Sample records for modern hydraulic science

  1. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  2. Modern Dilemmas - Science (World History Series).

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    The publication, referred to as a unit on "Modern Dilemmas," was completed in 1969 and is part of a Modern World History pilot project integrating areas of art, literature, philosophy, and science into the social studies curriculum. The unit seeks to explore all of the facets of science as part of man's search for meaning, but because of time…

  3. Antiquity versus modern times in hydraulics - a case study

    NASA Astrophysics Data System (ADS)

    Stroia, L.; Georgescu, S. C.; Georgescu, A. M.

    2010-08-01

    Water supply and water management in Antiquity represent more than Modern World can imagine about how people in that period used to think about, and exploit the resources they had, aiming at developing and improving their society and own lives. This paper points out examples of how they handled different situations, and how they managed to cope with the growing number of population in the urban areas, by adapting or by improving their water supply systems. The paper tries to emphasize the engineering contribution of Rome and the Roman Empire, mainly in the capital but also in the provinces, as for instance the today territory of France, by analysing some aqueducts from the point of view of modern Hydraulic Engineering. A third order polynomial regression is proposed to compute the water flow rate, based on the flow cross-sectional area measured in quinaria. This paper also emphasizes on contradictory things between what we thought we knew about Ancient Roman civilization, and what could really be proven, either by a modern engineering approach, a documentary approach, or by commonsense, where none of the above could be used. It is certain that the world we live in is the heritage of the Greco-Roman culture and therefore, we are due to acknowledge their contribution, especially taking into account the lack of knowledge of that time, and the poor resources they had.

  4. Sciences from below: feminisms, postcolonialities, and modernities.

    PubMed

    Weaver, Harlan

    2010-01-01

    Sandra Harding's newest book, Sciences from Below: Feminisms, Postcolonialities, and Modernities, continues her work in feminist standpoint theory and science and technologies studies, asking how we might judge "good" science. Attentive to race, class, gender, and imperialism, Harding critically examines Northern and Southern sciences and technologies by adopting the perspective of those who see from below. This vision from the peripheries lets Harding question stories of modern scientific progress, revealing a multiplicity of "ethnosciences" and critiquing modernity itself. However, while Harding aims to produce knowledge for the North's others by emphasizing woman's experience, she fails to question the category "woman," ignoring contemporary transgender and queer scholarship. Further, it is Harding's care for the North's subjugated others that motivates her writing, revealing that the struggle to achieve the standpoint "from below" so critical to her project is fueled by what her ally Maria Puig de la Bellacasa would term not thinking from, but thinking with, or, more precisely, "thinking with care."

  5. Origins of the historiography of modern Greek science.

    PubMed

    Patiniotis, Manolis

    2008-01-01

    The purpose of the paper is to examine how Greek historians account for the presence of modern scientific ideas in the intellectual environment of eighteenth-century Greek-speaking society. It will also discuss the function of the history of modern Greek science in the context of Greek national historiography. As will be shown, the history of modem Greek science spent most of its life under the shadow of the history of ideas. Despite its seemingly secondary role, however, it occupied a distinctive place within national historiography because it formed the ground upon which different perceptions of the country's European identity converged. In this respect, one of the main goals of this paper is to outline the particular ideological presumptions, which shaped the historiography of modern Greek science under different historical circumstances. At the end an attempt will be made to articulate a viewpoint more in tandem with the recent methodological developments in the history of science.

  6. People Interview: Black-tie science gets modern

    NASA Astrophysics Data System (ADS)

    2009-03-01

    INTERVIEW Black-tie science gets modern Baroness Susan Greenfield CBE is director of the Royal Institution and professor of pharmacology at Oxford where she heads a multidisciplinary group studying neurodegenerative disorders. David Smith speaks to her about specialities, keeping busy and how science is changing.

  7. Archives and the Boundaries of Early Modern Science.

    PubMed

    Popper, Nicholas

    2016-03-01

    This contribution argues that the study of early modern archives suggests a new agenda for historians of early modern science. While in recent years historians of science have begun to direct increased attention toward the collections amassed by figures and institutions traditionally portrayed as proto-scientific, archives proliferated across early modern Europe, emerging as powerful tools for creating knowledge in politics, history, and law as well as natural philosophy, botany, and more. The essay investigates the methods of production, collection, organization, and manipulation used by English statesmen and Crown officers such as Keeper of the State Papers Thomas Wilson and Secretary of State Joseph Williamson to govern their disorderly collections. Their methods, it is shown, were shared with contemporaries seeking to generate and manage other troves of evidence and in fact reflect a complex ecosystem of imitation and exchange across fields of inquiry. These commonalities suggest that historians of science should look beyond the ancestors of modern scientific disciplines to examine how practices of producing knowledge emerged and migrated throughout cultures of learning in Europe and beyond. Creating such a map of knowledge production and exchange, the essay concludes, would provide a renewed and expansive ambition for the field.

  8. Modern Science and Conservative Islam: An Uneasy Relationship

    ERIC Educational Resources Information Center

    Edis, Taner

    2009-01-01

    Familiar Western debates about religion, science, and science education have parallels in the Islamic world. There are difficulties reconciling conservative, traditional versions of Islam with modern science, particularly theories such as evolution. As a result, many conservative Muslim thinkers are drawn toward creationism, hopes of Islamizing…

  9. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  10. Reasoning About Nature: Graduate students and teachers integrating historic and modern science in high school math and science classes

    NASA Astrophysics Data System (ADS)

    Davis, J. B.; Rigsby, C. A.; Muston, C.; Robinson, Z.; Morehead, A.; Stellwag, E. J.; Shinpaugh, J.; Thompson, A.; Teller, J.

    2010-12-01

    Graduate students and faculty at East Carolina University are working with area high schools to address the common science and mathematics deficiencies of many high school students. Project RaN (Reasoning about Nature), an interdisciplinary science/math/education research project, addresses these deficiencies by focusing on the history of science and the relationship between that history and modern scientific thought and practice. The geological sciences portion of project RaN has three specific goals: (1) to elucidate the relationships among the history of scientific discovery, the geological sciences, and modern scientific thought; (2) to develop, and utilize in the classroom, instructional modules that are relevant to the modern geological sciences curriculum and that relate fundamental scientific discoveries and principles to multiple disciplines and to modern societal issues; and (3) to use these activity-based modules to heighten students’ interest in science disciplines and to generate enthusiasm for doing science in both students and instructors. The educational modules that result from this linkage of modern and historical scientific thought are activity-based, directly related to the National Science Standards for the high school sciences curriculum, and adaptable to fit each state’s standard course of study for the sciences and math. They integrate historic sciences and mathematics with modern science, contain relevant background information on both the concept(s) and scientist(s) involved, present questions that compel students to think more deeply (both qualitatively and quantitatively) about the subject matter, and include threads that branch off to related topics. Modules on topics ranging from the density to cladistics to Kepler’s laws of planetary motion have been developed and tested. Pre- and post-module data suggest that both students and teachers benefit from these interdisciplinary historically based classroom experiences.

  11. Magic Universe - The Oxford Guide to Modern Science

    NASA Astrophysics Data System (ADS)

    Calder, Nigel

    2003-11-01

    As a prolific author, BBC commentator, and magazine editor, Nigel Calder has spent a lifetime spotting and explaining the big discoveries in all branches of science. In Magic Universe , he draws on his vast experience to offer readers a lively, far-reaching look at modern science in all its glory, shedding light on the latest ideas in physics, biology, chemistry, medicine, astronomy, and many other fields. What is truly magical about Magic Universe is Calder's incredible breadth. Migrating birds, light sensors in the human eye, black holes, antimatter, buckyballs and nanotubes--with exhilarating sweep, Calder can range from the strings of a piano to the superstrings of modern physics, from Pythagoras's theory of musical pitch to the most recent ideas about atoms and gravity and a ten-dimensional universe--all in one essay. The great virtue of this wide-ranging style--besides its liveliness and versatility--is that it allows Calder to illuminate how the modern sciences intermingle and cross-fertilize one another. Indeed, whether discussing astronauts or handedness or dinosaurs, Calder manages to tease out hidden connections between disparate fields of study. What is most wondrous about the "magic universe" is that one can begin with stellar dust and finish with life itself. Drawing on interviews with more than 200 researchers, from graduate students to Nobel prize-winners, Magic Universe takes us on a high-spirited tour through the halls of science, one that will enthrall everyone interested in science, whether a young researcher in a high-tech lab or an amateur buff sitting in the comfort of an armchair.

  12. MODERN SCIENCE. INSTRUCTIONAL GUIDE FOR SENIOR HIGH SCHOOL.

    ERIC Educational Resources Information Center

    RICE, GLORIA; AND OTHERS

    ELEVEN UNITS OF STUDY INCLUDE--SCIENCE IN OUR LIVES TODAY, APPLIED CHEMISTRY, MODERN MATERIALS, MAN AND MECHANICS, HEAT AND FUELS, NUCLEAR ENERGY, SOUND, LIGHT, ELECTRICITY, ELECTRONICS, AND SPACE. ALL ARE DIRECTED AT THE STUDENT WHO WOULD USE THE INFORMATION GAINED IN EVERYDAY LIFE, RATHER THAN AT THE POTENTIAL SCIENCE STUDENT. UNIT 1 EXPLAINS…

  13. Modern network science of neurological disorders.

    PubMed

    Stam, Cornelis J

    2014-10-01

    Modern network science has revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, hubs and rich clubs. The next challenge is to use this knowledge to gain a better understanding of brain disease. Recent developments in the application of network science to conditions such as Alzheimer's disease, multiple sclerosis, traumatic brain injury and epilepsy have challenged the classical concept of neurological disorders being either 'local' or 'global', and have pointed to the overload and failure of hubs as a possible final common pathway in neurological disorders.

  14. On Modern Cosmology and Its Place in Science Education

    ERIC Educational Resources Information Center

    Kragh, Helge

    2011-01-01

    Cosmology in its current meaning of the science of the universe is a topic that attracts as much popular as scientific interest. This paper argues that modern cosmology and its philosophical aspects should have a prominent place in science education. In the context of science teaching a partly historical approach is recommended, in particular an…

  15. Pious Science: The Gulen Community and the Making of a Conservative Modernity in Turkey

    ERIC Educational Resources Information Center

    Arslan, Berna

    2009-01-01

    This dissertation explores the ways in which the Islamic Fethullah Gulen community engages with science as a response to globalization and modernity. Framed with the theoretical discussions on multiple modernities, it investigates how the community contests for hegemony in the field of science against the project of secular modernity, and…

  16. New directions in the history of modern science in China: global science and comparative history.

    PubMed

    Elman, Benjamin A

    2007-09-01

    These essays collectively present new perspectives on the history of modem science in China since 1900. Fa-ti Fan describes how science under the Republic of China after 1911 exhibited a complex local and international character that straddled both imperialism and colonialism. Danian Hu focuses on the fate of relativity in the physics community in China after 1917. Zuoyue Wang hopes that a less nationalist political atmosphere in China will stimulate more transnational studies of modern science, which will in turn reveal the underlying commonalities in different national contexts. Sigrid Schmalzer compares the socialist and the capitalist contexts for science in China and reopens the sensitive question of the "mass line" during the Cultural Revolution. Grace Shen describes the tensions early Chinese scientists felt when choosing between foreign models for modem geology and their own professional identities in China. Taken together, these accounts present us with a comparative history of modern science in China that is both globally and locally informed.

  17. BiteScis: Connecting K-12 teachers with science graduate students to produce lesson plans on modern science research

    NASA Astrophysics Data System (ADS)

    Battersby, Cara

    2016-01-01

    Many students graduate high school having never learned about the process and people behind modern science research. The BiteScis program addresses this gap by providing easily implemented lesson plans that incorporate the whos, whats, and hows of today's scienctific discoveries. We bring together practicing scientists (motivated graduate students from the selective communicating science conference, ComSciCon) with K-12 science teachers to produce, review, and disseminate K-12 lesson plans based on modern science research. These lesson plans vary in topic from environmental science to neurobiology to astrophysics, and involve a range of activities from laboratory exercises to art projects, debates, or group discussion. An integral component of the program is a series of short, "bite-size" articles on modern science research written for K-12 students. The "bite-size" articles and lesson plans will be made freely available online in an easily searchable web interface that includes association with a variety of curriculum standards. This ongoing program is in its first year with about 15 lesson plans produced to date.

  18. Hydraulics for Royal Gardens: Water Art as a Challenge for 18th Century Science and 21st Century Physics Teaching

    ERIC Educational Resources Information Center

    Eckert, Michael

    2007-01-01

    Hydraulics is an engineering specialty and largely neglected as a topic in physics teaching. But the history of hydraulics from the Renaissance to the Baroque, merits our attention because hydraulics was then more broadly conceived as a practical "and" theoretical science; it served as a constant bone of contention for mechanics and…

  19. [Regulatory science: modern trends in science and education for pharmaceutical products].

    PubMed

    Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I

    2012-01-01

    This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).

  20. [Cardiology was born with the modern medical science].

    PubMed

    de Micheli, Alfredo

    2015-01-01

    Modern medical science was born in the post-Renaissance age and began to consolidate towards the middle of the XVII century thanks to physicists, physiologists and biologists, most of whom were direct or indirect pupils of Galileo. The discovery of blood circulation by Harvey is now considered the only progress in physiology at the beginning of the XVII century, comparable to the current advances seen in physical sciences. The history of this exploit could be written from view point of the progressive advance in knowledge. In his experiments, Harvey referred to the authentic not imaginary experiments, and put forward irrefutable quantitative arguments. We can therefore claim that his discovery of blood circulation was the first proper explanation of an organic process and the starting point leading to experimental physiology. So it seems justified to assert that modern medical science did not all rise suddenly, but was gradually structured starting from the middle of the XVII century following the path traced by William Harvey in light of Galileo's thought. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  1. [Elucidating! But how? Insights into the impositions of modern science communication].

    PubMed

    Lehmkuh, Markus

    2015-01-01

    The talk promotes the view that science communication should abandon the claim that scientific information can convince others. This is identified as one of the impositions modern science communication is exposed to. Instead of convin cing others, science communication should focus on identifying societally relevant scientific knowledge and on communicating it accurately and coherently.

  2. The Place of Science in the Modern World: A Speech by Robert Millikan

    NASA Astrophysics Data System (ADS)

    Williams, Kathryn R.

    2001-07-01

    A speech by Robert Millikan, reprinted in the May 1930 issue, pertains to issues still prevalent in the 21st century. In the "The Place of Science in the Modern World", the Nobel laureate defends science against charges of its detrimental effects on society, its materialistic intentions, and the destructive powers realized during the first World War. He also expresses concern that "this particular generation of Americans" may lack the moral qualities needed to make responsible use of the increased powers afforded by modern science.

  3. Focus: science, history, and modern India. Introduction.

    PubMed

    Phalkey, Jahnavi

    2013-06-01

    Histories of science in India are revisitations of the colonial question. Science is ideology to be unraveled and exposed--as modernity and progress making or violence and oppression making--depending on where you stand on the interpretive spectrum. It has been seen as ideologically driven practice, as a mode of knowledge production whose history is inseparable from the social and political uses to which it is tethered. In the colonial as well as the postcolonial context, science and technology have been seen as the "ideology of empire," "tools of empire," "tentacles of progress," and "reasons of state." Yet science and technology are practices and bodies of knowledge that inhabitants of the subcontinent have engaged with enthusiasm, that they have used to invent themselves in their global, national, and individual lives. We know remarkably little about the histories of these complex engagements. A departure from current historiographical preoccupations is called for to map and explain the lives, institutions, practices, and stories of science on the subcontinent as they connect with, and where they break away from, the world at large.

  4. And yet, we were modern. The paradoxes of Iberian science after the Grand Narratives.

    PubMed

    Pimentel, Juan; Pardo-Tomás, José

    2017-06-01

    In this article, we try to explain the origin of a disagreement; the sort that often arises when the subject is the history of early modern Spanish science. In the decades between 1970 and 1990, while some historians were trying to include Spain in the grand narrative of the rise of modern science, the very historical category of the Scientific Revolution was beginning to be dismantled. It could be said that Spaniards were boarding the flagship of modern science right before it sank. To understand this décalage it would be helpful to recall the role of the history of science during the years after the Franco dictatorship and Spain's transition to democracy. It was a discipline useful for putting behind us the Black Legend and Spanish exceptionalism.

  5. Effects of a Science Education Module on Attitudes towards Modern Biotechnology of Secondary School Students

    NASA Astrophysics Data System (ADS)

    Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.

    2010-06-01

    This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in this particular field. In a quasi-experimental design (experimental-, control groups, and pre- and post-tests), secondary school students' attitudes (N = 365) towards modern biotechnology were measured by a questionnaire. Data were analysed using Chi-square tests. Significant differences were obtained between the control and experimental conditions. Results showed that the science module had a significant effect on attitudes, although predominantly towards a more supportive and not towards a more critical stance. It is discussed that offering a science module of this kind can indeed encourage students to become more aware of modern biotechnology, although promoting a more critical attitude towards modern biotechnology should receive more attention.

  6. Jorge Luis Borges and the New Physics: the Literature of Modern Science and the Science of Modern Literature

    NASA Astrophysics Data System (ADS)

    Mosher, Mark Robert

    1992-01-01

    By examining the works of the Argentine writer, Jorge Luis Borges, and the parallels it has with modern physics, literature and science converge in their quest for truth regarding the structure and meaning of the universe. The classical perception of physics as a "hard" science--that of quantitative, rational thought which was established during the Newtonian era--has been replaced by the "new physics," which integrates the so-called "soft" elements into its paradigm. It presents us with a universe based not exclusively on a series of particle-like interactions, or a "billiard-ball" hypothesis where discrete objects have a measurable position and velocity in absolute space and time, but rather on a combination of these mechanistic properties and those that make up the non-physical side of nature such as intuition, consciousness, and emotion. According to physicists like James Jeans science has been "humanized" to the extent that the universe as a "great machine" has been converted into a "great thought.". In nearly all his collections of essays and short stories, Borges complements the new physics by producing a literature that can be described as "scientized." The abstract, metaphysical implications and concerns of the new world-view, such as space, time, language, consciousness, free will, determinism, etc., appear repeatedly throughout Borges' texts, and are treated in terms that are remarkably similar to those expressed in the scientific texts whose authors include Albert Einstein, Niels Bohr, Werner Heisenberg, and Erwin Schrodinger. As a final comparison, Borges and post-modern physicists address the question of the individual's ability to ever comprehend the universe. They share an attitude of incredulity toward all models and theories of reality simply because they are based on partial information, and therefore seen only as conjectures.

  7. Zilsel's Thesis, Maritime Culture, and Iberian Science in Early Modern Europe.

    PubMed

    Leitão, Henrique; Sánchez, Antonio

    2017-01-01

    Zilsel's thesis on the artisanal origins of modern science remains one of the most original proposals about the emergence of scientific modernity. We propose to inspect the scientific developments in Iberia in the early modern period using Zilsel's ideas as a guideline. Our purpose is to show that his ideas illuminate the situation in Iberia but also that the Iberian case is a remarkable illustration of Zilsel's thesis. Furthermore, we argue that Zilsel's thesis is essentially a sociological explanation that cannot be applied to isolated cases; its use implies global events that involve extended societies over large periods of time.

  8. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  9. Investigating the Purpose of Trigonometry in the Modern Sciences

    ERIC Educational Resources Information Center

    Hertel, Joshua T.

    2013-01-01

    This dissertation reports the results of a qualitative research project that aimed to develop a research-based perspective on the purpose of trigonometry in the modern sciences. The investigation was guided by three objectives. First, the study sought to identify the purpose of trigonometry as described by educators and high school textbooks.…

  10. Western teachers of science or teachers of Western science: On the influence of Western modern science in a post-colonial context

    NASA Astrophysics Data System (ADS)

    Burke, Lydia E. Carol-Ann

    An expanding body of research explores the social, political, cultural and personal challenges presented by the Western emphasis of curricula around the world. The aim of my study is to advance this field of inquiry by gaining insight into perceptions of Western modern science presented by students, teachers and administrators in a given Caribbean setting. Through this study I asked how my research participants described the nature of scientific knowledge, how they related scientific knowledge to other culturally-valued knowledges and the meanings they attached to the geographic origins of science teachers. Situating this work firmly within the practice of Foucauldian critical discourse analysis, I have utilised a conceptual framework defined by the power/knowledge and complicity/resistance themes of post-colonial theory to support my interpretation of participant commentary in an overall quest that is concerned about the ways in which Western modern science might be exerting a colonising influence. Fourteen students, nine teachers (both expatriate and local) and three administrators participated in the study. I combined a semi-structured question and answer interview format with a card sort activity. I used a procedure based on my own adaptation of Stephenson's Q methodology, where the respondents placed 24 statements hierarchically along a continuum of increasing strength of agreement, presenting their rationalisations, personal stories and illustrations as they sorted. I used an inverse factor analysis, in combination with the interview transcripts, to assist me in the identification of three discourse positions described by my research participants: The truth value of scientific knowledge, The pragmatic use of science to promote progress, and The priority of cultural preservation. The interview transcripts were also analysed for emergent themes, providing an additional layer of data interpretation. The research findings raise concerns regarding the hegemonic

  11. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  12. Zeno Meets Modern Science

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2005-10-01

    ``No one has ever touched Zeno without refuting him''. We will not refute Zeno in this paper. Instead we review some unexpected encounters of Zeno with modern science. The paper begins with a brief biography of Zeno of Elea followed by his famous paradoxes of motion. Reflections on continuity of space and time lead us to Banach and Tarski and to their celebrated paradox, which is in fact not a paradox at all but a strict mathematical theorem, although very counterintuitive. Quantum mechanics brings another flavour in Zeno paradoxes. Quantum Zeno and anti-Zeno effects are really paradoxical but now experimental facts. Then we discuss supertasks and bifurcated supertasks. The concept of localisation leads us to Newton and Wigner and to interesting phenomenon of quantum revivals. At last we note that the paradoxical idea of timeless universe, defended by Zeno and Parmenides at ancient times, is still alive in quantum gravity. The list of references that follows is necessarily incomplete but we hope it will assist interested reader to fill in details.

  13. Krakatoa Erupts!: Using a Historic Cataclysm to Teach Modern Science

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2011-01-01

    Through integration of geology, biology, chemistry, and the history of science, the historic Krakatoa eruption offers a unique portal for student inquiry in the classroom. Students are inherently fascinated by natural disasters, and modern comparisons to the Krakatoa cataclysm are as close as the day's news. This article uses the historic Krakatoa…

  14. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    NASA Astrophysics Data System (ADS)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  15. 2012 Global Summit on Regulatory Science (GSRS-2012)--modernizing toxicology.

    PubMed

    Miller, Margaret A; Tong, Weida; Fan, Xiaohui; Slikker, William

    2013-01-01

    Regulatory science encompasses the tools, models, techniques, and studies needed to assess and evaluate product safety, efficacy, quality, and performance. Several recent publications have emphasized the role of regulatory science in improving global health, supporting economic development and fostering innovation. As for other scientific disciplines, research in regulatory science is the critical element underpinning the development and advancement of regulatory science as a modern scientific discipline. As a regulatory agency in the 21st century, the Food and Drug Administration (FDA) has an international component that underpins its domestic mission; foods, drugs, and devices are developed and imported to the United States from across the world. The Global Summit on Regulatory Science, an international conference for discussing innovative technologies, approaches, and partnerships that enhance the translation of basic science into regulatory applications, is providing leadership for the advancement of regulatory sciences within the global context. Held annually, this international conference provides a platform where regulators, policy makers, and bench scientists from various countries can exchange views on how to develop, apply, and implement innovative methodologies into regulatory assessments in their respective countries, as well as developing a harmonized strategy to improve global public health through global collaboration.

  16. Robust Prediction of Hydraulic Roughness

    DTIC Science & Technology

    2011-03-01

    Manning’s n were required as input for further hydraulic analyses with HEC - RAS . HYDROCAL was applied to compare different estimates of resistance... River Restoration Science Synthesis (NRRSS) demonstrated that, in 2007, river and stream restoration projects and funding were at an all time high...behavior makes this parameter very difficult to quan- tify repeatedly and accurately. A fundamental concept of hydraulic theory in the context of river

  17. Development of control system of coating of rod hydraulic cylinders

    NASA Astrophysics Data System (ADS)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  18. Cerebral localization in the nineteenth century--the birth of a science and its modern consequences.

    PubMed

    Steinberg, David A

    2009-07-01

    Although many individuals contributed to the development of the science of cerebral localization, its conceptual framework is the work of a single man--John Hughlings Jackson (1835-1911), a Victorian physician practicing in London. Hughlings Jackson's formulation of a neurological science consisted of an axiomatic basis, an experimental methodology, and a clinical neurophysiology. His axiom--that the brain is an exclusively sensorimotor machine--separated neurology from psychiatry and established a rigorous and sophisticated structure for the brain and mind. Hughlings Jackson's experimental method utilized the focal lesion as a probe of brain function and created an evolutionary structure of somatotopic representation to explain clinical neurophysiology. His scientific theory of cerebral localization can be described as a weighted ordinal representation. Hughlings Jackson's theory of weighted ordinal representation forms the scientific basis for modern neurology. Though this science is utilized daily by every neurologist and forms the basis of neuroscience, the consequences of Hughlings Jackson's ideas are still not generally appreciated. For example, they imply the intrinsic inconsistency of some modern fields of neuroscience and neurology. Thus, "cognitive imaging" and the "neurology of art"--two topics of modern interest--are fundamentally oxymoronic according to the science of cerebral localization. Neuroscientists, therefore, still have much to learn from John Hughlings Jackson.

  19. From Nutty Professor to Buddy Love--Personality types in modern science.

    PubMed

    Charlton, Bruce G

    2007-01-01

    People often suggest that scientists should have a specific personality type, usually conscientious and self-critical. But this is a mistake. Science as a social system needs to be conscientious and self-critical, but scientists as people do not necessarily have to conform to that stereotype. Since science works by a process of selection, it makes sense to have a wide range of personalities in science. It takes all types. However, the selection pressures within science have changed over recent decades. In the past, a successful scientist often resembled the white-coated, bespectacled and introverted Nutty Professor in Jerry Lewis's movie of that name. But the modern science superstar is more like the Nutty Professor's alter ego, nightclub singer 'Buddy Love': a sharp-suited, good-looking and charismatic charmer. While Nutty was dull but impartial, Buddy is compelling but self-seeking. Our attitude towards public scientific pronouncements should be adjusted accordingly.

