Science.gov

Sample records for moderate operative temperature

  1. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  2. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 2. APPENDICES

    EPA Science Inventory

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate volatilities (boiling points). The data in the Appendix contain: incinerator operating data, laboratory analyses, sampl...

  3. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Qi, Haiying; Hou, Bo; Chen, Changhe; Xu, Xuchang

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 degrees C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters, such as bed temperature, CO2 concentration, and solids concentration. In addition, structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 degrees C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. PMID:16856750

  4. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization

    SciTech Connect

    Jie Zhang; Changfu You; Haiying Qi; Bo Hou; Changhe Chen; Xuchang Xu

    2006-07-01

    A moderate temperature dry desulfurization process at 600-800 C was studied in a pilot-scale circulating fluidized bed flue gas desulfurization (CFB-FGD) experimental facility. The desulfurization efficiency was investigated for various operating parameters. Structural improvements in key parts of the CFB-FGD system, i.e., the cyclone separator and the distributor, were made to improve the desulfurization efficiency and flow resistance. The experimental results show that the desulfurization efficiency increased rapidly with increasing temperature above 600 C due to enhanced gas diffusion and the shift of the equilibrium for the carbonate reaction. The sorbent sulfated gradually after quick carbonation of the sorbent with a long particle residence time necessary to realize a high desulfurization ratio. A reduced solids concentration in the bed reduced the particle residence time and the desulfurization efficiency. A single-stage cyclone separator produced no improvement in the desulfurization efficiency compared with a two-stage cyclone separator. Compared with a wind cap distributor, a large hole distributor reduced the flow resistance which reduced the desulfurization efficiency due to the reduced bed pressure drop and worsened bed fluidization. The desulfurization efficiency can be improved by increasing the collection efficiency of fine particles to prolong their residence time and by improving the solids concentration distribution to increase the gas-solid contact surface area. 16 refs., 9 figs.

  5. Low to moderate temperature nanolaminate heater

    DOEpatents

    Eckels, J. Del; Nunes, Peter J.; Simpson, Randall L.; Hau-Riege, Stefan; Walton, Chris; Carter, J. Chance; Reynolds, John G.

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  6. Moderate temperature rechargeable sodium batteries

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Rupich, M. W.; Pitts, L.; Elliott, J. E.

    1983-01-01

    Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles.

  7. Pressure inactivation of microorganisms at moderate temperatures

    NASA Astrophysics Data System (ADS)

    Butz, P.; Ludwig, H.

    1986-05-01

    The inactivation of bacteria, bacterial spores, yeasts and molds by high hydrostatic pressure was investigated over a pressure range up to 3000 bar. Survival curves were measured as a function of temperature and pressure applied on the microorganisms. Conditions are looked for under which heat or radiation sensitive pharmaceutical preparations can be sterilized by high pressure treatment at moderate temperatures. All organisms tested can be inactivated in the range of 2000-2500 bar and between 40-60 degrees.

  8. Influence of moderate cycling on scrotal temperature.

    PubMed

    Jung, A; Strauss, P; Lindner, H J; Schuppe, H C

    2008-08-01

    Testicular temperature highly correlates with scrotal temperature. It has been postulated that cycling is associated with increased scrotal temperatures with time and consecutively with impaired semen quality. The aim of this study was to evaluate the influence of moderate cycling on scrotal temperature during highly standardized conditions in an experimental lab. A total of 25 volunteers without a history of infertility and normal andrological examination were included for scrotal temperature evaluation. Scrotal temperatures were measured every minute with a portable data recorder connected with two thermistor temperature sensors, which were attached on either side of the scrotum. A further thermistor sensor was attached on the central surface of the bicycle saddle. Ambient temperature in the study room was adjusted to 22 degrees C throughout the whole experiment. All volunteers started the experiment at the same daytime. Clothing of the volunteers consisted of standardized cotton wool trousers and shirts fitting to body size. After acclimatization to the study room in a sitting posture, each volunteer cycled on an exercise cycle for 60 min with a power of 25 Watt representing a speed of 25.45 km/h respectively. The saddle surface temperature reached in the median 35.59 degrees C after 60 min cycling. Median values of scrotal temperatures increased from 35.75 degrees C at the beginning to 35.82 degrees C after 60 min for the left side and from 35.50 to 35.59 degrees C for the right side. No correlation between cycling duration and scrotal temperatures could be found using multivariate anova for repeated measurements. However, scrotal temperatures during cycling were significantly lower (p < 0.001) compared with the last 10 min in sitting posture before starting cycling with a difference of 1.31 degrees C for the left and 1.46 degrees C for the right side. The present study suggests that moderate cycling under standardized conditions with a power of 25 Watt is not

  9. Tevatron lower temperature operation

    SciTech Connect

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R&D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved.

  10. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  11. Temperature-Operated Valve

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    Bimetallic valve stem positions orifice at end of inner pipe orifice so liquid flows to outlet when temperature lies within small range of preset value. If liquid too cold or too hot, orifices misaligned and liquid returned to source. Such as in shower, valve prevents outflow of dangerously hot or uncomfortably cold water.

  12. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  13. Capillary gas chromatography with two new moderately high temperature phases.

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1972-01-01

    Gas chromatography test results are presented for two new moderately high-temperature phases of Dexsil 400-GC with free hydroxyl end groups (uncapped) and with end groups covered by trimethyl silyl groups (capped). The two Dexsil 400-GC phases were tested for their ability to resolve N-TFA-DL-(+)-2-butyl esters and n-butyl esters, as well as fatty acid methyl esters and hydrocarbon standards. Generally the more polar uncapped phase was superior to the capped phase in all separation comparisons, except for the hydrocarbons.

  14. Detection of long wavelength infrared at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Tredwell, T. J.

    1977-01-01

    Technical approaches for the advanced development of 8-12 micrometer detectors operating at elevated temperatures were defined. The theoretical limits to performance of 8-12 micrometer quantum detectors (photoconductive and photovoltaic) and thermal detectors (pyroelectrics, bolometers etc). An analytic model of signal and noise in both quantum detectors and pyroelectric detectors was developed and candidate materials for both detector types were identified and examined. The present status of both quantum and thermal detectors was assessed as well as the parameters limiting operating temperature and detectivity. The areas of research and development likely to lead to detector performance near the theoretical limit are identified.

  15. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  16. Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kobel, Mark; Rogers, Paul; Kaya, Tarik; Paquin, Krista C. (Technical Monitor)

    2000-01-01

    Loop heat pipes (LHPs) are versatile two-phase heat transfer devices that have gained increasing acceptance for space and terrestrial applications. The operating temperature of an LHP is a function of its operating conditions. The LHP usually reaches a steady operating temperature for a given heat load and sink temperature. The operating temperature will change when the heat load and/or the sink temperature changes, but eventually reaches another steady state in most cases. Under certain conditions, however, the loop operating temperature never really reaches a true steady state, but instead becomes oscillatory. This paper discusses the temperature oscillation phenomenon using test data from a miniature LHP.

  17. Operation of FPGAs at Extremely Low Temperatures

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Cozy, Scott; Lacayo, Veronica; Bakhshi, Alireza; Stern, Ryan; Mojarradi, Mohammad; Johnson, Travis; Kolawa, Elizabeth; Bolotin, Gary; Gregoire, Tim; Ramesham, Rajeshuni

    2004-01-01

    This paper describes the operation of FPGAs at very low temperatures eg -160(deg)C. Both Actel and Xilinx parts are tested It was found that low temperature operations is not a problem with the parts tested, but there is a problem with powering on an FPGA at cold temperatures.

  18. Measurement of cryogenic moderator temperature effects in a small heterogeneous thermal reactor

    SciTech Connect

    Hoovler, G.S.; Ball, R.M.; Lewis, R.H.

    1994-12-31

    Past papers have described a critical experiment (CX) built at Sandia National Laboratories to investigate the neutronic behavior of the particle-bed reactor (PBK). Among the experiments previously reported were tests to measure the reactivity effect of uniform temperature variations between 20 and 80{degree}C. This paper describes additional experiments designed to examine the effects of cryogenic moderator temperatures on core reactivity and neutron spectrum. The general importance of temperature effects to the design of the PBR have been previously discussed. A unique feature of the PBR is that the moderator may be at cryogenic temperatures during reactor startup. Because temperature effects in small, heterogeneous thermal reactors can be significant and because we found no integral measurements with cryogenic moderators in such systems, an experiment with a cryogenic moderator was designed and performed in the CX as an extension to the isothermal measurements previously reported.

  19. Transport of tritium in SS316 at moderate temperatures

    SciTech Connect

    Naoe, S.; Torikai, Y.; Penzhorn, R. D.; Akaishi, K.; Watanabe, K.; Matsuyama, M.

    2008-07-15

    From tritium release experiments with stainless steel 316 carried out at several temperatures and tritium depth profiles of tritium-depleted specimen information on the transport of tritium by two diverse techniques was obtained. The results could be interpreted by a one dimensional diffusion model. The activation energy for the diffusion of tritium through stainless steel was found to be 61.3 kJ/mol. (authors)

  20. Recently developed well test insrumentation for low-to-moderate temperature hydrothermal reservoirs

    SciTech Connect

    Solbau, R.; Goranson, C.B.; Benson, S.M.

    1981-08-01

    The engineering drawings, assembly instructions, and recommended usage for several of the instruments developed for low and moderate temperature (< 150/sup 0/C) hydrothermal well testing are presented. Included are the drawings for: a downhole pressure and temperature instrument, a multi-conductor cablehead, a line driver to be used with the downhole pressure and temperature instrument, and a fluid-level detector.

  1. Rotational relaxation of molecular hydrogen at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.

    1994-01-01

    Using a coupled rotation-vibration-dissociation model the rotational relaxation times for molecular hydrogen as a function of final temperature (500-5000 K), in a hypothetical scenario of sudden compression, are computed. The theoretical model is based on a master equation solver. The bound-bound and bound-free transition rates have been computed using a quasiclassical trajectory method. A review of the available experimental data on the rotational relaxation of hydrogen is presented, with a critical overview of the method of measurements and data reduction, including the sources of errors. These experimental data are then compared with the computed results.

  2. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  3. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited. PMID:24668410

  4. Toughened moderate-temperature cure exoxy structural adhesives

    SciTech Connect

    LeMay, J.D.; Lyon, R.E.

    1992-03-01

    Low-viscosity liquid precursor adhesives that can be cured at mederate temperatures and deliver high static strength and fracture toughness in bonded joints are of interest in a variety of structural joining applications at Lawrence Livermore. We have developed a toughened, structural epoxy adhesive that cures completely at 75{degrees}C and has a fracture toughness, K{sub Ic}(joint)=1.3 MPa{radical}m, in a 100{mu}m thick bondline. This adhesive is based on diglycidylether of bisphenol-A (DGEBA) epoxide resin in combination with an amidoamine hardener, and is toughened with an epoxide-functional liquid rubber. This adhesive was developed to join beryllium oxide components, but has proven to be a good general purpose structural adhesive for a variety of high surface energy substrates including metals, metal oxide ceramics, and glasses. The low surface tension of the liquid adhesive, {gamma}=31 dynes/cm, ensures that it also will wet and bond most low surface energy solids such as plastics and fiber reinforced polymer composites.

  5. Electronics Demonstrated for Low- Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.

  6. MCT FPAs at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Knowles, P.; Hipwood, L.; Pillans, L.; Ash, R.; Abbott, P.

    2011-11-01

    This paper summarises measurements and calculations of HOT performance in Selex Galileo's MW detectors and demonstrates that high quality imagery can be achieved up to 175K. The benefits of HOT operation for cooler performance and power dissipation are also quantified. The variable band gap of MCT provides the ability to optimise the cut-off wavelength for a wide range of operating temperatures. In particular, it provides the means to produce a MW detector that is well matched to the 3-5μm atmospheric transmission window at any temperature in the range from 80K up to room temperature. Competing InSb technology is disadvantaged at higher operating temperatures by a narrowing band gap, increasing cut-off wavelength, and inadequate EO performance. The practical upper limit of operating temperature for near-background limited performance is influenced by several factors, which fall into two categories: the fundamental physics of thermal dark current generation and black body emission from the cooled radiation shield, and the technology limitations of MCT diode leakage currents, excess noise, dark current due to defects, and injection efficiency into the ROIC.

  7. Endocrine-metabolic responses to military field operations: Effects of cold and moderate altitude exposure

    SciTech Connect

    Floyd, E.; Hackney, A.C.; Hodgdon, J.A.; Coyne, J.T.; Kelleher, D.L. Univ. of North Carolina, Chapel Hill )

    1991-03-11

    Select endocrine-metabolic responses of US Marines to 4.5 day field operations (FOPS) in different environments were examined. Blood and urine samples were collected in the field immediately before and after FOPS at: (1) sea level, neutral temperatures (Ts) (SLN; n = 14), (2) sea level, cold Ts (SLC; n = 16), (3) 2,500 M altitude, neutral Ts (ALN; n = 16), and (4) 2,500 M altitude, cold Ts (ALC; n = 45). Measures examined were testosterone (T), cortisol (C), glucose (Glu), triglycerides (Tg), and urinary ketones (Uket). T decreased pre-post the FOPS in the cold conditions ({bar X}; 6.7 to 5.5 hg/ml; n = 61) but did not change in neutral conditions. C increased pre-post FOPS at SLC (12.1 to 19.8 ug/dl, p < 0.01), ALN (9.3 to 13.9 ug/dl, p < 0.01), and ALC (16.7 to 19.0 ug/dl, p = 0.08). Normoglycemia was maintained under each condition. Tg decreased (p < 0.01) at SLC, ALN, and ALC ({bar X}{triangle}: {minus}59.1, {minus}102.2, {minus}93.3 mg/dl, respectively), but increased at SLN (+74.0 mg/dl). Uket increased post FOPS only at ALN and ALC ({bar X}{triangle}: 3.4 mg/dl and +11.3 mg/dl). The Uket increases were correlated to Tg decreases. Results suggest FOPS induces a slight endocrine stress response, which is augmented with moderate altitude or cold exposure. Furthermore FOPS at altitude, especially in the cold, seems to shift the body towards fat metabolism.

  8. Low temperature operation of a boost converter

    SciTech Connect

    Moss, B.S.; Boudreaux, R.R.; Nelms, R.M.

    1996-12-31

    The development of satellite power systems capable of operating at low temperatures on the order of 77K would reduce the heating system required on deep space vehicles. The power supplies in the satellite power system must be capable of operating at these temperatures. This paper presents the results of a study into the operation of a boost converter at temperatures close to 77K. The boost converter is designed to supply an output voltage and power of 42 V and 50 W from a 28 V input source. The entire system, except the 28 V source, is placed in the environmental chamber. This is important because the system does not require any manual adjustments to maintain a constant output voltage with a high efficiency. The constant 42 V output of this converter is a benefit of the application of a CMOS microcontroller in the feedback path. The switch duty cycle is adjusted by the microcontroller to maintain a constant output voltage. The efficiency of the system varied less than 1% over the temperature range of 22 C to {minus}184 C and was approximately 94.2% when the temperature was {minus}184 C.

  9. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures.

    PubMed

    Orazov, Marat; Davis, Mark E

    2015-09-22

    Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxide and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2-SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation. PMID:26372958

  10. Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures

    PubMed Central

    Orazov, Marat; Davis, Mark E.

