Joan; Padial, Paulino

    2014-01-01

    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press. PMID:25474104

  18. Effect of Acute Exposure to Moderate Altitude on Muscle Power: Hypobaric Hypoxia vs. Normobaric Hypoxia

    PubMed Central

    Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch- Góngora, Juan G.; Galilea, Pedro A.; Riera, Joan; Padial, Paulino

    2014-01-01

    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press. PMID:25474104

  19. Intramedullary Pressure and Matrix Strain Induced by Oscillatory Skeletal Muscle Stimulation and its Potential in Adaptation

    PubMed Central

    Qin, Yi-Xian; Lam, Hoyan

    2010-01-01

    Intramedullary pressure (ImP) and low-level bone strain induced by oscillatory muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia, i.e., hindlimb suspension (HLS). To test this hypothesis, we evaluated a) MS induced ImP and bone strain as function of stimulation frequency, and b) the adaptive responses to functional disuse, and disuse plus 1Hz and 20Hz stimulation in vivo. Femoral ImP and bone strain generated by MS were measured in the frequencies of 1Hz-100Hz in four rats. Forty retired breeder rats were used for the in vivo HLS study. The quadriceps muscle was stimulated at frequencies of 1 Hz and 20 Hz, 10min/d for 4 weeks. The metaphyseal trabecular bone quantity and microstructure at the distal femur were evaluated using μCT, while bone formation indices were analyzed using histomorphometric techniques. Oscillatory MS generated a maximum ImP of 45±9 mmHg at 20 Hz and produced a maximum matrix strain of 128±19 με at 10 Hz. Our analyses from the in vivo study showed that MS at 20 Hz was able to attenuate trabecular bone loss and partially maintain the microstructure induced by HLS. Conversely, there was no evidence of an adaptive effect of stimulation at 1 Hz on disused skeleton. The results suggested that oscillatory MS regulates fluid dynamics and mechanical strain in bone, which serves as a critical mediator of adaptation. These results clearly demonstrated the ability of MS in attenuating bone loss from the disuse osteopenia and could hold potential in mitigating skeletal degradation imposed by conditions of disuse, which may serve as a biomechanical intervention in clinic application. PMID:19081096

  20. The Influence of Neck Muscle Tonus and Posture on Brain Tissue Strain in Pedestrian Head Impacts.

    PubMed

    Alvarez, Victor S; Halldin, Peter; Kleiven, Svein

    2014-11-01

    Pedestrians are one of the least protected groups in urban traffic and frequently suffer fatal head injuries. An important boundary condition for the head is the cervical spine, and it has previously been demonstrated that neck muscle activation is important for head kinematics during inertial loading. It has also been shown in a recent numerical study that a tensed neck musculature also has some influence on head kinematics during a pedestrian impact situation. The aim of this study was to analyze the influence on head kinematics and injury metrics during the isolated time of head impact by comparing a pedestrian with relaxed neck and a pedestrian with increased tonus. The human body Finite Element model THUMS Version 1.4 was connected to head and neck models developed at KTH and used in pedestrian-to-vehicle impact simulations with a generalized hood, so that the head would impact a surface with an identical impact response in all simulations. In order to isolate the influence of muscle tonus, the model was activated shortly before head impact so the head would have the same initial position prior to impact among different tonus. A symmetric and asymmetric muscle activation scheme that used high level of activation was used in order to create two extremes to investigate. It was found that for the muscle tones used in this study, the influence on the strain in the brain was very minor, in general about 1-14% change. A relatively large increase was observed in a secondary peak in maximum strains in only one of the simulated cases. PMID:26192950

  1. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running

    PubMed Central

    Fiorentino, Niccolo M.; Blemker, Silvia S.

    2014-01-01

    The hamstring muscles frequently suffer injury during high-speed running, though the factors that make an individual more susceptible to injury remain poorly understood. The goals of this study were to measure the musculotendon dimensions of the biceps femoris long head (BFlh) muscle, the hamstring muscle injured most often, and to use computational models to assess the influence of variability in the BFlh’s dimensions on internal tissue strains during high-speed running. High-resolution magnetic resonance (MR) images were acquired over the thigh in 12 collegiate athletes, and musculotendon dimensions were measured in the proximal free tendon/aponeurosis, muscle and distal free tendon/aponeurosis. Finite element meshes were generated based on the average, standard deviation and range of BFlh dimensions. Simulation boundary conditions were defined to match muscle activation and musculotendon length change in the BFlh during high-speed running. Muscle and connective tissue dimensions were found to vary between subjects, with a coefficient of variation (CV) of 17 ± 6% across all dimensions. For all simulations peak local strain was highest along the proximal myotendinous junction, which is where injury typically occurs. Model variations showed that peak local tissue strain increased as the proximal aponeurosis width narrowed and the muscle width widened. The aponeurosis width and muscle width variation models showed that the relative dimensions of these structures influence internal muscle tissue strains. The results of this study indicate that a musculotendon unit’s architecture influences its strain injury susceptibility during high-speed running. PMID:25189094

  2. Achilles tendon strain energy in distance running: consider the muscle energy cost.

    PubMed

    Fletcher, Jared R; MacIntosh, Brian R

    2015-01-15

    The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilities. A total of 46 long distance runners [18 elite male (EM), 12 trained male (TM), and 16 trained female (TF)] participated in this study. Erun was determined by indirect calorimetry at 75, 85, and 95% of the speed at lactate threshold (sLT), and energy cost per stride at each speed was estimated from previously reported stride length (SL)-speed relationships. AT force during running was estimated from reported vertical ground reaction force (Fz)-speed relationships, assuming an AT:ground reaction force moment arm ratio of 1.5. AT elongation was quantified during a maximal voluntary isometric contraction using ultrasound. Muscle energy cost was conservatively estimated on the basis of AT force and estimated cross-bridge mechanics and energetics. Significant group differences existed in sLT (EM > TM > TF; P < 0.001). A significant group × speed interaction was found in the energy storage/release per stride (TM > TF > EM; P < 0.001), the latter ranging from 10 to 70 J/stride. At all speeds and in all groups, estimated muscle energy cost exceeded energy return (P < 0.001). These results show that during distance running the muscle energy cost is substantially higher than the strain energy release from the AT. PMID:25593218

  3. Achilles tendon strain energy in distance running: consider the muscle energy cost

    PubMed Central

    MacIntosh, Brian R.

    2014-01-01

    The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilities. A total of 46 long distance runners [18 elite male (EM), 12 trained male (TM), and 16 trained female (TF)] participated in this study. Erun was determined by indirect calorimetry at 75, 85, and 95% of the speed at lactate threshold (sLT), and energy cost per stride at each speed was estimated from previously reported stride length (SL)-speed relationships. AT force during running was estimated from reported vertical ground reaction force (Fz)-speed relationships, assuming an AT:ground reaction force moment arm ratio of 1.5. AT elongation was quantified during a maximal voluntary isometric contraction using ultrasound. Muscle energy cost was conservatively estimated on the basis of AT force and estimated cross-bridge mechanics and energetics. Significant group differences existed in sLT (EM > TM > TF; P < 0.001). A significant group × speed interaction was found in the energy storage/release per stride (TM > TF > EM; P < 0.001), the latter ranging from 10 to 70 J/stride. At all speeds and in all groups, estimated muscle energy cost exceeded energy return (P < 0.001). These results show that during distance running the muscle energy cost is substantially higher than the strain energy release from the AT. PMID:25593218

  4. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism.

    PubMed

    Zeinali, Majid; Vossoughi, Manouchehr; Ardestani, Sussan K

    2008-06-01

    The thermophilic bacterium Nocardia otitidiscaviarum strain TSH1, originally isolated in our laboratory from a petroindustrial wastewater contaminated soil in Iran, grows at 50 degrees C on a broad range of hydrocarbons. Transformation of naphthalene by strain TSH1 which is able to use this two ring-polycyclic aromatic hydrocarbon (PAH) as a sole source of carbon and energy was investigated. The metabolic pathway was elucidated by identifying metabolites, biotransformation studies and monitoring enzyme activities in cell-free extracts. The identification of metabolites suggests that strain TSH1 initiates its attack on naphthalene by dioxygenation at its C-1 and C-2 positions to give 1,2-dihydro-1,2-dihydroxynaphthalene. The intermediate 2-hydroxycinnamic acid, characteristic of the meta-cleavage of the resulting diol was identified in the acidic extract. Apart from typical metabolites of naphthalene degradation known from mesophiles, benzoic acid was identified as an intermediate for the naphthalene pathway of this Nocardia strain. Neither phthalic acid nor salicylic acid metabolites were detected in culture extracts. Enzymatic experiments with cell extract showed the catechol 1,2-dioxygenase activity while transformation of phthalic acid and protocatechuic acid was not observed. The results of enzyme activity assays and identification of benzoic acid in culture extract provide strong indications that further degradation goes through benzoate and beta-ketoadipate pathway. Our results indicate that naphthalene degradation by thermophilic N. otitidiscaviarum strain TSH1 differs from the known pathways found for the thermophilic Bacillus thermoleovorans Hamburg 2 and mesophilic bacteria. PMID:18471862

  5. Genome sequence of the moderately halophilic bacterium Salinicoccus carnicancri type strain CrmT (= DSM 23852T)

    PubMed Central

    Hyun, Dong-Wook; Whon, Tae Woong; Cho, Yong-Joon; Chun, Jongsik; Kim, Min-Soo; Jung, Mi-Ja; Shin, Na-Ri; Kim, Joon-Yong; Kim, Pil Soo; Yun, Ji-Hyun; Lee, Jina; Oh, Sei Joon; Bae, Jin-Woo

    2013-01-01

    Salinicoccus carnicancri Jung et al. 2010 belongs to the genus Salinicoccus in the family Staphylococcaceae. Members of the Salinicoccus are moderately halophilic and originate from various salty environments. The halophilic features of the Salinicoccus suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus Salinicoccus is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of S. carnicancri strain CrmT and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It was notable that the strain carried 72 predicted genes associated with osmoregulation, which suggests the presence of beneficial functions that facilitate growth in high-salt environments. PMID:23991257

  6. Eldercare Demands, Strain, and Work Engagement: The Moderating Role of Perceived Organizational Support

    ERIC Educational Resources Information Center

    Zacher, Hannes; Winter, Gabriele

    2011-01-01

    Demographic changes give rise to an increasing number of middle-aged employees providing home-based care to an elderly family member. However, the potentially important role of employees' perceptions of organizational support for eldercare has so far not been investigated. The goal of this study was to examine a stressor-strain-outcome model…

  7. High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response.

    PubMed

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg · L(-1) starting concentration) over a range of 3%-10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  8. Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites.

    PubMed

    Arun Prasad, A S; Satyanarayana, V S V; Bhaskara Rao, K V

    2013-11-15

    The ability of halophiles to survive in the extreme salt concentrations has gained them the importance of being used in the treatment of industrial waste waters. A moderately halophilic bacterial strain with the ability to degrade the complex azo dye Direct Blue-1 (DB-1) was isolated from sea water and identified as Marinobacter sp. strain HBRA. Complete decolorization of DB-1 (100 mg L(-1)) was achieved in 6h at 37 °C, pH 8 and with 70 g L(-1) NaCl. Decolorization was analyzed by UV-vis spectrophotometer. The FT-IR spectrum revealed that Marinobacter sp. strain HBRA specifically targeted azo bond (NN) at 1631 cm(-1) to break down Direct Blue-1. Formation of metabolites at different retention times in HPLC indicated degradation. Biotransformation pathway for DB-1 was proposed based on LC-MS. Phytotoxicity study revealed the less toxic nature of the metabolites compared to the dye. Genotoxicity with Allium cepa confirmed the cytotoxic nature of DB-1 by inducing several chromosomal abnormalities compared to the negligible effects of degraded metabolites. The current study is the first report on the detoxification of DB-1 by Marinobacter sp. strain HBRA. PMID:24121630

  9. Imaging two-dimensional displacements and strains in skeletal muscle during joint motion by cine DENSE MR.

    PubMed

    Zhong, Xiaodong; Epstein, Frederick H; Spottiswoode, Bruce S; Helm, Patrick A; Blemker, Silvia S

    2008-01-01

    The objective of this study was to apply cine magnetic resonance imaging (MRI) using displacement encoding with stimulated echoes (DENSE) to measure the dynamic two-dimensional (2D) displacement and Lagrangian strain fields in the biceps brachii muscle. Six healthy volunteers underwent cine DENSE MRI during repeated elbow flexion against the load of gravity. Displacement encoded dynamic images of the upper arm were acquired with spatial and temporal resolutions of 1.9 x 1.9 mm(2) and 30 ms, respectively. Pixel-wise Lagrangian displacement and strain fields were calculated from the measured images. We extracted the first and second principal strains (E1 and E2) along the centerline and anterior regions of the muscle. E1 and E2 were relatively uniform along the anterior region. However, E1 and E2 were both non-uniform along the centerline region-normalized values for E1 and E2 varied over the ranges of 0.27-1.35, and 0.45-2.36, respectively. The directions of the first and second principal strains varied throughout the muscle and showed that the direction of principal shortening is not necessarily aligned with fascicle direction. This study demonstrates the utility of cine DENSE MRI for analyzing skeletal muscle mechanics and provides data describing the in vivo mechanics of muscle tissue to a level of detail that has not been previously possible. PMID:18177655

  10. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  11. Ultrasound strain elastography in assessment of resting biceps brachii muscle stiffness in patients with Parkinson's disease: a primary observation.

    PubMed

    Gao, Jing; He, Wen; Du, Li-Juan; Li, Shuo; Cheng, Ling-Gang; Shih, George; Rubin, Jonathan

    2016-01-01

    The aim of this study was to evaluate the feasibility of ultrasound strain elastography (SE) for the assessment of resting biceps brachii muscle (BBM) stiffness in patients with Parkinson's diseases (PD). From May 2014 to December 2014, we prospectively performed SE of BBM in 14 patients with PD and 10 healthy controls. Based on the Unified Parkinson's Disease Rating Scale for scoring muscle rigidity (UPDRS, part III), muscle rigidity scores in 14 patients with PD included 3 patients with high rigidity (UPDRS III-IV) and 11 patients with low rigidity (UPDRS I-II). Ultrasound strain was represented by the deformation of the BBM and subcutaneous soft tissues that was produced by external compression with a sand bag (1.5 kg) tied onto an ultrasound transducer. Deformation was estimated with two-dimensional speckle tracking. The difference in strain ratio (SR, defined as mean BBM strain divided by mean subcutaneous soft tissue strain) between PD and healthy controls was tested by unpaired t test. The correlation between SR and muscle rigidity score was analyzed by Pearson correlation coefficient. The reliability of SR in assessment of BBM stiffness was tested using intraclass correlation coefficient. In our result, the SR in PD and healthy controls measured 2.65±0.36 and 3.30±0.27, respectively. A significant difference in SR was noted between the healthy controls and PD (P=.00011). A negative correlation was found between SR and UPDRS rigidity score (r=-0.78). Our study suggests that the SR of BBM to reference tissue can be used as a quantitative biomarker in assessing resting muscle stiffness associated with muscle rigidity in PD. PMID:27133683

  12. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation

    PubMed Central

    Miranda-Miranda, Estefan; Sánchez-Reyes, Ayixón; Cuervo-Soto, Laura; Aceves-Zamudio, Denise; Atriztán-Hernández, Karina; Morales-Herrera, Catalina; Rodríguez-Hernández, Rocío; Folch-Mallol, Jorge

    2014-01-01

    A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications. PMID:25162614

  13. Hip flexor strain - aftercare

    MedlinePlus

    Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  14. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  15. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  16. Genome sequence of the moderately thermophilic halophile Flexistipes sinusarabici strain (MAS10T)

    PubMed Central

    Lapidus, Alla; Chertkov, Olga; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Huntemann, Marcel; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Rohde, Manfred; Abt, Birte; Spring, Stefan; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja

    2011-01-01

    Flexistipes sinusarabici Fiala et al. 2000 is the type species of the genus Flexistipes in the family Deferribacteraceae. The species is of interest because of its isolated phylogenetic location in a genomically under-characterized region of the tree of life, and because of its origin from a multiply extreme environment; the Atlantis Deep brines of the Red Sea, where it had to struggle with high temperatures, high salinity, and a high concentrations of heavy metals. This is the fourth completed genome sequence to be published of a type strain of the family Deferribacteraceae. The 2,526,590 bp long genome with its 2,346 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22180813

  17. Genome sequence of the moderately thermophilic halophile Flexistipes sinusarabici strain (MAS10T)

    SciTech Connect

    Lapidus, Alla L.; Chertkov, Olga; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Han, Cliff; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Huntemann, Marcel; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Brambilla, Evelyne-Marie; Rohde, Manfred; Abt, Birte; Spring, Stefan; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2011-01-01

    Flexistipes sinusarabici Fiala et al. 2000 is the type species of the genus Flexistipes in the fami- ly Deferribacteraceae. The species is of interest because of its isolated phylogenetic location in a genomically under-characterized region of the tree of life, and because of its origin from a multiply extreme environment; the Atlantis Deep brines of the Red Sea, where it had to struggle with high temperatures, high salinity, and a high concentrations of heavy metals. This is the fourth completed genome sequence to be published of a type strain of the family Deferribacteraceae. The 2,526,590 bp long genome with its 2,346 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images

    PubMed Central

    Wakeling, James M.