  20. Mercury-contaminated hydraulic mining debris in San Francisco Bay

    USGS Publications Warehouse

    Bouse, Robin M.; Fuller, Christopher C.; Luoma, Samuel N.; Hornberger, Michelle I.; Jaffe, Bruce E.; Smith, Richard E.

    2010-01-01

    Mercury concentrations in pre-Gold Rush sediment range between 0.03 and 0.08 μg g-1. In core sediments that have characteristics of the gold deposits and were deposited during the time of hydraulic mining, mercury concentrations can be up to 0.45 μg/g. Modern sediment (post-1952 deposition) contains mercury concentrations up to 0.79 μg/g and is likely a mix of hydraulic mining mercury and mercury introduced from other sources.

  1. Speculative Truth - Henry Cavendish, Natural Philosophy, and the Rise of Modern Theoretical Science

    NASA Astrophysics Data System (ADS)

    McCormmach, Russell

    2004-03-01

    With a never-before published paper by Lord Henry Cavendish, as well as a biography on him, this book offers a fascinating discourse on the rise of scientific attitudes and ways of knowing. A pioneering British physicist in the late 18th and early 19th centuries, Cavendish was widely considered to be the first full-time scientist in the modern sense. Through the lens of this unique thinker and writer, this book is about the birth of modern science.

  2. Are modern health worries, personality and attitudes to science associated with the use of complementary and alternative medicine?

    PubMed

    Furnham, Adrian

    2007-05-01

    To investigate whether personality traits, modern health worries (MHWs) and attitudes to science predict attitudes to, and beliefs about, complementary and alternative medicine (CAM). This study set out to test whether belief in, and use of CAM was significantly associated with high levels of MHWs, a high level of neuroticism and sceptical attitudes towards science. Two hundred and forty-three British adults completed a four part questionnaire that measured MHWs, the Big Five personality traits and beliefs about science and medicine and attitudes to CAM. There were many gender differences in MHWs (females expressed more), though results were similar to previous studies. Contrary to prediction, personality traits were not related to MHWs, CAM usage or beliefs about CAM. Regular and occasional users of CAM did have higher MHWs than those non or infrequent users. Those with high totalled MHWs also tended to believe in the importance of psychological factors in health and illness, as well as the potential harmful effects of modern medicine. Young males who had positive attitudes to science were least likely to be CAM users. Further, positive attitudes to science were associated with increased scepticism about CAM. Concern about health, belief about modern medicine and CAM are logically inter-related. Those who have high MHWs tend to be more sceptical about modern medicine and more convinced of the possible role of psychological factors in personal health and illness.

  3. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  4. Effects of a Science Education Module on Attitudes towards Modern Biotechnology of Secondary School Students

    ERIC Educational Resources Information Center

    Klop, Tanja; Severiens, Sabine E.; Knippels, Marie-Christine P. J.; van Mil, Marc H. W.; Ten Dam, Geert T. M.

    2010-01-01

    This article evaluated the impact of a four-lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the module would help students become more articulate in…

  5. How Political Science Became Modern: Racial Thought and the Transformation of the Discipline, 1880-1930

    ERIC Educational Resources Information Center

    Blatt, Jessica

    2009-01-01

    This dissertation argues that changing ideas about race and engagement with race science were at the heart of a major transformation of political science in the 1920s, a transformation that I characterize as "becoming modern." This transformation was at once conceptual--visible in the basic categories and theoretical apparatus of the…

  6. The New Alliance between Science and Education: Otto Neurath's Modernity beyond Descartes' "Adamitic" Science

    ERIC Educational Resources Information Center

    Oliverio, Stefano

    2014-01-01

    Starting from a suggestion of Stephen Toulmin and through an interpretation of the criticism to which Neurath, one of the founders of the Vienna Circle, submits Descartes' views on science, the paper attempts to outline a pattern of modernity opposed to the Cartesian one, that has been obtaining over the last four centuries. In particular, it…

  7. TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review

    NASA Astrophysics Data System (ADS)

    De Volder, Michaël; Reynaerts, Dominiek

    2010-04-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.

  8. Special Section: Complementary and Alternative Medicine (CAM): Acupuncture From Ancient Practice to Modern Science

    MedlinePlus

    ... Home Current Issue Past Issues Special Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / ... percent of U.S. adults use acupuncture. What Is Acupuncture? Dr. Adeline Ge adjusts placement of acupuncture needles ...

  9. Marginalia, commonplaces, and correspondence: scribal exchange in early modern science.

    PubMed

    Yale, Elizabeth

    2011-06-01

    In recent years, historians of science have increasingly turned their attention to the "print culture" of early modern science. These studies have revealed that printing, as both a technology and a social and economic system, structured the forms and meanings of natural knowledge. Yet in early modern Europe, naturalists, including John Aubrey, John Evelyn, and John Ray, whose work is discussed in this paper, often shared and read scientific texts in manuscript either before or in lieu of printing. Scribal exchange, exemplified in the circulation of writings like commonplace books, marginalia, manuscript treatises, and correspondence, was the primary means by which communities of naturalists constructed scientific knowledge. Print and manuscript were necessary partners. Manuscript fostered close collaboration, and could be circulated relatively cheaply; but, unlike print, it could not reliably secure priority or survival for posterity. Naturalists approached scribal and print communication strategically, choosing the medium that best suited their goals at any given moment. As a result, print and scribal modes of disseminating information, constructing natural knowledge, and organizing communities developed in tandem. Practices typically associated with print culture manifested themselves in scribal texts and exchanges, and vice versa. "Print culture" cannot be hived off from "scribal culture." Rather, in their daily jottings and exchanges, naturalists inhabited, and produced, one common culture of communication. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Dire necessity and transformation: entry-points for modern science in Islamic bioethical assessment of porcine products in vaccines.

    PubMed

    Padela, Aasim I; Furber, Steven W; Kholwadia, Mohammad A; Moosa, Ebrahim

    2014-02-01

    The field of medicine provides an important window through which to examine the encounters between religion and science, and between modernity and tradition. While both religion and science consider health to be a 'good' that is to be preserved, and promoted, religious and science-based teachings may differ in their conception of what constitutes good health, and how that health is to be achieved. This paper analyzes the way the Islamic ethico-legal tradition assesses the permissibility of using vaccines that contain porcine-derived components by referencing opinions of several Islamic authorities. In the Islamic ethico-legal tradition controversy surrounds the use of proteins from an animal (pig) that is considered to be impure by Islamic law. As we discuss the Islamic ethico-legal constructs used to argue for or against the use of porcine-based vaccines we will call attention to areas where modern medical data may make the arguments more precise. By highlighting areas where science can buttress and clarify the ethico-legal arguments we hope to spur an enhanced applied Islamic bioethics discourse where religious scholars and medical experts use modern science in a way that remains faithful to the epistemology of Islamic ethics to clarify what Islam requires of Muslim patients and healthcare workers. © 2013 John Wiley & Sons Ltd.

  11. The interface between tradition and science: naturopaths' perspectives of modern practice.

    PubMed

    Steel, Amie; Adams, Jon

    2011-10-01

    Although there has been much international commentary, little is known about the interface between traditional knowledge and scientific research in modern naturopathic practice. This study aimed to explore this interface from the perspective of naturopaths. Semistructured interviews were conducted with naturopaths in current practice. The participants were selected using purposive sampling, and the data from the interviews were interpreted using thematic analysis. Interviews were conducted in a place suitable to each participant. Twelve (12) naturopaths in current clinical practice were interviewed. The participants represented a diversity of characteristics including gender, time in practice, level of qualification, and clinical contact hours per week. Thematic analysis was used to identify common themes from the interviews. Analysis identified a disparity in practitioner definition of what constitutes traditional information. However, it also identified that traditional knowledge is considered a valid source of information, whereas the validity and value of modern research is questioned. There is also tension between these two information sources, with science being argued to both support traditional knowledge, while also undermining its value. This tension seems to be overcome by practitioners' use of traditional knowledge to direct their own research, as well as drawing upon their knowledge of science to explain traditional knowledge as yet not researched. The findings of this qualitative study reveal tensions and ambiguities around the interface between tradition and science with regard to naturopathic clinical practice. Understanding these findings may assist individuals and groups within the naturopathic profession, as well as those outside the profession engaging and collaborating with naturopaths.

  12. The national science agenda as a ritual of modern nation-statehood: The consequences of national "Science for National Development" projects

    NASA Astrophysics Data System (ADS)

    Drori, Gili S.

    This study is a comparative investigation of the ways by which the globalization of modern science affects the characteristics of different nation-states. Whereas much research and policy discussion focuses on science as an instrumental, or technical, system with immediate consequences for national conditions, such as economic development, science should also be regarded as a general cultural framework, which is highly institutionalized at the global level. As such, the institutionalization of science at both the global and national levels affects a wide variety of national properties. Following this line of reasoning, this dissertation study employs cross-national and longitudinal data and multiple-indicator methods to show national-level consequences of scientific expansion on the processes of rationalization and modernization of social and political life. It appears that the cross-national expansion of science practice results in, or is associated with, a variety of measures of (a) the standardization of civil and governmental procedures and (b) the expansion of the political rights and political engagement. I conclude from these empirical findings that scientization encourages (a) greater general societal rationalization and (b) expanded notions of social actorhood and agency. This evidence demonstrates how the globalization of science alters local conditions, both civil and political, by supporting the institutionalization of bureaucratic practices and participatory politics. Thus, the expansion of science--clearly affected by global processes--carries a general secularized faith in a rationalized world and in human agency. In this sense, the practice of science is a national ritual, whose social role is as a legitimacy-providing institution, rather then a technically functional institution. On a broader level, the study emphasizes the relations between globalization processes and the sovereignty of the nation-state. I conclude that science carries modernist

  13. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    the value of hydraulic machinery to the end user, to the societies, and to improve societies understanding and appreciation of that value. The series of IAHR Symposia on Hydraulic Machinery and Cavitation started with the 1st edition in Nice, France, 1960. For the past decade, all the symposia have focused on an extended portfolio of topics under the name of 'Hydraulic Machinery and Systems', such as the 20th edition in Charlotte, USA, 2000, the 21st in Lausanne, Switzerland, 2002, the 22nd in Stockholm, Sweden, 2004, the 23rd in Yokohama, Japan, 2006, the 24th in Foz do Iguassu, Brasil, 2008, and the 25th in Timisoara, Romania, 2010. The 26th IAHR Symposium on Hydraulic Machinery and Systems brings together more than 250 scientists and researchers from 25 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for hydraulic machinery and systems, which will enhance the sustainable development of water resources and hydropower production. The Scientific Committee has selected 268 papers, out of 430 abstracts submitted, on the following topics: (i) Hydraulic Turbines and Pumps, (ii) Sustainable Hydropower, (iii) Hydraulic Systems, (iv) Advances in Computational and Experimental Techniques, (v) Application in Industries and in Special Conditions, to be presented at the symposium and to be included in the proceedings. All the papers, published in this Volume 15 of IOP Conference Series: Earth and Environmental Science, have been peer reviewed through processes administered by the editors of the 26th IAHR Symposium on Hydraulic Machinery and Systems proceedings, those are Yulin Wu, Zhengwei Wang, Shuhong Liu, Shouqi Yuan, Xingqi Luo and Fujun Wang. We sincerely hope that this edition of the symposium will be a significant step forward in the worldwide efforts to address the present challenges facing the modern Hydraulic Machinery and Systems. Professor Yulin Wu Chairman of the Organizing Committee

  14. Challenges in Modern Anti-Doping Analytical Science.

    PubMed

    Ayotte, Christiane; Miller, John; Thevis, Mario

    2017-01-01

    The challenges facing modern anti-doping analytical science are increasingly complex given the expansion of target drug substances, as the pharmaceutical industry introduces more novel therapeutic compounds and the internet offers designer drugs to improve performance. The technical challenges are manifold, including, for example, the need for advanced instrumentation for greater speed of analyses and increased sensitivity, specific techniques capable of distinguishing between endogenous and exogenous metabolites, or biological assays for the detection of peptide hormones or their markers, all of which require an important investment from the laboratories and recruitment of highly specialized scientific personnel. The consequences of introducing sophisticated and complex analytical procedures may result in the future in a change in the strategy applied by the Word Anti-Doping Agency in relation to the introduction and performance of new techniques by the network of accredited anti-doping laboratories. © 2017 S. Karger AG, Basel.

  15. [Franz Joseph Gall and his "talking skulls" established the basis of modern brain sciences].

    PubMed

    Wolfgang, Regal; Michael, Nanut

    2008-01-01

    The anatomist and brain scientist Franz Joseph Gall (1758-1828) developed the "phrenology" in the early 19(th) century. At this time, his new teachings were more seen as a temporary fashion than science and were discredited. No more than hundred years ago, it was realised that the phrenology established the basis of modern brain sciences. By all means Gall was the first one to combine defined regions of the cerebral cortex with distinct cognitive functions.

  16. Major Challenges for the Modern Chemistry in Particular and Science in General.

    PubMed

    Uskokovíc, Vuk

    2010-11-01

    In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.

  17. Major Challenges for the Modern Chemistry in Particular and Science in General

    PubMed Central

    Uskokovíc, Vuk

    2013-01-01

    In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests. PMID:24465151

  18. BOREAS HYD-1 Soil Hydraulic Properties

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Kelly, Shaun F.; Stangel, David E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team coordinated a program of data collection to measure and monitor soil properties in collaboration with other science team measurement needs. This data set contains soil hydraulic properties determined at the Northern Study Area (NSA) and Southern Study Area (SSA) flux tower sites based on analysis of in situ tension infiltrometer tests and laboratory-determined water retention from soil cores collected during the 1994-95 field campaigns. Results from this analysis are saturated hydraulic conductivity, and fitting parameters for the van Genuchten-Mualem soil hydraulic conductivity and water retention function at flux tower sites. The data are contained in tabular ASCII files. The HYD-01 soil hydraulic properties data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for 'Emerging Frontiers in Plant Hydraulics' (Washington, DC, May 2015).

    PubMed

    Sack, Lawren; Ball, Marilyn C; Brodersen, Craig; Davis, Stephen D; Des Marais, David L; Donovan, Lisa A; Givnish, Thomas J; Hacke, Uwe G; Huxman, Travis; Jansen, Steven; Jacobsen, Anna L; Johnson, Daniel M; Koch, George W; Maurel, Christophe; McCulloh, Katherine A; McDowell, Nate G; McElrone, Andrew; Meinzer, Frederick C; Melcher, Peter J; North, Gretchen; Pellegrini, Matteo; Pockman, William T; Pratt, R Brandon; Sala, Anna; Santiago, Louis S; Savage, Jessica A; Scoffoni, Christine; Sevanto, Sanna; Sperry, John; Tyerman, Stephen D; Way, Danielle; Holbrook, N Michele

    2016-09-01

    Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts. © 2016 John Wiley & Sons Ltd.

  20. Voluntarist theology and early-modern science: The matter of the divine power, absolute and ordained.

    PubMed

    Oakley, Francis

    2018-03-01

    This paper is an intervention in the debate inaugurated by Peter Harrison in 2002 when he called into question the validity of what has come to be called 'the voluntarism and early-modern science thesis'. Though it subsequently drew support from such historians of science as J. E. McGuire, Margaret Osler, and Betty-Joe Teeter Dobbs, the origins of the thesis are usually traced back to articles published in 1934 and 1961 respectively by the philosopher Michael Foster and the historian of ideas Francis Oakley. Central to Harrison's critique of the thesis are claims he made about the meaning of the scholastic distinction between the potentia dei absoluta et ordinata and the role it played in the thinking of early-modern theologians and natural philosophers. This paper calls directly into question the accuracy of Harrison's claims on that very matter.

  1. Investigating the purpose of trigonometry in the modern sciences

    NASA Astrophysics Data System (ADS)

    Hertel, Joshua T.

    This dissertation reports the results of a qualitative research project that aimed to develop a research-based perspective on the purpose of trigonometry in the modern sciences. The investigation was guided by three objectives. First, the study sought to identify the purpose of trigonometry as described by educators and high school textbooks. Second, the research investigated the perspectives these sources held about definitions of the trigonometric functions. Third, the investigation examined the potential benefits and drawbacks of a line-segment definition of the trigonometric functions. The study followed a grounded theory methodology with data collection and analysis intertwined. Participants included faculty from two large Midwestern research universities, high school teachers, and authors of standards documents. Textbooks were drawn from introductory algebra, geometry, advanced algebra, precalculus, and calculus texts. Data collected included surveys, interviews, and textbook excerpts. Analysis used the constant comparative method (Corbin & Strauss, 2008; Glaser & Strauss, 2006/1967). Analysis resulted in the emergence of a grounded theory, the tensions of trigonometry, which described three interrelated themes within the data: definition, application, and role. Two ideas emerged that connected the tensions of trigonometry, the regions of interaction, which described the interplay between the three tensions, and the idealized dichotomy of trigonometry education, which outlined opposing perspectives on trigonometry: trigonometry for all and trigonometry for some. The grounded theory outlines a range of competing purposes for trigonometry in the modern sciences. It suggests that educators are engaged in a process of continual negotiation that results in the formation of a localized purpose of trigonometry. The benefits and drawbacks of different definitions are not based on mathematical sophistication, but are situational. Furthermore, the theory suggests that

  2. How Accurate Is A Hydraulic Model? | Science Inventory | US ...

    EPA Pesticide Factsheets

    Symposium paper Network hydraulic models are widely used, but their overall accuracy is often unknown. Models are developed to give utilities better insight into system hydraulic behavior, and increasingly the ability to predict the fate and transport of chemicals. Without an accessible and consistent means of validating a given model against the system it is meant to represent, the value of those supposed benefits should be questioned. Supervisory Control And Data Acquisition (SCADA) databases, though ubiquitous, are underused data sources for this type of task. Integrating a network model with a measurement database would offer professionals the ability to assess the model’s assumptions in an automated fashion by leveraging enormous amounts of data.

  3. Practical Application of Modern Forecasting and Decision Tools at an Operational River Management Agency

    NASA Astrophysics Data System (ADS)

    Jawdy, C. M.; Carney, S.; Barber, N. M.; Balk, B. C.; Miller, G. A.

    2017-12-01

    The Tennessee Valley Authority (TVA) recently completed a complete overhaul of our River Forecast System (RFS). This modernization effort encompassed: uplift or addition of 89 data feeds calibration of a 140 subbasin rainfall-runoff model calibration of over 650 miles of hydraulic routings implementation of a decision optimization routine for 29 reservoirs implementation of hydrothermal forecast models for five river-cooled thermal plants creation of decision-friendly displays creation of a user-friendly wiki creation of a robust reporting system This talk will walk attendees through how a 24x7 river and grid management agency made decisions around how to operationalize the latest technologies in hydrology, hydraulics, decision science and information technology. The tradeoffs inherent in such an endeavor will be discussed so that research-oriented attendees can understand how best to align their research if they desire adoption within industry. More industry-oriented attendees can learn about the mechanics of how to succeed at such a large and complex project. Following the description of the modernization project, I can discuss TVA's plans for future growth of the system. We plan to add the following capabilities in the coming years: forecast verification tools to communicate floodplain risk tools to choose the best possible model forcings ensemble inflow modelling a river policy that allows for more reasonable tradeoff of benefits river decisions based on ensembles The iterative staging of such improvements is highly fraught with technical, political and operational risks. I will discuss how TVA's is using what we learned in the RFS modernization effort to grow further into delivering on the promise of these additional technologies.

  4. Science teacher identity and eco-transformation of science education: comparing Western modernism with Confucianism and reflexive Bildung

    NASA Astrophysics Data System (ADS)

    Sjöström, Jesper

    2018-03-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on `reform-minded' science teachers. The starting point is the paper Science education reform in Confucian learning cultures: teachers' perspectives on policy and practice in Taiwan by Ying-Syuan Huang and Anila Asghar. It highlights several factors that can explain the difficulties of implementing "new pedagogy" in science education. One important factor is Confucian values and traditions, which seem to both hinder and support the science teachers' implementation of inquiry-based and learner-centered approaches. In this article Confucianism is compared with other learning cultures and also discussed in relation to different worldviews and educational philosophies in science education. Just like for the central/north European educational tradition called Bildung, there are various interpretations of Confucianism. However, both have subcultures (e.g. reflexive Bildung and Neo-Confucianism) with similarities that are highlighted in this article. If an "old pedagogy" in science education is related to essentialism, rationalist-objectivist focus, and a hierarchical configuration, the so called "new pedagogy" is often related to progressivism, modernism, utilitarianism, and a professional configuration. Reflexive Bildung problematizes the values associated with such a "new pedagogy" and can be described with labels such as post-positivism, reconstructionism and problematizing/critical configurations. Different educational approaches in science education, and corresponding eco-identities, are commented on in relation to transformation of educational practice.

  5. Historical continuity in the methodology of modern medical science: Leonardo leads the way.

    PubMed

    Pasipoularides, Ares

    2014-02-01

    Early modern medical science did not arise ex nihilo, but was the culmination of a long history stretching back through the Renaissance, the Middle Ages, Byzantium and Roman times, into Greek Antiquity. The long interval between Aristotle and Galen and Harvey and Descartes was punctuated by outstanding visionaries, including Leonardo, the ultimate Renaissance man. His attitude and mindset were based on Aristotelian pursuit of empirical fact and rational thought. He declared himself to be a "man without letters" to underscore his disdain for those whose culture was only mnemonics and philosophical inferences from authoritative books. Leonardo read the Book of Nature with the immense curiosity of the pioneering scientist, ushering in the methodology of modern medical science with help from forerunners. He left no publications, but extensive personal Notebooks: on his scientific research, hydrodynamics, physiological anatomy, etc. Apparently, numerous successors availed themselves of his methodologies and insights, albeit without attribution. In his Notebooks, disordered and fragmentary, Leonardo manifests the exactitude of the engineer and scientist, the spontaneous freshness of one speaking of what he has at heart and that he knows well. His style is unrefined, but intensely personal, rich with emotion and, sometimes, poetic. Leonardo, the visionary anatomist, strived consistently not merely to imitate nature by depicting body structures, but to perceive through analysis and simulations the intimate physiologic processes; i.e., the biomechanics underlying the workings of all bodily organs and components, even the mysterious beating heart. It is fitting to regard him as the first modern medical scientist. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance

  7. [Trueness of modern natural science (1): the scientific revolution and the problem of philosophy].

    PubMed

    Maeda, Y

    2001-12-01

    How can one characterize modern Europe? This problem is essentially related to the meaning of modern natural science, which was developed during the scientific revolution. Then how did viewpoints change during this revolution? The answer to this question also determined the basic character of modern philosophy. Through the examination of Aristotle's geocentric theory and kinematics, I have come to believe that the defect of Aristotle's was that he concluded that a visible sense image is an actual reflection of the reality as it is. From this point of view, the traditional theory of truth called "correspondence theory" is found to be an insufficient one. Therefore, in this paper I will show that the methodological and philosophical question "How do we see reality among phenomena?" is a very important one. This question is the one Plato struggled with, and also the one which guided Kant. It may be said that this can be seen as a group for a new metaphysics as a basic theory of reality.

  8. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    NASA Astrophysics Data System (ADS)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  9. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo

    2010-05-01

    IAHR75_logoUPT90_logoARFT_logo International Association of Hydro-Environment Engineering and Research'Politehnica' University of TimisoaraRomanian Academy - Timisoara Branch The 25th edition of the IAHR Symposium on Hydraulic Machinery and Systems, held in Timisoara, Romania, 20-24 September 2010, jointly organized by the 'Politehnica' University of Timisoara and the Romanian Academy - Timisoara Branch, marks a half century tradition of these prestigious symposia. However, it is the first time that Romania hosts such a symposium, and for good reasons. The Romanian electrical power system has a total of 20,630 MW installed power, out of which 6,422 MW in hydropower plants. The energy produced in hydropower facilities was in 2008 of 17,105 GWh from a total of 64,772 GWh electrical energy production. Moreover, for the period 2009-2015, new hydropower capacities are going to be developed, with a total of 2,157 MW installed power and an estimated 5,770 GWh/year energy production. Within the same period of time, the refurbishment, modernization and repair programs will increase the actual hydropower production with an estimated 349 GWh/year. The 'Politehnica' University of Timisoara is proud to host the 25th IAHR Symposium on Hydraulic Machinery and Systems, in the year of its 90th anniversary. The 'Politehnica' University of Timisoara is one of the largest and most well-known technical universities from Central and Eastern Europe. It was founded in 1920, a short time after the union into one state of all the Romanian territories, following the end of the First World War, in order to respond to the need engineers felt by the Romanian society at that time, within the economical development framework. During its 90 years of existence, 'Politehnica' University of Timisoara educated over 100,000 engineers, greatly appreciated both in Romania and abroad, for their competence and seriousness. King Ferdinand I of Romania said while visiting the recently established

  10. Prediction: The Modern-Day Sport-Science and Sports-Medicine "Quest for the Holy Grail".

    PubMed

    McCall, Alan; Fanchini, Maurizio; Coutts, Aaron J

    2017-05-01

    In high-performance sport, science and medicine practitioners employ a variety of physical and psychological tests, training and match monitoring, and injury-screening tools for a variety of reasons, mainly to predict performance, identify talented individuals, and flag when an injury will occur. The ability to "predict" outcomes such as performance, talent, or injury is arguably sport science and medicine's modern-day equivalent of the "Quest for the Holy Grail." The purpose of this invited commentary is to highlight the common misinterpretation of studies investigating association to those actually analyzing prediction and to provide practitioners with simple recommendations to quickly distinguish between methods pertaining to association and those of prediction.

  11. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    NASA Astrophysics Data System (ADS)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  12. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  13. Computing in Hydraulic Engineering Education

    NASA Astrophysics Data System (ADS)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  14. For the greater credibility: Jesuit science and education in modern Portugal (1858-1910).

    PubMed

    Malta Romeiras, Francisco

    2018-03-01

    Upon the restoration of the Society of Jesus in Portugal in 1858, the Jesuits founded two important colleges that made significant efforts in the promotion of hands-on experimental teaching of the natural sciences. At the Colégio de Campolide (Lisbon, 1858-1910) and the Colégio de São Fiel (Louriçal do Campo, 1863-1910) the Jesuits created modern chemistry and physics laboratories, organized significant botanical, zoological and geological collections, promoted scientific expeditions with their students to observe eclipses and to collect novel species of animals and plants, and engaged in original research work in physics, botany, and zoology. The successful implementation of modern scientific practices gained these colleges public recognition as the most prominent secondary institutions in nineteenth-century Portugal, and this made a major contribution to countering the widespread and commonly accepted anti-Jesuit accusations of obscurantism and scientific backwardness.