    2015-01-01

    Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxide and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2–SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation. PMID:26372958

  11. Low resistivity ohmic contacts to moderately doped n-GaAs with low temperature processing

    SciTech Connect

    Lovejoy, M.L.; Howard, A.J.; Zavadil, K.R.; Rieger, D.J.; Shul, R.J.; Barnes, P.A.

    1994-12-31

    A low-temperature process for forming ohmic contacts to moderately doped GaAs has been optimized using a PdGe metallization scheme. Minimum specific contact resistivity of 1.5 {times} 10{sup {minus}6} {minus}cm{sup 2} has been obtained with a low anneal temperature of 250 C. Results for optimizing both time and temperature are reported and compared to GeAu n-GaAs contacts. Material compositions was analyzed by x-ray photoelectron spectroscopy and circuit metal interconnect contact resisitivity to the low-temperature processed PdGe contacts is reported. For the lowest temperature anneals considered, excess Ge on the ohmic contact layer is suspected of degrading interconnect metal contacts, while higher temperature anneals permitted interconnect metal formation with negligible contact resistivity. Atomic force microscopy measurements showed that the PdGe surface morphology is much more uniform than standard GeAu contacts.

  12. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures.

    PubMed

    Pandey, Pramod K; Soupir, Michelle L

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  13. New Waste Calciner High Temperature Operation

    SciTech Connect

    Swenson, M.C.

    2000-09-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

  14. Operator manual: High temperature heat pump

    NASA Astrophysics Data System (ADS)

    Dyer, D. F.; Maples, G.; Burch, T. E.; Chancellor, P. D.

    1980-03-01

    Experimental data were obtained from operating a high temperature heat pump system. The use of methanol as a working fluid necessitated careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors and quotes received concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The detailed design and pricing estimates are included. Additional information on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting is presented.

  15. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  16. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  17. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  18. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with...

  19. Effect of the Temperature of the Moderator on the Velocity Distribution of Neutrons with Numerical Calculations for H as Moderator

    DOE R&D Accomplishments Database

    Wigner, E. P.; Wilkins, J. E. Jr.

    1944-09-14

    In this paper we set up an integral equation governing the energy distribution of neutrons that are being slowed down uniformly throughout the entire space by a uniformly distributed moderator whose atoms are in motion with a Maxwellian distribution of velocities. The effects of chemical binding and crystal reflection are ignored. When the moderator is hydrogen, the integral equation is reduced to a differential equation and solved by numerical methods. In this manner we obtain a refinement of the dv/v{sup 2} law. (auth)

  20. Improved high operating temperature MCT MWIR modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.

    2014-06-01

    High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.

  1. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  2. Data-Model Comparisons of Plasma Sheet Ion Temperatures during Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Ilie, R.; Liemohn, M. W.; Trigo, B.; Robison, G.; Carr, J., Jr.

    2014-12-01

    Ion heating occurs during geomagnetic storms as a result of many physical processes, including magnetic reconnection and adiabatic heating. Ion temperatures calculated from TWINS energetic neutral atom (ENA) data provide a global view of regions of heated ions in the plasma sheet. Two storms of similar, moderate magnitude are analyzed, a coronal mass ejection (CME)-driven storm that occurred on 26 September 2011 and a high speed stream (HSS)-driven storm on 13 October 2012. We present a comparison of the ion temperatures during the storms to patterns observed in a superposed epoch analysis of ion temperatures [Keesee et al., 2013] and compare the October storm to a previously analyzed HSS-driven storm [Keesee et al., 2012]. We also present a comparison of observed ion temperatures to those calculated from a simulation of each storm using the Space Weather Modeling Framework, including the BATS-R-US MHD model coupled with the HEIDI inner magnetosphere model.

  3. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    SciTech Connect

    Tait, C.D.; Janecky, D.R.; Clark, D.L.; Bennett, P.C.

    1992-05-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  4. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    SciTech Connect

    Tait, C.D.; Janecky, D.R.; Clark, D.L. ); Bennett, P.C. . Dept. of Geological Sciences)

    1992-01-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  5. Operator manual: high temperature heat pump

    SciTech Connect

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  6. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  7. Moderate hydrostatic pressure-temperature combinations for inactivation of Bacillus subtilis spores

    NASA Astrophysics Data System (ADS)

    Obaidat, Rana; Yu, Darryl; Aljawhiri, Steve; Macgregor, Robert, Jr.

    2015-07-01

    We report the effect of using moderate hydrostatic pressure, 40-140 MPa, at moderate temperature (38-58°C) to inactivate Bacillus subtilis spores in McIlvaine's citric phosphate buffer at pH 6. We have investigated several parameters: pressure applied, holding time, pressure cycling, and temperature. The kinetics of spore inactivation is reported. The results show that spore inactivation is exponentially proportional to the time the sample is exposed to pressure. Spore germination and inactivation occur at the hydrostatic pressures/temperature combinations we explored. Cycling the pressure while keeping the total time at high pressure constant does not significantly increase spore inactivation. We show that temperature increases spore inactivation at two different rates; a slow rate below 33°C, and at a more rapid rate at higher temperatures. Increasing pressure leads to an increase in spore inactivation below 95 MPa; however, further increases in pressure give a similar rate kill. The time dependence of the effect of pressure is consistent with the first-order model (R2 > 0.9). The thermal resistance values (ZT) of B. subtilis spores are 30°C, 37°C, and 40°C at 60, 80, 100 MPa. The increase in ZT value at higher pressures indicates lower temperature sensitivity. The pressure resistance values (ZP) are 125, 125 and 143 MPa at 38°C, 48°C, and 58°C. These ZP values are lower than those reported for B. subtilis spores in the literature, which indicates higher sensitivity at pressures less than about 140 MPa. We show that at temperatures <60°C, B. subtilis spores are inactivated at pressures below 100 MPa. This finding could have implications for the design of the sterilization equipment.

  8. Case studies of low-to-moderate temperature hydrothermal energy development

    SciTech Connect

    Not Available

    1981-10-01

    Six development projects are examined that use low- (less than 90/sup 0/C (194/sup 0/F)) to-moderate (90 to 150/sup 0/C (194 to 302/sup 0/F)) temperature geothermal resources. These projects were selected from 22 government cost-shared projects to illustrate the many facets of hydrothermal development. The case studies describe the history of this development, its exploratory methods, and its resource definition, as well as address legal, environmental, and institutional constraints. A critique of procedures used in the development is also provided and recommendations for similar future hydrothermal projects are suggested.

  9. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  10. First operation experience with the cryogenic moderator at the SINQ Spallation Neutron Source

    SciTech Connect

    Spitzer, Harald; Bauer, Guenter S.; Hofmann, Thomas

    1997-09-01

    SINQ first reached its full power of 0.9 mA of proton beam at 570 MeV on Dec. 4, 1996. Since then the whole system, including the cold moderator has been running reliably and predictably. The present paper reports on data measured during cool down, stationary operation and warm up of the system. Thermal data measured show that the cryogenic properties of the system are better than the anticipated values. The cold neutron intensity at the guide system is as expected, but the spectrum seems to be shifted to somewhat longer wavelengths than predicted by Monte Carlo calculations, indicating a more complicated spectral distribution than what can be described by a single or even a sum of two Maxwellian distributions. (auth)

  11. Evaluation of the Boron Dilution Method for Moderator Temperature Coefficient Measurements

    SciTech Connect

    Demaziere, Christophe; Pazsit, Imre; Por, Gabor

    2002-11-15

    A measurement of the at-power moderator temperature coefficient (MTC) at the pressurized water reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. The measurement was performed when the boron concentration decreased under 300 ppm in the reactor coolant system, by using the boron dilution method. Detailed calculations were made to estimate all reactivity effects taking place during such a measurement. These effects can only be accounted for through static core calculations that allow calculating contributions to the reactivity change induced by the moderator temperature change. All the calculations were performed with the Studsvik Scandpower SIMULATE-3 code. Analysis of the measurement showed that the contribution of the Doppler effect (in the fuel) was almost negligible, whereas the reactivity effects due to other than the Doppler fuel coefficient and the boron change were surprisingly significant. It was concluded that due to the experimental inaccuracies, the uncertainty associated with the boron dilution method could be much larger than previously expected. The MTC might then be close to -72 pcm/degC, whereas the main goal of the measurement is to verify that the MTC is larger (less negative) than this threshold. The usefulness of the boron dilution method for MTC measurements can therefore be questioned.

  12. Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures

    NASA Astrophysics Data System (ADS)

    Bouazza, M. T.; Bouledroua, M.

    In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.

  13. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  14. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  15. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  16. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Tests during low temperature operation. 84.98...-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant shall specify the minimum temperature for safe operation and two persons will perform the tests described...

  17. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with...

  18. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): Thermodynamics or gene regulation?

    PubMed

    Johnston, Rachel K; Snell, Terry W

    2016-06-01

    Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be

  19. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  20. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization

    SciTech Connect

    Rongjun Zhang; Jiejie Huang; Jiantao Zhao; Zhiqiang Sun; Yang Wang

    2007-09-15

    Zinc ferrite as a desulfurization sorbent with an average crystallite size of about 36 nm was synthesized by a sol-gel auto-combustion method. The precursor for the sorbent was a gel obtained from metal nitrates and citric acid by a sol process. The nitrate-citrate gel exhibits a self-propagating combustion behavior, and after combustion, it can transform into a nanosized spinel structured zinc ferrite directly. The prepared sorbent has a larger specific surface area and higher reactivity when compared with the sorbent achieved by a solid mixing method, and it could efficiently reduce the H{sub 2}S concentration from 6000 ppm to less than 2 ppm at a moderate temperature range. The sulfur capacity at 400{sup o}C reaches about 38.5 g of sulfur/100 g of sorbent, which corresponds to 96.4% of the theoretical value. The temperature programmed oxidation test for the sulfided sorbent shows that the most sulfur is desorbed before 500{sup o}C. XRD results confirm that the sulfided sample after exposure to a 5% O{sub 2}/N{sub 2} gas mixture at 500{sup o}C can be regenerated completely, which indicates that the regeneration temperature of the sorbent prepared by the sol-gel auto-combustion method could be greatly reduced. 40 refs., 10 figs., 2 tabs.

  1. Variability of Sub-Canopy Flow, Temperature, and Horizontal Advection in Moderately Complex Terrain

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph K.

    2011-04-01

    We examine the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space-time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space-time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor's hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear

  2. Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document

    NASA Technical Reports Server (NTRS)

    Hulley, G.; Malakar, N.; Hughes, T.; Islam, T.; Hook, S.

    2016-01-01

    This document outlines the theory and methodology for generating the Moderate Resolution Imaging Spectroradiometer (MODIS) Level-2 daily daytime and nighttime 1-km land surface temperature (LST) and emissivity product using the Temperature Emissivity Separation (TES) algorithm. The MODIS-TES (MOD21_L2) product, will include the LST and emissivity for three MODIS thermal infrared (TIR) bands 29, 31, and 32, and will be generated for data from the NASA-EOS AM and PM platforms. This is version 1.0 of the ATBD and the goal is maintain a 'living' version of this document with changes made when necessary. The current standard baseline MODIS LST products (MOD11*) are derived from the generalized split-window (SW) algorithm (Wan and Dozier 1996), which produces a 1-km LST product and two classification-based emissivities for bands 31 and 32; and a physics-based day/night algorithm (Wan and Li 1997), which produces a 5-km (C4) and 6-km (C5) LST product and emissivity for seven MODIS bands: 20, 22, 23, 29, 31-33.

  3. Plasma immersion ion implantation of nitrogen into H13 steel under moderate temperatures

    NASA Astrophysics Data System (ADS)

    Ueda, M.; Leandro, C.; Reuther, H.; Lepienski, C. M.

    2005-10-01

    Ion implantation of nitrogen into samples of tempered and quenched H13 steel was carried out by plasma immersion technique. A glow discharge plasma of nitrogen species was the ion source and the negative high voltage pulser provided 10-12 kV, 60 μs duration and 1.0-2.0 kHz frequency, flat voltage pulses. The temperatures of the samples remained between 300 and 450 °C, sustained solely by the ion bombardment. In some of the discharges, we used a N2 + H2 gas mixture with 1:1 ratio. PIII treatments as long as 3, 6, 9 and up to 12 h were carried out to achieve as thickest treated layer as possible, and we were able to reach over 20 μm treated layers, as a result of ion implantation and thermal (and possibly radiation enhanced) diffusion. The nitrogen depth profiles were obtained by GDOS (Glow Discharge Optical Spectroscopy) and the exact composition profiles by AES (Auger Electron Spectroscopy). The hardness of the treated surface was increased by more than 250%, reaching 18.8 GPa. No white layer was seen in this case. A hardness profile was obtained which corroborated a deep hardened layer, confirming the high efficacy of the moderate temperature PIII treatment of steels.

  4. Temperature-Controlled Retinal Photocoagulation Reliably Generates Uniform Subvisible, Mild, or Moderate Lesions

    PubMed Central

    Koinzer, Stefan; Baade, Alexander; Schlott, Kerstin; Hesse, Carola; Caliebe, Amke; Roider, Johann; Brinkmann, Ralf

    2015-01-01

    Purpose Conventional retinal photocoagulation produces irregular lesions and does not allow reliable control of ophthalmoscopically invisible lesions. We applied automatically controlled retinal photocoagulation, which allows to apply uniform lesions without titration, and aimed at five different predictable lesion intensities in a study on rabbit eyes. Methods A conventional 532-nm photocoagulation laser was used in combination with a pulsed probe laser. They facilitated real-time fundus temperature measurements and automatic exposure time control for different predefined time/temperature dependent characteristics (TTC). We applied 225 control lesions (exposure time 200 ms) and 794 TTC lesions (5 intensities, exposure times 7–800 ms) in six rabbit eyes with variable laser power (20–66.4 mW). Starting after 2 hours, we examined fundus color and optical coherence tomographic (OCT) images over 3 months and classified lesion morphologies according to a seven-stage OCT classifier. Results Visibility rates in funduscopy (OCT) after 2 hours were 17% (68%) for TTC intensity group 1, 38% (90%) for TTC group 2 and greater than 94% (>98%) for all consecutive groups. TTC groups 1 through 4 correlated to increasing morphological lesion intensities and increasing median funduscopic and OCT diameters. Group 5 lesions were as large as, but more intense than group 4 lesions. Conclusions Automatic, temperature controlled photocoagulation allows to apply predictable subvisible, mild, or moderate lesions without manual power titration. Translational Relevance The technique will facilitate standardized, automatically controlled low and early treatment of diabetic retinopathy study (ETDRS) intensity photocoagulation independently of the treating physician, the treated eye and lesion location. PMID:26473086

  5. Use of self-operated auditory prompts to decrease aberrant behaviors in students with moderate mental retardation.

    PubMed

    Alberto, P A; Taber, T A; Fredrick, L D

    1999-01-01

    We examined the effectiveness of self-operated auditory prompts when used to decrease the off-task and aberrant behaviors of two students with moderate mental retardation. Its purpose was to determine if self-operated auditory prompts could be effectively used by these individuals to decrease their off-task and aberrant behaviors in work settings and during transitional times between settings. A multiple-probe across settings design with a reversal and replication was used to evaluate the effectiveness of the self-operated auditory prompting system on aberrant student behaviors in school and community settings. Previous findings were replicated in this study that demonstrate that stimulus control can be achieved through the use of self-operated auditory prompts, and demonstrates that these prompts can serve to occasion a decrease in aberrant behaviors when used by individuals with moderate mental retardation in school and community settings. PMID:10641252

  6. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  7. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  8. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization.

