Science.gov

Sample records for modified gravity scenarios

  1. Modified gravity in three dimensional metric-affine scenarios

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.

    2015-08-01

    We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.

  2. CMB lensing constraints on dark energy and modified gravity scenarios

    SciTech Connect

    Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.

    2009-11-15

    Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.

  3. Reconstruction scenario in modified Horava-Lifshitz F( R) gravity with well-known scale factors

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila

    2015-05-01

    In this paper, we analyze the behavior of pilgrim dark energy with G-O cutoff scale in modified Horava-Lifshitz F( R) gravity through correspondence scenario. We consider three well-known scale factors in which one scale factor describes the unification of matter dominated and accelerated phases and others are intermediate and bouncing forms. We obtain the models for these scale factors and obtain increasing behavior with the passage of time. We also extract equation of state parameter corresponding to these models. We observe that this parameter shows transition from phantom towards quintessence by crossing the phantom divide line in all cases. We also give comparison of our results of equation of state parameter with observational constraints.

  4. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in -modified, massive, and einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2015-04-01

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.

  5. Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2016-01-01

    Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.

  6. Model selection for modified gravity.

    PubMed

    Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N

    2011-12-28

    In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity. PMID:22084296

  7. Cosmological hints of modified gravity?

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2016-01-01

    The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.

  8. Cosmological tests of modified gravity

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  9. Cosmological tests of modified gravity.

    PubMed

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681

  10. Emergence in holographic scenarios for gravity

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis; van Dongen, Jeroen; de Haro, Sebastian

    2015-11-01

    'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.

  11. Stellar oscillations in modified gravity

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2013-12-01

    Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).

  12. Observational tests of modified gravity

    SciTech Connect

    Jain, Bhuvnesh; Zhang Pengjie

    2008-09-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions)

  13. Testing modified gravity with cosmic shear

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, J.; Munshi, D.; Valageas, P.; van Waerbeke, L.; Brax, P.; Coles, P.; Rizzo, L.

    2015-12-01

    We use the cosmic shear data from the Canada-France-Hawaii Telescope Lensing Survey to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is highly complementary to other probes since the constraints mainly come from the non-linear scales: maximal deviations with respects to the General Relativity (GR) + Λ cold dark matter (ΛCDM) scenario occurs at k ˜ 1 h Mpc-1. At these scales, it becomes necessary to account for known degeneracies with baryon feedback and massive neutrinos, hence we place constraints jointly on these three physical effects. To achieve this, we formulate these modified gravity theories within a common tomographic parametrization, we compute their impact on the clustering properties relative to a GR universe, and propagate the observed modifications into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the f(R) \\lbrace |f_{R_0}| = 10^{-4}, n = 1\\rbrace model with more than 99.9 per cent confidence interval (CI) when assuming a ΛCDM dark matter only model. In the presence of baryonic feedback processes and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least 94 per cent CI in all different combinations studied. Constraints on the \\lbrace |f_{R_0}| = 10^{-4}, n = 2\\rbrace model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models that are excluded by the current cosmic shear data. Notably, universes with three massless neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios studied. These results indicate that competitive constraints may be achieved with future cosmic shear data.

  14. Effects of modified gravity in galactic clustering

    NASA Astrophysics Data System (ADS)

    Verma, Murli; Krishna Yadav, Bal

    2016-07-01

    We discuss the distinct effects of the modified gravity, especially f(R) gravity in structure formation. The small redshift as well as high redshift epochs are studied with a potential set of diagnostics distinguishing between the standard general relativistic and the modified gravity. These diagnostics are further put to test against the observations obtained in clustering surveys.

  15. Wave propagation in modified gravity

    NASA Astrophysics Data System (ADS)

    Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.

    2016-02-01

    We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.

  16. Chern-Simons Modified Gravity

    NASA Astrophysics Data System (ADS)

    Efstratiou, P.

    2013-09-01

    This presentation will be based on my, undergraduate, thesis at Aristotle University of Thessoliniki with the same subject, supervised by Professor Demetrios Papadopoulos. I will first present the general mathematical formulation of the Chern-Simons (CS) modified gravity, which is split in a dynamical and a non-dynamical context, and the different physical theories which suggest this modification. Then proceed by examing the possibility that the CS theory shares solutions with General Relativity in both contexts. In the non-dynamical context I will present a new, undocumented solution as well as all the other possible solutions found to date. I will conclude by arguing that General Relativity and CS Theory share any solutions in the dynamical context.

  17. Modified gravity and dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.

    2016-05-01

    The fundamental nature of Dark Matter (DM) has not been established. Indeed, beyond its gravitational effects, DM remains undetected by present experiments. In this situation, it is reasonable to wonder if other alternatives can effectively explain the observations usually associated with the existence of DM. The modification of the gravitational interaction has been studied in this context from many different approaches. However, the large amount of different astrophysical evidences makes difficult to think that modified gravity can account for all these observations. On the other hand, if such a modification introduces new degrees of freedom, they may work as DM candidates. We will summarize the phenomenology of these gravitational DM candidates by analyzing minimal models.

  18. Thermodynamic properties of modified gravity theories

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2016-06-01

    We review thermodynamic properties of modified gravity theories, such as F(R) gravity and f(T) gravity, where R is the scalar curvature and T is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in f(T) gravity. We show both equilibrium and nonequilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met, when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.

  19. Modified gravity as dark energy

    NASA Astrophysics Data System (ADS)

    Sawicki, Ignacy

    2007-08-01

    We study the effects of introducing modifications to general relativity ("GR") at large scales as an alternative to exotic forms of matter required to replicate the observed cosmic acceleration. We survey the effects on cosmology and solar-system tests of Dvali-Gabadadze-Porrati ("DGP") gravity, f ( R ) he changes to the background expansion history of the universe, these modifications have substantial impact on structure formation and its observable predictions. For DGP, we develop a scaling approximation for the behaviour of perturbations off the brane, for which the predicted integrated Sachs-Wolf ("ISW") effect is much stronger than observed, requiring new physics at around horizon scale to bring it into agreement with data. We develop a test based on cross-correlating galaxies and the ISW effect which is independent of the initial power spectrum for perturbations and is a smoking-gun test for DGP gravity. For f ( R ) models, we find that, for the expansion history to resemble that of Lambda-CDM, it is required that the second derivative of f with respect to R be non-negative. We then find the conditions on f ( R ) which allow this subset of models to pass solar-system tests. Provided that gravity behave like GR in the galaxy, these constraints are weak. However, for a model to allow large deviations from GR in the cosmology, the galactic halo must differ significantly from that predicted by structure evolution in GR. We then discuss the effect that these models have on structure formation, and find that even in the most conservative of models, percent-level deviations in the matter power spectrum will exist and should be detectable in the future. Finally, for MSG, we investigate the cosmology of a theory of gravity with a modified constraint structure. The acceleration era can be replicated in these models; however, linear perturbations become unstable as the universe begins to accelerate. Once the perturbations become non-linear, the model reverts to GR

  20. Nonderivative modified gravity: a classification

    SciTech Connect

    Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@irb.hr

    2014-11-01

    We analyze the theories of gravity modified by a generic nonderivative potential built from the metric, under the minimal requirement of unbroken spatial rotations. Using the canonical analysis, we classify the potentials V according to the number of degrees of freedom (DoF) that propagate at the nonperturbative level. We then compare the nonperturbative results with the perturbative DoF propagating around Minkowski and FRW backgrounds. A generic V implies 6 propagating DoF at the non-perturbative level, with a ghost on Minkowski background. There exist potentials which propagate 5 DoF, as already studied in previous works. Here, no V with unbroken rotational invariance admitting 4 DoF is found. Theories with 3 DoF turn out to be strongly coupled on Minkowski background. Finally, potentials with only the 2 DoF of a massive graviton exist. Their effect on cosmology is simply equivalent to a cosmological constant. Potentials with 2 or 5 DoF and explicit time dependence appear to be a further viable possibility.

  1. Cosmological models of modified gravity

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon Keith

    The recent discovery of dark energy has prompted an investigation of ways in which the accelerated expansion of the universe can be realized. In this dissertation, we present two separate projects related to dark energy. The first project analyzes a class of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the second investigates a class of dark energy models from an effective field theory perspective. Investigations of models including extra dimensions have led to modifications of gravity involving a number of interesting features. In particular, the Randall-Sundrum model is well-known for achieving an amelioration of the hierarchy problem. However, the basic model relies on Minkowski branes and is subject to solar system constraints in the absence of a radion stabilization mechanism. We present a method by which a four-dimensional low-energy description can be obtained for braneworld scenarios, allowing for a number of generalizations to the original models. This method is applied to orbifolded and uncompactified N-brane models, deriving an effective four-dimensional action. The parameter space of this theory is constrained using observational evidence, and it is found that the generalizations do not weaken solar system constraints on the original model. Furthermore, we find that general N-brane systems are qualitatively similar to the two-brane case, and do not naturally lead to a viable dark energy model. We next investigate dark energy models using effective field theory techniques. We describe dark energy through a quintessence field, employing a derivative expansion. To the accuracy of the model, we find transformations to write the description in a form involving no higher-order derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the regime of validity and scaling of the operators using this. The regime of validity is restricted to a

  2. Matter stability in modified teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Behboodi, A.; Akhshabi, S.; Nozari, K.

    2012-11-01

    We study the matter stability in modified teleparallel gravity or f(T) theories. We show that there is no Dolgov-Kawasaki instability in these types of modified teleparallel gravity theories. This gives for the f(T) theories a great advantage over their f(R) counterparts because from the stability point of view there isn't any limit on the form of functions that can be chosen.

  3. Dark energy from modified gravity with Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Matsumoto, Jiro; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2010-09-01

    We study scalar-tensor theory, k-essence and modified gravity with Lagrange multiplier constraint which role is to reduce the number of degrees of freedom. Dark Energy cosmology of different types (ΛCDM, unified inflation with DE, smooth non-phantom/phantom transition epoch) is reconstructed in such models. It is demonstrated that presence of Lagrange multiplier simplifies the reconstruction scenario. It is shown that mathematical equivalence between scalar theory and F(R) gravity is broken due to presence of constraint. The cosmological evolution is defined by the second F(R) function dictated by the constraint. The convenient F(R) gravity sector is relevant for local tests. This opens the possibility to make originally non-realistic theory to be viable by adding the corresponding constraint. A general discussion on the role of Lagrange multipliers to make higher-derivative gravity canonical is developed.

  4. Observational bounds on modified gravity models

    SciTech Connect

    De Felice, Antonio; Mukherjee, Pia; Wang Yun

    2008-01-15

    Modified gravity provides a possible explanation for the currently observed cosmic acceleration. In this paper, we study general classes of modified gravity models. The Einstein-Hilbert action is modified by using general functions of the Ricci and the Gauss-Bonnet scalars, both in the metric and in the Palatini formalisms. We do not use an explicit form for the functions, but a general form with a valid Taylor expansion up to second order about redshift zero in the Riemann-scalars. The coefficients of this expansion are then reconstructed via the cosmic expansion history measured using current cosmological observations. These are the quantities of interest for theoretical considerations relating to ghosts and instabilities. We find that current data provide interesting constraints on the coefficients. The next-generation dark energy surveys should shrink the allowed parameter space for modified gravity models quite dramatically.

  5. Classifying linearly shielded modified gravity models in effective field theory.

    PubMed

    Lombriser, Lucas; Taylor, Andy

    2015-01-23

    We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime. PMID:25658988

  6. Modified gravity in contemporary universe

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Dolgov, A. D.

    2013-03-01

    Astronomical data in favor of cosmological acceleration and possible explanations of accelerated expansion of the universe are discussed. Main attention is paid to gravity modifications at small curvature which could induce accelerated cosmological expansion. It is shown that gravitating systems with mass density rising with time evolve to a singular state with infinite curvature scalar. The universe evolution during the radiation-dominated epoch is studied in the R 2-extended gravity theory. Particle production rate by the oscillating curvature and the back reaction of particle production on the evolution of R are calculated in one-loop approximation. Possible implications of the model for cosmological creation of non-thermal dark matter are discussed.

  7. Quasilocal energy in modified gravity

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2016-01-01

    A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass. An alternative procedure using the Einstein frame representation leads to the same result in vacuo.

  8. Thermodynamical interpretation of gravity in braneworld scenarios

    SciTech Connect

    Sheykhi, Ahmad

    2009-05-15

    We study the thermodynamical properties of the apparent horizon in the various braneworld scenarios. First, we show that the Friedmann equations can be written directly in the form of the first law of thermodynamics, dE = T{sub h}dS{sub h}+WdV, at apparent horizon on the brane, regardless of whether there is the intrinsic curvature term on the brane or a Gauss-Bonnet term in the bulk. This procedure leads to extract an entropy expression in terms of horizon geometry associated with the apparent horizon. Then, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We find that the derived entropy of the apparent horizon on the brane satisfies the generalized second law of thermodynamics in braneworld scenarios. These results further support the idea that gravitation on a macroscopic scale is a manifestation of thermodynamics.

  9. Nonsingular bounce in modified gravity

    NASA Astrophysics Data System (ADS)

    Abramo, L. Raul; Yasuda, Ivan; Peter, Patrick

    2010-01-01

    We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation- and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-à-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.

  10. Detecting modified gravity in the stars

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Jain, Bhuvnesh; Vikram, Vinu

    2014-07-01

    Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modifications on small scales. One popular and well-studied theory is chameleon gravity. Our own galaxy is necessarily screened, but less dense dwarf galaxies may be unscreened and their constituent stars can exhibit novel features. In particular, unscreened stars are brighter, hotter and more ephemeral than screened stars in our own galaxy. They also pulsate with a shorter period. In this paper, we exploit these new features to constrain chameleon gravity to level three orders of magnitude lower the previous measurements. These constraints are currently the strongest in the literature.

  11. Einstein spaces modeling nonminimal modified gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Vacaru, Sergiu I.

    2015-06-01

    Off-diagonal vacuum and nonvacuum configurations in the Einstein gravity can mimic physical effects of modified gravitational theories of f( R, T, R μν T μν ) type. To prove this statement, exact and approximate solutions are constructed in the paper, which encode certain models of covariant Hořava-type gravity with dynamical Lorentz symmetry breaking. The corresponding FLRW cosmological dynamics with possible nonholonomic deformations and the reconstruction procedure of certain actions closely related with the standard ΛCDM universe are studied. Off-diagonal generalizations of de Sitter universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with nonconstant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is briefly discussed.

  12. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  13. Modified Bekenstein-Hawking System in f(R) Gravity

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Mitra, Saugata; Chetry, Binod

    2016-05-01

    The present work deals with four alternative formulation of Bekenstein system on event horizon in f(R) gravity. While thermodynamical laws holds in universe bounded by apparent horizon, these laws break down on event horizon. With alternative formulation of thermodynamical parameters (temperature and entropy), thermodynamical laws hold on event horizon in Einstein Gravity. With this motivation, we extend the idea of generalised Hawking temperature and modified Bekenstein entropy in homogeneous and isotropic model of universe on event horizon and examine whether thermodynamical laws hold in f(R) gravity. Specifically, we examine and compare validity of generalised second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) in four alternative modified Bekenstein scenarios. As Dark energy is a possible dominant candidate for matter in the univerese and Holographic Dark Energy (HDE) can give effective description of f(R) gravity, so matter in the universe is taken as in the form interacting HDE. In order to understand the complicated expressions, finally the above laws are examined from graphical representation using three Planck data sets and it is found that generalised/modified Hawking temperature has a crucial role in making perfect thermodynamical system.

  14. Astrophysical black holes in screened modified gravity

    SciTech Connect

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  15. MODIFIED GRAVITY SPINS UP GALACTIC HALOS

    SciTech Connect

    Lee, Jounghun; Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2013-01-20

    We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

  16. The cosmology of asymmetric brane modified gravity

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk

    2009-09-01

    We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.

  17. Modified Actions for Gravity: Theory and Phenomenology

    NASA Astrophysics Data System (ADS)

    Sotiriou, Thomas P.

    2007-10-01

    This thesis is devoted to the study of gravitational theories which can be seen as modifications or generalisations of General Relativity. The motivation for considering such theories, stemming from Cosmology, High Energy Physics and Astrophysics is thoroughly discussed (cosmological problems, dark energy and dark matter problems, the lack of success so far in obtaining a successful formulation for Quantum Gravity). The basic principles which a gravitational theory should follow, and their geometrical interpretation, are analysed in a broad perspective which highlights the basic assumptions of General Relativity and suggests possible modifications which might be made. A number of such possible modifications are presented, focusing on certain specific classes of theories: scalar-tensor theories, metric f(R) theories, Palatini f(R) theories, metric-affine f(R) theories and Gauss--Bonnet theories. The characteristics of these theories are fully explored and attention is payed to issues of dynamical equivalence between them. Also, cosmological phenomenology within the realm of each of the theories is discussed and it is shown that they can potentially address the well-known cosmological problems. A number of viability criteria are presented: cosmological observations, Solar System tests, stability criteria, existence of exact solutions for common vacuum or matter configurations etc. Finally, future perspectives in the field of modified gravity are discussed and the possibility for going beyond a trial-and-error approach to modified gravity is explored.

  18. Modified Gravity and the origin of inertia

    NASA Astrophysics Data System (ADS)

    Moffat, J. W.; Toth, V. T.

    2009-05-01

    Modified gravity theory is known to violate Birkhoff's theorem. We explore a key consequence of this violation, the effect of distant matter in the Universe on the motion of test particles. We find that when a particle is accelerated, a force is experienced that is proportional to the particle's mass and acceleration and acts in the direction opposite to that of the acceleration. We identify this force with inertia. At very low accelerations, our inertial law deviates slightly from that of Newton, yielding a testable prediction that may be verified with relatively simple experiments. Our conclusions apply to all gravity theories that reduce to a Yukawa-like force in the weak-field approximation.

  19. Influence of electric charge and modified gravity on density irregularities

    NASA Astrophysics Data System (ADS)

    Bhatti, M. Zaeem Ul Haq; Yousaf, Z.

    2016-04-01

    This work aims to identify some inhomogeneity factors for a plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f( R) gravity. We construct the modified field equations, kinematical quantities, and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f( R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For a non-radiating scenario, we examine such factors as dust, and isotropic and anisotropic matter in the presence of charge. For a dissipative fluid, we investigate the inhomogeneity factor with a charged dust cloud. We conclude that the electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.

  20. Modified Friedmann equations from Debye entropic gravity

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Teimoori, Z.

    2012-05-01

    A remarkable new idea on the origin of gravity was recently proposed by Verlinde who claimed that the laws of gravitation are no longer fundamental, but rather emerge naturally as an entropic force. In Verlinde derivation, the equipartition law of energy on the holographic screen plays a crucial role. However, the equipartition law of energy fails at the very low temperature. Therefore, the formalism of the entropic force should be modified while the temperature of the holographic screen is very low. Considering the Debye entropic gravity and following the strategy of Verlinde, we derive the modified Newton's law of gravitation and the corresponding Friedmann equations which are valid in all range of temperature. In the limit of strong gravitational field, i.e. high temperature compared to Debye temperature, T » T D , one recovers the standard Newton's law and Friedmann equations. We also generalize our study to the entropy corrected area law and derive the dynamical cosmological equations for all range of temperature. Some limits of the obtained results are also studied.

  1. Observable physical modes of modified gravity

    NASA Astrophysics Data System (ADS)

    Hojjati, Alireza; Pogosian, Levon; Silvestri, Alessandra; Zhao, Gong-Bo

    2014-04-01

    At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift z and Fourier number k. Previous studies have performed principal component forecasts for several choices of these two functions based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and probably most of these degrees of freedom were physical if the parametrization had allowed for an arbitrary k dependence. In this paper, we restrict the k dependence to that allowed in local theories of gravity under the quasistatic approximation, i.e. ratios of polynomials in k, and identify the best constrained features in the (z ,k) dependence of the commonly considered functions μ and γ as measured by a Large Synoptic Survey Telescope (LSST)-like weak lensing survey. We estimate the uncertainty in the measurements of the eigenmodes of modified growth. We find that imposing the theoretical prior on k dependence reduces the number of degrees of freedom and the covariance between parameters. On the other hand, imaging surveys like LSST are not as sensitive to the z dependence as they are to the k dependence of the modified growth functions. This trade-off provides us with, more or less, the same number of well-constrained eigenmodes (with respect to our prior) as found before, but now these modes are physical.

  2. Modified QCD ghost f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Chattopadhyay, Surajit

    2015-12-01

    In this paper, we explore the reconstruction scenario of modified QCD ghost dark energy model and newly proposed f(T,TG) gravity in flat FRW universe. We consider the well-known assumption of scale factor, i.e., power law form. We construct the f(T,TG) model and discuss its cosmological consequences through various cosmological parameters such as equation of state parameter, squared speed of sound and ω_{DE}-ω '_{DE}. The equation of state parameter provides the quintom-like behavior of the universe. The squared speed of sound exhibits the stability of model in the later time. Also, ω_{DE}- ω '_{DE} corresponds to freezing as well as thawing regions. It is also interesting to remark here that the results of equation of state parameter and w_{DE}-w'_{DE} coincide with the observational data.

  3. Conformal cylindrically symmetric spacetimes in modified gravity

    NASA Astrophysics Data System (ADS)

    Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu

    2015-11-01

    We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.

  4. Testing Modified Gravity with Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Amiri, Vahid

    2016-08-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M★/L) ratios in the range of about 10 to more than 100 solar units, that are well outside the acceptable limit predicted by stellar population synthesis (SPS) models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σ _ph {los}) of stars in eight MW dSphs in the context of the Modified Gravity (MOG) theory of Moffat, assuming a constant M★/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of the THINGS catalog of galaxies. We find that the derived M★/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M★/L values we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  5. Constraining the Schwarzschild-de Sitter solution in models of modified gravity

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo; Ruggiero, Matteo Luca; Radicella, Ninfa; Saridakis, Emmanuel N.

    2016-09-01

    The Schwarzschild-de Sitter (SdS) solution exists in the large majority of modified gravity theories, as expected, and in particular the effective cosmological constant is determined by the specific parameters of the given theory. We explore the possibility to use future extended radio-tracking data from the currently ongoing New Horizons mission in the outskirts peripheries of the Solar System, at about 40 au, in order to constrain this effective cosmological constant, and thus to impose constrain on each scenario's parameters. We investigate some of the recently most studied modified gravities, namely f(R) and f(T) theories, dRGT massive gravity, and Hořava-Lifshitz gravity, and we show that New Horizons mission may bring an improvement of one-two orders of magnitude with respect to the present bounds from planetary orbital dynamics.

  6. Massive gravitational waves in Chern-Simons modified gravity

    SciTech Connect

    Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr

    2014-10-01

    We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.

  7. Effective Einstein cosmological spaces for non-minimal modified gravity

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Vacaru, Sergiu I.

    2015-06-01

    Certain off-diagonal vacuum and nonvacuum configurations in Einstein gravity can mimic physical effects of modified gravitational theories of type. We prove this statement by constructing exact and approximate solutions which encode certain models of covariant Hořava type gravity with dynamical Lorentz symmetry breaking. Off-diagonal generalizations of de Sitter and nonholonomic CDM universes are constructed which are generated through nonlinear gravitational polarization of fundamental physical constants and which model interactions with non-constant exotic fluids and effective matter. The problem of possible matter instability for such off-diagonal deformations in (modified) gravity theories is discussed.

  8. Accurate method of modeling cluster scaling relations in modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-hua; Li, Baojiu

    2016-06-01

    We propose a new method to model cluster scaling relations in modified gravity. Using a suite of nonradiative hydrodynamical simulations, we show that the scaling relations of accumulated gas quantities, such as the Sunyaev-Zel'dovich effect (Compton-y parameter) and the x-ray Compton-y parameter, can be accurately predicted using the known results in the Λ CDM model with a precision of ˜3 % . This method provides a reliable way to analyze the gas physics in modified gravity using the less demanding and much more efficient pure cold dark matter simulations. Our results therefore have important theoretical and practical implications in constraining gravity using cluster surveys.

  9. Modified Gravity Emerging from Thermodynamics and Holographic Principle

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gong, Yungui; Zhu, Zong-Hong

    A new conception is proposed in [E. P. Verlinde, arXiv:1001.0785 [hep-th] and [T. Padmanabhan, Mod. Phys. Lett. A 25 (2010) 1129] that gravity is one kind of entropic force. In this letter, we try to discuss its applications to the modified gravities by using three different corrections to the area law of entropy which are derived from the quantum effects and extra dimensions. According to the assumption of holographic principle, the number of bits N which is related to the equipartition law of energy is modified. Then, the modified law of Newton's gravity and the modified Friedmann equations are obtained by using the new notion. By choosing suitable parameters, the modified area law of entropy leads to de Sitter solutions which can be used to explain the accelerating expansion of our universe. It suggests that the accelerating phase in our universe may be an emergent phenomenon based on holographic principle and thermodynamics.

  10. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs. PMID:27127952

  11. White Dwarf Critical Tests for Modified Gravity

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-01

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G3 type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  12. Galaxy clustering in 3D and modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Pratten, G.; Valageas, P.; Coles, P.; Brax, P.

    2016-02-01

    We study Modified Gravity (MG) theories by modelling the redshifted matter power spectrum in a spherical Fourier-Bessel basis. We use a fully non-linear description of the real-space matter power spectrum and include the lowest order redshift-space correction (Kaiser effect), taking into account some additional non-linear contributions. Ignoring relativistic corrections, which are not expected to play an important role for a shallow survey, we analyse two different MG scenarios, namely the generalized Dilaton scalar-tensor theories and the f (R) models in the large curvature regime. We compute the 3D power spectrum C^s_{ℓ}(k_1,k_2) for various such MG theories with and without redshift-space distortions, assuming precise knowledge of background cosmological parameters. Using an all-sky spectroscopic survey with Gaussian selection function \\varphi (r)∝ exp (-{r^2/r^2_0}), r_0=150h^{-1} Mpc, and number density of galaxies bar{N} =10^{-4}Mpc^{-3}, we use a χ2 analysis, and find that the lower order (ℓ ≤ 25) multipoles of C^s_ℓ (k,k^' }) (with radial modes restricted to k < 0.2 h Mpc-1) can constraint the parameter f_{R_0} at a level of 2 × 10-5(3 × 10-5) with 3σ confidence for n = 1(2). Combining constraints from higher ℓ > 25 modes can further reduce the error bars and thus in principle make cosmological gravity constraints competitive with Solar system tests. However this will require an accurate modelling of non-linear redshift-space distortions. Using a tomographic β(a)-m(a) parametrization we also derive constraints on specific parameters describing the Dilaton models of MG.