    2014-01-01

    When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected. PMID:25328509

  19. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women

    PubMed Central

    Csapo, R.; Malis, V.; Hodgson, J.

    2014-01-01

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4–5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11–12% vs. SW: 6–8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction. PMID:24505104

  20. Effects of nutritional supplementation with l-arginine on repair of injuries due to muscle strain: experimental study on rats☆

    PubMed Central

    Couto, Lauren Izabel Medeiros; Wuicik, William Luiz; Kuhn, Ivan; Capriotti, Juan Rodolfo Vilela; Repka, João Carlos

    2015-01-01

    Objective To evaluate the influence of oral supplementation with arginine on regeneration of injuries due to straining of the anterior tibial muscle of rats. Methods Twenty-four Wistar rats of weight 492.5 ± 50.45 g were used. Injuries were induced through straining the anterior tibial muscles. The rats were separated into three groups of eight rats each. In the untreated group (UTG), after induction of injuries, the rats were observed for 24 h. In the simulation group (SG) and the arginine group (AG) respectively, the rats received isotonic saline solution and arginine solution via direct gavage, over a seven-day period. At the end of the period, blood samples were collected for serum evaluations of creatine kinase (CK), lactic dehydrogenase (LDH), aspartate aminotransferase (AST) and C-reactive protein (CRP). The right and left anterior tibial muscles were resected for histopathological evaluations on the muscle injuries, investigating edema, hemorrhage and disorganization or morphometric alteration of the muscle fibers. The tissue repair was investigated in terms of proliferation of adipose tissue, angiogenesis and collagen fibers. The ANOVA and Student's t methods were used and p ≤ 0.05 was taken to be statistically significant. Results In the serum evaluations, the AG showed lower CK assay values and higher AST values. In the histopathological evaluation, the UTG presented edema and hemorrhage compatible with injuries due to strain; the SG presented edema and hemorrhage with proliferation of adipose tissue and collagen fibers; and the AG presented not only the findings of the SG but also, especially, intense angiogenesis. Conclusion Oral supplementation with arginine did not cause any significant metabolic alterations that would contraindicate its use and it induced angiogenesis during the repair of muscles injured due to strain. PMID:26401505

  1. Slaughter performance of four different turkey strains, with special focus on the muscle fiber structure and the meat quality of the breast muscle.

    PubMed

    Werner, C; Riegel, J; Wicke, M

    2008-09-01

    The increase in human consumption of turkey meat and the shift in the poultry market from whole birds to further processed meat products increases the visibility of meat alterations (e.g., heterogenic color, drip loss, petechial hemorrhages) at retail. Changes in poultry meat quality have been related to the intensive growth of the current turkey strains. Considering this, the main objective of this investigation was to evaluate the meat quality and muscle structure of commercially available turkey strains with different growth properties but similar breast yields. Toms (n = 120) of 4 different turkey strains (British United Turkeys Big 6, Kelly Broad-Breasted Bronze, Kelly Wrolstad, Kelly Super Mini; n = 30 per strain) were reared in an experimental barn under similar environmental and feeding conditions and were slaughtered at 22 wk of age in a commercial slaughterhouse. The strains Big 6 and Broad-Breasted Bronze belong to the fast-growing (FG) turkey strain and the other 2 to the slow-growing (SG) turkey strain. The carcass weights, as estimated by video imaging, differed significantly (P < 0.05) between the SG and FG groups. The breast yields (percentage of carcass weight) of the investigated strains were similar. Except for the significantly (P < 0.05) greater protein concentration in the musculus pectoralis superficialis of the SG birds, the musculus pectoralis superficialis had nearly similar fat and ash contents. Plasma lactate concentrations were similar in the investigated turkey strains but the creatine kinase activities were greater in the FG turkeys at the time of slaughter. Determination of the different meat quality parameters [pH, electrical conductivity, color (L a b), drip loss, shear force] did not result in clear differences between the SG and FG turkey strains. There were larger muscle fibers in the FG in comparison with the SG strains, but no differences could be determined in the capillary density and incidence of degenerated or giant fibers

  2. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis.

    PubMed

    Csapo, R; Alegre, L M

    2016-09-01

    The purpose of the present study was to perform a meta-analysis to compare the efficacy of heavy (∼80% of one repetition maximum, 1RM) vs light-moderate load (∼45% 1RM) resistance training (RT) programs in inducing strength gains and skeletal muscle hypertrophy in elderly people. To assess the role of training volumes, studies in which training protocols were matched for mechanical work were independently analyzed. In all 15 studies included (448 subjects, age 67.8 years), when comparing heavy with light-moderate loads, strength gains tended to be larger following RT with higher intensities of load, with the resulting total population effect being μ = 0.430 (P = 0.060). Effect sizes were substantially smaller in "work-matched" studies (μ = 0.297, P = 0.003). Training with higher loads also provoked marginally larger gains in muscle size, although the degree of training-induced muscle hypertrophy was generally small (0.056 < μ < 0.136). To conclude, provided a sufficient number of repetitions is performed, RT at lower than traditionally recommended intensities of load may suffice to induce substantial gains in muscle strength in elderly cohorts. PMID:26302881

  3. Moderate ischemic mitral regurgitation after postero-lateral myocardial infarction in sheep alters left ventricular shear but not normal strain in the infarct and infarct borderzone

    PubMed Central

    Ge, Liang; Wu, Yife; Soleimani, Mehrdad; Khazalpour, Michael; Takaba, Kiyoaki; Tartibi, Mehrzad; Zhang, Zhihong; Acevedo-Bolton, Gabriel; Saloner, David A.; Wallace, Arthur W.; Mishra, Rakesh; Grossi, Eugene A.; Guccione, Julius M.; Ratcliffe, Mark B.

    2016-01-01

    Background Chronic ischemic mitral regurgitation (CIMR: MR) is associated with poor outcome. Left ventricular (LV) strain after postero-lateral myocardial infarction (MI) may drive LV remodeling. Although moderate CIMR has been previously shown to effect LV remodeling, the effect of CIMR on LV strain after postero-lateral MI remains unknown. We tested the hypothesis that moderate CIMR alters LV strain after postero-lateral MI. Methods/Results Postero-lateral MI was created in 10 sheep. Cardiac MRI with tags was performed 2 weeks before and 2, 8 and 16 weeks after MI. LV and right ventricular (RV) volumes were measured and regurgitant volume indexed to body surface area (BSA; RegurgVolume Index) calculated as the difference between LV and RV stroke volumes / BSA. Three-dimensional strain was calculated. Circumferential (Ecc)and longitudinal (Ell) strains were reduced in the infarct proper, MI borderzone (BZ) and remote myocardium 16 weeks after MI. In addition, radial circumferential (Erc) and radial longitudinal (Erl) shear strains were reduced in remote myocardium but increased in the infarct and BZ 16 weeks after MI. Of all strain components, however, only Erc was effected by RegurgVolume Index (p=0.0005). There was no statistically significant effect of RegurgVolume Index on Ecc, Ell, Erl, or circumferential longitudinal shear strain (Ecl). Conclusions Moderate CIMR alters radial circumferential shear strain after postero-lateral MI in the sheep. Further studies are needed to determine the effect of shear strain on myocyte hypertrophy and the effect of mitral repair on myocardial strain. PMID:26857634

  4. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension.

    PubMed

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-12-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake (V̇O2) is supplemented by a V̇O2 slow component (V̇O2 sc ), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with (31)P magnetic resonance spectroscopy (MRS) and whole-body V̇O2 during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized (31)P spectra were collected from the quadriceps throughout using a dual-tuned ((1)H and (31)P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable V̇O2 sc (mean ± SD, 0.06 ± 0.12 l min(-1)) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min(-1); each P = n.s.). During HVY, the V̇O2 sc was 0.37 ± 0.16 l min(-1) (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min(-1), or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the V̇O2 sc during HVY (r(2) = 0.06; P = n.s.). This lack of relationship between ΔATPtot and V̇O2 sc , together with a steepening of the [PCr]-V̇O2 relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  5. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension

    PubMed Central

    Cannon, Daniel T; Bimson, William E; Hampson, Sophie A; Bowen, T Scott; Murgatroyd, Scott R; Marwood, Simon; Kemp, Graham J; Rossiter, Harry B

    2014-01-01

    During constant-power high-intensity exercise, the expected increase in oxygen uptake () is supplemented by a  slow component (), reflecting reduced work efficiency, predominantly within the locomotor muscles. The intracellular source of inefficiency is postulated to be an increase in the ATP cost of power production (an increase in P/W). To test this hypothesis, we measured intramuscular ATP turnover with 31P magnetic resonance spectroscopy (MRS) and whole-body during moderate (MOD) and heavy (HVY) bilateral knee-extension exercise in healthy participants (n = 14). Unlocalized 31P spectra were collected from the quadriceps throughout using a dual-tuned (1H and 31P) surface coil with a simple pulse-and-acquire sequence. Total ATP turnover rate (ATPtot) was estimated at exercise cessation from direct measurements of the dynamics of phosphocreatine (PCr) and proton handling. Between 3 and 8 min during MOD, there was no discernable (mean ± SD, 0.06 ± 0.12 l min−1) or change in [PCr] (30 ± 8 vs. 32 ± 7 mm) or ATPtot (24 ± 14 vs. 17 ± 14 mm min−1; each P = n.s.). During HVY, the was 0.37 ± 0.16 l min−1 (22 ± 8%), [PCr] decreased (19 ± 7 vs. 18 ± 7 mm, or 12 ± 15%; P < 0.05) and ATPtot increased (38 ± 16 vs. 44 ± 14 mm min−1, or 26 ± 30%; P < 0.05) between 3 and 8 min. However, the increase in ATPtot (ΔATPtot) was not correlated with the during HVY (r2 = 0.06; P = n.s.). This lack of relationship between ΔATPtot and , together with a steepening of the [PCr]– relationship in HVY, suggests that reduced work efficiency during heavy exercise arises from both contractile (P/W) and mitochondrial sources (the O2 cost of ATP resynthesis; P/O). PMID:25281731

  6. Dose-volume relationships for moderate or severe neck muscle atrophy after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma

    PubMed Central

    Zhang, Lu-Lu; Wang, Xiao-Ju; Zhou, Guan-Qun; Tang, Ling-Long; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2015-01-01

    This study aimed to identify the dosimetric parameters and radiation dose tolerances associated with moderate or severe sternocleidomastoid muscle (SCM) atrophy after intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). We retrospectively analysed 138 patients treated with IMRT between 2011 and 2012 for whom IMRT treatment plans and pretreatment and 3-year post-IMRT MRI scans were available. The association between mean dose (Dmean), maximum dose (Dmax), VX (% SCM volume that received more than X Gy), DX (dose to X% of the SCM volume) at X values of 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 and SCM atrophy at 3 years after IMRT were analyzed. All dosimetric parameters, except V40, V50 and V80, were significantly associated with moderate or severe SCM atrophy. Multivariate analysis showed that V65 was an independent predictor of moderate or severe SCM atrophy (P < 0.001). Receiver operating characteristic (ROC) curve indicated a V65 of 21.47% (area under ROC curves, 0.732; P < 0.001) was the tolerated dose for moderate or severe SCM atrophy. We suggest a limit of 21.47% for V65 to optimize NPC treatment planning, whilst minimizing the risk of moderate or severe SCM atrophy. PMID:26678599

  7. Dose-volume relationships for moderate or severe neck muscle atrophy after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma.

    PubMed

    Zhang, Lu-Lu; Wang, Xiao-Ju; Zhou, Guan-Qun; Tang, Ling-Long; Lin, Ai-Hua; Ma, Jun; Sun, Ying

    2015-01-01

    This study aimed to identify the dosimetric parameters and radiation dose tolerances associated with moderate or severe sternocleidomastoid muscle (SCM) atrophy after intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma (NPC). We retrospectively analysed 138 patients treated with IMRT between 2011 and 2012 for whom IMRT treatment plans and pretreatment and 3-year post-IMRT MRI scans were available. The association between mean dose (Dmean), maximum dose (Dmax), VX (% SCM volume that received more than X Gy), DX (dose to X% of the SCM volume) at X values of 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 and SCM atrophy at 3 years after IMRT were analyzed. All dosimetric parameters, except V40, V50 and V80, were significantly associated with moderate or severe SCM atrophy. Multivariate analysis showed that V65 was an independent predictor of moderate or severe SCM atrophy (P < 0.001). Receiver operating characteristic (ROC) curve indicated a V65 of 21.47% (area under ROC curves, 0.732; P < 0.001) was the tolerated dose for moderate or severe SCM atrophy. We suggest a limit of 21.47% for V65 to optimize NPC treatment planning, whilst minimizing the risk of moderate or severe SCM atrophy. PMID:26678599

  8. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs.

    PubMed

    Hasaneen, Nadia A; Zucker, Stanley; Cao, Jian; Chiarelli, Christian; Panettieri, Reynold A; Foda, Hussein D

    2005-09-01

    Airway smooth muscle (ASM) proliferation and migration are major components of airway remodeling in asthma. Asthmatic airways are exposed to mechanical strain, which contributes to their remodeling. Matrix metalloproteinase (MMP) plays an important role in remodeling. In the present study, we examined if the mechanical strain of human ASM (HASM) cells contributes to their proliferation and migration and the role of MMPs in this process. HASM were exposed to mechanical strain using the FlexCell system. HASM cell proliferation, migration and MMP release, activation, and expression were assessed. Our results show that cyclic strain increased the proliferation and migration of HASM; cyclic strain increased release and activation of MMP-1, -2, and -3 and membrane type 1-MMP; MMP release was preceded by an increase in extracellular MMP inducer; Prinomastat [a MMP inhibitor (MMPI)] significantly decreased cyclic strain-induced proliferation and migration of HASM; and the strain-induced increase in the release of MMPs was accompanied by an increase in tenascin-C release. In conclusion, cyclic mechanical strain plays an important role in HASM cell proliferation and migration. This increase in proliferation and migration is through an increase in MMP release and activation. Pharmacological MMPIs should be considered in the pursuit of therapeutic options for airway remodeling in asthma. PMID:16014803

  9. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways

    NASA Technical Reports Server (NTRS)

    Mills, I.; Cohen, C. R.; Kamal, K.; Li, G.; Shin, T.; Du, W.; Sumpio, B. E.

    1997-01-01

    Smooth muscle cell (SMC) phenotype can be altered by physical forces as demonstrated by cyclic strain-induced changes in proliferation, orientation, and secretion of macromolecules. However, the magnitude of strain required and the intracellular coupling pathways remain ill defined. To examine the strain requirements for SMC proliferation, we selectively seeded bovine aortic SMC either on the center or periphery of silastic membranes which were deformed with 150 mm Hg vacuum (0-7% center; 7-24% periphery). SMC located in either the center or peripheral regions showed enhanced proliferation compared to cells grown under the absence of cyclic strain. Moreover, SMC located in the center region demonstrated significantly (P < 0.005) greater proliferation as compared to those in the periphery. In contrast, SMC exposed to high strain (7-24%) demonstrated alignment perpendicular to the strain gradient, whereas SMC in the center (0-7%) remained aligned randomly. To determine the mechanisms of these phenomena, we examined the effect of cyclic strain on bovine aortic SMC signaling pathways. We observed strain-induced stimulation of the cyclic AMP pathway including adenylate cyclase activity and cyclic AMP accumulation. In addition, exposure of SMC to cyclic strain caused a significant increase in protein kinase C (PKC) activity and enzyme translocation from the cytosol to a particulate fraction. Further study was conducted to examine the effect of strain magnitude on signaling, particularly protein kinase A (PKA) activity as well as cAMP response element (CRE) binding protein levels. We observed significantly (P < 0.05) greater PKA activity and CRE binding protein levels in SMC located in the center as compared to the peripheral region. However, inhibition of PKA (with 10 microM Rp-cAMP) or PKC (with 5-20 ng/ml staurosporine) failed to alter either the strain-induced increase in SMC proliferation or alignment. These data characterize the strain determinants for activation of

  10. Strains

    MedlinePlus

    Pulled muscle ... can include: Pain and difficulty moving the injured muscle Discolored and bruised skin Swelling ... if you still have pain. Rest the pulled muscle for at least a day. If possible, keep ...

  11. Draft Genome Sequence of the Moderately Heat-Tolerant Lactococcus lactis subsp. lactis bv. diacetylactis Strain GL2 from Algerian Dromedary Milk

    PubMed Central

    Gabed, Noujoud; Yang, Manli; Bey Baba Hamed, Mohamed; Drici, Habiba; Gross, Roy; Dandekar, Thomas

    2015-01-01

    Lactococcus lactis subsp. lactis bv. diacetylactis GL2 is a moderately thermotolerant lactic acid bacterium isolated from dromedary raw milk. Here, we present the draft genome sequence of this potential new dairy starter strain, which combines thermotolerance and the capacity to metabolize lactose, casein, and citrate. PMID:26586883

  12. Draft Genome Sequence of Tepidibacillus decaturensis Strain Z9, an Anaerobic, Moderately Thermophilic, and Heterotrophic Bacterium from the Deep Subsurface of the Illinois Basin, USA

    PubMed Central

    Chang, Yun-Juan; Sanford, Robert A.; Fouke, Bruce W.