    PubMed

    Li, Yuan; You, Changfu; Song, Chenxing

    2010-06-15

    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g). PMID:20481549

  9. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  10. Nanoscale temperature mapping in operating microelectronic devices

    SciTech Connect

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.

  11. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGESBeta

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; Dhall, Rohan; Cronin, Stephen B.; Aloni, Shaul; Regan, B. C.

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  12. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  13. 42 CFR 84.98 - Tests during low temperature operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Tests during low temperature operation. 84.98... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.98 Tests during low temperature operation. (a) The applicant...

  14. Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis.

    PubMed

    Zhu, Ying; Yang, Huijun; Mang, Hyung-Gon; Hua, Jian

    2011-01-01

    Temperature variations at the nonextreme range modulate various processes of plant growth, development, and physiology, but how plants perceive and transduce these temperature signals is not well understood. Moderate cooling from 28 °C to 22 °C induces transcription of a number of genes in salicylic acid-dependent and -independent manners. Here, we report the study of the transcriptional control of the BON1-associated protein1 (BAP1) gene that is responsive to a moderate decrease of temperature as well as to many environmental stimuli. Using reporter genes under the control of series of regions of the BAP1 promoter, we identified a 35-bp fragment that is necessary and sufficient for the BAP1 transcript induction by a moderate cooling. This fragment also confers an induction of BAP1 by cold and reactive oxygen species-generating paraquat. Furthermore, the inducer of CBF expression1 (ICE1) protein that is involved in transcriptional control of cold responses is found to bind to a MYC element in this promoter and is required for the cooling induction of BAP1. The ice1 mutant has a low induction of BAP1 and enhanced resistance to a bacterial pathogen. Thus, responses to a moderate decrease in temperature may utilize components in the cold response as well as a potentiating signaling involving salicylic acid. PMID:21098676

  15. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

    PubMed Central

    Chan, Walker R.; Bermel, Peter; Pilawa-Podgurski, Robert C. N.; Marton, Christopher H.; Jensen, Klavs F.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2013-01-01

    The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area. PMID:23440220

  16. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  17. System for controlling the operating temperature of a fuel cell

    DOEpatents

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  18. MWIR mercury cadmium telluride detectors for high operating temperatures

    NASA Astrophysics Data System (ADS)

    Pillans, L.; Ash, R. M.; Hipwood, L.; Knowles, P.

    2012-06-01

    Raising the operating temperature of infrared detectors has benefits in terms of reduced cooler power and increased life and enables an overall reduction in size and weight for handheld applications. With MCT the composition can be tuned to achieve the required wavelength range at a given temperature. Work on detectors operating in the 3-5μm atmospheric transmission window at operating temperatures up to 210K will be described. The influence of limiting factors such as excess noise, radiation shield emission, dark current and injection efficiency will be presented. Packaging aspects will be discussed emphasizing the importance of achieving low cost, weight and power for handheld applications. The impact of the detector design on overall system size and performance is considered with specific attention to time to image, passband and f-number. Finally images will be presented showing performance from a high operating temperature (HOT) camera.

  19. Operating temperatures of recessed fluorescent fixtures with thermal insulation

    SciTech Connect

    Yarbrough, D.W.; Toor, I.A.

    1981-05-01

    Tests were performed to determine steady state surface temperatures for recessed fluorescent fixtures operated with and without thermal insulation on the top side of the fixture and to identify potential problems associated with the installation of thermal insulation. In addition to measuring temperatures, means were sought by which the fixtures can be thermally insulated and operated without fire hazards or damage to the fixture. (MCW)

  20. Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.

    2009-01-01

    Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.

  1. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect

    Szybist, James P; Szymkowicz, Patrick G.; Northrop, William F

    2012-01-01

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that

  2. A simple Quantum heat engine operating between two negative temperatures

    NASA Astrophysics Data System (ADS)

    Dima, Tolasa A.; Bekele, Mulugeta

    We study a heat engine that operates between two reservoirs at negative temperatures. A system of spin-half particles, in the thermodynamic limit, subject to a time dependent external magnetic field, is used as a working substance because of its capability to demonstrate negative absolute temperature. We explored the finite-time quantities: period, power and efficiency. The engine is explored in its maximum power and optimum mode of operation from which its figure of merit is defined as the product of scaled power and scaled efficiency. We found that power-wise the engine provides better performance under its maximum power mode of operation than the optimized mode; however, efficiency-wise, the optimized mode of operation is better than its maximum mode operation. We thank the Internationa Science programme,IPS, Upsala,Sweden for the support to this research?.

  3. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  4. Low Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit

    1997-01-01

    The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.

  5. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    PubMed

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (<20 °C) limits bio-methanation of sewage. Literature shows that hydrogenotrophic methanogens can adapt themselves to low temperature and methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. PMID:25913884

  6. A Moderated Discussion about Interesting Careers in Aerospace and Mission Operations

    NASA Astrophysics Data System (ADS)

    Grant, Jeffrey

    2013-01-01

    Astronomers have one of the lowest unemployment rates in the US, yet many do not work in the field of astronomy because of few permanent traditional options relative to the number of PhDs produced each year. Where do so many astronomers find employment? Learn more at this session. Astronomical training provides the background for many interesting careers. As appropriate to the location of this meeting, this session provides a perspective on what those opportunities may be among aerospace industry-related careers. They are more diverse than you might think. In this session, two speakers with wide ranging experience in the field and a high level view of staffing large projects offer their thoughts. Kathy Flanagan is Deputy Director of the Space Telescope Science Institute, which will conduct the science and mission operations for the James Webb Space Telescope. This project has involved staffing at many levels of hardware, software, data analysis, science, operations, and outreach. Jeff Grant is sector vice president and general manager of the Space Systems Division at Northrop Grumman Aerospace Systems, and leads the design, build, launch and operations of major systems in space. We invite early career scientists and their mentors to hear their thoughts and ask questions at this session.

  7. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  8. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  9. Nylon coil actuator operating temperature range and stiffness

    NASA Astrophysics Data System (ADS)

    Kianzad, Soheil; Pandit, Milind; Bahi, Addie; Rafie Ravandi, Ali; Ko, Frank; Spinks, Geoffrey M.; Madden, John D. W.

    2015-04-01

    Components in automotive and aerospace applications require a wide temperature range of operation. Newly discovered thermally active Baughman muscle potentially provides affordable and viable solutions for driving mechanical devices by heating them from room temperature, but little is known about their operation below room temperature. We study the mechanical behavior of nylon coil actuators by testing elastic modulus and by investigating tensile stroke as a function of temperature. Loads that range from 35 MPa to 155 MPa were applied. For the nylon used and the coiling conditions, active thermal contraction totals 19.5 % when the temperature is raised from -40 °C to 160 °C. The thermal contraction observed from -40 °C to 20°C is only ~2 %, whereas between 100 and 160 °C the contraction is 10 %. A marked increase in thermal contraction is occurs in the vicinity of the glass transition temperature (~ 45°C). The elastic modulus drops as temperature increases, from ~155 MPa at - 40 °C to 35 MPa at 200 °C. Interestingly the drop in active contraction with increasing load is small and much less than might be expected given the temperature dependence of modulus.

  10. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  11. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  12. Effects of a Moderately Lower Temperature on the Proliferation and Degranulation of Rat Mast Cells

    PubMed Central

    Wang, Ruoyu; Yin, Xiaoqin; Zhang, Hui; Wang, Jiwei; Chen, Lin; Chen, Jingwen; Han, Xiaodong; Xiang, Zou; Li, Dongmei

    2016-01-01

    Mast cells are traditionally considered as key effector cells in IgE-mediated allergic diseases. However, the roles of mast cells have also been implicated in diverse physiological and pathological processes. Mast cells are distributed in various organs and tissues of various species. Some of the organs and tissues, such as testis, skin, and the upper part of the respiratory tract, have a temperature that is lower than the body's core temperature. The purpose of the present study was to investigate the effects of a lower temperature on the proliferation and degranulation of rat mast cells. Here, we demonstrate that cell growth was retarded at 35°C compared to 37°C for both rat peritoneal mast cells (RPMC) and RBL-2H3, a rat mast cell line. Furthermore, RPMC became more susceptible to degranulation at 35°C compared to 37°C. In contrast, degranulation of RBL-2H3 was not as sensitive to temperature change as RPMC. The functionality of mast cells in unique organs with a lower temperature warrants further analysis. PMID:27195304

  13. Auxiliary Heating of Geothermally Preheated Water or CO2 - A Potential Solution for Low- to Moderate-Temperature Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Kong, X.; Garapati, N.; Adams, B. M.; Randolph, J.; Kuehn, T. H.; Saar, M. O.

    2015-12-01

    Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems have higher thermal efficiencies than the brine based systems at low turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  14. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  15. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  16. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  17. Methods of Controlling the Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2008-01-01

    The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.

  18. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures.

    PubMed

    Seoung, Donghoon; Lee, Yongmoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang-Yong; Blom, Douglas A; Evans, William J; Kao, Chi-Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag(+) is reduced to metallic Ag and possibly oxidized to Ag(2+). In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres. PMID:25143221

  19. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGESBeta

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang -Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi -Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure releasemore » and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  20. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    SciTech Connect

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang -Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi -Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

  1. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  2. Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature.

    PubMed

    Liu, Chengzhen; Qin, Yang; Li, Xiaojing; Sun, Qingjie; Xiong, Liu; Liu, Zhuzhu

    2016-03-01

    Starch nanoparticles (SNPs) were fabricated via short glucan chains self-assembly at 50 °C and their characteristics were evaluated by transmission electron microscopy, dynamic light scattering, molecular weight distributions, X-ray diffraction, differential scanning calorimetry, and Fourier transforms infrared spectroscopy. The results showed that SNPs exhibited spherical particles with a diameter of approximately 30-40 nm. The molecular weight of the SNPs mainly distributed at degree of polymerization (DP) 12 and DP 30. The gelatinization temperature of the SNPs increased dramatically compared to that of native waxy maize starch. The crystallinity of the samples increased as the assembling time increased and showed the same A-type in the X-ray diffraction pattern as native starch. This newly proposed SNPs approach has potential application in starch nanocomposite films due to their high gelatinization temperature. PMID:26708434

  3. Effect of high-pressure-moderate-temperature processing on the volatile profile of milk.

    PubMed

    Vazquez-Landaverde, Pedro A; Torres, J Antonio; Qian, Michael C

    2006-11-29

    The effects of high hydrostatic pressure on volatile generation in milk were investigated in this study. Raw milk samples were treated under different pressures (482, 586, and 620 MPa), temperatures (25 and 60 degrees C), and holding times (1, 3, and 5 min). Samples submitted to heat treatments alone (25, 60, and 80 degrees C for 1, 3, and 5 min) were used for comparison. Trace volatile sulfur compounds were analyzed using solid-phase microextraction (SPME) and gas chromatography (GC) with pulsed-flame photometric detection (PFPD), whereas the rest of the volatile compounds were analyzed using SPME-GC with flame ionization detection (FID). Multivariate analysis of variance (MANOVA) and principal component analysis (PCA) were used to study the effect of pressure, temperature, and time on volatile generation. Relative concentration increases of 27 selected volatile compounds were compared to an untreated sample. It was found that pressure, temperature, and time, as well as their interactions, all had significant effects (P < 0.001) on volatile generation in milk. Pressure and time effects were significant at 60 degrees C, whereas their effects were almost negligible at 25 degrees C. The PCA plot indicated that the volatile generation of pressure-heated samples at 60 degrees C was different from that of heated-alone samples. Heat treatment tended to promote the formation of methanethiol, hydrogen sulfide, methyl ketones, and aldehydes, whereas high-pressure treatment favored the formation of hydrogen sulfide and aldehydes. PMID:17117808

  4. Cryogenic wind tunnels: Problems of continuous operation at low temperatures

    NASA Technical Reports Server (NTRS)

    Faulmann, D.

    1986-01-01

    The design of a cryogenic wind tunnel which operates continuously, and is capable of attaining transonic speeds at generating pressures of about 3 bars is described. Its stainless steel construction with inside insulation allows for very rapid temperature variations promoted by rapid changes in the liquid nitrogen flow. A comparative study of temperature measuring probes shows a good reliability of thin sheet thermocouples. To measure fluctuations, only a cold wire makes it possible to record frequencies of about 300 Hz. The use of an integral computer method makes it possible to determine the impact of the wall temperature ratio to the adiabatic wall temperature for the various parameters characterizing the boundary layer. These cases are processed with positive and negative pressure gradients.

  5. Assessment of segregation kinetics in water-moderated reactors pressure vessel steels under long-term operation

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Lavrukhina, Z. V.; Saltykov, M. A.; Fedotova, S. V.; Khodan, A. N.

    2016-08-01

    In reactor pressure vessel (RPV) bcc-lattice steels temper embrittlement is developed under the influence of both operating temperature of ∼300 °C and neutron irradiation. Segregation processes in the grain boundaries (GB) begin to play a special role in the assessment of the safe operation of the RPV in case of its lifetime extension up to 60 years or more. The most reliable information on the RPV material condition can be obtained by investigating the surveillance specimens (SS) that are exposed to operational factors simultaneously with the RPV itself. In this paper the GB composition in the specimens with different thermal exposure time at the RPV operating temperature as well as irradiated by fast neutrons (E ≥ 0.5 MeV) to different fluences (20-71)·1022 m-2 was studied by means of Auger electron spectroscopy (AES) including both impurity and main alloying elements content. The data obtained allowed to trace the trend of the operating temperature and radiation-stimulated diffusion influence on the overall segregants level in GB. The revealed differences in the concentration levels of GB segregants in different steels, are due to the different chemical composition of the steels and also due to different grain boundary segregation levels in initial (unexposed) state. The data were used to estimate the RPV steels working capacity for 60 years. The estimation was carried out using both the well-known Langmuir-McLean model and the one specially developed for RPV steels, which takes into account the structure and phase composition of VVER-1000 RPV steels, as well as the long-term influence of operational factors.

  6. Evaluation of Silicon-on-Insulator HTOP-01 Operational Amplifier for Wide Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronics capable of operation under extreme temperatures are required in many of NASA space exploration missions. Aerospace and military applications, as well as some terrestrial industries constitute environments where electronic systems are anticipated to be exposed to extreme temperatures and wide-range thermal swings. Electronics that are able to withstand and operate efficiently in such harsh environments would simplify, if not eliminate, traditional thermal control elements and their associated structures for proper ambient operation. As a result, overall system mass would be reduced, design would be simplified, and reliability would be improved. Electronic parts that are built utilizing silicon-on-insulator (SOI) technology are known to offer better radiation-tolerance compared to their conventional silicon counterparts, provide faster switching, and consume less power. They also exhibit reduced leakage current and, thus, they are often tailored for high temperature operation. These attributes make SOI-based devices suitable for use in harsh environments where extreme temperatures and wide thermal swings are anticipated. A new operational amplifier, based on silicon-on-insulator technology and geared for high temperature well-logging applications, was recently introduced by Honeywell Corporation. This HTOP-01 dual precision operational amplifier is a low power device, operates on a single supply, and has an internal oscillator and an external clocking option [1]. It is rated for operation from -55 C to +225 C with a maximum output current capability of 50 mA. The amplifier chip is designed as a 14-pin, hermetically-sealed device in a ceramic package. Table I shows some of the device manufacturer s specifications.