  15. The second modern condition? Compressed modernity as internalized reflexive cosmopolitization.

    PubMed

    Kyung-Sup, Chang

    2010-09-01

    Compressed modernity is a civilizational condition in which economic, political, social and/or cultural changes occur in an extremely condensed manner in respect to both time and space, and in which the dynamic coexistence of mutually disparate historical and social elements leads to the construction and reconstruction of a highly complex and fluid social system. During what Beck considers the second modern stage of humanity, every society reflexively internalizes cosmopolitanized risks. Societies (or their civilizational conditions) are thereby being internalized into each other, making compressed modernity a universal feature of contemporary societies. This paper theoretically discusses compressed modernity as nationally ramified from reflexive cosmopolitization, and, then, comparatively illustrates varying instances of compressed modernity in advanced capitalist societies, un(der)developed capitalist societies, and system transition societies. In lieu of a conclusion, I point out the declining status of national societies as the dominant unit of (compressed) modernity and the interactive acceleration of compressed modernity among different levels of human life ranging from individuals to the global community. © London School of Economics and Political Science 2010.

  16. Fault activation by hydraulic fracturing in western Canada.

    PubMed

    Bao, Xuewei; Eaton, David W

    2016-12-16

    Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.

  17. Knowledge in motion: The cultural politics of modern science translations in Arabic.

    PubMed

    Elshakry, Marwa S

    2008-12-01

    This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.

  18. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  19. On What Basis Hope? Modern Progress and Postmodern Possibilities.

    ERIC Educational Resources Information Center

    Danforth, Scot

    1997-01-01

    Examines modern and postmodern concepts of hope as applied to services for persons having mental retardation. Contrasts modernist theories of special education, based on interventionist social science, with postmodernist views, which critique modern social science as perpetuating stigmatized "mentally retarded" identities defined by…

  20. The wage of fame: how non-epistemic motives have enabled the phenomenal success of modern science.

    PubMed

    Franck, Georg

    2015-01-01

    This paper ventures an economic view of modern science. It points out how science works as a closed economy of attention where researchers invest their own attention in order to get the attention of fellow researchers. Attention thus enters economy in two properties: (1) as a scarce resource energising scientific production and (2) as a means of gratification rewarding the effort of the working scientist. Economising on attention as a scarce resource is another expression of thought economy. The income of expert attention is what gives rise to reputation, renown, prominence and eventually fame. By its being conceived as a closed economy of attention, science shows to be capable of self-organising a tendency towards overall efficiency and thus towards collective rationality. © 2014 S. Karger AG, Basel.

  1. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    NASA Astrophysics Data System (ADS)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  2. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  3. [Recent crisis of psychiatry in the context of modern and postmodern science].

    PubMed

    Petho, Bertalan

    2008-01-01

    We have investigated the recent crisis of psychiatry in perspective of the last two centuries of its history. First and longer part of this period belongs to the Modern era. The second part beginning in the sixties of the last century is the Postmodern era, the one we live in today. We have pointed out that the recent crisis has not come by accident but as one of the several changes characterising our transition into the era labelled "Postmodern". The crisis of psychiatry was analysed in respect of the development of science and in social context. We focused on psychiatry and science and their interconnectedness in their historical articulations. A way out of the crisis of the current era can be found also with the use of historical methods. Science is changing both in respect of its quality and its role in our age. Taking into consideration normal and post-normal science, we differentiated two additional generations of science, pro-normal science and perato-scientia, in the most recent history. On the one hand, psychiatry serves as a paradigm for the conceptualisation of contemporary science. On the other hand, as an up-to-date science re-conceptualised partly according to its own paradigm it may find a way out of its own crisis. The many facets of the current crisis were demonstrated by analysing recent developments of the Hungarian health politics. Concerning this topic we adopted the term "economicity" elaborated by us earlier. We found that psychiatry operated by the hegemony of the rules of economicity might become a relay station for selecting patients to be thrown away as human garbage. This catastrophic outcome may occur if a political system is organized purely by economicity rules without either historical responsibility or local solidarity. However, up-to-date trends of scientificity as shown by pro-normal science and perato-scientia guarantee a radically different course for psychiatry. Following this course, which is consistent with the insight into

  4. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    NASA Astrophysics Data System (ADS)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  5. JPRS Report, Science & Technology, China

    DTIC Science & Technology

    1991-09-12

    original Sanyo 183-cm television projector; its perfor- air-cushion seat; the hydraulic action tube and the air mance has been improved in terms of...is amplified to control the motion of the hydraulic action tube and the air cushion to simulate the sensation of Simulator Cockpit overload motion...Academy has detected face science, measurement science, microscope tech- obvious neutrons in a vacuum using a palladium elec- nology, ultra- microfine

  6. Families made by science. Arnold Gesell and the technologies of modern child adoption.

    PubMed

    Herman, E

    2001-12-01

    This essay considers the effort to transform child adoption into a modern scientific enterprise during the first half of the twentieth century via a case study of Arnold Gesell (1880-1961), a Yale developmentalist well known for his studies of child growth and the applied technologies that emerged from them: normative scales promising to measure and predict development. Scientific adoption was a central aspiration for many human scientists, helping professionals, and state regulators. They aimed to reduce the numerous hazards presumed to be inherent in adopting children, especially infants, who were not one's "own." By importing insights and techniques drawn from the world of science into the practical world of family formation, scientific adoption stood for kinship by design. This case study explores one point of intersection between the history of science and the history of social welfare and social policy, simultaneously illustrating the cultural progress and power of scientific authority and the numerous obstacles to its practical realization.

  7. The Mona Lisa of modern science.

    PubMed

    Kemp, Martin

    2003-01-23

    No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.

  8. The Hydraulic Jump: Finding Complexity in Turbulent Water

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2013-01-01

    Students who do not progress to more advanced science disciplines in college generally do not realize that seemingly simple physical systems are--when studied in detail--more complex than one might imagine. This article presents one such phenomenon--the hydraulic jump--as a way to help students see the complexity behind the seemingly simple, and…

  9. The rise of the boy-genius: psychological neoteny, science and modern life.

    PubMed

    Charlton, Bruce G

    2006-01-01

    The mid-20th century saw the rise of the boy-genius, probably because a personality type characterized by prolonged youthfulness is advantageous both in science and modern life generally. This is the evolution of 'psychological neoteny', in which ever-more people retain for ever-longer the characteristic behaviours and attitudes of earlier developmental stages. Whereas traditional societies are characterized by initiation ceremonies marking the advent of adulthood, these have now dwindled and disappeared. In a psychological sense, some contemporary individuals never actually become adults. A child-like flexibility of attitudes, behaviours and knowledge is probably adaptive in modern society because people need repeatedly to change jobs, learn new skills, move to new places and make new friends. It seems that this adaptation is achieved by the expedient of postponing cognitive maturation - a process that could be termed psychological neoteny. ('Neoteny' refers to the biological phenomenon whereby development is delayed such that juvenile characteristics are retained into maturity.) Psychological neoteny is probably caused by the prolonged average duration of formal education, since students' minds are in a significant sense 'unfinished'. Since modern cultures favour cognitive flexibility, 'immature' people tend to thrive and succeed, and have set the tone of contemporary life: the greatest praise of an elderly person is to state that they retain the characteristics of youth. But the faults of youth are retained with well as its virtues: short attention span, sensation- and novelty-seeking, short cycles of arbitrary fashion and a sense of cultural shallowness. Nonetheless, as health gets better and cosmetic technologies improve, future humans may become somewhat like an axolotl - the cave-dwelling salamander which retains its larval form until death.

  10. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  11. Retraining the Modern Civil Engineer.

    ERIC Educational Resources Information Center

    Priscoli, Jerome Delli

    1983-01-01

    Discusses why modern engineering requires social science and the nature of planning. After these conceptional discussions, 12 practical tools which social science brings to engineering are reviewed. A tested approach to training engineers in these tools is then described. Tools include institutional analysis, policy profiling, and other impact…

  12. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  13. Use of porosity to estimate hydraulic properties of volcanic tuffs

    USGS Publications Warehouse

    Flint, L.E.; Selker, J.S.

    2003-01-01

    Correlations of hydraulic properties with easily measured physical properties are useful for purposes of site characterization in heterogeneous sites. Approximately 600 samples of volcanic rocks from Yucca Mountain, Nevada, representing lithologies with a large range of hydraulic properties, were analyzed to develop correlations of effective porosity with saturated hydraulic conductivity and moisture-retention curve-fit parameters that relate to lithologies of varying depositional history and alteration processes. Effective porosity, ??e, defined as the porosity calculated using drying at a relative humidity of -70 MPa, is used in a generalized Kozeny-Carman equation to predict saturated hydraulic conductivity, Ks = b??en, where b and n are constants. The entire dataset has an R2 of 0.36. When samples are grouped according to general lithology, correlations result in an R2 of 0.71 for the crystallized/vitric samples, 0.24 for samples with mineral alteration, and 0.34 for samples with microfractures, thus increasing the predictive capability over that of the total dataset. Published by Elsevier Science Ltd.

  14. Discovering indigenous science: Implications for science education

    NASA Astrophysics Data System (ADS)

    Snively, Gloria; Corsiglia, John

    2001-01-01

    Indigenous science relates to both the science knowledge of long-resident, usually oral culture peoples, as well as the science knowledge of all peoples who as participants in culture are affected by the worldview and relativist interests of their home communities. This article explores aspects of multicultural science and pedagogy and describes a rich and well-documented branch of indigenous science known to biologists and ecologists as traditional ecological knowledge (TEK). Although TEK has been generally inaccessible, educators can now use a burgeoning science-based TEK literature that documents numerous examples of time-proven, ecologically relevant, and cost effective indigenous science. Disputes regarding the universality of the standard scientific account are of critical importance for science educators because the definition of science is a de facto gatekeeping device for determining what can be included in a school science curriculum and what cannot. When Western modern science (WMS) is defined as universal it does displace revelation-based knowledge (i.e., creation science); however, it also displaces pragmatic local indigenous knowledge that does not conform with formal aspects of the standard account. Thus, in most science classrooms around the globe, Western modern science has been taught at the expense of indigenous knowledge. However, because WMS has been implicated in many of the world's ecological disasters, and because the traditional wisdom component of TEK is particularly rich in time-tested approaches that foster sustainability and environmental integrity, it is possible that the universalist gatekeeper can be seen as increasingly problematic and even counter productive. This paper describes many examples from Canada and around the world of indigenous people's contributions to science, environmental understanding, and sustainability. The authors argue the view that Western or modern science is just one of many sciences that need to be

  15. Modern Functions of a Textbook on Social Sciences and Humanities as an Informational Management Tool of University Education

    ERIC Educational Resources Information Center

    Nikonova, Elina I.; Sharonov, Ivan A.; Sorokoumova, Svetlana N.; Suvorova, Olga V.; Sorokoumova, Elena A.

    2016-01-01

    The relevance of the study is conditioned by the changes in the content of socio-humanitarian education, aimed at the acquisition of knowledge, the development of tolerance, civic and moral education. The purpose of the paper is to identify the modern functions of a textbook on social sciences and humanities as an informational management tool of…

  16. Beck, Asia and second modernity.

    PubMed

    Calhoun, Craig

    2010-09-01

    The work of Ulrich Beck has been important in bringing sociological attention to the ways issues of risk are embedded in contemporary globalization, in developing a theory of 'reflexive modernization', and in calling for social science to transcend 'methodological nationalism'. In recent studies, he and his colleagues help to correct for the Western bias of many accounts of cosmopolitanism and reflexive modernization, and seek to distinguish normative goals from empirical analysis. In this paper I argue that further clarification of this latter distinction is needed but hard to reach within a framework that still embeds the normative account in the idea that empirical change has a clear direction. Similar issues beset the presentation of diverse patterns in recent history as all variants of 'second modernity'. Lastly, I note that ironically, given the declared 'methodological cosmopolitanism' of the authors, the empirical studies here all focus on national cases. © London School of Economics and Political Science 2010.

  17. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  18. Hydraulic dynamic analysis

    NASA Technical Reports Server (NTRS)

    Gale, R. L.; Nease, A. W.; Nelson, D. J.

    1978-01-01

    Computer program mathematically describes complete hydraulic systems to study their dynamic performance. Program employs subroutines that simulate components of hydraulic system, which are then controlled by main program. Program is useful to engineers working with detailed performance results of aircraft, spacecraft, or similar hydraulic systems.

  19. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  20. Transparency and translation of science in a modern world.

    PubMed

    Grandjean, Philippe; Ozonoff, David

    2013-08-27

    The co-Editors-in-Chief of Environmental Health respond to an unusual initiative taken by editors of 14 toxicology journals to influence pending decisions by the European Commission to establish a framework for regulating chemicals that pose a hazard to normal function of the endocrine system. This initiative is also the subject of this Commentary in this journal by authors who recently reviewed the subject and who point out inaccuracies in the toxicology editors' critique. The dispute is about potential public policy development, rather than on science translation and research opportunities and priorities. The toxicology journal editors recommend that chemicals be examined in depth one by one, ignoring modern achievements in biomedical research that would allow new understanding of the effects of classes of toxic substances in complex biological systems. Concerns about policy positions framed as scientific ones are especially important in a time with shrinking public support for biomedical research affects priorities. In such a setting, conflict of interest declarations are important, especially in research publications that address issues of public concern and where financial and other interests may play a role. Science relies on trust, and reasonable disclosure of financial or other potential conflicts is therefore essential. This need has been emphasized by recent discoveries of hidden financial conflicts in publications in toxicology journals, thus misleading readers and the public about the safety of particular industrial products. The transparency provided by Environmental Health includes open access and open peer review, with reader access to reviews, including the identity of reviewers and their statements on possible conflicts of interest. However, the editors of the 14 toxicology journals did not provide any information on potential conflicts of interest, an oversight that needs to be corrected.

  1. Bud development and hydraulics

    PubMed Central

    Cochard, Hervé

    2008-01-01

    The distal zone of one-year-old apple (Malus domestica) shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. Our hypothesis was that bud development was related to hydraulic conductance of the sap pathway to the bud independent of an acrotonic (proximal vs. distal) effect. Bud size and composition, and hydraulic conductance, were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope suggesting similar scaling between these variables but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. Our study suggests that hydraulically mediated competitions exist between adjacent buds within a same branching zone prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole-metamer, including the subtending leaf, during bud development. PMID:19704779

  2. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  3. Measurement of Bitumen Viscosity in a Room-Temperature Drop Experiment: Student Education, Public Outreach and Modern Science in One

    ERIC Educational Resources Information Center

    Widdicombe, A. T.; Ravindrarajah, P.; Sapelkin, A.; Phillips, A. E.; Dunstan, D.; Dove, M. T.; Brazhkin, V. V.; Trachenko, K.

    2014-01-01

    The slow flow of a viscous liquid is a thought-provoking experiment that challenges students, academics and the public to think about some fundamental questions in modern science. In the Queensland demonstration--the world's longest-running experiment, which has earned the Ig Nobel prize--one drop of pitch takes about ten years to fall, leading to…

  4. Modern Data Center Services Supporting Science

    NASA Astrophysics Data System (ADS)

    Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.

    2011-12-01

    The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web

  5. Modernization of vertical Pelton turbines with the help of CFD and model testing

    NASA Astrophysics Data System (ADS)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-03-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  6. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  7. Why are modern scientists so dull? How science selects for perseverance and sociability at the expense of intelligence and creativity.

    PubMed

    Charlton, Bruce G

    2009-03-01

    why are so many leading modern scientists so dull and lacking in scientific ambition? because the science selection process ruthlessly weeds-out interesting and imaginative people. At each level in education, training and career progression there is a tendency to exclude smart and creative people by preferring Conscientious and Agreeable people. The progressive lengthening of scientific training and the reduced independence of career scientists have tended to deter vocational 'revolutionary' scientists in favour of industrious and socially adept individuals better suited to incremental 'normal' science. High general intelligence (IQ) is required for revolutionary science. But educational attainment depends on a combination of intelligence and the personality trait of Conscientiousness; and these attributes do not correlate closely. Therefore elite scientific institutions seeking potential revolutionary scientists need to use IQ tests as well as examination results to pick-out high IQ 'under-achievers'. As well as high IQ, revolutionary science requires high creativity. Creativity is probably associated with moderately high levels of Eysenck's personality trait of 'Psychoticism'. Psychoticism combines qualities such as selfishness, independence from group norms, impulsivity and sensation-seeking; with a style of cognition that involves fluent, associative and rapid production of many ideas. But modern science selects for high Conscientiousness and high Agreeableness; therefore it enforces low Psychoticism and low creativity. Yet my counter-proposal to select elite revolutionary scientists on the basis of high IQ and moderately high Psychoticism may sound like a recipe for disaster, since resembles a formula for choosing gifted charlatans and confidence tricksters. A further vital ingredient is therefore necessary: devotion to the transcendental value of Truth. Elite revolutionary science should therefore be a place that welcomes brilliant, impulsive, inspired

  8. Hydraulic manipulator research at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge Nationalmore » Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.« less

  9. [The contribution of L.G. Ramensky theoretical legacy to modern vegetation science (to the 130 anniversary of the scientist's birth)].

    PubMed

    Mirkin, B M; Naumova, L G

    2015-01-01

    L.G. Ramensky (1884-1953) was an outstanding Soviet geobotanist of the first part of XX century. Considered is his theoretical legacy and its contribution to modern vegetation science. L.G. Ramensky formulated the principle of vegetation continuum based on which the modern paradigm of vegetation science has been put into shape. The scientist made a contribution to the development of such important theoretical conceptions as types of plant strategy, coenosis and coenobiosis (coexistence of species), patterns of interannual variability in plant communities, ecological successions. The unique ecological scales were established by L.G. Ramensky that characterize the distribution of 1400 species over the gradients of soil moistening, richness, and salinization as well as moistening variability, pastoral digression, and alluvial intensity. He came out against mechanistic notions by V.N. Sukachev on a biogeocoenosis structure. The scientist did not offer his own method of plant communities classification but his well-reasoned criticism of dominant classification played a great role in adoption of floristical classification principles (Braun-Blanquet approach) by phytocenology in our country.

  10. Towards a Science of Science Teaching

    ERIC Educational Resources Information Center

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  11. The Growth of Physical Science

    NASA Astrophysics Data System (ADS)

    Jeans, James

    2009-07-01

    1. The remote beginnings; 2. Ionia and early Greece; 3. Science and Alexandria; 4. Science in the dark ages; 5. The birth of modern science; 6. The century of genius; 7. The two centuries after Newton; 8. The era of modern physics.

  12. Improving Earth Science Metadata: Modernizing ncISO

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Schweitzer, R.; Neufeld, D.; Burger, E. F.; Signell, R. P.; Arms, S. C.; Wilcox, K.

    2016-12-01

    ncISO is a package of tools developed at NOAA's National Center for Environmental Information (NCEI) that facilitates the generation of ISO 19115-2 metadata from NetCDF data sources. The tool currently exists in two iterations: a command line utility and a web-accessible service within the THREDDS Data Server (TDS). Several projects, including NOAA's Unified Access Framework (UAF), depend upon ncISO to generate the ISO-compliant metadata from their data holdings and use the resulting information to populate discovery tools such as NCEI's ESRI Geoportal and NOAA's data.noaa.gov CKAN system. In addition to generating ISO 19115-2 metadata, the tool calculates a rubric score based on how well the dataset follows the Attribute Conventions for Dataset Discovery (ACDD). The result of this rubric calculation, along with information about what has been included and what is missing is displayed in an HTML document generated by the ncISO software package. Recently ncISO has fallen behind in terms of supporting updates to conventions such updates to the ACDD. With the blessing of the original programmer, NOAA's UAF has been working to modernize the ncISO software base. In addition to upgrading ncISO to utilize version1.3 of the ACDD, we have been working with partners at Unidata and IOOS to unify the tool's code base. In essence, we are merging the command line capabilities into the same software that will now be used by the TDS service, allowing easier updates when conventions such as ACDD are updated in the future. In this presentation, we will discuss the work the UAF project has done to support updated conventions within ncISO, as well as describe how the updated tool is helping to improve metadata throughout the earth and ocean sciences.

  13. Foodomics: MS-based strategies in modern food science and nutrition.

    PubMed

    Herrero, Miguel; Simó, Carolina; García-Cañas, Virginia; Ibáñez, Elena; Cifuentes, Alejandro

    2012-01-01

    Modern research in food science and nutrition is moving from classical methodologies to advanced analytical strategies in which MS-based techniques play a crucial role. In this context, Foodomics has been recently defined as a new discipline that studies food and nutrition domains through the application of advanced omics technologies in which MS techniques are considered indispensable. Applications of Foodomics include the genomic, transcriptomic, proteomic, and/or metabolomic study of foods for compound profiling, authenticity, and/or biomarker-detection related to food quality or safety; the development of new transgenic foods, food contaminants, and whole toxicity studies; new investigations on food bioactivity, food effects on human health, etc. This review work does not intend to provide an exhaustive revision of the many works published so far on food analysis using MS techniques. The aim of the present work is to provide an overview of the different MS-based strategies that have been (or can be) applied in the new field of Foodomics, discussing their advantages and drawbacks. Besides, some ideas about the foreseen development and applications of MS-techniques in this new discipline are also provided. Copyright © 2011 Wiley Periodicals, Inc.

  14. Hydraulic Hybrid Vehicles

    EPA Pesticide Factsheets

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  15. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  16. Evaluating Modern Defenses Against Control Flow Hijacking

    DTIC Science & Technology

    2015-09-01

    unsound and could introduce false negatives (opening up another possible set of attacks). CFG Construction using DSA We next evaluate the precision of CFG...Evaluating Modern Defenses Against Control Flow Hijacking by Ulziibayar Otgonbaatar Submitted to the Department of Electrical Engineering and...Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Engineering at the MASSACHUSETTS

  17. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    NASA Astrophysics Data System (ADS)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2016-04-01

    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  18. Clocks to Computers: A Machine-Based “Big Picture” of the History of Modern Science.

    PubMed

    van Lunteren, Frans

    2016-12-01

    Over the last few decades there have been several calls for a “big picture” of the history of science. There is a general need for a concise overview of the rise of modern science, with a clear structure allowing for a rough division into periods. This essay proposes such a scheme, one that is both elementary and comprehensive. It focuses on four machines, which can be seen to have mediated between science and society during successive periods of time: the clock, the balance, the steam engine, and the computer. Following an extended developmental phase, each of these machines came to play a highly visible role in Western societies, both socially and economically. Each of these machines, moreover, was used as a powerful resource for the understanding of both inorganic and organic nature. More specifically, their metaphorical use helped to construe and refine some key concepts that would play a prominent role in such understanding. In each case the key concept would at some point be considered to represent the ultimate building block of reality. Finally, in a refined form, each of these machines would eventually make its entry in scientific research, thereby strengthening the ties between these machines and nature.

  19. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    NASA Astrophysics Data System (ADS)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  20. Two Cultures in Modern Science and Technology: For Safety and Validity Does Medicine Have to Update?

    PubMed

    Becker, Robert E

    2016-01-11

    Two different scientific cultures go unreconciled in modern medicine. Each culture accepts that scientific knowledge and technologies are vulnerable to and easily invalidated by methods and conditions of acquisition, interpretation, and application. How these vulnerabilities are addressed separates the 2 cultures and potentially explains medicine's difficulties eradicating errors. A traditional culture, dominant in medicine, leaves error control in the hands of individual and group investigators and practitioners. A competing modern scientific culture accepts errors as inevitable, pernicious, and pervasive sources of adverse events throughout medical research and patient care too malignant for individuals or groups to control. Error risks to the validity of scientific knowledge and safety in patient care require systemwide programming able to support a culture in medicine grounded in tested, continually updated, widely promulgated, and uniformly implemented standards of practice for research and patient care. Experiences from successes in other sciences and industries strongly support the need for leadership from the Institute of Medicine's recommended Center for Patient Safely within the Federal Executive branch of government.

  1. 110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Living well in light of science.

    PubMed

    McMahon, Darrin M

    2016-11-01

    This article discusses some findings of the modern science of happiness in the context of historical understandings of happiness. Comparing teachings of the ancient wisdom traditions to those of modern positive psychology and social science, I argue that there is surprising correspondence between the two. The happy life, both ancients and modern agree, involves training and the development and mastery of particular character traits. © 2016 New York Academy of Sciences.

  3. 128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Fluid Power/Basic Hydraulics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Stanbery, Richard

    This guide is designed to assist industrial vocational instructors in teaching a course on fluid power and basic hydraulics. Covered in the unit on the basics of fluid power and hydraulics are the following topics: the fundamentals of fluid power and hydraulics, basic hydraulic circuits, and servicing a hydraulic jack. The second unit, consisting…

  5. The modern library: lost and found.

    PubMed Central

    Lindberg, D A

    1996-01-01

    The modern library, a term that was heard frequently in the mid-twentieth century, has fallen into disuse. The over-promotion of computers and all that their enthusiasts promised probably hastened its demise. Today, networking is transforming how libraries provide--and users seek--information. Although the Internet is the natural environment for the health sciences librarian, it is going through growing pains as we face issues of censorship and standards. Today's "modern librarian" must not only be adept at using the Internet but must become familiar with digital information in all its forms--images, full text, and factual data banks. Most important, to stay "modern," today's librarians must embark on a program of lifelong learning that will enable them to make optimum use of the advantages offered by modern technology. PMID:8938334

  6. Is homeopathy a science?--Continuity and clash of concepts of science within holistic medicine.

    PubMed

    Schmidt, Josef M

    2009-06-01

    The question of whether homeopathy is a science is currently discussed almost exclusively against the background of the modern concept of natural science. This approach, however, fails to notice that homeopathy-in terms of history of science-rests on different roots that can essentially be traced back to two most influential traditions of science: on the one hand, principles and notions of Aristotelism which determined 2,000 years of Western history of science and, on the other hand, the modern concept of natural science that has been dominating the history of medicine for less than 200 years. While Aristotle's "science of the living" still included ontologic and teleologic dimensions for the sake of comprehending nature in a uniform way, the interest of modern natural science was reduced to functional and causal explanations of all phenomena for the purpose of commanding nature. In order to prevent further ecological catastrophes as well as to regain lost dimensions of our lives, the one-sidedness and theory-loadedness of our modern natural-scientific view of life should henceforth be counterbalanced by lifeworld-practical Aristotelic categories. In this way, the ground would be ready to conceive the scientific character of homeopathy-in a broader, Aristotelian sense.