    2016-01-01

    The genome of the moderately thermophilic and halotolerant bacterium Tepidibacillus decaturensis strain Z9 was sequenced. The draft genome comprises three scaffolds, for a total of 2.95 Mb. As the first sequenced genome within the genus Tepidibacillus, 2,895 protein-coding genes, 52 tRNA genes, and 3 rRNA operons were predicted. PMID:27056217

  13. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells.

    PubMed

    Lee, R T; Yamamoto, C; Feng, Y; Potter-Perigo, S; Briggs, W H; Landschulz, K T; Turi, T G; Thompson, J F; Libby, P; Wight, T N

    2001-04-27

    In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation. PMID:11278699

  14. Effects of priming exercise on the speed of adjustment of muscle oxidative metabolism at the onset of moderate-intensity step transitions in older adults.

    PubMed

    De Roia, Gabriela; Pogliaghi, Silvia; Adami, Alessandra; Papadopoulou, Christina; Capelli, Carlo

    2012-05-15

    Aging is associated with a functional decline of the oxidative metabolism due to progressive limitations of both O(2) delivery and utilization. Priming exercise (PE) increases the speed of adjustment of oxidative metabolism during successive moderate-intensity transitions. We tested the hypothesis that such improvement is due to a better matching of O(2) delivery to utilization within the working muscles. In 21 healthy older adults (65.7 ± 5 yr), we measured contemporaneously noninvasive indexes of the overall speed of adjustment of the oxidative metabolism (i.e., pulmonary Vo(2) kinetics), of the bulk O(2) delivery (i.e., cardiac output), and of the rate of muscle deoxygenation (i.e., deoxygenated hemoglobin, HHb) during moderate-intensity step transitions, either with (ModB) or without (ModA) prior PE. The local matching of O(2) delivery to utilization was evaluated by the ΔHHb/ΔVo(2) ratio index. The overall speed of adjustment of the Vo(2) kinetics was significantly increased in ModB compared with ModA (P < 0.05). On the contrary, the kinetics of cardiac output was unaffected by PE. At the muscle level, ModB was associated with a significant reduction of the "overshoot" in the ΔHHb/ΔVo(2) ratio compared with ModA (P < 0.05), suggesting an improved O(2) delivery. Our data are compatible with the hypothesis that, in older adults, PE, prior to moderate-intensity exercise, beneficially affects the speed of adjustment of oxidative metabolism due to an acute improvement of the local matching of O(2) delivery to utilization. PMID:22422668

  15. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle.

    PubMed

    Mänttäri, Satu; Ørtenblad, Niels; Madsen, Klavs; Pilegaard, Henriette

    2013-01-01

    Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca(2+) concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mRNA expression of components involved in Ca(2+) regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca(2+)-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca(2+)-regulating proteins in a manner that does not follow typical fibre-type-specific transitions. In general, stimulation decreased mRNA content of all proteins studied. Most prominent down-regulation was observed for Cacna1 (26 and 32 % after SHO and PRO, respectively, in SOL; 19 % after SHO in EDL). SERCA1, SERCA2, CASQ1, CASQ2, and RyR1 mRNA content also decreased significantly in both muscles relative to resting control. Of notice is that hexokinase II mRNA content was increased in EDL and unchanged in SOL underlining the specificity of the down-regulation of mRNA of Ca(2+) regulatory proteins. The results demonstrate contraction-induced down-regulation of mRNAs for the main components of Ca(2+)-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses. PMID:23111891

  16. Muscle Disorders

    MedlinePlus

    ... cause weakness, pain or even paralysis. Causes of muscle disorders include Injury or overuse, such as sprains or strains, cramps or tendinitis A genetic disorder, such as muscular dystrophy Some ... muscles Infections Certain medicines Sometimes the cause is not ...

  17. Effects of moderate electrical stimulation on reactive species production by primary rat skeletal muscle cells: cross talk between superoxide and nitric oxide production.

    PubMed

    Lambertucci, Rafael Herling; Silveira, Leonardo Dos Reis; Hirabara, Sandro Massao; Curi, Rui; Sweeney, Gary; Pithon-Curi, Tania Cristina

    2012-06-01

    The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1 h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-κB activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthine-xanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. PMID:21898396

  18. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

    PubMed

    Trevino, Michael A; Herda, Trent J; Fry, Andrew C; Gallagher, Philip M; Vardiman, John P; Mosier, Eric M; Miller, Jonathan D

    2016-08-01

    It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo. PMID:27146989

  19. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training.

    PubMed

    Montero, David; Cathomen, Adrian; Jacobs, Robert A; Flück, Daniela; de Leur, Jeroen; Keiser, Stefanie; Bonne, Thomas; Kirk, Niels; Lundby, Anne-Kristine; Lundby, Carsten

    2015-10-15

    It remains unclear whether improvements in peak oxygen uptake (V̇(O2peak)) following endurance training (ET) are primarily determined by central and/or peripheral adaptations. Herein, we tested the hypothesis that the improvement in V̇(O2peak) following 6 weeks of ET is mainly determined by haematological rather than skeletal muscle adaptations. Sixteen untrained healthy male volunteers (age = 25 ± 4 years, V̇(O2peak) = 3.5 ± 0.5 l min(-1)) underwent supervised ET (6 weeks, 3-4 sessions per week). V̇(O2peak), peak cardiac output (Q̇(peak)), haemoglobin mass (Hb(mass)) and blood volumes were assessed prior to and following ET. Skeletal muscle biopsies were analysed for mitochondrial volume density (Mito(VD)), capillarity, fibre types and respiratory capacity (OXPHOS). After the post-ET assessment, red blood cell volume (RBCV) was re-established at the pre-ET level by phlebotomy and V̇(O2peak) and Q̇(peak) were measured again. We speculated that the contribution of skeletal muscle adaptations to the ET-induced increase in V̇(O2peak) would be revealed when controlling for haematological adaptations. V̇(O2peak) and Q̇(peak) were increased (P < 0.05) following ET (9 ± 8 and 7 ± 6%, respectively) and decreased (P < 0.05) after phlebotomy (-7 ± 7 and -10 ± 7%). RBCV, plasma volume and Hb(mass) all increased (P < 0.05) after ET (8 ± 4, 4 ± 6 and 6 ± 5%). As for skeletal muscle adaptations, capillary-to-fibre ratio and total Mito(VD) increased (P < 0.05) following ET (18 ± 16 and 43 ± 30%), but OXPHOS remained unaltered. Through stepwise multiple regression analysis, Q̇(peak), RBCV and Hb(mass) were found to be independent predictors of V̇(O2peak). In conclusion, the improvement in V̇(O2peak) following 6 weeks of ET is primarily attributed to increases in Q̇(peak) and oxygen-carrying capacity of blood in untrained healthy young subjects. PMID:26282186

  20. Effect of Muscle Loads and Torque Applied to the Tibia on the Strain Behavior of the Anterior Cruciate Ligament: An In Vitro Investigation

    PubMed Central

    Fujiya, Hiroto; Kousa, Petteri; Fleming, Braden C; Churchill, David L; Beynnon, Bruce D

    2011-01-01

    Background Very little is known about the effects of applied torque about the long axis of the tibia in combination with muscle loads on anterior cruciate ligament biomechanics. The purpose of this study was to determine the effect of muscle contraction and tibial torques applied about the long axis of the tibia on anterior cruciate ligament strain behavior. Methods Six cadaver knee specimens were used to measure the strain behaviour of the anterior cruciate ligament. Internal and external axial torques were applied to the tibia when the knee was between 30° and 120° of flexion in combination with the conditions of no muscle load, isolated quadriceps load, and simultaneous quadriceps and hamstring loading. Findings The highest anterior cruciate ligament strain values were measured when the muscles were not loaded, when the knee was at 120° of flexion, and when internal tibial torques were applied to the knee. During muscle loading the highest anterior cruciate ligament strain values were measured at 30° of flexion and then the strain values gradually decreased with increase in knee flexion. During co-contraction of the quadriceps and hamstring muscles the anterior cruciate ligament was unstrained or minimally strained at 60°, 90° and 120° of knee flexion. Intepretation This study suggests that quadriceps and hamstring muscle co-contraction has a potential role in reducing the anterior cruciate ligament strain values when the knee is in deep flexion. These results can be used to gain insight into anterior cruciate ligament injury mechanisms and to design rehabilitation regimens. PMID:21816523

  1. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Di, Hongshuang; Zhang, Jiecen; Yang, Yaohua

    2015-01-01

    The objective of the study is to fundamentally understand the dynamic behavior of alloy 800H at moderate to high strain rate using hot compression tests and propose nucleation mechanism associated with dynamic crystallization (DRX). We firstly investigated the dynamic behavior of alloy 800H with industrial scale strain rates using hot compression tests and adiabatic correction was performed to correct as-measured flow curves. Secondly, a Johnson-Cook model was established by using the corrected data and could give a precise prediction of elevated temperature flow stress for the studied alloy. Finally, the nucleation mechanism of DRX grains at high strain rates was studied. The results showed that the predominant nucleation mechanism for DRX is the formation of "bulge" at parent grain boundary. Additionally, the fragmentation of original grain at low deformation temperatures and the twinning near the bulged regions at high deformation temperatures also accelerate the DRX process.

  2. Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains

    NASA Astrophysics Data System (ADS)

    Hanson, David E.

    2009-12-01

    We report the results of numerical simulations of random, three-dimensional, periodic, tetrafunctional networks in response to a volume-preserving tensile strain. For the intranode force, we use a polynomial fit to a purely enthalpic ab initio force extension curve for extended polyisoprene. The simulation includes a relaxation procedure to minimize the node forces and enforces chain rupture when the extension of a network chain reaches the ab initio rupture strain. For the reasonable assumption that the distribution of network chain lengths is Gaussian, we find that the calculated snap-back velocity, temperature increase due to chain ruptures and predicted tensile stress versus strain curve are consistent with experimental data in the moderate to high extension regime. Our results show that a perfect tetrafunctional polyisoprene network is extremely robust, capable of supporting tensile stresses at least a factor of 10 greater than what is observed experimentally.

  3. Numerical simulations of rubber networks at moderate to high tensile strains using a purely enthalpic force extension curve for individual chains

    SciTech Connect

    Hanson, David Edward

    2009-01-01

    We report the results of numerical simulations of random, three-dimensional, periodic, tetrafunctional networks in response to a volume-preserving tensile strain. For the intranode force, we use a polynomial fit to a purely enthalpic ab initio force extension curve for extended polyisoprene. The simulation includes a relaxation procedure to minimize the node forces and enforces chain rupture when the extension of a network chain reaches the ab initio rupture strain. For the reasonable assumption that the distribution of network chain lengths is Gaussian, we find that the calculated snap-back velocity, temperature increase due to chain ruptures and predicted tensile stress versus strain curve are consistent with experimental data in the moderate to high extension regime. Our results show that a perfect tetrafunctional polyisoprene network is extremely robust, capable of supporting tensile stresses at least a factor of 10 greater than what is observed experimentally.

  4. Randomized trial comparing exercise therapy, alternating cold and hot therapy, and low intensity laser therapy for chronic lumbar muscle strain

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Li, Jie; Liu, Timon Chengyi; Yuan, Jianqin; Luo, Qingming

    2008-12-01

    The purpose of this study was to compare the effects of exercise therapy, alternating cold and hot (ACH) therapy and low intensity laser (LIL) therapy in patients with chronic lumbar muscle strain (CLMS). Thirty-two patients were randomly allocated to four groups: exercise group, ACH group, LIL group, and combination group of exercise, ACH and LIL, eight in each group. Sixteen treatments were given over the course of 4 weeks. Lumbar muscle endurance, flexion and lateral flexion measures, visual analogue scale (VAS) and lumbar disability questionnaire (LDQ) were used in the clinical and functional evaluations before, immediately after, and 4 weeks after treatment. It was found that the values of endurance, VAS and LDQ in all groups were significantly improved from before to after treatment (P < 0.01). The combination group showed significantly larger reduction on pain level and functional disability than the other groups immediately and 4 weeks after treatment (P < 0.01). Pain level reduced significantly more in the ACH group than in the exercise group or the LIL group immediately and 4 weeks after treatment (P < 0.05). Lumbar muscle endurance and spinal ranges of motion in all groups were improved after treatment but there was no significant difference between any therapy groups. In conclusion, exercise therapy, ACH therapy and LIL therapy were effective in the treatment of CLMS. ACH therapy was more effective than exercise therapy or LIL therapy. The combination therapy of exercise, ACH and LIL had still better rehabilitative effects on CLMS.

  5. Effects of plasma adrenaline on hormone-sensitive lipase at rest and during moderate exercise in human skeletal muscle

    PubMed Central

    Watt, Matthew J; Stellingwerff, Trent; Heigenhauser, George J F; Spriet, Lawrence L

    2003-01-01

    We investigated the effect of increased plasma adrenaline on hormone-sensitive lipase (HSL) activity and extracellular regulated kinase (ERK) 1/2 phosphorylation during exercise. Seven untrained men rested for 20 min and exercised for 10 min at 60 % peak pulmonary oxygen uptake on three occasions: with adrenaline infusion throughout rest and exercise (ADR), with no adrenaline infusion (CON) and with adrenaline infusion commencing after 3 min of exercise (EX+ADR). Muscle samples were obtained at rest before (Pre, −20 min) and after (0 min) infusion, and at 3 and 10 min of cycling. Exogenous adrenaline infusion increased (P < 0.05) plasma adrenaline at rest during ADR, which resulted in greater HSL activity (Pre, 2.14 ± 0.10 mmol min−1 (kg dry matter (dm))−1; 0 min, 2.74 ± 0.20 mmol min−1 (kg dm)−1). Subsequent exercise had no effect on HSL activity. During exercise in CON, HSL activity was increased (P < 0.05) above rest at 3 min but was not increased further by 10 min. The infusion of exogenous adrenaline at 3 min of exercise in EX+ADR resulted in a marked elevation in plasma adrenaline levels (3 min, 0.57 ± 0.12 nM; 10 min, 10.08 ± 0.84 nM) and increased HSL activity by 25 %. HSL activity at 10 min was greater (P < 0.05) in EX+ADR compared with CON. There were no changes between trials in the plasma concentrations of insulin and free fatty acids (FFA) and the muscle contents of free AMP, all putative regulators of HSL activity. ERK1/2 phosphorylation increased at 3 min in CON and EX+ADR. Because HSL activity did not increase during exercise when adrenaline was infused prior to exercise (ADR) and because HSL activity increased when adrenaline was infused during exercise (EX+ADR), we conclude that (1) high adrenaline levels can stimulate HSL activity regardless of the metabolic milieu and (2) large increases in adrenaline during exercise, independent of changes in other putative regulators, are able to further stimulate the contraction-induced increase

  6. A mechanochemical 3D continuum model for smooth muscle contraction under finite strains.

    PubMed

    Stålhand, J; Klarbring, A; Holzapfel, G A

    2011-01-01

    This paper presents a modelling framework in which the mechanochemical properties of smooth muscle cells may be studied. The activation of smooth muscles is considered in a three-dimensional continuum model which is key to realistically capture the function of hollow organs such as blood vessels. On the basis of a general thermodynamical framework the mechanical and chemical phases are specialized in order to quantify the coupled mechanochemical process. A free-energy function is proposed as the sum of a mechanical energy stored in the passive tissue, a coupling between the mechanical and chemical kinetics and an energy related purely to the chemical kinetics and the calcium ion concentration. For the chemical phase it is shown that the cross-bridge model of Hai and Murphy [1988. Am. J. Physiol. Cell Physiol. 254, C99-C106] is included in the developed evolution law as a special case. In order to show the specific features and the potential of the proposed continuum model a uniaxial extension test of a tissue strip is analysed in detail and the related kinematics and stress-stretch relations are derived. Parameter studies point to coupling phenomena; in particular the tissue response is analysed in terms of the calcium ion level. The model for smooth muscle contraction may significantly contribute to current modelling efforts of smooth muscle tissue responses. PMID:20946904

  7. Moderate exercise training attenuates the severity of experimental rodent colitis: the importance of crosstalk between adipose tissue and skeletal muscles.

    PubMed

    Bilski, Jan; Mazur-Bialy, Agnieszka I; Brzozowski, Bartosz; Magierowski, Marcin; Jasnos, Katarzyna; Krzysiek-Maczka, Gracjana; Urbanczyk, Katarzyna; Ptak-Belowska, Agata; Zwolinska-Wcislo, Malgorzata; Mach, Tomasz; Brzozowski, Tomasz

    2015-01-01

    Although progress has been recently made in understanding of inflammatory bowel diseases (IBD), their etiology is unknown apart from several factors from adipose tissue and skeletal muscles such as cytokines, adipokines, and myokines were implicated in the pathogenesis of ulcerative colitis. We studied the effect high-fat diet (HFD; cholesterol up to 70%), low-fat diet (LFD; cholesterol up to 10%), and the normal diet (total fat up to 5%) in rats with TNBS colitis forced to treadmill running exercise (5 days/week) for 6 weeks. In nonexercising HFD rats, the area of colonic damage, colonic tissue weight, the plasma IL-1β, TNF-α, TWEAK, and leptin levels, and the expression of IL-1β-, TNF-α-, and Hif1α mRNAs were significantly increased and a significant fall in plasma adiponectin and irisin levels was observed as compared to LFD rats. In HFD animals, the exercise significantly accelerated the healing of colitis, raised the plasma levels of IL-6 and irisin, downregulated the expression of IL-1β, TNF-α, and Hif1α, and significantly decreased the plasma IL-1β, TNF α, TWEAK, and leptin levels. We conclude that HFD delays the healing of colitis in trained rats via decrease in CBF and plasma IL-1β, TNF-α, TWEAK, and leptin levels and the release of protective irisin. PMID:25684862

  8. Organizational Stress, Personal Life Stress, and Symptoms of Life Strains: An Examination of the Moderating Role of Sense of Competence.