  13. Analyzing modified unimodular gravity via Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Sáez-Gómez, Diego

    2016-06-01

    The so-called unimodular version of general relativity is revisited. Unimodular gravity is constructed by fixing the determinant of the metric, which leads to the trace-free part of the equations instead of the usual Einstein field equations. Then a cosmological constant naturally arises as an integration constant. While unimodular gravity turns out to be equivalent to general relativity (GR) at the classical level, it provides important differences at the quantum level. Here we extend the unimodular constraint to some extensions of general relativity that have drawn a lot of attention over the last years—f (R ) gravity (or its scalar-tensor picture) and Gauss-Bonnet gravity. The corresponding unimodular version of such theories is constructed as well as the conformal transformation that relates the Einstein and Jordan frames for these nonminimally coupled theories. From the classical point of view, the unimodular versions of such extensions are completely equivalent to their originals, but an effective cosmological constant arises naturally, which may provide a richer description of the evolution of the Universe. Here we analyze the case of Starobisnky inflation and compare it with the original one.

  14. Extended disformal approach in the scenario of rainbow gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, Gabriel G.; Lobo, Iarley P.; Bittencourt, Eduardo

    2016-02-01

    We investigate all feasible mathematical representations of disformal transformations on a space-time metric according to the action of a linear operator upon the manifold's tangent and cotangent bundles. The geometric, algebraic, and group structures of this operator and their interfaces are analyzed in detail. Then, we scrutinize a possible physical application, providing a new covariant formalism for a phenomenological approach to quantum gravity known as rainbow gravity.

  15. Cosmological probes of modified gravity: the nonlinear regime.

    PubMed

    Schmidt, Fabian

    2011-12-28

    We review the effects of modified gravity on large-scale structure in the nonlinear regime, focusing on f(R) gravity and the Dvali-Gabadadze-Porrati model, for which full N-body simulations have been performed. In particular, we discuss the abundance of massive halos, the nonlinear matter power spectrum and the dynamics within clusters and galaxies, with particular emphasis on the screening mechanisms present in these models. PMID:22084294

  16. Probing hybrid modified gravity by stellar motion around Galactic Center

    NASA Astrophysics Data System (ADS)

    Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.

    2016-06-01

    We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.

  17. Kinetic Sunyaev-Zel'dovich effect in modified gravity

    NASA Astrophysics Data System (ADS)

    Bianchini, Federico; Silvestri, Alessandra

    2016-03-01

    We investigate the impact of modified theories of gravity on the kinetic Sunyaev-Zel'dovich (kSZ) effect of the cosmic microwave background. We focus on a specific class of f (R ) models of gravity and compare their predictions for the kSZ power spectrum to that of the Λ CDM model. We use a publicly available modified version of Halofit to properly include the nonlinear matter power spectrum of f (R ) in the modeling of the kSZ signal. We find that the well-known modifications of the growth rate of structure in f (R ) can indeed induce sizable changes in the kSZ signal, which are more significant than the changes induced by modifications of the expansion history. We discuss prospects of using the kSZ signal as a complementary probe of modified gravity, giving an overview of assumptions and possible caveats in the modeling.

  18. Universal predictions of screened modified gravity on cluster scales

    NASA Astrophysics Data System (ADS)

    Gronke, M.; Mota, D. F.; Winther, H. A.

    2015-11-01

    Modified gravity models require a screening mechanism to be able to evade the stringent constraints from local gravity experiments and, at the same time, give rise to observable astrophysical and cosmological signatures. Such screened modified gravity models necessarily have dynamics determined by complex nonlinear equations that usually need to be solved on a model-by-model basis to produce predictions. This makes testing them a cumbersome process. In this paper, we investigate whether there is a common signature for all the different models that is suitable to testing them on cluster scales. To do this we propose an observable related to the fifth force, which can be observationally related to the ratio of dynamical-to-lensing mass of a halo, and then show that the predictions for this observable can be rescaled to a near universal form for a large class of modified gravity models. We demonstrate this using the Hu-Sawicki f(R), the Symmetron, the nDGP, and the Dilaton models, as well as unifying parametrizations. The universal form is determined by only three quantities: a strength, a mass, and a width parameter. We also show how these parameters can be derived from a specific theory. This self-similarity in the predictions can hopefully be used to search for signatures of modified gravity on cluster scales in a model-independent way.

  19. A new approach to modified gravity models

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sayan K.; Saridakis, Emmanuel N.; Sen, Anjan A.

    2011-11-01

    We investigate f ( R)-gravity models performing the ADM-slicing of standard General Relativity. We extract the static, spherically-symmetric vacuum solutions in the general case, which correspond to either Schwarzschild de-Sitter or Schwarzschild anti-de-Sitter ones. Additionally, we study the cosmological evolution of a homogeneous and isotropic universe, which is governed by an algebraic and not a differential equation. We show that the universe admits solutions corresponding to acceleration at late cosmological epochs, without the need of fine-tuning the model-parameters or the initial conditions.

  20. Minimum length, extra dimensions, modified gravity and black hole remnants

    NASA Astrophysics Data System (ADS)

    Maziashvili, Michael

    2013-03-01

    We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r→0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.

  1. Superbounce and loop quantum cosmology ekpyrosis from modified gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2015-09-01

    As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by theories. Using known reconstruction techniques, we investigate which theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes , that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations.

  2. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios

    NASA Astrophysics Data System (ADS)

    Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H.

    2014-04-01

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β >5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ =20 μm (95% C.L.).

  3. New effective coupled F(^{(4)}R,\\varphi ) modified gravity from f(^{(5)}R) gravity in five dimensions

    NASA Astrophysics Data System (ADS)

    Aguilar, José Edgar Madriz

    2015-12-01

    Using some ideas of the Wesson induced matter theory, we obtain a new kind of F(^{(4)}R,\\varphi ) modified gravity theory as an effective four-dimensional (4D) theory derived from f(^{(5)}R) gravity in five dimensions (5D). This new theory exhibits a different matter coupling than the one in BBHL theory. We show that the field equations of the Wesson induced matter theory and of some brane-world scenarios can be obtained as maximally symmetric solutions of the same f(^{(5)}R) theory. We found criteria for the Dolgov-Kawasaki instabilities for both the f(^{(5)}R) and the F(^{(4)}R,\\varphi ) theories. We demonstrate that under certain conditions imposed on the 5D geometry it is possible to interpret the F(^{(4)}R,\\varphi ) theory as a modified gravity theory with dynamical coefficients, making this new theory a viable candidate to address the present accelerating cosmic expansion issue. Matter sources in the F(^{(4)}R,\\varphi ) case appear induced by the 5D geometry without the necessity of the introduction of matter sources in 5D.

  4. Infrared modified gravity with dynamical torsion

    NASA Astrophysics Data System (ADS)

    Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2009-12-01

    We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.

  5. Infrared modified gravity with dynamical torsion

    SciTech Connect

    Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2009-12-15

    We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.

  6. Unscreening Modified Gravity in the Matter Power Spectrum.

    PubMed

    Lombriser, Lucas; Simpson, Fergus; Mead, Alexander

    2015-06-26

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism. PMID:26197114

  7. Microscopic and macroscopic behaviors of Palatini modified gravity theories

    SciTech Connect

    Li Baojiu; Mota, David F.; Shaw, Douglas J.

    2008-09-15

    We show that, within modified gravity, the nonlinear nature of the field equations implies that the usual naieve averaging procedure (replacing the microscopic energy-momentum by its cosmological average) is invalid. We discuss then how the averaging should be performed correctly and show that, as a consequence, at the classical level the physical masses and geodesics of particles, cosmology, and astrophysics in Palatini modified gravity theories are all indistinguishable from the results of general relativity plus a cosmological constant. Palatini gravity is, however, a different theory from general relativity and predicts different internal structures of particles from the latter. On the other hand, and in contrast to classical particles, the electromagnetic field permeates in the space, and hence a different averaging procedure should be applied here. We show that, in general, Palatini gravity theories would then affect the propagation of photons, thus changing the behavior of a Universe dominated by radiation. Finally, Palatini theories also predict alterations to particle physics laws. For example, they can lead to sensitive corrections to the hydrogen energy levels, the measurements of which could be used to place very strong constraints on the properties of viable Palatini gravity theories.

  8. Modified gravity in Arnowitt-Deser-Misner formalism

    NASA Astrophysics Data System (ADS)

    Gao, Changjun

    2010-02-01

    Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.

  9. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.). PMID:24785025

  10. Nearly scale-invariant power spectrum and quantum cosmological perturbations in the gravity's rainbow scenario

    NASA Astrophysics Data System (ADS)

    Wang, Sai; Chang, Zhe

    2015-06-01

    We propose the gravity's rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index and energy scale M in the gravity's rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by and at the confidence level.

  11. Modifying gravity: you cannot always get what you want.

    PubMed

    Starkman, Glenn D

    2011-12-28

    The combination of general relativity (GR) and the Standard Model of particle physics disagrees with numerous observations on scales from our Solar System up. In the canonical concordance model of Lambda cold dark matter (ΛCDM) cosmology, many of these contradictions between theory and data are removed or alleviated by the introduction of three completely independent new components of stress energy--the inflaton, dark matter and dark energy. Each of these in its turn is meant to have dominated (or to currently dominate) the dynamics of the Universe. There is, until now, no non-gravitational evidence for any of these dark sectors, nor is there evidence (though there may be motivation) for the required extension of the Standard Model. An alternative is to imagine that it is GR that must be modified to account for some or all of these disagreements. Certain coincidences of scale even suggest that one might expect not to make independent modifications of the theory to replace each of the three dark sectors. Because they must address the most different types of data, attempts to replace dark matter with modified gravity are the most controversial. A phenomenological model (or family of models), modified Newtonian dynamics, has, over the last few years, seen several covariant realizations. We discuss a number of challenges that any model that seeks to replace dark matter with modified gravity must face: the loss of Birkhoff's theorem, and the calculational simplifications it implies; the failure to explain clusters, whether static or interacting, and the consequent need to introduce dark matter of some form, whether hot dark matter neutrinos or dark fields that arise in new sectors of the modified gravity theory; the intrusion of cosmological expansion into the modified force law, which arises precisely because of the coincidence in scale between the centripetal acceleration at which Newtonian gravity fails in galaxies and the cosmic acceleration. We conclude with the

  12. Testing model independent modified gravity with future large scale surveys

    SciTech Connect

    Thomas, Daniel B.; Contaldi, Carlo R. E-mail: c.contaldi@ic.ac.uk

    2011-12-01

    Model-independent parametrisations of modified gravity have attracted a lot of attention over the past few years and numerous combinations of experiments and observables have been suggested to constrain the parameters used in these models. Galaxy clusters have been mentioned, but not looked at as extensively in the literature as some other probes. Here we look at adding galaxy clusters into the mix of observables and examine how they could improve the constraints on the modified gravity parameters. In particular, we forecast the constraints from combining Planck satellite Cosmic Microwave Background (CMB) measurements and Sunyaev-Zeldovich (SZ) cluster catalogue with a DES-like Weak Lensing (WL) survey. We find that cluster counts significantly improve the constraints over those derived using CMB and WL. We then look at surveys further into the future, to see how much better it may be feasible to make the constraints.

  13. Structure formation in a nonlocally modified gravity model

    SciTech Connect

    Park, Sohyun; Dodelson, Scott

    2013-01-01

    We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.

  14. Spherical Symmetric Gravitational Collapse in Chern-Simon Modified Gravity

    NASA Astrophysics Data System (ADS)

    Amir, M. Jamil; Ali, Sarfraz

    2016-04-01

    This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.

  15. Rapid simulation rescaling from standard to modified gravity models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Lombriser, L.; Li, B.

    2015-10-01

    We develop and test an algorithm to rescale a simulated dark-matter particle distribution or halo catalogue from a standard gravity model to that of a modified gravity model. This method is based on that of Angulo & White but with some additional ingredients to account for (i) scale-dependent growth of linear density perturbations and (ii) screening mechanisms that are generic features of viable modified gravity models. We attempt to keep the method as general as possible, so that it may plausibly be applied to a wide range of modified theories, although tests against simulations are restricted to a subclass of f (R) models at this stage. We show that rescaling allows the power spectrum of matter to be reproduced at the ˜3 per cent level in both real and redshift space up to k = 0.1h Mpc-1 if we change the box size and alter the particle displacement field; this limit can be extended to k = 1h Mpc-1 if we additionally alter halo internal structure. We simultaneously develop an algorithm that can be applied directly to a halo catalogue, in which case the halo mass function and clustering can be reproduced at the ˜5 per cent level. Finally, we investigate the clustering of halo particle distributions, generated from rescaled halo catalogues, and find that a similar accuracy can be reached.

  16. Modified Chaplygin gas inspired inflationary model in braneworld scenario

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-05-01

    We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.

  17. Non-flat pilgrim dark energy FRW models in modified gravity

    NASA Astrophysics Data System (ADS)

    Rani, Shamaila; Jawad, Abdul; Salako, Ines G.; Azhar, Nadeem

    2016-09-01

    We study the cosmic acceleration in dynamical Chern-Simons modified gravity in the frame-work of non-flat FRW universe. The pilgrim dark energy (with future event and apparent horizons) interacted with cold dark matter is being considered in this work. We investigate the cosmological parameters (equation of state, deceleration) and planes (state-finders, ω_{θ}-ω_{θ}^' }) in the present scenario. It is interesting to mention here that the obtained results of various cosmological parameters are consistent with various observational schemes. The validity of generalized second law of thermodynamics for present dark energy models is also being analyzed.

  18. Cosmological implications of modified gravity induced by quantum metric fluctuations

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong

    2016-08-01

    We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.

  19. Energy conditions in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    García, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, José P.

    2011-05-01

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  20. Energy conditions in modified Gauss-Bonnet gravity

    SciTech Connect

    Garcia, Nadiezhda Montelongo; Harko, Tiberiu; Lobo, Francisco S. N.; Mimoso, Jose P.

    2011-05-15

    In considering alternative higher-order gravity theories, one is liable to be motivated in pursuing models consistent and inspired by several candidates of a fundamental theory of quantum gravity. Indeed, motivations from string/M theory predict that scalar field couplings with the Gauss-Bonnet invariant, G, are important in the appearance of nonsingular early time cosmologies. In this work, we discuss the viability of an interesting alternative gravitational theory, namely, modified Gauss-Bonnet gravity or f(G) gravity. We consider specific realistic forms of f(G) analyzed in the literature that account for the late-time cosmic acceleration and that have been found to cure the finite-time future singularities present in the dark energy models. We present the general inequalities imposed by the energy conditions and use the recent estimated values of the Hubble, deceleration, jerk and snap parameters to examine the viability of the above-mentioned forms of f(G) imposed by the weak energy condition.

  1. Halo velocity profiles in screened modified gravity theories

    NASA Astrophysics Data System (ADS)

    Gronke, M.; Llinares, C.; Mota, D. F.; Winther, H. A.

    2015-05-01

    Screened modified gravity predicts potentially large signatures in the peculiar velocity field that makes it an interesting probe to test gravity on cosmological scales. We investigate the signatures induced by the Symmetron and a Chameleon f(R) model in the peculiar velocity field using N-body simulations. By studying fifth force and halo velocity profiles, we identify three general categories of effects found in screened modified gravity models: a fully screened regime where we recover Λ cold dark matter to high precision, an unscreened regime where the fifth force is in full operation, and, a partially screened regime where screening occurs in the inner part of a halo, but the fifth force is active at larger radii. These three regimes can be pointed out very clearly by analysing the deviation in the maximum cluster velocity. Observationally, the partially screened regime is of particular interest since an uniform increase of the gravitational force - as present in the unscreened regime - is degenerate with the (dynamical) halo mass estimate, and, thus, hard to detect.

  2. Reconstruction of modified gravity with perfect fluid cosmological models

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Singh, Vijay

    2014-04-01

    In this paper we present the cosmological viability of reconstruction of an alternative gravitational theory, namely, the modified gravity, where is the Ricci scalar curvature and the trace of stress energy momentum tensor. A functional form of is chosen for the reconstruction in perfect fluid flat Friedmann-Robertson-Walker model. The gravitational field equations contain two fluid sources, one is perfect fluid and other is due to modified gravity which is to be considered as an exotic fluid. This allows us for derivation and analysis of a set of new cosmological solutions for gravity by considering these two fluids as a non-interacting. Two known forms of scale factor (de Sitter and power-law) are considered for the explicit and successful reconstruction. The equation of state parameter (EoS) of exotic matter and the effective EoS parameter have been discussed. In de Sitter solution we find that the fluid behaves as phantom dark energy when the usual matter (perfect fluid) shows the behavior between decelerated phase to accelerated phase. In the absence of usual matter it behaves as a cosmological constant. In case of power -law cosmology two different cases are discussed and analyzed the behavior of different phases of the universe accordingly through the equation of state and density parameters.

  3. Fast route to nonlinear clustering statistics in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Ferreira, Pedro G.

    2015-06-01

    We propose a simple and computationally fast method for performing N -body simulations for a large class of modified gravity theories with a screening mechanism such as chameleons, symmetrons, and Galileons. By combining the linear Klein-Gordon equation with a screening factor, calculated from analytical solutions of spherical symmetric configurations, we obtain a modified field equation of which the solution is exact in the linear regime while at the same time taking screening into account on nonlinear scales. The resulting modified field equation remains linear and can be solved just as quickly as the Poisson equation without any of the convergence problems that can arise when solving the full equation. We test our method with N -body simulations and find that it compares remarkably well with full simulations well into the nonlinear regime.

  4. Crystal clear lessons on the microstructure of spacetime and modified gravity

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-06-01

    We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.

  5. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  6. Thermodynamics in dynamical Chern-Simons modified gravity with canonical scalar field

    NASA Astrophysics Data System (ADS)

    Rani, Shamaila; Nawaz, Tanzeela; Jawad, Abdul

    2016-09-01

    We take the scalar field dark energy model possessing a non-canonical kinetic term in the framework of modified Chern-Simon gravity. We assume the flat FRW universe model and interacting scenario between dark matter and non-canonical dark energy part. Under this scenario, we check the stability of the model using squared speed of sound which represents the stable behavior for a specific choice of model parameters. We also discuss the validity of generalized second law of thermodynamics by assuming the usual entropy and its corrected forms (logarithmic and power law) at the apparent horizon. This law satisfied for all cases versus redshift parameter at the present as well as later epoch.

  7. Wormhole geometries in f(R) modified theories of gravity

    SciTech Connect

    Lobo, Francisco S. N.; Oliveira, Miguel A.

    2009-11-15

    In this work, we construct traversable wormhole geometries in the context of f(R) modified theories of gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid, sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in general relativity. In particular, by considering specific shape functions and several equations of state, exact solutions for f(R) are found.

  8. Computing model independent perturbations in dark energy and modified gravity

    SciTech Connect

    Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk

    2014-03-01

    We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.

  9. Modified gravity with a nonminimal gravitational coupling to matter

    NASA Astrophysics Data System (ADS)

    Bisabr, Yousef

    2012-08-01

    We consider modified theories of gravity with a direct coupling between matter and geometry, denoted by an arbitrary function in terms of the Ricci scalar. Because of such a coupling, the matter stress tensor is no longer conserved and there is an energy transfer between the two components. By solving the conservation equation, we argue that the matter system should gain energy in this interaction, as demanded by the second law of thermodynamics. In a cosmological setting, we show that although this kind of interaction may account for cosmic acceleration, this latter together with the direction of the energy transfer constrain the coupling function.

  10. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  11. Gravitational Microlensing in Modified Gravity Theories - Inverse-Square Theorem

    NASA Astrophysics Data System (ADS)

    Asada, H.

    2011-02-01

    Microlensing studies are usually based on the lens equation that is valid only to the first order in the gravitational constant G and lens mass M. We consider corrections to the conventional lens equation in terms of differentiable functions, so that they can express not only the second-order effects of GM in general relativity but also modified gravity theories. As a generalization of Ebina et al. (Prog. Theor. Phys. 104 (2000), 1317), we show that, provided that the spacetime is static, spherically symmetric and asymptotically flat, the total amplification by microlensing remains unchanged at the linear order of the correction to the deflection angle, if and only if the correction takes a particular form as the inverse square of the impact parameter, whereas the magnification factor for each image is corrected. It is concluded that the light curve shape by microlensing is inevitably changed and will thus allow us to probe modified gravity, unless a modificati on to the deflection angle takes the particular form. No systematic deviation in microlensing observations has been reported. For instance, therefore, the Yukawa-type correction is constrained as the characteristic length > 10^{14} m.

  12. Galaxy infall kinematics as a test of modified gravity

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Weinberg, David H.; Jennings, Elise; Li, Baojiu; Wyman, Mark

    2014-12-01

    Infrared modifications of General Relativity (GR) can be revealed by comparing the mass of galaxy clusters estimated from weak lensing to that from infall kinematics. We measure the 2D galaxy velocity distribution in the cluster infall region by applying the galaxy infall kinematics (GIK) model developed by Zu & Weinberg to two suites of f(R) and Galileon-modified gravity simulations. Despite having distinct screening mechanisms, namely, the Chameleon and the Vainshtein effects, the f(R) and Galileon clusters exhibit very similar deviations in their GIK profiles from GR, with ˜100-200 km s-1 enhancement in the characteristic infall velocity at r = 5 h-1 Mpc and 50-100 km s-1 broadening in the radial and tangential velocity dispersions across the entire infall region, for clusters with mass ˜1014 h-1 M⊙ at z = 0.25. These deviations are detectable via the GIK reconstruction of the redshift-space cluster-galaxy cross-correlation function, ξ s_{cg}(r_p,r_π ), which shows ˜1-2 h-1 Mpc increase in the characteristic line-of-sight distance rπ, c at rp < 6 h-1 Mpc from GR predictions. With overlapping deep imaging and large redshift surveys in the future, we expect that the GIK modelling of ξ s_{cg}, in combination with the stacked weak lensing measurements, will provide powerful diagnostics of modified gravity theories and the origin of cosmic acceleration.

  13. Modified gravity N-body code comparison project

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Schmidt, Fabian; Barreira, Alexandre; Arnold, Christian; Bose, Sownak; Llinares, Claudio; Baldi, Marco; Falck, Bridget; Hellwing, Wojciech A.; Koyama, Kazuya; Li, Baojiu; Mota, David F.; Puchwein, Ewald; Smith, Robert E.; Zhao, Gong-Bo

    2015-12-01

    Self-consistent N-body simulations of modified gravity models are a key ingredient to obtain rigorous constraints on deviations from general relativity using large-scale structure observations. This paper provides the first detailed comparison of the results of different N-body codes for the f (R), Dvali-Gabadadze-Porrati and Symmetron models, starting from the same initial conditions. We find that the fractional deviation of the matter power spectrum from Λ cold dark matter agrees to better than 1 per cent up to k ˜ 5-10 h Mpc-1 between the different codes. These codes are thus able to meet the stringent accuracy requirements of upcoming observational surveys. All codes are also in good agreement in their results for the velocity divergence power spectrum, halo abundances and halo profiles. We also test the quasi-static limit, which is employed in most modified gravity N-body codes, for the Symmetron model for which the most significant non-static effects among the models considered are expected. We conclude that this limit is a very good approximation for all of the observables considered here.

  14. Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Stein, Leo C.; Yunes, Nicolás; Tanaka, Takahiro

    2012-03-01

    We consider a general class of quantum gravity-inspired, modified gravity theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to scalar fields with standard kinetic energy. This class of theories includes Einstein-Dilaton-Gauss-Bonnet and Chern-Simons modified gravity as special cases. We analytically derive and solve the coupled field equations in the post-Newtonian approximation, assuming a comparable-mass, spinning black hole binary source in a quasicircular, weak-field/slow-motion orbit. We find that a naive subtraction of divergent piece associated with the point-particle approximation is ill-suited to represent compact objects in these theories. Instead, we model them by appropriate effective sources built so that known strong-field solutions are reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars have no scalar monopole charge, in diametrical opposition to results in scalar-tensor theories. We then employ techniques similar to the direct integration of the relaxed Einstein equations to obtain analytic expressions for the scalar field, metric perturbation, and the associated gravitational wave luminosity measured at infinity. We find that scalar field emission mainly dominates the energy flux budget, sourcing electric-type (even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole scalar radiation, correcting the General Relativistic prediction at relative -1PN and 2PN orders. Such modifications lead to corrections in the emitted gravitational waves that can be mapped to the parameterized post-Einsteinian framework. Such modifications could be strongly constrained with gravitational wave observations.

  15. The Holographic Scenario, the Modified Inertia and the Dynamics of the Universe

    NASA Astrophysics Data System (ADS)

    Giné, Jaume

    2012-11-01

    This paper attempts to connect two new gravitational mechanisms: the Verlinde's holographic model of gravity and the modification of inertia resulting from a Hubble-scale Casimir effect (MiHsC) of McCulloch. First we give a short survey about how the holographic scenario can give the correct dynamics of the universe. The introduction of a two-holographic screens one comparable to the Hubble horizon and a second screen that takes into account the contribution of all the matter between the test particle and the observer gives directly the modified Friedmann acceleration equation for the dynamical evolution of the universe. Improvements of this equation using the quantum corrections will realize the inflation at high energy scales and the late-time acceleration (i.e. the accelerated expansion of the universe nowadays) obviating the dark energy. From both models we can derive a version of Modified Newtonian Dynamics (MOND) observed in the dynamics of the astronomical objects obviating the dark matter and explaining other astronomical anomalies. A first connection between both theories is given at the end of the paper.

  16. Perturbations of single-field inflation in modified gravity theory

    NASA Astrophysics Data System (ADS)

    Qiu, Taotao; Xia, Jun-Qing

    2015-05-01

    In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f (R). Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure f (R) theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  17. Modified gravity, the Cascading DGP model and its critical tension

    NASA Astrophysics Data System (ADS)

    Sbisà, Fulvio

    2014-12-01

    We investigate the presence of instabilities in the Cascading DGP model. We start by discussing the problem of the cosmological late time acceleration, and we introduce the modified gravity approach. We then focus on brane induced gravity models and in particular on the Cascading DGP model. We consider configurations of the latter model where the source term is given simply by vacuum energy (pure tension), and we study perturbations at first order around these configurations. We perform a four-dimensional scalar-vector-tensor decomposition of the perturbations, and show that, regarding the scalar sector, the dynamics in a suitable limit can be described by a master equation. This master equation contains an energy scale (critical tension) which is related in a lion-trivial way to the parameters of the model. We give a geometrical interpretation of why this scale emerges, and explain its relevance for the presence of ghost instabilities in the theory. We comment on the difference between our result, and the one present in the literature, and stress its importance regarding the phenomenological viability of the model. We finally provide a numerical check which confirms the validity of our analysis.

