Modified gravity in three dimensional metric-affine scenarios
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.
2015-08-01
We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.
CMB lensing constraints on dark energy and modified gravity scenarios
Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.
2009-11-15
Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.
Reconstruction scenario in modified Horava-Lifshitz F( R) gravity with well-known scale factors
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila
2015-05-01
In this paper, we analyze the behavior of pilgrim dark energy with G-O cutoff scale in modified Horava-Lifshitz F( R) gravity through correspondence scenario. We consider three well-known scale factors in which one scale factor describes the unification of matter dominated and accelerated phases and others are intermediate and bouncing forms. We obtain the models for these scale factors and obtain increasing behavior with the passage of time. We also extract equation of state parameter corresponding to these models. We observe that this parameter shows transition from phantom towards quintessence by crossing the phantom divide line in all cases. We also give comparison of our results of equation of state parameter with observational constraints.
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2015-04-01
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2016-01-01
Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
Model selection for modified gravity.
Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N
2011-12-28
In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity. PMID:22084296
Cosmological hints of modified gravity?
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph
2016-01-01
The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
Cosmological tests of modified gravity
NASA Astrophysics Data System (ADS)
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Emergence in holographic scenarios for gravity
NASA Astrophysics Data System (ADS)
Dieks, Dennis; van Dongen, Jeroen; de Haro, Sebastian
2015-11-01
'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.
Stellar oscillations in modified gravity
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy
2013-12-01
Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).
Observational tests of modified gravity
Jain, Bhuvnesh; Zhang Pengjie
2008-09-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions)
Testing modified gravity with cosmic shear
NASA Astrophysics Data System (ADS)
Harnois-Déraps, J.; Munshi, D.; Valageas, P.; van Waerbeke, L.; Brax, P.; Coles, P.; Rizzo, L.
2015-12-01
We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is highly complementary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General Relativity (GR) + Λ cold dark matter (ΛCDM) scenario occurs at k ˜ 1 h Mpc-1. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parametrization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the f(R) \\lbrace |f_{R_0}| = 10^{-4}, n = 1\\rbrace model with more than 99.9 per cent confidence interval (CI) when assuming a ΛCDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least 94 per cent CI in all different combinations studied. Constraints on the \\lbrace |f_{R_0}| = 10^{-4}, n = 2\\rbrace model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.
Effects of modified gravity in galactic clustering
NASA Astrophysics Data System (ADS)
Verma, Murli; Krishna Yadav, Bal
2016-07-01
We discuss the distinct effects of the modified gravity, especially f(R) gravity in structure formation. The small redshift as well as high redshift epochs are studied with a potential set of diagnostics distinguishing between the standard general relativistic and the modified gravity. These diagnostics are further put to test against the observations obtained in clustering surveys.
Wave propagation in modified gravity
NASA Astrophysics Data System (ADS)
Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.
2016-02-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.
NASA Astrophysics Data System (ADS)
Efstratiou, P.
2013-09-01
This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.
Modified gravity and dark matter
NASA Astrophysics Data System (ADS)
Cembranos, Jose A. R.
2016-05-01
The fundamental nature of Dark Matter (DM) has not been established. Indeed, beyond its gravitational effects, DM remains undetected by present experiments. In this situation, it is reasonable to wonder if other alternatives can effectively explain the observations usually associated with the existence of DM. The modification of the gravitational interaction has been studied in this context from many different approaches. However, the large amount of different astrophysical evidences makes difficult to think that modified gravity can account for all these observations. On the other hand, if such a modification introduces new degrees of freedom, they may work as DM candidates. We will summarize the phenomenology of these gravitational DM candidates by analyzing minimal models.
Thermodynamic properties of modified gravity theories
NASA Astrophysics Data System (ADS)
Bamba, Kazuharu
2016-06-01
We review thermodynamic properties of modified gravity theories, such as F(R) gravity and f(T) gravity, where R is the scalar curvature and T is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in f(T) gravity. We show both equilibrium and nonequilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met, when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.
Modified gravity as dark energy
NASA Astrophysics Data System (ADS)
Sawicki, Ignacy
2007-08-01
We study the effects of introducing modifications to general relativity ("GR") at large scales as an alternative to exotic forms of matter required to replicate the observed cosmic acceleration. We survey the effects on cosmology and solar-system tests of Dvali-Gabadadze-Porrati ("DGP") gravity, f ( R ) he changes to the background expansion history of the universe, these modifications have substantial impact on structure formation and its observable predictions. For DGP, we develop a scaling approximation for the behaviour of perturbations off the brane, for which the predicted integrated Sachs-Wolf ("ISW") effect is much stronger than observed, requiring new physics at around horizon scale to bring it into agreement with data. We develop a test based on cross-correlating galaxies and the ISW effect which is independent of the initial power spectrum for perturbations and is a smoking-gun test for DGP gravity. For f ( R ) models, we find that, for the expansion history to resemble that of Lambda-CDM, it is required that the second derivative of f with respect to R be non-negative. We then find the conditions on f ( R ) which allow this subset of models to pass solar-system tests. Provided that gravity behave like GR in the galaxy, these constraints are weak. However, for a model to allow large deviations from GR in the cosmology, the galactic halo must differ significantly from that predicted by structure evolution in GR. We then discuss the effect that these models have on structure formation, and find that even in the most conservative of models, percent-level deviations in the matter power spectrum will exist and should be detectable in the future. Finally, for MSG, we investigate the cosmology of a theory of gravity with a modified constraint structure. The acceleration era can be replicated in these models; however, linear perturbations become unstable as the universe begins to accelerate. Once the perturbations become non-linear, the model reverts to GR
Nonderivative modified gravity: a classification
Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@irb.hr
2014-11-01
We analyze the theories of gravity modified by a generic nonderivative potential built from the metric, under the minimal requirement of unbroken spatial rotations. Using the canonical analysis, we classify the potentials V according to the number of degrees of freedom (DoF) that propagate at the nonperturbative level. We then compare the nonperturbative results with the perturbative DoF propagating around Minkowski and FRW backgrounds. A generic V implies 6 propagating DoF at the non-perturbative level, with a ghost on Minkowski background. There exist potentials which propagate 5 DoF, as already studied in previous works. Here, no V with unbroken rotational invariance admitting 4 DoF is found. Theories with 3 DoF turn out to be strongly coupled on Minkowski background. Finally, potentials with only the 2 DoF of a massive graviton exist. Their effect on cosmology is simply equivalent to a cosmological constant. Potentials with 2 or 5 DoF and explicit time dependence appear to be a further viable possibility.
Cosmological models of modified gravity
NASA Astrophysics Data System (ADS)
Bloomfield, Jolyon Keith
The recent discovery of dark energy has prompted an investigation of ways in which the accelerated expansion of the universe can be realized. In this dissertation, we present two separate projects related to dark energy. The first project analyzes a class of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the second investigates a class of dark energy models from an effective field theory perspective. Investigations of models including extra dimensions have led to modifications of gravity involving a number of interesting features. In particular, the Randall-Sundrum model is well-known for achieving an amelioration of the hierarchy problem. However, the basic model relies on Minkowski branes and is subject to solar system constraints in the absence of a radion stabilization mechanism. We present a method by which a four-dimensional low-energy description can be obtained for braneworld scenarios, allowing for a number of generalizations to the original models. This method is applied to orbifolded and uncompactified N-brane models, deriving an effective four-dimensional action. The parameter space of this theory is constrained using observational evidence, and it is found that the generalizations do not weaken solar system constraints on the original model. Furthermore, we find that general N-brane systems are qualitatively similar to the two-brane case, and do not naturally lead to a viable dark energy model. We next investigate dark energy models using effective field theory techniques. We describe dark energy through a quintessence field, employing a derivative expansion. To the accuracy of the model, we find transformations to write the description in a form involving no higher-order derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the regime of validity and scaling of the operators using this. The regime of validity is restricted to a
Matter stability in modified teleparallel gravity
NASA Astrophysics Data System (ADS)
Behboodi, A.; Akhshabi, S.; Nozari, K.
2012-11-01
We study the matter stability in modified teleparallel gravity or f(T) theories. We show that there is no Dolgov-Kawasaki instability in these types of modified teleparallel gravity theories. This gives for the f(T) theories a great advantage over their f(R) counterparts because from the stability point of view there isn't any limit on the form of functions that can be chosen.
Dark energy from modified gravity with Lagrange multipliers
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.
2010-09-01
We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F(R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.
Observational bounds on modified gravity models
De Felice, Antonio; Mukherjee, Pia; Wang Yun
2008-01-15
Modified gravity provides a possible explanation for the currently observed cosmic acceleration. In this paper, we study general classes of modified gravity models. The Einstein-Hilbert action is modified by using general functions of the Ricci and the Gauss-Bonnet scalars, both in the metric and in the Palatini formalisms. We do not use an explicit form for the functions, but a general form with a valid Taylor expansion up to second order about redshift zero in the Riemann-scalars. The coefficients of this expansion are then reconstructed via the cosmic expansion history measured using current cosmological observations. These are the quantities of interest for theoretical considerations relating to ghosts and instabilities. We find that current data provide interesting constraints on the coefficients. The next-generation dark energy surveys should shrink the allowed parameter space for modified gravity models quite dramatically.
Classifying linearly shielded modified gravity models in effective field theory.
Lombriser, Lucas; Taylor, Andy
2015-01-23
We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime. PMID:25658988
Modified gravity in contemporary universe
NASA Astrophysics Data System (ADS)
Arbuzova, E. V.; Dolgov, A. D.
2013-03-01
Astronomical data in favor of cosmological acceleration and possible explanations of accelerated expansion of the universe are discussed. Main attention is paid to gravity modifications at small curvature which could induce accelerated cosmological expansion. It is shown that gravitating systems with mass density rising with time evolve to a singular state with infinite curvature scalar. The universe evolution during the radiation-dominated epoch is studied in the R 2-extended gravity theory. Particle production rate by the oscillating curvature and the back reaction of particle production on the evolution of R are calculated in one-loop approximation. Possible implications of the model for cosmological creation of non-thermal dark matter are discussed.
Quasilocal energy in modified gravity
NASA Astrophysics Data System (ADS)
Faraoni, Valerio
2016-01-01
A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass. An alternative procedure using the Einstein frame representation leads to the same result in vacuo.
Thermodynamical interpretation of gravity in braneworld scenarios
Sheykhi, Ahmad
2009-05-15
We study the thermodynamical properties of the apparent horizon in the various braneworld scenarios. First, we show that the Friedmann equations can be written directly in the form of the first law of thermodynamics, dE = T{sub h}dS{sub h}+WdV, at apparent horizon on the brane, regardless of whether there is the intrinsic curvature term on the brane or a Gauss-Bonnet term in the bulk. This procedure leads to extract an entropy expression in terms of horizon geometry associated with the apparent horizon. Then, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We find that the derived entropy of the apparent horizon on the brane satisfies the generalized second law of thermodynamics in braneworld scenarios. These results further support the idea that gravitation on a macroscopic scale is a manifestation of thermodynamics.
Nonsingular bounce in modified gravity
NASA Astrophysics Data System (ADS)
Abramo, L. Raul; Yasuda, Ivan; Peter, Patrick
2010-01-01
We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation- and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-à-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.
Detecting modified gravity in the stars
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Jain, Bhuvnesh; Vikram, Vinu
2014-07-01
Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modifications on small scales. One popular and well-studied theory is chameleon gravity. Our own galaxy is necessarily screened, but less dense dwarf galaxies may be unscreened and their constituent stars can exhibit novel features. In particular, unscreened stars are brighter, hotter and more ephemeral than screened stars in our own galaxy. They also pulsate with a shorter period. In this paper, we exploit these new features to constrain chameleon gravity to level three orders of magnitude lower the previous measurements. These constraints are currently the strongest in the literature.
Einstein spaces modeling nonminimal modified gravity
NASA Astrophysics Data System (ADS)
Elizalde, Emilio; Vacaru, Sergiu I.
2015-06-01
Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical effects of modified gravitational theories of f( R, T, R μν T μν ) type. To prove this statement, exact and approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with nonconstant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.
Black hole thermodynamics in MOdified Gravity (MOG)
NASA Astrophysics Data System (ADS)
Mureika, Jonas R.; Moffat, John W.; Faizal, Mir
2016-06-01
We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.
Modified Bekenstein-Hawking System in f(R) Gravity
NASA Astrophysics Data System (ADS)
Dutta, Jibitesh; Mitra, Saugata; Chetry, Binod
2016-05-01
The present work deals with four alternative formulation of Bekenstein system on event horizon in f(R) gravity. While thermodynamical laws holds in universe bounded by apparent horizon, these laws break down on event horizon. With alternative formulation of thermodynamical parameters (temperature and entropy), thermodynamical laws hold on event horizon in Einstein Gravity. With this motivation, we extend the idea of generalised Hawking temperature and modified Bekenstein entropy in homogeneous and isotropic model of universe on event horizon and examine whether thermodynamical laws hold in f(R) gravity. Specifically, we examine and compare validity of generalised second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) in four alternative modified Bekenstein scenarios. As Dark energy is a possible dominant candidate for matter in the univerese and Holographic Dark Energy (HDE) can give effective description of f(R) gravity, so matter in the universe is taken as in the form interacting HDE. In order to understand the complicated expressions, finally the above laws are examined from graphical representation using three Planck data sets and it is found that generalised/modified Hawking temperature has a crucial role in making perfect thermodynamical system.
Astrophysical black holes in screened modified gravity
Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu
2014-08-01
Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.
MODIFIED GRAVITY SPINS UP GALACTIC HALOS
Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya
2013-01-20
We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.
The cosmology of asymmetric brane modified gravity
O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk
2009-09-01
We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.
Modified Actions for Gravity: Theory and Phenomenology
NASA Astrophysics Data System (ADS)
Sotiriou, Thomas P.
2007-10-01
This thesis is devoted to the study of gravitational theories which can be seen as modifications or generalisations of General Relativity. The motivation for considering such theories, stemming from Cosmology, High Energy Physics and Astrophysics is thoroughly discussed (cosmological problems, dark energy and dark matter problems, the lack of success so far in obtaining a successful formulation for Quantum Gravity). The basic principles which a gravitational theory should follow, and their geometrical interpretation, are analysed in a broad perspective which highlights the basic assumptions of General Relativity and suggests possible modifications which might be made. A number of such possible modifications are presented, focusing on certain specific classes of theories: scalar-tensor theories, metric f(R) theories, Palatini f(R) theories, metric-affine f(R) theories and Gauss--Bonnet theories. The characteristics of these theories are fully explored and attention is payed to issues of dynamical equivalence between them. Also, cosmological phenomenology within the realm of each of the theories is discussed and it is shown that they can potentially address the well-known cosmological problems. A number of viability criteria are presented: cosmological observations, Solar System tests, stability criteria, existence of exact solutions for common vacuum or matter configurations etc. Finally, future perspectives in the field of modified gravity are discussed and the possibility for going beyond a trial-and-error approach to modified gravity is explored.
Modified Gravity and the origin of inertia
NASA Astrophysics Data System (ADS)
Moffat, J. W.; Toth, V. T.
2009-05-01
Modified gravity theory is known to violate Birkhoff's theorem. We explore a key consequence of this violation, the effect of distant matter in the Universe on the motion of test particles. We find that when a particle is accelerated, a force is experienced that is proportional to the particle's mass and acceleration and acts in the direction opposite to that of the acceleration. We identify this force with inertia. At very low accelerations, our inertial law deviates slightly from that of Newton, yielding a testable prediction that may be verified with relatively simple experiments. Our conclusions apply to all gravity theories that reduce to a Yukawa-like force in the weak-field approximation.
Influence of electric charge and modified gravity on density irregularities
NASA Astrophysics Data System (ADS)
Bhatti, M. Zaeem Ul Haq; Yousaf, Z.
2016-04-01
This work aims to identify some inhomogeneity factors for a plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f( R) gravity. We construct the modified field equations, kinematical quantities, and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f( R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For a non-radiating scenario, we examine such factors as dust, and isotropic and anisotropic matter in the presence of charge. For a dissipative fluid, we investigate the inhomogeneity factor with a charged dust cloud. We conclude that the electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.
Modified Friedmann equations from Debye entropic gravity
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Teimoori, Z.