  7. Fluid chemistry studies of three low- to moderate-temperature geothermal resource areas in Nevada

    SciTech Connect

    Koening, B.A.; Trexler, D.T.; Flynn, T.

    1980-09-01

    By analyzing thermal and non-thermal fluids from three widely separated areas in Nevada useful information on the source and flow paths of the waters was obtained. Major cation and anion compositions show variations which can usually be related to specific locations within the study region. However, this in not always valid; for example, one area studied which is very limited in areal extent shows only minor differences in major ion composition when comparing hot and cold waters. Silica content of the fluids was determined to have no simple relationship to temperature: the highest contents occurring in waters with temperatures significantly below the maximum in each area. Trace element analyses proved to be of limited benefit to our general study but may be helpful in defining recharge or chemical processes occurring at a specific site where a known source or sink for the elements can be identified. Stable isotope analysis for oxygen and hydrogen when combined with the constraints imposed by a knowledge of major dissolved constituent composition permit meaningful distinctions to be made between areas and different locations within a single region. These distinctions are readily apparent for the Darrough's Hot Springs area within the Big Smoky Valley which exhibits oxygen isotopic shifts of 7 to 9 per mil combined with a notably different major ion composition when compared to other thermal fluids in the study area.

  8. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    SciTech Connect

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  9. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  10. Method of low temperature operation of an electrochemical cell array

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.; Bratton, Raymond J.

    1994-01-01

    In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).

  11. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela; Narayanan, Deepa

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  12. A nonintrusive method for measuring the operating temperature of a solenoid-operated valve

    NASA Astrophysics Data System (ADS)

    Kryter, Robert C.

    Experimental data are presented to show that the in-service operating temperature of a solenoid operated valve (SOV) can be inferred simply and nondisruptively by using the copper winding of the solenoid coil as a self-indicating, permanently available resistance thermometer. The principal merits of this approach include: (1) there is no need for an add-on temperature sensor, (2) the true temperature of a critical and likely the hottest, part of the SOV (namely, the electrical coil) is measured directly, (3) temperature readout can be provided at any location at which the SOV electrical lead wires are accessible (even though remote from the valve), (4) the SOV need not be disturbed (whether normally energized or deenergized) to measure its temperature in situ, and (5) the method is applicable to all types of SOVs, large and small, ac- and dc-powered. Laboratory tests comparing temperatures measured both by coil resistance and by a conventional thermometer placed in contact with the external surface of the potted solenoid coil indicate that temperature within the coil may be on the order of 40 C higher than that measured externally, a fact that is important to life-expectancy calculations made on the basis of Arrhenius theory. Field practicality is illustrated with temperature measurements made using this method on a SOV controlling the flow of refrigerant in a large chilled-water air-conditioning system.

  13. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  14. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOEpatents

    Siriwardane, Ranjani V.; Stevens, Robert W.

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  15. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect

    VIlim, R.; Nuclear Engineering Division

    2009-03-12

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This

  16. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  17. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  18. Improved Nominal Operating Cell Temperature (NOCT) test procedure

    NASA Technical Reports Server (NTRS)

    Wen, L.; Berns, D.

    1984-01-01

    A procedure is developed to improve testing of Nominal Operating Cell Temperature (NOCT) as it applies to solar energy conversion modules. NOCT is a direct reflection of module thermal design and is closely related to the representative ambient temperature. It is also a key to array energy production and estimates of module lifetimes. Present NOCT test and evaluation procedures are inconsistent, producing significant scatter. Test refinements would specify a clear sky, the addition of 10% to the insolation level for ground reflection, the addition of a ground emission factor of 0.8 (at 30C ground temperature), an effective wind direction of 135 degrees from the North, and a module tilt of 30 degrees from the horizon.

  19. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  20. Moderate-resolution sea surface temperature data and seasonal pattern analysis for the Arctic Ocean ecoregions

    USGS Publications Warehouse

    Payne, Meredith C.; Reusser, Deborah A.; Lee, Henry, II

    2012-01-01

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. In particular, the fate of the Arctic Ocean, which provides critical habitat to commercially important fish, is in question. This poses an intriguing problem for future research of Arctic environments - one that will require examination of long-term SST records. This publication describes and provides access to an easy-to-use Arctic SST dataset for ecologists, biogeographers, oceanographers, and other scientists conducting research on habitats and/or processes in the Arctic Ocean. The data cover the Arctic ecoregions as defined by the "Marine Ecoregions of the World" (MEOW) biogeographic schema developed by The Nature Conservancy as well as the region to the north from approximately 46°N to about 88°N (constrained by the season and data coverage). The data span a 29-year period from September 1981 to December 2009. These SST data were derived from Advanced Very High Resolution Radiometer (AVHRR) instrument measurements that had been compiled into monthly means at 4-kilometer grid cell spatial resolution. The processed data files are available in ArcGIS geospatial datasets (raster and point shapefiles) and also are provided in text (.csv) format. All data except the raster files include attributes identifying latitude/longitude coordinates, and realm, province, and ecoregion as defined by the MEOW classification schema. A seasonal analysis of these Arctic ecoregions reveals a wide range of SSTs experienced throughout the Arctic, both over the course of an annual cycle and within each month of that cycle. Sea ice distribution plays a major role in SST regulation in all Arctic ecoregions.

  1. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    NASA Astrophysics Data System (ADS)

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-08-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

  2. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    PubMed Central

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-01-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work. PMID:26245922

  3. Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions.

    PubMed

    Gao, Da-Wen; Hu, Qi; Yao, Chen; Ren, Nan-Qi

    2014-05-01

    The performance of a novel integrated anaerobic fluidized-bed membrane bioreactor (IAFMBR) for treating practical domestic wastewater was investigated at a step dropped temperature from 35, 25, to 15°C. The COD removal was 74.0 ± 3.7%, 67.1 ± 2.9% and 51.1 ± 2.6% at 35, 25 and 15°C, respectively. The COD removal depended both on influent strength and operational temperature. The accumulation of VFAs (Volatile Fatty Acids) was affected by temperature, and acetic acid was the most sensitive one to the decrease of temperature. The methanogenic activity of the sludge decreased eventually and the methane yield was dropped from 0.17 ± 0.03, 0.15 ± 0.02 to 0.10 ± 0.01 L/Ld. And as compared with a mesophilic temperature, a low temperature can accelerate membrane biofouling. Proteins were the dominant matters causing membrane fouling at low temperature and membrane fouling can be mitigated by granular active carbon (GAC) through protein absorption. PMID:24650533

  4. SY-101 Rapid Transfer Project Low Temperature Operations Review and Recommendations to Support Lower Temperature Limits

    SciTech Connect

    HICKMAN, G.L.

    2000-01-10

    The lower temperature limit for the 241 SY-101 RAPID transfer project is currently set at 20 F Based on the analysis and recommendations in this document this limit can be lowered to 0 F. Analysis of all structures systems and components (SSCs) indicate that a reduction in operating temperature may be achieved with minor modifications to field-installed equipment. Following implementation of these changes it is recommended that the system requirements be amended to specify a temperature range for transfer or back dilute evolutions of 0 F to 100 F.

  5. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  6. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  7. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  8. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  9. 40 CFR 63.1185 - How do I establish the average operating temperature of an incinerator?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating temperature of an incinerator? 63.1185 Section 63.1185 Protection of Environment ENVIRONMENTAL... operating temperature of an incinerator? (a) During the performance test, you must establish the average operating temperature of an incinerator as follows: (1) Continuously measure the operating temperature...

  10. Dissection of the roles of FtsH protease in chloroplast biogenesis and stability at moderately high temperature: a quantitative proteomics approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chloroplast-targeted FtsH11 protease has been identified as essential for Arabidopsis survival at moderately high temperatures. The ftsh11 plants display a host of dramatic changes in photosynthetic parameters, cessation of growth and development, and eventual death if temperature exceeds 30ºC a...

  11. Li/CFx Cells Optimized for Low-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    Some developments reported in prior NASA Tech Briefs articles on primary electrochemical power cells containing lithium anodes and fluorinated carbonaceous (CFx) cathodes have been combined to yield a product line of cells optimized for relatively-high-current operation at low temperatures at which commercial lithium-based cells become useless. These developments have involved modifications of the chemistry of commercial Li/CFx cells and batteries, which are not suitable for high-current and low-temperature applications because they are current-limited and their maximum discharge rates decrease with decreasing temperature. One of two developments that constitute the present combination is, itself, a combination of developments: (1) the use of sub-fluorinated carbonaceous (CFx wherein x<1) cathode material, (2) making the cathodes thinner than in most commercial units, and (3) using non-aqueous electrolytes formulated especially to enhance low-temperature performance. This combination of developments was described in more detail in High-Energy-Density, Low- Temperature Li/CFx Primary Cells (NPO-43219), NASA Tech Briefs, Vol. 31, No. 7 (July 2007), page 43. The other development included in the present combination is the use of an anion receptor as an electrolyte additive, as described in the immediately preceding article, "Additive for Low-Temperature Operation of Li-(CF)n Cells" (NPO- 43579). A typical cell according to the present combination of developments contains an anion-receptor additive solvated in an electrolyte that comprises LiBF4 dissolved at a concentration of 0.5 M in a mixture of four volume parts of 1,2 dimethoxyethane with one volume part of propylene carbonate. The proportion, x, of fluorine in the cathode in such a cell lies between 0.5 and 0.9. The best of such cells fabricated to date have exhibited discharge capacities as large as 0.6 A h per gram at a temperature of 50 C when discharged at a rate of C/5 (where C is the magnitude of the

  12. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  13. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  14. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  15. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  16. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  17. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  18. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  19. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  20. Moderate temperature detector development

    NASA Technical Reports Server (NTRS)

    Marciniec, J. W.; Briggs, R. J.; Sood, A. K.

    1981-01-01

    P-side backside reflecting constant, photodiode characterization, and photodiode diffusion and G-R currents were investigated in an effort to develop an 8 m to 12 m infrared quantum detector using mercury cadmium telluride. Anodization, phosphorus implantation, and the graded band gap concept were approaches considered for backside formation. Variable thickness diodes were fabricated with a back surface anodic oxide to investigate the effect of this surface preparation on the diffusion limited zero bias impedance. A modeling technique was refined to thoroughly model diode characteristics. Values for the surface recombination velocity in the depletion region were obtained. These values were improved by implementing better surface damage removal techniques.

  1. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  2. Geostationary Operational Environmental Satellite (GOES) Gyro Temperature Model

    NASA Technical Reports Server (NTRS)

    Rowe, J. N.; Noonan, C. H.; Garrick, J.

    1996-01-01

    The geostationary Operational Environmental Satellite (GOES) 1/M series of spacecraft are geostationary weather satellites that use the latest in weather imaging technology. The inertial reference unit package onboard consists of three gyroscopes measuring angular velocity along each of the spacecraft's body axes. This digital integrating rate assembly (DIRA) is calibrated and used to maintain spacecraft attitude during orbital delta-V maneuvers. During the early orbit support of GOES-8 (April 1994), the gyro drift rate biases exhibited a large dependency on gyro temperature. This complicated the calibration and introduced errors into the attitude during delta-V maneuvers. Following GOES-8, a model of the DIRA temperature and drift rate bias variation was developed for GOES-9 (May 1995). This model was used to project a value of the DIRA bias to use during the orbital delta-V maneuvers based on the bias change observed as the DIRA warmed up during the calibration. The model also optimizes the yaw reorientation necessary to achieve the correct delta-V pointing attitude. As a result, a higher accuracy was achieved on GOES-9 leading to more efficient delta-V maneuvers and a propellant savings. This paper summarizes the: Data observed on GOES-8 and the complications it caused in calibration; DIRA temperature/drift rate model; Application and results of the model on GOES-9 support.

  3. Use of a Proximity Sensor Switch for "Hands Free" Operation of Computer-Based Video Prompting by Young Adults with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Ivey, Alexandria N.; Mechling, Linda C.; Spencer, Galen P.

    2015-01-01

    In this study, the effectiveness of a "hands free" approach for operating video prompts to complete multi-step tasks was measured. Students advanced the video prompts by using a motion (hand wave) over a proximity sensor switch. Three young adult females with a diagnosis of moderate intellectual disability participated in the study.…

  4. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  5. Operation of a low temperature absorption chiller at rating point and at reduced evaporator temperature

    NASA Astrophysics Data System (ADS)

    Best, R.; Biermann, W.; Reimann, R. C.

    1985-01-01

    The returned fifteen ton Solar Absorption Machine (SAM) 015 chiller was given a cursory visual inspection, some obvious problems were remedied, and then it was placed on a test stand to get a measure of dirty performance. It was then given a standard acid clean, the water side of the tubes was brushed clean, and then the machine was retested. The before and after cleaning data were compared to equivalent data taken before the machine was shipped. The second part of the work statement was to experimentally demonstrate the technical feasibility of operating the chiller at evaporator temperatures below 0(0)C (32(0)F) and identify any operational problems.

  6. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat.

    PubMed

    Majláth, Imre; Darko, Eva; Palla, Balázs; Nagy, Zoltán; Janda, Tibor; Szalai, Gabriella

    2016-02-01

    The rate of carbon and nitrogen assimilation is highly sensitive to stress factors, such as low temperature and drought. Little is known about the role of light in the simultaneous effect of cold and drought. The present study thus focused on the combined effect of mild water deficiency and different light intensities during the early cold hardening in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different levels of cold sensitivity. The results showed that reduced illumination decreased the undesirable effects of photoinhibition in the case of net photosynthesis and nitrate reduction, which may help to sustain these processes at low temperature. Mild water deficiency also had a slight positive effect on the effective quantum efficiency of PSII and the nitrate reductase activity in the cold. Glutamine synthesis was affected by light rather than by water deprivation during cold stress. The invertase activity increased to a greater extent by water deprivation, but an increase in illumination also had a facilitating effect on this enzyme. This suggests that both moderate water deficiency and light have an influence on nitrogen metabolism and sucrose degradation during cold hardening. A possible rise in the soluble sugar content caused by the invertase may compensate for the decline in photosynthetic carbon assimilation indicated by the decrease in net photosynthesis. The changes in the osmotic potential can be also correlated to the enhanced level of invertase activity. Both of them were regulated by light at normal water supply, but not at water deprivation in the cold. However, changes in the metabolic enzyme activities and osmotic adjustment could not be directly contributed to the different levels of cold tolerance of the cultivars in the early acclimation period. PMID:26788956

  7. Primary standard of optical power operating at room temperature

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Sildoja, Meelis; Manoocheri, Farshid; Merimaa, Mikko; Petroff, Leo; Ikonen, Erkki

    2014-08-01

    The Predictable Quantum Efficient Detector (PQED) is evaluated as a new primary standard of optical power. Design and characterization results are presented for a new compact room temperature PQED that consists of two custom-made induced junction photodiodes mounted in a wedged trap configuration. The detector assembly includes a window aligned in Brewster angle in front of the photodiodes for high transmission of p polarized light. The detector can also be operated without the window, in which case a dry nitrogen flow system is utilized to prevent dust contamination of the photodiodes. Measurements of individual detectors at the wavelength of 488 nm indicate that reflectance and internal quantum efficiency are consistent within 14 ppm and 10 ppm (ppm = part per million), respectively, and agree with the predicted values. The measured photocurrent ratio of the two photodiodes confirms the predicted value for s and p polarized light, and the spatial variation in the photocurrent ratio can be used to estimate the uniformity in the thickness of the silicon dioxide layer on the surface of the photodiodes. In addition, the spatial non-uniformity of the responsivity of the PQED is an order of magnitude lower than that of single photodiodes. Such data provide evidence that the room temperature PQED may replace the cryogenic radiometer as a primary standard of optical power in the visible wavelength range.