  7. A hydraulically driven colonoscope.

    PubMed

    Coleman, Stuart A; Tapia-Siles, Silvia C; Pakleppa, Markus; Vorstius, Jan B; Keatch, Robert P; Tang, Benjie; Cuschieri, Alfred

    2016-10-01

    Conventional colonoscopy requires a high degree of operator skill and is often painful for the patient. We present a preliminary feasibility study of an alternative approach where a self-propelled colonoscope is hydraulically driven through the colon. A hydraulic colonoscope which could be controlled manually or automatically was developed and assessed in a test bed modelled on the anatomy of the human colon. A conventional colonoscope was used by an experienced colonoscopist in the same test bed for comparison. Pressures and forces on the colon were measured during the test. The hydraulic colonoscope was able to successfully advance through the test bed in a comparable time to the conventional colonoscope. The hydraulic colonoscope reduces measured loads on artificial mesenteries, but increases intraluminal pressure compared to the colonoscope. Both manual and automatically controlled modes were able to successfully advance the hydraulic colonoscope through the colon. However, the automatic controller mode required lower pressures than manual control, but took longer to reach the caecum. The hydraulic colonoscope appears to be a viable device for further development as forces and pressures observed during use are comparable to those used in current clinical practice.

  8. Molecular nutrition research: the modern way of performing nutritional science.

    PubMed

    Norheim, Frode; Gjelstad, Ingrid Merethe Fange; Hjorth, Marit; Vinknes, Kathrine J; Langleite, Torgrim M; Holen, Torgeir; Jensen, Jørgen; Dalen, Knut Tomas; Karlsen, Anette S; Kielland, Anders; Rustan, Arild C; Drevon, Christian A

    2012-12-03

    In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases.

  9. Molecular Nutrition Research—The Modern Way Of Performing Nutritional Science

    PubMed Central

    Norheim, Frode; Gjelstad, Ingrid M. F.; Hjorth, Marit; Vinknes, Kathrine J.; Langleite, Torgrim M.; Holen, Torgeir; Jensen, Jørgen; Dalen, Knut Tomas; Karlsen, Anette S.; Kielland, Anders; Rustan, Arild C.; Drevon, Christian A.

    2012-01-01

    In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases. PMID:23208524

  10. Application of diet-derived taste active components for clinical nutrition: perspectives from ancient Ayurvedic medical science, space medicine, and modern clinical nutrition.

    PubMed

    Kulkarni, Anil D; Sundaresan, Alamelu; Rashid, Muhammad J; Yamamoto, Shigeru; Karkow, Francisco

    2014-01-01

    The principal objective of this paper is to demonstrate the role of taste and flavor in health from the ancient science of Ayurveda to modern medicine; specifically their mechanisms and roles in space medicine and their clinical relevance in modern heath care. It also describes the brief history of the use of the monosodium glutamate or flavor enhancers ("Umami substance") that improve the quality of food intake by stimulating chemosensory perception. In addition, the dietary nucleotides are known to be the components of "Umami substance" and the benefit of their use has been proposed in various types of patients with cancer, radiation therapy, organ transplantation, and for application in space medicine.

  11. Impacts of hydraulic redistribution on grass-tree competition versus facilitation in a semiarid savanna

    USDA-ARS?s Scientific Manuscript database

    -A long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plan...

  12. Romanticism and Romantic Science: Their Contribution to Science Education

    ERIC Educational Resources Information Center

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  13. Merging the Machines of Modern Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Laura; Collins, Jim

    Two recent projects have harnessed supercomputing resources at the US Department of Energy’s Argonne National Laboratory in a novel way to support major fusion science and particle collider experiments. Using leadership computing resources, one team ran fine-grid analysis of real-time data to make near-real-time adjustments to an ongoing experiment, while a second team is working to integrate Argonne’s supercomputers into the Large Hadron Collider/ATLAS workflow. Together these efforts represent a new paradigm of the high-performance computing center as a partner in experimental science.

  14. Gnotobiology in modern medicine

    NASA Technical Reports Server (NTRS)

    Podoprigora, G. I.

    1980-01-01

    A review is given of currently accepted theories and applications of gnotobiology. A brief history of gnotobiology is supplied. Problems involved in creating germ-free gnotobiota and the use of these animals in experimental biology are cited. Examples of how gnotobiology is used in modern medical practice illustrate the future prospects for this area of science.

  15. Post-Modern Software Development

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2005-01-01

    The history of software development includes elements of art, science, engineering, and fashion(though very little manufacturing). In all domains, old ideas give way or evolve to new ones: in the fine arts, the baroque gave way to rococo, romanticism, modernism, postmodernism, and so forth. What is the postmodern programming equivalent? That is, what comes after object orientation?

  16. The Development of the Foundations of Modern Pedagogy: Paradigmal and Methodological Aspects of Research

    ERIC Educational Resources Information Center

    Dmitrenko, ?amara ?.; Lavryk, Tatjana V.; Yaresko, Ekaterina V.

    2015-01-01

    Changes in the various fields of knowledge influenced the pedagogical science. The article explains the structure of the foundations of modern pedagogy through paradigmal and methodological aspects. Bases of modern pedagogy include complex of paradigms, object and subject of science, general and specific principles, methods and technologies.…

  17. Modernity, postmodernity and disability in developing countries.

    PubMed

    Lysack, C

    1997-06-01

    This paper examines the implications of two theoretical perspectives, modernity and postmodernity, for provision of community-based disability services in developing countries. The author argues that modernity's embrace of the 'wonders' of science and technology have significantly affected our understanding of what community is. Modernity, in fact, leads us to view communities in one of two major ways: as inferior, or as ideal. Both views are deeply flawed. Postmodernity's profound scepticism of truth claims and authority provides a useful critique of community conceived in modern terms. The critique is helpful to the extent that it reveals the power of language in constructing our ideas of community. It also highlights a new way of thinking about participation, individualism and choice in community disability initiatives.

  18. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  20. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  1. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2013-10-01 2013-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  2. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  3. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  4. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  5. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  6. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  7. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  8. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2014-10-01 2014-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  9. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2011-10-01 2011-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  10. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2012-10-01 2012-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  11. Tribology of hydraulic pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation ofmore » hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.« less

  12. Square Wheels and Other Easy-To-Build Hands-On Science Activities. An Exploratorium Science Snackbook.

    ERIC Educational Resources Information Center

    Rathjen, Don; Doherty, Paul

    This book, part of The Exploratorium science "snackbook" series, explains science with a hands-on approach. Activities include: (1) "3-D Shadow"; (2) "Bits and Bytes"; (3) "Circuit Workbench"; (4) "Diamagnetic Repulsion"; (5) "Film Can Racer"; (6) "Fractal Patterns"; (7) "Hoop Nightmares"; (8) "Hydraulic Arm"; (9) "Hyperbolic Slot"; (10) "Light…

  13. Making Early Modern Medicine: Reproducing Swedish Bitters.

    PubMed

    Ahnfelt, Nils-Otto; Fors, Hjalmar

    2016-05-01

    Historians of science and medicine have rarely applied themselves to reproducing the experiments and practices of medicine and pharmacy. This paper delineates our efforts to reproduce "Swedish Bitters," an early modern composite medicine in wide European use from the 1730s to the present. In its original formulation, it was made from seven medicinal simples: aloe, rhubarb, saffron, myrrh, gentian, zedoary and agarikon. These were mixed in alcohol together with some theriac, a composite medicine of classical origin. The paper delineates the compositional history of Swedish Bitters and the medical rationale underlying its composition. It also describes how we go about to reproduce the medicine in a laboratory using early modern pharmaceutical methods, and analyse it using contemporary methods of pharmaceutical chemistry. Our aim is twofold: first, to show how reproducing medicines may provide a path towards a deeper understanding of the role of sensual and practical knowledge in the wider context of early modern medical culture; and second, how it may yield interesting results from the point of view of contemporary pharmaceutical science.

  14. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  15. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  16. The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing

    EPA Science Inventory

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream...

  17. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  18. Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities

    NASA Astrophysics Data System (ADS)

    Chuprakov, D.; Melchaeva, O.; Prioul, R.

    2014-09-01

    We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.

  19. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  20. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  1. Digital switched hydraulics

    NASA Astrophysics Data System (ADS)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  2. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  3. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  4. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  5. Hydraulic hoisting and backfilling

    NASA Astrophysics Data System (ADS)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  6. Modernizing Earth and Space Science Modeling Workflows in the Big Data Era

    NASA Astrophysics Data System (ADS)

    Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.

    2017-12-01

    Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and

  7. The role of toxicological science in meeting the challenges and opportunities of hydraulic fracturing.

    PubMed

    Goldstein, Bernard D; Brooks, Bryan W; Cohen, Steven D; Gates, Alexander E; Honeycutt, Michael E; Morris, John B; Orme-Zavaleta, Jennifer; Penning, Trevor M; Snawder, John

    2014-06-01

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives.

  8. Variable-Displacement Hydraulic Drive Unit

    NASA Technical Reports Server (NTRS)

    Lang, D. J.; Linton, D. J.; Markunas, A.

    1986-01-01

    Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.

  9. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauchler, R.; Doetsch, J.; Dietrich, P.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. Themore » experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.« less

  10. Attitudes of Trainers and Medical Students towards Using Modern Practices

    ERIC Educational Resources Information Center

    Hadzhiiliev, Vassil Stefanov; Dobreva, Zhaneta Stoykova

    2011-01-01

    The development of universities as independent scientific centers determines their mission to incorporate the most modern achievements of science into the students' practical training. This research on the attitudes of the participants in this process towards the use of modern practices encompasses both trainers and students, and it consists of…

  11. Hydraulic Experiments for Determination of In-situ Hydraulic Conductivity of Submerged Sediments

    PubMed Central

    Lee, Bong-Joo; Lee, Ji-Hoon; Yoon, Heesung; Lee, Eunhee

    2015-01-01

    A new type of in-situ hydraulic permeameter was developed to determine vertical hydraulic conductivity (VHC) of saturated sediments from hydraulic experiments using Darcy's law. The system allows water to move upward through the porous media filled in the permeameter chamber driven into sediments at water-sediment interface. Darcy flux and hydraulic gradient can be measured using the system, and the VHC can be determined from the relationship between them using Darcy's law. Evaluations in laboratory and in field conditions were performed to see if the proposed permeameter give reliable and valid measures of the VHC even where the vertical flow at water-sediment interface and fluctuation of water stage exist without reducing the accuracy of the derived VHC. Results from the evaluation tests indicate that the permeameter proposed in this study can be used to measure VHC of saturated sandy sediments at water-sediment interface in stream and marine environment with high accuracy. PMID:25604984

  12. Mass Media Decision in China's Post-Mao Zedong Modernization Program: Some Unanticipated Consequences.

    ERIC Educational Resources Information Center

    Koo, Charles M.

    In 1978, China launched its "Four Modernizations" program, which included modernization in agriculture, industry, national defense, and science and technology. To promote this program and to mobilize the Chinese masses to take a more positive and active attitude toward modernization, the government called upon the forces of the mass…

  13. Science without laws.

    PubMed

    Schweber, Silvan S

    2009-01-01

    During the 1970s, something deeply consequential happened in the cultural, economic, and social relationships between science and technology. Paul Forman has proposed that the abrupt reversal of the culturally ascribed primacy in the science-technology relationship circa 1980 be taken as a demarcation of postmodernity from modernity. Modernity's most basic cultural presuppositions-the superiority of theory to practice, the elevation of the public over the private and that of the disinterested over the interested, and the belief that the means sanctify the ends-were ascribed to science. In postmodernity, science is subsumed under technology, and the status of technology relative to science reflects our pragmatic-utilitarian subordination of means to ends. These cultural changes have resonated with deep epistemological and ontological changes within the sciences themselves, and all these have manifested themselves in universities becoming entrepreneurial, and the consequences thereof. Science Without Laws insightfully illustrates some of the changes within the life and human sciences by analyzing the role played by model systems and case studies.

  14. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems

  15. The science in social science

    PubMed Central

    Bernard, H. Russell

    2012-01-01

    A recent poll showed that most people think of science as technology and engineering—life-saving drugs, computers, space exploration, and so on. This was, in fact, the promise of the founders of modern science in the 17th century. It is less commonly understood that social and behavioral sciences have also produced technologies and engineering that dominate our everyday lives. These include polling, marketing, management, insurance, and public health programs. PMID:23213222

  16. 2010 Army Modernization Strategy

    DTIC Science & Technology

    2010-01-01

    Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...Science and Technology (S&T) Program, and shortening the time between requirement identification and solution delivery. • Continuously modernize equipment...available, as quickly as possible, so they can succeed anywhere, every time . Our Soldiers deserve nothing less. Army Strong! U.S. Soldiers engage enemy

  17. Mendel in the Modern Classroom

    NASA Astrophysics Data System (ADS)

    Smith, Mike U.; Gericke, Niklas M.

    2015-01-01

    Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical controversies that have relevance to modern curricular design, such as Fisher's (Ann Sci 1:115-137, 1936/2008) claim that Mendel's data were too good to be true. We also address questions about Mendel's status as the father of genetics as well as questions about the sequencing of Mendel's work in genetics instruction in relation to modern molecular genetics and evolution. Next, we present a systematic set of examples of research based approaches to the use of Mendel in the modern classroom along with criticisms of these designs and questions about the historical accuracy of the story of Mendel as presented in the typical classroom. Finally, we identify gaps in our understanding in need of further study and present a selected set of resources that, along with the references cited, should be valuable to science educators interested in further study of the story of Mendel.

  18. Design of hydraulic output Stirling engine

    NASA Technical Reports Server (NTRS)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  19. Colonizing nature: scientific knowledge, colonial power and the incorporation of India into the modern world-system.

    PubMed

    Baber, Z

    2001-03-01

    In this paper, the role of scientific knowledge, institutions and colonialism in mutually co-producing each other is analysed. Under the overarching rubric of colonial structures and imperatives, amateur scientists sought to deploy scientific expertise to expand the empire while at the same time seeking to take advantage of the opportunities to develop their careers as 'scientists'. The role of a complex interplay of structure and agency in the development of modern science, not just in India but in Britain too is analysed. The role of science and technology in the incorporation of South Asian into the modern world system, as well as the consequences of the emergent structures in understanding the trajectory of modern science in post-colonial India is examined. Overall, colonial rule did not simply diffuse modern science from the core to the periphery. Rather the colonial encounter led to the development of new forms of scientific knowledge and institutions both in the periphery and the core.

  20. The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing

    PubMed Central

    Goldstein, Bernard D.; Brooks, Bryan W.; Cohen, Steven D.; Gates, Alexander E.; Honeycutt, Michael E.; Morris, John B.; Orme-Zavaleta, Jennifer; Penning, Trevor M.; Snawder, John

    2014-01-01

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream activities related to bringing chemical and physical agents to the site, on-site activities including drilling of wells and containment of agents injected into or produced from the well, and downstream activities including the flow/removal of hydrocarbon products and of produced water from the site. A broad variety of chemical and physical agents are involved. As the industry expands this has raised concern about the potential for toxicological effects on ecosystems, workers, and the general public. Response to these concerns requires a concerted and collaborative toxicological assessment. This assessment should take into account the different geology in areas newly subjected to hydraulic fracturing as well as evolving industrial practices that can alter the chemical and physical agents of toxicological interest. The potential for ecosystem or human exposure to mixtures of these agents presents a particular toxicological and public health challenge. These data are essential for developing a reliable assessment of the potential risks to the environment and to human health of the rapidly increasing use of hydraulic fracturing and deep underground horizontal drilling techniques for tightly bound shale gas and other fossil fuels. Input from toxicologists will be most effective when employed early in the process, before there are unwanted consequences to the environment and human health, or economic losses due to the need to abandon or rework costly initiatives. PMID:24706166

  1. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov Websites

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  2. Trading secrets: Jews and the early modern quest for clandestine knowledge.

    PubMed

    Jütte, Daniel

    2012-12-01

    This essay explores the significance and function of secrecy and secret sciences in Jewish-Christian relations and in Jewish culture in the early modern period. It shows how the trade in clandestine knowledge and the practice of secret sciences became a complex, sometimes hazardous space for contact between Jews and Christians. By examining this trade, the essay clarifies the role of secrecy in the early modern marketplace of knowledge. The attribution of secretiveness to Jews was a widespread topos in early modern European thought. However, relatively little is known about the implications of such beliefs in science or in daily life. The essay pays special attention to the fact that trade in secret knowledge frequently offered Jews a path to the center of power, especially at court. Furthermore, it becomes clear that the practice of secret sciences, the trade in clandestine knowledge, and a mercantile agenda were often inextricably interwoven. Special attention is paid to the Italian-Jewish alchemist, engineer, and entrepreneur Abramo Colorni (ca. 1544-1599), whose career illustrates the opportunities provided by the marketplace of secrets at that time. Much scholarly (and less scholarly) attention has been devoted to whether and what Jews "contributed" to what is commonly called the "Scientific Revolution." This essay argues that the question is misdirected and that, instead, we should pay more attention to the distinctive opportunities offered by the early modern economy of secrecy.

  3. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  4. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  5. The Implications for Science Education of Heidegger's Philosophy of Science

    ERIC Educational Resources Information Center

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  6. Hydraulic Excavation System. Phase 2

    DTIC Science & Technology

    1988-09-01

    excavation techniques. Hydraulic fracturing has been particulary attractive in past work. The tensile strength of most rock is less than 20 MPa, which...Fairhurst, C. (1970) "In-situ Stress Determination at Great Depth by Means of Hydraulic Fracturing ," Proceedings of the 11th Symposium on Rock...Technique for Controlled Small-scale Hydraulic Fracturing ," First International Symposium on Rock Fragmentation bY Blasting, Vol. 3, A. Rustan and R

  7. Assessment of uncertainties of the models used in thermal-hydraulic computer codes

    NASA Astrophysics Data System (ADS)

    Gricay, A. S.; Migrov, Yu. A.

    2015-09-01

    The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.

  8. Hydraulic fracturing near domestic groundwater wells.

    PubMed

    Jasechko, Scott; Perrone, Debra

    2017-12-12

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  9. Hydraulic fracturing near domestic groundwater wells

    PubMed Central

    Jasechko, Scott; Perrone, Debra

    2017-01-01

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000–2014) domestic groundwater well. Furthermore, we identify 11 counties where most (>50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring. PMID:29180405

  10. Energy conservation strategy in Hydraulic Power Packs using Variable Frequency Drive IOP Conference Series: Materials Science and Engineering

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.

    2018-02-01

    At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.

  11. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... must be means to indicate the pressure in each main hydraulic power system. (4) There must be means to... detrimental transient (surge) pressures during operation must be considered. (5) Each hydraulic line, fitting...

  12. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... must be means to indicate the pressure in each main hydraulic power system. (4) There must be means to... detrimental transient (surge) pressures during operation must be considered. (5) Each hydraulic line, fitting...

  13. Modern astronomical knowledge as component of general education for sustainable development

    NASA Astrophysics Data System (ADS)

    Nurgaliev, I.

    {It is shown that 1) astronomical knowledge was a foundation of emerging modern physics and natural sciences based on mathematics, 2) mathematical basis of the natural sciences serves as an orientation of progress in the true objective of social sciences. The last example for this chain of impacts is the discovery of the fundamental demographic equation (N=aN^2-bN) full of the astronomical analogy [9]. Modern age endorses new imperatives on education. Reckless exploitation of the natural resources will cause irreversible exhaustion of the agro- and bio-potential of the planet during lifetime of a few generations. The adequate respond to the challenge lies in modern technologies and educating responsible (socially oriented) professionals. That is why the importance of teaching modern technologies along with providing the students with the understanding of global long term consequences of the human industrial activities is growing. The course ``Theoretical Foundations of Modern Technologies" at the Moscow State Agricultural University (Timiryazev Academy) taught by the author is discussed. New experimental project ``Space Technologies, Ecology and Safe Energetics in School of the Future" is presented as a project of a new age in the process of implementing at the Moscow city secondary schools by the colleagues and by the author. The new cosmological models in the frame of the Newtonian and general relativistic treatments developed by the author are considered in this report as an example of immediate implementation of new astro-knowledge into the education for modern agrarian students. The centrifugal forces acting between particles rotating randomly around each other are shown to be able to reverse gravitational collapse.

  14. Articles on Practical Cybernetics. Computer-Developed Computers; Heuristics and Modern Sciences; Linguistics and Practice; Cybernetics and Moral-Ethical Considerations; and Men and Machines at the Chessboard.

    ERIC Educational Resources Information Center

    Berg, A. I.; And Others

    Five articles which were selected from a Russian language book on cybernetics and then translated are presented here. They deal with the topics of: computer-developed computers, heuristics and modern sciences, linguistics and practice, cybernetics and moral-ethical considerations, and computer chess programs. (Author/JY)

  15. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  16. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  17. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  18. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  19. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  20. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  1. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  2. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  3. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  4. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  5. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  6. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  7. The "Next Generation Science Standards" and the Earth and Space Sciences

    ERIC Educational Resources Information Center

    Wysession, Michael E.

    2013-01-01

    The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…

  8. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    ERIC Educational Resources Information Center

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-01-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…

  9. The Modern Research Data Portal: A Design Pattern for Networked, Data-Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chard, Kyle; Dart, Eli; Foster, Ian

    Here we describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less

  10. Probing Scientists' Beliefs: How Open-Minded Are Modern Scientists?

    ERIC Educational Resources Information Center

    Coll, Richard; Taylor, Neil

    2004-01-01

    Just how open-minded are modern scientists? In this paper we examine this question for the science faculty from New Zealand and UK universities. The Exeter questionnaire used by Preece and Baxter (2000) to examine superstitious beliefs of high school students and preservice science teachers was used as a basis for a series of in-depth interviews…

  11. Portable Hydraulic Powerpack

    NASA Technical Reports Server (NTRS)

    Anderson, L. A.; Henry, R. L.; Fedor, O. H.; Owens, L. J.

    1986-01-01

    Rechargeable hydraulic powerpack functions as lightweight, compact source of mechanical energy. Self-contained hydraulic powerpack derives energy from solid chemical charge. Combustion of charge initiated by small hammer, and revolving feeder replaces charges expended. Combustion gases cool during expansion in turbine and not too hot for release to atmosphere. Unit has applications driving wheelchairs and operating drills, winches, and other equipment in remote areas. Also replaces electric motors and internal-combustion engines as source of power in explosive atmospheres.

  12. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    NASA Astrophysics Data System (ADS)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    estimated values of saturated hydraulic conductivity. The designed volumes of the trench vary from 8.3 m3 to 15.9 m3 for one-dimensional methods and 11.9 m3 to 24.5 m3 for three-dimensional methods, respectively. The results show that any miss-estimation of the saturated hydraulic conductivity of soils may drastically impact the design of infiltration devices and the related extra-costs. Bagarello, B.; Castellini, M.; Di Prima,S.;Giordano ,G.; Iovino, M. (2013). Testing a simplified approach to determine field saturated soil hydraulic conductivity. Procedia Environmental Sciences 19 ( 2013 ) 599 - 608 Horton, R. (1933). The role of infiltration in the hydrologic cycle. American Geophysical Union Transactions 14, 446-460. Lassabatère, L.; Angulo-Jaramillo, R.; Soria, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R.(2006). Beerkan estimation of soil transfer parameters through infiltration experiments - BEST. Soil Science Society of American Journal, Madison, v.70, p.521-532, 2006. Philip, J.R. (1957). The theory of Infiltration: 5. The Influence of the Initial Moisture Content. Soil Science, v.4, n.84, p.329-339, 1957. Wu, L.; Pan, L.; Mitchell, J.; Sanden, B. (1999). Measuring satured hydraulic conductivity using a generalized solution for single-ringle infiltrometers. Soil Sci.Soc.Am.J.63, 788-792

  13. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov Websites

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low

  14. A physiologically-based plant hydraulics scheme for ESMs: impacts of hydraulic trait variability for tropical forests under drought

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.

    2016-12-01

    A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.

  15. Phase 1 Feasibility Study: Seawater Hydraulic Transfer Pump

    DTIC Science & Technology

    1996-11-01

    2442532 3408040 M/ DIRECT HYDRAULIC DRIVE FOR LARGE FLOTATION CELLS 2440714 3406737 A-5 M/ COMBINED ANTISKID AND TRACTION CONTROL ELECTRONIC BRAKE SYSTEM ...HYDRAULIC PRESSURE 2449168 3412870 M/ POWER STEERING PUMP WITH BALANCED PORTING 2446911 3411257 M/ HYDRAULIC BRAKE SYSTEM INCLUDING SLIP CONTROL ...2440401 3406424 M/ HYDRAULIC CIRCUIT FOR RUNNING A CRAWLER VEHICLE 2434313 3402015 M/ HYDRAULICALLY ACTUATED AIRCRAFT ENGINE CONTROL SYSTEM 2425918

  16. Modernizing Natural History: Berkeley's Museum of Vertebrate Zoology in Transition.

    PubMed

    Sunderland, Mary E

    2013-01-01

    Throughout the twentieth century calls to modernize natural history motivated a range of responses. It was unclear how research in natural history museums would participate in the significant technological and conceptual changes that were occurring in the life sciences. By the 1960s, the Museum of Vertebrate Zoology at the University of California, Berkeley, was among the few university-based natural history museums that were able to maintain their specimen collections and support active research. The MVZ therefore provides a window to the modernization of natural history. This paper concentrates on the directorial transitions that occurred at the MVZ between 1965 and 1971. During this period, the MVZ had four directors: Alden H. Miller (Director 1940-1965), an ornithologist; Aldo Starker Leopold (Acting Director 1965-1966), a conservationist and wildlife biologist; Oliver P. Pearson (Director 1966-1971), a physiologist and mammalogist; and David B. Wake (Director 1971-1998), a morphologist, developmental biologist, and herpetologist. The paper explores how a diversity of overlapping modernization strategies, including hiring new faculty, building infrastructure to study live animals, establishing new kinds of collections, and building modern laboratories combined to maintain collections at the MVZ's core. The paper examines the tensions between the different modernization strategies to inform an analysis of how and why some changes were institutionalized while others were short-lived. By exploring the modernization of collections-based research, this paper emphasizes the importance of collections in the transformation of the life sciences.