2012-05-01
A remarkable new idea on the origin of gravity was recently proposed by Verlinde who claimed that the laws of gravitation are no longer fundamental, but rather emerge naturally as an entropic force. In Verlinde derivation, the equipartition law of energy on the holographic screen plays a crucial role. However, the equipartition law of energy fails at the very low temperature. Therefore, the formalism of the entropic force should be modified while the temperature of the holographic screen is very low. Considering the Debye entropic gravity and following the strategy of Verlinde, we derive the modified Newton's law of gravitation and the corresponding Friedmann equations which are valid in all range of temperature. In the limit of strong gravitational field, i.e. high temperature compared to Debye temperature, T » T D , one recovers the standard Newton's law and Friedmann equations. We also generalize our study to the entropy corrected area law and derive the dynamical cosmological equations for all range of temperature. Some limits of the obtained results are also studied.
Observable physical modes of modified gravity
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; Pogosian, Levon; Silvestri, Alessandra; Zhao, Gong-Bo
2014-04-01
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift z and Fourier number k. Previous studies have performed principal component forecasts for several choices of these two functions based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and probably most of these degrees of freedom were physical if the parametrization had allowed for an arbitrary k dependence. In this paper, we restrict the k dependence to that allowed in local theories of gravity under the quasistatic approximation, i.e. ratios of polynomials in k, and identify the best constrained features in the (z ,k) dependence of the commonly considered functions μ and γ as measured by a Large Synoptic Survey Telescope (LSST)-like weak lensing survey. We estimate the uncertainty in the measurements of the eigenmodes of modified growth. We find that imposing the theoretical prior on k dependence reduces the number of degrees of freedom and the covariance between parameters. On the other hand, imaging surveys like LSST are not as sensitive to the z dependence as they are to the k dependence of the modified growth functions. This trade-off provides us with, more or less, the same number of well-constrained eigenmodes (with respect to our prior) as found before, but now these modes are physical.
Modified QCD ghost f(T,TG) gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila; Chattopadhyay, Surajit
2015-12-01
In this paper, we explore the reconstruction scenario of modified QCD ghost dark energy model and newly proposed f(T,TG) gravity in flat FRW universe. We consider the well-known assumption of scale factor, i.e., power law form. We construct the f(T,TG) model and discuss its cosmological consequences through various cosmological parameters such as equation of state parameter, squared speed of sound and ω_{DE}-ω '_{DE}. The equation of state parameter provides the quintom-like behavior of the universe. The squared speed of sound exhibits the stability of model in the later time. Also, ω_{DE}- ω '_{DE} corresponds to freezing as well as thawing regions. It is also interesting to remark here that the results of equation of state parameter and w_{DE}-w'_{DE} coincide with the observational data.
Conformal cylindrically symmetric spacetimes in modified gravity
NASA Astrophysics Data System (ADS)
Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu
2015-11-01
We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.
Testing Modified Gravity with Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Amiri, Vahid
2016-08-01
The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M★/L) ratios in the range of about 10 to more than 100 solar units, that are well outside the acceptable limit predicted by stellar population synthesis (SPS) models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σ _ph {los}) of stars in eight MW dSphs in the context of the Modified Gravity (MOG) theory of Moffat, assuming a constant M★/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of the THINGS catalog of galaxies. We find that the derived M★/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M★/L values we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.
Constraining the Schwarzschild-de Sitter solution in models of modified gravity
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo; Ruggiero, Matteo Luca; Radicella, Ninfa; Saridakis, Emmanuel N.
2016-09-01
The Schwarzschild-de Sitter (SdS) solution exists in the large majority of modified gravity theories, as expected, and in particular the effective cosmological constant is determined by the specific parameters of the given theory. We explore the possibility to use future extended radio-tracking data from the currently ongoing New Horizons mission in the outskirts peripheries of the Solar System, at about 40 au, in order to constrain this effective cosmological constant, and thus to impose constrain on each scenario's parameters. We investigate some of the recently most studied modified gravities, namely f(R) and f(T) theories, dRGT massive gravity, and Hořava-Lifshitz gravity, and we show that New Horizons mission may bring an improvement of one-two orders of magnitude with respect to the present bounds from planetary orbital dynamics.
Massive gravitational waves in Chern-Simons modified gravity
Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr
2014-10-01
We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.
Accurate method of modeling cluster scaling relations in modified gravity
NASA Astrophysics Data System (ADS)
He, Jian-hua; Li, Baojiu
2016-06-01
We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.
Effective Einstein cosmological spaces for non-minimal modified gravity
NASA Astrophysics Data System (ADS)
Elizalde, Emilio; Vacaru, Sergiu I.
2015-06-01
Certain off-diagonal vacuum and nonvacuum configurations in Einstein gravity can mimic physical effects of modified gravitational theories of type. We prove this statement by constructing exact and approximate solutions which encode certain models of covariant Hořava type gravity with dynamical Lorentz symmetry breaking. Off-diagonal generalizations of de Sitter and nonholonomic CDM universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with non-constant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is discussed.
Modified Gravity Emerging from Thermodynamics and Holographic Principle
NASA Astrophysics Data System (ADS)
Zhang, Yi; Gong, Yungui; Zhu, Zong-Hong
A new conception is proposed in [E. P. Verlinde, arXiv:1001.0785 [hep-th] and [T. Padmanabhan, Mod. Phys. Lett. A 25 (2010) 1129] that gravity is one kind of entropic force. In this letter, we try to discuss its applications to the modified gravities by using three different corrections to the area law of entropy which are derived from the quantum effects and extra dimensions. According to the assumption of holographic principle, the number of bits N which is related to the equipartition law of energy is modified. Then, the modified law of Newton's gravity and the modified Friedmann equations are obtained by using the new notion. By choosing suitable parameters, the modified area law of entropy leads to de Sitter solutions which can be used to explain the accelerating expansion of our universe. It suggests that the accelerating phase in our universe may be an emergent phenomenon based on holographic principle and thermodynamics.
White Dwarf Critical Tests for Modified Gravity.
Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund
2016-04-15
Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs. PMID:27127952
White Dwarf Critical Tests for Modified Gravity
NASA Astrophysics Data System (ADS)
Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund
2016-04-01
Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G3 type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.
Galaxy clustering in 3D and modified gravity theories
NASA Astrophysics Data System (ADS)
Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.
2016-02-01
We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k < 0.2 h Mpc-1) can constraint the parameter f_{R_0} at a level of 2 × 10-5(3 × 10-5) with 3σ confidence for n = 1(2). Combining constraints from higher ℓ > 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.
Analyzing modified unimodular gravity via Lagrange multipliers
NASA Astrophysics Data System (ADS)
Sáez-Gómez, Diego
2016-06-01
The so-called unimodular version of general relativity is revisited. Unimodular gravity is constructed by fixing the determinant of the metric, which leads to the trace-free part of the equations instead of the usual Einstein field equations. Then a cosmological constant naturally arises as an integration constant. While unimodular gravity turns out to be equivalent to general relativity (GR) at the classical level, it provides important differences at the quantum level. Here we extend the unimodular constraint to some extensions of general relativity that have drawn a lot of attention over the last years—f (R ) gravity (or its scalar-tensor picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed as well as the conformal transformation that relates the Einstein and Jordan frames for these nonminimally coupled theories. From the classical point of view, the unimodular versions of such extensions are completely equivalent to their originals, but an effective cosmological constant arises naturally, which may provide a richer description of the evolution of the Universe. Here we analyze the case of Starobisnky inflation and compare it with the original one.
Extended disformal approach in the scenario of rainbow gravity
NASA Astrophysics Data System (ADS)
Carvalho, Gabriel G.; Lobo, Iarley P.; Bittencourt, Eduardo
2016-02-01
We investigate all feasible mathematical representations of disformal transformations on a space-time metric according to the action of a linear operator upon the manifold's tangent and cotangent bundles. The geometric, algebraic, and group structures of this operator and their interfaces are analyzed in detail. Then, we scrutinize a possible physical application, providing a new covariant formalism for a phenomenological approach to quantum gravity known as rainbow gravity.
Cosmological probes of modified gravity: the nonlinear regime.
Schmidt, Fabian
2011-12-28
We review the effects of modified gravity on large-scale structure in the nonlinear regime, focusing on f(R) gravity and the Dvali-Gabadadze-Porrati model, for which full N-body simulations have been performed. In particular, we discuss the abundance of massive halos, the nonlinear matter power spectrum and the dynamics within clusters and galaxies, with particular emphasis on the screening mechanisms present in these models. PMID:22084294
Probing hybrid modified gravity by stellar motion around Galactic Center
NASA Astrophysics Data System (ADS)
Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.
2016-06-01
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.
Kinetic Sunyaev-Zel'dovich effect in modified gravity
NASA Astrophysics Data System (ADS)
Bianchini, Federico; Silvestri, Alessandra
2016-03-01
We investigate the impact of modified theories of gravity on the kinetic Sunyaev-Zel'dovich (kSZ) effect of the cosmic microwave background. We focus on a specific class of f (R ) models of gravity and compare their predictions for the kSZ power spectrum to that of the Λ CDM model. We use a publicly available modified version of Halofit to properly include the nonlinear matter power spectrum of f (R ) in the modeling of the kSZ signal. We find that the well-known modifications of the growth rate of structure in f (R ) can indeed induce sizable changes in the kSZ signal, which are more significant than the changes induced by modifications of the expansion history. We discuss prospects of using the kSZ signal as a complementary probe of modified gravity, giving an overview of assumptions and possible caveats in the modeling.
Universal predictions of screened modified gravity on cluster scales
NASA Astrophysics Data System (ADS)
Gronke, M.; Mota, D. F.; Winther, H. A.
2015-11-01
Modified gravity models require a screening mechanism to be able to evade the stringent constraints from local gravity experiments and, at the same time, give rise to observable astrophysical and cosmological signatures. Such screened modified gravity models necessarily have dynamics determined by complex nonlinear equations that usually need to be solved on a model-by-model basis to produce predictions. This makes testing them a cumbersome process. In this paper, we investigate whether there is a common signature for all the different models that is suitable to testing them on cluster scales. To do this we propose an observable related to the fifth force, which can be observationally related to the ratio of dynamical-to-lensing mass of a halo, and then show that the predictions for this observable can be rescaled to a near universal form for a large class of modified gravity models. We demonstrate this using the Hu-Sawicki f(R), the Symmetron, the nDGP, and the Dilaton models, as well as unifying parametrizations. The universal form is determined by only three quantities: a strength, a mass, and a width parameter. We also show how these parameters can be derived from a specific theory. This self-similarity in the predictions can hopefully be used to search for signatures of modified gravity on cluster scales in a model-independent way.
A new approach to modified gravity models
NASA Astrophysics Data System (ADS)
Chakrabarti, Sayan K.; Saridakis, Emmanuel N.; Sen, Anjan A.
2011-11-01
We investigate f ( R)-gravity models performing the ADM-slicing of standard General Relativity. We extract the static, spherically-symmetric vacuum solutions in the general case, which correspond to either Schwarzschild de-Sitter or Schwarzschild anti-de-Sitter ones. Additionally, we study the cosmological evolution of a homogeneous and isotropic universe, which is governed by an algebraic and not a differential equation. We show that the universe admits solutions corresponding to acceleration at late cosmological epochs, without the need of fine-tuning the model-parameters or the initial conditions.
Minimum length, extra dimensions, modified gravity and black hole remnants
NASA Astrophysics Data System (ADS)
Maziashvili, Michael
2013-03-01
We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r→0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.
Superbounce and loop quantum cosmology ekpyrosis from modified gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2015-09-01
As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by theories. Using known reconstruction techniques, we investigate which theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes , that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations.
Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios
NASA Astrophysics Data System (ADS)
Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.
2014-04-01
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).
NASA Astrophysics Data System (ADS)
Aguilar, José Edgar Madriz
2015-12-01
Using some ideas of the Wesson induced matter theory, we obtain a new kind of F(^{(4)}R,\\varphi ) modified gravity theory as an effective four-dimensional (4D) theory derived from f(^{(5)}R) gravity in five dimensions (5D). This new theory exhibits a different matter coupling than the one in BBHL theory. We show that the field equations of the Wesson induced matter theory and of some brane-world scenarios can be obtained as maximally symmetric solutions of the same f(^{(5)}R) theory. We found criteria for the Dolgov-Kawasaki instabilities for both the f(^{(5)}R) and the F(^{(4)}R,\\varphi ) theories. We demonstrate that under certain conditions imposed on the 5D geometry it is possible to interpret the F(^{(4)}R,\\varphi ) theory as a modified gravity theory with dynamical coefficients, making this new theory a viable candidate to address the present accelerating cosmic expansion issue. Matter sources in the F(^{(4)}R,\\varphi ) case appear induced by the 5D geometry without the necessity of the introduction of matter sources in 5D.
Infrared modified gravity with dynamical torsion
NASA Astrophysics Data System (ADS)
Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2009-12-01
We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.
Infrared modified gravity with dynamical torsion
Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2009-12-15
We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.
Unscreening Modified Gravity in the Matter Power Spectrum.
Lombriser, Lucas; Simpson, Fergus; Mead, Alexander
2015-06-26
Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism. PMID:26197114
Microscopic and macroscopic behaviors of Palatini modified gravity theories
Li Baojiu; Mota, David F.; Shaw, Douglas J.
2008-09-15
We show that, within modified gravity, the nonlinear nature of the field equations implies that the usual naieve averaging procedure (replacing the microscopic energy-momentum by its cosmological average) is invalid. We discuss then how the averaging should be performed correctly and show that, as a consequence, at the classical level the physical masses and geodesics of particles, cosmology, and astrophysics in Palatini modified gravity theories are all indistinguishable from the results of general relativity plus a cosmological constant. Palatini gravity is, however, a different theory from general relativity and predicts different internal structures of particles from the latter. On the other hand, and in contrast to classical particles, the electromagnetic field permeates in the space, and hence a different averaging procedure should be applied here. We show that, in general, Palatini gravity theories would then affect the propagation of photons, thus changing the behavior of a Universe dominated by radiation. Finally, Palatini theories also predict alterations to particle physics laws. For example, they can lead to sensitive corrections to the hydrogen energy levels, the measurements of which could be used to place very strong constraints on the properties of viable Palatini gravity theories.
Modified gravity in Arnowitt-Deser-Misner formalism
NASA Astrophysics Data System (ADS)
Gao, Changjun
2010-02-01
Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.
Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.
Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H
2014-04-18
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20 μm (95% C.L.). PMID:24785025
NASA Astrophysics Data System (ADS)
Wang, Sai; Chang, Zhe
2015-06-01
We propose the gravity's rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index and energy scale M in the gravity's rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by and at the confidence level.
Modifying gravity: you cannot always get what you want.
Starkman, Glenn D
2011-12-28
The combination of general relativity (GR) and the Standard Model of particle physics disagrees with numerous observations on scales from our Solar System up. In the canonical concordance model of Lambda cold dark matter (ΛCDM) cosmology, many of these contradictions between theory and data are removed or alleviated by the introduction of three completely independent new components of stress energy--the inflaton, dark matter and dark energy. Each of these in its turn is meant to have dominated (or to currently dominate) the dynamics of the Universe. There is, until now, no non-gravitational evidence for any of these dark sectors, nor is there evidence (though there may be motivation) for the required extension of the Standard Model. An alternative is to imagine that it is GR that must be modified to account for some or all of these disagreements. Certain coincidences of scale even suggest that one might expect not to make independent modifications of the theory to replace each of the three dark sectors. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), modified Newtonian dynamics, has, over the last few years, seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, which arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies and the cosmic acceleration. We conclude with the
Testing model independent modified gravity with future large scale surveys
Thomas, Daniel B.; Contaldi, Carlo R. E-mail: c.contaldi@ic.ac.uk
2011-12-01
Model-independent parametrisations of modified gravity have attracted a lot of attention over the past few years and numerous combinations of experiments and observables have been suggested to constrain the parameters used in these models. Galaxy clusters have been mentioned, but not looked at as extensively in the literature as some other probes. Here we look at adding galaxy clusters into the mix of observables and examine how they could improve the constraints on the modified gravity parameters. In particular, we forecast the constraints from combining Planck satellite Cosmic Microwave Background (CMB) measurements and Sunyaev-Zeldovich (SZ) cluster catalogue with a DES-like Weak Lensing (WL) survey. We find that cluster counts significantly improve the constraints over those derived using CMB and WL. We then look at surveys further into the future, to see how much better it may be feasible to make the constraints.