    ERIC Educational Resources Information Center

    Bhagat, Rabi S.; Allie, Stephen M.

    1989-01-01

    Examined self-competence and coping among 276 teachers. Found subjective feelings of competence concerning one's ability to interact effectively with one's work environment moderated satisfaction with work, satisfaction with coworkers, satisfaction with supervision, emotional exhaustion, and feelings of depersonalization. No significant moderating…

  9. Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion.

    PubMed

    Bobadilla-Fazzini, Roberto A; Cortés, Maria Paz; Maass, Alejandro; Parada, Pilar

    2014-12-01

    Currently more than 90% of the world's copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327-6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50°C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013-03335. PMID:26267113

  10. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    PubMed

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  11. Moderate Thermal Strain in Healthcare Workers Wearing Personal Protective Equipment During Treatment and Care Activities in the Context of the 2014 Ebola Virus Disease Outbreak.

    PubMed

    Grélot, Laurent; Koulibaly, Fassou; Maugey, Nancy; Janvier, Frédéric; Foissaud, Vincent; Aletti, Marc; Savini, Hélène; Cotte, Jean; Dampierre, Henry; Granier, Hervé; Carmoi, Thierry; Sagui, Emmanuel

    2016-05-01

    The extent of thermal strain while wearing personal protective equipment (PPE) during care activities for Ebola virus disease patients has not yet been characterized. From January to March 2015, 25 French healthcare workers (HCWs) in Conakry, Guinea, volunteered to be monitored while wearing PPE using an ingestible thermal sensor. The mean (standard deviation) working ambient temperature and relative humidity were 29.6 °C (2.0 °C) and 65.4% (10.3%), respectively; the mean time wearing PPE was 65.7 (13.5) minutes; and the mean core body temperature increased by 0.46 °C (0.20 °C). Four HCWs reached or exceeded a mean core body temperature of ≥ 38.5 °C. HCWs wearing PPE for approximately 1 hour exhibited moderate but safe thermal strain. PMID:26655297

  12. Single Myosin Cross-Bridge Orientation in Cardiac Papillary Muscle Detects Lever-Arm Shear Strain in Transduction

    PubMed Central

    Burghardt, Thomas P.; Josephson, Matthew P.; Ajtai, Katalin

    2011-01-01

    Myosin motors transduce ATP free energy into mechanical work. Transduction models allocate specific functions to motor structural domains beginning with ATP hydrolysis in the active site and ending in a lever-arm rotating power-stroke. Myosin light chains, regulatory (RLC) and essential (ELC), bind IQ-domains on the lever-arm and track its movement. Strong evidence exists that light chains stabilize the lever-arm and that light chain mutation undermines stability. Human ventricular RLC tagged with photoactivatable GFP (HCRLC-PAGFP) replaces native RLC in porcine papillary muscle fibers, restores native contractility, and situates PAGFP for single molecule orientation tracking within the crowded fiber lattice. The spatial emission pattern from single photoactivated PAGFP tagged myosins was observed in z-stacks fitted simultaneously to maximize accuracy in estimated dipole orientation. Emitter dipole polar and azimuthal angle pair scatter plots identified an area where steric and molecular crowding constraints depopulated orientations unfavorable for actin interaction. Transitions between pre- and post-power-stroke states represent the lever-arm trajectory sampled by the data and quantify lever-arm shear strain in transduction at three tension levels. These data identify forces acting on myosin in the in situ fiber system due to crowding, steric hindrance, and actomyosin interaction. They induce lever-arm shear strain observed with single molecule orientation detection. A single myosin work histogram reveals discretized power-stroke substates reminiscent of the Huxley–Simmons model for myosin based contraction [Huxley and Simmons (1971) Nature 233, 533]. RLC or ELC mutation, should it impact lever-arm shear strain, will be detected as changes in single myosin shear strain or power-stroke substate distribution. PMID:21819137

  13. The molecular kink paradigm for rubber elasticity: Numerical simulations of explicit polyisoprene networks at low to moderate tensile strains

    NASA Astrophysics Data System (ADS)

    Hanson, David E.

    2011-08-01

    Based on recent molecular dynamics and ab initio simulations of small isoprene molecules, we propose a new ansatz for rubber elasticity. We envision a network chain as a series of independent molecular kinks, each comprised of a small number of backbone units, and the strain as being imposed along the contour of the chain. We treat chain extension in three distinct force regimes: (Ia) near zero strain, where we assume that the chain is extended within a well defined tube, with all of the kinks participating simultaneously as entropic elastic springs, (II) when the chain becomes sensibly straight, giving rise to a purely enthalpic stretching force (until bond rupture occurs) and, (Ib) a linear entropic regime, between regimes Ia and II, in which a force limit is imposed by tube deformation. In this intermediate regime, the molecular kinks are assumed to be gradually straightened until the chain becomes a series of straight segments between entanglements. We assume that there exists a tube deformation tension limit that is inversely proportional to the chain path tortuosity. Here we report the results of numerical simulations of explicit three-dimensional, periodic, polyisoprene networks, using these extension-only force models. At low strain, crosslink nodes are moved affinely, up to an arbitrary node force limit. Above this limit, non-affine motion of the nodes is allowed to relax unbalanced chain forces. Our simulation results are in good agreement with tensile stress vs. strain experiments.

  14. QTL Analysis of Type I and Type IIA Fibers in Soleus Muscle in a Cross between LG/J and SM/J Mouse Strains

    PubMed Central

    Carroll, Andrew M.; Palmer, Abraham A.; Lionikas, Arimantas

    2011-01-01

    Properties of muscle fibers, i.e., their type, number and size, are important determinants of functional characteristics of skeletal muscle, and of the quality of meat in livestock. Genetic factors play an important role in determining variation in fiber properties, however, specific genes remain largely elusive. We examined histological properties of soleus muscle fibers in two strains of mice exhibiting a twofold difference in muscle mass, LG/J and SM/J, and their F2 intercross. The total number of muscle fibers (555 ± 106; mean ± SD) did not differ between the strains or between males and females. A higher percentage of type I fibers was observed in the LG/J compared to the SM/J strain (P < 0.001) in both males (45 ± 3 vs. 37 ± 4%) and females (58 ± 4 vs. 41 ± 3%). Across strains, females had a higher percentage of type I fibers than males (P < 0.001), and the sex effect was greater in the LG/J strain (strain-by-sex interaction, P < 0.001). The cross-sectional area (CSA) did not differ between type I and type IIA fibers, but was greater in the LG/J than the SM/J strain (1365 ± 268 vs. 825 ± 229 μm2, P < 0.001). Three significant quantitative trait locus (QTL) affecting CSA for type I and type IIA fibers mapped to chromosomes (Chr) 1, 6, and 11 and three suggestive QTL for percentage of type I fibers mapped to Chr 2, 3, and 4. Within each significant QTL, regions of conserved synteny were also implicated in variation of similar traits in an analogous study in pigs. Our results provide the evidence that the intercross between the SM/J and LG/J strains is a promising model to search for genes affecting muscle fiber properties. PMID:22303393

  15. Draft genome sequence of Halomonas sp. strain KM-1, a moderately halophilic bacterium that produces the bioplastic poly(3-hydroxybutyrate).

    PubMed

    Kawata, Yoshikazu; Kawasaki, Kazunori; Shigeri, Yasushi

    2012-05-01

    We report the draft genome sequence of Halomonas sp. strain KM-1, which was isolated in Ikeda City, Osaka, Japan, and which produces the bioplastic poly(3-hydroxybutyrate). The total length of the assembled genome is 4,992,811 bp, and 4,220 coding sequences were predicted within the genome. Genes encoding proteins that are involved in the production and depolymerization of poly(3-hydroxybutyrate) were identified. The identification of these genes might be of use in the production of the bioplastic poly(3-hydroxybutyrate) and its monomer 3-hydroxybutyrate. PMID:22535927

  16. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT)

    SciTech Connect

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth H; Lapidus, Alla L.; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, N; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam L; Pan, Chongle; Rohde, Manfred; Pukall, Rudiger; Goker, Markus; Detter, J. Chris; Woyke, Tanja; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, K

    2012-01-01

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp, harbors 3,626 protein-coding and 69 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    PubMed Central

    Pailan, Santanu

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium. PMID:26587344

  18. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation.

    PubMed

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium. PMID:26587344

  19. Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL(T)).

    PubMed

    Anderson, Iain; Chertkov, Olga; Chen, Amy; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Rohde, Manfred; Pukall, Rüdiger; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Mavromatis, Konstantinos

    2012-07-30

    Sulfobacillus acidophilus Norris et al. 1996 is a member of the genus Sulfobacillus which comprises five species of the order Clostridiales. Sulfobacillus species are of interest for comparison to other sulfur and iron oxidizers and also have biomining applications. This is the first completed genome sequence of a type strain of the genus Sulfobacillus, and the second published genome of a member of the species S. acidophilus. The genome, which consists of one chromosome and one plasmid with a total size of 3,557,831 bp harbors 3,626 protein-coding and 69 RNA genes, and is a part of the GenomicEncyclopedia ofBacteria andArchaea project. PMID:23407703

  20. Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094T), a moderately halophilic member of the Roseobacter clade

    PubMed Central

    Riedel, Thomas; Spring, Stefan; Fiebig, Anne; Petersen, Jörn; Kyrpides, Nikos C.; Göker, Markus; Klenk, Hans-Peter

    2014-01-01

    Salipiger mucosus Martínez-Cànovas et al. 2004 is the type species of the genus Salipiger, a moderately halophilic and exopolysaccharide-producing representative of the Roseobacter lineage within the alphaproteobacterial family Rhodobacteraceae. Members of this family were shown to be the most abundant bacteria especially in coastal and polar waters, but were also found in microbial mats and sediments. Here we describe the features of the S. mucosus strain DSM 16094T together with its genome sequence and annotation. The 5,689,389-bp genome sequence consists of one chromosome and several extrachromosomal elements. It contains 5,650 protein-coding genes and 95 RNA genes. The genome of S. mucosus DSM 16094T was sequenced as part of the activities of the Transregional Collaborative Research Center 51 (TRR51) funded by the German Research Foundation (DFG). PMID:25197501

  1. Effects of massage under hypoxic conditions on exercise-induced muscle damage and physical strain indices in professional soccer players.

    PubMed

    Gatterer, H; Schenk, K; Wille, M; Murnig, P; Burtscher, M

    2013-06-01

    Reports based on experiences from masseurs and players, mostly without any scientific background, suggest that the combination of a classical regeneration method (i.e. massage) with exposure to hypoxia may enhance regeneration in soccer. The aim of this study was to evaluate whether this specific combination could affect blood parameters related to muscle damage and physical strain after a soccer game. Approximately 15 hours after two separate championship games, 10 professional male outfield players of the first Austrian division were exposed to normobaric hypoxia (FiO2 13.5% ∼ 4000m) or normoxia for 1 hour (30 minutes rest followed by 30 min massage) (cross-over design). Creatine kinase (CK), urea and uric acid (UA) were measured 4 days before the first game, and 15 and 63 hours after the two games. Match play increased CK values independently of the intervention. No effect of the massage in combination with hypoxia was seen. A trend was found between Δ UA ([UA] 48 hours after exposure minus [UA] before exposure) in response to hypoxia and SaO2 measured in hypoxia (r=0.612, p=0.06). Results show that massage under hypoxic conditions had no additional positive effect on the measured parameters compared to massage alone. Solely the trend of a relationship for Δ UA and SaO2 might indicate that redox alterations are a potential consequence of hypoxic exposure. PMID:24744471

  2. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio.

    PubMed

    Palaniappan, Krishna; Meier-Kolthoff, Jan P; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883(T), the type strain of T. acidaminovorans, stain Z-9701(T) is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501645

  3. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  4. TOPICAL REVIEW: Unified scaling law for flux pinning in practical superconductors: I. Separability postulate, raw scaling data and parameterization at moderate strains

    NASA Astrophysics Data System (ADS)

    Ekin, J. W.

    2010-08-01

    of these separable functions serves as an effective 'Rosetta Stone' table for translating among the various parameterizations. An accurate, simple parameterization of the USL is given in separable form for Nb3Sn for the less complex and less controversial moderate strain regime (-0.5% < ɛ0 < ɛ0irr), where many magnets are designed: \\[F_{\\mathrm {P}} \\equiv I_{\\mathrm {c}}(B,T, \\varepsilon) B=C [(1-a|\\varepsilon_{0}|^{1.7})^{s}] [(1-t^{ 2})^{\\mu }(1-t^{ 1.52})^{\\eta-\\mu }] [b^{p}(1-b)^{q}] \\] \\[b_{\\mathrm {c}2}(t, \\varepsilon_{0})=(1-a|\\varepsilon_{0}|^{1.7}) (1-t^{ 1.52}), \\] with free scaling parameters as follows: strain parameters ɛm, s, a - (for ɛ0 < 0) and a + (for ɛ0 > 0); temperature parameters Tc*(0) and η magnetic field parameters Bc2*(0, 0), p and q; and C is a proportionality constant. With this parameterization, the scaling parameters themselves are also separable, an important feature for practical engineering purposes, because the parameter values can be built up from separate strain and temperature measurements. The only non-separable parameter, w, is fixed at 3.0, as described above. The parameter μ is fixed at 0, 1 or 2, corresponding to the three parameterization models in present use for the temperature function h(t), all of which are effectively equivalent in fitting accuracy at T >= 4 K (the simplest being the original parameterization μ = 0). At high compressive strains (ɛ0 < - 0.5%), a consensus for the best parameterizations has not yet been achieved. In Part II of this review, raw scaling data will be used to assess the most commonly used parameterizations in this regime, especially bc2(ɛ0) and g(ɛ0) at high compressive strains, and h(t) over a wide temperature range. This article is based in part on the presentation 'Unified strain-and-temperature scaling law: separable parameter set' given at the Mechanical and Electromagnetic Properties of Composite Superconductors Conference (Princeton, NJ, Aug. 2007). Trade

  5. Patterns of red muscle strain/activation and body kinematics during steady swimming in a lamnid shark, the shortfin mako (Isurus oxyrinchus).

    PubMed

    Donley, Jeanine M; Shadwick, Robert E; Sepulveda, Chugey A; Konstantinidis, Peter; Gemballa, Sven

    2005-06-01

    The dynamics of steady swimming were examined in the shortfin mako (Isurus oxyrinchus), a member of the cartilaginous fish family Lamnidae, a family known for their morphological adaptations for high-performance locomotion and their similarity in hydromechanical design to tunas. Patterns of red muscle (RM) strain (i.e. relative length change) and activation were quantified at two axial positions ( approximately 0.4 and 0.6L, where L is total body length), using sonomicrometry and electromyography (EMG), and correlated with simultaneous measurements of dorsal midline kinematics during steady swimming ( approximately 0.5-1 L s(-1)). RM strain varied longitudinally with strain amplitudes ranging from 5.5+/-1.1% (s.e.m.) in the anterior to 8.7+/-0.9% in the posterior. We found no significant longitudinal variation in patterns of RM activation, with mean onset of activation occurring at 83-84 degrees (90 degrees is peak length) and offset at 200-210 degrees at both body positions. Likewise, duty cycles were similar: 35.5+/-1.0% in the anterior and 32.2+/-1.6% in the posterior. Comparison of the timing of waves of dorsal midline curvature and predicted strain relative to measured RM strain revealed a phase shift between RM shortening and local body bending. Furthermore, when the body is bent passively, RM shortens synchronously with the surrounding white muscle (WM) and skin, as expected. During active swimming, peaks in RM strain were delayed relative to peaks in WM strain by a mean of approximately 10% of the tailbeat cycle, with one individual as high as approximately 17% in the anterior and nearly 50% in the posterior. The longitudinal consistency in the EMG/strain phase relationship in the mako is similar to that in the leopard shark, suggesting a consistent trend among sharks using different locomotor modes. However, unlike in the leopard shark, RM shortening in the mako is physically uncoupled from deformation of the surrounding body during steady swimming, a

  6. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India

    PubMed Central

    Panda, Ananta Narayan; Mishra, Samir R.; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  7. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India

    PubMed Central

    Panda, Ananta Narayan; Mishra, Samir R.; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals.

  8. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India.

    PubMed

    Panda, Ananta Narayan; Mishra, Samir R; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  9. Complete Genome Sequence of Terribacillus aidingensis Strain MP602, a Moderately Halophilic Bacterium Isolated from Cryptomeria fortunei in Tianmu Mountain in China.