  17. Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests: Hydraulic Data

    DOE Data Explorer

    Cole, Matthew

    2015-07-31

    Hydraulic responses from periodic hydraulic tests conducted at the Mirror Lake Fractured Rock Research Site, during the summer of 2015. These hydraulic responses were measured also using distributed acoustic sensing (DAS) which is cataloged in a different submission under this grant number. The tests are explained in detail in Matthew Cole's MS Thesis which is cataloged here. The injection and drawdown data and the codes used to analyze the data. Sinusoidal Data is a Matlab data file containing a data table for each period-length test. Within each table is a column labeled: time (seconds since beginning of pumping), Inj_m3pm (formation injection in cubic meters per minute), and head for each observation well (meters). The three Matlab script files (*.m) were used to analyze hydraulic responses from the data file above. High-Pass Sinusoid is a routine for filtering the data, computing the FFT, and extracting phase and amplitude values. Borestore is a routine which contains the borehole storage analytic solution and compares modeled amplitude and phase from this solution to computed amplitude and phase from the data. Patsearch Borestore is a routine containing the built-in pattern search optimization method. This minimizes the total error between modeled and actual amplitude and phase in Borestore. Comments within the script files contain more specific instructions for their use.

  18. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel J.

    Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown

  19. Science on Wheels

    ERIC Educational Resources Information Center

    Savitz, Maxine L.

    1973-01-01

    A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…

  20. Modern Lesson Plans in Environmental Science.

    ERIC Educational Resources Information Center

    Kotsonis, Helen Hoch; Baker, Bill

    This sourcebook, developed for teachers of ecology, biology, general science and hygiene, contains 27 lesson plans that have been organized into 5 units. The units are: The Dynamics of Pollution, Conservation and the Environment, Biological Controls and their Relationship to the Environment, Urban Ecology, and Environment and Health. The lesson…

  1. Birth of a hydraulic jump

    NASA Astrophysics Data System (ADS)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  2. Selective perceptions of hydraulic fracturing.

    PubMed

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  3. [ELIE METCHNIKOFF--THE FOUNDER OF LONGEVITY SCIENCE AND A FOUNDER OF MODERN MEDICINE: IN HONOR OF THE 170TH ANNIVERSARY].

    PubMed

    Stambler, I S

    2015-01-01

    The years 2015-2016 mark a double anniversary--the 170th anniversary of birth and the 100th anni- versary of death--of one of the greatest Russian scientists, a person that may be considered a founding figure of modern immunology, aging and longevity science--Elie Metchnikoff (May 15, 1845-July 15, 1916). At this time of the rapid aging of the world population and the rapid development of technologies that may ameliorate degenerative aging processes, Metchnikoff's pioneering contribution to the search for anti-aging and healthspan-extending means needs to be recalled and honored.

  4. 76 FR 22394 - Science Advisory Board Staff Office; Notification of a Public Teleconferences of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces two public teleconferences of the SAB Panel to discuss its draft report of the review of EPA's Draft Hydraulic Fracturing Study Plan.

  5. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  6. Science and the Making of the Modern World.

    ERIC Educational Resources Information Center

    Marks, John

    An account of the development of science and the growth of the scientific community is presented in this book. It aims to provide the reader with some of the background knowledge needed to make informed and intelligent contributions to contemporary debates on the interaction between science, technology, and society. Highlighted are the historical…

  7. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  8. The Food Safety Modernization Act: a barrier to trade? Only if the science says so.

    PubMed

    McNeill, Naomi

    2012-01-01

    The Food Safety Modernization Act improves oversight of America's food safety system. Title III, which regulates imported food, may create extra burdens for importers and therefore act as a barrier to trade. What will be on trial before the World Trade Organization (WTO), however, is not the law's content, but the science supporting it. Under the WTO regime, food safety laws that could restrict the free movement of food commodities must be sufficiently justified by scientific evidence. Member states must engage in risk assessments and regulate food imports in a manner that is "no more restrictive than necessary" to protect against the health risks identified by scientific evidence. This article examines the requirements of the WTO to evaluate the FSMA's legality under WTO rules. It analyzes the case law of the WTO Panel and Appellate Body and compares the FMSA to the EU's General Food Law.

  9. Makers of Modern Science. Volume 9, Linus Pauling: Scientist and Advocate by David E. Newton

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.; Kauffman, Laurie M.

    1997-04-01

    Facts on File: New York, 1994. 136 pp. Figs. and photos. 15.0 x 22.6 cm. $16.95 Makers of Modern Science, a series of biographies (available on standing order at a 20% discount), explores the lives and achievements of scientists who have made the greatest contributions to human knowledge during the 19th and 20th centuries. Each scientist's achievements, including underlying scientific principles, are discussed simply and clearly and are free of technical jargon. Drawing on primary sources such as diaries, memoirs, letters, and contemporary news stories, as well as secondary sources, each volume depicts the human drama of scientific work, the excitement and frustration of research, and the exhilaration and rewards of discovery. Each book, which includes black-and-white photographs, diagrams, an annotated bibliography, and a detailed index, contains a final chapter summarizing the legacy of the scientist's achievements.

  10. Data-driven predictions in the science of science.

    PubMed

    Clauset, Aaron; Larremore, Daniel B; Sinatra, Roberta

    2017-02-03

    The desire to predict discoveries-to have some idea, in advance, of what will be discovered, by whom, when, and where-pervades nearly all aspects of modern science, from individual scientists to publishers, from funding agencies to hiring committees. In this Essay, we survey the emerging and interdisciplinary field of the "science of science" and what it teaches us about the predictability of scientific discovery. We then discuss future opportunities for improving predictions derived from the science of science and its potential impact, positive and negative, on the scientific community. Copyright © 2017, American Association for the Advancement of Science.

  11. Hydraulics of wells

    USGS Publications Warehouse

    McLaughlin, Thad G.

    1955-01-01

    Although the subject of this lecture is supposed to be concerned primarily with the hydraulics of wells, Professor Weers has asked that I also discuss the effects tat geological formations have on the quantity and quality of water available to wells. I will discuss the geology of Colorado in relation to the availability and quality of water with particular reference to the most productive aquifers or water-bearing formations in the State. I will then discuss the hydraulics of wells with the aim of emphasizing the differences between water-table and artesian conditions.

  12. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  13. Plant xylem hydraulics: What we understand, current research, and future challenges.

    PubMed

    Venturas, Martin D; Sperry, John S; Hacke, Uwe G

    2017-06-01

    Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality. © 2017 Institute of Botany, Chinese Academy of Sciences.

  14. Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology

    ERIC Educational Resources Information Center

    Lee, Yeung Chung

    2010-01-01

    Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…

  15. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  16. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  17. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  18. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  19. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  20. Characteristics of Air Entrainment in Hydraulic Jump

    NASA Astrophysics Data System (ADS)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  1. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    PubMed

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  2. Rapid formation of a modern bedrock canyon by a single flood event

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  3. Hydraulic Fracturing of Soils; A Literature Review.

    DTIC Science & Technology

    1977-03-01

    best case, or worst case. The study reported herein is an overview of one such test or technique, hydraulic fracturing , which is defined as the...formation of cracks, in soil by the application of hydraulic pressure greater than the minor principal stress at that point. Hydraulic fracturing , as a... hydraulic fracturing as a means for determination of lateral stresses, the technique can still be used for determining in situ total stress and permeability at a point in a cohesive soil.

  4. 76 FR 7199 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ...The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces a public face-to-face meeting of the SAB Panel to conduct an independent review of EPA's Draft Hydraulic Fracturing Study Plan.

  5. Inherent Limitations of Hydraulic Tomography

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  6. Open science versus commercialization: a modern research conflict?

    PubMed

    Caulfield, Timothy; Harmon, Shawn He; Joly, Yann

    2012-02-27

    Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research.

  7. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  8. Theory and application of drilling fluid hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, A.

    1985-01-01

    The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less

  9. Valuing Science: A Turkish-American comparison

    NASA Astrophysics Data System (ADS)

    Titrek, Osman; Cobern, William W.

    2011-02-01

    The process of modernization began in Turkey under the reform government of Mustafa Kemal Ataturk (1881-1938). Turkey officially became a secular nation seeking to develop a modern economy with modern science and technology and political democracy. Turkey also has long been, and remains, a deeply religious society. Specifically, the practice of Islam is widespread, which raises the important question: whether the path of modernization in Turkey will look more like the American pattern or the European, where the Europeans are much more philosophically secular than the Americans? One way to look at this question is by examining how people value science vis-à-vis other important aspects of society and culture. Hence, our study is a comparative look at Turkish and American opinions about science. The American society, which is certainly a very modern society, is of particular interest in Turkey, given the significant religiosity of the American people, making the American and Turkish societies similar at least on this one significant point. Although we do not have comparable European data at this time, our Turkish-American comparison can be suggestive of whether or not Turkey is likely to follow the American pattern of a highly modernized yet deeply religious society.

  10. The Fateful Rift: The San Andreas Fault in the Modern Mind.

    ERIC Educational Resources Information Center

    Percy, Walker

    1990-01-01

    Claims that modern science is radically incoherent and that this incoherence lies within the practice of science. Details the work of the scientist and philosopher Charles Sanders Pierce, expounding on the difference between Rene Descartes' dualistic philosophy and Pierce's triadic view. Concludes with a brief description of the human existence.…

  11. [The problems of cataract surgery and intraocular correction: Russian school achievements and modern trends].

    PubMed

    Maliugin, B E; Linnik, L F; Egorova, E V; Kopaeva, V G; Tolchinskaia, A I

    2007-01-01

    The development of the safest and, at the same time, efficient methods of cataract surgery, is not only a topical task of medical science and practice, but also, taking the demographic situation into account, a solution to a social problem. The article describes the main achievements of academician S. N. Fyodorov's school in the field of cataract surgery with intraocular lense (IOL) implantation. Special attention is paid to the key components of cataract extraction technique named "small incision surgery", which is based upon the use of ultrasmall surgical approaches with self-sealing ability and no need for suturing. The main advantages and disadvantages of various types of cataract lense fragmentation, including ultrasound emulsification, mechanic and hydraulic fragmentation, and laser destruction, are described. Topical issues concerning cataract extraction technique under the conditions of complicating ophthalmopathology including the weakness of ciliary zonule system, high-degree myopia, glaucoma, pseudoexfoliative syndrome, small pupil, past injuries and eye surgery, are outlined. The paper also reflects a new qualitative step in the development of intraocular aphakia correction technique under modern conditions. Basic requirements to design parameters and IOL materials are determined from the position of reestablishing the accommodative function and fine visual functions. Ways of IOL design improvement are described especially for their application in non-standard and complicated cases.

  12. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role ofmore » expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments

  13. Science, humanism, judgement, ethics: person-centered medicine as an emergent model of modern clinical practice.

    PubMed

    Miles, Andrew

    2013-01-01

    The Medical University of Plovdiv (MUP) has as its motto 'Committed to humanity". But what does humanity in modern medicine mean? Is it possible to practise a form of medicine that is without humanity? In the current article, it is argued that modern medicine is increasingly being practised in a de-personalised fashion, where the patient is understood not as a unique human individual, a person, but rather as a subject or an object and more in the manner of a complex biological machine. Medicine has, it is contended, become distracted from its duty to care, comfort and console as well as to ameliorate, attenuate and cure and that the rapid development of medicine's scientific knowledge is, paradoxically, principally causative. Signal occurrences in the 'patient as a person' movement are reviewed, together with the emergence of the evidence-based medicine (EBM) and patient-centered care (PCC) movements. The characteristics of a model of medicine evolving in response to medicine's current deficiencies--person-centered healthcare (PCH)--are noted and described. In seeking to apply science with humanism, via clinical judgement, within an ethical framework, it is contended that PCH will prove to be far more responsive to the needs of the individual patient and his/her personal circumstances than current models of practice, so that neither a reductive anatomico-pathological, disease-centric model of illness (EBM), nor an aggressive patient-directed, consumerist form of care (PCC) is allowed continued dominance within modern healthcare systems. In conclusion, it is argued that PCH will enable affordable advances in biomedicine and technology to be delivered to patients within a humanistic framework of clinical practice that recognises the patient as a person and which takes full account of his/her stories, values, preferences, goals, aspirations, fears, worries, hopes, cultural context and which responds to his/her psychological, emotional, spiritual and social necessities

  14. The modern Chinese family in light of economic and legal history.

    PubMed

    Huang, Philip C C

    2011-01-01

    Most social science theory and the currently powerful Chinese ideology of modernizationism assume that, with modern development, family-based peasant farm production will disappear, to be replaced by individuated industrial workers and the three-generation family by the nuclear family. The actual record of China’s economic history, however, shows the powerful persistence of the small family farm, as well as of the three-generation family down to this day, even as China’s GDP becomes the second largest in the world. China’s legal system, similarly, encompasses a vast informal sphere, in which familial principles operate more than individualist ones. And, in between the informal-familial and the formal-individualist, there is an enormous intermediate sphere in which the two tendencies are engaged in a continual tug of war. The economic behavior of the Chinese family unit reveals great contrasts with what is assumed by conventional economics. It has a different attitude toward labor from that of both the individual worker and the capitalist firm. It also has a different structural composition, and a different attitude toward investment, children’s education, and marriage. Proper attention to how Chinese modernity differs socially, economically, and legally from the modern West points to the need for a different kind of social science; it also lends social–economic substance to claims for a modern Chinese culture different from the modern West’s.

  15. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    ERIC Educational Resources Information Center

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  16. The origin of scientific neurology and its consequences for modern and future neuroscience.

    PubMed

    Steinberg, David A

    2014-01-01

    John Hughlings Jackson (1835-1911) created a science of brain function that, in scope and profundity, is among the great scientific discoveries of the 19th century. It is interesting that the magnitude of his achievement is not completely recognized even among his ardent admirers. Although thousands of practitioners around the world use the clinical applications of his science every day, the principles from which bedside neurology is derived have broader consequences-for modern and future science-that remain unrecognized and unexploited. This paper summarizes the scientific formalism that created modern neurology, demonstrates how its direct implications affect a current area of neuroscientific research, and indicates how Hughlings Jackson's ideas form a path toward a novel solution to an important open problem of the brain and mind.

  17. Science communication as political communication

    PubMed Central

    Scheufele, Dietram A.

    2014-01-01

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389

  18. Science communication as political communication.

    PubMed

    Scheufele, Dietram A

    2014-09-16

    Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.

  19. Trimodernism and Social Sciences: A Note

    ERIC Educational Resources Information Center

    Snell, Joel C.

    2012-01-01

    The issues of premodern, modern, and postmodern can often confuse the social scientists because so much is drawn from modernism as the foundation of the social methodologies. Briefly, the author would like to differentiate the three modernism philosophies and indicate how a coalition of the three may apply to social sciences.

  20. Hydraulics. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  1. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  2. Promoting water hydraulics in Malaysia: A green educational approach

    NASA Astrophysics Data System (ADS)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  3. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  4. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  5. Gender Equity in Science Education

    ERIC Educational Resources Information Center

    Hall, Johanna R.

    2011-01-01

    The dearth of females in high-level science courses and professions is a well-documented phenomenon in modern society. Inequality in science instruction is a crucial component to the under representation of females in science. This paper provides a review of current literature published concerning gender inequality in K-12 science instruction.…

  6. Removing freon gas from hydraulic fluid

    NASA Technical Reports Server (NTRS)

    Williams, B. B.; Mitchell, S. M.; State, T. S.

    1981-01-01

    Dissolved freon gas is removed from hydraulic fluid by raising temperature to 150 F and bubbling dry nitrogen gas through it, even while fluid circulates through hydraulic system. Procedure reduces parts corrosion, sludge formation, and contamination.

  7. Design of An Energy Efficient Hydraulic Regenerative circuit

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  8. The "Next Generation Science Standards" and the Earth and Space Sciences

    ERIC Educational Resources Information Center

    Wysession, Michael E.

    2013-01-01

    In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…

  9. Tractor Hydraulics. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  10. Where Tradition and "Modern" Knowledge Meet: Exploring Two Islamic Schools in Singapore and Britain

    ERIC Educational Resources Information Center

    Tan, Charlene

    2011-01-01

    Muslims live in a "modern" world where subjects such as the English language, mathematics, sciences, and information and communication technology (ICT) are highly valued and enthusiastically transmitted in schools. How some Islamic schools attempt to equip their students with "modern knowledge" while remaining faithful to their…

  11. Survey of less-inflammable hydraulic fluids for aircraft

    NASA Technical Reports Server (NTRS)

    Drake, Wray V; Drell, I L

    1950-01-01

    A survey of current information on civil and military development of less-inflammable hydraulic fluids for aircraft is presented. Types of less-inflammable fluid reported include: glycol derivative, water base, silicone, ester, and halogenated compound. Specification requirements, physical and chemical properties, hydraulic-system test results, and advantages and disadvantages of various hydraulic fluids are discussed. For completely satisfactory service, some modification of currently available fluids or of present hydraulic-system parts still appears necessary.

  12. Valuing Science: A Turkish-American Comparison

    ERIC Educational Resources Information Center

    Titrek, Osman; Cobern, William W.

    2011-01-01

    The process of modernization began in Turkey under the reform government of Mustafa Kemal Ataturk (1881-1938). Turkey officially became a secular nation seeking to develop a modern economy with modern science and technology and political democracy. Turkey also has long been, and remains, a deeply religious society. Specifically, the practice of…

  13. Science Fairs for Science Literacy

    NASA Astrophysics Data System (ADS)

    Mackey, Katherine; Culbertson, Timothy

    2014-03-01

    Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].

  14. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  15. Modelling the hydraulic conductivity of porous media using physical-statistical model

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Usowicz, L. B.; Lipiec, J.

    2009-04-01

    Soils and other porous media can be represented by a pattern (net) of more or less cylindrically interconnected channels. The capillary radius, r can represent an elementary capillary formed in between soil particles in one case, and in another case it can represent a mean hydrodynamic radius. When we view a porous medium as a net of interconnected capillaries, we can apply a statistical approach for the description of the liquid or gas flow. A soil phase is included in the porous medium and its configuration is decisive for pore distribution in this medium and hence, it conditions the course of the water retention curve of this medium. In this work method of estimating hydraulic conductivity of porous media based on physical-statistical model proposed by B. Usowicz is presented. The physical-statistical model considers the pore space as the capillary net. The net of capillary connections is represented by parallel and serial connections of hydraulic resistors in the layer and between the layers, respectively. The polynomial distribution was used in this model to determine probability of the occurrence of a given capillary configuration. The model was calibrated using measured water retention curve and two values of hydraulic conductivity saturated and unsaturated and model parameters were determined. The model was used for predicting hydraulic conductivity as a function of soil water content K(theta). The model was validated by comparing the measured and predicted K data for various soils and other porous media (e.g. sandstone). A good agreement between measured and predicted data was reasonable as indicated by values R2 (>0.9). It was also confirmed that the random variables used for the calculations and model parameters were chosen and selected correctly. The study was funded in part by the Polish Ministry of Science and Higher Education by Grant No. N305 046 31/1707).

  16. Analysis of INDOT current hydraulic policies.

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are : typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of : property owner complaints. This approach le...

  17. The hydraulic limitation hypothesis revisited.

    PubMed

    Ryan, Michael G; Phillips, Nathan; Bond, Barbara J

    2006-03-01

    We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one or more of the components necessary for testing the hypothesis showed that taller trees differ physiologically from shorter, younger trees. Stomatal conductance to water vapour (g(s)), photosynthesis (A) and leaf-specific hydraulic conductance (K L) are often, but not always, lower in taller trees. Additionally, leaf mass per area is often greater in taller trees, and leaf area:sapwood area ratio changes with tree height. We conclude that hydraulic limitation of gas exchange with increasing tree size is common, but not universal. Where hydraulic limitations to A do occur, no evidence supports the original expectation that hydraulic limitation of carbon assimilation is sufficient to explain observed declines in wood production. Any limit to height or height growth does not appear to be related to the so-called age-related decline in wood production of forests after canopy closure. Future work on this problem should explicitly link leaf or canopy gas exchange with tree and stand growth, and consider a more fundamental assumption: whether tree biomass growth is limited by carbon availability.

  18. Collaborative Thinking: The Challenge of the Modern University

    ERIC Educational Resources Information Center

    Corrigan, Kevin

    2012-01-01

    More collaborative work in the humanities could be instrumental in helping to break down the traditional rigid boundaries between academic divisions and disciplines in modern universities. The value of the traditional model of the solitary humanities scholar or the collaborative science paradigm should not be discounted. However, increasing the…

  19. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1987-01-01

    The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.

  20. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    NASA Astrophysics Data System (ADS)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  1. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  2. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    hillslope. References Bagarello, V., Di Prima, S., Iovino, M., 2014. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal 78, 724. doi:10.2136/sssaj2013.06.0231 Bagarello, V., Sgroi, A., 2008. Testing Soil Encasing Materials for Measuring Hydraulic Conductivity of a Sandy-Loam Soil by the Cube Methods. Soil Science Society of America Journal 72, 1048. doi:10.2136/sssaj2007.0022 Blanco-Canqui, H., Gantzer, C.J., Anderson, S.H., Alberts, E.E., Ghidey, F., 2002. Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils. Soil Science Society of America Journal 66, 1596. doi:10.2136/sssaj2002.1596 Brooks, E.S., Boll, J., McDaniel, P.A., 2004. A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resour. Res. 40, W04208. doi:10.1029/2003WR002858 Castellini, M., Iovino, M., Pirastru, M., Niedda, M., Bagarello, V., 2016. Use of BEST Procedure to Assess Soil Physical Quality in the Baratz Lake Catchment (Sardinia, Italy). Soil Science Society of America Journal 0, 0. doi:10.2136/sssaj2015.11.0389 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20-34. doi:10.1016/j.geoderma.2015.08.006 Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degrad. Develop. 27, 200-210. doi:10.1002/ldr.2263 Klute, A., Dirksen, C., 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods sssabookseries, 687-734. doi:10.2136/sssabookser5.1.2ed.c28 Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Science Society of

  3. Hydraulic characterization of " Furcraea andina

    NASA Astrophysics Data System (ADS)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  4. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be

  5. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  6. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  7. Recent development in preparation of European soil hydraulic maps

    NASA Astrophysics Data System (ADS)

    Toth, B.; Weynants, M.; Pasztor, L.; Hengl, T.

    2017-12-01

    Reliable quantitative information on soil hydraulic properties is crucial for modelling hydrological, meteorological, ecological and biological processes of the Critical Zone. Most of the Earth system models need information on soil moisture retention capacity and hydraulic conductivity in the full matric potential range. These soil hydraulic properties can be quantified, but their measurement is expensive and time consuming, therefore measurement-based catchment scale mapping of these soil properties is not possible. The increasing availability of soil information and methods describing relationships between simple soil characteristics and soil hydraulic properties provide the possibility to derive soil hydraulic maps based on spatial soil datasets and pedotransfer functions (PTFs). Over the last decade there has been a significant development in preparation of soil hydraulic maps. Spatial datasets on model parameters describing the soil hydraulic processes have become available for countries, continents and even for the whole globe. Our aim is to present European soil hydraulic maps, show their performance, highlight their advantages and drawbacks, and propose possible ways to further improve the performance of those.

  8. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    NASA Astrophysics Data System (ADS)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  9. Scale and Time Effects in Hydraulic Fracturing.

    DTIC Science & Technology

    1984-07-01

    An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)

  10. Hydraulic Fracturing for Oil and Gas: Impacts from the ...

    EPA Pesticide Factsheets

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources.  The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe: Water withdrawals for hydraulic fracturing in times or areas of low water availability, particularly in areas with limited or declining groundwater resources; Spills during the handling of hydraulic fracturing fluids and chemicals or produced water that result in large volumes or high concentrations of chem

  11. Inference for the physical sciences

    PubMed Central

    Jones, Nick S.; Maccarone, Thomas J.

    2013-01-01

    There is a disconnect between developments in modern data analysis and some parts of the physical sciences in which they could find ready use. This introduction, and this issue, provides resources to help experimental researchers access modern data analysis tools and exposure for analysts to extant challenges in physical science. We include a table of resources connecting statistical and physical disciplines and point to appropriate books, journals, videos and articles. We conclude by highlighting the relevance of each of the articles in the associated issue. PMID:23277613

  12. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT III, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO INTRODUCE BASIC HYDRAULIC PRINCIPLES AND PROVIDE AN UNDERSTANDING OF HYDRAULIC TRANSMISSIONS USED IN DIESEL POWERED VEHICLES. TOPICS ARE WHY USE HYDRAULICS, REVIEWING BASIC PHYSICS LAWS IN RELATION TO HYDRAULICS, UNDERSTANDING THE HYDRAULIC SYSTEM, AND DEVELOPING A BASIC HYDRAULIC SYSTEM. THE MODULE…

  13. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex.

    PubMed

    Salomón, Roberto L; Limousin, Jean-Marc; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesús; Steppe, Kathy

    2017-08-01

    Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (R X ) and stem hydraulic capacitance (C S ) with predawn water potential (Ψ PD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when C S was allowed to decrease with decreasing Ψ PD . Hydraulic capacitance decreased from 62 to 25 kg m -3  MPa -1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in C S for tree hydraulic functioning, and they suggest that C S should be considered to predict the drought response of trees with models. © 2017 John Wiley & Sons Ltd.

  14. Hippocrates' complaint and the scientific ethos in early modern England.

    PubMed

    Yeo, Richard

    2018-04-01

    Among the elements of the modern scientific ethos, as identified by R.K. Merton and others, is the commitment of individual effort to a long-term inquiry that may not bring substantial results in a lifetime. The challenge this presents was encapsulated in the aphorism of the ancient Greek physician, Hippocrates of Kos: vita brevis, ars longa (life is short, art is long). This article explores how this complaint was answered in the early modern period by Francis Bacon's call for the inauguration of the sciences over several generations, thereby imagining a succession of lives added together over time. However, Bacon also explored another response to Hippocrates: the devotion of a 'whole life', whether brief or long, to science. The endorsement of long-term inquiry in combination with intensive lifetime involvement was embraced by some leading Fellows of the Royal Society, such as Robert Boyle and Robert Hooke. The problem for individuals, however, was to find satisfaction in science despite concerns, in some fields, that current observations and experiments would not yield material able to be extended by future investigations.

  15. Empirically assessing the potential release of rare earth elements from black shale under simulated hydraulic fracturing conditions

    DOE PAGES

    Yang, Jon; Verba, Circe; Torres, Marta; ...