Structure formation in a nonlocally modified gravity model
Park, Sohyun; Dodelson, Scott
2013-01-01
We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.
Rapid simulation rescaling from standard to modified gravity models
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.; Lombriser, L.; Li, B.
2015-10-01
We develop and test an algorithm to rescale a simulated dark-matter particle distribution or halo catalogue from a standard gravity model to that of a modified gravity model. This method is based on that of Angulo & White but with some additional ingredients to account for (i) scale-dependent growth of linear density perturbations and (ii) screening mechanisms that are generic features of viable modified gravity models. We attempt to keep the method as general as possible, so that it may plausibly be applied to a wide range of modified theories, although tests against simulations are restricted to a subclass of f (R) models at this stage. We show that rescaling allows the power spectrum of matter to be reproduced at the ˜3 per cent level in both real and redshift space up to k = 0.1h Mpc-1 if we change the box size and alter the particle displacement field; this limit can be extended to k = 1h Mpc-1 if we additionally alter halo internal structure. We simultaneously develop an algorithm that can be applied directly to a halo catalogue, in which case the halo mass function and clustering can be reproduced at the ˜5 per cent level. Finally, we investigate the clustering of halo particle distributions, generated from rescaled halo catalogues, and find that a similar accuracy can be reached.
Spherical Symmetric Gravitational Collapse in Chern-Simon Modified Gravity
NASA Astrophysics Data System (ADS)
Amir, M. Jamil; Ali, Sarfraz
2016-04-01
This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.
Modified Chaplygin gas inspired inflationary model in braneworld scenario
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra
2016-05-01
We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.
Non-flat pilgrim dark energy FRW models in modified gravity
NASA Astrophysics Data System (ADS)
Rani, Shamaila; Jawad, Abdul; Salako, Ines G.; Azhar, Nadeem
2016-09-01
We study the cosmic acceleration in dynamical Chern-Simons modified gravity in the frame-work of non-flat FRW universe. The pilgrim dark energy (with future event and apparent horizons) interacted with cold dark matter is being considered in this work. We investigate the cosmological parameters (equation of state, deceleration) and planes (state-finders, ω_{θ}-ω_{θ}^' }) in the present scenario. It is interesting to mention here that the obtained results of various cosmological parameters are consistent with various observational schemes. The validity of generalized second law of thermodynamics for present dark energy models is also being analyzed.
Cosmological implications of modified gravity induced by quantum metric fluctuations
NASA Astrophysics Data System (ADS)
Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.
Energy conditions in modified Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
García, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.
2011-05-01
In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.
Energy conditions in modified Gauss-Bonnet gravity
Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.
2011-05-15
In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.
Reconstruction of modified gravity with perfect fluid cosmological models
NASA Astrophysics Data System (ADS)
Singh, C. P.; Singh, Vijay
2014-04-01
In this paper we present the cosmological viability of reconstruction of an alternative gravitational theory, namely, the modified gravity, where is the Ricci scalar curvature and the trace of stress energy momentum tensor. A functional form of is chosen for the reconstruction in perfect fluid flat Friedmann-Robertson-Walker model. The gravitational field equations contain two fluid sources, one is perfect fluid and other is due to modified gravity which is to be considered as an exotic fluid. This allows us for derivation and analysis of a set of new cosmological solutions for gravity by considering these two fluids as a non-interacting. Two known forms of scale factor (de Sitter and power-law) are considered for the explicit and successful reconstruction. The equation of state parameter (EoS) of exotic matter and the effective EoS parameter have been discussed. In de Sitter solution we find that the fluid behaves as phantom dark energy when the usual matter (perfect fluid) shows the behavior between decelerated phase to accelerated phase. In the absence of usual matter it behaves as a cosmological constant. In case of power -law cosmology two different cases are discussed and analyzed the behavior of different phases of the universe accordingly through the equation of state and density parameters.
Halo velocity profiles in screened modified gravity theories
NASA Astrophysics Data System (ADS)
Gronke, M.; Llinares, C.; Mota, D. F.; Winther, H. A.
2015-05-01
Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simulations. By studying fifth force and halo velocity profiles, we identify three general categories of effects found in screened modified gravity models: a fully screened regime where we recover Λ cold dark matter to high precision, an unscreened regime where the fifth force is in full operation, and, a partially screened regime where screening occurs in the inner part of a halo, but the fifth force is active at larger radii. These three regimes can be pointed out very clearly by analysing the deviation in the maximum cluster velocity. Observationally, the partially screened regime is of particular interest since an uniform increase of the gravitational force - as present in the unscreened regime - is degenerate with the (dynamical) halo mass estimate, and, thus, hard to detect.
Fast route to nonlinear clustering statistics in modified gravity theories
NASA Astrophysics Data System (ADS)
Winther, Hans A.; Ferreira, Pedro G.
2015-06-01
We propose a simple and computationally fast method for performing N -body simulations for a large class of modified gravity theories with a screening mechanism such as chameleons, symmetrons, and Galileons. By combining the linear Klein-Gordon equation with a screening factor, calculated from analytical solutions of spherical symmetric configurations, we obtain a modified field equation of which the solution is exact in the linear regime while at the same time taking screening into account on nonlinear scales. The resulting modified field equation remains linear and can be solved just as quickly as the Poisson equation without any of the convergence problems that can arise when solving the full equation. We test our method with N -body simulations and find that it compares remarkably well with full simulations well into the nonlinear regime.
Crystal clear lessons on the microstructure of spacetime and modified gravity
NASA Astrophysics Data System (ADS)
Lobo, Francisco S. N.; Olmo, Gonzalo J.; Rubiera-Garcia, D.
2015-06-01
We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.
Electromagnetic field and cylindrical compact objects in modified gravity
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Bhatti, M. Zaeem ul Haq
2016-05-01
In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.
Thermodynamics in dynamical Chern-Simons modified gravity with canonical scalar field
NASA Astrophysics Data System (ADS)
Rani, Shamaila; Nawaz, Tanzeela; Jawad, Abdul
2016-09-01
We take the scalar field dark energy model possessing a non-canonical kinetic term in the framework of modified Chern-Simon gravity. We assume the flat FRW universe model and interacting scenario between dark matter and non-canonical dark energy part. Under this scenario, we check the stability of the model using squared speed of sound which represents the stable behavior for a specific choice of model parameters. We also discuss the validity of generalized second law of thermodynamics by assuming the usual entropy and its corrected forms (logarithmic and power law) at the apparent horizon. This law satisfied for all cases versus redshift parameter at the present as well as later epoch.
Computing model independent perturbations in dark energy and modified gravity
Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk
2014-03-01
We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.
Wormhole geometries in f(R) modified theories of gravity
Lobo, Francisco S. N.; Oliveira, Miguel A.
2009-11-15
In this work, we construct traversable wormhole geometries in the context of f(R) modified theories of gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid, sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity. In particular, by considering specific shape functions and several equations of state, exact solutions for f(R) are found.
Modified gravity with a nonminimal gravitational coupling to matter
NASA Astrophysics Data System (ADS)
Bisabr, Yousef
2012-08-01
We consider modified theories of gravity with a direct coupling between matter and geometry, denoted by an arbitrary function in terms of the Ricci scalar. Because of such a coupling, the matter stress tensor is no longer conserved and there is an energy transfer between the two components. By solving the conservation equation, we argue that the matter system should gain energy in this interaction, as demanded by the second law of thermodynamics. In a cosmological setting, we show that although this kind of interaction may account for cosmic acceleration, this latter together with the direction of the energy transfer constrain the coupling function.
Galaxy infall kinematics as a test of modified gravity
NASA Astrophysics Data System (ADS)
Zu, Ying; Weinberg, David H.; Jennings, Elise; Li, Baojiu; Wyman, Mark
2014-12-01
Infrared modifications of General Relativity (GR) can be revealed by comparing the mass of galaxy clusters estimated from weak lensing to that from infall kinematics. We measure the 2D galaxy velocity distribution in the cluster infall region by applying the galaxy infall kinematics (GIK) model developed by Zu & Weinberg to two suites of f(R) and Galileon-modified gravity simulations. Despite having distinct screening mechanisms, namely, the Chameleon and the Vainshtein effects, the f(R) and Galileon clusters exhibit very similar deviations in their GIK profiles from GR, with ˜100-200 km s-1 enhancement in the characteristic infall velocity at r = 5 h-1 Mpc and 50-100 km s-1 broadening in the radial and tangential velocity dispersions across the entire infall region, for clusters with mass ˜1014 h-1 M⊙ at z = 0.25. These deviations are detectable via the GIK reconstruction of the redshift-space cluster-galaxy cross-correlation function, ξ s_{cg}(r_p,r_π ), which shows ˜1-2 h-1 Mpc increase in the characteristic line-of-sight distance rπ, c at rp < 6 h-1 Mpc from GR predictions. With overlapping deep imaging and large redshift surveys in the future, we expect that the GIK modelling of ξ s_{cg}, in combination with the stacked weak lensing measurements, will provide powerful diagnostics of modified gravity theories and the origin of cosmic acceleration.
Dark energy or modified gravity? An effective field theory approach
Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu
2013-08-01
We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.
Gravitational Microlensing in Modified Gravity Theories - Inverse-Square Theorem
NASA Astrophysics Data System (ADS)
Asada, H.
2011-02-01
Microlensing studies are usually based on the lens equation that is valid only to the first order in the gravitational constant G and lens mass M. We consider corrections to the conventional lens equation in terms of differentiable functions, so that they can express not only the second-order effects of GM in general relativity but also modified gravity theories. As a generalization of Ebina et al. (Prog. Theor. Phys. 104 (2000), 1317), we show that, provided that the spacetime is static, spherically symmetric and asymptotically flat, the total amplification by microlensing remains unchanged at the linear order of the correction to the deflection angle, if and only if the correction takes a particular form as the inverse square of the impact parameter, whereas the magnification factor for each image is corrected. It is concluded that the light curve shape by microlensing is inevitably changed and will thus allow us to probe modified gravity, unless a modificati on to the deflection angle takes the particular form. No systematic deviation in microlensing observations has been reported. For instance, therefore, the Yukawa-type correction is constrained as the characteristic length > 10^{14} m.
Modified gravity N-body code comparison project
NASA Astrophysics Data System (ADS)
Winther, Hans A.; Schmidt, Fabian; Barreira, Alexandre; Arnold, Christian; Bose, Sownak; Llinares, Claudio; Baldi, Marco; Falck, Bridget; Hellwing, Wojciech A.; Koyama, Kazuya; Li, Baojiu; Mota, David F.; Puchwein, Ewald; Smith, Robert E.; Zhao, Gong-Bo
2015-12-01
Self-consistent N-body simulations of modified gravity models are a key ingredient to obtain rigorous constraints on deviations from general relativity using large-scale structure observations. This paper provides the first detailed comparison of the results of different N-body codes for the f (R), Dvali-Gabadadze-Porrati and Symmetron models, starting from the same initial conditions. We find that the fractional deviation of the matter power spectrum from Λ cold dark matter agrees to better than 1 per cent up to k ˜ 5-10 h Mpc-1 between the different codes. These codes are thus able to meet the stringent accuracy requirements of upcoming observational surveys. All codes are also in good agreement in their results for the velocity divergence power spectrum, halo abundances and halo profiles. We also test the quasi-static limit, which is employed in most modified gravity N-body codes, for the Symmetron model for which the most significant non-static effects among the models considered are expected. We conclude that this limit is a very good approximation for all of the observables considered here.
Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity
NASA Astrophysics Data System (ADS)
Yagi, Kent; Stein, Leo C.; Yunes, Nicolás; Tanaka, Takahiro
2012-03-01
We consider a general class of quantum gravity-inspired, modified gravity theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to scalar fields with standard kinetic energy. This class of theories includes Einstein-Dilaton-Gauss-Bonnet and Chern-Simons modified gravity as special cases. We analytically derive and solve the coupled field equations in the post-Newtonian approximation, assuming a comparable-mass, spinning black hole binary source in a quasicircular, weak-field/slow-motion orbit. We find that a naive subtraction of divergent piece associated with the point-particle approximation is ill-suited to represent compact objects in these theories. Instead, we model them by appropriate effective sources built so that known strong-field solutions are reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars have no scalar monopole charge, in diametrical opposition to results in scalar-tensor theories. We then employ techniques similar to the direct integration of the relaxed Einstein equations to obtain analytic expressions for the scalar field, metric perturbation, and the associated gravitational wave luminosity measured at infinity. We find that scalar field emission mainly dominates the energy flux budget, sourcing electric-type (even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole scalar radiation, correcting the General Relativistic prediction at relative -1PN and 2PN orders. Such modifications lead to corrections in the emitted gravitational waves that can be mapped to the parameterized post-Einsteinian framework. Such modifications could be strongly constrained with gravitational wave observations.
The Holographic Scenario, the Modified Inertia and the Dynamics of the Universe
NASA Astrophysics Data System (ADS)
Giné, Jaume
2012-11-01
This paper attempts to connect two new gravitational mechanisms: the Verlinde's holographic model of gravity and the modification of inertia resulting from a Hubble-scale Casimir effect (MiHsC) of McCulloch. First we give a short survey about how the holographic scenario can give the correct dynamics of the universe. The introduction of a two-holographic screens one comparable to the Hubble horizon and a second screen that takes into account the contribution of all the matter between the test particle and the observer gives directly the modified Friedmann acceleration equation for the dynamical evolution of the universe. Improvements of this equation using the quantum corrections will realize the inflation at high energy scales and the late-time acceleration (i.e. the accelerated expansion of the universe nowadays) obviating the dark energy. From both models we can derive a version of Modified Newtonian Dynamics (MOND) observed in the dynamics of the astronomical objects obviating the dark matter and explaining other astronomical anomalies. A first connection between both theories is given at the end of the paper.
Modified gravity, the Cascading DGP model and its critical tension
NASA Astrophysics Data System (ADS)
Sbisà, Fulvio
2014-12-01
We investigate the presence of instabilities in the Cascading DGP model. We start by discussing the problem of the cosmological late time acceleration, and we introduce the modified gravity approach. We then focus on brane induced gravity models and in particular on the Cascading DGP model. We consider configurations of the latter model where the source term is given simply by vacuum energy (pure tension), and we study perturbations at first order around these configurations. We perform a four-dimensional scalar-vector-tensor decomposition of the perturbations, and show that, regarding the scalar sector, the dynamics in a suitable limit can be described by a master equation. This master equation contains an energy scale (critical tension) which is related in a lion-trivial way to the parameters of the model. We give a geometrical interpretation of why this scale emerges, and explain its relevance for the presence of ghost instabilities in the theory. We comment on the difference between our result, and the one present in the literature, and stress its importance regarding the phenomenological viability of the model. We finally provide a numerical check which confirms the validity of our analysis.
Perturbations of single-field inflation in modified gravity theory
NASA Astrophysics Data System (ADS)
Qiu, Taotao; Xia, Jun-Qing
2015-05-01
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.
Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.; Odintsov, Sergei D.; Oikonomou, V. K.
2015-09-01
In this paper we propose and extensively study mimetic f({G}) modified gravity models, with various scenarios of cosmological evolution, with or without extra matter fluids. The easiest formulation is based on the use of the Lagrange multiplier constraint. In certain versions of this theory, it is possible to realize accelerated expansion of the Universe or even unified evolution, which includes inflation with dark energy, and at the same time in the same theoretical framework, dark matter is described by the theory. This is achieved by the re-parametrization of the metric tensor, which introduces a new degree of freedom in the cosmological equations and leads to the appearance of the mimetic ‘dark matter’ component. In the context of the mimetic f({G}) theory, we also provide some quite general reconstruction schemes, which enable us to find which f({G}) gravity generates a specific cosmological evolution. In addition, we also provide the general reconstruction technique for the Lagrange multiplier f({G}) gravity. All our results are accompanied by illustrative examples, with special emphasis on bouncing cosmologies.