  8. Welding stainless steels for structures operating at liquid helium temperature

    SciTech Connect

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  9. Moderate evidence to recommend submucosal injection of dexamethasone in reducing post-operative oedema and pain after third molar extraction.

    PubMed

    Freda, Nicolas M; Keenan, Analia Veitz

    2016-06-01

    of -1.79 (95% CI -3.28 to -0.30) and showed a statistically significant difference favouring dexamethasone.ConclusionsThe review found moderate quality evidence that submucosal injections of dexamethasone reduced post-operative oedema and pain compared to a placebo following impacted third molar surgery. There was no significant difference, in regards to trismus, between placebo and dexamethasone. PMID:27339243

  10. On the influence of temperature on PEM fuel cell operation

    NASA Astrophysics Data System (ADS)

    Coppo, M.; Siegel, N. P.; Spakovsky, M. R. von

    The 3D implementation of a previously developed 2D PEMFC model [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89] has been used to analyze the various pathways by which temperature affects the operation of a proton exchange membrane fuel cell [M. Coppo, CFD analysis and experimental investigation of proton exchange membrane fuel cells, Ph.D. Dissertation, Politecnico di Torino, Turin, Italy, 2005]. The original model, implemented in a specially modified version of CFDesign ® [CFDesign ® V5.1, Blue Ridge Numerics, 2003] , accounts for all of the major transport processes including: (i) a three-phase model for water transport in the liquid, vapor and dissolved phases, (ii) proton transport, (iii) gaseous species transport and reaction, (iv) an agglomerate model for the catalyst layers and (v) gas phase momentum transport. Since the details of it have been published earlier [N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources 128 (2) (2004) 173-184; N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115 (2003) 81-89; N.P. Siegel, Development and validation of a computational model for a proton exchange membrane fuel cell, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003], only new features are briefly discussed in the present work. In particular, the model has been extended in order to account for the temperature dependence of all of the physical properties involved in the model formulation. Moreover, a novel model has been developed to describe liquid

  11. Effects of zilpaterol hydrochloride on internal body temperature and respiration rate of black-hided feedlot steers and heifers during moderate heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the effects of zilpaterol hydrochloride (ZH) on the internal body temperature and respiration rate of feedlot cattle during moderate heat stress. Black-hided steers and heifers (n=96) were sourced from a commercial feedlot and transported to the Texas Tech...

  12. The rate of Photosynthesis remains relatively high at moderately high temperatures in Arabidopsis thaliana rca mutant expressing thermostable chimeric Rubisco Activase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rate of photosynthesis declines at moderately high temperatures (30-42 deg C) in temperate plants like Arabidopsis. The decline is due to deactivation of Rubisco which in turn is due to a reduced ability of activase to activate Rubisco (Crafts-Brandner and Salvucci, PNAS 97:13430-13435, 2000). W...

  13. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-01

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered. PMID:24655223

  14. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    SciTech Connect

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1

  15. Simulation of SRAM SEU Sensitivity at Reduced Operating Temperatures

    NASA Technical Reports Server (NTRS)

    Sanathanamurthy, S.; Ramachandran, V.; Alles, M. L.; Reed, R. A.; Massengill, L. W.; Raman, A.; Turowski, M.; Mantooth, A.; Woods, B.; Barlow, M.; Moen, K.; Bellini, M.; Sutton, A.; Cressler, J. D.

    2009-01-01

    A new NanoTCAD-to-Spectre interface is applied to perform mixed-mode SEU simulations of an SRAM cell. Results using newly calibrated TCAD cold temperature substrate mobility models, and BSIM3 compact models extracted explicitly for the cold temperature designs, indicate a 33% reduction in SEU threshold for the range of temperatures simulated.

  16. Improvement of the operation rate of medical temperature measuring devices

    NASA Astrophysics Data System (ADS)

    Hotra, O.; Boyko, O.; Zyska, T.

    2014-08-01

    A method of reducing measuring time of temperature measurements of biological objects based on preheating the resistance temperature detector (RTD) up to the temperature close to the temperature to be measured, is proposed. It has been found that at the same measuring time, the preheating allows to decrease the measurement error by a factor of 5 to 45 over the temperature range of 35-41°С. The measurement time is reduced by 1.6-4 times over this range, keeping the same value of the measurement error.

  17. Conceptual HALT (Hydrate Addition at Low Temperature) scaleup design: Capital and operating costs: Part 5. [Hydrate addition at low temperature for the removal of SO/sub 2/

    SciTech Connect

    Babu, M.; Kerivan, D.; Hendrick, C.; Kosek, B.; Tackett, D.; Golightley, M.

    1988-12-01

    Hydrate addition at low temperature (or the HALT process) is a retrofit option for moderate SO/sub 2/ removal efficiency in coal burning utility plants. This dry FGD process involves injecting calcium based dry hydrate particles into flue gas ducting downstream of the air preheater where the flue gas temperature is typically in the range of 280-325/degree/F. This report is comprised of the conceptual scaleup design of the HALT process to a 180 MW and a 500 MW coal fired utility station followed by detailed capital and operating cost estimates. A cost sensitivity analysis of major process variables for the 500 MW unit is also included. 1 fig.

  18. Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature

    SciTech Connect

    Singh, Akhilesh K.; Barik, Puspendu; Ullrich, Bruno E-mail: bruno.ullrich@yahoo.com

    2014-12-15

    We observed changes of the transmitted monochromatic light passing through a colloidal PbS quantum dot film on glass owing to an applied moderate (smaller than 1 T) magnetic field under ambient conditions. The observed alterations show a square dependence on the magnetic field increase that cannot be achieved with bulk semiconductors. The findings point to so far not recognized application potentials of quantum dots.

  19. A new lateral IGBT for high temperature operation

    NASA Astrophysics Data System (ADS)

    Vellvehi, M.; Godignon, P.; Flores, D.; Fernández, J.; Hidalgo, S.; Rebollo, J.; Millán, J.

    1997-05-01

    The analysis of a new LIGBT with special emphasis on high temperature behaviour is discussed. A comprehensive experimental characterisation of the static characteristics over the temperature range 300-423 K is reported. Two-dimensional (2-D) numerical simulations are used to explain the observed behaviour and to get a physical insight into the effects of temperature on LIGBT performance. Simulation results show a peculiar latch-up mechanism in the proposed new modified structure different from the conventional IGBT structure. The novel LIGBT structure, proposed here, has been compared with LIGBT structures previously reported. All these structures have been fabricated. The experimental latch-up current density of the proposed LIGBT is four times higher than in the other fabricated structures at high temperature. The dynamic latch-up during the LIGBT turn-off process has also been analysed.

  20. A novel temperature compensated operation scheme for trichromatic LED backlights

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Woo; Kim, Jin-Ha; Park, Moo-Youn; Kim, Hee-Dong; Park, Jae-Kyuk; Hwang, Soo-Ryong; Cho, Sung-Min

    2007-02-01

    Trichromatic LED backlights render higher color gamut and panel transmittance to liquid crystal displays (LCDs) than yellow phosphor-converted white LED backlights can possibly do at their best. In realization, however, several technical challenges arise, such as colour shift due to the ambient temperature change, decrease in brightness at elevated temperature, an enlarged dead zone for colour mixing, minimizing the total number of chips and so on. In this work, we designed and demonstrated a low-cost driving circuit that stabilizes brightness and colour coordinates of trichromatic LED backlights using a thermistor as a temperature compensating element. By applying the temperature compensation, the amounts of the brightness and colour shift were reduced to 54% and 51% of the uncompensated cases, respectively.

  1. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  2. High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2003-01-01

    Contents include the following: 1. High frequency, low amplitude temperature oscillations: LHP operation - governing equations; interactions among LHP components; factors affecting low amplitude temperature oscillations. 2. Test results. 3. Conclusions.

  3. Flashlamp Pumped, Room Temperature, Nd:YAG Laser Operating at 0.946 Micrometers

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Murray, Keith E.; Walsh, Brian M.

    1998-01-01

    Room temperature operation of flashlamp pumped Nd:YAG at 0.946 micrometers was achieved with a laser rod having undoped ends. Performance was characterized and compared with 1.064 micrometer operation and other quasi four level lasers.

  4. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  5. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  6. Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices.

    PubMed

    Mecklenburg, Matthew; Hubbard, William A; White, E R; Dhall, Rohan; Cronin, Stephen B; Aloni, Shaul; Regan, B C

    2015-02-01

    Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. PMID:25657242

  7. GC/MS Gas Separator Operates At Lower Temperatures

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Gutnikov, George

    1991-01-01

    Experiments show palladium/silver tube used to separate hydrogen carrier gas from gases being analyzed in gas-chromatography/mass-spectrometry (GC/MS) system functions satisfactorily at temperatures as low as 70 to 100 degrees C. Less power consumed, and catalytic hydrogenation of compounds being analyzed diminished. Because separation efficiency high even at lower temperatures, gas load on vacuum pump of mass spectrometer kept low, permitting use of smaller pump. These features facilitate development of relatively small, lightweight, portable GC/MS system for such uses as measuring concentrations of pollutants in field.

  8. Silicon solar cell monitors high temperature furnace operation

    NASA Technical Reports Server (NTRS)

    Zellner, G. J.

    1968-01-01

    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  9. Low threshold interband cascade lasers operating above room temperature

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, B.; Yang, R. Q.

    2003-01-01

    Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.

  10. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  11. Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit

    1996-01-01

    A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.

  12. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  13. Low-temperature operation of a Buck DC/DC converter

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.

  14. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  15. Impacts of operation of CVP regulating reservoirs on water temperature

    SciTech Connect

    Vail, L.W.

    1996-06-01

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (and 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other sources and markets available nonfirm power from the Washoe Project. Western's mission is to sell and deliver electricity generated from CVP powerplants. The hydroelectric facilities of the CVP are operated by the Bureau of Reclamation (Reclamation). Reclamation manages and releases water in accordance with the various acts authorizing specific projects and with enabling legislation. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by Reclamation, the U.S. Fish and Wildlife Service, or other agencies, acting in accord with law or policy.

  16. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this

  17. A new molecular precursor route for the synthesis of Bi-Y, Y-Nb and Bi-doped Y-Nb oxides at moderate temperatures

    SciTech Connect

    Bayot, D.A.; Dupont, A.M.; Devillers, Michel M.

    2007-03-15

    Yttrium-based multimetallic oxides containing bismuth and/or niobium were prepared by a method starting from pre-isolated stable water-soluble precursors which are complexes with the ethylenediaminetetraacetate ligand (edta). The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} (x=0.22, 0.25 and 0.3) and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form in a range of moderate temperatures (600-650 deg. C). This preparation method also allowed to stabilize at room temperature, without quenching, the tetragonal YNbO{sub 4} oxide in a distorted form (T'-phase) by calcining the precursor at 800 deg. C. When heated up to 1000 deg. C, this metastable T'-phase transforms into the metastable 'high-temperature' T oxide, which converts on cooling down to room temperature into the thermodynamically stable monoclinic M oxide. Doping the YNbO{sub 4} oxide with Bi{sup 3+} cations (0.5% and 1% Bi with respect to total Bi+Y amount) led at 800 deg. C to a mixture of the T'-phase and the thermodynamically stable monoclinic one. At 900 deg. C, the almost pure monoclinic structure was obtained. - Graphical abstract: Bi-Y, Nb-Y and Bi-doped Nb-Y oxides were prepared by a molecular precursors method from pre-isolated water-soluble edta-based complexes. The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form at the moderate temperature of 650 deg. C. A distorted tetragonal YNbO{sub 4} phase was also stabilized at room temperature by calcining the precursor at 800 deg. C, and the pure corresponding monoclinic oxide has been obtained near 1100 deg. C.

  18. High anhydrous proton conductivity of imidazole-loaded mesoporous polyimides over a wide range from subzero to moderate temperature.

    PubMed

    Ye, Yingxiang; Zhang, Liuqin; Peng, Qinfang; Wang, Guan-E; Shen, Yangcan; Li, Ziyin; Wang, Lihua; Ma, Xiuling; Chen, Qian-Huo; Zhang, Zhangjing; Xiang, Shengchang

    2015-01-21

    On-board fuel cell technology requires proton conducting materials with high conductivity not only at intermediate temperatures for work but also at room temperature and even at subzero temperature for startup when exposed to the colder climate. To develop such materials is still challenging because many promising candidates for the proton transport on the basis of extended microstructures of water molecules suffer from significant damage by heat at temperatures above 80 °C or by freeze below -5 °C. Here we show imidazole loaded tetrahedral polyimides with mesopores and good stability (Im@Td-PNDI 1 and Im@Td-PPI 2) exhibiting a high anhydrous proton conductivity over a wide temperature range from -40 to 90 °C. Among all anhydrous proton conductors, the conductivity of 2 is the highest at temperatures below 40 °C and comparable with the best materials, His@[Al(OH)(1,4-ndc)]n and [Zn3(H2PO4)6(H2O)3](Hbim), above 40 °C. PMID:25551516

  19. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-06-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  20. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  1. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  2. Silicene field-effect transistors operating at room temperature

    NASA Astrophysics Data System (ADS)

    Tao, Li; Cinquanta, Eugenio; Chiappe, Daniele; Grazianetti, Carlo; Fanciulli, Marco; Dubey, Madan; Molle, Alessandro; Akinwande, Deji

    2015-03-01

    Free-standing silicene, a silicon analogue of graphene, has a buckled honeycomb lattice and, because of its Dirac bandstructure combined with its sensitive surface, offers the potential for a widely tunable two-dimensional monolayer, where external fields and interface interactions can be exploited to influence fundamental properties such as bandgap and band character for future nanoelectronic devices. The quantum spin Hall effect, chiral superconductivity, giant magnetoresistance and various exotic field-dependent states have been predicted in monolayer silicene. Despite recent progress regarding the epitaxial synthesis of silicene and investigation of its electronic properties, to date there has been no report of experimental silicene devices because of its air stability issue. Here, we report a silicene field-effect transistor, corroborating theoretical expectations regarding its ambipolar Dirac charge transport, with a measured room-temperature mobility of ˜100 cm2 V-1 s-1 attributed to acoustic phonon-limited transport and grain boundary scattering. These results are enabled by a growth-transfer-fabrication process that we have devised—silicene encapsulated delamination with native electrodes. This approach addresses a major challenge for material preservation of silicene during transfer and device fabrication and is applicable to other air-sensitive two-dimensional materials such as germanene and phosphorene. Silicene's allotropic affinity with bulk silicon and its low-temperature synthesis compared with graphene or alternative two-dimensional semiconductors suggest a more direct integration with ubiquitous semiconductor technology.