  18. Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.; Oikonomou, V. K.

    2015-09-01

    In this paper we propose and extensively study mimetic f({G}) modified gravity models, with various scenarios of cosmological evolution, with or without extra matter fluids. The easiest formulation is based on the use of the Lagrange multiplier constraint. In certain versions of this theory, it is possible to realize accelerated expansion of the Universe or even unified evolution, which includes inflation with dark energy, and at the same time in the same theoretical framework, dark matter is described by the theory. This is achieved by the re-parametrization of the metric tensor, which introduces a new degree of freedom in the cosmological equations and leads to the appearance of the mimetic ‘dark matter’ component. In the context of the mimetic f({G}) theory, we also provide some quite general reconstruction schemes, which enable us to find which f({G}) gravity generates a specific cosmological evolution. In addition, we also provide the general reconstruction technique for the Lagrange multiplier f({G}) gravity. All our results are accompanied by illustrative examples, with special emphasis on bouncing cosmologies.

  19. Notes on Born-Infeld-like modified gravity

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-02-01

    We investigate the modified F(R) gravity theory with the function F(R) = (1-√{1-2λ R-σ(λ R)2})/λ. The action is converted into Einstein-Hilbert action at small values of λ and σ. The local tests give a bound on the parameters, λ(1+σ)≤2×10^{-6} cm2. The Jordan and Einstein frames are considered, the potential, and the mass of the scalar field were obtained. The constant curvature solutions of the model are found. It was demonstrated that the de Sitter space is unstable but a solution with zero Ricci scalar is stable. The cosmological parameters of the model are evaluated. Critical points of autonomous equations are obtained and described.

  20. Reality and causality in quantum gravity modified electrodynamics

    SciTech Connect

    Martinez, Santiago A.; Montemayor, R.; Urrutia, Luis F.

    2006-09-15

    We present a general description of the propagation properties of quantum gravity modified electrodynamics characterized by constitutive relations up to second order in the correction parameter. The effective description corresponds to an electrodynamics in a dispersive and absorptive nonlocal medium, where the Green functions and the refraction indices can be explicitly calculated. The reality of the electromagnetic field together with the requirement of causal propagation in a given reference frame leads to restrictions in the form of such refraction indices. In particular, absorption must be present in all cases and, contrary to the usual assumption, it is the dominant aspect in those effective models which exhibit linear effects in the correction parameter not related to birefringence. In such a situation absorption is linear while propagation is quadratical in the correction parameter.

  1. Vacuum structure for scalar cosmological perturbations in modified gravity models

    SciTech Connect

    Felice, Antonio De; Suyama, Teruaki E-mail: teruaki.suyama@uclouvain.be

    2009-06-01

    We have found for the general class of Modified Gravity Models f(R, G) a new instability which can arise in vacuum for the scalar modes of the cosmological perturbations if the background is not de Sitter. In particular, the short-wavelength modes, if stable, in general have a group velocity which depends linearly in k, the wave number. Therefore these modes will be in general superluminal. We have also discussed the condition for which in general these scalar modes will be ghost-like. There is a subclass of these models, defined out of properties of the function f(R, G) and to which the f(R) and f(G) models belong, which however do not have this feature.

  2. Kerr-Newman solution in modified teleparallel theory of gravity

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2015-11-01

    A nondiagonal tetrad field having six unknown functions plus an angle Φ, which is a function of the radial coordinate r, azimuthal angle θ and the polar angle ϕ, is applied to the charged field equations of modified teleparallel theory of gravity. A special nonvacuum solution is derived with three constants of integration. The tetrad field of this solution is axially symmetric and its scalar torsion is constant. The associated metric of the derived solution gives Kerr-Newman spacetime. We have shown that the derived solution can be described by a local Lorentz transformations plus a diagonal tetrad field that is the square root of the Kerr-Newman metric. We show that any solution of general relativity (GR) can be a solution in f(T) under certain conditions.

  3. Vector field models of modified gravity and the dark sector

    NASA Astrophysics Data System (ADS)

    Zuntz, J.; Zlosnik, T. G.; Bourliot, F.; Ferreira, P. G.; Starkman, G. D.

    2010-05-01

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory’s kinetic index parameter nae can differ significantly from its ΛCDM value.

  4. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  5. Modifying gravity with the aether: An alternative to dark matter

    SciTech Connect

    Zlosnik, T. G; Ferreira, P. G; Starkman, G. D.

    2007-02-15

    There is evidence that Newton and Einstein's theories of gravity cannot explain the dynamics of a universe made up solely of baryons and radiation. To be able to understand the properties of galaxies, clusters of galaxies and the universe on the whole it has become commonplace to invoke the presence of dark matter. An alternative approach is to modify the gravitational field equations to accommodate observations. We propose a new class of gravitational theories in which we add a new degree of freedom, the Aether, in the form of a vector field that is coupled covariantly, but nonminimally, with the space-time metric. We explore the Newtonian and non-Newtonian limits, discuss the conditions for these theories to be consistent and explore their effect on cosmology.

  6. Ultralocal models of modified gravity without kinetic term

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Rizzo, Luca Alberto; Valageas, Patrick

    2016-08-01

    We present a class of modified-gravity theories which we call ultralocal models. We add a scalar field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal coupling to matter. This gives rise to a new screening mechanism which is not entirely due to the nonlinearity of the scalar-field potential or the coupling function but to the absence of the kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns out that these models are similar to chameleon-type theories with a large mass when considered outside the Compton wavelength but differ on shorter scales. The predictions of these models only depend on a single free function, as the potential and the coupling function are degenerate, with an amplitude given by a parameter α ≲10-6 , whose magnitude springs from requiring a small modification of Newton's potential astrophysically and cosmologically. This singles out a redshift zα˜α-1 /3≳100 where the fifth force is the greatest. The cosmological background follows the Λ cold dark matter (Λ CDM ) history within a 10-6 accuracy, while cosmological perturbations are significantly enhanced (or damped) on small scales, k ≳2 h Mpc-1 at z =0 . The spherical collapse and the halo mass function are modified in the same manner. We find that the modifications of gravity are greater for galactic or subgalactic structures. We also present a thermodynamic analysis of the nonlinear and inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous before zα when the fifth force dominates, and does not lead to the existence of clumped matter on extra small scales inside halos for large masses while this possibility exists for masses M ≲1 011M⊙ where the phenomenology of ultralocal models would be most different from Λ CDM .

  7. Multicomponent solution in a modified theory of gravity in the early universe

    SciTech Connect

    Mohseni Sadjadi, H.

    2008-05-15

    We study the modified theory of gravity in the Friedmann-Robertson-Walker universe composed of several perfect fluids. We consider the power law inflation and determine the equation of state parameters in terms of the parameters of modified gravity's Lagrangian in the early universe. We also briefly discuss the gravitational baryogenesis in this model.

  8. Tolman-Oppenheimer-Volkoff equations in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Myrzakulov, R.

    2015-11-01

    Based on a stringy inspired Gauss-Bonnet (GB) modification of classical gravity, we constructed a model for neutron stars. We derived the modified forms of Tolman-Oppenheimer-Volkoff (TOV) equations for a generic function of f(G) gravity. The hydrostatic equations remained unchanged but the dynamical equations for metric functions are modified due to the effects of GB term.

  9. 3D weak lensing: Modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Pratten, Geraint; Munshi, Dipak; Valageas, Patrick; Brax, Philippe

    2016-05-01

    Weak lensing (WL) promises to be a particularly sensitive probe of both the growth of large-scale structure as well as the fundamental relation between matter density perturbations and metric perturbations, thus providing a powerful tool with which we may constrain modified theories of gravity (MG) on cosmological scales. Future deep, wide-field WL surveys will provide an unprecedented opportunity to constrain deviations from General Relativity. Employing a 3D analysis based on the spherical Fourier-Bessel expansion, we investigate the extent to which MG theories will be constrained by a typical 3D WL survey configuration including noise from the intrinsic ellipticity distribution σɛ of source galaxies. Here, we focus on two classes of screened theories of gravity: (i) f (R ) chameleon models and (ii) environmentally dependent dilaton models. We use one-loop perturbation theory combined with halo models in order to accurately model the evolution of the matter power spectrum with redshift in these theories. Using a χ2 analysis, we show that for an all-sky spectroscopic survey, the parameter fR0 can be constrained in the range fR0<5 ×10-6(9 ×10-6) for n =1 (2 ) with a 3 σ confidence level. This can be achieved by using relatively low-order angular harmonics ℓ<100 . Higher-order harmonics ℓ>100 could provide tighter constraints but are subject to nonlinear effects, such as baryonic feedback, that must be accounted for. We also employ a Principal Component Analysis in order to study the parameter degeneracies in the MG parameters. The confusion from intrinsic ellipticity correlation and modification of the matter power spectrum at a small scale due to feedback mechanisms is briefly discussed.

  10. Black string and Goedel-type solutions of Chern-Simons modified gravity

    SciTech Connect

    Ahmedov, Haji; Aliev, Alikram N.

    2010-07-15

    We show that Chern-Simons (CS) modified gravity with a prescribed CS scalar field admits rotating black hole/string/> solutions with cylindrical topology of the horizon, and we present two intriguing physical examples of such configurations. First, we show that the Banados-Teitelboim-Zanelli stationary black string, which is obtained by adding a spacelike flat dimension to the Banados-Teitelboim-Zanelli black hole metric of three-dimensional gravity, solves the field equations of CS modified gravity with a specific source term irrespective of the choice of CS scalar field. Next, we consider the Lemos solution for a rotating, straight black string in general relativity and show that, for the CS scalar field being a function of the radial coordinate alone, this solution persists in CS modified gravity. We also present a new nontrivial (non-general relativity) Goedel-type solution to the vacuum field equations of CS modified gravity.

  11. Bi-scalar modified gravity and cosmology with conformal invariance

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.; Tsoukalas, Minas

    2016-04-01

    We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.

  12. Gauss-Bonnet modified gravity models with bouncing behavior

    NASA Astrophysics Data System (ADS)

    Escofet, Anna; Elizalde, Emilio

    2016-06-01

    The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = ‑1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.

  13. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  14. From massive gravity to modified general relativity II

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Scharf, G.

    2011-05-01

    We continue our investigation of massive gravity in the massless limit of vanishing graviton mass. From gauge invariance we derive the most general coupling between scalar matter and gravity. We get further couplings beside the standard coupling to the energy-momentum tensor. On the classical level this leads to a further modification of general relativity.

  15. Conformal transformations in modified teleparallel theories of gravity revisited

    NASA Astrophysics Data System (ADS)

    Wright, Matthew

    2016-05-01

    It is well known that one cannot apply a conformal transformation to f (T ) gravity to obtain a minimally coupled scalar field model, and thus no Einstein frame exists for f (T ) gravity. Furthermore nonminimally coupled "teleparallel dark energy models" are not conformally equivalent to f (T ) gravity. However, it can be shown that f (T ) gravity is conformally equivalent to a teleparallel phantom scalar field model with a nonminimal coupling to a boundary term only. In this work, we extend this analysis by considering a recently studied extended class of models, known as f (T ,B ) gravity, where B is a boundary term related to the divergence of a contraction of the torsion tensor. We find that nonminimally coupled "teleparallel dark energy models" are conformally equivalent to either an f (T ,B ) or f (B ) gravity model. Finally conditions on the functional form of f (T ,B ) gravity are derived to allow it to be transformed to particular nonminimally coupled scalar field models.

  16. Statefinder diagnostic and stability of modified gravity consistent with holographic and agegraphic dark energy

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Jamil, Mubasher

    2011-01-01

    Recently one of us derived the action of modified gravity consistent with the holographic and new-agegraphic dark energy. In this paper, we investigate the stability of the Lagrangians of the modified gravity as discussed in (Setare in Int J Mod Phys D 17:2219, 2008; Setare in Astrophys Space Sci 326:27, 2010). We also calculate the statefinder parameters which classify our dark energy model.

  17. Viability of the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology for general potentials

    SciTech Connect

    Haro, Jaume; Amorós, Jaume E-mail: jaume.amoros@upc.edu

    2014-12-01

    We consider the matter bounce scenario in F(T) gravity and Loop Quantum Cosmology (LQC) for phenomenological potentials that at early times provide a nearly matter dominated Universe in the contracting phase, having a reheating mechanism in the expanding or contracting phase, i.e., being able to release the energy of the scalar field creating particles that thermalize in order to match with the hot Friedmann Universe, and finally at late times leading to the current cosmic acceleration. For these potentials, numerically solving the dynamical perturbation equations we have seen that, for the particular F(T) model that we will name teleparallel version of LQC, and whose modified Friedmann equation coincides with the corresponding one in holonomy corrected LQC when one deals with the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the corresponding equations obtained from the well-know perturbed equations in F(T) gravity lead to theoretical results that fit well with current observational data. More precisely, in this teleparallel version of LQC there is a set of solutions which leads to theoretical results that match correctly with last BICEP2 data, and there is another set whose theoretical results fit well with Planck's experimental data. On the other hand, in the standard holonomy corrected LQC, using the perturbed equations obtained replacing the Ashtekar connection by a suitable sinus function and inserting some counter-terms in order to preserve the algebra of constrains, the theoretical value of the tensor/scalar ratio is smaller than in the teleparallel version, which means that there is always a set of solutions that matches with Planck's data, but for some potentials BICEP2 experimental results disfavours holonomy corrected LQC.

  18. Time-dependent scalar fields in modified gravities in a stationary spacetime

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao

    2016-07-01

    Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.

  19. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  20. Spherical collapse and cluster counts in modified gravity models

    SciTech Connect

    Martino, Matthew C.; Stabenau, Hans F.; Sheth, Ravi K.

    2009-04-15

    Modifications to the gravitational potential affect the nonlinear gravitational evolution of large scale structures in the Universe. To illustrate some generic features of such changes, we study the evolution of spherically symmetric perturbations when the modification is of Yukawa type; this is nontrivial, because we should not and do not assume that Birkhoff's theorem applies. We then show how to estimate the abundance of virialized objects in such models. Comparison with numerical simulations shows reasonable agreement: When normalized to have the same fluctuations at early times, weaker large scale gravity produces fewer massive halos. However, the opposite can be true for models that are normalized to have the same linear theory power spectrum today, so the abundance of rich clusters potentially places interesting constraints on such models. Our analysis also indicates that the formation histories and abundances of sufficiently low mass objects are unchanged from standard gravity. This explains why simulations have found that the nonlinear power spectrum at large k is unaffected by such modifications to the gravitational potential. In addition, the most massive objects in models with normalized cosmic microwave background and weaker gravity are expected to be similar to the high-redshift progenitors of the most massive objects in models with stronger gravity. Thus, the difference between the cluster and field galaxy populations is expected to be larger in models with stronger large scale gravity.

  1. Anisotropic stress and stability in modified gravity models

    SciTech Connect

    Saltas, Ippocratis D.; Kunz, Martin

    2011-03-15

    The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.

  2. Pauli-Fierz mass term in modified Plebanski gravity

    NASA Astrophysics Data System (ADS)

    Beke, David; Palmisano, Giovanni; Speziale, Simone

    2012-03-01

    We study SO(4) BF theory plus a general quadratic potential, which describes a bi-metric theory of gravity. We identify the profile of the potential leading to a Pauli-Fierz mass term for the massive graviton, thereby avoiding the linearized ghost. We include the Immirzi parameter in our analysis, and find that the mass of the second graviton depends on it. At the non-perturbative level, we find a situation similar to genuine bi-gravities: even choosing the Pauli-Fierz mass term, the ghost mode propagates through the interactions. We present some simple potentials leading to two and three degrees of freedom, and discuss the difficulties of finding a ghost-free bi-gravity with seven degrees of freedom. Finally, we discuss alternative reality conditions for the case of SO(3,1) BF theory, relevant for Lorentzian signature, and give a new solution to the compatibility equation.

  3. Boundary terms, variational principles, and higher derivative modified gravity

    SciTech Connect

    Dyer, Ethan; Hinterbichler, Kurt

    2009-01-15

    We discuss the criteria that must be satisfied by a well-posed variational principle. We clarify the role of Gibbons-Hawking-York type boundary terms in the actions of higher derivative models of gravity, such as F(R) gravity, and argue that the correct boundary terms are the naive ones obtained through the correspondence with scalar-tensor theory, despite the fact that variations of normal derivatives of the metric must be fixed on the boundary. We show in the case of F(R) gravity that these boundary terms reproduce the correct Arnowitt-Deser-Misner energy in the Hamiltonian formalism, and the correct entropy for black holes in the semiclassical approximation.

  4. Clear and measurable signature of modified gravity in the galaxy velocity field.

    PubMed

    Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity. PMID:24949751

  5. Thermodynamic study in modified f(T) gravity with cosmological constant regime

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Waheed, Saira

    2015-12-01

    This study is conducted to examine the validity of thermodynamical laws in a modified f(T) gravity involving a direct coupling of torsion scalar with matter contents. For this purpose, we consider spatially flat FRW geometry with matter contents as perfect fluid and formulate the first thermodynamical law in this gravity at apparent horizon. It is found that equilibrium description of thermodynamics exists in this modified gravity in a similar way to Einstein and other gravities. Further we discuss generalized second law of thermodynamics at apparent horizon of FRW universe for three different f(T) models using Gibbs law as well as the assumption that temperature of matter within apparent horizon is similar to that of horizon. It is found that for some particular cosmologically consistent values of coupling parameters, GSLT remains valid in observationally consistent cosmic eras.

  6. Effective field theory from modified gravity with massive modes

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; de Laurentis, Mariafelicia; Paolella, Mariacristina; Ricciardi, Giulia

    2015-10-01

    Massive gravitational modes in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants, not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with massive modes is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed.

  7. Skeletogenesis in sea urchin larvae under modified gravity conditions

    NASA Astrophysics Data System (ADS)

    Marthy, H.-J.; Gasset, G.; Tixador, R.; Eche, B.; Schatt, P.; Dessommes, A.; Marthy, U.; Bacchieri, R.

    From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.

  8. Stability of spherically symmetric solutions in modified theories of gravity

    SciTech Connect

    Seifert, Michael D.

    2007-09-15

    In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our 'generalized variational principle', described in a previous work [M. D. Seifert and R. M. Wald, Phys. Rev. D 75, 084029 (2007)], to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson and Mattingly's 'Einstein-aether theory', and Bekenstein's TeVeS theory. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the 'kinetic terms' of vacuum TeVeS theory are indefinite in a curved background, leading to an instability.

  9. Constraints on modified Gauss-Bonnet gravity during big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki

    2016-02-01

    Modified gravity is considered to be one of the possible explanations of the accelerated expansions of the present and the early universe. We study the effects of modified gravity on big bang nucleosynthesis (BBN). If the effects of modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a f (G ) term with the Gauss-Bonnet term G , during the BBN epoch. A power-law relation of d f /d G ∝tp where t is the cosmic time was assumed for the function f (G ) as an example case. We solve time evolutions of physical variables during BBN in the f (G ) gravity model numerically, and we analyzed the calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on the primordial D abundance leads to the strongest constraint on the f (G ) gravity. We then derive constraints on parameters of the f (G ) gravity taking into account the existence of the solution of expansion rate and final light element abundances.

  10. Creation of wormholes by quantum tunnelling in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Battarra, Lorenzo; Lavrelashvili, George; Lehners, Jean-Luc

    2014-12-01

    We study the process of quantum tunnelling in scalar-tensor theories in which the scalar field is nonminimally coupled to gravity. In these theories gravitational instantons can deviate substantially from sphericity and can in fact develop a neck—a feature prohibited in theories with minimal coupling. Such instantons with necks lead to the materialization of bubble geometries containing a wormhole region. We clarify the relationship of neck geometries to violations of the null energy condition, and also derive a bound on the size of the neck relative to that of the instanton.

  11. Gravity matters: Motion perceptions modified by direction and body position.

    PubMed

    Claassen, Jens; Bardins, Stanislavs; Spiegel, Rainer; Strupp, Michael; Kalla, Roger

    2016-07-01

    Motion coherence thresholds are consistently higher at lower velocities. In this study we analysed the influence of the position and direction of moving objects on their perception and thereby the influence of gravity. This paradigm allows a differentiation to be made between coherent and randomly moving objects in an upright and a reclining position with a horizontal or vertical axis of motion. 18 young healthy participants were examined in this coherent threshold paradigm. Motion coherence thresholds were significantly lower when position and motion were congruent with gravity independent of motion velocity (p=0.024). In the other conditions higher motion coherence thresholds (MCT) were found at lower velocities and vice versa (p<0.001). This result confirms previous studies with higher MCT at lower velocity but is in contrast to studies concerning perception of virtual turns and optokinetic nystagmus, in which differences of perception were due to different directions irrespective of body position, i.e. perception took place in an egocentric reference frame. Since the observed differences occurred in an upright position only, perception of coherent motion in this study is defined by an earth-centered reference frame rather than by an ego-centric frame. PMID:27258411

  12. Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk

    NASA Astrophysics Data System (ADS)

    Konikowska, Dominika

    2014-02-01

    We study a theory of dilaton gravity in a five-dimensional brane scenario, with a non-minimal coupling of the dilaton to the matter content of the universe localized on the brane. The effective gravitational equations at the brane are derived in the Einstein frame in the covariant approach, addressing certain misconceptions in the literature. We then investigate whether the observed large-scale structure of the universe can exist on the brane in this dilaton gravity scenario with an exact anti de Sitter bulk, assuming that the matter energy-momentum tensor has the form of an inhomogeneous perfect fluid. The corresponding constraint on the spatial derivative of the matter energy density is derived, and subsequently quantified using the current limits resulting from searches for variation of the Newton's constant. By confronting it with the observational data from galaxy surveys, we show that up to scales of the order of 104 Mpc, the derived bound on the spatial derivative of the matter energy density does not allow for the existence of the large-scale structure as observed today. Thus, such a dilaton gravity brane scenario is ruled out.

  13. Modified gravity theories: Alternatives to the missing mass and missing energy problems

    NASA Astrophysics Data System (ADS)

    Soussa, Marc Edward

    Modified theories of gravity are examined and shown to be alternative possibilities to the standard paradigms of dark matter and dark energy in explaining the currently observed cosmological phenomenology. Special consideration is given to the relativistic extension of Modified Newtonian Dynamics (MOND) in supplanting the need for dark matter. A specific modification of the Einstein-Hilbert action (whereby an inverse power of the Ricci scalar is added) is shown to serve as an alternative to dark energy.

  14. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem

    SciTech Connect

    Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2006-04-15

    Dark energy cosmology is considered in a modified Gauss-Bonnet (GB) model of gravity where an arbitrary function of the GB invariant, f(G), is added to the general relativity action. We show that a theory of this kind is endowed with a quite rich cosmological structure: it may naturally lead to an effective cosmological constant, quintessence, or phantom cosmic acceleration, with a possibility for the transition from deceleration to acceleration. It is demonstrated in the paper that this theory is perfectly viable, since it is compliant with the solar system constraints. Specific properties of f(G) gravity in a de Sitter (dS) universe, such as dS and SdS solutions, their entropy, and its explicit one-loop quantization are studied. The issue of a possible solution of the hierarchy problem in modified gravities is also addressed.

  15. Dynamical analysis of modified gravity with nonminimal gravitational coupling to matter

    NASA Astrophysics Data System (ADS)

    An, Rui; Xu, Xiaodong; Wang, Bin; Gong, Yungui

    2016-05-01

    We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with supernova type Ia data sets, we find that the nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.

  16. Chern-Simons modified gravity as a torsion theory and its interaction with fermions

    SciTech Connect

    Alexander, Stephon; Yunes, Nicolas

    2008-06-15

    We study the tetrad formulation of Chern-Simons (CS) modified gravity, which adds a Pontryagin term to the Einstein-Hilbert action with a spacetime-dependent coupling field. We first verify that CS modified gravity leads to a theory with torsion, where this tensor is given by an antisymmetric product of the Riemann tensor and derivatives of the CS coupling. We then calculate the torsion in the far field of a weakly gravitating source within the parameterized post-Newtonian formalism, and specialize the result to Earth. We find that CS torsion vanishes only if the coupling vanishes, thus generically leading to a modification of gyroscopic precession, irrespective of the coupling choice. Perhaps most interestingly, we couple fermions to CS modified gravity via the standard Dirac action and find that these further correct the torsion tensor. Such a correction leads to two new results: (i) a generic enhancement of CS modified gravity by the Dirac equation and axial fermion currents; (ii) a new two-fermion interaction, mediated by an axial current and the CS correction. We conclude with a discussion of the consequences of these results in particle detectors and realistic astrophysical systems.

  17. Lunar System Constraints on the Modified Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Exirifard, Qasem

    2013-07-01

    The Modified Newtonian Dynamics (MOND) paradigm to the missing mass problem requires introducing a functional that is to be identified through observations and experiments. We consider the aquadratic Lagrangian theory as a realization of the MOND. We show that the accurate value of the Earth GM measured by the lunar laser ranging measurements and that by various artificial Earth satellites, including the accurate tracking of the LAGEOS satellites, constrain this functional such that some of the chosen/proposed functional are refuted.

  18. Practical approach to cosmological perturbations in modified gravity

    NASA Astrophysics Data System (ADS)

    Silvestri, Alessandra; Pogosian, Levon; Buniy, Roman V.

    2013-05-01

    The next generation of large scale surveys will not only measure cosmological parameters within the framework of general relativity, but will also allow for precision tests of the framework itself. At the order of linear perturbations, departures from the growth in the standard cosmological model can be quantified in terms of two functions of time and Fourier number k. We argue that in local theories of gravity, in the quasistatic approximation, these functions must be ratios of polynomials in k, with the numerator of one function being equal to the denominator of the other. Moreover, the polynomials are even and of second degree in practically all viable models considered today. This means that, without significant loss of generality, one can use data to constrain only five functions of a single variable, instead of two functions of two variables. Furthermore, since the five functions are expected to be slowly varying, one can fit them to data in a nonparametric way with the aid of an explicit smoothness prior. We discuss practical application of this parametrization to forecasts and fits.