    PubMed

    Lu, Peng; Lei, Mengying; Xiao, Fenghu; Zhang, Liqin; Wang, Yongjun

    2015-01-01

    Terribacillus aidingensis strain MP602, which was isolated from an ancient tree (Cryptomeria forunei) in Tianmu Mountain in China, has antagonistic activity against several certain phytopathogenic fungi. Here, we report the genome sequence of this strain. This is the first complete genome report of the Terribacillus genus. PMID:25792050

  10. Complete Genome Sequence of Terribacillus aidingensis Strain MP602, a Moderately Halophilic Bacterium Isolated from Cryptomeria fortunei in Tianmu Mountain in China

    PubMed Central

    Lu, Peng; Lei, Mengying; Xiao, Fenghu; Zhang, Liqin

    2015-01-01

    Terribacillus aidingensis strain MP602, which was isolated from an ancient tree (Cryptomeria forunei) in Tianmu Mountain in China, has antagonistic activity against several certain phytopathogenic fungi. Here, we report the genome sequence of this strain. This is the first complete genome report of the Terribacillus genus. PMID:25792050

  11. The effect of moderate-intensity exercise on the expression of HO-1 mRNA and activity of HO in cardiac and vascular smooth muscle of spontaneously hypertensive rats.

    PubMed

    Ren, Cailing; Qi, Jie; Li, Wanwei; Zhang, Jun

    2016-04-01

    The objective of this study was to observe the effects of moderate-intensity training on the activity of heme oxygenase (HO) and expression of HO-1 mRNA in the aorta and the cardiac muscle of spontaneously hypertensive rats (SHRs). After 9 weeks of swimming exercise, the activity of HO and expression of HO-1 mRNA in the SHRs were measured. The resting blood pressure in the exercise group was increased by 1.7% (P > 0.05), whereas it was significantly elevated by 10.3% (P < 0.01) in the SHR rats. Compared with animals in the control and sedentary groups, the expression level of HO-1 mRNA of aorta and cardiac muscle in the exercise group was significantly enhanced (P < 0.01). The HO activity and the content of plasma carbon monoxide (CO) in the sedentary group were dramatically decreased (P < 0.05 and P < 0.01, respectively) compared with the control group. HO activity and content of plasma CO in the exercise group were significantly higher compared with those in the sedentary group (P < 0.05 and P < 0.01, respectively). The HO/CO metabolic pathway might be involved in the regulation of blood pressure of the SHR models. PMID:26928589

  12. Draft Genome Sequence of Tepidibacillus decaturensis Strain Z9, an Anaerobic, Moderately Thermophilic, and Heterotrophic Bacterium from the Deep Subsurface of the Illinois Basin, USA.

    PubMed

    Dong, Yiran; Chang, Yun-Juan; Sanford, Robert A; Fouke, Bruce W

    2016-01-01

    The genome of the moderately thermophilic and halotolerant bacteriumTepidibacillus decaturensisstrain Z9 was sequenced. The draft genome comprises three scaffolds, for a total of 2.95 Mb. As the first sequenced genome within the genusTepidibacillus, 2,895 protein-coding genes, 52 tRNA genes, and 3 rRNA operons were predicted. PMID:27056217

  13. Carbohydrate Mouth Rinse Maintains Muscle Electromyographic Activity and Increases Time to Exhaustion during Moderate but not High-Intensity Cycling Exercise

    PubMed Central

    Bastos-Silva, Victor José; Melo, Alan de Albuquerque; Lima-Silva, Adriano Eduardo; Moura, Felipe Arruda; Bertuzzi, Rômulo; de Araujo, Gustavo Gomes

    2016-01-01

    The aim was to investigate the influence of a carbohydrate (CHO) mouth rinse on the vastus lateralis (VL) and rectus femoris (RF) electromyographic activity (EMG) and time to exhaustion (TE) during moderate (MIE) and high-intensity cycling exercise (HIE). Thirteen participants cycled at 80% of their respiratory compensation point and at 110% of their peak power output to the point of exhaustion. Before the trials and every 15 min during MIE, participants rinsed with the CHO or Placebo (PLA) solutions. The root mean square was calculated. CHO had no effect on the TE during HIE (CHO: 177.3 ± 42.2 s; PLA: 163.0 ± 26.7 s, p = 0.10), but the TE was increased during MIE (CHO: 76.6 ± 19.7 min; PLA: 65.4 ± 15.2 min; p = 0.01). The EMG activity in the VL was higher than PLA at 30 min (CHO: 10.5% ± 2.6%; PLA: 7.7% ± 3.3%; p = 0.01) and before exhaustion (CHO: 10.3% ± 2.5%; PLA: 8.0% ± 2.9%; p = 0.01) with CHO rinsing. There was no CHO effect on the EMG activity of RF during MIE or for VL and RF during HIE. CHO mouth rinse maintains EMG activity and enhances performance for MIE but not for HIE. PMID:27005660

  14. Carbohydrate Mouth Rinse Maintains Muscle Electromyographic Activity and Increases Time to Exhaustion during Moderate but not High-Intensity Cycling Exercise.

    PubMed

    Bastos-Silva, Victor José; Melo, Alan de Albuquerque; Lima-Silva, Adriano Eduardo; Moura, Felipe Arruda; Bertuzzi, Rômulo; de Araujo, Gustavo Gomes

    2016-03-01

    The aim was to investigate the influence of a carbohydrate (CHO) mouth rinse on the vastus lateralis (VL) and rectus femoris (RF) electromyographic activity (EMG) and time to exhaustion (TE) during moderate (MIE) and high-intensity cycling exercise (HIE). Thirteen participants cycled at 80% of their respiratory compensation point and at 110% of their peak power output to the point of exhaustion. Before the trials and every 15 min during MIE, participants rinsed with the CHO or Placebo (PLA) solutions. The root mean square was calculated. CHO had no effect on the TE during HIE (CHO: 177.3 ± 42.2 s; PLA: 163.0 ± 26.7 s, p = 0.10), but the TE was increased during MIE (CHO: 76.6 ± 19.7 min; PLA: 65.4 ± 15.2 min; p = 0.01). The EMG activity in the VL was higher than PLA at 30 min (CHO: 10.5% ± 2.6%; PLA: 7.7% ± 3.3%; p = 0.01) and before exhaustion (CHO: 10.3% ± 2.5%; PLA: 8.0% ± 2.9%; p = 0.01) with CHO rinsing. There was no CHO effect on the EMG activity of RF during MIE or for VL and RF during HIE. CHO mouth rinse maintains EMG activity and enhances performance for MIE but not for HIE. PMID:27005660

  15. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  16. What Are Sprains and Strains?

    MedlinePlus

    ... sprain, one or more ligaments is stretched or torn. What Causes a Sprain? Where Do Sprains Usually ... strain, a muscle or tendon is stretched or torn. What Causes Strains? A strain is caused by ...

  17. Strains and Sprains

    MedlinePlus

    ... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...

  18. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy. Disuse atrophy occurs from a lack of physical activity. In most people, muscle atrophy is caused by not using the ...

  19. Muscle Disorders

    MedlinePlus

    Your muscles help you move and help your body work. Different types of muscles have different jobs. There are many problems that can affect muscles. Muscle disorders can cause weakness, pain or even ...

  20. Muscle atrophy

    MedlinePlus

    Muscle wasting; Wasting; Atrophy of the muscles ... There are two types of muscle atrophy: disuse and neurogenic. Disuse atrophy is caused by not using the muscles enough . This type of atrophy can often be ...

  1. Muscle Cramps

    MedlinePlus

    Muscle cramps are sudden, involuntary contractions or spasms in one or more of your muscles. They often occur after exercise or at night, ... to several minutes. It is a very common muscle problem. Muscle cramps can be caused by nerves ...

  2. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.

    PubMed

    Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G

    2014-09-01

    The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work. PMID:24948642

  3. Cooling an acute muscle injury: can basic scientific theory translate into the clinical setting?

    PubMed

    Bleakley, C M; Glasgow, P; Webb, M J

    2012-03-01

    Ice is commonly used after acute muscle strains but there are no clinical studies of its effectiveness. By comparison, there are a number of basic scientific studies on animals which show that applying ice after muscle injury has a consistent effect on a number of important cellular and physiological events relating to recovery. Some of these effects may be temperature dependant; most animal studies induce significant reductions in muscle temperature at the injury site. The aim of this short report was to consider the cooling magnitudes likely in human models of muscle injury and to discuss its relevance to the clinical setting. Current best evidence shows that muscle temperature reductions in humans are moderate in comparison to most animal models, limiting direct translation to the clinical setting. Further important clinical questions arise when we consider the heterogenous nature of muscle injury in terms of injury type, depth and insulating adipose thickness. Contrary to current practice, it is unlikely that a 'panacea' cooling dose or duration exists in the clinical setting. Clinicians should consider that in extreme circumstances of muscle strain (eg, deep injury with high levels of adipose thickness around the injury site), the clinical effectiveness of cooling may be significantly reduced. PMID:21677317

  4. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  5. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  6. Muscle aches

    MedlinePlus

    ... common cause of muscle aches and pain is fibromyalgia , a condition that causes tenderness in your muscles ... imbalance, such as too little potassium or calcium Fibromyalgia Infections, including the flu, Lyme disease , malaria , muscle ...

  7. Muscle disorder

    MedlinePlus

    Myopathic changes; Myopathy; Muscle problem ... Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs ...

  8. Muscle disorder

    MedlinePlus

    Blood tests sometimes show abnormally high muscle enzymes. If a muscle disorder might also affect other family members, genetic testing may be done. When someone has symptoms and signs of a muscle disorder, tests such as an electromyogram , ...

  9. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle.

    PubMed

    Park, Chun-Ho; Kondo, Mariko; Inoue, Satoshi; Noguchi, Akira; Oyamada, Toshifumi; Yoshikawa, Hiroyasu; Yamada, Akio

    2006-06-01

    A fatal encephalomyelitis was developed after intracerebral and hind limb inoculation of in 6-week-old C57BL/6J mice by the inoculation of fixed rabies virus (CVS-11 strain), intracerebrally and into hind. After the intracerebral inoculation, virus antigens were detected in the cerebral cortex and hippocampus at 2 days postinoculation (PI), and later spread centrifugally to thalamus, brain stem, cerebellum, spinal cord and spinal ganglia. At 4 days PI, severe apoptosis and DNA fragmentation were observed in the hippocampus and cerebral cortex. All mice infected intracerebrally were dead without limb paralysis at from 10 to 11 days PI. In contrast, mice infected with virus intramuscularly were persistently observed virus antigens in the myocytes at the site of inoculation from 2 days PI. At 4 days PI, the antigens were demonstrated in the spinal dorsal root ganglia, spinal cord and muscle spindles without their detection in the cerebrum and hippocampus. There were no apoptosis in the spinal cord and dorsal root ganglia, however hind limb paralysis was found in all infected mice. Hind limb paralysis was progressed to quadriparalysis, and mice were dead from 11 to 13 days PI. From 4 days PI, necrosis of neuron was observed in the the spinal and dorsal ganglia with infiltration of lymphocyte. This study suggested that the necrosis of spinal neurons was more important to cause the paralysis of hind limb rather than the severe cerebral infection and apoptosis in C57BL/6J mice infected with CVS-11 strain. The virus primarily replicated in the muscles was ascended the spinal cord via afferent fibers and retrogradely invaded the cerebrum, and with subsequent spread to muscle spindles. PMID:16820716

  10. Physical Strain and Work Ergonomics in Farmers with Disabilities.

    PubMed

    Nevala-Puranen; Sörensen

    1997-01-01

    In agriculture, occupational injuries are common, and several of them lead to permanent physical disability. The objective of this case study was to assess the strain and the ergonomic needs of four farmers (aged 34-49 years) with physical disabilities. A maximal bicycle ergometer test or an arm-crank test was done to assess their maximal heart rate (HR&infmax;) and maximal oxygen consumption (VO&inf2max;). The strain at work was analyzed by measuring heart rate (HR), muscle activity (EMG) and the rating of perceived exertion (RPE). The farmers were interviewed as to possible and impossible work tasks and the ergonomic redesign measures taken to improve the work environment. The work tasks performed were mainly light or moderate work for the cardiorespiratory system according to mean HR (88-102 beats/min), the percentage of HR range (17-31% HRR), and the relative VO&inf2; (22-46% VO&inf2max;). The mean activity of the trapezius muscles was 0.4-9% of the maximal voluntary contraction (%MVC). All the participants had work tasks they were unable to perform. They had made ergonomic redesign changes mainly to the tractor. This case study showed that some agricultural work tasks were possible for farmers with physical disabilities and that the physical strain associated with these tasks was mainly light or moderate. PMID:10602597

  11. Muscle biopsy

    MedlinePlus

    ... that affect the muscles (such as trichinosis or toxoplasmosis ) Muscle disorders such as muscular dystrophy or congenital ... nodosa Polymyalgia rheumatica Polymyositis - adult Thyrotoxic periodic paralysis Toxoplasmosis Trichinosis Update Date 9/8/2014 Updated by: ...

  12. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  13. Muscle Injuries in Athletes

    PubMed Central

    Delos, Demetris; Maak, Travis G.; Rodeo, Scott A.

    2013-01-01

    Context: Muscle injuries are extremely common in athletes and often produce pain, dysfunction, and the inability to return to practice or competition. Appropriate diagnosis and management can optimize recovery and minimize time to return to play. Evidence Acquisition: Contemporary papers, both basic science and clinical medicine, that investigate muscle healing were reviewed. A Medline/PubMed search inclusive of years 1948 to 2012 was performed. Results: Diagnosis can usually be made according to history and physical examination for most injuries. Although data are limited, initial conservative management emphasizing the RICE principles and immobilization of the extremity for several days for higher grade injuries are typically all that is required. Injection of corticosteroids may clinically enhance function after an acute muscle strain. Additional adjunctive treatments (nonsteroidal anti-inflammatory drugs, platelet-rich plasma, and others) to enhance muscle healing and limit scar formation show promise but need additional data to better define their roles. Conclusion: Conservative treatment recommendations will typically lead to successful outcomes after a muscle injury. There is limited evidence to support most adjunctive treatments. PMID:24459552

  14. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  15. Pelvic Muscle Exercises Using A Home Trainer for Pelvic Muscle Dysfunction: A Case Report.

    PubMed

    Shelly, Beth

    2016-01-01

    Pelvic muscle exercises can help improve symptoms of pelvic floor muscle dysfunction. This article describes the case of a 66-year-old woman with moderate pelvic organ prolapse (POP) and mild urinary incontinence (UI) who initiated pelvic muscle exercises with the assistance of a novel, at-home trainer equipped with a vaginal sensor and accompanying smartphone app software, the PeriCoach system (Analytica, 2015). After 8 weeks of training with the device, she showed improvements in strength, endurance, and disability, as measured by manual muscle test, electromyography, and Pelvic Floor Disability Index scores. Older women can use biofeedback technology to improve pelvic floor muscle function successfully at home. PMID:27281865

  16. Muscle cramps.

    PubMed

    Miller, Timothy M; Layzer, Robert B

    2005-10-01

    Muscle cramps are a common problem characterized by a sudden, painful, involuntary contraction of muscle. These true cramps, which originate from peripheral nerves, may be distinguished from other muscle pain or spasm. Medical history, physical examination, and a limited laboratory screen help to determine the various causes of muscle cramps. Despite the "benign" nature of cramps, many patients find the symptom very uncomfortable. Treatment options are guided both by experience and by a limited number of therapeutic trials. Quinine sulfate is an effective medication, but the side-effect profile is worrisome, and other membrane-stabilizing drugs are probably just as effective. Patients will benefit from further studies to better define the pathophysiology of muscle cramps and to find more effective medications with fewer side-effects. PMID:15902691

  17. Effects of muscle injury severity on localized bioimpedance measurements.

    PubMed

    Nescolarde, L; Yanguas, J; Lukaski, H; Alomar, X; Rosell-Ferrer, J; Rodas, G

    2015-01-01

    Muscle injuries in the lower limb are common among professional football players. Classification is made according to severity and is diagnosed with radiological assessment as: grade I (minor strain or minor injury), grade II (partial rupture, moderate injury) and grade III (complete rupture, severe injury). Tetrapolar localized bioimpedance analysis (BIA) at 50 kHz made with a phase-sensitive analyzer was used to assess damage to the integrity of muscle structures and the fluid accumulation 24 h after injury in 21 injuries in the quadriceps, hamstring and calf, and was diagnosed with magnetic resonance imaging (MRI). The aim of this study was to identify the pattern of change in BIA variables as indicators of fluid [resistance (R)] and cell structure integrity [reactance (Xc) and phase angle (PA)] according to the severity of the MRI-defined injury. The % difference compared to the non-injured contralateral muscle also measured 24-h after injury of R, Xc and PA were respectively: grade I (n = 11; -10.4, -17.5 and -9.0%), grade II (n = 8; -18.4, -32.9 and -16.6%) and grade III (n = 2; -14.1, -52.9 and -43.1%), showing a greater significant decrease in Xc (p < 0.001). The greatest relative changes were in grade III injuries. However, decreases in R, that indicate fluid distribution, were not proportional to the severity of the injury. Disruption of the muscle structure, demonstrated by the localized determination of Xc, increased with the severity of muscle injury. The most significant changes 24 h after injury was the sizeable decrease in Xc that indicates a pattern of disrupted soft tissue structure, proportional to the severity of the injury. PMID:25500910

  18. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  19. Muscle aches

    MedlinePlus

    ... be done include: Complete blood count (CBC) Other blood tests to look at muscle enzymes (creatine kinase) and possibly a test for Lyme disease or a connective tissue disorder Physical therapy may be helpful.

  20. Muscle cramps

    MedlinePlus

    ... The most common cause of muscle cramps during sports activity is not getting enough fluids. Often, drinking ... alone does not always help. Salt tablets or sports drinks, which also replenish lost minerals, can be ...