Reality and causality in quantum gravity modified electrodynamics
Martinez, Santiago A.; Montemayor, R.; Urrutia, Luis F.
2006-09-15
We present a general description of the propagation properties of quantum gravity modified electrodynamics characterized by constitutive relations up to second order in the correction parameter. The effective description corresponds to an electrodynamics in a dispersive and absorptive nonlocal medium, where the Green functions and the refraction indices can be explicitly calculated. The reality of the electromagnetic field together with the requirement of causal propagation in a given reference frame leads to restrictions in the form of such refraction indices. In particular, absorption must be present in all cases and, contrary to the usual assumption, it is the dominant aspect in those effective models which exhibit linear effects in the correction parameter not related to birefringence. In such a situation absorption is linear while propagation is quadratical in the correction parameter.
Vacuum structure for scalar cosmological perturbations in modified gravity models
Felice, Antonio De; Suyama, Teruaki E-mail: teruaki.suyama@uclouvain.be
2009-06-01
We have found for the general class of Modified Gravity Models f(R, G) a new instability which can arise in vacuum for the scalar modes of the cosmological perturbations if the background is not de Sitter. In particular, the short-wavelength modes, if stable, in general have a group velocity which depends linearly in k, the wave number. Therefore these modes will be in general superluminal. We have also discussed the condition for which in general these scalar modes will be ghost-like. There is a subclass of these models, defined out of properties of the function f(R, G) and to which the f(R) and f(G) models belong, which however do not have this feature.
Kerr-Newman solution in modified teleparallel theory of gravity
NASA Astrophysics Data System (ADS)
Nashed, Gamal G. L.
2015-11-01
A nondiagonal tetrad field having six unknown functions plus an angle Φ, which is a function of the radial coordinate r, azimuthal angle θ and the polar angle ϕ, is applied to the charged field equations of modified teleparallel theory of gravity. A special nonvacuum solution is derived with three constants of integration. The tetrad field of this solution is axially symmetric and its scalar torsion is constant. The associated metric of the derived solution gives Kerr-Newman spacetime. We have shown that the derived solution can be described by a local Lorentz transformations plus a diagonal tetrad field that is the square root of the Kerr-Newman metric. We show that any solution of general relativity (GR) can be a solution in f(T) under certain conditions.
Vector field models of modified gravity and the dark sector
NASA Astrophysics Data System (ADS)
Zuntz, J.; Zlosnik, T. G.; Bourliot, F.; Ferreira, P. G.; Starkman, G. D.
2010-05-01
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic index parameter nae can differ significantly from its ΛCDM value.
Notes on Born-Infeld-like modified gravity
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2016-02-01
We investigate the modified F(R) gravity theory with the function F(R) = (1-√{1-2λ R-σ(λ R)2})/λ. The action is converted into Einstein-Hilbert action at small values of λ and σ. The local tests give a bound on the parameters, λ(1+σ)≤2×10^{-6} cm2. The Jordan and Einstein frames are considered, the potential, and the mass of the scalar field were obtained. The constant curvature solutions of the model are found. It was demonstrated that the de Sitter space is unstable but a solution with zero Ricci scalar is stable. The cosmological parameters of the model are evaluated. Critical points of autonomous equations are obtained and described.
Vector field models of modified gravity and the dark sector
Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.
2010-05-15
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.
Modifying gravity with the aether: An alternative to dark matter
Zlosnik, T. G; Ferreira, P. G; Starkman, G. D.
2007-02-15
There is evidence that Newton and Einstein's theories of gravity cannot explain the dynamics of a universe made up solely of baryons and radiation. To be able to understand the properties of galaxies, clusters of galaxies and the universe on the whole it has become commonplace to invoke the presence of dark matter. An alternative approach is to modify the gravitational field equations to accommodate observations. We propose a new class of gravitational theories in which we add a new degree of freedom, the Aether, in the form of a vector field that is coupled covariantly, but nonminimally, with the space-time metric. We explore the Newtonian and non-Newtonian limits, discuss the conditions for these theories to be consistent and explore their effect on cosmology.
Ultralocal models of modified gravity without kinetic term
NASA Astrophysics Data System (ADS)
Brax, Philippe; Rizzo, Luca Alberto; Valageas, Patrick
2016-08-01
We present a class of modified-gravity theories which we call ultralocal models. We add a scalar field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal coupling to matter. This gives rise to a new screening mechanism which is not entirely due to the nonlinearity of the scalar-field potential or the coupling function but to the absence of the kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns out that these models are similar to chameleon-type theories with a large mass when considered outside the Compton wavelength but differ on shorter scales. The predictions of these models only depend on a single free function, as the potential and the coupling function are degenerate, with an amplitude given by a parameter α ≲10-6 , whose magnitude springs from requiring a small modification of Newton's potential astrophysically and cosmologically. This singles out a redshift zα˜α-1 /3≳100 where the fifth force is the greatest. The cosmological background follows the Λ cold dark matter (Λ CDM ) history within a 10-6 accuracy, while cosmological perturbations are significantly enhanced (or damped) on small scales, k ≳2 h Mpc-1 at z =0 . The spherical collapse and the halo mass function are modified in the same manner. We find that the modifications of gravity are greater for galactic or subgalactic structures. We also present a thermodynamic analysis of the nonlinear and inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous before zα when the fifth force dominates, and does not lead to the existence of clumped matter on extra small scales inside halos for large masses while this possibility exists for masses M ≲1 011M⊙ where the phenomenology of ultralocal models would be most different from Λ CDM .
Multicomponent solution in a modified theory of gravity in the early universe
Mohseni Sadjadi, H.
2008-05-15
We study the modified theory of gravity in the Friedmann-Robertson-Walker universe composed of several perfect fluids. We consider the power law inflation and determine the equation of state parameters in terms of the parameters of modified gravity's Lagrangian in the early universe. We also briefly discuss the gravitational baryogenesis in this model.
Tolman-Oppenheimer-Volkoff equations in modified Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Momeni, D.; Myrzakulov, R.
2015-11-01
Based on a stringy inspired Gauss-Bonnet (GB) modification of classical gravity, we constructed a model for neutron stars. We derived the modified forms of Tolman-Oppenheimer-Volkoff (TOV) equations for a generic function of f(G) gravity. The hydrostatic equations remained unchanged but the dynamical equations for metric functions are modified due to the effects of GB term.
3D weak lensing: Modified theories of gravity
NASA Astrophysics Data System (ADS)
Pratten, Geraint; Munshi, Dipak; Valageas, Patrick; Brax, Philippe
2016-05-01
Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large-scale structure as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity. Employing a 3D analysis based on the spherical Fourier-Bessel expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution σɛ of source galaxies. Here, we focus on two classes of screened theories of gravity: (i) f (R ) chameleon models and (ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of the matter power spectrum with redshift in these theories. Using a χ2 analysis, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained in the range fR0<5 ×10-6(9 ×10-6) for n =1 (2 ) with a 3 σ confidence level. This can be achieved by using relatively low-order angular harmonics ℓ<100 . Higher-order harmonics ℓ>100 could provide tighter constraints but are subject to nonlinear effects, such as baryonic feedback, that must be accounted for. We also employ a Principal Component Analysis in order to study the parameter degeneracies in the MG parameters. The confusion from intrinsic ellipticity correlation and modification of the matter power spectrum at a small scale due to feedback mechanisms is briefly discussed.
Black string and Goedel-type solutions of Chern-Simons modified gravity
Ahmedov, Haji; Aliev, Alikram N.
2010-07-15
We show that Chern-Simons (CS) modified gravity with a prescribed CS scalar field admits rotating black hole/string/> solutions with cylindrical topology of the horizon, and we present two intriguing physical examples of such configurations. First, we show that the Banados-Teitelboim-Zanelli stationary black string, which is obtained by adding a spacelike flat dimension to the Banados-Teitelboim-Zanelli black hole metric of three-dimensional gravity, solves the field equations of CS modified gravity with a specific source term irrespective of the choice of CS scalar field. Next, we consider the Lemos solution for a rotating, straight black string in general relativity and show that, for the CS scalar field being a function of the radial coordinate alone, this solution persists in CS modified gravity. We also present a new nontrivial (non-general relativity) Goedel-type solution to the vacuum field equations of CS modified gravity.
Bi-scalar modified gravity and cosmology with conformal invariance
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.; Tsoukalas, Minas
2016-04-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
Gauss-Bonnet modified gravity models with bouncing behavior
NASA Astrophysics Data System (ADS)
Escofet, Anna; Elizalde, Emilio
2016-06-01
The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = ‑1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; Gonzalez, Daniel
Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with
From massive gravity to modified general relativity II
NASA Astrophysics Data System (ADS)
Grigore, D. R.; Scharf, G.
2011-05-01
We continue our investigation of massive gravity in the massless limit of vanishing graviton mass. From gauge invariance we derive the most general coupling between scalar matter and gravity. We get further couplings beside the standard coupling to the energy-momentum tensor. On the classical level this leads to a further modification of general relativity.
Conformal transformations in modified teleparallel theories of gravity revisited
NASA Astrophysics Data System (ADS)
Wright, Matthew
2016-05-01
It is well known that one cannot apply a conformal transformation to f (T ) gravity to obtain a minimally coupled scalar field model, and thus no Einstein frame exists for f (T ) gravity. Furthermore nonminimally coupled "teleparallel dark energy models" are not conformally equivalent to f (T ) gravity. However, it can be shown that f (T ) gravity is conformally equivalent to a teleparallel phantom scalar field model with a nonminimal coupling to a boundary term only. In this work, we extend this analysis by considering a recently studied extended class of models, known as f (T ,B ) gravity, where B is a boundary term related to the divergence of a contraction of the torsion tensor. We find that nonminimally coupled "teleparallel dark energy models" are conformally equivalent to either an f (T ,B ) or f (B ) gravity model. Finally conditions on the functional form of f (T ,B ) gravity are derived to allow it to be transformed to particular nonminimally coupled scalar field models.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Jamil, Mubasher
2011-01-01
Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in (Setare in Int J Mod Phys D 17:2219, 2008; Setare in Astrophys Space Sci 326:27, 2010). We also calculate the statefinder parameters which classify our dark energy model.
Haro, Jaume; Amorós, Jaume E-mail: jaume.amoros@upc.edu
2014-12-01
We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel version of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.
Time-dependent scalar fields in modified gravities in a stationary spacetime
NASA Astrophysics Data System (ADS)
Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao
2016-07-01
Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.
Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir
2014-01-01
In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.
Spherical collapse and cluster counts in modified gravity models
Martino, Matthew C.; Stabenau, Hans F.; Sheth, Ravi K.
2009-04-15
Modifications to the gravitational potential affect the nonlinear gravitational evolution of large scale structures in the Universe. To illustrate some generic features of such changes, we study the evolution of spherically symmetric perturbations when the modification is of Yukawa type; this is nontrivial, because we should not and do not assume that Birkhoff's theorem applies. We then show how to estimate the abundance of virialized objects in such models. Comparison with numerical simulations shows reasonable agreement: When normalized to have the same fluctuations at early times, weaker large scale gravity produces fewer massive halos. However, the opposite can be true for models that are normalized to have the same linear theory power spectrum today, so the abundance of rich clusters potentially places interesting constraints on such models. Our analysis also indicates that the formation histories and abundances of sufficiently low mass objects are unchanged from standard gravity. This explains why simulations have found that the nonlinear power spectrum at large k is unaffected by such modifications to the gravitational potential. In addition, the most massive objects in models with normalized cosmic microwave background and weaker gravity are expected to be similar to the high-redshift progenitors of the most massive objects in models with stronger gravity. Thus, the difference between the cluster and field galaxy populations is expected to be larger in models with stronger large scale gravity.
Anisotropic stress and stability in modified gravity models
Saltas, Ippocratis D.; Kunz, Martin
2011-03-15
The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.
Pauli-Fierz mass term in modified Plebanski gravity
NASA Astrophysics Data System (ADS)
Beke, David; Palmisano, Giovanni; Speziale, Simone
2012-03-01
We study SO(4) BF theory plus a general quadratic potential, which describes a bi-metric theory of gravity. We identify the profile of the potential leading to a Pauli-Fierz mass term for the massive graviton, thereby avoiding the linearized ghost. We include the Immirzi parameter in our analysis, and find that the mass of the second graviton depends on it. At the non-perturbative level, we find a situation similar to genuine bi-gravities: even choosing the Pauli-Fierz mass term, the ghost mode propagates through the interactions. We present some simple potentials leading to two and three degrees of freedom, and discuss the difficulties of finding a ghost-free bi-gravity with seven degrees of freedom. Finally, we discuss alternative reality conditions for the case of SO(3,1) BF theory, relevant for Lorentzian signature, and give a new solution to the compatibility equation.
Boundary terms, variational principles, and higher derivative modified gravity
Dyer, Ethan; Hinterbichler, Kurt
2009-01-15
We discuss the criteria that must be satisfied by a well-posed variational principle. We clarify the role of Gibbons-Hawking-York type boundary terms in the actions of higher derivative models of gravity, such as F(R) gravity, and argue that the correct boundary terms are the naive ones obtained through the correspondence with scalar-tensor theory, despite the fact that variations of normal derivatives of the metric must be fixed on the boundary. We show in the case of F(R) gravity that these boundary terms reproduce the correct Arnowitt-Deser-Misner energy in the Hamiltonian formalism, and the correct entropy for black holes in the semiclassical approximation.
Clear and measurable signature of modified gravity in the galaxy velocity field.
Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity. PMID:24949751
Thermodynamic study in modified f(T) gravity with cosmological constant regime
NASA Astrophysics Data System (ADS)
Zubair, M.; Waheed, Saira
2015-12-01
This study is conducted to examine the validity of thermodynamical laws in a modified f(T) gravity involving a direct coupling of torsion scalar with matter contents. For this purpose, we consider spatially flat FRW geometry with matter contents as perfect fluid and formulate the first thermodynamical law in this gravity at apparent horizon. It is found that equilibrium description of thermodynamics exists in this modified gravity in a similar way to Einstein and other gravities. Further we discuss generalized second law of thermodynamics at apparent horizon of FRW universe for three different f(T) models using Gibbs law as well as the assumption that temperature of matter within apparent horizon is similar to that of horizon. It is found that for some particular cosmologically consistent values of coupling parameters, GSLT remains valid in observationally consistent cosmic eras.
Effective field theory from modified gravity with massive modes
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; de Laurentis, Mariafelicia; Paolella, Mariacristina; Ricciardi, Giulia
2015-10-01
Massive gravitational modes in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants, not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with massive modes is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed.
Skeletogenesis in sea urchin larvae under modified gravity conditions
NASA Astrophysics Data System (ADS)
Marthy, H.-J.; Gasset, G.; Tixador, R.; Eche, B.; Schatt, P.; Dessommes, A.; Marthy, U.; Bacchieri, R.
From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.
Stability of spherically symmetric solutions in modified theories of gravity
Seifert, Michael D.
2007-09-15
In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our 'generalized variational principle', described in a previous work [M. D. Seifert and R. M. Wald, Phys. Rev. D 75, 084029 (2007)], to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson and Mattingly's 'Einstein-aether theory', and Bekenstein's TeVeS theory. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the 'kinetic terms' of vacuum TeVeS theory are indefinite in a curved background, leading to an instability.
Constraints on modified Gauss-Bonnet gravity during big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki
2016-02-01
Modified gravity is considered to be one of the possible explanations of the accelerated expansions of the present and the early universe. We study the effects of modified gravity on big bang nucleosynthesis (BBN). If the effects of modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a f (G ) term with the Gauss-Bonnet term G , during the BBN epoch. A power-law relation of d f /d G ∝tp where t is the cosmic time was assumed for the function f (G ) as an example case. We solve time evolutions of physical variables during BBN in the f (G ) gravity model numerically, and we analyzed the calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on the primordial D abundance leads to the strongest constraint on the f (G ) gravity. We then derive constraints on parameters of the f (G ) gravity taking into account the existence of the solution of expansion rate and final light element abundances.