  19. Bending of Light in Modified Gravity at Large Distances

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-01-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric

  20. Bending of light in modified gravity at large distances

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-04-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.

  1. Entropic Gravity, Minimum Temperature, and Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Kopp, M.

    Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.

  2. Testing Modified Gravity Models using Gravitational Waves Observation

    NASA Astrophysics Data System (ADS)

    Kahya, Emre

    2016-07-01

    Rotation curves of spiral galaxies and weak lensing as well as CMBR Power Spectrum point towards a need for different kind of matter in the universe that is not interacting electromagnetically. Alternatively one can explain rotation curves by modifying Newton's Laws which is called MOND. Relativistic versions of MOND work surprisingly good in producing structure and the community started taking these models seriously. We would like to offer a test which can test the validity of these class of models where one would get non-coincident arrival for gravitational waves and photons. We will explain why one should get a time lag between these two massless particles in the context of these so-called Dark Matter Emulators. And give an order of magnitude estimate for Shapiro delay for object which are very far away as well as more accurate ones for sources in Milky-way.

  3. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    SciTech Connect

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-03-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  4. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    SciTech Connect

    Brax, Philippe

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  5. Membrane paradigm of black holes in Chern-Simons modified gravity

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Yi; Wang, Towe

    2016-06-01

    The membrane paradigm of black hole is studied in the Chern-Simons modified gravity. Derived with the action principle a la Parikh-Wilczek, the stress tensor of membrane manifests a rich structure arising from the Chern-Simons term. The membrane stress tensor, if related to the bulk stress tensor in a special form, obeys the low-dimensional fluid continuity equation and the Navier-Stokes equation. This paradigm is applied to spherically symmetric static geometries, and in particular, the Schwarzschild black hole, which is a solution of a large class of dynamical Chern-Simons gravity.

  6. Modified gravity: the CMB, weak lensing and general parameterisations

    SciTech Connect

    Thomas, Shaun A.; Appleby, Stephen A.; Weller, Jochen E-mail: stephen.appleby@ph.tum.de

    2011-03-01

    We examine general physical parameterisations for viable gravitational models in the f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k) and the ratio of the Newtonian potentials η(a,k). We argue that although f(R) models are well described by the general [μ(a,k),η(a,k)] parameterization, specific functional forms of μ,η in the literature do not accurately represent f(R) behaviour, specifically at low redshift. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k) and η(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum-where the signatures are evident-thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M{sub 0} = 9.4 × 10{sup −30}eV at the ∼ 20% level. However, the decay rate of the scalaron mass, with fiducial value ν = 1.5, can be constrained to ∼ 3% uncertainty.

  7. Holographic superconductors in IR modified Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Wang; Wu, Ya-Bo; Xiao, Jian; Lu, Cui-Juan; Liu, Mo-Lin

    2016-07-01

    In the probe limit, we study the holographic s- and p-wave superconductors in the IR modified Hořava-Lifshitz gravity and obtain the effect of the gravity parameter α on the condensate and the AC conductivity. Concretely, for the two models, the increasing α makes the superconductor phase transition more difficult. Moreover, at the critical point, both systems undergo a second-order phase transition as expected from the mean field theory, and the superfluid density decreases with the temperature linearly, which is consistent with the Ginzburg-Landau theory. Meanwhile, the analytical results back up the numerical results. What is more, in the superconducting phase, the ratio of the energy gap to the critical temperature, i.e. ωg/Tc, decreases with the increasing α. In addition, our results generalize the previous work on holographic superconductors in Hořava-Lifshitz gravity to some extent.

  8. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    NASA Astrophysics Data System (ADS)

    Munshi, D.; Hu, B.; Matsubara, T.; Coles, P.; Heavens, A.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f(R) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection of lensing-induced morphology changes, reaches Script O(103) for the future planned CMB polarization mission COrE+. Assuming foreground removal is possible to lmax=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.

  9. Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies

    SciTech Connect

    Vikram, Vinu; Cabré, Anna; Jain, Bhuvnesh; VanderPlas, J.T. E-mail: annanusca@gmail.com E-mail: jakevdp@cs.washington.edu

    2013-08-01

    This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain and Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.

  10. Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Vikram, Vinu; Cabré, Anna; Jain, Bhuvnesh; VanderPlas, J. T.

    2013-08-01

    This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain & Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.

  11. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank.

  12. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction

    PubMed Central

    Wang, Jun; Li, Shi-Yu; Jiang, Feng; Wu, Ke; Liu, Guang-Li; Lu, Hui; Chen, Guang-Hao

    2015-01-01

    Oxic-settling-anaerobic process (OSA) was known as a cost-effective way to reduce the excess sludge production with simple upgrade of conventional activated sludge process (CAS). A low oxidation-reduction potential (ORP) level was the key factor to sludge decay and lysis in the sludge holding tank of the OSA process. However, the ORP control with nitrogen purge or chemical dosing in the OSA process would induce extra expense and complicate the operation. Hence, in this study, a sludge holding tank using gravity thickening was applied to OSA process to reduce the excess sludge production without any ORP control. Results showed that the modified OSA process not only reduced the excess sludge production effectively but also improved the sludge settleability without affected the treatment capacity. The reduction of the excess sludge production in the modified OSA process resulted from interactions among lots of factors. The key element of the process was the gravity thickening sludge holding tank. PMID:26350761

  13. Dirichlet boundary-value problem for Chern-Simons modified gravity

    SciTech Connect

    Grumiller, Daniel; Mann, Robert; McNees, Robert

    2008-10-15

    Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary-value problem well defined. It turns out to be a boundary Chern-Simons action for the extrinsic curvature. We address applications to black hole thermodynamics.

  14. Reconstruction and stability of f( R, T) gravity with Ricci and modified Ricci dark energy

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zubair, M.

    2014-01-01

    We take the Ricci and modified Ricci dark energy models to establish a connection with f( R, T) gravity, where R is the scalar curvature and T is the trace of the energy-momentum tensor. The function f( R, T) is reconstructed by considering this theory as an effective description of these models. We consider a specific model which permits the standard continuity equation in this modified theory. It is found that f( R, T) functions can reproduce expansion history of the considered models which is in accordance with the present observational data. We also explore the Dolgov-Kawasaki stability condition for the reconstructed f( R, T) functions.

  15. A complete cosmological scenario from f(R,T^{φ }) gravity theory

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.; Santos, J. R. L.

    2016-02-01

    Recent elaborated by Harko et al., the f( R, T) theories of gravity allow one to contemplate an optimistic alternative to dark energy, for which R and T stand for the Ricci scalar and the trace of the energy-momentum tensor, respectively. Although the literature has shown that the T dependence on the gravitational part of the action - which is due to the consideration of quantum effects - may induce some novel features in the scope of late-time cosmological dynamics, in the radiation-dominated universe, when T=0, no contributions seem to arise from such theories. Apparently, f( R, T) contributions to a radiation-dominated universe may arise only from the f(R,T^{φ }) approach, which is nothing but the f( R, T) gravity in the case of a self-interacting scalar field whose trace of the energy-momentum tensor is T^{φ }. We intend, in this article, to show how f(R,T^{φ }) theories of gravity can contribute to the study of the primordial stages of the universe. Our results predict a graceful exit from an inflationary stage to a radiation-dominated era. They also predict a late-time cosmic acceleration after a matter-dominated phase, enabling the f(R,T^{φ }) theories to describe, in a self-consistent way, all the different stages of the dynamics of the universe.

  16. Unimodular F(R) gravity

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-05-01

    We extend the formalism of the Einstein-Hilbert unimodular gravity in the context of modified F(R) gravity. After appropriately modifying the Friedmann-Robertson-Walker metric in a way that it becomes compatible to the unimodular condition of having a constant metric determinant, we derive the equations of motion of the unimodular F(R) gravity by using the metric formalism of modified gravity with Lagrange multiplier constraint. The resulting equations are studied in frames of reconstruction method, which enables us to realize various cosmological scenarios, which was impossible to realize in the standard Einstein-Hilbert unimodular gravity. Several unimodular F(R) inflationary scenarios are presented, and in some cases, concordance with Planck and BICEP2 observational data can be achieved.

  17. Perturbations of Schwarzschild black holes in Chern-Simons modified gravity

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolás; Sopuerta, Carlos F.

    2008-03-01

    We study perturbations of a Schwarzschild black hole in Chern-Simons modified gravity. We begin by showing that Birkhoff’s theorem holds for a wide family of Chern-Simons coupling functions, a scalar field present in the theory that controls the strength of the Chern-Simons correction to the Einstein-Hilbert action. After decomposing the perturbations in spherical harmonics, we study the linearized modified field equations and find that axial and polar modes are coupled, in contrast to general relativity. The divergence of the modified equations leads to the Pontryagin constraint, which forces the vanishing of the Cunningham-Price-Moncrief master function associated with axial modes. We analyze the structure of these equations and find that the appearance of the Pontryagin constraint yields an overconstrained system that does not allow for generic black hole oscillations. We illustrate this situation by studying the case characterized by a canonical choice of the coupling function and pure-parity perturbative modes. We end with a discussion of how to extend Chern-Simons modified gravity to bypass the Pontryagin constraint and the suppression of perturbations.

  18. Cosmological tests of modified gravity: Constraints on F (R ) theories from the galaxy clustering ratio

    NASA Astrophysics Data System (ADS)

    Bel, Julien; Brax, Philippe; Marinoni, Christian; Valageas, Patrick

    2015-05-01

    The clustering ratio η , a large-scale structure observable originally designed to constrain the shape of the power spectrum of matter density fluctuations, is shown to provide a sensitive probe of the nature of gravity in the cosmological regime. We apply this analysis to F (R ) theories of gravity using the luminous red galaxy sample extracted from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 and 10 catalogs. We find that general relativity (GR), complemented with a Friedmann-Robertson-Walker (FRW) cosmological model with parameters fixed by the Planck satellite, describes extremely well the clustering of galaxies up to z ˜0.6 . On large cosmic scales, the absolute amplitude of deviations from GR, |fR 0|, is constrained to be smaller than 4.6 ×1 0-5 at the 95% confidence level. This bound makes cosmological probes of gravity almost competitive with the sensitivity of Solar System tests, although still one 1 order of magnitude less effective than astrophysical tests. We also extrapolate our results to future large surveys like Euclid and show that the astrophysical bound will certainly remain out of reach for such a class of modified-gravity models that only differ from Λ CDM at low redshifts.

  19. Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory

    SciTech Connect

    Glass, R.J.

    1992-12-31

    Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.

  20. Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Fisher, R.

    2008-11-01

    Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.

  1. Imprint of modified Einstein’s gravity on white dwarfs: Unifying Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-11-01

    We establish the importance of modified Einstein’s gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar’s limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar’s limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein’s gravity and the uniqueness of Chandrasekhar’s limit.

  2. Generalized second law of thermodynamics on the apparent horizon in modified Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, A.; Najafi, T.

    2016-01-01

    Modified gravity (MG) and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-Bonnet (GB) gravity or f(G)-gravity. We consider a spatially FRW universe filled with the pressureless matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable f(G) models, we first numerically solve the set of differential equations governing the dynamics of f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the GB curvature invariant term, the density and equation of state (EoS) parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected f(G) models, we conclude that both models have a stable de Sitter attractor. The EoS parameters behave quite similar to those of the ΛCDM model in the radiation/matter dominated epochs, then they enter the phantom region before reaching the de Sitter attractor with ω = -1. The deceleration parameter starts from the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected for both models during the standard radiation/matter dominated epochs. Thereafter when the universe becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.

  3. Astrophysical tests of modified gravity: Constraints from distance indicators in the nearby universe

    SciTech Connect

    Jain, Bhuvnesh; Vikram, Vinu; Sakstein, Jeremy

    2013-12-10

    We use distance measurements in the nearby universe to carry out new tests of gravity, surpassing other astrophysical tests by over two orders of magnitude for chameleon theories. The three nearby distance indicators—cepheids, tip of the red giant branch (TRGB) stars, and water masers—operate in gravitational fields of widely different strengths. This enables tests of scalar-tensor gravity theories because they are screened from enhanced forces to different extents. Inferred distances from cepheids and TRGB stars are altered (in opposite directions) over a range of chameleon gravity theory parameters well below the sensitivity of cosmological probes. Using published data, we have compared cepheid and TRGB distances in a sample of unscreened dwarf galaxies within 10 Mpc. We use a comparable set of screened galaxies as a control sample. We find no evidence for the order unity force enhancements expected in these theories. Using a two-parameter description of the models (the coupling strength and background field value), we obtain constraints on both the chameleon and symmetron screening scenarios. In particular we show that f(R) models with background field values f {sub R0} above 5 × 10{sup –7} are ruled out at the 95% confidence level. We also compare TRGB and maser distances to the galaxy NGC 4258 as a second test for larger field values. While there are several approximations and caveats in our study, our analysis demonstrates the power of gravity tests in the local universe. We discuss the prospects for additional improved tests with future observations.

  4. Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity

    SciTech Connect

    Sopuerta, Carlos F.; Yunes, Nicolas

    2009-09-15

    Chern-Simons modified gravity is a four-dimensional, effective theory that descends both from string theory and loop quantum gravity, and that corrects the Einstein-Hilbert action by adding the product of a scalar field and the parity-violating, Pontryagin density. The Chern-Simons modification deforms the gravitational field of spinning black holes, which is now described by a modified Kerr geometry whose multipole moments deviate from the Kerr ones only at the fourth multipole l=4. This paper investigates possible signatures of this theory in the gravitational-wave emission produced in the inspiral of stellar compact objects into massive black holes, both for intermediate- and extreme-mass ratios. We use the semirelativistic approximation, where the trajectory of the small compact object is modeled via geodesics of the massive black hole geometry, while the gravitational waveforms are obtained from a multipolar decomposition of the radiative field. The main Chern-Simons corrections to the waveforms arise from modifications to the geodesic trajectories, which in turn are due to changes to the massive black hole geometry, and manifest themselves as an accumulating dephasing relative to the general relativistic case. We also explore the propagation and the stress-energy tensor of gravitational waves in this theory, using the short-wavelength approximation. We find that, although this tensor has the same form as in general relativity, the energy and angular momentum balance laws are indeed modified through the stress-energy tensor of the Chern-Simons scalar field. These balance laws could be used to describe the inspiral through adiabatic changes in the orbital parameters, which in turn would enhance the dephasing effect. Gravitational-wave observations of intermediate- or extreme-mass-ratio inspirals with advanced ground detectors or with the Laser Interferometer Space Antenna could use such dephasing to test the dynamical theory to unprecedented levels, thus

  5. Applicability of the Newman-Janis algorithm to black hole solutions of modified gravity theories

    NASA Astrophysics Data System (ADS)

    Hansen, Devin; Yunes, Nicolás

    2013-11-01

    The Newman-Janis algorithm has been widely used to construct rotating black hole solutions from nonrotating counterparts. While this algorithm was developed within general relativity (GR), it has more recently been applied to nonrotating solutions in modified gravity theories. We find that the application of the Newman-Janis algorithm to an arbitrary non-GR spherically symmetric solution introduces pathologies in the resulting axially symmetric metric. This then establishes that, in general, the Newman-Janis algorithm should not be used to construct rotating black hole solutions outside of General Relativity.

  6. Group theoretical interpretation of the modified gravity in de Sitter space

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2016-03-01

    A framework has been presented for theoretical interpretation of various modified gravitational models which is based on the group theoretical approach and unitary irreducible representations (UIR's) of de Sitter (dS) group. In order to illustrate the application of the proposed method, a model of modified gravity has been investigated. The background field method has been utilized and the linearized modified gravitational field equation has been obtained in the 4-dimensional dS space-time as the background. The field equation has been written as the eigne-value equation of the Casimir operators of dS space using the flat 5-dimensional ambient space notations. The Minkowskian correspondence of the theory has been obtained by taking the zero curvature limit. It has been shown that under some simple conditions, the linearized modified field equation transforms according to two of the UIR's of dS group labeled by Π 2,1 ± and Π 2,2 ± in the discrete series. It means that the proposed modified gravitational theory can be a suitable one to describe the quantum gravitational effects in its linear approximation on dS space. The field equation has been solved and the solution has been written as the multiplication of a symmetric rank-2 polarization tensor and a massless scalar field using the ambient space notations. Also the two-point function has been calculated in the ambient space formalism. It is dS invariant and free of any theoretical problems.

  7. Linear stability analysis and the speed of gravitational waves in dynamical Chern-Simons modified gravity

    SciTech Connect

    Garfinkle, David; Pretorius, Frans; Yunes, Nicolas

    2010-08-15

    We perform a linear stability analysis of dynamical Chern-Simons modified gravity in the geometric optics approximation and find that it is linearly stable on the backgrounds considered. Our analysis also reveals that gravitational waves in the modified theory travel at the speed of light in Minkowski spacetime. However, on a Schwarzschild background the characteristic speed of propagation along a given direction splits into two modes, one subluminal and one superluminal. The width of the splitting depends on the azimuthal components of the propagation vector, is linearly proportional to the mass of the black hole, and decreases with the third inverse power of the distance from the black hole. Radial propagation is unaffected, implying that as probed by gravitational waves the location of the event horizon of the spacetime is unaltered. The analysis further reveals that when a high frequency, pure gravitational wave is scattered from a black hole, a scalar wave of comparable amplitude is excited, and vice versa.

  8. Generalized information (entanglement) entropies depending on the probability (density matrix), (modified gravity)

    NASA Astrophysics Data System (ADS)

    Obregón, Octavio; Cabo Bizet, Nana Geraldine

    2016-03-01

    Generalized information (entanglement) entropy(ies) that depend only on the probability (the density matrix) will be exhibited. It will be shown that these generalized information entropy(ies) are obtained by means of the superstatistics proposal and they correspond to generalized entanglement entropy(ies) that are at the same time a consequence of generalizing the Replica trick. Following the entropic force formulation, these generalized entropy(ies) provide a modified Newtońs law of gravitation. We discuss the difficulties to get an associated theory of gravity. Moreover, our results show corrections to the von Neumann entropy S0 that are larger than the usual UV ones and also than the corrections to the length dependent AdS3 entropy which result comparable to the UV ones. The correction terms due to the new entropy would modify the Ryu-Takayanagi identification between the CFT and the gravitational AdS3 entropies.

  9. Smoking guns of a bounce in modified theories of gravity through the spectrum of gravitational waves

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Morais, João; Henriques, Alfredo B.

    2013-05-01

    We present an inflationary model preceded by a bounce in a metric theory à la f(R), where R is the scalar curvature of the space-time. The model is asymptotically de Sitter such that the gravitational action tends asymptotically to an Einstein-Hilbert action with an effective cosmological constant; therefore, modified gravity affects only the early stages of the Universe. We then analyze the spectrum of the gravitational waves through the method of the Bogoliubov coefficients by two means: taking into account the gravitational perturbations due to the modified gravitational action in the f(R) setup and simply considering those perturbations inherent to the standard Einstein-Hilbert action. We show that there are distinctive (oscillatory) signals on the spectrum for very low frequencies; i.e., corresponding to modes that are currently entering the horizon.

  10. Constraining Modified Theories of Gravity with Gravitational-Wave Stochastic Backgrounds.

    PubMed

    Maselli, Andrea; Marassi, Stefania; Ferrari, Valeria; Kokkotas, Kostas; Schneider, Raffaella

    2016-08-26

    The direct discovery of gravitational waves has finally opened a new observational window on our Universe, suggesting that the population of coalescing binary black holes is larger than previously expected. These sources produce an unresolved background of gravitational waves, potentially observable by ground-based interferometers. In this Letter we investigate how modified theories of gravity, modeled using the parametrized post-Einsteinian formalism, affect the expected signal, and analyze the detectability of the resulting stochastic background by current and future ground-based interferometers. We find the constraints that Advanced LIGO would be able to set on modified theories, showing that they may significantly improve the current bounds obtained from astrophysical observations of binary pulsars. PMID:27610838

  11. Gravity

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Will, Clifford M.

    2014-05-01

    Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.

  12. V cosmological models in f (R, T) modified gravity with Λ (T) by using generation technique

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasr; Pradhan, Anirudh; Fekry, M.; Alamri, Sultan Z.

    2016-06-01

    A new class of cosmological models in f (R, T) modified theories of gravity proposed by Harko et al. (2011), where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T, has been investigated for a specific choice of f (R, T) =f1 (R) +f2 (T) by generation of new solutions. Motivated by recent work of Pradhan et al. (2015) we have revisited the recent work of Ahmed and Pradhan (2014) by using a generation technique, it is shown that f (R, T) modified field equations are solvable for any arbitrary cosmic scale function. A class of new solutions for particular forms of cosmic scale functions have been investigated. In the present study we consider the cosmological constant Λ as a function of the trace of the stress energy-momentum-tensor, and dub such a model " Λ (T) gravity" where we specified a certain form of Λ (T) . Such models may exhibit better equability with the cosmological observations. The cosmological constant Λ is found to be a positive decreasing function of time which is supported by results from recent supernovae Ia observations. Expressions for Hubble's parameter in terms of redshift, luminosity distance redshift, distance modulus redshift and jerk parameter are derived and their significances are described in detail. The physical and geometric properties of the cosmological models are also discussed.

  13. Off-diagonal deformations of kerr black holes in Einstein and modified massive gravity and higher dimensions

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Tamara; Vacaru, Olivia; Vacaru, Sergiu I.

    2014-12-01

    We find general parameterizations for generic off-diagonal spacetime metrics and matter sources in general relativity (GR) and modified gravity theories when the field equations decouple with respect to certain types of nonholonomic frames of reference. This allows us to construct various classes of exact solutions when the coefficients of the fundamental geometric/physical objects depend on all spacetime coordinates via corresponding classes of generating and integration functions and/or constants. Such (modified) spacetimes display Killing and non-Killing symmetries, describe nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants. Our method can be extended to higher dimensions which simplifies some proofs for embedded and nonholonomically constrained four-dimensional configurations. We reproduce the Kerr solution and show how to deform it nonholonomically into new classes of generic off-diagonal solutions depending on 3-8 spacetime coordinates. Certain examples of exact solutions are analyzed and they are determined by contributions of a new type of interactions with sources in massive gravity and/or modified f(R,T) gravity. We conclude that by considering generic off-diagonal nonlinear parametric interactions in GR it is possible to mimic various effects in massive and/or modified gravity, or to distinguish certain classes of "generic" modified gravity solutions which cannot be encoded in GR.

  14. Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F(R) , F(G) and F(T) theories

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.; Saridakis, Emmanuel N.

    2015-12-01

    We investigate the realization of two bouncing paradigms, namely of the superbounce and the loop quantum cosmological ekpyrosis, in the framework of various modified gravities. In particular, we focus on the F(R) , F(G) and F(T) gravities, and we reconstruct their specific subclasses which lead to such universe evolutions. These subclasses constitute from power laws, polynomials, or hypergeometric ansatzes, which can be approximated by power laws. The qualitative similarity of the different effective gravities which realize the above two bouncing cosmologies, indicates that a universality might be lying behind the bounce. Finally, performing a linear perturbation analysis, we show that the obtained solutions are conditionally or fully stable.

  15. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  16. Friedmann equations from nonequilibrium thermodynamics of the Universe: A unified formulation for modified gravity

    NASA Astrophysics Data System (ADS)

    Tian, David W.; Booth, Ivan

    2014-11-01

    Inspired by the Wald-Kodama entropy S =A /(4 Geff) where A is the horizon area and Geff is the effective gravitational coupling strength in modified gravity with field equation Rμ ν-R gμ ν/2 = 8 π GeffTμν (eff) , we develop a unified and compact formulation in which the Friedmann equations can be derived from thermodynamics of the Universe. The Hawking and Misner-Sharp masses are generalized by replacing Newton's constant G with Geff, and the unified first law of equilibrium thermodynamics is supplemented by a nonequilibrium energy dissipation term E which arises from the revised continuity equation of the perfect-fluid effective matter content and is related to the evolution of Geff. By identifying the mass as the total internal energy, the unified first law for the interior and its smooth transit to the apparent horizon yield both Friedmann equations, while the nonequilibrium Clausius relation with entropy production for an isochoric process provides an alternative derivation on the horizon. We also analyze the equilibrium situation Geff=G =constant , provide a viability test of the generalized geometric masses, and discuss the continuity/conservation equation. Finally, the general formulation is applied to the Friedmann-Robertson-Walker cosmology of minimally coupled f (R ), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R ,G ) generalized Gauss-Bonnet and dynamical Chern-Simons gravity. In these theories we also analyze the f (R )-Brans-Dicke equivalence, find that the chameleon effect causes extra energy dissipation and entropy production, geometrically reconstruct the mass ρmV for the physical matter content, and show the self-inconsistency of f (R ,G ) gravity in problems involving Geff.

  17. Post-Newtonian parameters and cosmological constant of screened modified gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Zhao, Wen; Huang, He; Cai, Yifu

    2016-06-01

    Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which can generate a screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of the scalar field in the theories can drive the acceleration of the late Universe. In this paper, we calculate the parametrized post-Newtonian (PPN) parameters γ and β , the effective gravitational constant Geff, and the effective cosmological constant Λ for SMG with a general potential V and coupling function A . The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron, and dilaton models). Using the formulas to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.

  18. Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry

    SciTech Connect

    Nesseris, Savvas

    2009-02-15

    We consider theories with an arbitrary coupling between matter and gravity and obtain the perturbation equation of matter on subhorizon scales. Also, we derive the effective gravitational constant G{sub eff} and two parameters {sigma} and {eta}, which along with the perturbation equation of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation for the scale factor a in terms of time t and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model.