  1. The role of passive muscle stiffness in symptoms of exercise-induced muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Kremenic, I J; Nicholas, S J; Gleim, G W

    1999-01-01

    We examined whether passive stiffness of an eccentrically exercising muscle group affects the subsequent symptoms of muscle damage. Passive hamstring muscle stiffness was measured during an instrumented straight-leg-raise stretch in 20 subjects (11 men and 9 women) who were subsequently classified as "stiff" (N = 7), "normal" (N = 6), or "compliant" (N = 7). Passive stiffness was 78% higher in the stiff subjects (36.2 +/- 3.3 N.m.rad(-1)) compared with the compliant subjects (20.3 +/- 1.8 N.m.rad(-1)). Subjects then performed six sets of 10 isokinetic (2.6 rad.s(-1)) submaximal (60% maximal voluntary contraction) eccentric actions of the hamstring muscle group. Symptoms of muscle damage were documented by changes in isometric hamstring muscle strength, pain, muscle tenderness, and creatine kinase activity on the following 3 days. Strength loss, pain, muscle tenderness, and creatine kinase activity were significantly greater in the stiff compared with the compliant subjects on the days after eccentric exercise. Greater symptoms of muscle damage in subjects with stiffer hamstring muscles are consistent with the sarcomere strain theory of muscle damage. The present study provides experimental evidence of an association between flexibility and muscle injury. Muscle stiffness and its clinical correlate, static flexibility, are risk factors for more severe symptoms of muscle damage after eccentric exercise. PMID:10496575

  2. Strains and Sprains Are a Pain

    MedlinePlus

    ... move the injured part, and you may even think you have broken a bone . How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains can be more likely to happen if ...

  3. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  4. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  5. Coupled moderator neutronics

    SciTech Connect

    Russell, G.J.; Pitcher, E.J.; Ferguson, P.D.

    1995-12-01

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source.

  6. Management of moderate lymphedema.

    PubMed

    Shumacker, H B

    1981-08-01

    Moderate chronic lymphedema generally requires a different program of management than mild or massive lymphedema. It responds well to a special management regimen based on home use of an intermittent limb compressor and utilization of proper compression support when the patient is not in the recumbent position. PMID:7259517

  7. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  8. Moderator Chemistry Program

    SciTech Connect

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  9. Moderate and Binge Drinking

    MedlinePlus

    ... here Home » Alcohol & Your Health » Overview of Alcohol Consumption » Drinking Levels Defined In this Section Alcohol Facts & Statistics What Is A Standard Drink? Drinking Levels Defined Drinking Levels Defined Moderate alcohol consumption: According to the "Dietary Guidelines for Americans 2015- ...

  10. Sex Differences in Exercise-Induced Muscle Pain and Muscle Damage

    PubMed Central

    Dannecker, Erin A.; Liu, Ying; Rector, R. Scott; Thomas, Tom R.; Fillingim, Roger B.; Robinson, Michael E.

    2012-01-01

    There is uncertainty about sex differences in exercise-induced muscle pain and muscle damage due to several methodological weaknesses in the literature. This investigation tested the hypothesis that higher levels of exercise-induced muscle pain and muscle damage indicators would be found in women than men when several methodological improvements were executed in the same study. Participants (N = 33; 42% women) with an average age of 23 years (SD = 2.82) consented to participate. After a familiarization session, participants visited the laboratory before and across four days after eccentric exercise was completed to induce arm muscle pain and muscle damage. Our primary outcomes were arm pain ratings and pressure pain thresholds. However, we also measured the following indicators of muscle damage: arm girth; resting elbow extension; isometric elbow flexor strength; myoglobin (Mb); tumor necrosis factor (TNFa); interleukin 1beta (IL1b); and total nitric oxide (NO). Temporary induction of muscle damage was indicated by changes in all outcome measures except TNFa, and IL1b. In contrast to our hypotheses, women reported moderately lower and less frequent muscle pain than men. Also, women’s arm girth and Mb levels increased moderately less than men’s, but the differences were not significant. Few large sex differences were detected. PMID:23182229

  11. Artificial muscles versus natural actuators from frogs to flies

    NASA Astrophysics Data System (ADS)

    Full, Robert J.; Meijer, Kenneth

    2000-06-01

    When is a human-made actuator an artificial muscle. Natural actuators in the animal kingdom vary greatly in their capacity and role. Maximum stress variety by 100-fold as does the velocity at which muscles contract. Some muscles generate near maximum force over broad strain ranges, while others function over only the narrowest ranges. Frequencies of operation range from less than 1 Hz to 1000 Hz. Mass- specific power output can reach over 250 W/kg muscle. Muscles function not simply as force generators, but as springs and dampers. Our isolated muscle experiments on insects show that some muscles function primarily as energy absorber sand have a role in control, while others are effective at power generation. At present, we are evaluating EAPs to see where these actuators fit in the functional space of nature's muscles. EAPs appear particularly promising as artificial muscles for insect-sized robots.

  12. Capillary muscle

    PubMed Central

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-01-01

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This “hyperbolic” force–velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136–195]. Hill’s heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973–976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971–973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255–318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928–935]. Here, we develop a capillary analog of the sarcomere obeying Hill’s equation and discuss its analogy with muscles. PMID:25944938

  13. Capillary muscle.

    PubMed

    Cohen, Caroline; Mouterde, Timothée; Quéré, David; Clanet, Christophe

    2015-05-19

    The contraction of a muscle generates a force that decreases when increasing the contraction velocity. This "hyperbolic" force-velocity relationship has been known since the seminal work of A. V. Hill in 1938 [Hill AV (1938) Proc R Soc Lond B Biol Sci 126(843):136-195]. Hill's heuristic equation is still used, and the sliding-filament theory for the sarcomere [Huxley H, Hanson J (1954) Nature 173(4412):973-976; Huxley AF, Niedergerke R (1954) Nature 173(4412):971-973] suggested how its different parameters can be related to the molecular origin of the force generator [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318; Deshcherevskiĭ VI (1968) Biofizika 13(5):928-935]. Here, we develop a capillary analog of the sarcomere obeying Hill's equation and discuss its analogy with muscles. PMID:25944938

  14. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  15. Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking

    PubMed Central

    Maas, Huub; Gregor, Robert J.; Hodson-Tole, Emma F.; Farrell, Brad J.; Prilutsky, Boris I.

    2009-01-01

    On the basis of differences in physiology, e.g., histochemical properties and spindle density, and the structural design of the cat soleus (SO) and medial gastrocnemius (MG) muscles, we hypothesized that 1) fascicle length changes during overground walking would be both muscle and slope dependent, which would have implications for the muscles' force output as well as sensory function, and that 2) muscle-tendon unit (MTU) and fascicle length changes would be different, in which case MTU length could not be used as an indicator of muscle spindle strain. To test these hypotheses, we quantified muscle fascicle length changes and compared them with length changes of the whole MTU in the SO and MG during overground walking at various slopes (0, ± 25, ± 50, +75, and +100%). The SO and MG were surgically instrumented with sonomicrometry crystals and fine-wire electromyogram electrodes to measure changes in muscle fascicle length and muscle activity, respectively. MTU lengths were calculated using recorded ankle and knee joint angles and a geometric model of the hindlimb. The resultant joint moments were calculated using inverse dynamics analysis to infer muscle loading. It was found that although MTU length and velocity profiles of the SO and MG appeared similar, length changes and velocities of muscle fascicles were substantially different between the two muscles. Fascicle length changes of both SO and MG were significantly affected by slope intensity acting eccentrically in downslope walking (−25 to −50%) and concentrically in upslope walking (+25 to +100%). The differences in MTU and fascicle behaviors in both the SO and MG muscles during slope walking were explained by the three distinct features of these muscles: 1) the number of joints spanned, 2) the pennation angle, and 3) the in-series elastic component. It was further suggested that the potential role of length feedback from muscle spindles is both task and muscle dependent. PMID:19164776

  16. Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking.

    PubMed

    Maas, Huub; Gregor, Robert J; Hodson-Tole, Emma F; Farrell, Brad J; Prilutsky, Boris I

    2009-04-01

    On the basis of differences in physiology, e.g., histochemical properties and spindle density, and the structural design of the cat soleus (SO) and medial gastrocnemius (MG) muscles, we hypothesized that 1) fascicle length changes during overground walking would be both muscle and slope dependent, which would have implications for the muscles' force output as well as sensory function, and that 2) muscle-tendon unit (MTU) and fascicle length changes would be different, in which case MTU length could not be used as an indicator of muscle spindle strain. To test these hypotheses, we quantified muscle fascicle length changes and compared them with length changes of the whole MTU in the SO and MG during overground walking at various slopes (0, +/- 25, +/- 50, +75, and +100%). The SO and MG were surgically instrumented with sonomicrometry crystals and fine-wire electromyogram electrodes to measure changes in muscle fascicle length and muscle activity, respectively. MTU lengths were calculated using recorded ankle and knee joint angles and a geometric model of the hindlimb. The resultant joint moments were calculated using inverse dynamics analysis to infer muscle loading. It was found that although MTU length and velocity profiles of the SO and MG appeared similar, length changes and velocities of muscle fascicles were substantially different between the two muscles. Fascicle length changes of both SO and MG were significantly affected by slope intensity acting eccentrically in downslope walking (-25 to -50%) and concentrically in upslope walking (+25 to +100%). The differences in MTU and fascicle behaviors in both the SO and MG muscles during slope walking were explained by the three distinct features of these muscles: 1) the number of joints spanned, 2) the pennation angle, and 3) the in-series elastic component. It was further suggested that the potential role of length feedback from muscle spindles is both task and muscle dependent. PMID:19164776

  17. Ultrasound strain zero-crossing elasticity measurement in assessment of renal allograft cortical hardness: a preliminary observation.

    PubMed

    Gao, Jing; Rubin, Jonathan M

    2014-09-01

    To determine whether ultrasound strain zero-crossing elasticity measurement can be used to discriminate moderate cortical fibrosis or inflammation in renal allografts, we prospectively assessed cortical hardness with quasi-static ultrasound elastography in 38 renal transplant patients who underwent kidney biopsy from January 2013 to June 2013. With the Banff score criteria for renal cortical fibrosis as gold standard, 38 subjects were divided into two groups: group 1 (n = 18) with ≤25% cortical fibrosis and group 2 (n = 20) with >26% cortical fibrosis. We then divided this population again into group 3 (n = 20) with ≤ 25% inflammation and group 4 (n = 18) with >26% inflammation based on the Banff score for renal parenchyma inflammation. To estimate renal cortical hardness in both population divisions, we propose an ultrasound strain relative zero-crossing elasticity measurement (ZC) method. In this technique, the relative return to baseline, that is zero strain, of strain in the renal cortex is compared with that of strain in reference soft tissue (between the abdominal wall and pelvic muscles). Using the ZC point on the reference strain decompression slope as standard, we determined when cortical strain crossed zero during decompression. ZC was negative when cortical strain did not return or returned after the reference, whereas ZC was positive when cortical strain returned ahead of the reference. Fisher's exact test was used to examine the significance of differences in ZC between groups 1 and 2 and between groups 3 and 4. The accuracy of ZC in determining moderate cortical fibrosis and moderate inflammation was examined by receiver operating characteristic analysis. The intra-class correlation coefficient and analysis of variance were used to test inter-rater reliability and reproducibility. ZC had good inter-observer agreement (ICC = 0.912) and reproducibility (p = 0.979). ZCs were negative in 18 of 18 cases in group 1 and positive in 19 of 20 cases in

  18. How do people define moderation?

    PubMed

    vanDellen, Michelle R; Isherwood, Jennifer C; Delose, Julie E

    2016-06-01

    Eating in moderation is considered to be sound and practical advice for weight maintenance or prevention of weight gain. However, the concept of moderation is ambiguous, and the effect of moderation messages on consumption has yet to be empirically examined. The present manuscript examines how people define moderate consumption. We expected that people would define moderate consumption in ways that justified their current or desired consumption rather than view moderation as an objective standard. In Studies 1 and 2, moderate consumption was perceived to involve greater quantities of an unhealthy food (chocolate chip cookies, gummy candies) than perceptions of how much one should consume. In Study 3, participants generally perceived themselves to eat in moderation and defined moderate consumption as greater than their personal consumption. Furthermore, definitions of moderate consumption were related to personal consumption behaviors. Results suggest that the endorsement of moderation messages allows for a wide range of interpretations of moderate consumption. Thus, we conclude that moderation messages are unlikely to be effective messages for helping people maintain or lose weight. PMID:26964691

  19. Muscle disease.

    PubMed

    Tsao, Chang-Yong

    2014-02-01

    On the basis of strong research evidence, Duchenne muscular dystrophy (DMD), the most common severe childhood form of muscular dystrophy, is an X-linked recessive disorder caused by out-of-frame mutations of the dystrophin gene. Thus, it is classified asa dystrophinopathy. The disease onset is before age 5 years. Patients with DMD present with progressive symmetrical limb-girdle muscle weakness and become wheelchair dependent after age 12 years. (2)(3). On the basis of some research evidence,cardiomyopathy and congestive heart failure are usually seen in the late teens in patients with DMD. Progressive scoliosis and respiratory in sufficiency often develop once wheelchair dependency occurs. Respiratory failure and cardiomyopathy are common causes of death, and few survive beyond the third decade of life. (2)(3)(4)(5)(6)(7). On the basis of some research evidence, prednisone at 0.75 mg/kg daily (maximum dose, 40 mg/d) or deflazacort at 0.9 mg/kg daily (maximum dose, 39 mg/d), a derivative of prednisolone (not available in the United States), as a single morning dose is recommended for DMD patients older than 5 years, which may prolong independent walking from a few months to 2 years. (2)(3)(16)(17). Based on some research evidence, treatment with angiotensin-converting enzyme inhibitors, b-blockers, and diuretics has been reported to be beneficial in DMD patients with cardiac abnormalities. (2)(3)(5)(18). Based on expert opinion, children with muscle weakness and increased serum creatine kinase levels may be associated with either genetic or acquired muscle disorders (Tables 1 and 3). (14)(15) PMID:24488829

  20. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  1. FLUID MODERATED REACTOR

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1957-10-22

    A reactor which utilizes fissionable fuel elements in rod form immersed in a moderator or heavy water and a means of circulating the heavy water so that it may also function as a coolant to remove the heat generated by the fission of the fuel are described. In this design, the clad fuel elements are held in vertical tubes immersed in heavy water in a tank. The water is circulated in a closed system by entering near the tops of the tubes, passing downward through the tubes over the fuel elements and out into the tank, where it is drawn off at the bottom, passed through heat exchangers to give up its heat and then returned to the tops of the tubes for recirculation.

  2. Eye muscle repair - discharge

    MedlinePlus

    ... Lazy eye repair - discharge; Strabismus repair - discharge; Extraocular muscle surgery - discharge ... You or your child had eye muscle repair surgery to correct eye muscle ... term for crossed eyes is strabismus. Children most often ...

  3. Extraocular muscle function testing

    MedlinePlus

    Extraocular muscle function testing examines the function of the eye muscles. A health care provider observes the movement of ... evaluate weakness or other problem in the extraocular muscles. These problems may result in double vision or ...

  4. Eye muscle repair - discharge

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000111.htm Eye muscle repair - discharge To use the sharing features on ... enable JavaScript. You or your child had eye muscle repair surgery to correct eye muscle problems that ...

  5. Electromyography of the perineal striated muscles during cystometry.

    PubMed

    Vereecken, R L; Derluyn, J; Verduyn, H

    1975-01-01

    The electromyographic patterns of the external urethral sphincter, the anal sphincter, and the levator ani during cystometries have been analyzed. Synchronized activity changes occur during abdominal straining. Muscle fatigue is very pronounced. Activity may be less synchronized during bladder filling and micturition, even in normal cystometries. In neurogenic diseases, true dyssynergia between the striated muscles may be observed. PMID:1118953

  6. Muscle shortening velocity depends on tissue inertia and level of activation during submaximal contractions.

    PubMed

    Ross, Stephanie A; Wakeling, James M

    2016-06-01

    In order to perform external work, muscles must do additional internal work to deform their tissue, and in particular, to overcome the inertia due to their internal mass. However, the contribution of the internal mass within a muscle to the mechanical output of that muscle has only rarely been studied. Here, we use a dynamic, multi-element Hill-type muscle model to examine the effects of the inertial mass within muscle on its contractile performance. We find that the maximum strain-rate of muscle is slower for lower activations and larger muscle sizes. As muscle size increases, the ability of the muscle to overcome its inertial load will decrease, as muscle tension is proportional to cross-sectional area and inertial load is proportional to mass. Thus, muscles that are larger in size will have a higher inertial cost to contraction. Similarly, when muscle size and inertial load are held constant, decreasing muscle activation will increase inertial cost to contraction by reducing muscle tension. These results show that inertial loads within muscle contribute to a slowing of muscle contractile velocities (strain-rates), particularly at the submaximal activations that are typical during animal locomotion. PMID:27354711

  7. Bones, Muscles, and Joints: The Musculoskeletal System

    MedlinePlus

    ... delay you from getting osteoporosis later in life. Repetitive stress injuries (RSIs) . RSIs are a group of injuries that happen when too much stress is placed on a part of the body, resulting in inflammation (pain and swelling), muscle strain, or tissue damage. This stress generally is from ...