    2018-02-01

    Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less

  16. Empirically assessing the potential release of rare earth elements from black shale under simulated hydraulic fracturing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jon; Verba, Circe; Torres, Marta

    Rare earth elements (REEs) are economically important to modern society and the rapid growth of technologies dependent on REEs has placed considerable economic pressure on their sourcing. This study addresses whether REEs could be released as a byproduct of natural gas extraction from a series of experiments that were designed to simulate hydraulic fracturing of black shale under various pressure (25 and 27.5 MPa) and temperature (50, 90, 130 °C) conditions. The dissolved REEs in the reacted fluids displayed no propensity for the REEs to be released from black shale under high pressure and temperature conditions, a result that ismore » consistent across the different types of fluids investigated. Overall, there was a net loss of REEs from the fluid. These changes in dissolved REEs were greatest at the moment the fluids first contacted the shale and before the high temperature and high pressure conditions were imposed, although the magnitude of these changes (10 -4 μg/g) were small compared to the magnitude of the total REE content present in the solid shale samples (10 2 μg/g). These results highlight the variability and complexity of hydraulic fracturing systems and indicate that REE may not serve as robust tracers for fracturing fluid-shale reactions. Additionally, the results suggest that significant quantities of REEs may not be byproducts of hydraulically fractured shales.« less

  17. Soil hydraulic properties estimate based on numerical analysis of disc infiltrometer three-dimensional infiltration curve

    NASA Astrophysics Data System (ADS)

    Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David

    2015-04-01

    Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.

  18. Failure Prevention of Hydraulic System Based on Oil Contamination

    NASA Astrophysics Data System (ADS)

    Singh, M.; Lathkar, G. S.; Basu, S. K.

    2012-07-01

    Oil contamination is the major source of failure and wear of hydraulic system components. As per literature survey, approximately 70 % of hydraulic system failures are caused by oil contamination. Hence, to operate the hydraulic system reliably, the hydraulic oil should be of perfect condition. This requires a proper `Contamination Management System' which involves monitoring of various parameters like oil viscosity, oil temperature, contamination level etc. A study has been carried out on vehicle mounted hydraulically operated system used for articulation of heavy article, after making the platform levelled with outrigger cylinders. It is observed that by proper monitoring of contamination level, there is considerably increase in reliability, economy in operation and long service life. This also prevents the frequent failure of hydraulic system.

  19. Well-ordered science and Indian epistemic cultures: toward a polycentered history of science.

    PubMed

    Ganeri, Jonardon

    2013-06-01

    This essay defends the view that "modern science," as with modernity in general, is a polycentered phenomenon, something that appears in different forms at different times and places. It begins with two ideas about the nature of rational scientific inquiry: Karin Knorr Cetina's idea of "epistemic cultures," and Philip Kitcher's idea of science as "a system of public knowledge," such knowledge as would be deemed worthwhile by an ideal conversation among the whole public under conditions of mutual engagement. This account of the nature of scientific practice provides us with a new perspective from which to understand key elements in the philosophical project of Jaina logicians in the seventh, eighth, and ninth centuries C.E. Jaina theory seems exceptionally well targeted onto two of the key constituents in the ideal conversation--the classification of all human points of view and the representation of end states of the deliberative process. The Buddhist theory of the Kathāvatthu contributes to Indian epistemic culture in a different way: by supplying a detailed theory of how human dialogical standpoints can be revised in the ideal conversation, an account of the phenomenon Kitcher labels "tutoring." Thus science in India has its own history, one that should be studied in comparison and contrast with the history of science in Europe. In answer to Joseph Needham, it was not 'modern science' which failed to develop in India or China but rather non-well-ordered science, science as unconstrained by social value and democratic consent. What I argue is that this is not a deficit in the civilisational histories of these countries, but a virtue.

  20. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  1. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  2. Intriguing Freshmen with Materials Science.

    ERIC Educational Resources Information Center

    Pond, Robert B., Sr.

    Described is a course designed for engineering science and natural science freshmen and open to upperclass nonscience majors entitled "Science of Modern Materials" and which has been successfully presented for several years. This paper presents the philosophy behind the course, the teaching methods employed, and the content of the course. The…

  3. Teacher's Guide to SERAPHIM Software III. Modern Chemistry.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the third in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Modern Chemistry." Program suggestions are arranged in the same…

  4. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  5. Hydraulic forces contribute to left ventricular diastolic filling

    PubMed Central

    Maksuti, Elira; Carlsson, Marcus; Arheden, Håkan; Kovács, Sándor J.; Broomé, Michael; Ugander, Martin

    2017-01-01

    Myocardial active relaxation and restoring forces are known determinants of left ventricular (LV) diastolic function. We hypothesize the existence of an additional mechanism involved in LV filling, namely, a hydraulic force contributing to the longitudinal motion of the atrioventricular (AV) plane. A prerequisite for the presence of a net hydraulic force during diastole is that the atrial short-axis area (ASA) is smaller than the ventricular short-axis area (VSA). We aimed (a) to illustrate this mechanism in an analogous physical model, (b) to measure the ASA and VSA throughout the cardiac cycle in healthy volunteers using cardiovascular magnetic resonance imaging, and (c) to calculate the magnitude of the hydraulic force. The physical model illustrated that the anatomical difference between ASA and VSA provides the basis for generating a hydraulic force during diastole. In volunteers, VSA was greater than ASA during 75–100% of diastole. The hydraulic force was estimated to be 10–60% of the peak driving force of LV filling (1–3 N vs 5–10 N). Hydraulic forces are a consequence of left heart anatomy and aid LV diastolic filling. These findings suggest that the relationship between ASA and VSA, and the associated hydraulic force, should be considered when characterizing diastolic function and dysfunction. PMID:28256604

  6. Quantitative biology: where modern biology meets physical sciences.

    PubMed

    Shekhar, Shashank; Zhu, Lian; Mazutis, Linas; Sgro, Allyson E; Fai, Thomas G; Podolski, Marija

    2014-11-05

    Quantitative methods and approaches have been playing an increasingly important role in cell biology in recent years. They involve making accurate measurements to test a predefined hypothesis in order to compare experimental data with predictions generated by theoretical models, an approach that has benefited physicists for decades. Building quantitative models in experimental biology not only has led to discoveries of counterintuitive phenomena but has also opened up novel research directions. To make the biological sciences more quantitative, we believe a two-pronged approach needs to be taken. First, graduate training needs to be revamped to ensure biology students are adequately trained in physical and mathematical sciences and vice versa. Second, students of both the biological and the physical sciences need to be provided adequate opportunities for hands-on engagement with the methods and approaches necessary to be able to work at the intersection of the biological and physical sciences. We present the annual Physiology Course organized at the Marine Biological Laboratory (Woods Hole, MA) as a case study for a hands-on training program that gives young scientists the opportunity not only to acquire the tools of quantitative biology but also to develop the necessary thought processes that will enable them to bridge the gap between these disciplines. © 2014 Shekhar, Zhu, Mazutis, Sgro, Fai, and Podolski. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Non-Euclidean Space, Movement and Astronomy in Modern Art: Alexander Calder's Mobiles and Ben Nicholson's Reliefs

    NASA Astrophysics Data System (ADS)

    Malloy, Vanja

    2013-09-01

    John Keats once wrote that `there is no such thing as time and space' rather, believing that time and space are mental constructs that are subject to a variety of forms and as diverse as the human mind. In the 1920s through the 1930s, modern physics in many ways supported this idea through the various philosophical writings on the Theory of General Relativity to the masses by scientists such as Arthur Eddington and Albert Einstein. These new concepts of modern physics fundamentally changed our understanding of time and space and had substantial philosophical implications, which were absorbed by modern artists resulting in the 1936 Dimensionist Manifesto. Seeking to internalize the developments of modern science within modern art, this manifesto was widely endorsed by the most prominent figures of the avant-garde such as Marcel Duchamp, Jean Arp, Naum Gabo, Joan Miró, László Moholy-Nagy, Wassily Kandinsky and Alexander Calder. Of particular interest to this manifesto was the new concept of the fourth-dimension, which in many ways revolutionized the arts. Importantly, its interpretation varied widely in the artistic community, ranging from a purely physical four-dimensional space, to a kinetic concept of space in which space and time are linked, to a metaphysical interest in a space that exists beyond the material realm. The impact of modern science and astronomy on avant-garde art is currently a bourgeoning area of research with considerable implications to our rethinking of substantial artistic figures of this era. Through a case study of Alexander Calder's Mobiles and Ben Nicholson's Reliefs, this paper explores how these artworks were informed by an interest in modern science.

  8. Forensic fictions: science, television production, and modern storytelling.

    PubMed

    Kirby, David A

    2013-03-01

    This essay uses interviews with television creators, writers, and producers to examine how media practitioners utilise, negotiate and transform forensic science in the production of televisual stories including the creation of unique visuals, character exploration, narrative progression, plot complication, thematic development, and adding a sense of authenticity. Television as a medium has its own structures and conventions, including adherence to a show's franchise, which put constraints on how stories are told. I demonstrate how television writers find forensic science to be an ideal tool in navigating television's narrative constraints by using forensics to create conflicts, new obstacles, potential solutions, and final solutions in their stories. I show how television writers utilise forensic science to provide the scientific certainty their characters require to catch the criminal, but also how uncertainty is introduced in a story through the interpretation of the forensics by the show's characters. I also argue that televisual storytellers maintain a flexible notion of scientific realism based on the notion of possibility that puts them at odds with scientists who take a more demanding conception of scientific accuracy based on the concept of probability. Copyright © 2013. Published by Elsevier Ltd.

  9. Influence of Groundwater Hydraulic Gradient on Bank Storage Metrics.

    PubMed

    Welch, Chani; Harrington, Glenn A; Cook, Peter G

    2015-01-01

    The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two-dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model-calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river-aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative. © 2014, National GroundWater Association.

  10. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  11. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and

  12. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play.

    PubMed

    Schultz, R; Atkinson, G; Eaton, D W; Gu, Y J; Kao, H

    2018-01-19

    A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (10 4 to 10 5 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index-modified frequency-magnitude distribution, providing a framework to forecast induced seismicity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... personnel. (h) Nonmetallic flexible hose assemblies must only be used between two points of relative motion... (method). (j) Nonmetallic flexible hose shall be marked with the manufacturer's name or trademark, type or...

  14. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  15. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Auria, F; Rohatgi, Upendra S.

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  16. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  17. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  18. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  19. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  20. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  1. Philosophical Study on Two Contemporary Iranian Muslim Intellectual Responses to Modern Science and Technology

    ERIC Educational Resources Information Center

    Shamsaei, Maryam; Shah, Mohd Hazim

    2017-01-01

    Iranian modern thinkers in either of the two categories: Western-minded and religious. The most prominent aspect of Western minded thinkers is their emphasis on separation of tradition and modernity. On the other hand, religious thinkers look forward to combining the two. The Western-minded thinkers believe that the most important burden on…

  2. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    PubMed

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Fort Benton Science Curriculum Outline.

    ERIC Educational Resources Information Center

    Fort Benton Public Schools, MT.

    The science curriculum for the Fort Benton school system was developed with funds under Title III of the Elementary and Secondary Education Act to give students the background of a modern and forward-looking program in science taught in an imaginative, investigative, and inquiry-oriented fashion. The science curriculum guide outlines a planned…

  4. The discovery of circulation and the origin of modern medicine during the italian renaissance.

    PubMed

    Thiene, G

    1997-03-01

    This historical article discusses the dawn of anatomy during the Italian Renaissance, the role of the University of Padua in the origin of modern medicine, milestones in the development of modern medicine, the discovery of circulation, Padua leadership and Galileo's persecution for his scientific theories. Copyright © 1997 Elsevier Science Inc. All rights reserved.

  5. Hydraulic lift in a neotropical savanna.

    Treesearch

    M.Z. Moreira; F.G. Scholz; S.J. Bucci; L.S. Sternberg; G. Goldstein; F.C. Meinzer; A.C. Franco

    2003-01-01

    We report hydraulic lift in the sawmlia vegetation of central Brazil (Cerrado). Both heat-pulse measurements and isotopic (deuterium) labelling were used to determine whether hydraulic lift occurred in two common species, and whether neighbouring small shrubs and trees were utilizing this water.Both techniques showed water uptake by tap-...

  6. Early modern mathematical instruments.

    PubMed

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  7. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  8. Consciousness and Science: A Non-Dual Perspective on the Theology-Science Dialogue

    ERIC Educational Resources Information Center

    Sriraman, Bharath; Benesch, Walter

    2013-01-01

    In modern science, the synthesis of "nature/mind" in observation, experiment, and explanation, especially in physics and biology increasingly reveal a non-linear totality in which subject, object, and situation have become inseparable. This raises the interesting ontological question of the true nature of reality? Western science as seen in its…

  9. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  10. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  11. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, T.E.; Franke, O.L.; Bennett, G.D.

    1984-01-01

    The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)

  12. Feminization and marginalization? Women Ayurvedic doctors and modernizing health care in Nepal.

    PubMed

    Cameron, Mary

    2010-03-01

    The important diversity of indigenous medical systems around the world suggests that gender issues, well understood for Western science, may differ in significant ways for non-Western science practices and are an important component in understanding how social dimensions of women's health care are being transformed by global biomedicine. Based on ethnographic research conducted with formally trained women Ayurvedic doctors in Nepal, I identify important features of medical knowledge and practice beneficial to women patients, and I discuss these features as potentially transformed by modernizing health care development. The article explores the indirect link between Ayurveda's feminization and its marginalization, in relation to modern biomedicine, which may evolve to become more direct and consequential for women's health in the country.

  13. Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.

    ERIC Educational Resources Information Center

    Lall, Bernard M.

    The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…

  14. Human Science for Human Freedom? Piaget's Developmental Research and Foucault's Ethical Truth Games

    ERIC Educational Resources Information Center

    Zhao, Guoping

    2012-01-01

    The construction of the modern subject and the pursuit of human freedom and autonomy, as well as the practice of human science has been pivotal in the development of modern education. But for Foucault, the subject is only the effect of discourses and power-knowledge arrangements, and modern human science is part of the very arrangement that has…

  15. Conjugal intimacy, gender and modernity in contemporary China.

    PubMed

    Liu, Jieyu; Bell, Eona; Zhang, Jiayu

    2017-12-15

    The new generation of modernity theorists have forecast the democratization of gender relations within intimate relationships in late-modern times. Chinese society has undergone rapid and dramatic changes in its unique trajectory of political, social and economic reform. Using China as an example of a region which has been largely ignored in contemporary social theory, this article enters the debate to contest the extent to which conjugal relationships are democratized in line with modernity. We further test the assertion that modern marriages are characterized by increased self-disclosure and communication between partners. Data from a national survey on Chinese families is analysed in relation to the level of self-disclosure between husbands and wives; gender division of housework; household decision-making; and home ownership. We highlight the impact of gender, cohort and location (urban, rural or migrant) on experiences of modernity and draw attention to the material, social and cultural factors which continue to shape conjugal relations in contemporary Chinese society. Based on our findings, we contest the argument that disclosing intimacy between intimate partners is a defining characteristic of modern relationships, and suggest that other social factors may condition degrees of self-disclosure in marriage. Similarly, we question the extent to which heterosexual conjugal equality is attained: the cultural practices and values of patrilineal family organization, together with material circumstances, continue to influence marital relations in China. © London School of Economics and Political Science 2017.

  16. Vehicle hydraulic system that provides heat for passenger compartment

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  17. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  18. Predicting Impact of Biochar Addition on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Nakhli, S. A. A.; Yudi, Y.; Imhoff, P. T.

    2017-12-01

    Biochar has been proposed as a soil amendment to improve soil hydraulic properties, including water retention and saturated and unsaturated hydraulic conductivity, for agricultural and environmental applications. However, its effect on hydraulic properties is difficult to predict and often with mixed results: in some cases biochar enhances soil hydraulic properties, while in other cases it degrades them. Despite several published observational studies, there are no models that can reliably predict biochar's impact on soil hydraulic properties. In this project we developed models to describe the effect of addition of a commercial wood biochar pyrolyzed at 550° on soil hydraulic properties in laboratory-scale experiments. The effects of biochar addition at 2% and 6% (w/w) on water retention and saturated and unsaturated hydraulic conductivity were evaluated for silt loam, sandy loam, and loamy sand. The addition of 6% (w/w) biochar increased the available water content of silt loam, sandy loam and loamy sand by 25, 20 and 70%, respectively. The impact of biochar addition on water retention was predicted reasonably well using information on the intra particle pore volume of biochar (mercury porosimetry, N2 and CO2 sorption) and the particle size distribution of the soil/biochar mixture. When amended with 6% biochar, saturated hydraulic conductivity increased 17% for loamy sand, but decreased 30% and 54% for silt loam and sandy loam, respectively. The Kozeny-Carman equation modified to account for changes in inter pore volume predicted saturated hydraulic conductivities of the biochar-amended soils reasonably well, with RMSE ranging from 0.06 to 5.06 cm h-1 for silt loam and loamy sand, respectively. While intra particle pore volume of biochar contributed significantly to higher water retention, changes in hydraulic conductivity were correlated instead with changes in inter pore volume - the large pores between biochar and soil particles.

  19. Monitoring concentration and isotopic composition of methane in groundwater in the Utica Shale hydraulic fracturing region of Ohio.

    PubMed

    Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H

    2018-05-03

    Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.

  20. Analysis of INDOT current hydraulic policies : [spreadsheet].

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  1. Environmentally safe fluids for hydraulics used in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirzberger, E.; Rexroth, M.

    1995-12-31

    The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less

  2. "To Feel at Home in the Wonderful World of Modern Science": New Chinese Historiography and Qing Intellectual History.

    PubMed

    Sela, Ori

    2017-09-01

    Argument In recent decades a large body of scholarship on the first half of twentieth-century China has successfully shown the ways in which history and historiography had been constructed at the time, as well as the links between history, national identity, education, and politics that was forged during this period. In this paper, I examine Qing intellectual history, in particular that of the mid or "High Qing." I discuss the development of the historiography of this field in the early twentieth century by drawing on the larger developments in historiography; by demonstrating how these developments had shaped Qing intellectual history for later times; by focusing on the historical actors' sense of the importance of "science," being "scientific," and "modernization"; and, by unraveling the intimate connections to older historiographical narratives going back all the way to the eighteenth and nineteenth centuries.

  3. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  4. Normal/Modern: Reconstructive Surgery in a Mexican Public Hospital.

    PubMed

    Taylor-Alexander, Samuel

    2017-10-01

    A growing corpus of anthropological scholarship demonstrates how science and medicine in Mexico are imbued by national concerns with modernization. Drawing on ethnographic research in a public hospital located in the south of Mexico City, I unpack one manifestation of this dynamic, which is the conjugation of the normal and the modern in Mexican reconstructive surgery. The aspiration toward normality underlies everyday clinic practices and relationships in this field, including why parents want surgery for their children and how doctors see their patients and their responsibilities toward them. It is also central to the professional ethic of reconstructive surgeons. I argue that the realities of health care provision in Mexico coalesced with this ethic to produce reconstructive surgeons as political subjects. They aimed to modernize craniofacial surgery in Mexico and so make the bodies of craniofacial patients normal.

  5. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  6. On the origin of modern humans: Asian perspectives.

    PubMed

    Bae, Christopher J; Douka, Katerina; Petraglia, Michael D

    2017-12-08

    The traditional "out of Africa" model, which posits a dispersal of modern Homo sapiens across Eurasia as a single wave at ~60,000 years ago and the subsequent replacement of all indigenous populations, is in need of revision. Recent discoveries from archaeology, hominin paleontology, geochronology, genetics, and paleoenvironmental studies have contributed to a better understanding of the Late Pleistocene record in Asia. Important findings highlighted here include growing evidence for multiple dispersals predating 60,000 years ago in regions such as southern and eastern Asia. Modern humans moving into Asia met Neandertals, Denisovans, mid-Pleistocene Homo , and possibly H. floresiensis , with some degree of interbreeding occurring. These early human dispersals, which left at least some genetic traces in modern populations, indicate that later replacements were not wholesale. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Hydraulic Performance of Set-Back Curb Inlets

    DOT National Transportation Integrated Search

    1998-06-01

    The objective of this study was to develop hydraulic design charts for the location and sizing of set-back curb inlets. An extensive program of hydraulic model testing was conducted to evaluate the performance of various inlet opening sizes. The grad...

  8. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  9. Advanced Performance Hydraulic Wind Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  10. Science Teacher Identity and Eco-Transformation of Science Education: Comparing Western Modernism with Confucianism and Reflexive "Bildung"

    ERIC Educational Resources Information Center

    Sjöström, Jesper

    2018-01-01

    This forum article contributes to the understanding of how science teachers' identity is related to their worldviews, cultural values and educational philosophies, and to eco-transformation of science education. Special focus is put on "reform-minded" science teachers. The starting point is the paper "Science education reform in…

  11. Implications of Modern Decision Science for Military Decision-Support Systems

    DTIC Science & Technology

    2005-01-01

    B. Another major challenge is learning how to exploit the technology of modern recreational games , including massively parallel online activities... online .7 In preparing this monograph, we also concluded that the most valuable aspects of game theory for high-level decision support are the basic...Philosophy, online at http://plato.stanford.edu/ entries/ game -theory. 8 In one example that still rankles, some Cold War game theorists (and military

  12. [Perspective and application of metabonomics in modern study of traditional Chinese medicine].

    PubMed

    Qin, Kun-Ming; Wang, Bin; Chen, Lin-Wei; Zhang, Mao-Sen; Yang, Guang-Ming; Shu, Ya-Chun; Cai, Bao-Chang

    2014-08-01

    Metabonomics is a new method to study on the metabolic network and the relationship between body and environment, which conforms to the way of traditional Chinese medicine (TCM) research. In the study process of modernization of traditional Chinese medicine, effectively conjunction with metabonomics method will facilitate the integration of TCM with modern biological science and technology, and promote the modernization of TCM. This paper introduce the application of metabonomics in the research of toxicity mechanism of TCM, compatibility mechanism of TCM formula, pharmacology effect of TCM and processing mechanism of TCM. This paper summarize the problems in the TCM metabonomics research and prospect its bright future.

  13. Optimizing Engineering Tools Using Modern Ground Architectures

    DTIC Science & Technology

    2017-12-01

    Considerations,” International Journal of Computer Science & Engineering Survey , vol. 5, no. 4, 2014. [10] R. Bell. (n.d). A beginner’s guide to big O notation...scientific community. Traditional computing architectures were not capable of processing the data efficiently, or in some cases, could not process the...thesis investigates how these modern computing architectures could be leveraged by industry and academia to improve the performance and capabilities of

  14. Science: Servant or Master?

    ERIC Educational Resources Information Center

    Morgenthau, Hans J.

    In this tenth book of a series entitled "Perspectives in Humanism," analyses are included concerning the meaning of science for modern man and its effects on contemporary politics. Natural, social, and humanistic sciences are discussed in connection with religion, philosophy, and politics to indicate the importance of the scholar who fulfills the…

  15. Pressure variable orifice for hydraulic control valve

    NASA Technical Reports Server (NTRS)

    Ammerman, R. L.

    1968-01-01

    Hydraulic valve absorbs impact energy generated in docking or joining of two large bodies by controlling energy release to avoid jarring shock. The area of exit porting presented to the hydraulic control fluid is directly proportional to the pressure acting on the fluid.

  16. [Archaic stereotypies and modern approaches for understanding of ageing].

    PubMed

    Grigoryeva, I A; Kelasev, V N

    2017-01-01

    In the article we discussed the processes of awareness of the place of elderly people in modern society, elaboration of adequate relation to global aging and elderly themselves are still going in social sciences. These processes are expressed in a clash of archaic stereotypes and new approaches which changed social and age structure requires. Not only elderly people are providers of archaic stereotypes, but scientific institutions and practices as well. Reorientation of science, media and social policy towards study and realization of «postponed aging» opportunities is needed.

  17. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  18. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  19. Horizontal steam generator thermal-hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less

  20. (Re)cognizing postmodernity: helps for historians--of science especially.

    PubMed

    Forman, Paul

    2010-06-01

    Postmodernity, a historical era demarcated from modernity by a broad reversal in cultural presuppositions, is distinguished from postmodernism, an intellectual posture adopted by self-identified postmodernists early in postmodernity. Two principal features of postmodernity are addressed: first, the downgrading of science and the upgrading of technology in cultural rank--on which postmodernity and postmodernism are in accord; second, the displacement of the methodical, disinterested scientist, modernity's beau ideal, not by a fragmented subject as postmodernism claims, but by the single-minded entrepreneur, resourcefully pursuing his self-interest in disregard of all rules. The reversal in rank and role as between science and technology, setting in circa 1980, is a marker of the transition from modernity to postmodernity. That reversal is to be cognized primarily as rejection of rule-following, of proceeding methodically--'methodism' being the cultural perspective that uniquely distinguished modernity--but also as rejection of disinterestedness, the quality of mind especially highly esteemed in modernity. Postmodernity is constituted by this transvaluation of values, whose well-spring is the egocentric, transgressive (hence 'risk taking'), postmodern personality and its anti-social presumptions regarding personhood. Within the history of science itself there has been since circa 1980 a corresponding turn of scholarly attention away from science to technology, and a growing distaste for social perspectives, reflected, i.a., in the rejection of causalist 'influence' explanations in favor of voluntarist 'resource' explanations.

  1. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  2. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  4. Review of fluid and control technology of hydraulic wind turbines

    NASA Astrophysics Data System (ADS)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  5. Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.

    2016-12-01

    Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  6. Hydraulic elements in reduction of vibrations in mechanical systems

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  7. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  8. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  9. Integrated In Situ Stress Estimation by Hydraulic Fracturing, Borehole Observations and Numerical Analysis at the EXP-1 Borehole in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove

    2017-12-01

    It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.

  10. Rapid Hydraulic Assessment for Stream Restoration

    DTIC Science & Technology

    2016-02-01

    e.g., upstream flow impoundment and backwater effects of a reservoir). Dimensionless Ratios. The relative effect of competing hydraulic forces also...slope angle of the channel bed, V is the velocity, g is gravitational acceleration, and α is the Coriolis (or energy) coefficient. The energy...restoration design. Hydraulic design of stream restoration projects can vary from detailed three-dimensional calculation of the effects of an in

  11. Miami-Dade County Hydraulic Hybrid Refuse Truck Testing | Transportation

    Science.gov Websites

    Research | NREL Miami-Dade County Hydraulic Hybrid Refuse Truck Evaluation Miami-Dade County Hydraulic Hybrid Refuse Truck Evaluation Photo of garbage truck with view of lake and city in background. As hydraulic hybrid refuse vehicles, with 29 more on order. Photo courtesy of Parker Hannifin NREL is

  12. How to reconcile the multiculturalist and universalist approaches to science education

    NASA Astrophysics Data System (ADS)

    Hansson, Sven Ove

    2017-06-01

    The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved rationality, a careful distinction between facts and values, a search for shared, well-founded judgments in empirical matters, and strivings for continuous improvement of these judgments. Prominent examples are hunters' discussions when tracking a prey, systematic agricultural experiments performed by indigenous farmers, and remarkably advanced experiments performed by craftspeople long before the advent of modern science. When the continuities between science and these prescientific practices are taken into account, it becomes obvious that the traditional forms of both multiculturalism and universalism should be replaced by a new approach that dissolves the alleged conflict between adherence to modern science and respect for traditional cultures.