  19. Principal component analysis of modified gravity using weak lensing and peculiar velocity measurements

    SciTech Connect

    Asaba, Shinsuke; Hikage, Chiaki; Koyama, Kazuya; Zhao, Gong-Bo; Hojjati, Alireza; Pogosian, Levon E-mail: hikage@kmi.nagoya-u.ac.jp E-mail: gong-bo.zhao@port.ac.uk E-mail: levon@sfu.ca

    2013-08-01

    We perform a principal component analysis to assess ability of future observations to measure departures from General Relativity in predictions of the Poisson and anisotropy equations on linear scales. In particular, we focus on how the measurements of redshift-space distortions (RSD) observed from spectroscopic galaxy redshift surveys will improve the constraints when combined with lensing tomographic surveys. Assuming a Euclid-like galaxy imaging and redshift survey, we find that adding the 3D information decreases the statistical uncertainty by a factor between 3 and 7 compared to the case when only observables from lensing tomographic surveys are used. We also find that the number of well-constrained modes increases by a factor between 3 and 6. Our study indicates the importance of joint galaxy imaging and redshift surveys such as SuMIRe and Euclid to give more stringent tests of the ΛCDM model and to distinguish between various modified gravity and dark energy models.

  20. Statefinder diagnosis for holographic dark energy models in modified f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2016-05-01

    In this paper we consider the non-viscous and viscous holographic dark energy models in modified f(R,T) gravity in which the infra-red cutoff is set by the Hubble horizon. We find power-law and exponential form of scale factor for non-viscous and viscous models, respectively. It is shown that the Hubble horizon as an infra-red cut-off is suitable for both the models to explain the recent accelerated expansion. In non-viscous model, we find that there is no phase transition. However, viscous model explains the phase transition from decelerated phase to accelerated phase. The cosmological parameters like deceleration parameter and statefinder parameters are discussed to analyze the dynamics of evolution of the Universe for both the models. The trajectories for viscous model are plotted in r-s and r-q planes to discriminate our model with the existing dark energy models which show the quintessence like behavior.

  1. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  2. Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Wu, Shuang-Qing

    2008-12-01

    Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv: 0707. 2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity’s rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.

  3. Cosmological Friedmann equation in infrared modified Hořava-Lifshitz gravity via generalized Misner-Sharp mass

    NASA Astrophysics Data System (ADS)

    Liu, Molin; Yang, Yuling; Han, Yu; Zhao, Zonghua; Lu, Jianbo

    2016-07-01

    In various gravity theories, Friedmann equations can be cast to a form of the first law of thermodynamics in a Friedmann-Robertson-Walker (FRW) cosmological setup. However, this result failed in recent infrared (IR) modified Hořava-Lifshitz (HL) gravity. The difficulty stems from the fact that HL gravity is Lorentz-violating. Motivated by this problem, we use the Misner-Sharp mass to investigate the thermodynamics near the apparent horizon in HL cosmology. We find that the Friedmann equations can be derived from the first law of thermodynamics. The Misner-Sharp mass used here inherits the specific properties of HL gravity since it is directly from the gravitational action of HL theory. We also prove that the first law of thermodynamics with logarithmic entropy still holds at the apparent horizon in FRW. The results suggest that the general prescription of deriving the field equation from thermodynamics still works in the HL cosmology.

  4. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Hu, Bin

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.

  5. MODELING THE NONLINEAR CLUSTERING IN MODIFIED GRAVITY MODELS. I. A FITTING FORMULA FOR THE MATTER POWER SPECTRUM OF f(R) GRAVITY

    SciTech Connect

    Zhao, Gong-Bo

    2014-04-01

    Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.

  6. Modified Eddington-inspired-Born-Infeld Gravity with a Trace Term

    NASA Astrophysics Data System (ADS)

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2016-01-01

    In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g_{μ ν }R being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g_{μ ν }. This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic "quasi-sudden" singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.

  7. Modified Eddington-inspired-Born-Infeld gravity with a trace term

    DOE PAGESBeta

    Chen, Che -Yu; Bouhmadi-Lopez, Mariam; Chen, Pisin

    2016-01-22

    In this study, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term gμνR being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric gμν . This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which weremore » not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic “quasi-sudden” singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time.« less

  8. Friedmann Cosmology with Matter Creation in Modified f( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2016-02-01

    The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f( R, T) ( R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f( R, T)= R+2 f( T) with "gamma-law" equation of state p = ( γ-1) ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3 β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.

  9. Observational tests of a two parameter power-law class modified gravity in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Baghram, Shant; Movahed, M. Sadegh; Rahvar, Sohrab

    2009-09-01

    CONTEXT: In this work we propose a modified gravity action f(R)=(Rn-R0n)1/n with two free parameters of n and R0 and derive the dynamics of a universe for this action in the Palatini formalism. AIM: We do a cosmological comparison of this model with observed data to find the best parameters of a model in a flat universe. METHOD: To constrain the free parameters of model we use SNIa type Ia data in two sets of gold and union samples, CMB-shift parameter, baryon acoustic oscillation, gas mass fraction in cluster of galaxies, and large-scale structure data. RESULT: The best fit from the observational data results in the parameters of model in the range of n=0.98-0.08+0.08 and ΩM=0.25+0.1-0.1 with one sigma level of confidence where a standard ΛCDM universe resides in this range of solution.

  10. The matter Lagrangian and the energy-momentum tensor in modified gravity with nonminimal coupling between matter and geometry

    NASA Astrophysics Data System (ADS)

    Harko, T.

    2010-02-01

    We show that in modified f(R) type gravity models with nonminimal coupling between matter and geometry, both the matter Lagrangian and the energy-momentum tensor are completely and uniquely determined by the form of the coupling. This result is obtained by using the variational formulation for the derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-momentum tensor of the matter in modified gravity models with nonminimal coupling is more general than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supplementary, equation of state dependent term, which could be related to the elastic stresses in the body, or to other forms of internal energy. Therefore, the extra force induced by the coupling between matter and geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific choice of the matter Lagrangian, and it is nonzero in the case of a fluid of dust particles.

  11. The matter Lagrangian and the energy-momentum tensor in modified gravity with nonminimal coupling between matter and geometry

    SciTech Connect

    Harko, T.

    2010-02-15

    We show that in modified f(R) type gravity models with nonminimal coupling between matter and geometry, both the matter Lagrangian and the energy-momentum tensor are completely and uniquely determined by the form of the coupling. This result is obtained by using the variational formulation for the derivation of the equations of motion in the modified gravity models with geometry-matter coupling, and the Newtonian limit for a fluid obeying a barotropic equation of state. The corresponding energy-momentum tensor of the matter in modified gravity models with nonminimal coupling is more general than the usual general-relativistic energy-momentum tensor for perfect fluids, and it contains a supplementary, equation of state dependent term, which could be related to the elastic stresses in the body, or to other forms of internal energy. Therefore, the extra force induced by the coupling between matter and geometry never vanishes as a consequence of the thermodynamic properties of the system, or for a specific choice of the matter Lagrangian, and it is nonzero in the case of a fluid of dust particles.

  12. Is modified gravity required by observations? An empirical consistency test of dark energy models

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Hui, Lam; May, Morgan; Haiman, Zoltán

    2007-09-01

    We apply the technique of parameter splitting to existing cosmological data sets, to check for a generic failure of dark energy models. Given a dark energy parameter, such as the energy density ΩΛ or equation of state w, we split it into two meta-parameters with one controlling geometrical distances, and the other controlling the growth of structure. Observational data spanning Type Ia Supernovae, the cosmic microwave background (CMB), galaxy clustering, and weak gravitational lensing statistics are fit without requiring the two meta-parameters to be equal. This technique checks for inconsistency between different data sets, as well as for internal inconsistency within any one data set (e.g., CMB or lensing statistics) that is sensitive to both geometry and growth. We find that the cosmological constant model is consistent with current data. Theories of modified gravity generally predict a relation between growth and geometry that is different from that of general relativity. Parameter splitting can be viewed as a crude way to parametrize the space of such theories. Our analysis of current data already appears to put sharp limits on these theories: assuming a flat universe, current data constrain the difference ΔΩΛ=ΩΛ(geom)-ΩΛ(grow) to be -0.0044-0.0057-0.0119+0.0058+0.0108 (68% and 95% C.L. respectively); allowing the equation of state w to vary, the difference Δw=w(geom)-w(grow) is constrained to be 0.37-0.36-0.53+0.37+1.09. Interestingly, the region w(grow)>w(geom), which should be generically favored by theories that slow structure formation relative to general relativity, is quite restricted by data already. We find w(grow)<-0.80 at 2σ. As an example, the best-fit flat Dvali-Gabadadze-Porrati model approximated by our parametrization lies beyond the 3σ contour for constraints from all the data sets.

  13. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-12-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ħ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that as the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ħ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  14. Quantum Corrections to Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Wang, Chiao-Hsuan

    2013-01-01

    The entropic gravity scenario recently proposed by Erik Verlinde reproduced Newton's law of purely classical gravity yet the key assumptions of this approach all have quantum mechanical origins. As is typical for emergent phenomena in physics, the underlying, more fundamental physics often reveals itself as corrections to the leading classical behavior. So one naturally wonders: where is ℏ hiding in entropic gravity? To address this question, we first revisit the idea of holographic screen as well as entropy and its variation law in order to obtain a self-consistent approach to the problem. Next we argue that since the concept of minimal length has been invoked in the Bekenstein entropic derivation, the generalized uncertainty principle (GUP), which is a direct consequence of the minimal length, should be taken into consideration in the entropic interpretation of gravity. Indeed based on GUP it has been demonstrated that the black hole Bekenstein entropy area law must be modified not only in the strong but also in the weak gravity regime where in the weak gravity limit the GUP modified entropy exhibits a logarithmic correction. When applying it to the entropic interpretation, we demonstrate that the resulting gravity force law does include sub-leading order correction terms that depend on ℏ. Such deviation from the classical Newton's law may serve as a probe to the validity of entropic gravity.

  15. Moment of inertia of neutron star crust in alternative and modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Staykov, Kalin V.; Ekşi, K. Yavuz; Yazadjiev, Stoytcho S.; Türkoǧlu, M. Metehan; Arapoǧlu, A. Savaş

    2016-07-01

    The glitch activity of young pulsars arises from the exchange of angular momentum between the crust and the interior of the star. Recently, it was inferred that the moment of inertia of the crust of a neutron star is not sufficient to explain the observed glitches. Such estimates are presumed in Einstein's general relativity in describing the hydrostatic equilibrium of neutron stars. The crust of the neutron star has a spacetime curvature of 14 orders of magnitude larger than that probed in solar system tests. This makes gravity the weakest constrained physics input in the crust-related processes. We calculate the ratio of the crustal to the total moment of inertia of neutron stars in the scalar-tensor theory of gravity and the nonperturbative f (R )=R +a R2 gravity. We find for the former that the crust-to-core ratio of the moment of inertia does not change significantly from what is inferred in general relativity. For the latter, we find that the ratio increases significantly from what is inferred in general relativity in the case of high mass objects. Our results suggest that the glitch activity of pulsars may be used to probe gravity models, although the gravity models explored in this work are not appropriate candidates.

  16. A Modified Wilson Cycle Scenario Based on Thermo-Mechanical Model

    NASA Astrophysics Data System (ADS)

    Baes, M.; Sobolev, S. V.

    2014-12-01

    The major problem of classical Wilson Cycle concept is the suggested conversion of the passive continental margin to the active subduction zone. Previous modeling studies assumed either unusually thick felsic continental crust at the margin (over 40 km) or unusually low lithospheric thickness (less than 70 km) to simulate this process. Here we propose a new triggering factor in subduction initiation process that is mantle suction force. Based on this proposal we suggest a modification of Wilson Cycle concept. Sometime after opening and extension of oceanic basin, continental passive margin moves over the slab remnants of the former active subduction zones in deep mantle. Such slab remnants or deep slabs of neighboring active subduction zones produce a suction mantle flow introducing additional compression at the passive margin. It results in the initiation of a new subduction zone, hence starting the closing phase of Wilson Cycle. In this scenario the weakness of continental crust near the passive margin which is inherited from the rifting phase and horizontal push force induced from far-field topographic gradient within the continent facilitate and speed up subduction initiation process. Our thermo-mechanical modeling shows that after a few tens of million years a shear zone may indeed develop along the passive margin that has typical two-layered 35 km thick continental crust and thermal lithosphere thicker than 100 km if there is a broad mantle down-welling flow below the margin. Soon after formation of this shear zone oceanic plate descends into mantle and subduction initiates. Subduction initiation occurs following over-thrusting of continental crust and retreating of future trench. In models without far-field topographic gradient within the continent subduction initiation requires weaker passive margin. Our results also indicate that subduction initiation depends on several parameters such as magnitude, domain size and location of suction mantle flow

  17. The interaction between dark energy and dark matter and its connection to the modified gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-Hua; Wang, Bin

    2015-10-01

    We review the conformal equivalence in describing the background expansion of the universe by f(R) gravity both in the Jordan frame and the Einstein frame. In the Jordan frame, we present the general analytic expression for f(R) models that have the same expansion history as the ΛCDM model. This analytic form can provide further insights on how cosmology can be used to test the f(R) gravity at the largest scales. Moreover we present a systematic and self-consistent way to construct the viable f(R) model in Jordan frame using the mass dilation rate function from the Einstein frame through the conformal transformation. In addition, we extend our study to the linear perturbation theories and we further exhibit the equivalence of the f(R) gravity presented in the Jordan frame and Einstein frame in the perturbed space-time. We argue that this equivalence has solid physics root.

  18. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  19. Modified Einstein's gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-05-01

    We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!

  20. Partial gravity habitat study

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kiosuke

    1989-01-01

    The purpose of this study is to investigate comprehensive design requirements associated with designing habitats for humans in a partial gravity environment, then to apply them to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable-gravity research facilities, and a rotating spacecraft. Design requirements for partial gravity environments include locomotion changes in less than normal earth gravity; facility design issues, such as interior configuration, module diameter, and geometry; and volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a lunar base, it is necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress; radiation protection issues are addressed to provide a safe and healthy environment for the crew; and finally, the overall site is studied to locate all associated facilities in context with the habitat. Mission planning is not the purpose of this study; therefore, a Lockheed scenario is used as an outline for the lunar base application, which is then modified to meet the project needs. The goal of this report is to formulate facts on human reactions to partial gravity environments, derive design requirements based on these facts, and apply the requirements to a partial gravity situation which, for this study, was a lunar base.

  1. Vector-tensor nature of Bekenstein's relativistic theory of modified gravity

    SciTech Connect

    Zlosnik, T. G.; Ferreira, P. G.; Starkman, Glenn D.

    2006-08-15

    Bekenstein's theory of relativistic gravity is conventionally written as a bimetric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this paper we show that the theory can be rewritten as vector-tensor theory akin to Einstein-Aether theories with noncanonical kinetic terms. We discuss some of the implications of this equivalence.

  2. Cylindrical solutions in braneworld gravity

    SciTech Connect

    Khoeini-Moghaddam, S.; Nouri-Zonoz, M.

    2005-09-15

    In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.

  3. Dark energy and equation of state oscillations with collisional matter fluid in exponential modified gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Karagiannakis, N.; Park, Miok

    2015-03-01

    We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential F (R ) gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and noncollisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and noncollisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the resulting picture of the cosmological evolution is clear, since collisional and noncollisional universes can be clearly distinguished. Interestingly enough, since it is known that the oscillations of the effective equation of state parameter around the phantom divide are undesirable and unwanted in F (R ) gravities, when these are considered for redshifts near the matter domination era and before, in the curvature corrected exponential model with collisional matter that we study here there exist oscillations that never cross the phantom divide. Therefore, this rather unwanted feature of the effective equation of state parameter is also absent in the collisional matter filled universe.

  4. Corrected constraints on big bang nucleosynthesis in a modified gravity model of f (R )∝Rn

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki

    2015-05-01

    Big bang nucleosynthesis in a modified gravity model of f (R )∝Rn is investigated. The only free parameter of the model is a power-law index n . We find cosmological solutions in a parameter region of 1

  5. A modified acceleration-based monthly gravity field solution from GRACE data

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei

    2015-08-01

    This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.

  6. Heat transfer during quenching of modified and unmodified gravity die-cast A357 cylindrical bars

    NASA Astrophysics Data System (ADS)

    Prabhu, K. N.; Hemanna, P.

    2006-06-01

    Heat transfer during quenching of chill-cast modified and unmodified A357 Al-Si alloy was examined using a computer-aided cooling curve analysis. Water at 60 °C and a vegetable oil (palm oil) were used as quench media. The measured temperatures inside cylindrical probes of the A357 alloy were used as inputs in an inverse heat-conduction model to estimate heat flux transients at the probe/quenchant interface and the surface temperature of the probe in contact with the quench medium. It was observed that modified alloy probes yielded higher cooling rates and heat flux transients. The investigation clearly showed that the heat transfer during quenching depends on the casting history. The increase in the cooling rate and peak heat flux was attributed to the increase in the thermal conductivity of the material on modification melt treatment owing to the change in silicon morphology. Fine and fibrous silicon particles in modified A357 probes increase the conductance of the probe resulting in higher heat transfer rates. This was confirmed by measuring the electrical conductivity of modified samples, which were found to be higher than those of unmodified samples. The ultrasound velocity in the probes decreased on modification.

  7. First law of thermodynamics in IR modified Horava-Lifshitz gravity

    SciTech Connect

    Wang Mengjie; Jing Jiliang; Ding Chikun; Chen Songbai

    2010-04-15

    We study the first law of thermodynamics in IR modified Horava-Lifshitz spacetime. Based on the Bekenstein-Hawking entropy, we obtain the integral formula and the differential formula of the first law of thermodynamics for the Kehagias-Sfetsos black hole by treating {omega} as a new state parameter and redefining a mass that is just equal to M{sub ADM} obtained by Myung [32] if we take {alpha}=3{pi}/8.

  8. Solar system constraints on a Rindler-type extra-acceleration from modified gravity at large distances

    SciTech Connect

    Iorio, L.

    2011-05-01

    We analytically work out the orbital effects caused by a Rindler-type extra-acceleration A{sub Rin} which naturally arises in some recent models of modified gravity at large distances. In particular, we focus on the perturbations induced by it on the two-body range ρ and range-rate ρ-dot which are commonly used in satellite and planetary investigations as primary observable quantities. The constraints obtained for A{sub Rin} by comparing our calculations with the currently available range and range-rate residuals for some of the major bodies of the solar system, obtained without explicitly modeling A{sub Rin}, are 1–2 × 10{sup −13} m s{sup −2} (Mercury and Venus), 1 × 10{sup −14} m s{sup −2} (Saturn), 1 × 10{sup −15} m s{sup −2} (Mars), while for a terrestrial Rindler acceleration we have an upper bound of 5 × 10{sup −16} m s{sup −2} (Moon). The constraints inferred from the planets' range and range-rate residuals are confirmed also by the latest empirical determinations of the corrections Δdot varpi to the usual Newtonian/Einsteinian secular precessions of the planetary longitudes of perihelia varpi: moreover, the Earth yields A{sub Rin} ≤ 7 × 10{sup −16} m s{sup −2}. Another approach which could be followed consists of taking into account A{sub Rin} in re-processing all the available data sets with accordingly modified dynamical models, and estimating a dedicated solve-for parameter explicitly accounting for it. Anyway, such a method is time-consuming. A preliminary analysis likely performed in such a way by a different author yields A ≤ 8 × 10{sup −14} m s{sup −2} at Mars' distance and A ≤ 1 × 10{sup −14} m s{sup −2} at Saturn's distance. The method adopted here can be easily and straightforwardly extended to other long-range modified models of gravity as well.

  9. A cosmological study in massive gravity theory

    SciTech Connect

    Pan, Supriya Chakraborty, Subenoy

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  10. A Modified Theory of Gravity with Torsion and Its Applications to Cosmology and Particle Physics

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; Vignolo, Stefano

    2012-10-01

    In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German Eigenspinoren des LadungsKonjugationsOperators designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field's self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.

  11. Modified first-order Horava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    SciTech Connect

    Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku

    2010-09-15

    We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.

  12. Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model.

    PubMed

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  13. Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model

    PubMed Central

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  14. Modified Theories of Gravity with Nonminimal Coupling and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2016-01-01

    A certain general class of modified gravitational theories with nonminimal coupling predicts a "pressure"-type, non-geodesic acceleration for a non-rotating, massive test particle. The resulting orbital perturbations for a two-body system consist of secular rates of change of all the standard orbital elements. The resulting variation of the mutual distance yields a physical mechanism which has the potential capability to explain, in principle, the Faint Young Sun Paradox in terms of a recession of the Earth from the Sun during the Archean.

  15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    PubMed

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  16. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China

    PubMed Central

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P.

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China. PMID:26439928

  17. The accelerating universe and other cosmological aspects of modified gravity models

    NASA Astrophysics Data System (ADS)

    de Felice, Antonio

    I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w < -1 dark energy, without violating any energy conditions. I examine, in chapter 3, whether this possibility is phenomenologically viable by studying Brans-Dicke models and characterizing both the naturalness of the models themselves, and additional observational constraints from limits on the time-dependence of Newton's constant. I find that only highly contrived models would lead observers to measure w < -1. In chapter 4, I consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. I investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.

  18. Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Hsu, Houze; Chen, Wu; Ju, Xiaolei; Lou, Lizhi

    2015-03-01

    In this study, a new time series of Gravity Recovery and Climate Experiment (GRACE) monthly solutions, complete to degree and order 60 spanning from January 2003 to August 2011, has been derived based on a modified short-arc approach. Our models entitled Tongji-GRACE01 are available on the website of International Centre for Global Earth Models http://icgem.gfz-potsdam.de/ICGEM/. The traditional short-arc approach, with no more than 1 h arcs, requires the gradient corrections of satellite orbits in order to reduce the impact of orbit errors on the final solution. Here the modified short-arc approach has been proposed, which has three major differences compared to the traditional one: (1) All the corrections of orbits and range rate measurements are solved together with the geopotential coefficients and the accelerometer biases using a weighted least squares adjustment; (2) the boundary position parameters are not required; and (3) the arc length can be extended to 2 h. The comparisons of geoid degree powers and the mass change signals in the Amazon basin, the Antarctic, and Antarctic Peninsula demonstrate that our model is comparable with the other existing models, i.e., the Centre for Space Research RL05, Jet Propulsion Laboratory RL05, and GeoForschungsZentrum RL05a models. The correlation coefficients of the mass change time series between our model and the other models are better than 0.9 in the Antarctic and Antarctic Peninsula. The mass change rates in the Antarctic and Antarctic Peninsula derived from our model are -92.7 ± 38.0 Gt/yr and -23.9 ± 12.4 Gt/yr, respectively, which are very close to those from other three models and with similar spatial patterns of signals.

  19. Reconstructing f( R) modified gravity from ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models

    NASA Astrophysics Data System (ADS)

    Karami, K.; Khaledian, M. S.

    2011-03-01

    Here, we peruse cosmological usage of the most promising candidates of dark energy in the framework of f( R) theory. We reconstruct the different f( R) modified gravity models in the spatially flat FRW universe according to the ordinary and entropy-corrected versions of the holographic and new agegraphic dark energy models, which describe accelerated expansion of the universe. We also obtain the equation of state parameter of the corresponding f( R)-gravity models. We conclude that the holographic and new agegraphic f( R)-gravity models can behave like phantom or quintessence models. Whereas the equation of state parameter of the entropy-corrected models can transit from quintessence state to phantom regime as indicated by recent observations.

  20. Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China

    PubMed Central

    Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu

    2015-01-01

    The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district

  1. Constraining Models of Modified Gravity with the Double Pulsar PSR J0737-3039A/B System

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo; Ruggiero, Matteo Luca

    In this paper we use ΔP = -1.772341 ± 13.153788 s between the phenomenologically determined orbital period Pb of the PSR J0737-3039A/B double pulsar system and the purely Keplerian period P(0)=2π √ {a3/G(m A+m B)} calculated with the system's parameters, determined independently of the third Kepler law itself, in order to put constraints on some models of modified gravity (f(R), Yukawa-like fifth force, MOND). The major source of error affecting ΔP is not the one in the phenomenologically measured period (δPb = 4×10-6 s), but the systematic uncertainty δP(0) in the computed Keplerian one due to the relative semimajor axis a mainly caused, in turn, by the errors in the ratio { R} of the pulsars' masses and in sin i. We get |κ| ≤ 0.8 × 10-26 m-2 for the parameter that in the f(R) framework is a measure of the nonlinearity of the theory, |α| ≤ 5.5 × 10-4 for the fifth-force strength parameter (for λ ≈ a = 0.006 AU). The effects predicted by the strong-acceleration regime of MOND are far too small to be constrained with some effectiveness today and in the future as well. In view of the continuous timing of such an important system, it might happen that in the near future it will be possible to obtain somewhat tighter constraints.

  2. Apparent horizon and gravitational thermodynamics of the Universe: Solutions to the temperature and entropy confusions and extensions to modified gravity

    NASA Astrophysics Data System (ADS)

    Tian, David Wenjie; Booth, Ivan

    2015-07-01

    The thermodynamics of the Universe is restudied by requiring its compatibility with the holographic-style gravitational equations that govern the dynamics of both the cosmological apparent horizon and the entire Universe, and possible solutions are proposed to the existent confusions regarding the apparent-horizon temperature and the cosmic entropy evolution. We start from the generic Lambda cold dark matter cosmology of general relativity to establish a framework for the gravitational thermodynamics. The Cai-Kim Clausius equation δ Q =TAd SA=-d EA=-AAψt for the isochoric process of an instantaneous apparent horizon indicates that the Universe and its horizon entropies encode the positive-heat-out thermodynamic sign convention, which encourages us to adjust the traditional positive-heat-in Gibbs equation into the positive-heat-out version d Em=-Tmd Sm-Pmd V . It turns out that the standard and the generalized second laws (GSLs) of nondecreasing entropies are always respected by the event-horizon system as long as the expanding Universe is dominated by nonexotic matter -1 ≤wm≤1 , while for the apparent-horizon simple open system, the two second laws hold if -1 ≤wm<-1 /3 ; also, the artificial local equilibrium assumption is abandoned in the GSL. All constraints regarding entropy evolution are expressed by the equation-of-state parameter, which shows that from a thermodynamic perspective the phantom dark energy is less favored than the cosmological constant and the quintessence. Finally, the whole framework is extended from general relativity and Lambda cold dark matter to modified gravities with field equations Rμ ν-R gμ ν/2 =8 π GeffTμν (eff) . Furthermore, this paper argues that the Cai-Kim temperature is more suitable than Hayward, both temperatures are independent of the inner or outer trappedness of the apparent horizon, and the Bekenstein-Hawking and Wald entropies cannot unconditionally apply to the event and particle horizons.