  3. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; Van Acker, S.; Mullié, J. C.; Göbel, A.; Tops, M.; Le Bordays, J.; Etchanchu, T.; Benschop, A. A. J.

    2015-05-01

    In recent years there has been a drive towards miniaturized cooled IDCA solutions for low-power, low-mass, low-size products (SWaP). To support this drive, coolers are developed optimized for high-temperature, low heat load dewar-detector assemblies. In this paper, Thales Cryogenics development activities supporting SWaP are presented. Design choices are discussed and compared to various key requirements. Trade-off analysis results are presented on drive voltage, cold finger definition (length, material, diameter and sealing concept), and other interface considerations, including cold finger definition. In parallel with linear and rotary cooler options, designs for small-size high-efficiency drive electronics based on state-of-the-art architectures are presented.

  4. A Proton Channel Allows a Hydrogen Oxidation Catalyst to Operate at a Moderate Overpotential with Water Acting as a Base

    SciTech Connect

    Lense, Sheri J.; Dutta, Arnab; Roberts, John A.; Shaw, Wendy J.

    2014-01-25

    Proton channels facilitate the movement of protons over large distances and are critical in many reactions, from controlling proton delivery in metalloenzymes[1] to moving protons through PEM fuel cells.[2] Hydrogenases are enzymes that use proton channels to deliver protons to or from the enzyme active site to achieve high rates of hydrogen production and oxidation at low overpotentials.[3] The [Ni(PR2NR’2)2]2+ series of complexes, which are functional mimics of the [FeFe]-hydrogenase active site, utilize pendant amines to move the proton to or from the Ni, resulting in some of the fastest synthetic catalysts for hydrogen production and oxidation reported.[4] While intramolecular proton movement has been shown to be facile,[5] deprotonation of hydrogen oxidation catalysts can be a slow step for catalysis.[6] Additionally, a stable H2 adduct (endo-endo) is formed which, if bypassed, could contribute to an overall enhanced rate (Figure 1). A proton channel may aid in addressing these outstanding issues, and the well-studied nature of these catalysts allows them to serve as a platform to investigate the role of a proton channel in solving these problems. To this end we added a second proton relay to this complex, which we demonstrate serves two purposes: we show that the second proton relay facilitates rapid proton transfer, altering the kinetic products formed following H2 addition, and avoiding the low energy endo-endo intermediate. It also aids in lowering the overpotential at which the catalyst operates using water as a base, demonstrating the multi-functional role of a proton channel in molecular catalysts, and possibly in enzymes. This work was supported by the US Department of Energy, Early Career Research Program, Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division and by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences

  5. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O

    2015-04-01

    Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. PMID:25535111

  6. Inhibition of salt water survival and Na-K-ATPase elevation in steelhead trout (Salmo gairdneri) by moderate water temperatures

    USGS Publications Warehouse

    Adams, B. L.; Zaugg, W.S.; McLain, L. R.

    1975-01-01

    The steelhead trout metamorphosis from a freshwater parr to a sea water-tolerant smolt possessing the migration tendency was evaluated at six different growth temperatures ranging from 6 to 15 C during January through July. The highest temperature where a transformation was indicated was 11.3 C. By April fish reared at 6 C had elevated ATPase levels typical of smolts or migratory animals and showed 92% survival in sea water. Ten and 11.3 C-reared fish showed a short-lived elevation in ATPase in mid-April alone concurrently with 100% sea water survival at that time. Only in 6 C-reared animals did the salt water survival ability continue into May. High ATPase levels likewise were prolonged into May and June only in the 6 C-reared group. The data indicate that metamorphosis (and therefore successful migration) of juvenile steelhead trout is directly controlled by water temperature.

  7. Effects of the operating pressure on the performance of water electrolysis cells at elevated temperatures

    SciTech Connect

    Ogata, Y.; Yasudo, M.; Hine, F.

    1988-12-01

    The influence of pressure on the performance and the thermal behavior of an alkaline water electrolyzer operated at elevated temperatures was studied. The pressure dependence of cell voltage was not significant. On the other hand, the effects of pressure on the thermal behavior were great depending on the operating conditions mainly caused by the suppression of water vaporization. The optimum conditions of the operating temperature and pressure are also discussed from an economic point of view.

  8. Using a simple mixing model to assess the role of riparian wetlands in moderating stream water temperatures

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    Stream water temperature is a fundamental physical characteristic of riverine systems, influencing many processes; from biological productivity to many other aspects of water quality. Given climatic global warming projections, and the implications for stream thermal regimes, they are increasingly considered as part of river basin management plans. Along with the effects of energy exchanges at the water-air interface and riparian vegetation cover, advective heat transport from the different sources of water generating stream flow can strongly influence temperature within the stream channel. Riparian wetland areas are important geomorphic components of landscapes in many parts of the world, and are often a dominant source of stream flow during hydrological events. During wet periods large volumes of water may be displaced into stream channels via near-surface flow paths, which typically have high variability. In dry conditions, more groundwater with less variable temperatures dominate. The mixing of these waters can have great influence over the thermal regimes of streams over a range of flow conditions. Here, we present the use of a simple mixing model to predict daily mean stream water temperature on the basis of mixing groundwater and near surface riparian waters as the end-members in a 3.2km2 watershed in the Scottish Highlands. The resulting model fit was analysed against energy balance components and the spatial extent of the wetland to investigate the importance of energy-exchange in riparian wetlands in determining stream temperatures. Results showed generally good agreement between modelled results and measured temperatures under wet conditions. Model fit was generally better in winter than during the summer months (when the model under predicted temperatures), with a strong correlation evident between net radiation and the fit of the model. This indicated the limited skill of the simple mixing structure to account for the increased importance of energy

  9. Scheduling field operations as a function of temperature, soil moisture, and available resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduling field operations in SWAT can be done by specifying fixed dates or by using the heat unit index, which considers temperature constraints. However, soil moisture and labor requirements can also limit the ability of farm operators to perform field operations at the optimal time. The SWAT2012...

  10. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  11. EFFECTS OF MODERATELY HIGH TEMPERATURE ON DIURNAL POLLEN TUBE GROWTH AND FERTILIZATION IN FIELD-GROWN COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For Gossypium hirsutum pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. We hypothesized that increased temperatures under field conditions would limit fertilization by inhibiting diurnal pollen tube growth t...

  12. Small CO2 Sensors Operate at Lower Temperature

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.

    2009-01-01

    Solid-electrolyte-based amperometric sensors for measuring concentrations of CO2 in air are being developed for use in detection of fires, environmental monitoring, and other applications where liquid-based electrochemical cells are problematic. These sensors are small (sizes of the order of a millimeter), are robust, are amenable to batch fabrication at relatively low cost, and exhibit short response times (seconds) and wide detection ranges. A sensor of this type at a previous stage of development included a solid electrolyte of Na3Zr2Si2PO12 deposited mainly between interdigitated Pt electrodes on an alumina substrate, all overcoated with an auxiliary solid electrolyte of (Na2CO3:BaCO3 in a molar ratio of 1:1.7). It was necessary to heat this device to a temperature as high as 600 C to obtain the desired sensitivity and rapid response. Heating sensors increases the power consumption of the sensor system and complicates the use of the sensor in some applications. Thus, decreasing a sensor s power consumption while maintaining its performance is a technical goal of ongoing development.

  13. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.

    PubMed

    Kaarela, Outi E; Härkki, Heli A; Palmroth, Marja R T; Tuhkanen, Tuula A

    2015-01-01

    Granular activated carbon (GAC) filtration enhances the removal of natural organic matter and micropollutants in drinking water treatment. Microbial communities in GAC filters contribute to the removal of the biodegradable part of organic matter, and thus help to control microbial regrowth in the distribution system. Our objectives were to investigate bacterial community dynamics, identify the major bacterial groups, and determine the concentration of active bacterial biomass in full-scale GAC filters treating cold (3.7-9.5°C), physicochemically pretreated, and ozonated lake water. Three sampling rounds were conducted to study six GAC filters of different operation times and flow modes in winter, spring, and summer. Total organic carbon results indicated that both the first-step and second-step filters contributed to the removal of organic matter. Length heterogeneity analysis of amplified 16S rRNA genes illustrated that bacterial communities were diverse and considerably stable over time. α-Proteobacteria, β-Proteobacteria, and Nitrospira dominated in all of the GAC filters, although the relative proportion of dominant phylogenetic groups in individual filters differed. The active bacterial biomass accumulation, measured as adenosine triphosphate, was limited due to low temperature, low flux of nutrients, and frequent backwashing. The concentration of active bacterial biomass was not affected by the moderate seasonal temperature variation. In summary, the results provided an insight into the biological component of GAC filtration in cold water temperatures and the operational parameters affecting it. PMID:25242545

  14. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection

    PubMed Central

    2012-01-01

    Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16

  15. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.

    PubMed

    Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D

    2016-10-01

    In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. PMID:27427778

  16. High Frequency Low Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2003-01-01

    The operating temperature of a loop heat pipe (LHP) with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a finction of the evaporator power, condenser sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. This paper presents a study on the oscillation of the loop operating temperature with amplitudes on the order of one degree Kelvin and frequencies on the order of 10(exp -1) to 10(exp -2) Hertz. The source of the high frequency temperature oscillation is the fast movement of the vapor front in the condenser section, which usually occurs when the vapor front is near the condenser inlet or the condenser outlet. At these locations, the vapor front is unable to find a stable position for the given operating conditions, and will move back and forth. The movement of the vapor front causes the movement of the liquid in the condenser and the liquid line, leading to oscillations of the CC and the loop temperatures. Factors that affect the vapor front movement include evaporator power, condenser sink temperature, body forces and whether or the CC temperature is actively controlled. As long as there are no large thermal masses attached to the evaporator, the loop can self adjust rather quickly and the vapor front will move rapidly around the condenser inlet or outlet, leading to high frequency temperature oscillations. The amplitude of temperature oscillation is usually the largest in the liquid line, up to 20 degrees Kelvin in many cases, but diminishes to less than one degree Kelvin in the CC. Furthermore, the high frequency temperature oscillation can occur at any CC temperature when the right combination of the evaporator power and condenser sink temperature prevails.

  17. DYNAMIC RESPONSE OF STREAM TEMPERATURES TO BOUNDARY AND INFLOW PERTURBATION DUE TO RESERVOIR OPERATIONS

    SciTech Connect

    Khangaonkar, Tarang P.; Yang, Zhaoqing

    2008-05-01

    Dams and reservoir operations modify natural stream behaviour and affect the downstream characteristics such as mean temperatures and diurnal temperature amplitudes. Managing phase effects due to reservoir operation and the associated amplification of daily maximum temperatures in the downstream reaches remains a challenge. An analytical approach derived from a one-dimensional heat advection and dispersion equation with surface heating in the form of equilibrium temperature was developed to examine the potential for restoration of natural stream temperatures. The analytical model was validated with observed temperature data collected in the Clackamas River, Oregon, and was used to highlight key downstream temperature behaviour characteristics. Mean stream temperatures below the dam are relatively stable and upon deviating from natural stream mean temperatures, return asymptotically to their natural state. In contrast, the amplitudes of daily temperature variation are highly sensitive to the phase differences induced by the dam and could nearly double in natural amplitude within the first 24 h. The analysis showed that restoring average stream temperatures to natural levels through structural and operational modifications at the dam may not be sufficient as phase-induced temperatures maximums would continue to persist

  18. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  19. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm.

    PubMed

    Ma, Xia L; Wan, Zhengming; Moeller, Christopher C; Menzel, W Paul; Gumley, Liam E

    2002-02-10

    An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3-5 microns) and long-wave (8-14.5 microns) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES. PMID:11908219

  20. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    SciTech Connect

    Hawari, Ayman I

    2011-08-30

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 1021 to 1022 n/cm2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: 1) simulate radiation damage in graphite under various irradiation and temperature conditions, 2) generate the thermal neutron scattering cross sections for damaged graphite, and 3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  1. Elimination of carbon vacancies in 4H-SiC employing thermodynamic equilibrium conditions at moderate temperatures

    SciTech Connect

    Ayedh, H. M.; Svensson, B. G.; Hallén, A.

    2015-12-21

    The carbon vacancy (V{sub C}) is a major point defect in high-purity 4H-SiC epitaxial layers limiting the minority charge carrier lifetime. In layers grown by chemical vapor deposition techniques, the V{sub C} concentration is typically in the range of 10{sup 12 }cm{sup −3}, and after device processing at temperatures approaching 2000 °C, it can be enhanced by several orders of magnitude. In the present study, both as-grown layers and a high-temperature processed one have been annealed at 1500 °C and the V{sub C} concentration is demonstrated to be strongly reduced, exhibiting a value of only a few times 10{sup 11 }cm{sup −3} as determined by deep-level transient spectroscopy measurements. The value is reached already after annealing times on the order of 1 h and is evidenced to reflect thermodynamic equilibrium under C-rich ambient conditions. The physical processes controlling the kinetics for establishment of the V{sub C} equilibrium are estimated to have an activation energy below ∼3 eV and both in-diffusion of carbon interstitials and out-diffusion of V{sub C}'s are discussed as candidates. This concept of V{sub C} elimination is flexible and readily integrated in a materials and device processing sequence.

  2. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  3. High-power QCW arrays for operation over wide temperature extremes

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Junghans, Jeremy; Stephens, Ed

    2009-02-01

    A family of laser diode arrays has been developed for QCW operation in adverse environmental conditions. The arrays contain expansion-matched heatsinks, hard solder, and are built using a process that minimizes the packaging-induced strain on the laser diode bars. The arrays are rated for operation at 200 Watts/bar under normal operating conditions. This work contains test results for these arrays when run under a variety of harsh operating conditions. The conditions were chosen to mimic those required by many military and aerospace laser programs. Life test results are presented over a range of operating temperatures common to military specifications (-40 °C to + 70 °C) at a power level of approximately 215 Watts/bar. The arrays experienced no measurable degradation over the course of the life test. Operation at the temperature extremes did not introduce any additional detectable failure mechanisms. Also presented are results of characterization and reliability tests conducted at cryogenic temperatures. Diode arrays have been subjected to repeated cycles in rapid succession between room temperature and 77 K with temperature ramp rates up to 100 K/minute. Pre- and post- thermal cycle P-I-V data are compared. The results demonstrate the suitability of these arrays for operation at cryogenic temperatures.

  4. Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Yoshida, Koh; Inaba, Akira; Nakazawa, Yasuhiro

    2014-09-01

    Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, κT, a second derivative thermodynamic quantity of G, was evaluated for liquid H2O in the pressure range up to 350 MPa and the temperature to 50 °C. We then obtained its pressure derivative, dκT/dp, a third derivative numerically without using a fitting function to the κT data. On taking yet another p-derivative at a fixed T graphically without resorting to any fitting function, the resulting d2κT/dp2, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, dαp/dxGly and d2αp/dxGly2, at 0.1 MPa (αp is the thermal expansivity and xGly the mole fraction of solute glycerol) in our recent publication [J. Solution Chem. 43, 663-674 (2014); DOI:10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure H2O from a low to a high p-regions starting at point X and ending at Y at a fixed T. The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero p seems to be about 70 - 80 °C for points X and 90 - 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero xGly extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same T values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 °C there is no hydrogen bond network. Implication of these findings is discussed.