  13. Hydraulic Limits on Maximum Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  14. Determination of Material Strengths by Hydraulic Bulge Test.

    PubMed

    Wang, Hankui; Xu, Tong; Shou, Binan

    2016-12-30

    The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  15. Many Experts, Many Audiences: Public Engagement with Science and Informal Science Education. A CAISE Inquiry Group Report. Executive Summary

    ERIC Educational Resources Information Center

    McCallie, Ellen; Bell, Larry; Lohwater, Tiffany; Falk, John H.; Lehr, Jane L.; Lewenstein, Bruce V.; Needham, Cynthia; Wiehe, Ben

    2009-01-01

    Science and technology are embedded in every aspect of modern life. This executive summary describes how Public Engagement with Science (PES), in the context of informal science education (ISE), can provide opportunities for public awareness of and participation in science and technology. PES is an approach that has developed in the last 10 years…

  16. Hydraulics calculation in drilling simulator

    NASA Astrophysics Data System (ADS)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  17. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  18. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  19. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  20. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  1. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  2. Influence of Drought on the Hydraulic Efficiency and the Hydraulic Safety of the Xylem - Case of a Semi-arid Conifer.

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Guerin, M. F.; von Arx, G.; Martin-Benito, D.; Griffin, K. L.; McDowell, N.; Pockman, W.; Andreu-Hayles, L.

    2017-12-01

    Recent droughts in the Southwest US have resulted in extensive mortality in the pinion pine population (Pinus Edulis). An important factor for resiliency is the ability of a plant to maintain a functional continuum between soil and leaves, allowing water's motion to be sustained or resumed. During droughts, loss of functional tracheids happens through embolism, which can be partially mitigated by increasing the hydraulic safety of the xylem. However, higher hydraulic safety is usually achieved by building narrower tracheids with thicker walls, resulting in a reduction of the hydraulic efficiency of the xylem (conductivity per unit area). Reduced efficiency constrains water transport, limits photosynthesis and might delay recovery after the drought. Supporting existing research on safety-efficiency tradeoff, we test the hypothesis that under dry conditions, isohydric pinions grow xylem that favor efficiency over safety. Using a seven-year experiment with three watering treatments (drought, control, irrigated) in New Mexico, we investigate the effect of drought on the xylem anatomy of pinions' branches. We also compare the treatment effect with interannual variations in xylem structure. We measure anatomical variables - conductivities, cell wall thicknesses, hydraulic diameter, cell reinforcement and density - and preliminarily conclude that treatment has little effect on hydraulic efficiency while hydraulic safety is significantly reduced under dry conditions. Taking advantage of an extremely dry year occurrence during the experiment, we find a sharp increase in vulnerability for xylem tissues built the same year.

  3. Optimization of hydraulic turbine governor parameters based on WPA

    NASA Astrophysics Data System (ADS)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  4. Measurement and modeling of unsaturated hydraulic conductivity

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  5. Analysis of modern and Pleistocene hydrologic exchange between Saginaw Bay (Lake Huron) and the Saginaw Lowlands area

    USGS Publications Warehouse

    Hoaglund, J. R.; Kolak, J.J.; Long, D.T.; Larson, G.J.

    2004-01-01

    Two numerical models, one simulating present groundwater flow conditions and one simulating ice-induced hydraulic loading from the Port Huron ice advance, were used to characterize both modern and Pleistocene groundwater exchange between the Michigan Basin and near-surface water systems of Saginaw Bay (Lake Huron) and the surrounding Saginaw Lowlands area. These models were further used to constrain the origin of saline, isotopically light groundwater, and porewater from the study area. Output from the groundwater-flow model indicates that, at present conditions, head in the Marshall aquifer beneath Saginaw Bay exceeds the modern lake elevation by as much as 21 m. Despite this potential for flow, simulated groundwater discharge through the Saginaw Bay floor constitutes only 0.028 m3 s-1 (???1 cfs). Bedrock lithology appears to regulate the rate of groundwater discharge, as the portion of the Saginaw Bay floor underlain by the Michigan confining unit exhibits an order of magnitude lower flux than the portion underlain by the Saginaw aquifer. The calculated shoreline discharge of groundwater to Saginaw Bay is also relatively small (1.13 m3 s-1 or ???40 cfs) because of low gradients across the Saginaw Lowlands area and the low hydraulic conductivities of lodgement tills and glacial-lake clays surrounding the bay. In contrast to the present groundwater flow conditions, the Port Huron ice-induced hydraulic-loading model generates a groundwater-flow reversal that is localized to the region of a Pleistocene ice sheet and proglacial lake. This area of reversed vertical gradient is largely commensurate with the distribution of isotopically light groundwater presently found in the study area. Mixing scenarios, constrained by chloride concentrations and ??18O values in porewater samples, demonstrate that a mixing event involving subglacial recharge could have produced the groundwater chemistry currently observed in the Saginaw Lowlands area. The combination of models and

  6. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  7. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    EPA Pesticide Factsheets

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  8. Containment wells to form hydraulic barriers along site boundaries.

    PubMed

    Vo, D; Ramamurthy, A S; Qu, J; Zhao, X P

    2008-12-15

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells.

  9. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulicmore » hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles

  10. A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance.

    PubMed

    Zwieniecki, Maciej A; Melcher, Peter J; Feild, Taylor S; Holbrook, N Michele

    2004-08-01

    We investigated phloem-xylem interactions in Acer rubrum L. and Acer saccharum Marsh. Our experimental method allowed us to determine xylem conductance of an intact branch by measuring the flow rate of water supplied at two delivery pressures to the cut end of a small side branch. We found that removal of bark tissue (phloem girdling) upstream of the point at which deionized water was delivered to the branch resulted in a decrease (24% for A. rubrum and 15% for A. saccharum) in branch xylem hydraulic conductance. Declines in hydraulic conductance with girdling were accompanied by a decrease in the osmotic concentration of xylem sap. The decrease in xylem sap concentration following phloem girdling suggests that ion redistribution from the phloem was responsible for the observed decline in hydraulic conductance. When the same measurements were made on branches perfused with KCl solution (approximately 140 mOsm kg(-1)), phloem girdling had no effect on xylem hydraulic conductance. These results suggest a functional link between phloem and xylem hydraulic systems that is mediated by changes in the ionic content of the cell sap.

  11. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  12. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  13. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  14. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  15. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  16. Computational open-channel hydraulics for movable-bed problems

    USGS Publications Warehouse

    Lai, Chintu; ,

    1990-01-01

    As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.

  17. Hydraulic adjustment of Scots pine across Europe.

    PubMed

    Martínez-Vilalta, J; Cochard, H; Mencuccini, M; Sterck, F; Herrero, A; Korhonen, J F J; Llorens, P; Nikinmaa, E; Nolè, A; Poyatos, R; Ripullone, F; Sass-Klaassen, U; Zweifel, R

    2009-10-01

    * The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the potential tradeoffs between traits. * Traits measured included wood density, radial growth, xylem anatomy, sapwood- and leaf-specific hydraulic conductivity (K(S) and K(L)), vulnerability to embolism, leaf-to-sapwood area ratio (A(L) : A(S)), needle carbon isotope discrimination (Delta13C) and nitrogen content, and specific leaf area. * Between-population variability was high for most of the hydraulic traits studied, but it was directly associated with climate dryness (defined as a combination of atmospheric moisture demand and availability) only for A(L) : A(S), K(L) and Delta13C. Shoot radial growth and A(L) : A(S) declined with stand development, which is consistent with a strategy to avoid exceedingly low water potentials as tree size increases. In addition, we did not find evidence at the intraspecific level of some associations between hydraulic traits that have been commonly reported across species. * The adjustment of Scots pine's hydraulic system to local climatic conditions occurred primarily through modifications of A(L) : A(S) and direct stomatal control, whereas intraspecific variation in vulnerability to embolism and leaf physiology appears to be limited.

  18. Use of complex hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River

    USGS Publications Warehouse

    Steuer, J.J.; Newton, T.J.; Zigler, S.J.

    2008-01-01

    Previous attempts to predict the importance of abiotic and biotic factors to unionids in large rivers have been largely unsuccessful. Many simple physical habitat descriptors (e.g., current velocity, substrate particle size, and water depth) have limited ability to predict unionid density. However, more recent studies have found that complex hydraulic variables (e.g., shear velocity, boundary shear stress, and Reynolds number) may be more useful predictors of unionid density. We performed a retrospective analysis with unionid density, current velocity, and substrate particle size data from 1987 to 1988 in a 6-km reach of the Upper Mississippi River near Prairie du Chien, Wisconsin. We used these data to model simple and complex hydraulic variables under low and high flow conditions. We then used classification and regression tree analysis to examine the relationships between hydraulic variables and unionid density. We found that boundary Reynolds number, Froude number, boundary shear stress, and grain size were the best predictors of density. Models with complex hydraulic variables were a substantial improvement over previously published discriminant models and correctly classified 65-88% of the observations for the total mussel fauna and six species. These data suggest that unionid beds may be constrained by threshold limits at both ends of the flow regime. Under low flow, mussels may require a minimum hydraulic variable (Rez.ast;, Fr) to transport nutrients, oxygen, and waste products. Under high flow, areas with relatively low boundary shear stress may provide a hydraulic refuge for mussels. Data on hydraulic preferences and identification of other conditions that constitute unionid habitat are needed to help restore and enhance habitats for unionids in rivers. ?? 2008 Springer Science+Business Media B.V.

  19. Building bridges between Ayurveda and Modern Science

    PubMed Central

    Rastogi, Sanjeev

    2010-01-01

    The recent decade has witnessed many landmark observations, which have added to the scientific credentials of Ayurveda.It is however believed that instead of a retrospective approach of looking into the Ayurveda through the scientific reappraisals, a prospective approach through primary understanding of Ayurveda followed by a search into scientific linkage would be more appealing. This article brings the simplified yet scientific decoding of the core concepts of Ayurveda that form the framework of this ancient science of health. PMID:20532097

  20. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  1. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  2. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  3. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  4. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  5. Teacher's Guide to SERAPHIM Software IV Chemistry: A Modern Course.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the fourth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: A Modern Course." Program suggestions are arranged…

  6. The earliest modern humans outside Africa.

    PubMed

    Hershkovitz, Israel; Weber, Gerhard W; Quam, Rolf; Duval, Mathieu; Grün, Rainer; Kinsley, Leslie; Ayalon, Avner; Bar-Matthews, Miryam; Valladas, Helene; Mercier, Norbert; Arsuaga, Juan Luis; Martinón-Torres, María; Bermúdez de Castro, José María; Fornai, Cinzia; Martín-Francés, Laura; Sarig, Rachel; May, Hila; Krenn, Viktoria A; Slon, Viviane; Rodríguez, Laura; García, Rebeca; Lorenzo, Carlos; Carretero, Jose Miguel; Frumkin, Amos; Shahack-Gross, Ruth; Bar-Yosef Mayer, Daniella E; Cui, Yaming; Wu, Xinzhi; Peled, Natan; Groman-Yaroslavski, Iris; Weissbrod, Lior; Yeshurun, Reuven; Tsatskin, Alexander; Zaidner, Yossi; Weinstein-Evron, Mina

    2018-01-26

    To date, the earliest modern human fossils found outside of Africa are dated to around 90,000 to 120,000 years ago at the Levantine sites of Skhul and Qafzeh. A maxilla and associated dentition recently discovered at Misliya Cave, Israel, was dated to 177,000 to 194,000 years ago, suggesting that members of the Homo sapiens clade left Africa earlier than previously thought. This finding changes our view on modern human dispersal and is consistent with recent genetic studies, which have posited the possibility of an earlier dispersal of Homo sapiens around 220,000 years ago. The Misliya maxilla is associated with full-fledged Levallois technology in the Levant, suggesting that the emergence of this technology is linked to the appearance of Homo sapiens in the region, as has been documented in Africa. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. An analytical model for hydraulic fracturing in shallow bedrock formations.

    PubMed

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  8. Hydraulic fracturing: paving the way for a sustainable future?

    PubMed

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  9. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    PubMed Central

    Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  10. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  11. The future(s) of open science.

    PubMed

    Mirowski, Philip

    2018-04-01

    Almost everyone is enthusiastic that 'open science' is the wave of the future. Yet when one looks seriously at the flaws in modern science that the movement proposes to remedy, the prospect for improvement in at least four areas are unimpressive. This suggests that the agenda is effectively to re-engineer science along the lines of platform capitalism, under the misleading banner of opening up science to the masses.

  12. Improving hydraulic excavator performance through in line hydraulic oil contamination monitoring

    NASA Astrophysics Data System (ADS)

    Ng, Felix; Harding, Jennifer A.; Glass, Jacqueline

    2017-01-01

    It is common for original equipment manufacturers (OEMs) of high value products to provide maintenance or service packages to customers to ensure their products are maintained at peak efficiency throughout their life. To quickly and efficiently plan for maintenance requirements, OEMs require accurate information about the use and wear of their products. In recent decades, the aerospace industry in particular has become expert in using real time data for the purpose of product monitoring and maintenance scheduling. Significant quantities of real time usage data from product monitoring are commonly generated and transmitted back to the OEMs, where diagnostic and prognostic analysis will be carried out. More recently, other industries such as construction and automotive, are also starting to develop capabilities in these areas and condition based maintenance (CBM) is increasing in popularity as a means of satisfying customers' demands. CBM requires constant monitoring of real time product data by the OEMs, however the biggest challenge for these industries, in particular construction, is the lack of accurate and real time understanding of how their products are being used possibly because of the complex supply chains which exist in construction projects. This research focuses on current dynamic data acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline particle contamination sensor; the aim was to assess suitability to achieve both diagnostic and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic oil contamination analysis, namely detection of metallic particulates, offers a reliable way to measure real time wear of hydraulic components.

  13. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  14. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    PubMed

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved

  15. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    NASA Astrophysics Data System (ADS)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  16. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, James A.; Wei, Thomas Y. C.; Reifman, Jaques

    1999-01-01

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

  17. Process management using component thermal-hydraulic function classes

    DOEpatents

    Morman, J.A.; Wei, T.Y.C.; Reifman, J.

    1999-07-27

    A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

  18. Integrating science with humanities-loosing the fear of science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, W.L.; Raphalides, S.; Edwards, D.

    1994-12-31

    This presentation illustrates the approach and effectiveness of an interactive seminar program for K-12 non-science teachers (funded by the NJ Dept. of Higher Education) aimed at integrating the humanities and science, especially environmental sciences. Teachers become comfortable dealing with the commonality of science, literature, and human culture. In a collaborative format between seminar organizers and K-12 teachers, participants contribute their understanding of literature, history, politics, and culture to develop a new outlook on {open_quotes}environmental awareness{close_quotes} and on pollution`s impact on society. Prehistoric, medieval, 18th century, modern western cultures, Oriental, Native American, and tropical island cultures are explored to shed lightmore » upon today`s environmental attitudes. This provides a better understanding of the way science, within a cultural context, approaches environmental problems.« less

  19. Heating Analysis in Constant-pressure Hydraulic System based on Energy Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Xu, Cong; Mao, Xuyao; Li, Bin; Hu, Junhua; Liu, Yiou

    2017-12-01

    Hydraulic systems are widely used in industrial applications, but the problem of heating has become an important reason to restrict the promotion of hydraulic technology. The high temperature, will seriously affect the operation of the hydraulic system, even cause stuck and other serious failure. Based on the analysis of the heat damage of the hydraulic system, this paper gives the reasons for this problem, and it is showed by the application that the energy analysis can accurately locate the main reasons for the heating of the hydraulic system, which can give strong practical guidance.

  20. Analysis of INDOT current hydraulic policies : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  1. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  2. Feyerabend on Science and Education

    ERIC Educational Resources Information Center

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  3. Young Adults’ Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire

    PubMed Central

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students’ knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies. PMID:28114357

  4. Young Adults' Belief in Genetic Determinism, and Knowledge and Attitudes towards Modern Genetics and Genomics: The PUGGS Questionnaire.

    PubMed

    Carver, Rebecca Bruu; Castéra, Jérémy; Gericke, Niklas; Evangelista, Neima Alice Menezes; El-Hani, Charbel N

    2017-01-01

    In this paper we present the development and validation a comprehensive questionnaire to assess college students' knowledge about modern genetics and genomics, their belief in genetic determinism, and their attitudes towards applications of modern genetics and genomic-based technologies. Written in everyday language with minimal jargon, the Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) questionnaire is intended for use in research on science education and public understanding of science, as a means to investigate relationships between knowledge, determinism and attitudes about modern genetics, which are to date little understood. We developed a set of core ideas and initial items from reviewing the scientific literature on genetics and previous studies on public and student knowledge and attitudes about genetics. Seventeen international experts from different fields (e.g., genetics, education, philosophy of science) reviewed the initial items and their feedback was used to revise the questionnaire. We validated the questionnaire in two pilot tests with samples of university freshmen students. The final questionnaire contains 45 items, including both multiple choice and Likert scale response formats. Cronbach alpha showed good reliability for each section of the questionnaire. In conclusion, the PUGGS questionnaire is a reliable tool for investigating public understanding and attitudes towards modern genetics and genomic-based technologies.

  5. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

  6. Hydraulic tests with direct-push equipment

    USGS Publications Warehouse

    Butler, J.J.; Healey, J.M.; McCall, G.W.; Garnett, E.J.; Loheide, Steven P.

    2002-01-01

    The potential of direct-push technology for hydraulic characterization of saturated flow systems was investigated at a field site with a considerable degree of subsurface control. Direct-push installations were emplaced by attaching short lengths of screen (shielded and unshielded) to the bottom end of a tool string that was then advanced into the unconsolidated sediments. A series of constant-rate pumping tests were performed in a coarse sand and gravel aquifer using direct-push tool strings as observation wells. Very good agreement (within 4%) was found between hydraulic conductivity (K) estimates from direct-push installations and those from conventional wells. A program of slug tests was performed in direct-push installations using small-diameter adaptations of solid-slug and pneumatic methods. In a sandy silt interval of moderate hydraulic conductivity, K values from tests in a shielded screen tool were in excellent agreement (within 2%) with those from tests in a nearby well. In the coarse sand and gravel aquifer, K values were within 12% of those from multilevel slug tests at a nearby well. However, in the more permeable portions of the aquifer (K > 70 m/day), the smaller-diameter direct-push rods (0.016 m inner diameter [I.D.]) attenuated test responses, leading to an underprediction of K. In those conditions, use of larger-diameter rods (e.g., 0.038 m I.D.) is necessary to obtain K values representative of the formation. This investigation demonstrates that much valuable information can be obtained from hydraulic tests in direct-push installations. As with any type of hydraulic test, K estimates are critically dependent on use of appropriate emplacement and development procedures. In particular, driving an unshielded screen through a heterogeneous sequence will often lead to a buildup of low-K material that can be difficult to remove with standard development procedures.

  7. Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in

    Science.gov Websites

    Refuse Collection Hydraulic Hybrid Pressed into Service in Refuse Collection to someone by E -mail Share Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Facebook Tweet about Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse

  8. Evaluation of hydraulic conductivities calculated from multi-port permeameter measurements

    USGS Publications Warehouse

    Wolf, Steven H.; Celia, Michael A.; Hess, Kathryn M.

    1991-01-01

    A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to evaluate the reliability of the permeameter. Radiographs of the cores were used to assess core integrity and to locate 5- to 10-cm sections of similar grain size for estimation of hydraulic conductivity. After extensive testing of the permeameter, hydraulic conductivities were determined for 83 sections of the six cores. Other measurement techniques included permeameter measurements on repacked sections of core, estimates based on grain-size analyses, and estimates based on borehole flowmeter measurements. Permeameter measurements of 33 sections of core that had been extruded, homogenized, and repacked did not differ significantly from the original measurements. Hydraulic conductivities estimated from grain-size distributions were slightly higher than those calculated from permeameter measurements; the significance of the difference depended on the estimating equation used. Hydraulic conductivities calculated from field measurements, using a borehole flowmeter in the borehole from which the cores were extracted, were significantly higher than those calculated from laboratory measurements and more closely agreed with independent estimates of hydraulic conductivity based on tracer movement near the borehole. This indicates that hydraulic conductivities based on laboratory measurements of core samples may underestimate actual field hydraulic conductivities in this type of stratified glacial-outwash aquifer.

  9. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west

  10. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  11. Teaching Earth Signals Analysis Using the Java-DSP Earth Systems Edition: Modern and Past Climate Change

    ERIC Educational Resources Information Center

    Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.

    2014-01-01

    Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…

  12. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    ERIC Educational Resources Information Center

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  13. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  14. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  15. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  16. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  17. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  18. Forest canopy hydraulics

    Treesearch

    David R. Woodruff; Frederick C. Meinzer; Katherine A. McCulloh

    2016-01-01

    Water and carbon cycles are strongly coordinated and water availability is a primary limiting factor in many terrestrial ecosystems. Photosynthesis requires sufficient water supply to leaves and constraints on delivery at any point in the hydraulic continuum can lead to stomatal closure and reduced photosynthesis. Thus, maximizing water transport enhances assimilation...

  19. Medical implication in the Bible and its relevance to modern medicine.

    PubMed

    Sun, Jun-Fang

    2013-11-01

    The Holy Bible, as the root of Western civilization, has imposed great influence in the fields far beyond religion. In this thesis, the author intended to reveal the medical implication in the Holy Bible and its relevance to the modern medical science by exploring the biblical medical information and comparing it with the current medical theory and practice. The conclusion of the exploration is surprising yet inspiring: the Holy Bible, as an ancient religious book, contains rich medical information around themes such as sexual relations, dietary guidelines, hygiene, etc., which is not at odds, but in harmony with the modern medicine.

  20. Sketching together the modern histories of science, technology, and medicine.

    PubMed

    Pickstone, John V

    2011-03-01

    This essay explores ways to "write together" the awkwardly jointed histories of "science" and "me dicine"--but it also includes other "arts" (in the old sense) and technologies. It draws especially on the historiography of medicine, but I try to use terms that are applicable across all of science, technology, and medicine (STM). I stress the variety of knowledges and practices in play at any time and the ways in which the ensembles change. I focus on the various relations of "science" and "medicine," as they were understood for a succession of periods--from mainly agricultural societies, through industrial societies, to our biomedical present--trying to sketch a history that encompasses daily practices and understandings as well as major conceptual and technical innovations. The model is meant to facilitate inquiry across topics and across times, including those to come.

  1. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf . © 2015 John Wiley & Sons Ltd.

  2. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  3. Approaches and Strategies in Next Generation Science Learning

    ERIC Educational Resources Information Center

    Khine, Myint Swe, Ed.; Saleh, Issa M., Ed.

    2013-01-01

    "Approaches and Strategies in Next Generation Science Learning" examines the challenges involved in the development of modern curriculum models, teaching strategies, and assessments in science education in order to prepare future students in the 21st century economies. This comprehensive collection of research brings together science educators,…

  4. Data Analytics of Hydraulic Fracturing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jovan Yang; Viswanathan, Hari; Hyman, Jeffery

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  5. Unsayable Somethings: Modern American Poetry, Language, and the Logic of Experience

    ERIC Educational Resources Information Center

    McWhorter, Ellen

    2009-01-01

    By exploring the categorical similarities between popular models of science, political economy, psychology, and sexuality, this dissertation addresses modern U.S. poetry's obsession with conjuring the unsayable. Chapters 1 and 2 explore the social and conceptual landscape that came to align the sayable with the cognitive and credible, while…

  6. A Fruitful Exchange/Conflict: Engineers and Mathematicians in Early Modern Italy

    ERIC Educational Resources Information Center

    Maffioli, Cesare S.

    2013-01-01

    Exchanges of learning and controversies between engineers and mathematicians were important factors in the development of early modern science. This theme is discussed by focusing, first, on architectural and mathematical dynamism in mid 16th-century Milan. While some engineers-architects referred to Euclid and Vitruvius for improving their…

  7. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  8. Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo

    2018-01-01

    To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.

  9. Stomatal control and hydraulic conductance, with special reference to tall trees.

    PubMed

    Franks, Peter J

    2004-08-01

    A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.

  10. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  12. Herb Hydraulics: Inter- and Intraspecific Variation in Three Ranunculus Species.

    PubMed

    Nolf, Markus; Rosani, Andrea; Ganthaler, Andrea; Beikircher, Barbara; Mayr, Stefan

    2016-04-01

    The requirements of the water transport system of small herbaceous species differ considerably from those of woody species. Despite their ecological importance for many biomes, knowledge regarding herb hydraulics remains very limited. We compared key hydraulic features (vulnerability to drought-induced hydraulic decline, pressure-volume relations, onset of cellular damage, in situ variation of water potential, and stomatal conductance) of three Ranunculus species differing in their soil humidity preferences and ecological amplitude. All species were very vulnerable to water stress (50% reduction in whole-leaf hydraulic conductance [kleaf] at -0.2 to -0.8 MPa). In species with narrow ecological amplitude, the drought-exposed Ranunculus bulbosus was less vulnerable to desiccation (analyzed via loss of kleaf and turgor loss point) than the humid-habitat Ranunculus lanuginosus Accordingly, water stress-exposed plants from the broad-amplitude Ranunculus acris revealed tendencies toward lower vulnerability to water stress (e.g. osmotic potential at full turgor, cell damage, and stomatal closure) than conspecific plants from the humid site. We show that small herbs can adjust to their habitat conditions on interspecific and intraspecific levels in various hydraulic parameters. The coordination of hydraulic thresholds (50% and 88% loss of kleaf, turgor loss point, and minimum in situ water potential) enabled the study species to avoid hydraulic failure and damage to living cells. Reversible recovery of hydraulic conductance, desiccation-tolerant seeds, or rhizomes may allow them to prioritize toward a more efficient but vulnerable water transport system while avoiding the severe effects that water stress poses on woody species. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Large Scale Geologic Controls on Hydraulic Stimulation

    NASA Astrophysics Data System (ADS)

    McLennan, J. D.; Bhide, R.