  3. Dilaton and modified gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Shaw, Douglas

    2010-09-01

    We consider the dilaton in the strong string-coupling limit and elaborate on the original idea of Damour and Polyakov whereby the dilaton coupling to matter is minimized and vanishes at a finite value of the dilaton field. Combining this type of coupling with an exponential potential, the effective potential of the dilaton becomes matter density dependent. We study the background cosmology, showing that the dilaton can play the role of dark energy. We also analyze the constraints imposed by the absence of violation of the equivalence principle. Imposing these constraints and assuming that the dilaton plays the role of dark energy, we consider the consequences of the dilaton on large scale structures and, in particular, the behavior of the slip functions and the growth index at low redshift.

  4. f(T) modified teleparallel gravity as an alternative for holographic and new agegraphic dark energy models

    NASA Astrophysics Data System (ADS)

    Karami, Kayoomars; Abdolmaleki, Asrin

    2013-07-01

    In the present work, we reconstruct different f(T)-gravity models corresponding to the original and entropy-corrected versions of the holographic and new agegraphic dark energy models. We also obtain the equation of state parameters of the corresponding f(T)-gravity models. We conclude that the original holographic and new agegraphic f(T)-gravity models behave like the phantom or quintessence model, whereas in the entropy-corrected models, the equation of state parameter can justify the transition from the quintessence state to the phantom regime as indicated by the recent observations.

  5. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    NASA Astrophysics Data System (ADS)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  6. Constraining modified gravitational theories by weak lensing with Euclid

    SciTech Connect

    Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto

    2011-01-15

    Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.

  7. A cosmological exclusion plot: towards model-independent constraints on modified gravity from current and future growth rate data

    SciTech Connect

    Taddei, Laura

    2015-02-01

    Most cosmological constraints on modified gravity are obtained assuming that the cosmic evolution was standard ΛCDM in the past and that the present matter density and power spectrum normalization are the same as in a ΛCDM model. Here we examine how the constraints change when these assumptions are lifted. We focus in particular on the parameter Y (also called G{sub eff}) that quantifies the deviation from the Poisson equation. This parameter can be estimated by comparing with the model-independent growth rate quantity fσ{sub 8}(z) obtained through redshift distortions. We reduce the model dependency in evaluating Y by marginalizing over σ{sub 8} and over the initial conditions, and by absorbing the degenerate parameter Ω{sub m,0} into Y. We use all currently available values of fσ{sub 8}(z). We find that the combination Y-circumflex =YΩ{sub m,0}, assumed constant in the observed redshift range, can be constrained only very weakly by current data, Y-circumflex =0.28{sub −0.23}{sup +0.35} at 68% c.l. We also forecast the precision of a future estimation of Y-circumflex in a Euclid-like redshift survey. We find that the future constraints will reduce substantially the uncertainty, Y-circumflex =0.30{sub −0.09}{sup +0.08} , at 68% c.l., but the relative error on Y-circumflex around the fiducial remains quite high, of the order of 30%. The main reason for these weak constraints is that Y-circumflex is strongly degenerate with the initial conditions, so that large or small values of Y-circumflex are compensated by choosing non-standard initial values of the derivative of the matter density contrast. Finally, we produce a forecast of a cosmological exclusion plot on the Yukawa strength and range parameters, which complements similar plots on laboratory scales but explores scales and epochs reachable only with large-scale galaxy surveys. We find that future data can constrain the Yukawa strength to within 3% of the Newtonian one if the range is around a few

  8. Extended modified Korteweg - de Vries equation for internal gravity waves in a symmetric three-layer fluid

    NASA Astrophysics Data System (ADS)

    Polukhina, Oxana; Kurkin, Andrey; Vladykina, Ekaterina

    2010-05-01

    Three-layer stratification is proved to be a proper approximation of sea water density and background current profiles in some basins in the World Ocean with specific hydrological conditions. Such a medium is interesting from the point of view of internal gravity wave dynamics, because, in the symmetric about mid-depth case (equal thicknesses of the lower and the upper layers, equal small density jumps on the interfaces), it leads to disappearing of quadratic nonlinearity when described in the framework of weakly nonlinear evolutionary models, which are derived through the asymptotic expansion in small parameters of nonlinearity and dispersion. In this situation the nonlinear transformation of the internal wave disturbances, as is customary, is determined by the influence of the next-order - cubic - nonlinear term in asymptotic series, and for three-layer fluid model the cubic nonlinearity coefficient can have either sign depending on the layer depths (in contrast to traditional two-layer approximation, for which cubic nonlinearity is always negative). Appropriate nonlinear evolutionary equation is modified Korteweg - de Vries equation (mKdV). It is well-known integrable equation of KdV-type, providing solitary wave and breather solutions for positive cubic nonlinearity. The property of sign change for cubic nonlinear coefficient in the mKdV for internal gravity waves in symmetric three-layer fluid requires taking into account next-order nonlinear term (or terms), therefore higher-order extensions of mKdV equation are necessary to provide improved description of internal wave processes. In the present study we derive nonlinear evolution equations for both interfaces in symmetric three-layer fluid (under Boussinesq approximation) up to the fourth order in small parameters of nonlinearity (epsilon) and dispersion (?). Applying mKdV-scaling for ratio of these parameters (? = epsilon2) we obtain high-order mKdV equations for interfaces (they have different signs of

  9. Constraining the Kehagias-Sfetsos Solution of the Ho!ava-Lifshitz Modified Gravity with Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo; Ruggiero, Matteo Luca

    We consider the Kehagias-Sfetsos (KS) solution in the Ho!ava-Lifshitz gravity that is the analog of the general relativistic Schwarzschild black hole. In the weak-field and slow-motion approximation, we, first, work out the correction to the third Kepler law of a test particle induced by such a solution. Then, we compare it to the phenomenologically determined orbital period of the transiting extrasolar planet HD209458b "Osiris" to preliminarily obtain an order-ofmagnitude lower bound on the KS dimensionless parameter ω0 ≥2265; 1.4 " 10-18. As suggestions for further analyses, the entire data set of HD209458b should be re-processed by explicitly modeling KS gravity as well, and one or more dedicated solve-for parameter(s) should be estimated.

  10. Gravity Bias in Young and Adult Chimpanzees ("Pan Troglodytes"): Tests with a Modified Opaque-Tubes Task

    ERIC Educational Resources Information Center

    Tomonaga, Masaki; Imura, Tomoko; Mizuno, Yuu; Tanaka, Masayuki

    2007-01-01

    Young human children at around 2 years of age fail to predict the correct location of an object when it is dropped from the top of an S-shape opaque tube. They search in the location just below the releasing point (Hood, 1995). This type of error, called a "gravity bias", has recently been reported in dogs and monkeys. In the present study, we…

  11. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects.

    PubMed

    Bender, Dorothea; Diaz-Pulido, Guillermo; Dove, Sophie

    2014-02-01

    Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre-industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI ("business-as-usual") scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels. PMID:26988019

  12. The bouncing cosmology with F(R) gravity and its reconstructing

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.

    2016-04-01

    In this paper, we study F(R) gravity by Hu-Sawicki model in Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations are calculated by modified gravity action, and then the obtained Friedmann equations are written in terms of standard Friedmann equations. Next, the behavior of bouncing cosmology is investigated in the modified gravity model, i.e. this behavior can solve the problem of nonsingularity in standard big bang cosmology. We plot the cosmological parameters in terms of cosmic time and then the bouncing condition is investigated. In what follows, we reconstruct the modified gravity by redshift parameter, and also graphs of cosmological parameters are plotted in terms of redshift, in which the figures show us an accelerated expansion of universe. Finally, the stability of the scenario is investigated by a function as sound speed, and the graph of sound speed versus redshift shows us that there is the stability in late-time.

  13. Testing modified gravity and no-hair relations for the Kerr-Newman metric through quasiperiodic oscillations of galactic microquasars

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2016-01-01

    We construct multipole moments for stationary, asymptotically flat, spacetime solutions to higher-order curvature theories of gravity. The moments are defined using 3 +1 techniques involving timelike Killing vector constructions as in the classic papers by Geroch and Hansen. Using the fact that the Kerr-Newman metric is a vacuum solution to a particular class of f (R ) theories of gravity, we compute all its moments, and find that they admit recurrence relations similar to those for the Kerr solution in general relativity. It has been proposed previously that modeling the measured frequencies of quasiperiodic oscillations from galactic microquasars enables experimental tests of the no-hair theorem. We explore the possibility that, even if the no-hair relation is found to break down in the context of general relativity, there may be an f (R ) counterpart that is preserved. We apply the results to the microquasars GRS 1915 +105 and GRO J1655-40 using the diskoseismology and kinematic resonance models, and constrain the spins and "charges" of their black holes.

  14. Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

    SciTech Connect

    GLASS JR.,ROBERT J.; CONRAD,STEPHEN H.; YARRINGTON,LANE

    2000-03-08

    The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.

  15. A geometric method of constructing exact solutions in modified f(R, T)-gravity with Yang-Mills and Higgs interactions

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.; Veliev, Elşen Veli; Yazici, Enis

    2014-09-01

    We show that geometric techniques can be elaborated and applied for constructing generic off-diagonal exact solutions in f(R, T)-modified gravity for systems of gravitational-Yang-Mills-Higgs equations. The corresponding classes of metrics and generalized connections are determined by generating and integration functions which depend, in general, on all space and time coordinates and may possess, or not, Killing symmetries. For nonholonomic constraints resulting in Levi-Civita configurations, we can extract solutions of the Einstein-Yang-Mills-Higgs equations. We show that the constructions simplify substantially for metrics with at least one Killing vector. Some examples of exact solutions describing generic off-diagonal modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed.

  16. Modified brane cosmologies with induced gravity, arbitrary matter content, and a Gauss-Bonnet term in the bulk

    SciTech Connect

    Apostolopoulos, Pantelis S.; Brouzakis, Nikolaos; Tetradis, Nikolaos; Tzavara, Eleftheria

    2007-10-15

    We extend the covariant analysis of the brane cosmological evolution in order to take into account, apart from a general matter content and an induced-gravity term on the brane, a Gauss-Bonnet term in the bulk. The gravitational effect of the bulk matter on the brane evolution can be described in terms of the total bulk mass as measured by a bulk observer at the location of the brane. This mass appears in the effective Friedmann equation through a term characterized as generalized dark radiation that induces mirage effects in the evolution. We discuss the normal and self-accelerating branches of the combined system. We also derive the Raychaudhuri equation that can be used in order to determine if the cosmological evolution is accelerating.

  17. Phenomenology of effective geometries from quantum gravity

    NASA Astrophysics Data System (ADS)

    Torromé, Ricardo Gallego; Letizia, Marco; Liberati, Stefano

    2015-12-01

    In a recent paper [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015)] a general mechanism for the emergence of cosmological spacetime geometry from a quantum gravity setting was devised and a departure from standard dispersion relations for an elementary particle was predicted. We elaborate here on this approach extending the results obtained in that paper and showing that generically such a framework will not lead to higher order modified dispersion relations in the matter sector. Furthermore, we shall discuss possible phenomenological constraints to this scenario showing that spacetime will have to be classical to a very high degree by now in order to be consistent with current observations.

  18. Viability of the Matter Bounce Scenario

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume

    2015-04-01

    It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.

  19. Cosmological constraints on the modified entropic force model

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2010-08-01

    Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can be accelerated without dark energy. In the present work, we consider the cosmological constraints on the MEF model, and successfully constrain the model parameters to a narrow range. We also discuss many other issues of the MEF model. In particular, we clearly reveal the implicit root to accelerate the universe in the MEF model.

  20. On the stability of Einstein static universe in doubly general relativity scenario

    NASA Astrophysics Data System (ADS)

    Khodadi, M.; Heydarzade, Y.; Nozari, K.; Darabi, F.

    2015-12-01

    By presenting a relation between the average energy of the ensemble of probe photons and the energy density of the universe, in the context of gravity's rainbow or the doubly general relativity scenario, we introduce a rainbow FRW universe model. By analyzing the fixed points in the flat FRW model modified by two well-known rainbow functions, we find that the finite time singularity avoidance (i.e. Big Bang) may still remain as a problem. Then we follow the "emergent universe" scenario in which there is no beginning of time and consequently there is no Big-Bang singularity. Moreover, we study the impact of high energy quantum gravity modifications related to the gravity's rainbow on the stability conditions of an "Einstein static universe" (ESU). We find that independent of the particular rainbow function, the positive energy condition dictates a positive spatial curvature for the universe. In fact, without raising a nonphysical energy condition in the quantum gravity regimes, we can observe agreement between gravity's rainbow scenario and the basic assumption of the modern version of the "emergent universe". We show that in the absence and presence of an energy-dependent cosmological constant Λ (ɛ ), a stable Einstein static solution is available versus the homogeneous and linear scalar perturbations under the variety of the obtained conditions. Also, we explore the stability of ESU against the vector and tensor perturbations.

  1. Tongji-GRACE01: A GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach

    NASA Astrophysics Data System (ADS)

    Chen, Qiujie; Shen, Yunzhong; Zhang, Xingfu; Chen, Wu; Hsu, Houze

    2015-09-01

    The modified short arc approach, where the position vector in force model are regarded as pseudo observation, is implemented in the SAtellite Gravimetry Analysis Software (SAGAS) developed by Tongji university. Based on the SAGAS platform, a static gravity field model (namely Tongji-GRACE01) complete to degree and order 160 is computed from 49 months of real GRACE Level-1B data spanning the period 2003-2007 (including the observations of K-band range-rate, reduced dynamic orbits, non-conservative accelerations and altitudes). The Tongji-GRACE01 model is compared with the recent GRACE-only models (such as GGM05S, AIUB-GRACE03S, ITG-GRACE03, ITG-GRACE2010S, and ITSG-GRACE2014S) and validated with GPS-leveling data sets in different countries. The results show that the Tongji-GRACE01 model has a considered quality as GGM05S, AIUB-GRACE03S and ITG-GRACE03. The Tongji-GRACE01 model is available at the International Centre for Global Earth Models (ICGEM) web page (http://icgem.gfz-potsdam.de/ICGEM/).

  2. Phantom-like behavior of a DGP-inspired Scalar-Gauss-Bonnet gravity

    SciTech Connect

    Nozari, Kourosh; Azizi, Tahereh; Setare, M.R. E-mail: t.azizi@umz.ac.ir

    2009-10-01

    We study the phantom-like behavior of a DGP-inspired braneworld scenario where curvature correction on the brane is taken into account. We include a possible modification of the induced gravity on the brane by incorporating higher order curvature terms of Gauss-Bonnet type. We investigate the cosmological implications of the model and we show that the normal branch of the scenario self-accelerates in this modified scenario without introducing any dark energy component. Also, a phantom-like behavior can be realized in this model without introducing any phantom field that suffers from serious difficulties such as violation of the null energy condition.

  3. An extended matter bounce scenario: current status and challenges

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Cai, Yi-Fu

    2015-08-01

    As an alternative to the paradigm of slow roll inflation, we propose an extended scenario of the matter bounce cosmology in which the Universe has experienced a quasi-matter contracting phase with a variable background equation of state parameter. This extended matter bounce scenario can be realized by considering a single scalar field evolving along an approximately exponential potential. Our result reveals that the rolling of the scalar field in general leads to a running behavior on the spectral index of primordial cosmological perturbations and a negative running can be realized in this model. We constrain the corresponding parameter space by using the newly released Planck data. To apply this scenario, we revisit bouncing cosmologies within the context of modified gravity theories, in particular, the holonomy corrected loop quantum cosmology and teleparallel F( T) gravity. A gravitational process of reheating is presented in such a matter bounce scenario to demonstrate the condition of satisfying current observations. We also comment on several unresolved issues that often appear in matter bounce models.

  4. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  5. Large-scale structure in f(T) gravity

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-05-15

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  6. Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.

    2000-01-01

    atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.

  7. Scenarios for gluino coannihilation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.

    2016-02-01

    We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m χ ≲ 8 TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly- mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.

  8. Probing scalar tensor theories for gravity in redshift space

    NASA Astrophysics Data System (ADS)

    Sabiu, Cristiano G.; Mota, David F.; Llinares, Claudio; Park, Changbom

    2016-07-01

    We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discriminate between the models. We compare Λ cold dark matter (ΛCDM) simulations to various modified gravity scenarios and find consistency with previous work in terms of two-point statistics in real and redshift space. However, using higher-order statistics such as the three-point correlation function in redshift space we find significant deviations from ΛCDM hinting that higher-order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.

  9. New observational constraints on f(T) gravity from cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.

    2016-08-01

    We use the local value of the Hubble constant recently measured with 2.4% precision, as well as the latest compilation of cosmic chronometers data, together with standard probes such as Supernovae Type Ia and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f(T) gravity models, where T is the torsion scalar in teleparallel gravity. In particular, we consider three f(T) models with two parameters, out of which one is independent, and we quantify their deviation from ΛCDM cosmology through a sole parameter. Our analysis reveals that for one of the models a small but non-zero deviation from ΛCDM cosmology is slightly favored, while for the other models the best fit is very close to ΛCDM scenario. Clearly, f(T) gravity is consistent with observations, and it can serve as a candidate for modified gravity.

  10. Bounce universe history from unimodular F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-04-01

    In this paper we investigate how to realize various quite well-known cosmological bouncing models in the context of the recently developed unimodular F (R ) gravity. Particularly, we shall study the matter bounce scenario, the singular bounce, the superbounce and a symmetric bounce scenario. We present the behavior of the Hubble radius for each of the bouncing models we shall take into account, and we investigate which era of the bouncing model is responsible for the cosmological perturbations. As we shall demonstrate, the various bouncing models do not behave in the same way, so the cosmological perturbations for each model may correspond to a different era, in comparison to other models. Also we present which unimodular F (R ) gravity realizes each model. We also show that Newton's law is not modified in the unimodular F (R ) gravity, which also is proven to be a ghost-free theory, and in addition we discuss the matter stability issue. Finally, we demonstrate how it is possible to solve a cosmological constant problem in the context of unimodular F (R ) gravity.

  11. Introduction to Massive Gravity

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia

    We review recent progress on massive gravity. We first show how extra dimensions prove to be a useful tool in building theories of modified gravity, including Galileon theories and their DBI extensions. DGP arises from an infinite size extra dimension, and we show how massive gravity arises from `deconstructing' the extra dimension in the vielbein formalism. We then explain how the ghost issue is resolved in that special theory of massive gravity. The viability of such models relies on the Vainshtein mechanism which is best described in terms of Galileons. While its implementation is successful in most of these models it also comes hand in hand with superluminalities and strong coupling which are reviewed and their real consequences are discussed.

  12. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  13. Fast Density Inversion Solution for Full Tensor Gravity Gradiometry Data

    NASA Astrophysics Data System (ADS)

    Hou, Zhenlong; Wei, Xiaohui; Huang, Danian

    2016-02-01

    We modify the classical preconditioned conjugate gradient method for full tensor gravity gradiometry data. The resulting parallelized algorithm is implemented on a cluster to achieve rapid density inversions for various scenarios, overcoming the problems of computation time and memory requirements caused by too many iterations. The proposed approach is mainly based on parallel programming using the Message Passing Interface, supplemented by Open Multi-Processing. Our implementation is efficient and scalable, enabling its use with large-scale data. We consider two synthetic models and real survey data from Vinton Dome, US, and demonstrate that our solutions are reliable and feasible.

  14. Wide binaries as a critical test for Gravity theories

    NASA Astrophysics Data System (ADS)

    Hernandez, X.; Jiménez, M. A.; Allen, C.

    2012-12-01

    Assuming Newton's gravity and GR to be valid at all scales leads to the dark matter hypothesis as a requirement demanded by the observed dynamics and measured baryonic content at galactic and extragalactic scales. Alternatively, modified gravity scenarios where a change of regime appears at acceleration scales a < a0 have been proposed. This modified regime at a < a0 will generically be characterised by equilibrium velocities which become independent of distance. Here we identify a critical test in this debate and we propose its application to samples of wide binary stars. Since for 1Msolar systems the acceleration drops below a0 at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 104 AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a < a0 acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond a ≈ a0 scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.

  15. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology. PMID:27152787

  16. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-01

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  17. Higher dimensional nonlinear massive gravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-05-01

    Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.

  18. Venus gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  19. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  20. Turning on gravity with the Higgs mechanism

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Barrow, John D.; Magueijo, João

    2016-07-01

    We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios.

  1. Partial gravity habitat study: With application to lunar base design

    NASA Technical Reports Server (NTRS)

    Capps, Stephen; Lorandos, Jason; Akhidime, Eval; Bunch, Michael; Lund, Denise; Moore, Nathan; Murakawa, Kio; Bell, Larry; Trotti, Guillermo; Neubek, Deb

    1989-01-01

    Comprehensive design requirements associated with designing habitats for humans in a partial gravity environment were investigated and then applied to a lunar base design. Other potential sites for application include planetary surfaces such as Mars, variable gravity research facilities, or a rotating spacecraft. Design requirements for partial gravity environments include: (1) locomotion changes in less than normal Earth gravity; (2) facility design issues, such as interior configuration, module diameter and geometry; and (3) volumetric requirements based on the previous as well as psychological issues involved in prolonged isolation. For application to a Lunar Base, it was necessary to study the exterior architecture and configuration to insure optimum circulation patterns while providing dual egress. Radiation protection issues were addressed to provide a safe and healthy environment for the crew, and finally, the overall site was studied to locate all associated facilities in context with the habitat. Mission planning was not the purpose of this study; therefore, a Lockheed scenario was used as an outline for the Lunar Base application, which was then modified to meet the project needs.

  2. Gravity investigations

    SciTech Connect

    Healey, D.L.

    1983-12-31

    A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.

  3. Cosmological tests of gravity

    SciTech Connect

    Jain, Bhuvnesh; Khoury, Justin

    2010-07-15

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.

  4. Testing Gravity using Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2016-01-01

    Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.

  5. Cylindrical solutions in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay; Raza, Muhammad

    2016-06-01

    This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant.

  6. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1997-03-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  7. Gravity Currents

    NASA Astrophysics Data System (ADS)

    Simpson, John E.

    1999-11-01

    This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.

  8. Local quantum gravity

    NASA Astrophysics Data System (ADS)

    Christiansen, N.; Knorr, B.; Meibohm, J.; Pawlowski, J. M.; Reichert, M.

    2015-12-01

    We investigate the ultraviolet behavior of quantum gravity within a functional renormalization group approach. The present setup includes the full ghost and graviton propagators and, for the first time, the dynamical graviton three-point function. The latter gives access to the coupling of dynamical gravitons and makes the system minimally self-consistent. The resulting phase diagram confirms the asymptotic safety scenario in quantum gravity with a nontrivial UV fixed point. A well-defined Wilsonian block spinning requires locality of the flow in momentum space. This property is discussed in the context of functional renormalization group flows. We show that momentum locality of graviton correlation functions is nontrivially linked to diffeomorphism invariance, and is realized in the present setup.

  9. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  10. Brane-World Gravity

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Koyama, Kazuya

    2010-09-01

    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (˜TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

  11. Non-local F(R)-mimetic gravity

    NASA Astrophysics Data System (ADS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo

    2016-06-01

    In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.

  12. Ghost free massive gravity with singular reference metrics

    NASA Astrophysics Data System (ADS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2016-06-01

    An auxiliary metric (reference metric) is inevitable in massive gravity theory. In the scenario of the gauge/gravity duality, massive gravity with a singular reference metric is used to study momentum dissipation, which describes the electric and heat conductivity for normal conductors. We demonstrate in detail that the de Rham-Gabadadze-Tolley (dRGT) massive gravity with a singular reference metric is ghost free.

  13. Testing chameleon gravity with the Coma cluster

    NASA Astrophysics Data System (ADS)

    Terukina, Ayumu; Lombriser, Lucas; Yamamoto, Kazuhiro; Bacon, David; Koyama, Kazuya; Nichol, Robert C.

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |fR0| < 6 × 10-5, which is currently the tightest constraint on cosmological scales.

  14. Testing chameleon gravity with the Coma cluster

    SciTech Connect

    Terukina, Ayumu; Yamamoto, Kazuhiro; Lombriser, Lucas; Bacon, David; Koyama, Kazuya; Nichol, Robert C. E-mail: lucas.lombriser@port.ac.uk E-mail: david.bacon@port.ac.uk E-mail: bob.nichol@port.ac.uk

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extra force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f{sub R0}| < 6 × 10{sup −5}, which is currently the tightest constraint on cosmological scales.

  15. Generic scalar potentials in geometric scalar gravity

    NASA Astrophysics Data System (ADS)

    Kan, Nahomi; Shiraishi, Kiyoshi

    2016-06-01

    We discuss a generic form of the scalar potential appearing in the geometric scalar theory of gravity. We find the conditions on the potential by considering weak and strong gravity. The modified black hole solutions are obtained for generic potentials and the inverse problems on a black hole and on a spherical body (`pseudo-gravastar') are investigated.

  16. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  17. Unifying Einstein and Palatini gravities

    SciTech Connect

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-02-15

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g{sub {mu}{nu}=}C(R)g{sub {mu}{nu}} with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  18. Cosmology of one extra dimension with localized gravity

    SciTech Connect

    Csaki, Csaba; Graesser, Michael; Kolda, Christopher; Terning, John

    1999-06-01

    The authors examine the cosmology of the two recently proposed scenarios for a five dimensional universe with localized gravity. They find that the scenario with a non-compact fifth dimension is potentially viable, while the scenario which might solve the hierarchy problem predicts a contracting universe, leading to a variety of cosmological problems.

  19. What gravity waves are telling about quantum spacetime

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Calcagni, Gianluca

    2016-06-01

    We discuss various modified dispersion relations motivated by quantum gravity which might affect the propagation of the recently observed gravitational-wave signal of the event GW150914. We find that the bounds set by the data on the characteristic quantum-gravity mass scale M are too weak to constrain these scenarios and, in general, much weaker than the expected M >104 eV for a correction to the dispersion relation linear in 1 /M . We illustrate this issue by giving lower bounds on M , plus an upper bound coming from constraints on the size of a quantum ergosphere. We also show that a phenomenological dispersion relation ω2=k2(1 +α kn/Mn) is compatible with observations and, at the same time, has a phenomenologically viable mass M >10 TeV only in the quite restrictive range 0 gravity models.

  20. Entropy and temperature of black holes in a gravity's rainbow

    SciTech Connect

    Galan, Pablo; Mena Marugan, Guillermo A.