Creation of wormholes by quantum tunnelling in modified gravity theories
NASA Astrophysics Data System (ADS)
Battarra, Lorenzo; Lavrelashvili, George; Lehners, Jean-Luc
2014-12-01
We study the process of quantum tunnelling in scalar-tensor theories in which the scalar field is nonminimally coupled to gravity. In these theories gravitational instantons can deviate substantially from sphericity and can in fact develop a neck—a feature prohibited in theories with minimal coupling. Such instantons with necks lead to the materialization of bubble geometries containing a wormhole region. We clarify the relationship of neck geometries to violations of the null energy condition, and also derive a bound on the size of the neck relative to that of the instanton.
Gravity matters: Motion perceptions modified by direction and body position.
Claassen, Jens; Bardins, Stanislavs; Spiegel, Rainer; Strupp, Michael; Kalla, Roger
2016-07-01
Motion coherence thresholds are consistently higher at lower velocities. In this study we analysed the influence of the position and direction of moving objects on their perception and thereby the influence of gravity. This paradigm allows a differentiation to be made between coherent and randomly moving objects in an upright and a reclining position with a horizontal or vertical axis of motion. 18 young healthy participants were examined in this coherent threshold paradigm. Motion coherence thresholds were significantly lower when position and motion were congruent with gravity independent of motion velocity (p=0.024). In the other conditions higher motion coherence thresholds (MCT) were found at lower velocities and vice versa (p<0.001). This result confirms previous studies with higher MCT at lower velocity but is in contrast to studies concerning perception of virtual turns and optokinetic nystagmus, in which differences of perception were due to different directions irrespective of body position, i.e. perception took place in an egocentric reference frame. Since the observed differences occurred in an upright position only, perception of coherent motion in this study is defined by an earth-centered reference frame rather than by an ego-centric frame. PMID:27258411
Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk
NASA Astrophysics Data System (ADS)
Konikowska, Dominika
2014-02-01
We study a theory of dilaton gravity in a five-dimensional brane scenario, with a non-minimal coupling of the dilaton to the matter content of the universe localized on the brane. The effective gravitational equations at the brane are derived in the Einstein frame in the covariant approach, addressing certain misconceptions in the literature. We then investigate whether the observed large-scale structure of the universe can exist on the brane in this dilaton gravity scenario with an exact anti de Sitter bulk, assuming that the matter energy-momentum tensor has the form of an inhomogeneous perfect fluid. The corresponding constraint on the spatial derivative of the matter energy density is derived, and subsequently quantified using the current limits resulting from searches for variation of the Newton's constant. By confronting it with the observational data from galaxy surveys, we show that up to scales of the order of 104 Mpc, the derived bound on the spatial derivative of the matter energy density does not allow for the existence of the large-scale structure as observed today. Thus, such a dilaton gravity brane scenario is ruled out.
Modified gravity theories: Alternatives to the missing mass and missing energy problems
NASA Astrophysics Data System (ADS)
Soussa, Marc Edward
Modified theories of gravity are examined and shown to be alternative possibilities to the standard paradigms of dark matter and dark energy in explaining the currently observed cosmological phenomenology. Special consideration is given to the relativistic extension of Modified Newtonian Dynamics (MOND) in supplanting the need for dark matter. A specific modification of the Einstein-Hilbert action (whereby an inverse power of the Ricci scalar is added) is shown to serve as an alternative to dark energy.
Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem
Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio; Nojiri, Shin'ichi; Odintsov, Sergei D.
2006-04-15
Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, f(G), is added to the general relativity action. We show that a theory of this kind is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence, or phantom cosmic acceleration, with a possibility for the transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with the solar system constraints. Specific properties of f(G) gravity in a de Sitter (dS) universe, such as dS and SdS solutions, their entropy, and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is also addressed.
Dynamical analysis of modified gravity with nonminimal gravitational coupling to matter
NASA Astrophysics Data System (ADS)
An, Rui; Xu, Xiaodong; Wang, Bin; Gong, Yungui
2016-05-01
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with supernova type Ia data sets, we find that the nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.
Chern-Simons modified gravity as a torsion theory and its interaction with fermions
Alexander, Stephon; Yunes, Nicolas
2008-06-15
We study the tetrad formulation of Chern-Simons (CS) modified gravity, which adds a Pontryagin term to the Einstein-Hilbert action with a spacetime-dependent coupling field. We first verify that CS modified gravity leads to a theory with torsion, where this tensor is given by an antisymmetric product of the Riemann tensor and derivatives of the CS coupling. We then calculate the torsion in the far field of a weakly gravitating source within the parameterized post-Newtonian formalism, and specialize the result to Earth. We find that CS torsion vanishes only if the coupling vanishes, thus generically leading to a modification of gyroscopic precession, irrespective of the coupling choice. Perhaps most interestingly, we couple fermions to CS modified gravity via the standard Dirac action and find that these further correct the torsion tensor. Such a correction leads to two new results: (i) a generic enhancement of CS modified gravity by the Dirac equation and axial fermion currents; (ii) a new two-fermion interaction, mediated by an axial current and the CS correction. We conclude with a discussion of the consequences of these results in particle detectors and realistic astrophysical systems.
Lunar System Constraints on the Modified Theories of Gravity
NASA Astrophysics Data System (ADS)
Exirifard, Qasem
2013-07-01
The Modified Newtonian Dynamics (MOND) paradigm to the missing mass problem requires introducing a functional that is to be identified through observations and experiments. We consider the aquadratic Lagrangian theory as a realization of the MOND. We show that the accurate value of the Earth GM measured by the lunar laser ranging measurements and that by various artificial Earth satellites, including the accurate tracking of the LAGEOS satellites, constrain this functional such that some of the chosen/proposed functional are refuted.
Practical approach to cosmological perturbations in modified gravity
NASA Astrophysics Data System (ADS)
Silvestri, Alessandra; Pogosian, Levon; Buniy, Roman V.
2013-05-01
The next generation of large scale surveys will not only measure cosmological parameters within the framework of general relativity, but will also allow for precision tests of the framework itself. At the order of linear perturbations, departures from the growth in the standard cosmological model can be quantified in terms of two functions of time and Fourier number k. We argue that in local theories of gravity, in the quasistatic approximation, these functions must be ratios of polynomials in k, with the numerator of one function being equal to the denominator of the other. Moreover, the polynomials are even and of second degree in practically all viable models considered today. This means that, without significant loss of generality, one can use data to constrain only five functions of a single variable, instead of two functions of two variables. Furthermore, since the five functions are expected to be slowly varying, one can fit them to data in a nonparametric way with the aid of an explicit smoothness prior. We discuss practical application of this parametrization to forecasts and fits.
Bending of Light in Modified Gravity at Large Distances
NASA Technical Reports Server (NTRS)
Sultana, Joseph; Kazanas, Demosthenes
2012-01-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric
Bending of light in modified gravity at large distances
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Kazanas, Demosthenes
2012-04-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.
Signatures of modified gravity on the 21 cm power spectrum at reionisation
Brax, Philippe
2013-01-01
Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.
TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY
Wang Xin; Chen Xuelei; Park, Changbom
2012-03-01
The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.
Entropic Gravity, Minimum Temperature, and Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Kopp, M.
Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.
Testing Modified Gravity Models using Gravitational Waves Observation
NASA Astrophysics Data System (ADS)
Kahya, Emre
2016-07-01
Rotation curves of spiral galaxies and weak lensing as well as CMBR Power Spectrum point towards a need for different kind of matter in the universe that is not interacting electromagnetically. Alternatively one can explain rotation curves by modifying Newton's Laws which is called MOND. Relativistic versions of MOND work surprisingly good in producing structure and the community started taking these models seriously. We would like to offer a test which can test the validity of these class of models where one would get non-coincident arrival for gravitational waves and photons. We will explain why one should get a time lag between these two massless particles in the context of these so-called Dark Matter Emulators. And give an order of magnitude estimate for Shapiro delay for object which are very far away as well as more accurate ones for sources in Milky-way.
Membrane paradigm of black holes in Chern-Simons modified gravity
NASA Astrophysics Data System (ADS)
Zhao, Tian-Yi; Wang, Towe
2016-06-01
The membrane paradigm of black hole is studied in the Chern-Simons modified gravity. Derived with the action principle a la Parikh-Wilczek, the stress tensor of membrane manifests a rich structure arising from the Chern-Simons term. The membrane stress tensor, if related to the bulk stress tensor in a special form, obeys the low-dimensional fluid continuity equation and the Navier-Stokes equation. This paradigm is applied to spherically symmetric static geometries, and in particular, the Schwarzschild black hole, which is a solution of a large class of dynamical Chern-Simons gravity.
Modified gravity: the CMB, weak lensing and general parameterisations
Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de
2011-03-01
We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.
Holographic superconductors in IR modified Hořava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Lu, Jun-Wang; Wu, Ya-Bo; Xiao, Jian; Lu, Cui-Juan; Liu, Mo-Lin
2016-07-01
In the probe limit, we study the holographic s- and p-wave superconductors in the IR modified Hořava-Lifshitz gravity and obtain the effect of the gravity parameter α on the condensate and the AC conductivity. Concretely, for the two models, the increasing α makes the superconductor phase transition more difficult. Moreover, at the critical point, both systems undergo a second-order phase transition as expected from the mean field theory, and the superfluid density decreases with the temperature linearly, which is consistent with the Ginzburg-Landau theory. Meanwhile, the analytical results back up the numerical results. What is more, in the superconducting phase, the ratio of the energy gap to the critical temperature, i.e. ωg/Tc, decreases with the increasing α. In addition, our results generalize the previous work on holographic superconductors in Hořava-Lifshitz gravity to some extent.
Lensing-induced morphology changes in CMB temperature maps in modified gravity theories
NASA Astrophysics Data System (ADS)
Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A.
2016-04-01
Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f(R) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches Script O(103) for the future planned CMB polarization mission COrE+. Assuming foreground removal is possible to lmax=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.
Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies
NASA Astrophysics Data System (ADS)
Vikram, Vinu; Cabré, Anna; Jain, Bhuvnesh; VanderPlas, J. T.
2013-08-01
This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain & Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.
Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies
Vikram, Vinu; Cabré, Anna; Jain, Bhuvnesh; VanderPlas, J.T. E-mail: annanusca@gmail.com E-mail: jakevdp@cs.washington.edu
2013-08-01
This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain and Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.
NASA Astrophysics Data System (ADS)
Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao
2015-09-01
Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.
Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao
2015-01-01
Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761
Dirichlet boundary-value problem for Chern-Simons modified gravity
Grumiller, Daniel; Mann, Robert; McNees, Robert
2008-10-15
Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary-value problem well defined. It turns out to be a boundary Chern-Simons action for the extrinsic curvature. We address applications to black hole thermodynamics.
Reconstruction and stability of f( R, T) gravity with Ricci and modified Ricci dark energy
NASA Astrophysics Data System (ADS)
Sharif, M.; Zubair, M.
2014-01-01
We take the Ricci and modified Ricci dark energy models to establish a connection with f( R, T) gravity, where R is the scalar curvature and T is the trace of the energy-momentum tensor. The function f( R, T) is reconstructed by considering this theory as an effective description of these models. We consider a specific model which permits the standard continuity equation in this modified theory. It is found that f( R, T) functions can reproduce expansion history of the considered models which is in accordance with the present observational data. We also explore the Dolgov-Kawasaki stability condition for the reconstructed f( R, T) functions.
A complete cosmological scenario from f(R,T^{φ }) gravity theory
NASA Astrophysics Data System (ADS)
Moraes, P. H. R. S.; Santos, J. R. L.
2016-02-01
Recent elaborated by Harko et al., the f( R, T) theories of gravity allow one to contemplate an optimistic alternative to dark energy, for which R and T stand for the Ricci scalar and the trace of the energy-momentum tensor, respectively. Although the literature has shown that the T dependence on the gravitational part of the action - which is due to the consideration of quantum effects - may induce some novel features in the scope of late-time cosmological dynamics, in the radiation-dominated universe, when T=0, no contributions seem to arise from such theories. Apparently, f( R, T) contributions to a radiation-dominated universe may arise only from the f(R,T^{φ }) approach, which is nothing but the f( R, T) gravity in the case of a self-interacting scalar field whose trace of the energy-momentum tensor is T^{φ }. We intend, in this article, to show how f(R,T^{φ }) theories of gravity can contribute to the study of the primordial stages of the universe. Our results predict a graceful exit from an inflationary stage to a radiation-dominated era. They also predict a late-time cosmic acceleration after a matter-dominated phase, enabling the f(R,T^{φ }) theories to describe, in a self-consistent way, all the different stages of the dynamics of the universe.
NASA Astrophysics Data System (ADS)
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-05-01
We extend the formalism of the Einstein-Hilbert unimodular gravity in the context of modified F(R) gravity. After appropriately modifying the Friedmann-Robertson-Walker metric in a way that it becomes compatible to the unimodular condition of having a constant metric determinant, we derive the equations of motion of the unimodular F(R) gravity by using the metric formalism of modified gravity with Lagrange multiplier constraint. The resulting equations are studied in frames of reconstruction method, which enables us to realize various cosmological scenarios, which was impossible to realize in the standard Einstein-Hilbert unimodular gravity. Several unimodular F(R) inflationary scenarios are presented, and in some cases, concordance with Planck and BICEP2 observational data can be achieved.
Perturbations of Schwarzschild black holes in Chern-Simons modified gravity
NASA Astrophysics Data System (ADS)
Yunes, Nicolás; Sopuerta, Carlos F.
2008-03-01
We study perturbations of a Schwarzschild black hole in Chern-Simons modified gravity. We begin by showing that Birkhoff’s theorem holds for a wide family of Chern-Simons coupling functions, a scalar field present in the theory that controls the strength of the Chern-Simons correction to the Einstein-Hilbert action. After decomposing the perturbations in spherical harmonics, we study the linearized modified field equations and find that axial and polar modes are coupled, in contrast to general relativity. The divergence of the modified equations leads to the Pontryagin constraint, which forces the vanishing of the Cunningham-Price-Moncrief master function associated with axial modes. We analyze the structure of these equations and find that the appearance of the Pontryagin constraint yields an overconstrained system that does not allow for generic black hole oscillations. We illustrate this situation by studying the case characterized by a canonical choice of the coupling function and pure-parity perturbative modes. We end with a discussion of how to extend Chern-Simons modified gravity to bypass the Pontryagin constraint and the suppression of perturbations.
NASA Astrophysics Data System (ADS)
Bel, Julien; Brax, Philippe; Marinoni, Christian; Valageas, Patrick
2015-05-01
The clustering ratio η , a large-scale structure observable originally designed to constrain the shape of the power spectrum of matter density fluctuations, is shown to provide a sensitive probe of the nature of gravity in the cosmological regime. We apply this analysis to F (R ) theories of gravity using the luminous red galaxy sample extracted from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 and 10 catalogs. We find that general relativity (GR), complemented with a Friedmann-Robertson-Walker (FRW) cosmological model with parameters fixed by the Planck satellite, describes extremely well the clustering of galaxies up to z ˜0.6 . On large cosmic scales, the absolute amplitude of deviations from GR, |fR 0|, is constrained to be smaller than 4.6 ×1 0-5 at the 95% confidence level. This bound makes cosmological probes of gravity almost competitive with the sensitivity of Solar System tests, although still one 1 order of magnitude less effective than astrophysical tests. We also extrapolate our results to future large surveys like Euclid and show that the astrophysical bound will certainly remain out of reach for such a class of modified-gravity models that only differ from Λ CDM at low redshifts.
Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory
Glass, R.J.
1992-12-31
Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.
Imprint of modified Einstein’s gravity on white dwarfs: Unifying Type Ia supernovae
NASA Astrophysics Data System (ADS)
Das, Upasana; Mukhopadhyay, Banibrata
2015-11-01
We establish the importance of modified Einstein’s gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar’s limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar’s limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein’s gravity and the uniqueness of Chandrasekhar’s limit.
Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves
NASA Astrophysics Data System (ADS)
Thomas, E.; Fisher, R.
2008-11-01
Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.
Generalized second law of thermodynamics on the apparent horizon in modified Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Abdolmaleki, A.; Najafi, T.
2016-01-01
Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-Bonnet (GB) gravity or f(G)-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable f(G) models, we first numerically solve the set of differential equations governing the dynamics of f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected f(G) models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the ΛCDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with ω = -1. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.