  8. Bones, Muscles, and Joints: The Musculoskeletal System

    MedlinePlus

    ... a girl at risk for female athlete triad. Repetitive stress injuries (RSIs) . RSIs are a group of injuries that happen when too much stress is placed on a part of the body, resulting in inflammation (pain and swelling), muscle strain, or tissue damage. This stress generally occurs from ...

  9. Diffuse 18F-FDG Muscle Uptake in Trichinella spiralis Infection.

    PubMed

    Deroose, Christophe M; Van Weehaeghe, Donatienne; Tousseyn, Thomas; Van Rompuy, Anne-Sophie; Vanderschueren, Steven; Blockmans, Daniel; Gheysens, Olivier

    2016-01-01

    Two patients were referred to our emergency department with myalgia, fever, general malaise, eosinophilia, and elevated serum levels of creatine kinase and troponin T. 18F-FDG PET/CT scan was performed showing a diffuse and homogenous moderately elevated glucose uptake in all muscle groups. Trichinella spiralis infection was confirmed by a muscle biopsy and detection of trichinella antibodies. The muscle biopsy was taken in the left quadriceps because of equal involvement of the skeletal muscles. The differential diagnosis of diffuse 18F-FDG muscle uptake should include trichinella infection, in particular, in the presence of infectious symptoms, eosinophilia, and biochemical signs of muscle damage. PMID:26252328

  10. Age-dependent motor unit remodelling in human limb muscles.

    PubMed

    Piasecki, Mathew; Ireland, Alex; Jones, David A; McPhee, Jamie S

    2016-06-01

    Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements. PMID:26667009

  11. Muscle injuries and strategies for improving their repair.

    PubMed

    Laumonier, Thomas; Menetrey, Jacques

    2016-12-01

    Satellite cells are tissue resident muscle stem cells required for postnatal skeletal muscle growth and repair through replacement of damaged myofibers. Muscle regeneration is coordinated through different mechanisms, which imply cell-cell and cell-matrix interactions as well as extracellular secreted factors. Cellular dynamics during muscle regeneration are highly complex. Immune, fibrotic, vascular and myogenic cells appear with distinct temporal and spatial kinetics after muscle injury. Three main phases have been identified in the process of muscle regeneration; a destruction phase with the initial inflammatory response, a regeneration phase with activation and proliferation of satellite cells and a remodeling phase with maturation of the regenerated myofibers. Whereas relatively minor muscle injuries, such as strains, heal spontaneously, severe muscle injuries form fibrotic tissue that impairs muscle function and lead to muscle contracture and chronic pain. Current therapeutic approaches have limited effectiveness and optimal strategies for such lesions are not known yet. Various strategies, including growth factors injections, transplantation of muscle stem cells in combination or not with biological scaffolds, anti-fibrotic therapies and mechanical stimulation, may become therapeutic alternatives to improve functional muscle recovery. PMID:27447481

  12. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease. PMID:27039885

  13. Noninvasive analysis of human neck muscle function

    NASA Technical Reports Server (NTRS)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  14. Numerical taxonomy of moderately halophilic gram-positive cocci isolated from the Salar de Atacama (Chile).

    PubMed

    Valderrama, M J; Prado, B; del Moral, A; Ríos, R; Ramos-Cormenzana, A; Campos, V

    1991-06-01

    A taxonomic study has been carried out on 22 strains of moderately halophilic motile cocci isolated from the Salar de Atacama (Chile). The 112 phenotypic tests were analyzed by numerical taxonomy using SSM coefficient and the unweighted pair group method of association (UPGMA). At the 67% similarity level, two phenons were obtained: phenon A included 11 strains and phenon B, 11 strains too, whereas the six reference strains did not cluster within these two phenons. These results suggest that moderately halophilic cocci with different phenotypic characteristics from previously described species can be isolated from the hypersaline habitat Salar de Atacama. PMID:1867776

  15. [Consequences of moderate hyperhomocysteinemia in internal medicine].

    PubMed

    Zák, A; Zeman, M

    2004-01-01

    Homocysteine is an intermediate product in the methionine metabolism, which is catalysed by several enzymes with B2, B6, B12 vitamins and folic acid as cofactors. Moderate hyperhomocysteinemia, defined as total homocysteine concentration between 12 to 30 micromol/l, represents an independent risk factor for heart disease, vascular brain disease, phlebothrombosis and thromboembolic complications. It is related to placental abruptions, spina bifida and some neuropsychiatric disorders. Hyperhomocysteinemia is a metabolic syndrome based on interaction between genetic factors (most frequently 677C/T polymorphism of methylentetrahydrofolate reductase), diseases and demographic factors (smoking, aging, hormonal and nutritional factors). Moderate hyperhomocysteinemia occurs in about 20 to 30% of patients with clinical complications of atherosclerosis. Prospective and genetic studies have shown, that moderate hyperhomocysteinemia in healthy persons is only a weak predictor of cardiovascular diseases. Contrary to it, in patients with ischaemic heart disease, renal failure or diabetes mellitus and in thromboembolic disease, hyperhomocysteinemia represents a strong predictor of vascular morbidity and mortality. Toxic effects of hyperhomocysteinemia on the vascular wall can be explained by a chemical modification of lipoproteins and vascular structure, oxidative stress, endothelial dysfunction, inadequate endothelial cell regeneration, smooth muscle cell proliferation or by an accumulation of functionally non sufficient connective tissue. Also thrombogenic effects or an increased expression of cholesterol level controlling proteins and fatty acids in the liver can be considered. Treatment of hyperhomocysteinemia is based on the administration of pharmacological doses of folic acid, B6 and B12 vitamins, which can decrease total homocysteine concentration by 25 to 30%. Such decrease, which is in average 3 micromol/l, results in the decrease of relative risk of ischaemic heart

  16. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  17. [Muscle fiber atrophy].

    PubMed

    Nonaka, Ikuya

    2012-01-01

    Muscle fibers have been classified into two major forms of red (slow twitch) and white (fast twitch) muscles. The red muscle utilizes lipid as energy source through mitochondrial metabolism and function to sustain the position against gravity (sometimes called as antigravity muscle). Under microgravity the red muscle is selectively involved. In our unloading study by hindlimb suspension experiment on rats, the one of the representative red muscle of soleus muscle underwent rapid atrophy; they reduced their weights about 50% after 2 week-unloading. In addition, myofibrils were occasionally markedly disorganized with selective thin filament loss. Mitochondria in the degenerated area were decreased in number. The white muscle fibers in the soleus muscle had mostly transformed to the red ones. It took about 1 month to recover morphologically. The satellite cell playing a major role in muscle regeneration was not activated. There still remained unsolved what are the mechanosensors to keep muscle function under normal gravity. Dr Nikawa's group proposed that one of ubiquitin ligases, Cbl-b is activated under microgravity and induces muscle fiber degeneration. There might be many factors to induce muscle atrophy and degeneration under microgravity. Further study is necessary to explore the pathomechanism of muscle atrophy in disused and under immobility conditions. PMID:23196603

  18. POPLITEUS STRAIN WITH CONCURRENT DELTOID LIGAMENT SPRAIN IN AN ELITE SOCCER ATHLETE: A CASE REPORT

    PubMed Central

    Beaumont, Josh; Tarnay, Lorena; Silvers, Holly

    2013-01-01

    Study Design: Case Report (Differential diagnosis) Background and Purpose: Differential diagnosis of knee pathology after trauma may be difficult when diagnosing an isolated popliteus strain and concurrent medial deltoid ligament sprain. Upon a thorough search of the published literature, the authors found no reports delineating a popliteus strain in professional soccer in the United States. The joints most affected by injury in soccer players are the knee and ankle joints. The purpose of this case report is to describe the presentation of and difficulties encountered in diagnosing a popliteus strain in a Major League Soccer athlete. Case Description: During an in-season away game, an outside defender was slide-tackled from behind when his right shank was caught in an externally rotated position underneath himself and the opposing player. The initial point of contact was made to the proximal third of the posterior right shank with an anteromedially directed force. The medial longitudinal arch of the foot was forced into a more midfoot pronated position and the subtalar joint was forced into eversion. Diagnosis: The athlete was diagnosed with a moderate strain of the right popliteus muscle with a concurrent medial deltoid ligament sprain of the right ankle. This mechanism of injury, pain with passive knee flexion and internal rotation during McMurray's test, pain with Garrick's Test and magnetic resonance imaging (MRI) study confirmed the diagnosis. The athlete returned to full ninety-minute game participation after an intensive 15-day rehabilitation program. Discussion: This case is unique because the injury manifested itself at multiple joints and specifically involved the popliteus muscle. The mechanism of injury can be associated with many other soft tissue injuries to the knee, and thus, may not lead the clinician initially to consider the diagnosis of a popliteus strain. Diagnosis of this entity may be difficult due to the possible shared attachment of the

  19. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  20. Resolving shifting patterns of muscle energy use in swimming fish.

    PubMed

    Gerry, Shannon P; Ellerby, David J

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  1. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  2. Healthy Muscles Matter

    MedlinePlus

    ... keep my muscles more healthy? Definitions What can go wrong? Injuries Almost everyone has had sore muscles ... If you have been inactive, “start low and go slow” by gradually increasing how often and how ...

  3. Eye muscle repair - slideshow

    MedlinePlus

    ... page: //medlineplus.gov/ency/presentations/100062.htm Eye muscle repair - series—Normal anatomy To use the sharing ... the eyeball to the eye socket. The external muscles of the eye are found behind the conjunctiva. ...

  4. Muscle function loss

    MedlinePlus

    ... nervous system that cause muscle function loss include: Amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease) Bell's palsy Botulism ... of recent progress. Curr Opin Rheum Read More Amyotrophic lateral sclerosis Botulism Broken bone Guillain-Barré syndrome Muscle cramps ...

  5. Engineering skeletal muscle repair.

    PubMed

    Juhas, Mark; Bursac, Nenad

    2013-10-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaired. In this article, we will describe current approaches to restore the function of diseased or injured muscle through combined use of myogenic stem cells, biomaterials, and functional tissue-engineered muscle. Furthermore, we will discuss possibilities for expanding the future use of human cell sources toward the development of cell-based clinical therapies and in vitro models of human muscle disease. PMID:23711735

  6. Does mental exertion alter maximal muscle activation?

    PubMed Central

    Rozand, Vianney; Pageaux, Benjamin; Marcora, Samuele M.; Papaxanthis, Charalambos; Lepers, Romuald

    2014-01-01

    Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 min each: (i) high mental exertion (incongruent Stroop task), (ii) moderate mental exertion (congruent Stroop task), (iii) low mental exertion (watching a movie). In each condition, mental exertion was combined with 10 intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 min). Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors. PMID:25309404

  7. Exercising with a Muscle Disease

    MedlinePlus

    ... are: • cramping in muscles (probably related to insufficient energy supply for muscles) • pain in muscles • weakness of exercised muscles • dark urine that looks like cola, following exercise (seek ...

  8. Esterase profile of human masseter muscle.

    PubMed Central

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and iiC. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating isoenzymes. In isoelectric focused gels the major esterases showed isoelectric points around pH 5. Images Fig. 1 Fig. 2 Figs. 3-5 Figs. 6-8 Figs. 9-11 Figs. 12-14 Figs. 15-16 Fig. 17 PMID:3198486

  9. Muscle Session Summary

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth; Feeback, Daniel

    1999-01-01

    Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.

  10. Knee muscle strength in multiple sclerosis: relationship with gait characteristics

    PubMed Central

    Güner, Senem; Hagharı, Sema; Inanıcı, Fatma; Alsancak, Serap; Aytekın, Gokhan

    2015-01-01

    [Purpose] To investigate the relationship between isokinetic knee muscle strength and kinematic, kinetic and spatiotemporal gait parameters of patients with multiple sclerosis (MS). [Subjects and Methods] Twenty-nine MS patients (mean age 31.5±6.5) were investigated in this study. The isokinetic knee muscle strength and gait parameters of MS patients with moderate and severe disability, as determined by the expanded disability status scale (EDSS): EDSS=1–4.5 (n=22, moderate disability) and EDSS>4.5 (n=7, severe disability) were measured. [Results] Isokinetic knee muscle strength, kinematic, kinetic and spatiotemporal gait parameters differed between moderate (EDSS=1–4.5, n=22) and severe disability (EDSS>4.5, n=7). The correlation between each of gait speed, stride length, total range of knee joint movement and the four strength parameters (minimum and maximum quadriceps and hamstring muscle strengths) were significant for the MS group as a whole. Within subgroups, the correlation between minimum hamstring strength and total range of knee movement was significant only in group EDSS>4.5; minimum hamstring correlated with peak knee extensor moment in group EDSS=1–4.5, but at a reduced level of significance. [Conclusion] The present study revealed significant correlations between gait characteristics and isokinetic strength parameters of the quadriceps and hamstring muscles. Our study suggests that rehabilitation protocols for MS patients should include a critical strength training programme particularly for the hamstring and quadriceps muscles. PMID:25931736

  11. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  12. Oxidative Metabolism in Muscle

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Binzoni, T.; Quaresima, V.

    1997-06-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantages and problems of near-infrared spectroscopy measurements, in resting and exercising skeletal muscles studies, are discussed through some representative examples.

  13. Muscle function during takeoff and landing flight in the pigeon (Columba livia).

    PubMed

    Robertson, Angela M Berg; Biewener, Andrew A

    2012-12-01

    This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body

  14. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  15. Exogenously Applied Muscle Metabolites Synergistically Evoke Sensations of Muscle Fatigue and Pain in Human Subjects

    PubMed Central

    Pollak, Kelly A.; Swenson, Jeffrey D.; Vanhaitsma, Timothy A.; Hughen, Ronald W.; Jo, Daehyun; Light, Kathleen C.; Schweinhardt, Petra; Amann, Markus; Light, Alan R.

    2013-01-01

    The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate, and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine if this combination could activate sensations, and if so determined how these subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30-s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis (APB). Infusion of individual metabolites at maximum amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4+300nM ATP+1mM lactate) also evoked no sensation. The infusion of a metabolite-combination found in muscle during moderate endurance-exercise (pH 7.3+400nM ATP+5 mM lactate) produced significant fatigue sensations. Infusion of a metabolite-combination associated with vigorous exercise (pH 7.2+500nM ATP+10mM lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischemic exercise) caused more ache but no additional fatigue-sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate, and ATP leads to fatigue-sensation and eventually pain, probably through activation of ASIC, P2X, and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. PMID:24142455

  16. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. PMID:25770393

  17. Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria.

    PubMed

    Ahmed, Iftikhar; Kudo, Takuji; Abbas, Saira; Ehsan, Muhammad; Iino, Takao; Fujiwara, Toru; Ohkuma, Moriya

    2014-07-01

    A rod-shaped, motile, facultatively anaerobic and moderately halotolerant plant-growth-promoting actinobacterial strain, designated NCCP-11(T), was isolated from paddy grains. To delineate its taxonomic position, the strain was subjected to a polyphasic characterization. Cells of strain NCCP-11(T) grew at 10-37 °C (optimum 28-32 °C), at pH 6-9 (optimum pH 7) and in 0-12% (w/v) NaCl (optimum 1-2%) in broth medium. Based on 16S rRNA gene sequence analysis, strain NCCP-11(T) showed highest similarity to the type strains of Cellulomonas hominis (98.99%) and Cellulomonas denverensis (98.09 %) and less than 97 % with other closely related taxa. The chemotaxonomic data [major menaquinone: MK-9(H4); cell-wall peptidoglycan: type A4β; major fatty acids: anteiso-C15 : 0, C16 : 0, C14 : 0 and anteiso-C17 : 0; major polar lipids: diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides and two unknown polar lipids] also supported the affiliation of strain NCCP-11(T) to the genus Cellulomonas. The level of DNA-DNA relatedness between strain NCCP-11(T) and the two type strains mentioned above was less than 42.7%. On the basis of DNA-DNA relatedness, physiological and biochemical characteristics and phylogenetic position, strain NCCP-11(T) can be differentiated from species of the genus Cellulomonas with validly published names and thus represents a novel species, for which the name Cellulomonas pakistanensis sp. nov. is proposed. The type strain is NCCP-11(T) ( = DSM 24792(T) = JCM 18755(T) = KCTC 19798(T)). PMID:24733176

  18. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOEpatents

    Abrevaya, Hayim

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  19. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  20. Muscle Activation Patterns When Passively Stretching Spastic Lower Limb Muscles of Children with Cerebral Palsy

    PubMed Central

    Bar-On, Lynn; Aertbeliën, Erwin; Molenaers, Guy; Desloovere, Kaat

    2014-01-01

    The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8±3.8 yrs; bilateral/unilateral involvement n =  32/22; Gross Motor Functional Classification Score I–IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental

  1. Muscle and bone-aging and space.

    PubMed

    Rittweger, J; Gunga, H C; Felsenberg, D; Kirsch, K A

    1999-07-01

    One of the major concerns of aging, but also during and after spaceflight, is loss of muscle and bone mass. In aging, this is associated with an increasing risk of fractures. Recently, the possibility of aged and aging astronauts has been arisen. Thus considering the perspectives of aging and space we want to discuss, in how far the adaptations during spaceflight and during aging interfere. In other words: does spaceflight push the astronauts along the irreversible axis of aging? And which of the spaceflight effects will be reversible? Bones adapt to their mechanical function. For convenience, a simple model has been proposed: Bone, as a 'mechanostat', keeps the strains within certain thresholds, namely one threshold for modeling, i.e. formation of new bone, and one for remodeling, i.e. repair and removal. These thresholds are usually expressed as strains. A crucial role in physiological strain detection is obviously played by the osteocytes. The largest forces in the musculo-skeletal systems arise from muscle contractions. The reason for this are the poor levers, against which the muscles pull. For example: during a one-leg vertical jump, a young subject (body weight 70 kg) exerts a vertical ground reaction force of 2500 N. Due to the lever ratio of os calcis and forefoot around the tibio-talar joint, the calf muscles must exert a force 3 times greater, so that together with the body weight the bones of the lower leg are loaded with 10000 N, i.e. 14 times the body weight. Accordingly, good correlations can be observed between muscle strength and bone strength, or muscle mass and bone mass. It is therefore reasonable to discuss the accumulated knowledge about loss of muscle and bone in a combined approach. In this respect, two points must be considered: (i) for structural adaptation of bone, the muscular variable of interest arc force and rate of force development, but not power, and (ii) women before menopause have a greater bone to muscle ratio than men. PMID

  2. Muscle function in avian flight: achieving power and control

    PubMed Central

    Biewener, Andrew A.