    2014-12-01

    When simulating a hydraulic fracturing, the analyst has historically prescribed a single planar fracture. Originally (in the 1950s through the 1970s) this was necessitated by computational restrictions. In the latter part of the twentieth century, hydraulic fracture simulation evolved to incorporate vertical propagation controlled by modulus, fluid loss, and the minimum principal stress. With improvements in software, computational capacity, and recognition that in-situ discontinuities are relevant, fully three-dimensional hydraulic simulation is now becoming possible. Advances in simulation capabilities enable coupling structural geologic data (three-dimensional representation of stresses, natural fractures, and stratigraphy) with decision making processes for stimulation - volumes, rates, fluid types, completion zones. Without this interaction between simulation capabilities and geological information, low permeability formation exploitation may linger on the fringes of real economic viability. Comparative simulations have been undertaken in varying structural environments where the stress contrast and the frequency of natural discontinuities causes varying patterns of multiple, hydraulically generated or reactivated flow paths. Stress conditions and nature of the discontinuities are selected as variables and are used to simulate how fracturing can vary in different structural regimes. The basis of the simulations is commercial distinct element software (Itasca Corporation's 3DEC).

  14. Water, law, science

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2008-01-01

    SummaryIn a world with water resources severely impacted by technology, science must actively contribute to water law. To this end, this paper is an earth scientist's attempt to comprehend essential elements of water law, and to examine their connections to science. Science and law share a common logical framework of starting with a priori prescribed tenets, and drawing consistent inferences. In science, observationally established physical laws constitute the tenets, while in law, they stem from social values. The foundations of modern water law in Europe and the New World were formulated nearly two thousand years ago by Roman jurists who were inspired by Greek philosophy of reason. Recognizing that vital natural elements such as water, air, and the sea were governed by immutable natural laws, they reasoned that these elements belonged to all humans, and therefore cannot be owned as private property. Legally, such public property was to be governed by jus gentium, the law of all people or the law of all nations. In contrast, jus civile or civil law governed private property. Remarkably, jus gentium continues to be relevant in our contemporary society in which science plays a pivotal role in exploiting vital resources common to all. This paper examines the historical roots of modern water law, follows their evolution through the centuries, and examines how the spirit of science inherent in jus gentium is profoundly influencing evolving water and environmental laws in Europe, the United States and elsewhere. In a technological world, scientific knowledge has to lie at the core of water law. Yet, science cannot formulate law. It is hoped that a philosophical understanding of the relationships between science and law will contribute to their constructively coming together in the service of society.

  15. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    NASA Astrophysics Data System (ADS)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  16. Slope instability caused by small variations in hydraulic conductivity

    USGS Publications Warehouse

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  17. Georges Lemaître: Science and Religion

    NASA Astrophysics Data System (ADS)

    Coyne, George V.

    In order to appreciate the contribution which Georges Lemaître made to the relationship between religion and science it is necessary to understand how the Catholic Church, of which he was a priest, passed in the course of three centuries, from a position of conflict with the sciences to one of compatible openness and dialogue. In doing this I hope to show that the natural sciences have played a significant role in helping to establish the kind of dialogue that is absolutely necessary for the enrichment of the multifaceted aspects of human culture. I will speak of the following four periods of history: (l) the rise of modern atheism in the seventeenth and eighteenth centuries; (2) anticlericalism in Europe in the nineteenth century; (3) the awakening within the Catholic Church to modern science in the first six decades of the twentieth century; (4) the Church's view today.

  18. Eighth Graders Explore Form and Function of Modern and Fossil Organisms

    ERIC Educational Resources Information Center

    Teske, Jolene K.; Pittman, Phoebe J. Z.

    2016-01-01

    Arts integration into science has been shown to motivate students and promote long-term retention of content. To add to the literature addressing arts integration, an experiment was conducted with middle school students studying the anatomical similarities and differences between modern and fossil marine invertebrates and different types of extant…

  19. Future Trends in the Kinesiology Sciences

    ERIC Educational Resources Information Center

    Knudson, Duane

    2016-01-01

    Kinesiology emerged from its preventative medicine and education roots to establish itself as a recognized field of inquiry with numerous sub-disciplines. This article presents four trends in modern science that will likely influence the future of kinesiology sciences. Will recent increases in greater scientific specialization be overcome by the…

  20. FOREWORD: International Workshop on Theoretical Plasma Physics: Modern Plasma Science. Sponsored by the Abdus Salam ICTP, Trieste, Italy

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Stenflo, L.

    2005-01-01

    The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there

  1. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    :10.1016/j.compag.2015.09.022 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20-34. doi:10.1016/j.geoderma.2015.08.006 González-Sanchis, M., del Campo, A., Lidón, A., Lull, C., Bautista, I., García-Prats, A., Francés, F., others, 2015. Incorporación de criterios eco-hidrológicos en la gestión forestal: adaptación a la escasez de agua de una masa marginal de encina. Cuadernos de la Sociedad Española de Ciencias Forestales. Hibbert, A.R., 1983. Water Yield Improvement Potential by Vegetation Management on Western Rangelands1. JAWRA Journal of the American Water Resources Association 19, 375-381. doi:10.1111/j.1752-1688.1983.tb04594.x Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments - BEST. Soil Science Society of America Journal 70, 521. doi:10.2136/sssaj2005.0026 Lewis, D., Singer, M.J., Dahlgren, R.A., Tate, K.W., 2000. Hydrology in a California oak woodland watershed: a 17-year study. Journal of Hydrology 240, 106-117. doi:10.1016/S0022-1694(00)00337-1 Logsdon, S.D., Jaynes, D.B., 1996. Spatial Variability of Hydraulic Conductivity in a Cultivated Field at Different Times. Soil Science Society of America Journal 60, 703. doi:10.2136/sssaj1996.03615995006000030003x Molina, A.J., del Campo, A.D., 2012. The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management 269, 206-213. doi:10.1016/j.foreco.2011.12.037 Touma, J., Voltz, M., Albergel, J., 2007. Determining soil saturated hydraulic conductivity and sorptivity from single ring infiltration tests. European Journal of Soil Science 58, 229-238. doi:10.1111/j.1365-2389.2006.00830.x Zhang, L., Dawes, W.R., Walker, G.R., 2001

  2. GIS application on modern Mexico

    NASA Astrophysics Data System (ADS)

    Prakash, Bharath

    This is a GIS based tool for showcasing the history of modern Mexico starting from the post-colonial era to the elections of 2012. The tool is developed using simple language and is flexible so as to allow for future enhancements. The application consists of numerous images and textual information, and also some links which can be used by primary and high school students to understand the history of modern Mexico, and also by tourists to look for all the international airports and United States of America consulates. This software depicts the aftermaths of the Colonial Era or the Spanish rule of Mexico. It covers various topics like the wars, politics, important personalities, drug cartels and violence. All these events are shown on GIS (Geographic information Science) maps. The software can be customized according to the user requirements and is developed using JAVA and GIS technology. The user interface is created using JAVA and MOJO which contributes to effective learning and understanding of the concepts with ease. Some of the user interface features provided in this tool includes zoom-in, zoom-out, legend editing, location identifier, print command, adding a layer and numerous menu items.

  3. Changing Face of Wood Science in Modern Era: Contribution of Nanotechnology.

    PubMed

    Mishra, Pawan Kumar; Giagli, Kyriaki; Tsalagkas, Dimitrios; Mishra, Harshita; Talegaonkar, Sushma; Gryc, Vladimír; Wimmer, Rupert

    2018-02-14

    Wood science and nanomaterials science interact together in two different aspects; a) fabrication of lignocellulosic nanomaterials derived from wood and plant-based sources and b) surface or bulk wood modification by nanoparticles. In this review, we attempt to visualize the impact of nanoparticles on the wood coating and preservation treatments based on a thorough registration of the patent databases. The study was carried out as an overview of the scientifically most followed trends on nanoparticles utilization in wood science and wood protection depicted by recent universal filed patents. This review is exclusively targeted on the solid (timber) wood as a subject material. Utilization of mainly metal nanoparticles as photoprotection, antibacterial, antifungal, antiabrasive and functional component on wood modification treatments was found to be widely patented. Additionally, an apparent minimization in the emission of volatile organic compounds (VOCs) has been succeeded. Bulk wood preservation and more importantly, wood coating, splay the range of strengthening wood dimensional stability and biological degradation, against moisture absorption and fungi respectively. Nanoparticle materials have addressed various issues of wood science in a more efficient and environmental way than the traditional methods. Nevertheless, abundant tests and regulations are still needed before industrializing or recycling these products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Modernization and new technologies: Coping with the information explosion

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1993-01-01

    Information has become a valuable and strategic resource in all societies and economies. Scientific and technical information is especially important in developing and maintaining a strong national science and technology base. The expanding use of information technology, the growth of interdisciplinary research, and an increase in international collaboration are changing characteristics of information. This modernization effort applies new technology to current processes to provide near-term benefits to the user. At the same time, we are developing a long-term modernization strategy designed to transition the program to a multimedia, global 'library without walls'. Notwithstanding this modernization program, it is recogized that no one information center can hope to collect all the relevant data. We see information and information systems changing and becoming more international in scope. We are finding that many nations are expending resources on national systems which duplicate each other. At the same time that this duplication exists, many useful sources of aerospace information are not being collected to cover expanded sources of information. This paper reviews the NASA modernization program and raises for consideration new possibilities for unification of the various aerospace database efforts toward a cooperative international aerospace database initiative, one that can optimize the cost/benefit equation for all participants.

  5. Hydraulic resistance of submerged flexible vegetation

    NASA Astrophysics Data System (ADS)

    Stephan, Ursula; Gutknecht, Dieter

    2002-12-01

    The main research objective consisted in analysing the influence of roughness caused by aquatic vegetation (av), in particular submerged macrophytes, on the overall flow field. These plants are highly flexible and behave differently depending on the flow situation. They also react substantially to the flow field and thus, the roughness becomes variable and dynamic. Conventional flow formulas, such as the Manning or the Strickler formula, are one-dimensional and based on integral flow parameters. They are not suitable for quantifying the roughness of av, because the flow is complex and more dimensional due to the variable behaviour of the plants. Therefore, the present investigation concentrates on the definition of a characteristic hydraulic roughness parameter to quantify the resistance of av. Within this investigation laboratory experiments were carried out with three different types of av, chosen with respect to varying plant structures as well as stem lengths. Velocity measurements above these plants were conducted to determine the relationship between the hydraulic roughness and the deflected plant height. The deflected plant height is used as the geometric roughness parameter, whereas the equivalent sand roughness based on the universal logarithmic law modified by Nikuradse was used as hydraulic roughness parameter. The influence of relative submergence on the hydraulic roughness was also analysed. The analysis of the velocity measurements illustrates that equivalent sand roughness and zero plane displacement of the logarithmic law are correlated to the deflected plant height and are equally to this height.

  6. FTIR quantification of industrial hydraulic fluids in perchloroethylene

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1993-01-01

    The purpose of this summer research project was to investigate whether perchloroethylene can be used as a solvent for the quantitative analysis of industrial hydraulic fluids by infrared spectroscopy employing Beer's law. Standard calibration curves using carbon-hydrogen stretching (generic) and ester absorption peaks were prepared for a series of standard dilutions at low ppm levels of concentration of seven hydraulic fluids in perchloroethylene. The absorbance spectras were recorded with 1.5-10 mm fixed and variable path length sample cells made of potassium bromide. The results indicate that using ester infrared spectral peak, it is possible to detect about 20 ppm of the hydraulic fluid in perchloroethylene.

  7. The concepts of science in Japanese and Western education

    NASA Astrophysics Data System (ADS)

    Kawasaki, Ken

    1996-01-01

    Using structural linguistics, the present article offers an impartial frame of reference to analyze science education in the non-Western world. In Japan, science education has been free from epistemological reflection because Japan regards science only as effective technology for modernization. By not taking account of the world-view aspect of science, Japan can treat science as not self-referential. Issues of science education are then rather simple; they are only concerned with the question of ‘how to’, and answers to this question are judged according to the efficiency achieved for modernization. Science, however, is a way of seeing ‘nature’. This word is generally translated into Japanese as ‘shizen’ which has a totally different connotation and therefore does not lead to an understanding of the Western scientific spirit. Saussure's approach to language is used to expose the consequences of the misinterpretations that spring from this situation. In order to minimize or prevent these misinterpretations, it is emphasized that science education should be identified with foreign language education in the non-Western world.

  8. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  9. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  10. Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska - Methods and Initial Results

    USGS Publications Warehouse

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathaniel J.

    2009-01-01

    The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dunlap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods. The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at

  11. [Modern-day slavery as a public health issue].

    PubMed

    Leão, Luís Henrique da Costa

    2016-12-01

    Modern-day slave labor is one of the most pernicious and persistent social problems in Brazil. In the light of the need to implement a national occupational health policy, this paper discusses slave labor as a public health concern, highlighting possibilities for broadening strategies for vigilance and comprehensive care for this specific working population. Exploratory qualitative research was carried out based on the "social construction of reality" proposed by Lenoir, Berger and Luckmann. The investigation consisted of a theoretical review of modern-day slave labor on the national and international scene within the scope of the human, social and public health sciences and an analysis of social and political practices to tackle modern-day slave labor was conducted in the State of Rio de Janeiro. Semi-structured individual and group interviews with workers and representatives of social movements and public institutions were organized. The results reveal the theoretical and practical dimensions of slave labor and its relations with the health field and highlight the role and potential of public health in the enhancing of vigilance practices and health care of workers subjected to these chronic social conditions.

  12. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  13. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    EPA Science Inventory

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  14. Modern analytical chemistry in the contemporary world

    NASA Astrophysics Data System (ADS)

    Šíma, Jan

    2016-12-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among sciences and in the contemporary world is discussed. Its interdisciplinary character and the necessity of the collaboration between analytical chemists and other experts in order to effectively solve the actual problems of the human society and the environment are emphasized. The importance of the analytical method validation in order to obtain the accurate and precise results is highlighted. The invalid results are not only useless; they can often be even fatal (e.g., in clinical laboratories). The curriculum of analytical chemistry at schools and universities is discussed. It is referred to be much broader than traditional equilibrium chemistry coupled with a simple description of individual analytical methods. Actually, the schooling of analytical chemistry should closely connect theory and practice.

  15. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  16. Moments in the Modern History of the Language Sciences.

    ERIC Educational Resources Information Center

    Swales, John M.

    1999-01-01

    Discusses the beginning of the ascendancy of the language sciences in the past 50 years to become the "queen" of social studies. Focuses on contributions by Mikhail Bakhtin, Ludwig Wittgenstein, Noam Chomsky, Erving Goffman, and Michael Halliday. (SC)

  17. [Dietary modernity and food consumption: socio-anthropological contributions to research in nutrition].

    PubMed

    Fonseca, Alexandre Brasil; de Souza, Thaís Salema Nogueira; Frozi, Daniela Sanches; Pereira, Rosangela Alves

    2011-09-01

    The scope of this work was to illustrate what dietary modernity represents for sociology and anthropology, which is a subject based on a bibliographic review that is discussed in this article. Initially, the presence of the theme of food and nutrition was assessed in studies in the social sciences, by focusing on the approaches related to dietary modernity, especially as found in the works of Claude Fischler. The main subjects of discussion were related to food and nutrition and changes in the work environment, the expansion of commerce, the feminization of society and the question of identity. By understanding the food phenomenon and consumption thereof using a more qualitative approach, it is possible to make progress in configuring the nutritional sciences, adopting a comprehensive approach to food and nutrition in this day and age. Future studies should be dedicated to investigating food consumption as a social phenomenon in order to aggregate new analytical components with a biomedical emphasis to the body of results.

  18. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    2015-02-22

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  19. "The Name of the Rose": A Path to Discuss the Birth of Modern Science

    ERIC Educational Resources Information Center

    Guerra, Andreia; Braga, Marco

    2014-01-01

    Various science education researchers believe that science tuition should include some discussion about how science has developed over time. Therefore, deliberations about the nature of science should be integrated in the science curriculum. Many researchers argue that teaching the history of science is a good way to place the nature of science in…

  20. Innovative workover/drilling rigs to utilize hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    1975-09-29

    While Western Gear Corp., Everett, Wash., is currently building 2 models of a hydraulic workover/drilling rig (one offshore and the other a trailer-mounted land rig), Bender Co., Bakersfield, Calif., already has an all-hydraulic servicing/drilling rig undergoing tests. The rigs are similar in that they eliminate the traveling block, crown block, draw works, chains, and sprockets found on the conventional rig. The major design innovation on the Western Gear model is the 260,000-lb-capacity hoisting system in which 2 hydraulic rams are anchored to the rig floor and carry all the pipe weight, thus eliminating the danger of the derrick's being pulledmore » in. Other changes involve the tripping system, a power swivel/elevator, and the control valves. Maintenance and labor cost reductions are expected to be substantial. The Bender Co. rig has a single-section mast that is a lever-lift-type derrick which serves as a guide for the rams and a support for the pipe-racking platform. Hoisting capacity depends on the number and size of the lifting rods (which support the crown sheaves) and the hydraulic pressure applied. Manufacturing and operating costs are expected to be less than for conventional rigs.« less

  1. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  3. Why different countries manage death differently: a comparative analysis of modern urban societies.

    PubMed

    Walter, Tony

    2012-03-01

    The sociology of death, dying and bereavement tends to take as its implicit frame either the nation state or a homogenous modernity. Between-nation differences in the management of death and dying are either ignored or untheorized. This article seeks to identify the factors that can explain both similarities and differences in the management of death between different modern western nations. Structural factors which affect all modern nations include urbanization and the division of labour leading to the dominance of professionals, migration, rationality and bureaucracy, information technology and the risk society. How these sociologically familiar structural features are responded to, however, depends on national histories, institutions and cultures. Historically, key transitional periods to modernity, different in different nations, necessitated particular institutional responses in the management of dying and dead bodies. Culturally, key factors include individualism versus collectivism, religion, secularization, boundary regulation, and expressivism. Global flows of death practices depend significantly on subjugated nations' perceptions of colonialism, neo-colonialism and modernity, which can lead to a dominant power's death practices being either imitated or rejected. © London School of Economics and Political Science 2012.

  4. Hydraulic Redistribution: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  5. History of Science and History of Philologies.

    PubMed

    Daston, Lorraine; Most, Glenn W

    2015-06-01

    While both the sciences and the humanities, as currently defined, may be too heterogeneous to be encompassed within a unified historical framework, there is good reason to believe that the history of science and the history of philologies both have much to gain by joining forces. This collaboration has already yielded striking results in the case of the history of science and humanist learning in early modern Europe. This essay argues that first, philology and at least some of the sciences (e.g., astronomy) remained intertwined in consequential ways well into the modern period in Western cultures; and second, widening the scope of inquiry to include other philological traditions in non-Western cultures offers rich possibilities for a comparative history of learned practices. The focus on practices is key; by shifting the emphasis from what is studied to how it is studied, deep commonalities emerge among disciplines--and intellectual traditions--now classified as disparate.

  6. Paul Ehrenfest and the dilemmas of modernity.

    PubMed

    van Lunteren, Frans H; Hollestelle, Marijn J

    2013-09-01

    This essay considers the highly ambivalent attitude of the Austrian-Dutch physicist Paul Ehrenfest toward contemporary developments in both science and society. On the one hand, he was in the vanguard of the quantum and relativity revolutions, supported industrialization and economic planning based on mathematical models, and, in general, cherished technocratic ideals. The essay highlights several influences that shaped his attitude in these respects, from his ties with the Philips Physics Laboratory and his sojourns in the United States to the utopian visions of H. G. Wells. On the other hand, he was extremely worried about the harmful consequences of contemporary changes in science and society, such as specialization, the growing pace of city life, and the increasing dependence on modern technologies, be they material or mathematical. In this regard, he agreed with cultural critics such as Max Nordau, Henri Bergson, Ostwald Spengler, and Ludwig Klages. Rather than attempting to solve this paradox, the essay suggests that this kind of ambiguity characterized a great deal of innovative science in the period.

  7. Small hydraulic turbine drives

    NASA Technical Reports Server (NTRS)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  8. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  9. Water, law, science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing thatmore » vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.« less

  10. Origins of modern premedical education.

    PubMed

    Fishbein, R H

    2001-05-01

    The author reviews the contributions of those individuals and major academic and professional organizations responsible for the development of the modern concepts of the premedical education of a physician. The late 19th century gave rise to scientifically-based medical education in U.S. medical education. It followed that this new emphasis, in medical schools, on laboratory investigation of disease processes demanded a sound introduction to the natural sciences by those who would be candidates for this type of challenging education. Starting with a vocal few, the message gradually was received throughout the country that a properly schooled physician must have the equivalent of a broad baccalaureate education in the natural sciences as well as in the traditional humanities. This essential was recognized by a small nucleus of individuals responsible for the creation of The Johns Hopkins University in 1876 and its school of medicine in 1893; the group was led by the university's first president, Daniel Coit GILMAN: Almost simultaneously other established academic institutions incorporated similar changes and a new era began.

  11. Applied Science in Cuba.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1986-01-01

    Discusses various topics and issues related to the scientific enterprise in Cuba. Notes that Cuban science is emphasizing biotechnology and research on the island's chief crop (sugarcane), although hampered by limited personnel and lack of modern laboratory equipment. (JN)

  12. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    soils (sand, S; loamy sand, LS; sandy loam, SAL; loam, L; silt loam, SIL and silty clay loam, SCL) from UNSODA database and different initial water contents. Comparison with other existing procedures were also carried out. The SSBI method allowed accurate estimation of saturated soil hydraulic conductivity of both field and analytically generated data. For analytically generated data, the most accurate predictions were obtained with the method 2 by Wu et al. (1999) for the S and LS soils (prediction errors not exceeding 3.8%) and with the SSBI method for the other four soils (error < 3.7%). Therefore, this last method performed better than the other tested methods in most cases. The analysis of the field data supported the usability of the SSBI method in different environments and conditions to obtain an acceptable prediction of Ks, i.e. similar to the one that can be obtained with the BEST-steady algorithm (Bagarello et al., 2014a). Finally, this investigation yielded encouraging signs on the applicability of the SSBI method for a trustworthy estimation of Ks by the near steady-state phase of a beerkan infiltration run. REFERENCES Bagarello, V., Castellini, M., Di Prima, S., Giordano, G., Iovino, M., 2013. Testing a Simplified Approach to Determine Field Saturated Soil Hydraulic Conductivity. Procedia Environmental Sciences 19, 599-608. doi:10.1016/j.proenv.2013.06.068 Bagarello, V., Di Prima, S., Iovino, M., 2014a. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal 78, 724. doi:10.2136/sssaj2013.06.0231 Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., 2014b. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes 28, 1095-1103. doi:10.1002/hyp.9649 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments

  13. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  14. Birth of the science of immunology.

    PubMed

    Schmalstieg, Frank C; Goldman, Armond S

    2010-05-01

    The science of immunology emerged in the last of the 19th and the first of the 20th century. Substantial progress in physics, chemistry and microbiology was essential for its development. Indeed, microorganisms became one of the principal investigative tools of the major founders of that science - Louis Pasteur, Robert Koch, Ilya Ilich Metchnikoff, Paul Ehrlich and Jules Bordet. It is pertinent that these pioneering scientists were born when questioning and exploration were encouraged because of the legacies of the previous century of enlightenment. Mentors greatly aided their development. Their discoveries were shaped by their individual personalities. In turn they developed other contributors to the nascent field. Their discoveries included the types of leukocytes, the roles of neutrophils in inflammation and defence, cellular lysis due to complement, the principles of humoral and cellular immunology, passive and active immunization, tissue antigens, anaphylaxis, anaphylactoid reactions and autoimmunity. Their work formed the basis of modern immunology that developed many decades later. Immunology has enormously impacted our understanding of the pathogenesis, diagnosis and treatment of infections, immune-mediated disorders and inflammation. Burgeoning advances forecast further important clinical applications of immunology. Yet, their applications will be problematic because few physicians sufficiently understand the science. We propose that understanding modern immunology requires a grasp of how that science developed - who made the discoveries, how they were made, their successes and failures, their interactions and debates all reveal the foundation of modern immunology.

  15. Semantic Meaning of Money in the Perception of Modern Russian Youth

    ERIC Educational Resources Information Center

    Knyazeva, Tatiana N.; Semenova, Lidiya E.; Chevachina, Anna V.; Batuta, Marina B.; Sidorina, Elena V.

    2016-01-01

    In connection with socio-economic transformations taking place in our country, which caused changes in the system of values and, as a consequence, in moral-economic relationships and human behavior, the subject of money becomes one of the most significant topics in modern Russian researches in various fields of science. The main method to study…

  16. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  17. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  18. Hydraulic integration and shrub growth form linked across continental aridity gradients

    Treesearch

    H. Jochen Schenk; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2008-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering...

  19. Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States

    NASA Astrophysics Data System (ADS)

    Barber, Caitline A.; Gleason, Colin J.

    2018-01-01

    Hydraulic geometry (HG) has long enabled daily discharge estimates, flood risk monitoring, and water resource and habitat assessments, among other applications. At-many-stations HG (AMHG) is a newly discovered form of HG with an evolving understanding. AMHG holds that there are temporally and spatially invariant ('congruent') depth, width, velocity, and discharge values that are shared by all stations of a river. Furthermore, these river-wide congruent hydraulics have been shown to link at-a-station HG (AHG) in space, contrary to previous expectation of AHG as spatially unpredictable. To date, AMHG has only been thoroughly examined on six rivers, and its congruent hydraulics are not well understood. To address the limited understanding of AMHG, we calculated AMHG for 191 rivers in the United States using USGS field-measured data from over 1900 gauging stations. These rivers represent nearly all geologic and climatic settings found in the continental U.S. and allow for a robust assessment of AMHG across scales. Over 60% of rivers were found to have AMHG with strong explanatory power to predict AHG across space (defined as r2 > 0.6, 118/191 rivers). We also found that derived congruent hydraulics bear little relation to their observed time-varying counterparts, and the strength of AMHG did not correlate with any available observed or congruent hydraulic parameters. We also found that AMHG is expressed at all fluvial scales in this study. Some statistically significant spatial clusters of rivers with strong and weak AMHG were identified, but further research is needed to identify why these clusters exist. Thus, this first widespread empirical investigation of AMHG leads us to conclude that AMHG is indeed a widely prevalent natural fluvial phenomenon, and we have identified linkages between known fluvial parameters and AMHG. Our work should give confidence to future researchers seeking to perform the necessary detailed hydraulic analysis of AMHG.

  20. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling

    PubMed Central

    Daly, Keith R.; Mooney, Sacha J.; Bennett, Malcolm J.; Crout, Neil M. J.; Roose, Tiina; Tracy, Saoirse R.

    2015-01-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922