Astrophysical tests of modified gravity: Constraints from distance indicators in the nearby universe
Jain, Bhuvnesh; Vikram, Vinu; Sakstein, Jeremy
2013-12-10
We use distance measurements in the nearby universe to carry out new tests of gravity, surpassing other astrophysical tests by over two orders of magnitude for chameleon theories. The three nearby distance indicators—cepheids, tip of the red giant branch (TRGB) stars, and water masers—operate in gravitational fields of widely different strengths. This enables tests of scalar-tensor gravity theories because they are screened from enhanced forces to different extents. Inferred distances from cepheids and TRGB stars are altered (in opposite directions) over a range of chameleon gravity theory parameters well below the sensitivity of cosmological probes. Using published data, we have compared cepheid and TRGB distances in a sample of unscreened dwarf galaxies within 10 Mpc. We use a comparable set of screened galaxies as a control sample. We find no evidence for the order unity force enhancements expected in these theories. Using a two-parameter description of the models (the coupling strength and background field value), we obtain constraints on both the chameleon and symmetron screening scenarios. In particular we show that f(R) models with background field values f {sub R0} above 5 × 10{sup –7} are ruled out at the 95% confidence level. We also compare TRGB and maser distances to the galaxy NGC 4258 as a second test for larger field values. While there are several approximations and caveats in our study, our analysis demonstrates the power of gravity tests in the local universe. We discuss the prospects for additional improved tests with future observations.
Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity
Sopuerta, Carlos F.; Yunes, Nicolas
2009-09-15
Chern-Simons modified gravity is a four-dimensional, effective theory that descends both from string theory and loop quantum gravity, and that corrects the Einstein-Hilbert action by adding the product of a scalar field and the parity-violating, Pontryagin density. The Chern-Simons modification deforms the gravitational field of spinning black holes, which is now described by a modified Kerr geometry whose multipole moments deviate from the Kerr ones only at the fourth multipole l=4. This paper investigates possible signatures of this theory in the gravitational-wave emission produced in the inspiral of stellar compact objects into massive black holes, both for intermediate- and extreme-mass ratios. We use the semirelativistic approximation, where the trajectory of the small compact object is modeled via geodesics of the massive black hole geometry, while the gravitational waveforms are obtained from a multipolar decomposition of the radiative field. The main Chern-Simons corrections to the waveforms arise from modifications to the geodesic trajectories, which in turn are due to changes to the massive black hole geometry, and manifest themselves as an accumulating dephasing relative to the general relativistic case. We also explore the propagation and the stress-energy tensor of gravitational waves in this theory, using the short-wavelength approximation. We find that, although this tensor has the same form as in general relativity, the energy and angular momentum balance laws are indeed modified through the stress-energy tensor of the Chern-Simons scalar field. These balance laws could be used to describe the inspiral through adiabatic changes in the orbital parameters, which in turn would enhance the dephasing effect. Gravitational-wave observations of intermediate- or extreme-mass-ratio inspirals with advanced ground detectors or with the Laser Interferometer Space Antenna could use such dephasing to test the dynamical theory to unprecedented levels, thus
Applicability of the Newman-Janis algorithm to black hole solutions of modified gravity theories
NASA Astrophysics Data System (ADS)
Hansen, Devin; Yunes, Nicolás
2013-11-01
The Newman-Janis algorithm has been widely used to construct rotating black hole solutions from nonrotating counterparts. While this algorithm was developed within general relativity (GR), it has more recently been applied to nonrotating solutions in modified gravity theories. We find that the application of the Newman-Janis algorithm to an arbitrary non-GR spherically symmetric solution introduces pathologies in the resulting axially symmetric metric. This then establishes that, in general, the Newman-Janis algorithm should not be used to construct rotating black hole solutions outside of General Relativity.
Group theoretical interpretation of the modified gravity in de Sitter space
NASA Astrophysics Data System (ADS)
Dehghani, M.
2016-03-01
A framework has been presented for theoretical interpretation of various modified gravitational models which is based on the group theoretical approach and unitary irreducible representations (UIR's) of de Sitter (dS) group. In order to illustrate the application of the proposed method, a model of modified gravity has been investigated. The background field method has been utilized and the linearized modified gravitational field equation has been obtained in the 4-dimensional dS space-time as the background. The field equation has been written as the eigne-value equation of the Casimir operators of dS space using the flat 5-dimensional ambient space notations. The Minkowskian correspondence of the theory has been obtained by taking the zero curvature limit. It has been shown that under some simple conditions, the linearized modified field equation transforms according to two of the UIR's of dS group labeled by Π 2,1 ± and Π 2,2 ± in the discrete series. It means that the proposed modified gravitational theory can be a suitable one to describe the quantum gravitational effects in its linear approximation on dS space. The field equation has been solved and the solution has been written as the multiplication of a symmetric rank-2 polarization tensor and a massless scalar field using the ambient space notations. Also the two-point function has been calculated in the ambient space formalism. It is dS invariant and free of any theoretical problems.
Smoking guns of a bounce in modified theories of gravity through the spectrum of gravitational waves
NASA Astrophysics Data System (ADS)
Bouhmadi-López, Mariam; Morais, João; Henriques, Alfredo B.
2013-05-01
We present an inflationary model preceded by a bounce in a metric theory à la f(R), where R is the scalar curvature of the space-time. The model is asymptotically de Sitter such that the gravitational action tends asymptotically to an Einstein-Hilbert action with an effective cosmological constant; therefore, modified gravity affects only the early stages of the Universe. We then analyze the spectrum of the gravitational waves through the method of the Bogoliubov coefficients by two means: taking into account the gravitational perturbations due to the modified gravitational action in the f(R) setup and simply considering those perturbations inherent to the standard Einstein-Hilbert action. We show that there are distinctive (oscillatory) signals on the spectrum for very low frequencies; i.e., corresponding to modes that are currently entering the horizon.
Garfinkle, David; Pretorius, Frans; Yunes, Nicolas
2010-08-15
We perform a linear stability analysis of dynamical Chern-Simons modified gravity in the geometric optics approximation and find that it is linearly stable on the backgrounds considered. Our analysis also reveals that gravitational waves in the modified theory travel at the speed of light in Minkowski spacetime. However, on a Schwarzschild background the characteristic speed of propagation along a given direction splits into two modes, one subluminal and one superluminal. The width of the splitting depends on the azimuthal components of the propagation vector, is linearly proportional to the mass of the black hole, and decreases with the third inverse power of the distance from the black hole. Radial propagation is unaffected, implying that as probed by gravitational waves the location of the event horizon of the spacetime is unaltered. The analysis further reveals that when a high frequency, pure gravitational wave is scattered from a black hole, a scalar wave of comparable amplitude is excited, and vice versa.
Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.
Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella
2016-08-26
The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars. PMID:27610838
NASA Astrophysics Data System (ADS)
Obregón, Octavio; Cabo Bizet, Nana Geraldine
2016-03-01
Generalized information (entanglement) entropy(ies) that depend only on the probability (the density matrix) will be exhibited. It will be shown that these generalized information entropy(ies) are obtained by means of the superstatistics proposal and they correspond to generalized entanglement entropy(ies) that are at the same time a consequence of generalizing the Replica trick. Following the entropic force formulation, these generalized entropy(ies) provide a modified Newtońs law of gravitation. We discuss the difficulties to get an associated theory of gravity. Moreover, our results show corrections to the von Neumann entropy S0 that are larger than the usual UV ones and also than the corrections to the length dependent AdS3 entropy which result comparable to the UV ones. The correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT and the gravitational AdS3 entropies.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
V cosmological models in f (R, T) modified gravity with Λ (T) by using generation technique
NASA Astrophysics Data System (ADS)
Ahmed, Nasr; Pradhan, Anirudh; Fekry, M.; Alamri, Sultan Z.
2016-06-01
A new class of cosmological models in f (R, T) modified theories of gravity proposed by Harko et al. (2011), where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T, has been investigated for a specific choice of f (R, T) =f1 (R) +f2 (T) by generation of new solutions. Motivated by recent work of Pradhan et al. (2015) we have revisited the recent work of Ahmed and Pradhan (2014) by using a generation technique, it is shown that f (R, T) modified field equations are solvable for any arbitrary cosmic scale function. A class of new solutions for particular forms of cosmic scale functions have been investigated. In the present study we consider the cosmological constant Λ as a function of the trace of the stress energy-momentum-tensor, and dub such a model " Λ (T) gravity" where we specified a certain form of Λ (T) . Such models may exhibit better equability with the cosmological observations. The cosmological constant Λ is found to be a positive decreasing function of time which is supported by results from recent supernovae Ia observations. Expressions for Hubble's parameter in terms of redshift, luminosity distance redshift, distance modulus redshift and jerk parameter are derived and their significances are described in detail. The physical and geometric properties of the cosmological models are also discussed.
NASA Astrophysics Data System (ADS)
Gheorghiu, Tamara; Vacaru, Olivia; Vacaru, Sergiu I.
2014-12-01
We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity (GR) and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of the fundamental geometric/physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes display Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for embedded and nonholonomically constrained four-dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. Certain examples of exact solutions are analyzed and they are determined by contributions of a new type of interactions with sources in massive gravity and/or modified f(R,T) gravity. We conclude that by considering generic off-diagonal nonlinear parametric interactions in GR it is possible to mimic various effects in massive and/or modified gravity, or to distinguish certain classes of "generic" modified gravity solutions which cannot be encoded in GR.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.
2015-12-01
We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.
Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models
NASA Astrophysics Data System (ADS)
Nojiri, Shin'Ichi; Odintsov, Sergei D.
2011-08-01
The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
NASA Astrophysics Data System (ADS)
Tian, David W.; Booth, Ivan
2014-11-01
Inspired by the Wald-Kodama entropy S =A /(4 Geff) where A is the horizon area and Geff is the effective gravitational coupling strength in modified gravity with field equation Rμ ν-R gμ ν/2 = 8 π GeffTμν (eff) , we develop a unified and compact formulation in which the Friedmann equations can be derived from thermodynamics of the Universe. The Hawking and Misner-Sharp masses are generalized by replacing Newton's constant G with Geff, and the unified first law of equilibrium thermodynamics is supplemented by a nonequilibrium energy dissipation term E which arises from the revised continuity equation of the perfect-fluid effective matter content and is related to the evolution of Geff. By identifying the mass as the total internal energy, the unified first law for the interior and its smooth transit to the apparent horizon yield both Friedmann equations, while the nonequilibrium Clausius relation with entropy production for an isochoric process provides an alternative derivation on the horizon. We also analyze the equilibrium situation Geff=G =constant , provide a viability test of the generalized geometric masses, and discuss the continuity/conservation equation. Finally, the general formulation is applied to the Friedmann-Robertson-Walker cosmology of minimally coupled f (R ), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R ,G ) generalized Gauss-Bonnet and dynamical Chern-Simons gravity. In these theories we also analyze the f (R )-Brans-Dicke equivalence, find that the chameleon effect causes extra energy dissipation and entropy production, geometrically reconstruct the mass ρmV for the physical matter content, and show the self-inconsistency of f (R ,G ) gravity in problems involving Geff.
Nesseris, Savvas
2009-02-15
We consider theories with an arbitrary coupling between matter and gravity and obtain the perturbation equation of matter on subhorizon scales. Also, we derive the effective gravitational constant G{sub eff} and two parameters {sigma} and {eta}, which along with the perturbation equation of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation for the scale factor a in terms of time t and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model.
Asaba, Shinsuke; Hikage, Chiaki; Koyama, Kazuya; Zhao, Gong-Bo; Hojjati, Alireza; Pogosian, Levon E-mail: hikage@kmi.nagoya-u.ac.jp E-mail: gong-bo.zhao@port.ac.uk E-mail: levon@sfu.ca
2013-08-01
We perform a principal component analysis to assess ability of future observations to measure departures from General Relativity in predictions of the Poisson and anisotropy equations on linear scales. In particular, we focus on how the measurements of redshift-space distortions (RSD) observed from spectroscopic galaxy redshift surveys will improve the constraints when combined with lensing tomographic surveys. Assuming a Euclid-like galaxy imaging and redshift survey, we find that adding the 3D information decreases the statistical uncertainty by a factor between 3 and 7 compared to the case when only observables from lensing tomographic surveys are used. We also find that the number of well-constrained modes increases by a factor between 3 and 6. Our study indicates the importance of joint galaxy imaging and redshift surveys such as SuMIRe and Euclid to give more stringent tests of the ΛCDM model and to distinguish between various modified gravity and dark energy models.
Post-Newtonian parameters and cosmological constant of screened modified gravity
NASA Astrophysics Data System (ADS)
Zhang, Xing; Zhao, Wen; Huang, He; Cai, Yifu
2016-06-01
Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which can generate a screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of the scalar field in the theories can drive the acceleration of the late Universe. In this paper, we calculate the parametrized post-Newtonian (PPN) parameters γ and β , the effective gravitational constant Geff, and the effective cosmological constant Λ for SMG with a general potential V and coupling function A . The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron, and dilaton models). Using the formulas to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.
Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin; Wu, Shuang-Qing
2008-12-01
Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv: 0707. 2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity’s rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.
Statefinder diagnosis for holographic dark energy models in modified f(R,T) gravity
NASA Astrophysics Data System (ADS)
Singh, C. P.; Kumar, Pankaj
2016-05-01
In this paper we consider the non-viscous and viscous holographic dark energy models in modified f(R,T) gravity in which the infra-red cutoff is set by the Hubble horizon. We find power-law and exponential form of scale factor for non-viscous and viscous models, respectively. It is shown that the Hubble horizon as an infra-red cut-off is suitable for both the models to explain the recent accelerated expansion. In non-viscous model, we find that there is no phase transition. However, viscous model explains the phase transition from decelerated phase to accelerated phase. The cosmological parameters like deceleration parameter and statefinder parameters are discussed to analyze the dynamics of evolution of the Universe for both the models. The trajectories for viscous model are plotted in r-s and r-q planes to discriminate our model with the existing dark energy models which show the quintessence like behavior.
Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity
NASA Astrophysics Data System (ADS)
Shaikh, A. Y.
2016-07-01
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.
NASA Astrophysics Data System (ADS)
Liu, Molin; Yang, Yuling; Han, Yu; Zhao, Zonghua; Lu, Jianbo
2016-07-01
In various gravity theories, Friedmann equations can be cast to a form of the first law of thermodynamics in a Friedmann-Robertson-Walker (FRW) cosmological setup. However, this result failed in recent infrared (IR) modified Hořava-Lifshitz (HL) gravity. The difficulty stems from the fact that HL gravity is Lorentz-violating. Motivated by this problem, we use the Misner-Sharp mass to investigate the thermodynamics near the apparent horizon in HL cosmology. We find that the Friedmann equations can be derived from the first law of thermodynamics. The Misner-Sharp mass used here inherits the specific properties of HL gravity since it is directly from the gravitational action of HL theory. We also prove that the first law of thermodynamics with logarithmic entropy still holds at the apparent horizon in FRW. The results suggest that the general prescription of deriving the field equation from thermodynamics still works in the HL cosmology.
NASA Astrophysics Data System (ADS)
Valkenburg, Wessel; Hu, Bin
2015-09-01
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.
Zhao, Gong-Bo
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.
Friedmann Cosmology with Matter Creation in Modified f( R, T) Gravity
NASA Astrophysics Data System (ADS)
Singh, Vijay; Singh, C. P.
2016-02-01
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f( R, T) ( R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f( R, T)= R+2 f( T) with "gamma-law" equation of state p = ( γ-1) ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3 β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.
Modified Eddington-inspired-Born-Infeld Gravity with a Trace Term
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2016-01-01
In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g_{μ ν }R being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g_{μ ν }. This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic "quasi-sudden" singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.
Modified Eddington-inspired-Born-Infeld gravity with a trace term
Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin
2016-01-22
In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term gμνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric gμν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which weremore » not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.« less
Observational tests of a two parameter power-law class modified gravity in Palatini formalism
NASA Astrophysics Data System (ADS)
Baghram, Shant; Movahed, M. Sadegh; Rahvar, Sohrab
2009-09-01
CONTEXT: In this work we propose a modified gravity action f(R)=(Rn-R0n)1/n with two free parameters of n and R0 and derive the dynamics of a universe for this action in the Palatini formalism. AIM: We do a cosmological comparison of this model with observed data to find the best parameters of a model in a flat universe. METHOD: To constrain the free parameters of model we use SNIa type Ia data in two sets of gold and union samples, CMB-shift parameter, baryon acoustic oscillation, gas mass fraction in cluster of galaxies, and large-scale structure data. RESULT: The best fit from the observational data results in the parameters of model in the range of n=0.98-0.08+0.08 and ΩM=0.25+0.1-0.1 with one sigma level of confidence where a standard ΛCDM universe resides in this range of solution.