    2011-01-01

    Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern. PMID:21502121

  3. LOWER EXTREMITY PEAK POWER TRAINING IN ELDERLY SUBJECTS WITH MODERATE MOBILITY LIMITATIONS: A RANDOMIZED CONTROLLED TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the effects of a lower extremity high-velocity high-power exercise training intervention in older adults with moderate mobility impairments, and to investigate whether peak power training results in greater increases of peak muscle power output compared to traditional progressive resistan...

  4. Muscle Changes in Aging

    PubMed Central

    Siparsky, Patrick N.; Kirkendall, Donald T.; Garrett, William E.

    2014-01-01

    Muscle physiology in the aging athlete is complex. Sarcopenia, the age-related decrease in lean muscle mass, can alter activity level and affect quality of life. This review addresses the microscopic and macroscopic changes in muscle with age, recognizes contributing factors including nutrition and changes in hormone levels, and identifies potential pharmacologic agents in clinical trial that may aid in the battle of this complex, costly, and disabling problem. Level of Evidence: Level 5. PMID:24427440

  5. Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth

    PubMed Central

    Lien, Kuo-Cheng; Mooney, Brian; DeLancey, John O. L.; Ashton-Miller, James A.

    2005-01-01

    OBJECTIVE: To develop a three-dimensional computer model to predict levator ani muscle stretch during vaginal birth. METHODS: Serial magnetic resonance images from a healthy nulliparous 34-year-old woman, published anatomic data, and engineering graphics software were used to construct a structural model of the levator ani muscles along with related passive tissues. The model was used to quantify pelvic floor muscle stretch induced during the second stage of labor as a model fetal head progressively engaged and then stretched the iliococcygeus, pubococcygeus, and puborectalis muscles. RESULTS: The largest tissue strain reached a stretch ratio (tissue length under stretch/original tissue length) of 3.26 in medial pubococcygeus muscle, the shortest, most medial and ventral levator ani muscle. Regions of the ileococcygeus, pubococcygeus, and puborectalis muscles reached maximal stretch ratios of 2.73, 2.50, and 2.28, respectively. Tissue stretch ratios were proportional to fetal head size: For example, increasing fetal head diameter by 9% increased medial pubococcygeus stretch by the same amount. CONCLUSION: The medial pubococcygeus muscles undergo the largest stretch of any levator ani muscles during vaginal birth. They are therefore at the greatest risk for stretch-related injury. PMID:14704241

  6. An artificial muscle computer

    NASA Astrophysics Data System (ADS)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  7. MUSCLE INJURIES IN ATHLETES

    PubMed Central

    Barroso, Guilherme Campos; Thiele, Edilson Schwansee

    2015-01-01

    This article had the aim of demonstrating the physiology, diagnosis and treatment of muscle injuries, focusing on athletes and their demands and expectations. Muscle injuries are among the most common complaints in orthopedic practice, occurring both among athletes and among non-athletes. These injuries present a challenge for specialists, due to the slow recovery, during which time athletes are unable to take part in training and competitions, and due to frequent sequelae and recurrences of the injuries. Most muscle injuries (between 10% and 55% of all injuries) occur during sports activities. The muscles most commonly affected are the ischiotibial, quadriceps and gastrocnemius. These muscles go across two joints and are more subject to acceleration and deceleration forces. The treatment for muscle injuries varies from conservative treatment to surgery. New procedures are being used, like the hyperbaric chamber and the use of growth factors. However, there is still a high rate of injury recurrence. Muscle injury continues to be a topic of much controversy. New treatments are being researched and developed, but prevention through muscle strengthening, stretching exercises and muscle balance continues to be the best “treatment”. PMID:27027021

  8. Study of cervical muscle response and injury of driver during a frontal vehicle collision.

    PubMed

    Gao, Zhenhai; Li, Chuzhao; Hu, Hongyu; Zhao, Hui; Chen, Chaoyang; Yu, Huili

    2015-01-01

    Frontal vehicle collisions can cause injury to a driver's cervical muscles resulting from intense changes in muscle strain and muscle load. This study investigated the influence of collision forces in a sled test environment using a modified Hybrid III 50th percentile dummy equipped with simulated spring-type muscles. Cervical muscle responses including strain and load of the sternocleidomastoid (SCM), splenius capitis (SPL), and trapezius (TRP) were analyzed, and muscle injury was assessed. The SCM, SPL, and TRP suffered average peak muscle strains of 21%, 40%, and 23%, respectively, exceeding the injury threshold. The average peak muscle loads of the SCM, SPL and TRP were 11 N, 25 N, and 25 N, respectively, lower than the ultimate failure load. The SPL endured the largest injury, while the injuries to the SCM and TRP were relatively small. This is a preliminary study to assess the cervical muscle of driver during a frontal vehicle collision. This study provides a foundation for investigating the muscle response and injury in sled test environments, which can lead to the improvement of occupant protections. PMID:26406056

  9. Elevator Muscle Anterior Resection: A New Technique for Blepharoptosis.

    PubMed

    Zigiotti, Gian Luigi; Delia, Gabriele; Grenga, Pierluigi; Pichi, Francesco; Rechichi, Miguel; Jaroudi, Mahmoud O; d'Alcontres, Francesco Stagno; Lupo, Flavia; Meduri, Alessandro

    2016-01-01

    Blepharoptosis is a condition of inadequate upper eyelid position, with a downward displacement of the upper eyelid margin resulting in obstruction of the superior visual field. Levator resection is an effective technique that is routinely used to correct aponeurotic ptosis. The anterior levator resection is the procedure of choice in moderate blepharoptosis when there is moderate to good levator muscle function, furthermore, with an anterior approach, a greater resection can be achieved than by a conjunctival approach. The authors describe a modification in the Putterman technique with a resection done over a plicated elevator, plication that was suggested by Mustardè. The technique has been named as elevator muscle anterior resection. The elevator muscle anterior resection inspires from the Fasanella-Servat operation by the use of a clamp, making the operation simple and predictable. PMID:26703054

  10. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOEpatents

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  11. Recognition and repair of the slipped rectus muscle.

    PubMed

    Plager, D A; Parks, M M

    1988-01-01

    Since the first description of the slipped muscle as a complication of strabismus surgery in 1979, the distinctions between it and the lost muscle have become blurred both in the literature and in general understanding. Sixtytwo slipped muscles in 52 consecutive patients were reviewed in an effort to more fully describe this Important and often unrecognized entity. The range of clinical presentation of slipped muscle is large: from the immediate large postoperative over- or undercorrection with absent duction, to the gradual moderate deviation with subtly reduced excursion. The auctions provided by the slipped muscles ranged from complete absence to almost normal, with an average of 19° excursion beyond the midline. At surgery, recognizing the empty muscle capsule attached to the sclera with the tendon slipped posteriorly within it is imperative for its repair. Recognition is facilitated by suspecting it from clinical findings. Correction of the motility defect requires advancement of the muscle tissue and not just its empty capsule. Slippage can probably be prevented by using a surgical technique, which firmly locks the suture to the tendon and not just to the muscle capsule. PMID:24880054

  12. Ischemia causes muscle fatigue.

    PubMed

    Murthy, G; Hargens, A R; Lehman, S; Rempel, D M

    2001-05-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue. PMID:11398857

  13. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  14. Cryogenic moderator simulations : confronting reality.

    SciTech Connect

    Iverson, E. B.

    1999-01-06

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  15. MURINE PULMONARY RESPONSE TO CHRONIC HYPOXIA IS STRAIN SPECIFIC

    PubMed Central

    Tada, Yuji; Laudi, Sven; Harral, Julie; Carr, Michelle; Ivester, Charles; Tanabe, Nobuhiro; Takiguchi, Yuichi; Tatsumi, Koichiro; Kuriyama, Takayuki; Nichols, William C.; West, James

    2013-01-01

    Information concerning the effects of genetic variation between different background strains on hemodynamic, morphometric, and gene expression response to hypoxia would be useful. Three strains of mice were kept in hypoxia and phenotyped followed by gene profiling analysis. Among the variables examined, hematocrit, right heart muscularization, and right ventricular systolic pressure showed a strain-specific effect. Increased gene expression of inflammatory, muscle, and angiogenesis genes were seen in all strains, though the specific genes changed varied among groups. These results suggest that different strains use different gene expression mechanisms to adapt to the challenge of chronic hypoxia, resulting in modified phenotypic changes. PMID:18600498

  16. Types of muscle tissue (image)

    MedlinePlus

    The 3 types of muscle tissue are cardiac, smooth, and skeletal. Cardiac muscle cells are located in the walls of the heart, appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow ...

  17. Pelvic floor muscle training exercises

    MedlinePlus

    Pelvic floor muscle training exercises are a series of exercises designed to strengthen the muscles of the pelvic floor. ... Pelvic floor muscle training exercises are recommended for: Women ... Men with urinary stress incontinence after prostate surgery ...

  18. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J.; Talbot, J. M.

    1984-01-01

    A trophy of skeletal muscle; muscle a trophy associated with manned space flight; the nature, causes, and mechanisms of muscle atrophy associated with space flight, selected physiological factors, biochemical aspects, and countermeasures are addressed.

  19. Types of muscle tissue (image)

    MedlinePlus

    ... appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow visceral organs, ... shaped, and are also under involuntary control. Skeletal muscle fibers occur in muscles which are attached to the ...

  20. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  1. Autoimmune muscle disease.

    PubMed

    Mammen, Andrew

    2016-01-01

    Patients with polymyositis (PM), dermatomyositis (DM), and immune-mediated necrotizing myopathy (IMNM) present with the subacute onset of symmetric proximal muscle weakness, elevated muscle enzymes, myopathic findings on electromyography, and autoantibodies. DM patients are distinguished by their cutaneous manifestations. Characteristic features on muscle biopsy include the invasion of nonnecrotic muscle fibers by T cells in PM, perifascicular atrophy in DM, and myofiber necrosis without prominent inflammation in IMNM. Importantly, these are regarded as autoimmune diseases and most patients respond partially, if not completely, to immunosuppressive therapy. Patients with inclusion body myositis (IBM) usually present with the insidious onset of asymmetric weakness in distal muscles (e.g., wrist flexors, and distal finger flexors), often when more proximal muscle groups are relatively preserved. Although IBM muscle biopsies usually have focal invasion of myofibers by lymphocytes, the majority of IBM biopsies also include rimmed vacuoles. While most IBM patients do have autoantibodies, treatment with immunosuppressive agents does not improve their clinical course. Along with the presence of abnormally aggregated proteins on muscle biopsy, the refractory nature and relentless course of IBM suggest that the underlying pathophysiology may include a dominant myodegenerative component. This chapter will focus on the epidemiology, clinical presentation, and treatment of the autoimmune myopathies and IBM. An emphasis will be placed on recent advances, indicating that these are a diverse family of diseases and that each of more than a dozen myositis autoantibodies is associated with a distinct clinical phenotype. PMID:27112692

  2. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  3. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice

    PubMed Central

    Xia, Zhi; Cholewa, Jason; Zhao, Yan; Yang, Yue-Qin; Shang, Hua-Yu; Guimarães-Ferreira, Lucas; Naimo, Marshall Alan; Su, Quan-Sheng; Zanchi, Nelo Eidy

    2016-01-01

    Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown. PMID:27144582

  4. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice.

    PubMed

    Xia, Zhi; Cholewa, Jason; Zhao, Yan; Yang, Yue-Qin; Shang, Hua-Yu; Guimarães-Ferreira, Lucas; Naimo, Marshall Alan; Su, Quan-Sheng; Zanchi, Nelo Eidy

    2016-01-01

    Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1(®) mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown. PMID:27144582

  5. Onion artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  6. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  7. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease.

    PubMed

    Lee, Dale Y; Wetzsteon, Rachel J; Zemel, Babette S; Shults, Justine; Organ, Jason M; Foster, Bethany J; Herskovitz, Rita M; Foerster, Debbie L; Leonard, Mary B

    2015-03-01

    Measures of muscle mass or size are often used as surrogates of forces acting on bone. However, chronic diseases may be associated with abnormal muscle force relative to muscle size. The muscle-bone unit was examined in 64 children and adolescents with new-onset Crohn's disease (CD), 54 with chronic kidney disease (CKD), 51 treated with glucocorticoids for nephrotic syndrome (NS), and 264 healthy controls. Muscle torque was assessed by isometric ankle dynamometry. Calf muscle cross-sectional area (CSA) and tibia cortical section modulus (Zp) were assessed by quantitative CT. Log-linear regression was used to determine the relations among muscle CSA, muscle torque, and Zp, adjusted for tibia length, age, Tanner stage, sex, and race. Muscle CSA and muscle torque-relative-to-muscle CSA were significantly lower than controls in advanced CKD (CSA -8.7%, p = 0.01; torque -22.9%, p < 0.001) and moderate-to-severe CD (CSA -14.1%, p < 0.001; torque -7.6%, p = 0.05), but not in NS. Zp was 11.5% lower in advanced CKD (p = 0.005) compared to controls, and this deficit was attenuated to 6.7% (p = 0.05) with adjustment for muscle CSA. With additional adjustment for muscle torque and body weight, Zp was 5.9% lower and the difference with controls was no longer significant (p = 0.09). In participants with moderate-to-severe CD, Zp was 6.8% greater than predicted (p = 0.01) given muscle CSA and torque deficits (R(2)  = 0.92), likely due to acute muscle loss in newly-diagnosed patients. Zp did not differ in NS, compared with controls. In conclusion, muscle torque relative to muscle CSA was significantly lower in CKD and CD, compared with controls, and was independently associated with Zp. Future studies are needed to determine if abnormal muscle strength contributes to progressive bone deficits in chronic disease, independent of muscle area. © 2014 American Society for Bone and Mineral Research. PMID:25264231

  8. Dietary protein and muscle in older persons

    PubMed Central

    Paddon-Jones, Douglas; Leidy, Heather

    2014-01-01

    Purpose of Review To highlight recent advances in nutrition and protein research that have the potential to improve health outcomes and status in aging adults. Recent Findings The beneficial effects of dietary protein on muscle health in older adults continue to be refined. Recent research has bolstered support for moderately increasing protein consumption beyond the current RDA by adopting a meal-based approach in lieu of a less specific daily recommendation. Results from muscle protein anabolism, appetite regulation and satiety research support that contention that meeting a protein threshold (approximately 30 g/meal) represents a promising strategy for middle-aged and older adults concerned with maintaining muscle mass while controlling body fat. Summary Optimizing dietary protein intake to improve health requires a detailed consideration of topics including muscle protein anabolism, appetite control and satiety. While each area of research continues to advance independently, recent collaborative and translational efforts have highlighted broad, translational consistencies related to the daily distribution and quantity of dietary protein. PMID:24310053

  9. A muscle's force depends on the recruitment patterns of its fibers.

    PubMed

    Wakeling, James M; Lee, Sabrina S M; Arnold, Allison S; de Boef Miara, Maria; Biewener, Andrew A

    2012-08-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  10. Kinematic modeling of single muscle fiber during diaphragm shortening.

    PubMed

    Kyckelhahn, Brian A; Nason, Patricia B; Tidball, James G; Boriek, Aladin M

    2003-03-01

    Understanding the kinematics of the diaphragm muscle at the single fiber level is important in understanding the mechanics of its membrane. Nevertheless, the geometric parameters of single muscle fiber contraction remain poorly understood. We modeled the kinematics of a single muscle fiber of the diaphragm to determine the relationships among fiber shape, perimeter of the fiber cross-section, and apparent surface area of the fiber during muscle shortening. We used the models to identify which constraints on the geometric parameters are most consistent with physiological data on diaphragmatic muscle shortening. Our kinematic models use isovolumic fibers with elliptical cross-sections, and these models have the following properties: (1) constant cross-sectional shape, (2) inextensible cross-sectional perimeter, (3) constant cross-sectional transverse dimension, or (4) constant apparent surface area. These models were investigated during muscle shortening of the diaphragm from functional residual capacity to total lung capacity. The model that matches physiologic data best has zero transverse strain and has a relationship between fiber shape and muscle shortening consistent with published data on single muscle fiber mechanics. PMID:12594994