    2006-08-15

    The linear relation between the entropy and area of a black hole can be derived from the Heisenberg principle, the energy-momentum dispersion relation of special relativity, and general considerations about black holes. There exist results in quantum gravity and related contexts suggesting the modification of the usual dispersion relation and uncertainty principle. One of these contexts is the gravity's rainbow formalism. We analyze the consequences of such a modification for black hole thermodynamics from the perspective of two distinct rainbow realizations built from doubly special relativity. One is the proposal of Magueijo and Smolin and the other is based on a canonical implementation of doubly special relativity put forward recently by the authors. In these scenarios, we obtain modified expressions for the entropy and temperature of black holes. We show that, for a family of doubly special relativity theories satisfying certain properties, the temperature can vanish in the limit of zero black hole mass. For the Magueijo and Smolin proposal, this is only possible for some restricted class of models with bounded energy and unbounded momentum. With the proposal of a canonical implementation, on the other hand, the temperature may vanish for more general theories; in particular, the momentum may also be bounded, with bounded or unbounded energy. This opens new possibilities for the outcome of black hole evaporation in the framework of a gravity's rainbow.

  1. Gravity settling

    DOEpatents

    Davis, Hyman R.; Long, R. H.; Simone, A. A.

    1979-01-01

    Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.

  2. Simulating Gravity

    ERIC Educational Resources Information Center

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  3. Robustness of braneworld scenarios against tensorial perturbations

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Menezes, R.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-11-01

    Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein’s theory regardless of the scalar field and gravitational Lagrangians.

  4. Chiral fermions in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  5. Singular inflationary universe from F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2015-12-01

    Unlike crushing singularities, the so-called type IV finite time singularity offers the possibility that the Universe passes smoothly it, without any catastrophic effects. Then the question is if the effects of a type IV singularity can be detected in the process of cosmic evolution. In this paper we address this question in the context of F (R ) gravity. As we demonstrate, the effects of a type IV singularity appear in the Hubble flow parameters, which determine the dynamical evolution of the cosmological system. So we study various inflation models incorporating a type IV singularity, with the singularity occurring at the end of inflation. Particularly we study a toy model and a singular version of the R2 gravity Hubble rate. As we evince, some of the Hubble flow parameters become singular at the singularity, an effect which indicates that at that point a dynamical instability occurs. This dynamical instability eventually indicates the graceful exit from inflation. We demonstrate that the toy model has an unstable de Sitter point at the singularity, so indeed graceful exit could be triggered. In the case of the singular inflation model, graceful exit proceeds in the standard way. In addition, we investigate how the form of the F (R ) gravity affects the singularity structure of the Hubble flow parameters. In the case of the singular inflation model, we found various scenarios for singular evolution, most of which are compatible with observations, and only one leads to severe instabilities. In addition, in one of these scenarios, the presence of the type IV singularity slightly modifies the spectral index of primordial curvature perturbations. We also compare the ordinary Starobinsky with the singular inflation model, and we point out the qualitative and quantitative differences. Finally, we study the late-time dynamics of the toy model and of the singular inflation model and we demonstrate that the unification of early and late-time acceleration can be achieved

  6. Symmetry Breaking in Topological Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2013-04-01

    A SL(5, ℝ) gauge-invariant topological field theory of gravity and possible gauge unifications are considered in four-dimensions (4D). The problem of quantization is evaluated in the asymptotic safety scenario. "Minimal" BF type models for the high energy limit are physically not quite realistic, a tiny symmetry breaking is needed to recover standard Einsteinian gravity for the macroscopic metrical background with induced cosmological constant.

  7. Symmetry Breaking in Topological Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2015-01-01

    A SL(5, R) gauge-invariant topological field theory of gravity and possible gauge unifications are considered in four-dimensions. The problem of quantization is evaluated in the asymptotic safety scenario. `Minimal' BF type models for the high energy limit are physically not quite realistic, a tiny symmetry breaking is needed to recover standard Einsteinian gravity for the oscopic metrical background with induced cosmological constant.

  8. Gravity waves from cosmic bubble collisions

    SciTech Connect

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  9. Domain walls as probes of gravity

    SciTech Connect

    Dvali, Gia; Gabadadze, Gregory; Pujolas, Oriol; Rahman, Rakibur

    2007-06-15

    We show that domain walls are probes that enable one to distinguish large-distance modified gravity from general relativity (GR) at short distances. For example, low-tension domain walls are stealth in modified gravity, while they do produce global gravitational effects in GR. We demonstrate this by finding exact solutions for various domain walls in the DGP model. A wall with tension lower than the fundamental Planck scale does not inflate and has no gravitational effects on a 4D observer, since its 4D tension is completely screened by gravity itself. We argue that this feature remains valid in a generic class of models of infrared modified gravity. As a byproduct, we obtain exact solutions for supermassive codimension-2 branes.

  10. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  11. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  12. Is nonrelativistic gravity possible?

    SciTech Connect

    Kocharyan, A. A.

    2009-07-15

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  13. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  14. Feeble forces and gravity.

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Visser, Matt

    1987-03-01

    We develop a scenario in which feeble intermediate range forces emerge as an effect resulting from the compactification (à la Kaluza-Klein) of multidimensional theories. These feeble forces compete with gravity and in general permit different bodies to fall to earth with different accelerations. We show that these feeble forces are mediated by vectors (V) and/or scalars (S), whose dimensionless coupling constants are typically of order gv ≈ gs ≈ 10-10 Under certain plausible assumptions the ranges of these feeble forces are expected to be of order 1 m to 1 km. It is conjectured that the general strategy will prove applicable to realistic multidimensional theories such as the 10-dimensional superstring theories. We speculate that deviations from the standard gravitational force-similar to the ones reported recently as a “fifth force”-may be interpreted as evidence for higher dimensions.

  15. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  16. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-01

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. PMID:26124253

  17. Cosmology of generalized modified gravity models

    SciTech Connect

    Carroll, Sean M.; Duvvuri, Vikram; De Felice, Antonio; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-03-15

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  18. Stellar structures in Extended Gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; De Laurentis, M.

    2016-09-01

    Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.

  19. International Multidisciplinary Artificial Gravity (IMAG) Project

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy

    2007-01-01

    This viewgraph presentation reviews the efforts of the International Multidisciplinary Artificial Gravity Project. Specifically it reviews the NASA Exploration Planning Status, NASA Exploration Roadmap, Status of Planning for the Moon, Mars Planning, Reference health maintenance scenario, and The Human Research Program.

  20. Exploring plane-symmetric solutions in f( R) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. F.

    2016-02-01

    The modified theories of gravity, especially the f( R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f( R) gravity. We extend the work on static plane-symmetric vacuum solutions in f( R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f( R) models.

  1. A Note on Friedmann Equation of FRW Universe in Deformed Hořava—Lifshitz Gravity from Entropic Force

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao; Wang, Yong-Qiang

    2011-09-01

    With entropic interpretation of gravity proposed by Verlinde, we obtain the Friedmann equation of the Friedmann—Robertson—Walker universe for the deformed Hořava—Lifshitz gravity. It is shown that, when the parameter of Hořava—Lifshitz gravity ω → ∞, the modified Friedmann equation will go back to the one in Einstein gravity. This results may imply that the entropic interpretation of gravity is effective for the deformed Hořava—Lifshitz gravity.

  2. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  3. Modeling human perception of orientation in altered gravity.

    PubMed

    Clark, Torin K; Newman, Michael C; Oman, Charles M; Merfeld, Daniel M; Young, Laurence R

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  4. Modeling human perception of orientation in altered gravity

    PubMed Central

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  5. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  6. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  7. Black holes in Gauss-Bonnet gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Faizal, Mir

    2015-08-01

    In this paper, we will generalize the Gauss-Bonnet gravity to an energy-dependent Gauss-Bonnet theory of gravity, which we shall call the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy-dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.

  8. Cosmology from f( R, T) Theory in a Variant Speed of Light Scenario

    NASA Astrophysics Data System (ADS)

    Moraes, P. H. R. S.

    2016-03-01

    In this work I present a generalization of f( R, T) gravity, by allowing the speed of light to vary. Cosmological solutions are presented for matter and radiation-dominated universes, the former allowing the universe expansion to accelerate while the latter contemplating a possible alternative to inflationary scenario. Remarkably, standard gravity is always retrieved for a special case of f( R, T).

  9. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-03-15

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  10. Bimetric theory of gravity from the nonchiral Plebanski action

    SciTech Connect

    Speziale, Simone

    2010-09-15

    We study a modification of the Plebanski action for general relativity, which leads to a modified theory of gravity with 8 degrees of freedom. We show how the action can be recasted as a bimetric theory of gravity, and expanding around a biflat background we identify the 6 extra degrees of freedom with a second, massive graviton and a scalar mode.

  11. Modulus stabilization in higher curvature dilaton gravity

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Mitra, Joydip; SenGupta, Soumitra

    2014-08-01

    We propose a framework of modulus stabilization in two brane warped geometry scenario in presence of higher curvature gravity and dilaton in bulk space-time. In the prescribed setup we study various features of the stabilized potential for the modulus field, generated by a bulk scalar degrees of freedom with quartic interactions localized on the two 3-branes placed at the orbifold fixed points. We determine the parameter space for the gravidilaton and Gauss-Bonnet couplings required to stabilize the modulus in such higher curvature dilaton gravity setup.

  12. Mars base buildup scenarios

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.

    1986-01-01

    Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.

  13. Mars base buildup scenarios

    SciTech Connect

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station.

  14. Braneworld Scenarios from Deformed Defect Chains

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Bernardini, A. E.; da Rocha, Roldão

    2016-06-01

    Novel braneworld scenarios supported by warp factors driven by a single extra dimension are obtained from deformed one-dimensional lump-like solutions known a priori. Through a novel ansatz, the internal energy structure, the braneworld warp factor, and the quantum mechanical analogue problem, as well as the associated zero mode solutions, are straightforwardly derived by means of an analytical procedure. The results allow one to identify thick brane solutions that support internal structures and that can hold the (3+1)-dimensional gravity.

  15. Scripting Scenarios for the Human Patient Simulator

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Miller, Robert; Doerr, Harold

    2004-01-01

    The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.

  16. Quality assessment of sub-Nyquist recovery from future gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Iran Pour, Siavash; Reubelt, Tilo; Sneeuw, Nico

    2013-09-01

    Drawing on experience from Gravity Recovery and Climate Experiment (GRACE) data analysis, the scientific challenges were already identified in several studies. Any future mission should focus on improvement in both precision and resolution in space and time. For future gravity missions which use high quality sensors, aliasing of high frequency time-variable geophysical signals to the lower frequency signals is one of the most serious problems. The aliasing problem and the spatio-temporal resolution are mainly restricted by two sampling theorems describing the space-time sampling of satellite missions: (i) a Heisenberg-like uncertainty theorem which states that the product of spatial resolution and time resolution is constant, and (ii) the Colombo-Nyquist rule (CNR), which requires the number of satellite revolutions in a repeat period to be at least twice a given maximum spherical harmonic degree. The CNR holds under the assumption of equal ground-track spacing, and limits the spatial resolution of the gravity solution. This study investigates the quality of sub-Nyquist time interval recoveries (when the time intervals are shorter than what is required by the Colombo-Nyquist rule) of different orbit configurations and formation flights, in particular, the dependence of the gravity field accuracy on the measurement duration and ground-track patterns of the satellite formations. It is shown that the fulfillment of the modified CNR, the mission altitude and avoidance of large unobserved gaps by satellite ground-track patterns have the strongest effect on the quality of the recoveries, while the sub-cycle concept does not appear to play an imortant role. It is also found that the modified CNR holds for architectures including two satellite pairs when accounting for the orbital revolutions of both pairs. Moreover, the quality of the solution in the double pair scenario, consisting of a near-polar and an inclined inline pairs, exceeds that of a single near-polar inline

  17. GLOBAL ALTERNATIVE FUTURE SCENARIOS

    EPA Science Inventory

    One way to examine possible future outcomes for environmental protection is through the development and analysis of alternative future scenarios. This type of assessment postulates two or more different paths that social and environmental development might take, using correspond...

  18. Universal thermodynamics in different gravity theories: Conditions for generalized second law of thermodynamics and thermodynamical equilibrium on the horizons

    NASA Astrophysics Data System (ADS)

    Mitra, Saugata; Saha, Subhajit; Chakraborty, Subenoy

    2015-04-01

    The present work deals with a detailed study of universal thermodynamics in different modified gravity theories. The validity of the generalized second law of thermodynamics (GSLT) and thermodynamical equilibrium (TE) of the Universe bounded by a horizon (apparent/event) in f(R) -gravity, Einstein-Gauss-Bonnet gravity, RS-II brane scenario and DGP brane model has been investigated. In the perspective of recent observational evidences, the matter in the Universe is chosen as interacting holographic dark energy model. The entropy on the horizons is evaluated from the validity of the unified first law and as a result there is a correction (in integral form) to the usual Bekenstein entropy. The other thermodynamical parameter namely temperature on the horizon is chosen as the recently introduced corrected Hawking temperature. The above thermodynamical analysis is done for homogeneous and isotropic flat FLRW model of the Universe. The restrictions for the validity of GSLT and the TE are presented in tabular form for each gravity theory. Finally, due to complicated expressions, the validity of GSLT and TE are also examined from graphical representation, using three Planck data sets.

  19. Gravity-Capillary Lumps

    NASA Astrophysics Data System (ADS)

    Akylas, Triantaphyllos R.; Kim, Boguk

    2004-11-01

    In dispersive wave systems, it is known that 1-D plane solitary waves can bifurcate from linear sinusoidal wavetrains at particular wave numbers k = k0 where the phase speed c(k) happens to be an extremum (dc/dk| _0=0) and equals the group speed c_g(k_0). Two distinct possibilities thus arise: either the extremum occurs in the long-wave limit (k_0=0) and, as in shallow water, the bifurcating solitary waves are of the KdV type; or k0 ne 0 and the solitary waves are in the form of packets, described by the NLS equation to leading order, as for gravity-capillary waves in deep water. Here it is pointed out that an entirely analogous scenario is valid for the genesis of 2-D solitary waves or `lumps'. Lumps also may bifurcate at extrema of the phase speed and do so when 1-D solitary waves happen to be unstable to transverse perturbations; moreover, they have algebraically decaying tails and are either of the KPI type (e.g. in shallow water in the presence of strong surface tension) or of the wave packet type (e.g. in deep water) and are described by an elliptic-elliptic Davey-Stewartson equation system to leading order. Examples of steady lump profiles are presented and their dynamics is discussed.

  20. Urine specific gravity test

    MedlinePlus

    Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...

  1. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.

  2. Urine specific gravity test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  3. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  4. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  5. Geometric flows and Perelman's thermodynamics for black ellipsoids in R2 and Einstein gravity theories

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Tamara; Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.

    2016-06-01

    We study geometric relativistic flow and Ricci soliton equations which (for respective nonholonomic constraints and self-similarity conditions) are equivalent to the gravitational field equations of R2 gravity and/or to the Einstein equations with scalar field in general relativity, GR. Perelman's functionals are generalized for modified gravity theories, MGTs, which allows to formulate an analogous statistical thermodynamics for geometric flows and Ricci solitons. There are constructed and analyzed generic off-diagonal black ellipsoid, black hole and solitonic exact solutions in MGTs and GR encoding geometric flow evolution scenarios and nonlinear parametric interactions. Such new classes of solutions in MGTs can be with polarized and/or running constants, nonholonomically deformed horizons and/or embedded self-consistently into solitonic backgrounds. They exist also in GR as generic off-diagonal vacuum configurations with effective cosmological constant and/or mimicking effective scalar field interactions. Finally, we compute Perelman's energy and entropy for black ellipsoids and evolution solitons in R2 gravity.

  6. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  7. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  8. Challenging Entropic Gravity

    NASA Astrophysics Data System (ADS)

    Roveto, Jonathan

    2011-11-01

    A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.

  9. BCube Ocean Scenario

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Schofield, Oscar; Pearlman, Jay; Nativi, Stefano

    2015-04-01

    To address complex Earth system issues such as climate change and water resources, geoscientists must work across disciplinary boundaries; this requires them to access data outside of their fields. Scientists are being called upon to find, access, and use diverse and voluminous data types that are described with semantics. Within the framework of the NSF EarthCube programme, the BCube project (A Broker Framework for Next Generation Geoscience) is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. BCube develops science scenarios as key elements in providing an environment for demonstrating capabilities, benefits, and challenges of the developed e-infrastructure. The initial focus is on hydrology, oceans, polar and weather, with the intent to make the technology applicable and available to all the geosciences. This presentation focuses on the BCube ocean scenario. The purpose of this scenario is to increase the understanding of the ocean dynamics through incorporation of a wide range of in-situ and satellite data into ocean models using net primary productivity as the initial variable. The science scenario aims to identify spatial and temporal domains in ocean models, and key ecological variables. Field data sets and remote observations data sets from distributed and heterogeneous systems are accessed through the broker and will be incorporated into the models. In this work we will present the achievements in the development of the BCube ocean scenario.

  10. Computer Programs to Display and Modify Data in Geographic Coordinates and Methods to Transfer Positions to and from Maps, with Applications to Gravity Data Processing, Global Positioning Systems, and 30-Meter Digital Elevation Models

    USGS Publications Warehouse

    Plouff, Donald

    1998-01-01

    Computer programs were written in the Fortran language to process and display gravity data with locations expressed in geographic coordinates. The programs and associated processes have been tested for gravity data in an area of about 125,000 square kilometers in northwest Nevada, southeast Oregon, and northeast California. This report discusses the geographic aspects of data processing. Utilization of the programs begins with application of a template (printed in PostScript format) to transfer locations obtained with Global Positioning Systems to and from field maps and includes a 5-digit geographic-based map naming convention for field maps. Computer programs, with source codes that can be copied, are used to display data values (printed in PostScript format) and data coverage, insert data into files, extract data from files, shift locations, test for redundancy, and organize data by map quadrangles. It is suggested that 30-meter Digital Elevation Models needed for gravity terrain corrections and other applications should be accessed in a file search by using the USGS 7.5-minute map name as a file name, for example, file '40117_B8.DEM' contains elevation data for the map with a southeast corner at lat 40? 07' 30' N. and lon 117? 52' 30' W.

  11. Einstein's theory of gravity and the problem of missing mass.

    PubMed

    Ferreira, Pedro G; Starkman, Glenn D

    2009-11-01

    The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter. PMID:19892973

  12. Attractive scenario writing.

    PubMed

    Takahashi, Yuzo; Oku, Sachiko Alexandra

    2009-05-01

    This article describes the key steps of scenario writing to facilitate problem-based learning discussion to aid student learning of basic medical science in combination with clinical medicine. The scenario has to amplify and deepen the students' thinking so that they can correlate findings from the case and knowledge from textbooks. This can be achieved in three ways: (1) a comparison of cases; (2) demonstrating a scientific link between symptoms and basic medicine; and (3) introducing a personal and emotional aspect to the scenario. A comparison of two cases enables us to shed light on the pathological differences and think about the underlying biological mechanisms. These include: (a) a comparison of two cases with similar symptoms, but different diseases; (b) a comparison of two cases with different symptoms, but the same cause; and (c) a comparison of two cases, with an easy case, followed by a complicated case. The scenarios may be disclosed in a sequence to show a scientific link between symptoms of the patient and basic medicine, which may help to cultivate a physician with a scientific mind. Examples are given by the relationship between: (a) symptoms, pathology and morphology; and (b) symptoms, pathology and physiology. When the scenario is written in such a way that students are personally and/or emotionally involved in the case, they will be more motivated in learning as if involved in the case themselves. To facilitate this, the scenario can be written in the first-person perspective. Examples include "I had a very bad headache, and vomited several times...", and "I noticed that my father was screaming at night...". The description of the events may be in chronological order with actual time, which makes students feel as if they are really the primary responding person. PMID:19502145

  13. Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David

    2012-01-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  14. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  15. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  16. Designing surveys for tests of gravity.

    PubMed

    Jain, Bhuvnesh

    2011-12-28

    Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several distinct signatures of gravity theories exist outside the 'linear' regime, especially owing to the screening mechanism that operates inside halos such as the Milky Way to ensure that gravity tests in the solar system are satisfied. This opens up several decades in length scale and classes of galaxies at low redshift that can be exploited by surveys. While theoretical work on models of gravity is in the early stages, we can already identify new regimes that cosmological surveys could target to test gravity. These include: (i) a small-scale component that focuses on the interior and vicinity of galaxy and cluster halos, (ii) spectroscopy of low-redshift galaxies, especially galaxies smaller than the Milky Way, in environments that range from voids to clusters, and (iii) a programme of combining lensing and dynamical information, from imaging and spectroscopic surveys, respectively, on the same (or statistically identical) sample of galaxies. PMID:22084295

  17. Coincidence problem in f( T) gravity models

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir

    2015-06-01

    It is well known fact that almost all the recent models of universe are plagued by the cosmic coincidence problem. In this assignment we try to probe the role played by torsion in the current scenario of coincidence and devise a set-up for its realization. In order to model the scenario, the energy arising from the torsion component is considered analogous to dark energy. An interaction between dark energy and dark matter is considered, which is by far the best possible tool to realize the coincidence. A set-up is designed and a constraint equation is obtained which screens the models of f( T) gravity that can successfully accommodate the stationary scenario in its framework, from those which cannot. Due to the absence of a universally accepted interaction term introduced by a fundamental theory, the study is conducted over three different forms of chosen interaction terms. As an illustration two widely known models of f( T) gravity are taken into consideration and used in the designed setup. The study reveals that the realization of the coincidence scenario as well as the role played by torsion in the current universe is a model dependent phenomenon. It is found that the first model showed a considerable departure from the stationary scenario. On the contrary the other four models are perfectly consistent with our setup and generated a satisfactory stationary scenario, thus showing their cosmological viability and their superiority over their counterparts. For the third model (exponential model) it was seen that the cosmological coincidence is realized only in the phantom regime. For the fourth (logarithmic model) and the fifth models, we see that the stationary scenario is attained for negative interaction values. This shows that the direction of flow must be from dark energy to dark matter unlike the previous models. Under such circumstances the universe will return from the present energy dominated phase to a matter dominated phase.

  18. Flat 3-brane with Tension in Cascading Gravity

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew

    2009-10-16

    In the cascading gravity brane-world scenario, our 3-brane lies within a succession of lower-codimension branes, each with their own induced gravity term, embedded into each other in a higher-dimensional space-time. In the (6+1)-dimensional version of this scenario, we show that a 3-brane with tension remains flat, at least for sufficiently small tension that the weak-field approximation is valid. The bulk solution is singular nowhere and remains in the perturbative regime everywhere.

  19. Fourth order gravity, scalar-tensor-vector gravity, and galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Mishra, Priti; Singh, Tejinder P.

    2013-11-01

    The lambda-CDM model is the best fit to cosmological data and to the observed galactic rotation curves. However, in the absence of a direct detection of dark matter one should explore theories such as modified Newtonian dynamics (MOND), and perhaps also modified gravity theories like fourth order gravity and scalar-tensor-vector gravity (STVG) as possible explanations for the non-Keplerian behavior of galaxy rotation curves. STVG has a modified law for gravitational acceleration which attempts to fit data by fixing two free parameters. We show that, remarkably, the biharmonic equation which we get in the weak field limit of the field equations in a fourth order gravity theory implies a modification of Newtonian acceleration which is precisely of the same repulsive Yukawa form as in the STVG theory, and the corrections could in principle be large enough to try and explain the observed rotation curves. We also explain how our model provides a first principles understanding of MOND. We also show that STVG and fourth order gravity predict an acceleration parameter a0 whose value is of the same order as in MOND.

  20. Dynamical stability of extended teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Tretyakov, Petr V.

    2016-04-01

    We discuss modified teleparallel gravity with function f(T,TG) in the action, where the function depends on two arguments: torsion scalar T and analogue of Gauss-Bonnet invariant TG. In contradistinction to usual teleparallel gravity f(T), this theory contains higher derivative terms, which may produce different instabilities. We discuss Minkowski stability problem in such kind of theories and explicitly demonstrate that for stability it must be fT(0, 0) < 0, fTGTG > 0. We apply these restrictions for the few types of functions discussed by the early authors.

  1. Characterizing repulsive gravity with curvature eigenvalues

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Quevedo, Hernando

    2014-10-01

    Repulsive gravity has been investigated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.

  2. Atmospheric effect in three-space scenario for the Stokes-Helmert method of geoid determination

    NASA Astrophysics Data System (ADS)

    Yang, H.; Tenzer, R.; Vanicek, P.; Santos, M.

    2004-05-01

    : According to the Stokes-Helmert method for the geoid determination by Vanicek and Martinec (1994) and Vanicek et al. (1999), the Helmert gravity anomalies are computed at the earth surface. To formulate the fundamental formula of physical geodesy, Helmert's gravity anomalies are then downward continued from the earth surface onto the geoid. This procedure, i.e., the inverse Dirichlet's boundary value problem, is realized by solving the Poisson integral equation. The above mentioned "classical" approach can be modified so that the inverse Dirichlet's boundary value problem is solved in the No Topography (NT) space (Vanicek et al., 2004) instead of in the Helmert (H) space. This technique has been introduced by Vanicek et al. (2003) and was used by Tenzer and Vanicek (2003) for the determination of the geoid in the region of the Canadian Rocky Mountains. According to this new approach, the gravity anomalies referred to the earth surface are first transformed into the NT-space. This transformation is realized by subtracting the gravitational attraction of topographical and atmospheric masses from the gravity anomalies at the earth surface. Since the NT-anomalies are harmonic above the geoid, the Dirichlet boundary value problem is solved in the NT-space instead of the Helmert space according to the standard formulation. After being obtained on the geoid, the NT-anomalies are transformed into the H-space to minimize the indirect effect on the geoidal heights. This step, i.e., transformation from NT-space to H-space is realized by adding the gravitational attraction of condensed topographical and condensed atmospheric masses to the NT-anomalies at the geoid. The effects of atmosphere in the standard Stokes-Helmert method was intensively investigated by Sjöberg (1998 and 1999), and Novák (2000). In this presentation, the effect of the atmosphere in the three-space scenario for the Stokes-Helmert method is discussed and the numerical results over Canada are shown. Key

  3. Canonical gravity with fermions

    SciTech Connect

    Bojowald, Martin; Das, Rupam

    2008-09-15

    Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.