Harko, T.
2010-02-15
We show that in modified f(R) type gravity models with nonminimal coupling between matter and geometry, both the matter Lagrangian and the energy-momentum tensor are completely and uniquely determined by the form of the coupling. This result is obtained by using the variational formulation for the derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-momentum tensor of the matter in modified gravity models with nonminimal coupling is more general than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supplementary, equation of state dependent term, which could be related to the elastic stresses in the body, or to other forms of internal energy. Therefore, the extra force induced by the coupling between matter and geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific choice of the matter Lagrangian, and it is nonzero in the case of a fluid of dust particles.
NASA Astrophysics Data System (ADS)
Harko, T.
2010-02-01
We show that in modified f(R) type gravity models with nonminimal coupling between matter and geometry, both the matter Lagrangian and the energy-momentum tensor are completely and uniquely determined by the form of the coupling. This result is obtained by using the variational formulation for the derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-momentum tensor of the matter in modified gravity models with nonminimal coupling is more general than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supplementary, equation of state dependent term, which could be related to the elastic stresses in the body, or to other forms of internal energy. Therefore, the extra force induced by the coupling between matter and geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific choice of the matter Lagrangian, and it is nonzero in the case of a fluid of dust particles.
Is modified gravity required by observations? An empirical consistency test of dark energy models
NASA Astrophysics Data System (ADS)
Wang, Sheng; Hui, Lam; May, Morgan; Haiman, Zoltán
2007-09-01
We apply the technique of parameter splitting to existing cosmological data sets, to check for a generic failure of dark energy models. Given a dark energy parameter, such as the energy density ΩΛ or equation of state w, we split it into two meta-parameters with one controlling geometrical distances, and the other controlling the growth of structure. Observational data spanning Type Ia Supernovae, the cosmic microwave background (CMB), galaxy clustering, and weak gravitational lensing statistics are fit without requiring the two meta-parameters to be equal. This technique checks for inconsistency between different data sets, as well as for internal inconsistency within any one data set (e.g., CMB or lensing statistics) that is sensitive to both geometry and growth. We find that the cosmological constant model is consistent with current data. Theories of modified gravity generally predict a relation between growth and geometry that is different from that of general relativity. Parameter splitting can be viewed as a crude way to parametrize the space of such theories. Our analysis of current data already appears to put sharp limits on these theories: assuming a flat universe, current data constrain the difference ΔΩΛ=ΩΛ(geom)-ΩΛ(grow) to be -0.0044-0.0057-0.0119+0.0058+0.0108 (68% and 95% C.L. respectively); allowing the equation of state w to vary, the difference Δw=w(geom)-w(grow) is constrained to be 0.37-0.36-0.53+0.37+1.09. Interestingly, the region w(grow)>w(geom), which should be generically favored by theories that slow structure formation relative to general relativity, is quite restricted by data already. We find w(grow)<-0.80 at 2σ. As an example, the best-fit flat Dvali-Gabadadze-Porrati model approximated by our parametrization lies beyond the 3σ contour for constraints from all the data sets.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-12-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
Quantum Corrections to Entropic Gravity
NASA Astrophysics Data System (ADS)
Chen, Pisin; Wang, Chiao-Hsuan
2013-01-01
The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.
Moment of inertia of neutron star crust in alternative and modified theories of gravity
NASA Astrophysics Data System (ADS)
Staykov, Kalin V.; Ekşi, K. Yavuz; Yazadjiev, Stoytcho S.; Türkoǧlu, M. Metehan; Arapoǧlu, A. Savaş
2016-07-01
The glitch activity of young pulsars arises from the exchange of angular momentum between the crust and the interior of the star. Recently, it was inferred that the moment of inertia of the crust of a neutron star is not sufficient to explain the observed glitches. Such estimates are presumed in Einstein's general relativity in describing the hydrostatic equilibrium of neutron stars. The crust of the neutron star has a spacetime curvature of 14 orders of magnitude larger than that probed in solar system tests. This makes gravity the weakest constrained physics input in the crust-related processes. We calculate the ratio of the crustal to the total moment of inertia of neutron stars in the scalar-tensor theory of gravity and the nonperturbative f (R )=R +a R2 gravity. We find for the former that the crust-to-core ratio of the moment of inertia does not change significantly from what is inferred in general relativity. For the latter, we find that the ratio increases significantly from what is inferred in general relativity in the case of high mass objects. Our results suggest that the glitch activity of pulsars may be used to probe gravity models, although the gravity models explored in this work are not appropriate candidates.
A Modified Wilson Cycle Scenario Based on Thermo-Mechanical Model
NASA Astrophysics Data System (ADS)
Baes, M.; Sobolev, S. V.
2014-12-01
The major problem of classical Wilson Cycle concept is the suggested conversion of the passive continental margin to the active subduction zone. Previous modeling studies assumed either unusually thick felsic continental crust at the margin (over 40 km) or unusually low lithospheric thickness (less than 70 km) to simulate this process. Here we propose a new triggering factor in subduction initiation process that is mantle suction force. Based on this proposal we suggest a modification of Wilson Cycle concept. Sometime after opening and extension of oceanic basin, continental passive margin moves over the slab remnants of the former active subduction zones in deep mantle. Such slab remnants or deep slabs of neighboring active subduction zones produce a suction mantle flow introducing additional compression at the passive margin. It results in the initiation of a new subduction zone, hence starting the closing phase of Wilson Cycle. In this scenario the weakness of continental crust near the passive margin which is inherited from the rifting phase and horizontal push force induced from far-field topographic gradient within the continent facilitate and speed up subduction initiation process. Our thermo-mechanical modeling shows that after a few tens of million years a shear zone may indeed develop along the passive margin that has typical two-layered 35 km thick continental crust and thermal lithosphere thicker than 100 km if there is a broad mantle down-welling flow below the margin. Soon after formation of this shear zone oceanic plate descends into mantle and subduction initiates. Subduction initiation occurs following over-thrusting of continental crust and retreating of future trench. In models without far-field topographic gradient within the continent subduction initiation requires weaker passive margin. Our results also indicate that subduction initiation depends on several parameters such as magnitude, domain size and location of suction mantle flow
The interaction between dark energy and dark matter and its connection to the modified gravity
NASA Astrophysics Data System (ADS)
He, Jian-Hua; Wang, Bin
2015-10-01
We review the conformal equivalence in describing the background expansion of the universe by f(R) gravity both in the Jordan frame and the Einstein frame. In the Jordan frame, we present the general analytic expression for f(R) models that have the same expansion history as the ΛCDM model. This analytic form can provide further insights on how cosmology can be used to test the f(R) gravity at the largest scales. Moreover we present a systematic and self-consistent way to construct the viable f(R) model in Jordan frame using the mass dilation rate function from the Einstein frame through the conformal transformation. In addition, we extend our study to the linear perturbation theories and we further exhibit the equivalence of the f(R) gravity presented in the Jordan frame and Einstein frame in the perturbed space-time. We argue that this equivalence has solid physics root.
Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity
NASA Astrophysics Data System (ADS)
Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar
2016-07-01
The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.
NASA Astrophysics Data System (ADS)
Das, Upasana; Mukhopadhyay, Banibrata
2015-05-01
We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!
NASA Technical Reports Server (NTRS)
Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke
1989-01-01
The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.
Vector-tensor nature of Bekenstein's relativistic theory of modified gravity
Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.
2006-08-15
Bekenstein's theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.
Cylindrical solutions in braneworld gravity
Khoeini-Moghaddam, S.; Nouri-Zonoz, M.
2005-09-15
In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.; Karagiannakis, N.; Park, Miok
2015-03-01
We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential F (R ) gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and noncollisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and noncollisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the resulting picture of the cosmological evolution is clear, since collisional and noncollisional universes can be clearly distinguished. Interestingly enough, since it is known that the oscillations of the effective equation of state parameter around the phantom divide are undesirable and unwanted in F (R ) gravities, when these are considered for redshifts near the matter domination era and before, in the curvature corrected exponential model with collisional matter that we study here there exist oscillations that never cross the phantom divide. Therefore, this rather unwanted feature of the effective equation of state parameter is also absent in the collisional matter filled universe.
Corrected constraints on big bang nucleosynthesis in a modified gravity model of f (R )∝Rn
NASA Astrophysics Data System (ADS)
Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki
2015-05-01
Big bang nucleosynthesis in a modified gravity model of f (R )∝Rn is investigated. The only free parameter of the model is a power-law index n . We find cosmological solutions in a parameter region of 1
A modified acceleration-based monthly gravity field solution from GRACE data
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei
2015-08-01
This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.
Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars
NASA Astrophysics Data System (ADS)
Prabhu, K. N.; Hemanna, P.
2006-06-01
Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.
First law of thermodynamics in IR modified Horava-Lifshitz gravity
Wang Mengjie; Jing Jiliang; Ding Chikun; Chen Songbai
2010-04-15
We study the first law of thermodynamics in IR modified Horava-Lifshitz spacetime. Based on the Bekenstein-Hawking entropy, we obtain the integral formula and the differential formula of the first law of thermodynamics for the Kehagias-Sfetsos black hole by treating {omega} as a new state parameter and redefining a mass that is just equal to M{sub ADM} obtained by Myung [32] if we take {alpha}=3{pi}/8.
Iorio, L.
2011-05-01
We analytically work out the orbital effects caused by a Rindler-type extra-acceleration A{sub Rin} which naturally arises in some recent models of modified gravity at large distances. In particular, we focus on the perturbations induced by it on the two-body range ρ and range-rate ρ-dot which are commonly used in satellite and planetary investigations as primary observable quantities. The constraints obtained for A{sub Rin} by comparing our calculations with the currently available range and range-rate residuals for some of the major bodies of the solar system, obtained without explicitly modeling A{sub Rin}, are 1–2 × 10{sup −13} m s{sup −2} (Mercury and Venus), 1 × 10{sup −14} m s{sup −2} (Saturn), 1 × 10{sup −15} m s{sup −2} (Mars), while for a terrestrial Rindler acceleration we have an upper bound of 5 × 10{sup −16} m s{sup −2} (Moon). The constraints inferred from the planets' range and range-rate residuals are confirmed also by the latest empirical determinations of the corrections Δdot varpi to the usual Newtonian/Einsteinian secular precessions of the planetary longitudes of perihelia varpi: moreover, the Earth yields A{sub Rin} ≤ 7 × 10{sup −16} m s{sup −2}. Another approach which could be followed consists of taking into account A{sub Rin} in re-processing all the available data sets with accordingly modified dynamical models, and estimating a dedicated solve-for parameter explicitly accounting for it. Anyway, such a method is time-consuming. A preliminary analysis likely performed in such a way by a different author yields A ≤ 8 × 10{sup −14} m s{sup −2} at Mars' distance and A ≤ 1 × 10{sup −14} m s{sup −2} at Saturn's distance. The method adopted here can be easily and straightforwardly extended to other long-range modified models of gravity as well.
A cosmological study in massive gravity theory
Pan, Supriya Chakraborty, Subenoy
2015-09-15
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
A Modified Theory of Gravity with Torsion and Its Applications to Cosmology and Particle Physics
NASA Astrophysics Data System (ADS)
Fabbri, Luca; Vignolo, Stefano
2012-10-01
In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German Eigenspinoren des LadungsKonjugationsOperators designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field's self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.
Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku
2010-09-15
We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.
Chen, Liang; Yang, Zhifeng; Chen, Bin
2013-01-01
This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922
Chen, Liang; Yang, Zhifeng; Chen, Bin
2013-01-01
This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922
Modified Theories of Gravity with Nonminimal Coupling and the Faint Young Sun Paradox
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2016-01-01
A certain general class of modified gravitational theories with nonminimal coupling predicts a "pressure"-type, non-geodesic acceleration for a non-rotating, massive test particle. The resulting orbital perturbations for a two-body system consist of secular rates of change of all the standard orbital elements. The resulting variation of the mutual distance yields a physical mechanism which has the potential capability to explain, in principle, the Faint Young Sun Paradox in terms of a recession of the Earth from the Sun during the Archean.
Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.
2015-01-01
Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928
Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P
2015-01-01
Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928
The accelerating universe and other cosmological aspects of modified gravity models
NASA Astrophysics Data System (ADS)
de Felice, Antonio
I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w < -1 dark energy, without violating any energy conditions. I examine, in chapter 3, whether this possibility is phenomenologically viable by studying Brans-Dicke models and characterizing both the naturalness of the models themselves, and additional observational constraints from limits on the time-dependence of Newton's constant. I find that only highly contrived models would lead observers to measure w < -1. In chapter 4, I consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. I investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.
Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Hsu, Houze; Chen, Wu; Ju, Xiaolei; Lou, Lizhi
2015-03-01
In this study, a new time series of Gravity Recovery and Climate Experiment (GRACE) monthly solutions, complete to degree and order 60 spanning from January 2003 to August 2011, has been derived based on a modified short-arc approach. Our models entitled Tongji-GRACE01 are available on the website of International Centre for Global Earth Models http://icgem.gfz-potsdam.de/ICGEM/. The traditional short-arc approach, with no more than 1 h arcs, requires the gradient corrections of satellite orbits in order to reduce the impact of orbit errors on the final solution. Here the modified short-arc approach has been proposed, which has three major differences compared to the traditional one: (1) All the corrections of orbits and range rate measurements are solved together with the geopotential coefficients and the accelerometer biases using a weighted least squares adjustment; (2) the boundary position parameters are not required; and (3) the arc length can be extended to 2 h. The comparisons of geoid degree powers and the mass change signals in the Amazon basin, the Antarctic, and Antarctic Peninsula demonstrate that our model is comparable with the other existing models, i.e., the Centre for Space Research RL05, Jet Propulsion Laboratory RL05, and GeoForschungsZentrum RL05a models. The correlation coefficients of the mass change time series between our model and the other models are better than 0.9 in the Antarctic and Antarctic Peninsula. The mass change rates in the Antarctic and Antarctic Peninsula derived from our model are -92.7 ± 38.0 Gt/yr and -23.9 ± 12.4 Gt/yr, respectively, which are very close to those from other three models and with similar spatial patterns of signals.
NASA Astrophysics Data System (ADS)
Karami, K.; Khaledian, M. S.
2011-03-01
Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f( R) theory. We reconstruct the different f( R) modified gravity models in the spatially flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe. We also obtain the equation of state parameter of the corresponding f( R)-gravity models. We conclude that the holographic and new agegraphic f( R)-gravity models can behave like phantom or quintessence models. Whereas the equation of state parameter of the entropy-corrected models can transit from quintessence state to phantom regime as indicated by recent observations.
Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu
2015-01-01
The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district
NASA Astrophysics Data System (ADS)
Tian, David Wenjie; Booth, Ivan
2015-07-01
The thermodynamics of the Universe is restudied by requiring its compatibility with the holographic-style gravitational equations that govern the dynamics of both the cosmological apparent horizon and the entire Universe, and possible solutions are proposed to the existent confusions regarding the apparent-horizon temperature and the cosmic entropy evolution. We start from the generic Lambda cold dark matter cosmology of general relativity to establish a framework for the gravitational thermodynamics. The Cai-Kim Clausius equation δ Q =TAd SA=-d EA=-AAψt for the isochoric process of an instantaneous apparent horizon indicates that the Universe and its horizon entropies encode the positive-heat-out thermodynamic sign convention, which encourages us to adjust the traditional positive-heat-in Gibbs equation into the positive-heat-out version d Em=-Tmd Sm-Pmd V . It turns out that the standard and the generalized second laws (GSLs) of nondecreasing entropies are always respected by the event-horizon system as long as the expanding Universe is dominated by nonexotic matter -1 ≤wm≤1 , while for the apparent-horizon simple open system, the two second laws hold if -1 ≤wm<-1 /3 ; also, the artificial local equilibrium assumption is abandoned in the GSL. All constraints regarding entropy evolution are expressed by the equation-of-state parameter, which shows that from a thermodynamic perspective the phantom dark energy is less favored than the cosmological constant and the quintessence. Finally, the whole framework is extended from general relativity and Lambda cold dark matter to modified gravities with field equations Rμ ν-R gμ ν/2 =8 π GeffTμν (eff) . Furthermore, this paper argues that the Cai-Kim temperature is more suitable than Hayward, both temperatures are independent of the inner or outer trappedness of the apparent horizon, and the Bekenstein-Hawking and Wald entropies cannot unconditionally apply to the event and particle horizons.