  5. Gradual crossover in molecular organization of stable liquid H{sub 2}O at moderately high pressure and temperature

    SciTech Connect

    Koga, Yoshikata; Westh, Peter; Yoshida, Koh; Inaba, Akira; Nakazawa, Yasuhiro

    2014-09-15

    Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, κ{sub T}, a second derivative thermodynamic quantity of G, was evaluated for liquid H{sub 2}O in the pressure range up to 350 MPa and the temperature to 50 ºC. We then obtained its pressure derivative, dκ{sub T}/dp, a third derivative numerically without using a fitting function to the κ{sub T} data. On taking yet another p-derivative at a fixed T graphically without resorting to any fitting function, the resulting d{sup 2}κ{sub T}/dp{sup 2}, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, dα{sub p}/dx{sub Gly} and d{sup 2}α{sub p}/dx{sub Gly}{sup 2}, at 0.1 MPa (α{sub p} is the thermal expansivity and x{sub Gly} the mole fraction of solute glycerol) in our recent publication [J. Solution Chem. 43, 663-674 (2014); DOI:10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure H{sub 2}O from a low to a high p-regions starting at point X and ending at Y at a fixed T. The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero p seems to be about 70 – 80 °C for points X and 90 – 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero x{sub Gly} extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same T values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 ºC there is no hydrogen bond network. Implication of these findings is discussed.

  6. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  7. Experimental hingeless rotor characteristics at low advance ratio with thrust. [wind tunnel tests of rotary wing operating at moderate to high lift

    NASA Technical Reports Server (NTRS)

    London, R. J.; Watts, G. A.; Sissingh, G. J.

    1973-01-01

    An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.

  8. Temperature Compensated Sapphire Resonator for Ultrastable Oscillator Operating at Temperatures Near 77 Deg Kelvin

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Santiago, David G. (Inventor)

    1999-01-01

    A sapphire resonator for an ultrastable oscillator capable of substantial performance improvements over the best available crystal quartz oscillators in a compact cryogenic package is based on a compensation mechanism enabled by the difference between copper and sapphire thermal expansion coefficients for so tuning the resonator as to cancel the temperature variation of the sapphire's dielectric constant. The sapphire resonator consists of a sapphire ring separated into two parts with webs on the outer end of each to form two re-entrant parts which are separated by a copper post. The re-entrant parts are bonded to the post by indium solder for good thermal conductivity between parts of that subassembly which is supported on the base plate of a closed copper cylinder (rf shielding casing) by a thin stainless steel cylinder. A unit for temperature control is placed in the stainless steel cylinder and is connected to the subassembly of re-entrant parts and copper post by a layer of indium for good thermal conduction. In normal use, the rf shielding casing is placed in a vacuum tank which is in turn placed in a thermos flask of liquid nitrogen. The temperature regulator is controlled from outside the thermos flask to a temperature in a range of about 40K to 150K, such as 87K for the WGH-811, mode of resonance in response to microwave energy inserted into the rf shielding casing through a port from an outside source.

  9. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  10. Subpolar gyre and radiative forcings moderate sea surface temperatures of the Norwegian Sea during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Bachem, Paul; Risebrobakken, Bjørg; McClymont, Erin

    2016-04-01

    The mid-Piacenzian age (ca. 3.3-3.0 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea. SSTs in the Norwegian Sea were 2-3°C warmer in the mid-Piacenzian compared to the Holocene average. There is notable orbital-scale SST variability with a range of 4°C. The most likely cause of the average long-term warmth is a higher atmospheric CO2 concentration. A correlation of SST variability with the presence of Greenland-sourced IRD suggests a common climate forcing acting across the Nordic Seas region. The orbital-scale variability was in part caused by interplay of obliquity and precession, as low SSTs coincide with times of low northern summer insolation. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least of comparable strength as during the Holocene. The North Atlantic Current (NAC) influence on the Norwegian Sea SSTs does not appear to have been stronger than during the Holocene.

  11. Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk.

    PubMed

    Amador-Espejo, G G; Suàrez-Berencia, A; Juan, B; Bárcenas, M E; Trujillo, A J

    2014-02-01

    The effect of ultra-high-pressure homogenization (UHPH) on raw whole milk (3.5% fat) was evaluated to obtain processing conditions for the sterilization of milk. Ultra-high-pressure homogenization treatments of 200 and 300 MPa at inlet temperatures (Ti) of 55, 65, 75, and 85 °C were compared with a UHT treatment (138 °C for 4s) in terms of microbial inactivation, particle size and microstructure, viscosity, color, buffering capacity, ethanol stability, propensity to proteolysis, and sensory evaluation. The UHPH-treated milks presented a high level of microbial reduction, under the detection limit, for treatments at 300 MPa with Ti of 55, 65, 75, and 85 °C, and at 200 MPa with Ti = 85 °C, and few survivors in milks treated at 200 MPa with Ti of 55, 65, and 75 °C. Furthermore, UHPH treatments performed at 300 MPa with Ti = 75 and 85 °C produced sterile milk after sample incubation (30 and 45 °C), obtaining similar or better characteristics than UHT milk in color, particle size, viscosity, buffer capacity, ethanol stability, propensity to protein hydrolysis, and lower scores in sensory evaluation for cooked flavor. PMID:24342690

  12. Effects of heavy-ion irradiation on microstructure of V-4Cr-4Ti alloy at moderate temperatures

    SciTech Connect

    Gazda, J. |; Chung, H.M.; Loomis, B.A.; Meshii, M.

    1996-12-01

    V-4Cr-4Ti is promising for first-wall and structural applications in magnetic fusion reactors. Fast neutron sources were used to evaluate postirradiation properties of fusion candidate materials, but FFTF and EBR-II have been shutdown. Under these circumstances, heavy-ion irradiation is an attractive alternative. We used 3-MeV V{sup +} and 4.5-MeV Ni{sup 2+} ions to investigate effects of irradiation on microstructure of V-4Cr-4Ti at 200-420 C. This paper report results of ion irradiation experiments and compare with fast-neutron irradiation data. From TEM, the dominant feature of postirradiation microstructure was a high density of dislocation loops and point- defect clusters. Density and defect size depend on irradiation dose and temperature. Precipitates and voids/bubbles were not observed, even in specimens simultaneous injected with he and exposed to heavy ions. Increased transport of point defects to internal interfaces was observed, as manifested by defect denuded zones along grain boundaries. Defect denuded zones along grain boundaries could lead to segregation of impurities and solutes and formation of precipitates on grain boundaries.

  13. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  14. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriguez, Jose

    2003-01-01

    This paper presents viewgraphs on the low frequency high amplitude temperature oscillations observed in loop heat pipe operations. The topics include: 1) Proposed Theory; 2) Test Loop and Test Results; and 3) Effects of Various Parameters. The author also presents a short summary on the conditiions that must be met in order to sustain a low frequency high amplitude temperature oscillation.

  15. On the operation of silicon photomultipliers at temperatures of 1-4 kelvin

    NASA Astrophysics Data System (ADS)

    Achenbach, P.; Biroth, M.; Downie, E.; Thomas, A.

    2016-07-01

    SiPM operation at cryogenic temperatures fails for many common devices. A particular type from Zecotek with deep channels in the silicon substrate instead of quenching resistors was tested at liquid helium temperature. Two similar types were thoroughly characterized from room temperature down to liquid nitrogen temperature by illuminating them with low light levels. At cryogenic temperatures the SiPMs show an unchanged rise-time and a fast recovery time, practically no after-pulses, and exhibit no increased cross-talk probability. Charge collection spectra were measured to extract the pixel gain and its variation, both comparable to room temperature at the same over-voltage. The quenching resistance was decreased at cryogenic temperature. It was found possible to use the characterized devices at temperatures of 1-4 K for the read-out of a target at the Mainz Microtron in Germany.

  16. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  17. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    SciTech Connect

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  18. Moderate temperature increase leads to disintegration of floating sludge and lower abundance of the filamentous bacterium Microthrix parvicella in anaerobic digesters.

    PubMed

    Lienen, T; Kleyböcker, A; Verstraete, W; Würdemann, H

    2014-11-15

    Filamentous bacteria such as Microthrix parvicella can cause serious foaming and floating sludge problems in anaerobic digesters fed with sewage sludge. The sewage sludge and oil co-fermenting laboratory-scale biogas digesters in this study were fed with substrates from a foaming-prone full-scale biogas plant containing the filamentous bacterium M. parvicella. At 37 °C, in both pneumatically mixed digesters a highly viscous and approximately 3 cm thick floating sludge was observed. A gradual increase of the temperature from 37 °C to 56 °C led to a significant decrease in the floating sludge thickness, which correlated with a strong decrease in the abundance of M. parvicella in the digestate. Furthermore, the stepwise temperature increase allowed for an adaption of the microbial community and prevented process failure. The study indicates that already a moderate temperature increase from 37 °C to 41 °C might help to control the M. parvicella abundance in full-scale biogas plants. PMID:25117937

  19. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  20. The Effective Lifetime of ACSR Full Tension Splice Connector Operated at Higher Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J; Graziano, Joe; Chan, John; Goodwin, Tip

    2009-01-01

    This paper is to address the issues related to integrity of ACSR full tension splice connectors operated at high temperatures. A protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature was developed. Based on the developed protocol the effective lifetime evaluation was demonstrated with ACSR Drake conductor SSC systems. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  1. Temperature dependence of dimension-6 gluon operators and their effects on charmonium

    NASA Astrophysics Data System (ADS)

    Kim, HyungJoo; Morita, Kenji; Lee, Su Houng

    2016-01-01

    Starting from an earlier representation of the independent dimension-6 gluon operators in terms of color electric and magnetic fields, we estimate their changes near the critical temperature Tc using the temperature dependence of the dimension-4 electric and magnetic condensates extracted from pure gauge theory on the lattice. We then improve the previous QCD sum rules for the J /ψ mass near Tc based on dimension-4 operators, by including the contribution of the dimension-6 operators to the OPE. We find an enhanced stability in the sum rule and confirm that the J /ψ will undergo an abrupt change in the property across Tc.

  2. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures

  3. Requirements of diesel engine oil as it relates to low temperature operation

    SciTech Connect

    Roth, R.J.G. )

    1989-01-01

    The performance requirements of heavy duty engine oils designed for equipment operating at ambient temperatures of less than -25{degrees}C are discussed. Experience has shown that the use of properly formulated, partially synthetic SAE 5W20 arctic oils can lead to improved startability and actually increase equipment life and engine durability. A further benefit may be realized through an increase in fuel economy over that of heavier oils. Better performance may be obtained through the use of partially synthetic SAE OW30 arctic oils which are useful over a wider temperature range and allow operation of equipment at ambient temperature consistently below -40{degrees}C. Recommendations by various engine manufacturers and the US military regarding low temperature operation of diesel engines are reviewed.

  4. Analytical Prediction of Temperature Distribution in Cylinder Liner during Various Boring Operations

    NASA Astrophysics Data System (ADS)

    Tang, Yulong; Sasahara, Hiroyuki

    During the boring process of the engine cylinder liner in automotive manufacturing, the heat at the cutting point flows into the cylinder liner and causes it to thermally expand, which is an inescapable machining issue. This affects the machining accuracy of the machined liner. However, the thermal expansion can be minimized under suitable cutting conditions and boring operations. The boring operation of an engine cylinder liner usually has two stages, semi-finishing boring and finishing. Different from the conventional boring operation, a new boring operation which can perform semi-finishing boring and finishing boring in one stage is explored in this paper. By this boring operation, the influence of the thermal expansion of the machined liner can be minimized. This boring operation is called a “simultaneous boring operation” in this paper. To prove the validity of the simultaneous boring operation, a finite element method (FEM) model was developed to predict the thermal behavior in the cylinder liner during the simultaneous boring operation/conventional boring operation. The results show that the machining errors caused by the thermal expansion of the cylinder liner during the simultaneous boring operation are smaller than those of the cylinder liner during the conventional boring operation. To investigate the influence of the cutting conditions on temperature distribution in the cylinder liner during simultaneous boring operation, FEM analysis of the temperature and thermal expansion on the cylinder liner under three levels of cutting speeds (300,600, and 900m/min) combined with two types of cutting fluid (dry, wet) during simultaneous boring was performed. The results showed that the temperature rise of the cylinder liner during a high-speed, wet simultaneous boring operation is small.

  5. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 [degrees]F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 [degrees]F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  6. Life extension of elevated-temperature reactors considering actual operating conditions

    SciTech Connect

    Ziada, H.H.

    1993-01-01

    Many reactors have experienced operating conditions less severe than those specified in the design. Their actual operating conditions may involve fewer or less severe transients, lower operating temperatures, or a combination of these. Thus the actual operating conditions become important considerations in efforts to extend the life of reactor components. If the number of transients experienced is fewer than the number specified in the design, the actual transients must be reconstructed to determine extended life. When operating temperature is below 800 {degrees}F, fatigue damage becomes the controlling factor in life assessment. At operating temperatures above 800 {degrees}F (e.g., breeder reactors), creep damage becomes another controlling factor because residual stresses have a longer time for relaxation, a fact that will reduce creep damage. This study presents an approach to assessing the life of breeder reactor components when the actual transients are fewer in number than those specified in the design. It also discusses the sensitivity of creep-fatigue damage in such factors when actual operating temperatures and the actual severity of transients fall below the design specifications.

  7. Operative environmental temperatures and basking behavior of the turtle Pseudemys scripta

    SciTech Connect

    Crawford, K.M.; Spotila, J.R.; Standora, E.A.

    1983-01-01

    Operative environmental temperatures (T/sub e/, an index of the thermal environment) were measured for basking Pseudemys scripta in South Carolina. Operative environmental temperatures were good predictors of the basking behavior of P. scripta. Turtles in this study generally did not bask unless T/sub e/ was 28/sup 0/C (preferred body temperature) or higher. This demonstrated that basking was not a random behavior in respect to T/sub e/, and implicated thermoregulation as a major factor eliciting basking behavior. Operative environmental temperature was positively related to short-wave and total solar radiation as well as to air and substrate temperature. Substrate temperature was the best single predictor of T/sub e/. A multiple regression equation (T/sub e/ = 0.005R + 0.103T/sub a/ - 1.16 log V + 0.932T/sub s/ - 2.54, r/sup 2/ = .90, where R = total radiation in watts per square metre, T/sub a/ = air temperature in degrees Celsius, V = wind speed in metres per second, and T/sub s/ = substrate temperature in degrees Celsius) defines the relationship of T/sub e/ to microclimate variables. Movement of the sun through the day results in spatial variation in T/sub e/'s available to turtles and influences their location and basking behavior.

  8. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  9. Experimental set up of a magnetoelectric measuring system operating at different temperatures

    NASA Astrophysics Data System (ADS)

    Gil, K.; Gil, J.; Cruz, B.; Ramirez, A.; Medina, M.; Torres, J.

    2016-02-01

    The magnetoelectric effect is the phenomenon whereby through a magnetic stimulation can be produced an electrical response or vice versa. We implement a magnetoelectric voltage measuring device through the dynamic method for a different range of temperatures. The system was split into an electric set and an instrumentation and control set. Design and element selection criteria that the experimenter must take into account are presented, with special emphasis in the design of the sample holder, which is the fundamental component that differentiates the system operating at high temperature and the one operating at room temperature. The experimental equipment consists of an electromagnet with DC magnetic flux density (B) in a range of (0.0 to 1.6) KOe, a Helmholtz coil which operates with a sinusoidal B between (0.0 and 0.016) KOe and a PT100 temperature sensor. A tubular heating resistance, a Checkman temperature control and an SSR 40A were used for controlling the temperature. As an application of the system, the transverse and longitudinal magnetoelectric coefficient was measured for a thin film of BiFeO3 at room temperature and 307K. It was observed that the behaviour of the longitudinal and transverse magnetoelectric coefficient matches the reported value and decreased with increasing temperature.