Constraining Models of Modified Gravity with the Double Pulsar PSR J0737-3039A/B System
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo; Ruggiero, Matteo Luca
In this paper we use ΔP = -1.772341 ± 13.153788 s between the phenomenologically determined orbital period Pb of the PSR J0737-3039A/B double pulsar system and the purely Keplerian period P(0)=2π √ {a3/G(m A+m B)} calculated with the system's parameters, determined independently of the third Kepler law itself, in order to put constraints on some models of modified gravity (f(R), Yukawa-like fifth force, MOND). The major source of error affecting ΔP is not the one in the phenomenologically measured period (δPb = 4×10-6 s), but the systematic uncertainty δP(0) in the computed Keplerian one due to the relative semimajor axis a mainly caused, in turn, by the errors in the ratio { R} of the pulsars' masses and in sin i. We get |κ| ≤ 0.8 × 10-26 m-2 for the parameter that in the f(R) framework is a measure of the nonlinearity of the theory, |α| ≤ 5.5 × 10-4 for the fifth-force strength parameter (for λ ≈ a = 0.006 AU). The effects predicted by the strong-acceleration regime of MOND are far too small to be constrained with some effectiveness today and in the future as well. In view of the continuous timing of such an important system, it might happen that in the near future it will be possible to obtain somewhat tighter constraints.
NASA Astrophysics Data System (ADS)
Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Shaw, Douglas
2010-09-01
We consider the dilaton in the strong string-coupling limit and elaborate on the original idea of Damour and Polyakov whereby the dilaton coupling to matter is minimized and vanishes at a finite value of the dilaton field. Combining this type of coupling with an exponential potential, the effective potential of the dilaton becomes matter density dependent. We study the background cosmology, showing that the dilaton can play the role of dark energy. We also analyze the constraints imposed by the absence of violation of the equivalence principle. Imposing these constraints and assuming that the dilaton plays the role of dark energy, we consider the consequences of the dilaton on large scale structures and, in particular, the behavior of the slip functions and the growth index at low redshift.
NASA Astrophysics Data System (ADS)
Karami, Kayoomars; Abdolmaleki, Asrin
2013-07-01
In the present work, we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models. We also obtain the equation of state parameters of the corresponding f(T)-gravity models. We conclude that the original holographic and new agegraphic f(T)-gravity models behave like the phantom or quintessence model, whereas in the entropy-corrected models, the equation of state parameter can justify the transition from the quintessence state to the phantom regime as indicated by the recent observations.
NASA Astrophysics Data System (ADS)
Qiang, Li-E.; Xu, Peng
2015-08-01
Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.
Constraining modified gravitational theories by weak lensing with Euclid
Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto
2011-01-15
Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.
Taddei, Laura
2015-02-01
Most cosmological constraints on modified gravity are obtained assuming that the cosmic evolution was standard ΛCDM in the past and that the present matter density and power spectrum normalization are the same as in a ΛCDM model. Here we examine how the constraints change when these assumptions are lifted. We focus in particular on the parameter Y (also called G{sub eff}) that quantifies the deviation from the Poisson equation. This parameter can be estimated by comparing with the model-independent growth rate quantity fσ{sub 8}(z) obtained through redshift distortions. We reduce the model dependency in evaluating Y by marginalizing over σ{sub 8} and over the initial conditions, and by absorbing the degenerate parameter Ω{sub m,0} into Y. We use all currently available values of fσ{sub 8}(z). We find that the combination Y-circumflex =YΩ{sub m,0}, assumed constant in the observed redshift range, can be constrained only very weakly by current data, Y-circumflex =0.28{sub −0.23}{sup +0.35} at 68% c.l. We also forecast the precision of a future estimation of Y-circumflex in a Euclid-like redshift survey. We find that the future constraints will reduce substantially the uncertainty, Y-circumflex =0.30{sub −0.09}{sup +0.08} , at 68% c.l., but the relative error on Y-circumflex around the fiducial remains quite high, of the order of 30%. The main reason for these weak constraints is that Y-circumflex is strongly degenerate with the initial conditions, so that large or small values of Y-circumflex are compensated by choosing non-standard initial values of the derivative of the matter density contrast. Finally, we produce a forecast of a cosmological exclusion plot on the Yukawa strength and range parameters, which complements similar plots on laboratory scales but explores scales and epochs reachable only with large-scale galaxy surveys. We find that future data can constrain the Yukawa strength to within 3% of the Newtonian one if the range is around a few
NASA Astrophysics Data System (ADS)
Polukhina, Oxana; Kurkin, Andrey; Vladykina, Ekaterina
2010-05-01
Three-layer stratification is proved to be a proper approximation of sea water density and background current profiles in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because, in the symmetric about mid-depth case (equal thicknesses of the lower and the upper layers, equal small density jumps on the interfaces), it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, which are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. In this situation the nonlinear transformation of the internal wave disturbances, as is customary, is determined by the influence of the next-order - cubic - nonlinear term in asymptotic series, and for three-layer fluid model the cubic nonlinearity coefficient can have either sign depending on the layer depths (in contrast to traditional two-layer approximation, for which cubic nonlinearity is always negative). Appropriate nonlinear evolutionary equation is modified Korteweg - de Vries equation (mKdV). It is well-known integrable equation of KdV-type, providing solitary wave and breather solutions for positive cubic nonlinearity. The property of sign change for cubic nonlinear coefficient in the mKdV for internal gravity waves in symmetric three-layer fluid requires taking into account next-order nonlinear term (or terms), therefore higher-order extensions of mKdV equation are necessary to provide improved description of internal wave processes. In the present study we derive nonlinear evolution equations for both interfaces in symmetric three-layer fluid (under Boussinesq approximation) up to the fourth order in small parameters of nonlinearity (epsilon) and dispersion (?). Applying mKdV-scaling for ratio of these parameters (? = epsilon2) we obtain high-order mKdV equations for interfaces (they have different signs of
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo; Ruggiero, Matteo Luca
We consider the Kehagias-Sfetsos (KS) solution in the Ho!ava-Lifshitz gravity that is the analog of the general relativistic Schwarzschild black hole. In the weak-field and slow-motion approximation, we, first, work out the correction to the third Kepler law of a test particle induced by such a solution. Then, we compare it to the phenomenologically determined orbital period of the transiting extrasolar planet HD209458b "Osiris" to preliminarily obtain an order-ofmagnitude lower bound on the KS dimensionless parameter ω0 ≥2265; 1.4 " 10-18. As suggestions for further analyses, the entire data set of HD209458b should be re-processed by explicitly modeling KS gravity as well, and one or more dedicated solve-for parameter(s) should be estimated.
ERIC Educational Resources Information Center
Tomonaga, Masaki; Imura, Tomoko; Mizuno, Yuu; Tanaka, Masayuki
2007-01-01
Young human children at around 2 years of age fail to predict the correct location of an object when it is dropped from the top of an S-shape opaque tube. They search in the location just below the releasing point (Hood, 1995). This type of error, called a "gravity bias", has recently been reported in dogs and monkeys. In the present study, we…
The bouncing cosmology with F(R) gravity and its reconstructing
NASA Astrophysics Data System (ADS)
Amani, Ali R.
2016-04-01
In this paper, we study F(R) gravity by Hu-Sawicki model in Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations are calculated by modified gravity action, and then the obtained Friedmann equations are written in terms of standard Friedmann equations. Next, the behavior of bouncing cosmology is investigated in the modified gravity model, i.e. this behavior can solve the problem of nonsingularity in standard big bang cosmology. We plot the cosmological parameters in terms of cosmic time and then the bouncing condition is investigated. In what follows, we reconstruct the modified gravity by redshift parameter, and also graphs of cosmological parameters are plotted in terms of redshift, in which the figures show us an accelerated expansion of universe. Finally, the stability of the scenario is investigated by a function as sound speed, and the graph of sound speed versus redshift shows us that there is the stability in late-time.
Bender, Dorothea; Diaz-Pulido, Guillermo; Dove, Sophie
2014-02-01
Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre-industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI ("business-as-usual") scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels. PMID:26988019
NASA Astrophysics Data System (ADS)
Suvorov, Arthur George; Melatos, Andrew
2016-01-01
We construct multipole moments for stationary, asymptotically flat, spacetime solutions to higher-order curvature theories of gravity. The moments are defined using 3 +1 techniques involving timelike Killing vector constructions as in the classic papers by Geroch and Hansen. Using the fact that the Kerr-Newman metric is a vacuum solution to a particular class of f (R ) theories of gravity, we compute all its moments, and find that they admit recurrence relations similar to those for the Kerr solution in general relativity. It has been proposed previously that modeling the measured frequencies of quasiperiodic oscillations from galactic microquasars enables experimental tests of the no-hair theorem. We explore the possibility that, even if the no-hair relation is found to break down in the context of general relativity, there may be an f (R ) counterpart that is preserved. We apply the results to the microquasars GRS 1915 +105 and GRO J1655-40 using the diskoseismology and kinematic resonance models, and constrain the spins and "charges" of their black holes.
GLASS JR.,ROBERT J.; CONRAD,STEPHEN H.; YARRINGTON,LANE
2000-03-08
The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.; Veliev, Elşen Veli; Yazici, Enis
2014-09-01
We show that geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in f(R, T)-modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. Some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed.
Apostolopoulos, Pantelis S.; Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria
2007-10-15
We extend the covariant analysis of the brane cosmological evolution in order to take into account, apart from a general matter content and an induced-gravity term on the brane, a Gauss-Bonnet term in the bulk. The gravitational effect of the bulk matter on the brane evolution can be described in terms of the total bulk mass as measured by a bulk observer at the location of the brane. This mass appears in the effective Friedmann equation through a term characterized as generalized dark radiation that induces mirage effects in the evolution. We discuss the normal and self-accelerating branches of the combined system. We also derive the Raychaudhuri equation that can be used in order to determine if the cosmological evolution is accelerating.
Phenomenology of effective geometries from quantum gravity
NASA Astrophysics Data System (ADS)
Torromé, Ricardo Gallego; Letizia, Marco; Liberati, Stefano
2015-12-01
In a recent paper [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015)] a general mechanism for the emergence of cosmological spacetime geometry from a quantum gravity setting was devised and a departure from standard dispersion relations for an elementary particle was predicted. We elaborate here on this approach extending the results obtained in that paper and showing that generically such a framework will not lead to higher order modified dispersion relations in the matter sector. Furthermore, we shall discuss possible phenomenological constraints to this scenario showing that spacetime will have to be classical to a very high degree by now in order to be consistent with current observations.
Viability of the Matter Bounce Scenario
NASA Astrophysics Data System (ADS)
de Haro, Jaume; Amorós, Jaume
2015-04-01
It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.
Cosmological constraints on the modified entropic force model
NASA Astrophysics Data System (ADS)
Wei, Hao
2010-08-01
Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can be accelerated without dark energy. In the present work, we consider the cosmological constraints on the MEF model, and successfully constrain the model parameters to a narrow range. We also discuss many other issues of the MEF model. In particular, we clearly reveal the implicit root to accelerate the universe in the MEF model.
On the stability of Einstein static universe in doubly general relativity scenario
NASA Astrophysics Data System (ADS)
Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F.
2015-12-01
By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the "emergent universe" scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an "Einstein static universe" (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the "emergent universe". We show that in the absence and presence of an energy-dependent cosmological constant Λ (ɛ ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Chen, Wu; Hsu, Houze
2015-09-01
The modified short arc approach, where the position vector in force model are regarded as pseudo observation, is implemented in the SAtellite Gravimetry Analysis Software (SAGAS) developed by Tongji university. Based on the SAGAS platform, a static gravity field model (namely Tongji-GRACE01) complete to degree and order 160 is computed from 49 months of real GRACE Level-1B data spanning the period 2003-2007 (including the observations of K-band range-rate, reduced dynamic orbits, non-conservative accelerations and altitudes). The Tongji-GRACE01 model is compared with the recent GRACE-only models (such as GGM05S, AIUB-GRACE03S, ITG-GRACE03, ITG-GRACE2010S, and ITSG-GRACE2014S) and validated with GPS-leveling data sets in different countries. The results show that the Tongji-GRACE01 model has a considered quality as GGM05S, AIUB-GRACE03S and ITG-GRACE03. The Tongji-GRACE01 model is available at the International Centre for Global Earth Models (ICGEM) web page (http://icgem.gfz-potsdam.de/ICGEM/).
Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity
Nozari, Kourosh; Azizi, Tahereh; Setare, M.R. E-mail: t.azizi@umz.ac.ir
2009-10-01
We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.
An extended matter bounce scenario: current status and challenges
NASA Astrophysics Data System (ADS)
de Haro, Jaume; Cai, Yi-Fu
2015-08-01
As an alternative to the paradigm of slow roll inflation, we propose an extended scenario of the matter bounce cosmology in which the Universe has experienced a quasi-matter contracting phase with a variable background equation of state parameter. This extended matter bounce scenario can be realized by considering a single scalar field evolving along an approximately exponential potential. Our result reveals that the rolling of the scalar field in general leads to a running behavior on the spectral index of primordial cosmological perturbations and a negative running can be realized in this model. We constrain the corresponding parameter space by using the newly released Planck data. To apply this scenario, we revisit bouncing cosmologies within the context of modified gravity theories, in particular, the holonomy corrected loop quantum cosmology and teleparallel F( T) gravity. A gravitational process of reheating is presented in such a matter bounce scenario to demonstrate the condition of satisfying current observations. We also comment on several unresolved issues that often appear in matter bounce models.
Alternative scenarios utilizing nonterrestrial resources
NASA Technical Reports Server (NTRS)
Eldred, Charles H.; Roberts, Barney B.
1992-01-01
A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.
Large-scale structure in f(T) gravity
Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.
2011-05-15
In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.
Scenarios for gluino coannihilation
NASA Astrophysics Data System (ADS)
Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.
2016-02-01
We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m χ ≲ 8 TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly- mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.
Probing scalar tensor theories for gravity in redshift space
NASA Astrophysics Data System (ADS)
Sabiu, Cristiano G.; Mota, David F.; Llinares, Claudio; Park, Changbom
2016-07-01
We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discriminate between the models. We compare Λ cold dark matter (ΛCDM) simulations to various modified gravity scenarios and find consistency with previous work in terms of two-point statistics in real and redshift space. However, using higher-order statistics such as the three-point correlation function in redshift space we find significant deviations from ΛCDM hinting that higher-order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.
New observational constraints on f(T) gravity from cosmic chronometers
NASA Astrophysics Data System (ADS)
Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.
2016-08-01
We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f(T) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f(T) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals that for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f(T) gravity is consistent with observations, and it can serve as a candidate for modified gravity.
Bounce universe history from unimodular F (R ) gravity
NASA Astrophysics Data System (ADS)
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-04-01
In this paper we investigate how to realize various quite well-known cosmological bouncing models in the context of the recently developed unimodular F (R ) gravity. Particularly, we shall study the matter bounce scenario, the singular bounce, the superbounce and a symmetric bounce scenario. We present the behavior of the Hubble radius for each of the bouncing models we shall take into account, and we investigate which era of the bouncing model is responsible for the cosmological perturbations. As we shall demonstrate, the various bouncing models do not behave in the same way, so the cosmological perturbations for each model may correspond to a different era, in comparison to other models. Also we present which unimodular F (R ) gravity realizes each model. We also show that Newton's law is not modified in the unimodular F (R ) gravity, which also is proven to be a ghost-free theory, and in addition we discuss the matter stability issue. Finally, we demonstrate how it is possible to solve a cosmological constant problem in the context of unimodular F (R ) gravity.