  10. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  11. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress.

    PubMed

    Allen, J D; Hall, L W; Collier, R J; Smith, J F

    2015-01-01

    Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat. PMID:25468707

  12. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

    NASA Astrophysics Data System (ADS)

    Vo, H.; Reichardt, A.; Howard, C.; Abad, M. D.; Kaoumi, D.; Chou, P.; Hosemann, P.

    2015-12-01

    Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness ( H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

  13. Moderate altitude is not associated with adverse postoperative outcomes for patients undergoing bidirectional cavopulmonary anastomosis and Fontan operation: A comparative study among Denver, Edmonton, and Toronto

    PubMed Central

    Zhou, Zhi; Malhotra, Sunil P.; Yu, Xiaoyang; Rutledge, Jennifer; Rebeyka, Ivan M.; Ross, David B.; Rausch, Christopher; Gu, Hong; McCrindle, Brian; Lacour-Gayet, Francois; Ivy, Dunbar; Li, Jia

    2013-01-01

    Objective Outcomes of patients with single ventricle physiology undergoing cavopulmonary palliations depend on pulmonary vascular resistance (PVR) and have been suggested to be adversely affected by living at elevated altitude. We compared the pulmonary hemodynamic data in correlation with postoperative outcomes at the 3 centers of Denver, Edmonton, and Toronto at altitudes of 1604, 668, and 103 meters, respectively. Methods Hemodynamic data at pre-bidirectional cavopulmonary anastomosis (BCPA) and pre-Fontan catheterization between 1995 and 2007 were collected. Death from cardiac failure or heart transplantation in the same period was used to define palliation failure. Results There was no significant correlation between altitude (ranged from 1 to 2572 meters) and PVR, pulmonary artery pressure (PAP) or transpulmonary gradient (TPG) at pre-BCPA and pre-Fontan catheterization. BCPA failure occurred in 11 (9.2%) patients in Denver, 3 (2.9%) in Edmonton, and 34 (11.9%) in Toronto. Fontan failure occurred in 3 (6.1%) patients in Denver, 5 (7.2%) in Edmonton, and 11 (7.0%) in Toronto. There was no significant difference in BCPA and Fontan failure among the 3 centers. BCPA failure positively correlated with PVR and the presence of a right ventricle as the systemic ventricle. Fontan failure positively correlated with PAP and TPG. Conclusions Moderate altitude is not associated with an increased PVR or adverse outcomes in patients with a functional single ventricle undergoing BCPA and the Fontan operation. The risk factors for palliation failure are higher PVR, PAP, and TPG and a systemic right ventricle, but not altitude. Our study reemphasizes the importance of cardiac catheterization assessments of pulmonary hemodynamics before BCPA and Fontan operations. PMID:23353110

  14. Dynamic magnetic characteristics of Fe78Si13B9 amorphous alloy subjected to operating temperature

    NASA Astrophysics Data System (ADS)

    He, Aina; Wang, Anding; Yue, Shiqiang; Zhao, Chengliang; Chang, Chuntao; Men, He; Wang, Xinmin; Li, Run-Wei

    2016-06-01

    The operating temperature dependence of dynamic magnetic characteristics of the annealed Fe78Si13B9 amorphous alloy core was systematically investigated. The core loss, magnetic induction intensity and complex permeability of the amorphous core were analyzed by means of AC B-H loop tracer and impedance analyzer. It is found that the operating temperature below 403 K has little impact on core loss when the induction (B) is less than 1.25 T. As B becomes higher, core loss measured at high temperature becomes higher. For the cores measured at power frequency, the B at 80 A/m and the coercivity (Hc) at 1 T decline slightly as the temperature goes up. Furthermore, the real part of permeability (μ‧) increases with the rise of temperature. The imaginary part of permeability (μ″) maxima shifts to lower frequency side with increasing temperature, indicating the magnetic relaxation behavior in the sample. In addition, with the rise in the operating temperature of the annealed amorphous core, the relaxation time tends to increase.

  15. Characterization and calibration of Raman based distributed temperature sensing system for 600°C operation

    NASA Astrophysics Data System (ADS)

    Mandal, Sudeep; Dekate, Sachin; Lee, Boon K.; Guida, Renato; Mondanos, Michael; Yeo, Jackson; Goranson, Marc

    2015-05-01

    Fiber optic distributed temperature sensing based on Raman scattering of light in optical fibers has become a very attractive solution for distributed temperature sensing (DTS) applications. The Raman scattered signal is independent of strain within the fiber, enabling simple packaging solutions for fiber optic temperature sensors while simultaneously improving accuracy and robustness of temperature measurements due to the lack of strain-induced errors in these measurements. Furthermore, the Raman scattered signal increases in magnitude at higher fiber temperatures, resulting in an improved SNR for high temperature measurements. Most Raman DTS instruments and fiber sensors are designed for operation up to approximately 300˚C. We will present our work in demonstrating high temperature calibration of a Raman DTS system using both Ge doped and pure silica core multi-mode optical fiber. We will demonstrate the tradeoffs involved in using each type of fiber for high temperature measurements. In addition, we will describe the challenges of measuring large temperature ranges (0 - 600˚C) with a single DTS interrogator and will demonstrate the need to customize the interrogator electronics and detector response in order to achieve reliable and repeatable high temperature measurements across a wide temperature range.

  16. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    NASA Technical Reports Server (NTRS)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  17. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Wan, Zhengming; Wang, Pucai; Sparrow, Michael; Liu, Jingmiao; Zhou, Xiuji; Haginoya, Shigenori

    2005-06-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) global land surface temperature (LST)/emissivity products supply daily, 8-day, and monthly global temperature and narrowband emissivity data. This article uses these products to calculate the surface long wave radiation of natural objects such as sand, soil, vegetation, etc., based on the Planck function and the Stefan-Boltzmann law. The results show that using the narrowband emissivity of a single band instead of the broadband emissivity results in large errors of up to 100 W m-2 of the calculated long wave radiation. A method to calculate broadband emissivity in the entire TIR spectral region from the narrowband emissivities of the MODIS bands (29, 31, and 32) in the thermal infrared region is proposed. Using the broadband emissivity, the surface long wave radiation could be calculated to an accuracy better than 6 W m-2 in the temperature region of 240-330 K, with a standard deviation of 1.22 W m-2, and a maximum error of 6.05 W m-2 (not considering the uncertainty associated with the MODIS LST/emissivity products themselves). The satellite estimated broadband emissivity was compared with 3-year (January 2001 to December 2003) ground-based measurements of emissivity at Gaize (32.30°N, 84.06°E, 4420 m) on the western Tibetan Plateau. The results show that the broadband emissivity calculated from MODIS narrowband emissivities by this method matches well the ground measurements, with a standard deviation of 0.0085 and a bias of 0.0015.

  18. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors

    NASA Astrophysics Data System (ADS)

    Bowen, Gavin J.; Blenkinsop, Ian D.; Catchpole, Rose; Gordon, Neil T.; Harper, Mark A. C.; Haynes, Paul C.; Hipwood, Les; Hollier, Colin J.; Jones, Chris; Lees, David J.; Maxey, Chris D.; Milner, Daniel; Ordish, Mike; Philips, Tim S.; Price, Richard W.; Shaw, Chris; Southern, Paul

    2005-05-01

    Conventional high performance infrared (IR) sensors need to be cooled to around 80K in order to achieve a high level of thermal sensitivity. Cooling to this temperature requires the use of Joule-Thomson coolers (with bottled gas supply) or Stirling cycle cooling engines, both of which are bulky, expensive and can have low reliability. In contrast to this, higher operating temperature (HOT) detectors are designed to give high thermal performance at an operating temperature in the range 200K to 240K. These detectors are fabricated from multi-layer mercury cadmium telluride (MCT) structures that have been designed for this application. At higher temperatures, lower cost, smaller, lighter and more reliable thermoelectric (or Peltier) devices can be used to cool the detectors. The HOTEYE thermal imaging camera, which is based on a 320x256 pixel HOT focal plane array, is described in this paper and performance measurements reported.

  19. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  20. Long-term operation of CsLiB(6)O(10) at elevated crystal temperature.

    PubMed

    Yap, Y K; Inoue, T; Sakai, H; Kagebayashi, Y; Mori, Y; Sasaki, T; Deki, K; Horiguchi, M

    1998-01-01

    We have successfully resolved the degradation problem of CsLiB(6)O(10) (CLBO) by means of elevated crystal temperature. CLBO crystals were continuously operated at 160 degrees C in ordinary room humidity. No degradation of performance was observed after more than 1 month. We believe that heating CLBO crystal above 130 degrees C can relieve stresses introduced by crystal hydration, cutting, polishing, and thermal shock owing to laser power absorption. Thus long-term operation of CLBO crystal is achieved for effective application of laser frequency conversion. Output stability from CLBO is also further enhanced at elevated crystal temperature. PMID:18084403

  1. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200°C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175°C is the poor wettability of molten sodium on β”-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175°C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  2. Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.

    2014-03-01

    Operation of the sodium-nickel chloride battery at temperatures below 200 °C reduces cell degradation and improves cyclability. One of the main technical issues with operating this battery at intermediate temperatures such as 175 °C is the poor wettability of molten sodium on β″-alumina solid electrolyte (BASE), which causes reduced active area and limits charging. In order to overcome the poor wettability of molten sodium on BASE at 175 °C, a Pt grid was applied on the anode side of the BASE using a screen printing technique. Cells with their active area increased by metallized BASEs exhibited deeper charging and stable cycling behavior.

  3. Regenerated distributed Bragg reflector fiber lasers for high-temperature operation.

    PubMed

    Chen, Rongzhang; Yan, Aidong; Li, Mingshan; Chen, Tong; Wang, Qingqing; Canning, John; Cook, Kevin; Chen, Kevin P

    2013-07-15

    This Letter presents distributed Bragg reflector (DBR) fiber lasers for high-temperature operation at 750°C. Thermally regenerated fiber gratings were used as the feedback elements to construct an erbium-doped DBR fiber laser. The output power of the fiber laser can reach 1 mW at all operating temperatures. The output power fluctuation tested at 750°C was 1.06% over a period of 7 hours. The thermal regeneration grating fabrication process opens new possibilities to design and to implement fiber laser sensors for extreme environments. PMID:23939090

  4. Experimental evaluation of the performance of the sodium metal chloride battery below usual operating temperatures

    NASA Astrophysics Data System (ADS)

    Gerovasili, Eirini; May, Johanna F.; Sauer, Dirk Uwe

    2014-04-01

    The high operating temperature of the sodium metal chloride battery limits the possible applications of this storage technology. In this study, the performance of a 3.65 kWh (80 Ah, 48 V) battery at temperatures as low as 240 °C is measured and the efficiency at different discharge currents, cycling frequencies and operating temperatures is examined. The total available capacity of a 40 Ah string at 240 °C when discharging with 0.1C is found to be just 1 Ah smaller compared to 275 °C, which is the nominal operating temperature of the battery. However it is shown that low temperatures have a big impact on the charge duration. Starting from 20% SOC (state-of-charge) the duration of charging until the fulfillment of the end-of-charge criterion at 240 °C is 25 h with the quickest charging regime (0.25C, 2.7 V/cell) whereas until 90% SOC 7.6 h are required. At a limited SOC operation window from 20% to 90% the total daily efficiency of the 3.65 kWh battery is higher at 240 °C compared to 275 °C and increases from 69% if one cycle is performed daily with 0.175C discharge current to 81% for two cycles with the same discharge rate.

  5. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  6. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    PubMed

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K. PMID:27197086

  7. EHL Transition Temperature Measurements on a Geostationary Operational Environmental Satellite (GOES) Filter Wheel Bearing

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Predmore, Roamer E.; Shogrin, Bradley A.

    2001-01-01

    The elastohydrodynamic lubrication (EHL) transition temperature was measured for a Geostationary Operational Environmental Satellite (GOES) sounder filter wheel bearing in a vacuum tribometer. Conditions included both an 89 N (20 lb.) hard and soft load, 600 rpm, temperatures between 23 C (73 F) and 85 C (185 F), and a vacuum of approximately 1.3 x 10(exp -5) Pa. Elastohydrodynamic to mixed lubrication started to occur at approximately 70 C (158 F).

  8. The effect of operating temperature on open, multimegawatt space power systems

    SciTech Connect

    Edenburn, M.W.

    1987-01-01

    This study addresses reactor powered and combustion powered multimegawatt, burst mode, space power systems to evaluate the effect turbine inlet temperature will have on their performance and mass. Both systems will provide power to space based antiballistic missile weapons that require hydrogen for cooling, and both use this hydrogen coolant as a working fluid or as a fuel for power generation. The quantity of hydrogen needed for weapon cooling increases as the weapon's cooling load increases and as weapon coolant outlet temperature decreases. Also, the hydrogen needed by the turbines in both power systems increases as turbine inlet temperature decreases. When weapon cooling loads are above 40% to 50% of weapon power and weapon coolant outlet temperature is below 300 K to 400 K, the weapon needs more hydrogen than the turbine in either the reactor or combustion powered systems using turbine inlet temperatures consistent with current material technology. There is therefore very little system mass reduction to be gained by operating a burst mode power system at a turbine inlet temperature above present material temperature limits unless the weapon's cooling load is below 40% to 50% or coolant outlet temperature is above 300 K to 400 K. Furthermore, the combustion system's mass increases as turbine inlet temperature increases because oxygen inventory increases with increased turbine inlet temperature.

  9. A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations

    PubMed Central

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2011-01-01

    In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method. PMID:21845077

  10. Effects of operating conditions on performance of high-temperature polymer electrolyte water electrolyzer

    NASA Astrophysics Data System (ADS)

    Li, Hua; Inada, Akiko; Fujigaya, Tsuyohiko; Nakajima, Hironori; Sasaki, Kazunari; Ito, Kohei

    2016-06-01

    Effects of operating conditions of a high-temperature polymer electrolyte water electrolyzer (HT-PEWE) on the electrolysis voltage are evaluated, and the optimal conditions for a high performance are revealed. A HT-PEWE unit cell with a 4-cm2 electrode consisting of Nafion117-based catalyst-coated membrane with IrO2 and Pt/C as the oxygen and hydrogen evolution catalysts is fabricated, and its electrolysis voltage and high-frequency resistance are assessed. The cell temperature and pressure are controlled at 80-130 °C and 0.1-0.5 MPa, respectively. It is observed that increasing the temperature at a constant pressure of 0.1 MPa does not increase the ohmic overvoltage of the cell; however, it does increase the concentration overvoltage. It is also found that the increase in the overvoltage resulting from the rise in the temperature can be suppressed by elevating the pressure. When operating the cell at a temperature of 100 °C, pressure greater than 0.1 MPa suppresses the overvoltage, and so does pressures greater than 0.3 MPa at 130 °C. This behavior suggests that keeping the water in a liquid water phase by increasing the pressure is critical for operating PEWEs at high temperatures.