  4. Cluster gas fraction as a test of gravity

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; He, Jian-hua; Gao, Liang

    2016-02-01

    We propose a new cosmological test of gravity, by using the observed mass fraction of X-ray-emitting gas in massive galaxy clusters. The cluster gas fraction, believed to be a fair sample of the average baryon fraction in the Universe, is a well-understood observable, which has previously mainly been used to constrain background cosmology. In some modified gravity models, such as f(R) gravity, gas temperature in a massive cluster is determined by the effective mass (the mass that would have produced the same gravitational effect assuming standard gravity as the cluster actually does in f(R) gravity) of that cluster, which can be larger than its true mass. On the other hand, X-ray luminosity is determined by the true gas density, which in both modified gravity and Λ-cold-dark-matter models depends mainly on Ωb/Ωm and hence the true total cluster mass. As a result, the standard practice of combining gas temperatures and X-ray surface brightnesses of clusters to infer their gas fractions can, in modified gravity models, lead to a larger - in f(R) gravity this can be 1/3 larger - value of Ωb/Ωm than that inferred from other observations such as the cosmic microwave background. Our quick calculation shows that the Hu-Sawicki n = 1 f(R) model with |bar{f}_{R0}|=5× 10^{-5} is in tension with the gas fraction data of the 42 clusters analysed by Allen et al. We also discuss the implications for other modified gravity models.

  5. Gravity-mediated (or composite) dark matter

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min; Park, Myeonghun; Sanz, Verónica

    2014-02-01

    Dark matter could have an electroweak origin, yet it could communicate with the visible sector exclusively through gravitational interactions. In a setup addressing the hierarchy problem, we propose a new dark-matter scenario where gravitational mediators, arising from the compactification of extra dimensions, are responsible for dark-matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that gravity-mediated dark matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly coupled, near-conformal theory, such as in composite Higgs models.

  6. Charged black holes in generalized teleparallel gravity

    SciTech Connect

    Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J.; Momeni, D.; Myrzakulov, R. E-mail: sthoundjo@yahoo.fr E-mail: d.momeni@yahoo.com

    2013-11-01

    In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.

  7. Quantum gravity effects in the Kerr spacetime

    SciTech Connect

    Reuter, M.; Tuiran, E.

    2011-02-15

    We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

  8. Earth to Mars - Scenarios for early manned missions

    NASA Technical Reports Server (NTRS)

    Snoddy, William C.

    1988-01-01

    Trajectories and mission types for a manned mission to Mars are reviewed, focusing on what can be undertaken relative to available technologies. The objectives of a manned mission are outlined and several mission scenarios are described. Space Station involvement, an interplanetary manned Mars space vehicle, and the role of artificial gravity are discussed. Possible launch vehicles, surface systems options, and space vehicle configurations are examined.

  9. Gauge/Gravity Duality (Gauge Gravity Duality)

    SciTech Connect

    Polchinski, Joseph

    2010-02-24

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  10. Electricity from Gravity

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2007-03-01

    Einstein's cosmological constant as gravity, will unify quantum mechanics to general relativity and link gravity to electromagnetism. Then, an electromagnetic vacuum engine driven by the force that spins, moves, and sustains mass at the subatomic level, will do free, what generators cannot. Flowing outward-bound sinusoidally from its source, this gravity force assumes a three-dimensional spherical universe. Lines of force intersect, spinning into gyroscopic particles and passes as time-present, with a compression gravity of space-time curvature continuum unifying all mass. The spaces between approaching masses suffer a decrease of right-angled vacuum energy, increasing external pressures, pushing them together. Ubiquitous gravity now interacts electromagnetically with mass. Gravity's ``heat energy'' operates below absolute zero and squeezes mass into thermonuclear ignition of stars. Creation needs a gravity field for the propagation of light that will make sense of its wave/particle behavior. Creation from a white hole recycles down through a black one, into new beginnings of galaxies. ``Vacuum energy'' will light cities and factories; faster than light spacecraft will raise silently from the ground utilizing the very gravity it defies, propelling us to the stars.

  11. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.

  12. Demonstrating Reduced Gravity.

    ERIC Educational Resources Information Center

    Pearlman, Howard; And Others

    1996-01-01

    Describes the construction of the Reduced-Gravity Demonstrator, which can be used to illustrate the effects of gravity on a variety of phenomena, including the way fluids flow, flames burn, and mechanical systems behave. Presents experiments, appropriate for classroom use, to demonstrate how the behavior of common physical systems change when…

  13. Demonstrating Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Stocker, Dennis; Gotti, Daniel; Urban, David; Ross, Howard; Sours, Thomas

    1996-01-01

    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own.

  14. Plant sensing: gravity and touch

    NASA Astrophysics Data System (ADS)

    Gilroy, S.; Swanson, S.; Massa, G.

    Roots must integrate many stimuli in order to direct their growth as they explore the soil. Gravitropism leads to downward growth but other stimuli such as gradients in nutrients, water, biotic and abiotic stresses and physical obstacles such as rocks all act on the roots sensory systems to modify this gravitropic response. We have therefore investigated the interaction of gravity signaling and response to other stimuli such as a mechanical obstruction to downward growth. A gravitropically directed primary root of Arabidopsis thaliana (growing vertically) senses an obstacle such as a glass plate placed in its direction of growth and initiates an avoidance growth response upon contacting the barrier. This response appears to be caused by an interaction of gravitropic and thigmotropic sensory systems. The touch stimulation of the root cap leads to alteration in growth, initially in the central and later in the distal elongation zone of the root. These growth responses maintain the root tip at an angle of 136 degrees to the barrier as the root grows across the obstacle's surface. Removal of cells in the root cap by laser ablation indicate that all root cap cells are required for this growth response to the barrier. Once the end of the barrier is reached and the root can grow off the obstruciton, gravitropism appears to occur faster than in roots that did not interact with an obstacle, suggesting that the touch stimulation of the barrier may alter gravitropic signaling or response. Touch stimulation of the root cap inhibited the pH-dependent gravity signaling events that are known to be required for gravitropic response. These results imply a transient suppression of gravisensing or graviresponse by touch. Touch stimulation of root cap cells elicited an increase in cytosolic Ca2+ that appears to propagate from cell to cell throughout the cap, suggesting Ca2+ signaling may underlie the communication between gravity and touch sensing cells. Although the pgm1 -1 starch

  15. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  16. Evolving practices in environmental scenarios: a new scenario typology

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angela; Eidinow, Esther

    2008-10-01

    A new approach to scenarios focused on environmental concerns, changes and challenges, i.e. so-called 'environmental scenarios', is necessary if global environmental changes are to be more effectively appreciated and addressed through sustained and collaborative action. On the basis of a comparison of previous approaches to global environmental scenarios and a review of existing scenario typologies, we propose a new scenario typology to help guide scenario-based interventions. This typology makes explicit the types of and/or the approaches to knowledge ('the epistemologies') which underpin a scenario approach. Drawing on previous environmental scenario projects, we distinguish and describe two main types in this new typology: 'problem-focused' and 'actor-centric'. This leads in turn to our suggestion for a third type, which we call 'RIMA'—'reflexive interventionist or multi-agent based'. This approach to scenarios emphasizes the importance of the involvement of different epistemologies in a scenario-based process of action learning in the public interest. We suggest that, by combining the epistemologies apparent in the previous two types, this approach can create a more effective bridge between longer-term thinking and more immediate actions. Our description is aimed at scenario practitioners in general, as well as those who work with (environmental) scenarios that address global challenges.

  17. Vainshtein mechanism in Gauss-Bonnet gravity and Galileon aether

    NASA Astrophysics Data System (ADS)

    Gannouji, Radouane; Sami, M.

    2012-01-01

    We derive field equations of Gauss-Bonnet gravity in four dimensions after dimensional reduction of the action and demonstrate that in this scenario the Vainshtein mechanism operates in the flat spherically symmetric background. We show that inside this Vainshtein sphere the fifth force is negligibly small compared to the gravitational force. We also investigate the stability of the spherically symmetric solution, and clarify the vocabulary used in the literature about the hyperbolicity of the equation and the ghost-Laplacian stability conditions. We find superluminal behavior of the perturbation of the field in the radial direction. However, because of the presence of the nonlinear terms, the structure of the space-time is modified and as a result the field does not propagate in the Minkowski metric but rather in an “aether” composed of the scalar field π(r). We thereby demonstrate that the superluminal behavior does not create time paradoxes thanks to the absence of causal closed curves. We also derive the stability conditions for a Friedmann universe in context with scalar and tensor perturbations and we study the cosmology of the model.

  18. Orthometric corrections from leveling, gravity, density and elevation data: a case study in Taiwan

    NASA Astrophysics Data System (ADS)

    Hwang, C.; Hsiao, Y.-S.

    2003-08-01

    A new orthometric correction (OC) formula is presented and tested with various mean gravity reduction methods using leveling, gravity, elevation, and density data. For mean gravity computations, the Helmert method, a modified Helmert method with variable density and gravity anomaly gradient, and a modified Mader method were used. An improved method of terrain correction computation based on Gaussian quadrature is used in the modified Mader method. These methods produce different results and yield OCs that are greater than 10 cm between adjacent benchmarks (separated by sim2 km) at elevations over 3000 m. Applying OC reduces misclosures at closed leveling circuits and improves the results of leveling network adjustments. Variable density yields variation of OC at millimeter level everywhere, while gravity anomaly gradient introduces variation of OC of greater than 10 cm at higher elevations, suggesting that these quantities must be considered in OC. The modified Mader method is recommended for computing OC.

  19. Gravity localization on hybrid branes

    NASA Astrophysics Data System (ADS)

    Veras, D. F. S.; Cruz, W. T.; Maluf, R. V.; Almeida, C. A. S.

    2016-03-01

    This work deals with gravity localization on codimension-1 brane worlds engendered by compacton-like kinks, the so-called hybrid branes. In such scenarios, the thin brane behavior is manifested when the extra dimension is outside the compact domain, where the energy density is non-trivial, instead of asymptotically as in the usual thick brane models. The zero mode is trapped in the brane, as required. The massive modes, although not localized in the brane, have important phenomenological implications such as corrections to the Newton's law. We study such corrections in the usual thick domain wall and in the hybrid brane scenarios. By means of suitable numerical methods, we attain the mass spectrum for the graviton and the corresponding wavefunctions. The spectra possess the usual linearly increasing behavior from the Kaluza-Klein theories. Further, we show that the 4D gravitational force is slightly increased at short distances. The first eigenstate contributes highly for the correction to the Newton's law. The subsequent normalized solutions have diminishing contributions. Moreover, we find out that the phenomenology of the hybrid brane is not different from the usual thick domain wall. The use of numerical techniques for solving the equations of the massive modes is useful for matching possible phenomenological measurements in the gravitational law as a probe to warped extra dimensions.

  20. Density-metric unimodular gravity: Vacuum maximal symmetry

    SciTech Connect

    Abbassi, A.H.; Abbassi, A.M.

    2011-05-15

    We have investigated the vacuum maximally symmetric solutions of recently proposed density-metric unimodular gravity theory. The results are widely different from inflationary scenario. The exponential dependence on time in deSitter space is substituted by a power law. Open space-times with non-zero cosmological constant are excluded.

  1. EXAMPLE EXPOSURE SCENARIOS ASSESSMENT TOOL

    EPA Science Inventory

    Exposure scenarios are a tool to help the assessor develop estimates of exposure, dose, and risk. An exposure scenario generally includes facts, data, assumptions, inferences, and sometimes professional judgment about how the exposure takes place. The human physiological and beh...

  2. Nonlinear structure formation in gravity theories beyond general relativity

    NASA Astrophysics Data System (ADS)

    Mota, David F.

    2016-07-01

    We investigate the effects of modified gravity theories, in particular, the symmetron and f(R) gravity, on the nonlinear regime of structure formation. In particular, we investigate the velocity dispersion of galaxy clusters as a function of the halo masses, how the matter power spectra depend on the coupling, range and screening scale of the fifth force, and on possible ways of detecting violations of the equivalence principle using the mass inferred via lensing methods versus the mass inferred via dynamical methods.

  3. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    SciTech Connect

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  4. Modified Mercalli Intensity for scenario earthquakes in Evansville, Indiana

    USGS Publications Warehouse

    Cramer, Chris; Haase, Jennifer; Boyd, Oliver

    2012-01-01

    Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the fact that Evansville is close to the Wabash Valley and New Madrid seismic zones, there is concern about the hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake. Earthquake-hazard maps provide one way of conveying such estimates of strong ground shaking and will help the region prepare for future earthquakes and reduce earthquake-caused losses.

  5. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-01

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  6. Asymptotic safety of gravity-matter systems

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.; Reichert, M.

    2016-04-01

    We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.

  7. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  8. Neutron and quark stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.

    2016-03-01

    The realistic compact star models are considered in f(R) gravity. The main result is that simple modified gravity can be consistent with current observational mass limit of neutron stars, with current data on their masses and radii; also, it simplifies solution of the hyperon problem. The effect of strong magnetic field in R2-gravity is also investigated. The existence of more compact (in comparison with General Relativity) stars with large magnetic fields in central regions is possible. In fact the second branch of stability appears.

  9. Wormhole geometries in Eddington-Inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.; Sushkov, Sergey V.

    2015-10-01

    Eddington-inspired Born-Infeld (EiBI) gravity is a recently proposed modified theory of gravity, based on the classic work of Eddington and Born-Infeld nonlinear electrodynamics. In this paper, we consider the possibility that wormhole geometries are sustained in EiBI gravity. We present the gravitational field equations for an anisotropic stress-energy tensor and consider the generic conditions, for the auxiliary metric, at the wormhole throat. In addition to this, we obtain an exact solution for an asymptotically flat wormhole.

  10. World gravity standards

    NASA Technical Reports Server (NTRS)

    Uotila, U. A.

    1978-01-01

    In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.

  11. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  12. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  13. Fourth order spatial derivative gravity

    NASA Astrophysics Data System (ADS)

    Bemfica, F. S.; Gomes, M.

    2011-10-01

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Hořava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton’s potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  14. Fourth order spatial derivative gravity

    SciTech Connect

    Bemfica, F. S.; Gomes, M.

    2011-10-15

    In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as a model for the Horava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined from a scattering process of two identical massive gravitationally interacting bosons. In this limit, Newton's potential is obtained, together with a Darwin-like term that comes from the extra nonpole term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting, but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with the detailed balance condition suggested in the literature and shows that the way in which extra spatial derivative terms are added is of fundamental importance.

  15. Cosmological solutions of f (T ) gravity

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Barrow, John D.; Leach, P. G. L.

    2016-07-01

    In the cosmological scenario in f (T ) gravity, we find analytical solutions for an isotropic and homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I universe. The method that we apply is that of movable singularities of differential equations. For the isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear f (T ) -gravity theory provides solutions for the teleparallel equivalence of general relativity and derive conditions for exact solutions of general relativity to solve the field equations of an f (T ) theory.

  16. From GOCE to the Next Generation Gravity Mission

    NASA Astrophysics Data System (ADS)

    Cesare, Stefano; Allasio, Andrea; Anselmi, Alberto; Dionisio, Sabrina; Mottini, Sergio; Parisch, Manilo; Massotti, Luca; Silvestrin, Pierluigi

    2015-03-01

    ESA’s gravity mission GOCE, carried out with extraordinary success between 2009 and 2013, was the result of more than twenty years of system studies and technology developments in which Thales Alenia Space Italia (TAS-I) always played a major role. Already while GOCE was being developed, ESA began promoting preparatory studies for a Next Generation Gravity Mission (NGGM). While GOCE aimed to provide a high resolution static map of Earth’s gravity, the objective of NGGM is long-term monitoring of the time-variable gravity field with high temporal and spatial resolution. The new mission implies new measurement techniques and instrumentation, a new mission scenario and different spacecraft design drivers. Despite the differences, however, the achievements of GOCE (demonstration of long-duration wide-band drag free control, ultra-sensitive accelerometers, stable noncryogenic temperature control in low earth orbit, etc.) stand as the basis on which the new mission is being created.

  17. Needs of physiological and psychological research using artificial gravity

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Toyobe, M.; Hamami, H.; Tayama, M.; Fujii, T.; Sato, T.; Nitta, K.; Kibe, S.

    In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.

  18. Effects of background gravity stimuli on gravity-controlled behavior

    NASA Technical Reports Server (NTRS)

    Mccoy, D. F.

    1976-01-01

    Physiological and developmental effects of altered gravity were researched. The stimulus properties of gravity have been found to possess reinforcing and aversive properties. Experimental approaches taken, used animals placed into fields of artificial gravity, in the form of parabolic or spiral centrifuges. Gravity preferences were noted and it was concluded that the psychophysics of gravity and background factors which support these behaviors should be further explored.

  19. The Necessity of Quantizing Gravity

    NASA Astrophysics Data System (ADS)

    Adelman, Jeremy

    2016-03-01

    The Eppley Hannah thought experiment is often cited as justification for attempts by theorists to develop a complete, consistent theory of quantum gravity. A modification of the earlier ``Heisenberg microscope'' argument for the necessity of quantized light, the Eppley-Hannah thought experiment purports to show that purely classical gravitational waves would either not conserve energy or else allow for violations of the uncertainty principle. However, several subsequent papers have cast doubt as to the validity of the Eppley-Hannah argument. In this talk, we will show how to resurrect the Eppley-Hannah thought experiment by modifying the original argument in a way that gets around the present criticisms levied against it. With support from the Department of Energy, Grant Number DE-FG02-91ER40674.

  20. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  1. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  2. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  3. Marine gravity image available

    NASA Astrophysics Data System (ADS)

    The image below shows the gravity field from 30-72°S computed from Geosat geodetic mission (GM) and exact repeat mission (ERM) data. A color shaded-relief image of these gravity anomalies is available from NOAA in poster form (report MGG-8, [Marks et al., 1993] and also as a digital gridded data set on CD-ROM. To order, contact the National Geophysical Data Center, E/GC3, 325 Broadway, Boulder, CO 80303.

  4. Quantum massive conformal gravity

    NASA Astrophysics Data System (ADS)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  5. What Is Gravity?

    ERIC Educational Resources Information Center

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  6. Research recommendations of the ESA Topical Team on Artificial Gravity

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Bukley, Angie

    Many experts believe that artificial gravity will be required for an interplanetary mission. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for simplifying operational activities, much still needs to be learned regarding the human response to rotating environments before artificial gravity can be successfully implemented. The European Space Agency (ESA) Topical Team on Artificial Gravity recommended a comprehensive program to determine the gravity threshold required to reverse or prevent the detrimental effects of microgravity and to evaluate the effects of centrifugation on various physiological functions. Part of the required research can be accomplished using animal models on a dedicated centrifuge in low Earth orbit. Studies of human responses to centrifugation could be performed during ambulatory, short- and long-duration bed rest, and in-flight studies. Artificial-gravity scenarios should not be a priori discarded in Moon and Mars mission designs. One major step is to determine the relationship between the artificial gravity dose level, duration, and frequency and the physiological responses of the major body functions affected by spaceflight. Once its regime characteristics are defined and a dose-response curve is established, artificial gravity should serve as the standard against which all other countermeasure candidates are evaluated, first on Earth and then in space.

  7. A fast route to modified gravitational growth

    NASA Astrophysics Data System (ADS)

    Baker, Tessa; Ferreira, Pedro; Skordis, Constantinos

    2014-01-01

    The growth rate of the large-scale structure of the Universe has been advocated as the observable par excellence for testing gravity on cosmological scales. By considering linear-order deviations from general relativity, we show that corrections to the growth rate, f, can be expressed as an integral over a "source" term, weighted by a theory-independent "response kernel." This leads to an efficient and accurate "plug-and-play" expression for generating growth rates in alternative gravity theories, bypassing lengthy theory-specific computations. We use this approach to explicitly show that f is sensitive to a degenerate combination of modified expansion and modified clustering effects. Hence the growth rate, when used in isolation, is not a straightforward diagnostic of modified gravity.

  8. Gravity Before Einstein and Schwinger Before Gravity

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  9. Modified cyanobacteria

    DOEpatents

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  10. Cosmology and short-distance gravity

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2015-09-01

    If the observed dark-energy density ρΛ is interpreted as the net contribution of the energy density of the vacuum, ρΛ ≡ ρV ˜ MV4, and the corresponding vacuum length scale λV = MV-1 as the cutoff scale controlling the low-energy, effective field-theory limit of gravity, it follows that the conventional cosmological scenario based on the effective gravitational equations may be valid only up to the TeV energy scale. Such a possibility would be strongly disfavored by the existence of a relic background of primordial gravitational radiation of intensity compatible with present (or near future) experimental sensitivities.

  11. Cosmological inflation in F (R ,G ) gravity

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Paolella, Mariacristina; Capozziello, Salvatore

    2015-04-01

    Cosmological inflation is discussed in the framework of F (R ,G ) gravity where F is a generic function of the curvature scalar R and the Gauss-Bonnet topological invariant G . The main feature that emerges in this analysis is the fact that this kind of theory can exhaust all the curvature budget related to curvature invariants without considering derivatives of R , Rμ ν, Rσμ ν λ, etc., in the action. Cosmological dynamics results driven by two effective masses (lengths) are related to the R scalaron and the G scalaron working respectively at early and very early epochs of cosmic evolution. In this sense, a double inflationary scenario naturally emerges.

  12. Curvature singularities from gravitational contraction in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Reverberi, Lorenzo

    2013-04-01

    The discovery of the accelerated expansion of the Universe has had a vast resonance on a number of physical disciplines. In recent years several viable modified gravity models have been proposed, which naturally lead to a late-time de Sitter stage while basically reducing to General Relativity in the early Universe. We consider a contracting cloud of pressureless dust, having arbitrary mass and initial density, and study some aspects of these modified gravity models. We show how the increasing energy/mass density may lead to a curvature singularity and discuss the typical time scales for its development.

  13. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  14. The changing nutrition scenario.

    PubMed

    Gopalan, C

    2013-09-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and 'Green Revolution fatigue'. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and "hidden hunger" from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  15. The changing nutrition scenario

    PubMed Central

    Gopalan, C.

    2013-01-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and ‘Green Revolution fatigue’. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and “hidden hunger” from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  16. Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor

    NASA Astrophysics Data System (ADS)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Aly, Ayman A.

    2014-09-01

    In this paper, we studied the cosmological application of the interacting Ricci Dark Energy (RDE) model in the framework of the scalar Gauss-Bonnet modified gravity model. We studied the properties of the reconstructed potential , the Strong Energy Condition (SEC), the Weak Energy Condition (WEC) and the deceleration parameter q for three different models of scale factor, i.e. the emergent, the intermediate and the logamediate one. We obtained that , for the emergent scenario, has a decreasing behavior, while, for the logamediate scenario, the potential start with an increasing behavior then, for later times, it shows a slowly decreasing behavior. Finally, for the intermediate scenario, the potential has an initial increasing behavior, then for a time of t≈1.2, it starts to decrease. We also found that both SEC and WEC are violated for all the three scale factors considered. Finally, studying the plots of q, we derived that an accelerated universe can be achieved for the three models of scale factor considered.

  17. Extending Newton's Universal Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2011-11-01

    This should remove the mystery of Dark Matter. Newton's universal theory of gravity only used the observations of the motion of planets in our solar system. Hubble later used observations of fixed stars in the universe, and showed that the fixed stars were actually galaxies with very large numbers of stars. Newton's universal law of gravity could not explain these new observations without the mystery of dark matter for the additional gravity. In science, when a theory is not able to explain new observations it is necessary to modify the theory or abandon the theory. Rubin observed flat (constant velocity) rotation curves for stars in spiral galaxies. Dark matter was proposed to provide the missing gravity. The equation balancing gravitational force and centripetal force is M*G=v*v*r and for the observed constant velocity v this requires M*G to be a linear function of distance r. If the linear dependence is instead assigned to G instead of M to give a new value for Gn as G+A*r, this will explain the observations in the cosmos and also in our solar system for small r. See ``The Misunderstood Universe'' for more details.

  18. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  19. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  20. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  1. n-DBI gravity

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Hirano, Shinji; Sato, Yuki

    2011-12-01

    n-DBI gravity is a gravitational theory introduced in [C. Herdeiro and S. Hirano, arXiv:1109.1468.], motivated by Dirac-Born-Infeld type conformal scalar theory and designed to yield noneternal inflation spontaneously. It contains a foliation structure provided by an everywhere timelike vector field n, which couples to the gravitational sector of the theory, but decouples in the small curvature limit. We show that any solution of Einstein gravity with a particular curvature property is a solution of n-DBI gravity. Among them is a class of geometries isometric to a Reissner-Nordström-(anti)-de Sitter black hole, which is obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to the Maxwell field. These solutions have, however, two distinct features from their Einstein gravity counterparts: (1) the cosmological constant appears as an integration constant and can be positive, negative, or vanishing, making it a variable quantity of the theory; and (2) there is a nonuniqueness of solutions with the same total mass, charge, and effective cosmological constant. Such inequivalent solutions cannot be mapped to each other by a foliation preserving diffeomorphism. Physically they are distinguished by the expansion and shear of the congruence tangent to n, which define scalar invariants on each leaf of the foliation.

  2. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  3. Crossing of the phantom divide using tachyon-Gauss-Bonnet gravity

    SciTech Connect

    Sadeghi, J.; Banijamali, A.; Milani, F.; Setare, M. R.

    2009-06-15

    In this paper we consider two models. First, we study tachyon-Gauss-Bonnet gravity and obtain the condition of the equation of state crossing -1. Second, we discuss the modified Gauss-Bonnet gravity with the tachyon field and show the condition of {omega} crossing -1. Also, we plot figures for {omega} numerically in special potential and coupling function.

  4. TESTING ALTERNATIVE THEORIES OF GRAVITY USING THE SUN

    SciTech Connect

    Casanellas, Jordi; Pani, Paolo; Lopes, Ilidio; Cardoso, Vitor E-mail: paolo.pani@ist.utl.pt E-mail: vitor.cardoso@ist.utl.pt

    2012-01-20

    We propose a new approach to test possible corrections to Newtonian gravity using solar physics. The high accuracy of current solar models and new precise observations allow us to constrain corrections to standard gravity at unprecedented levels. Our case study is Eddington-inspired gravity, an attractive modified theory of gravity which results in non-singular cosmology and collapse. The theory is equivalent to standard gravity in vacuum, but it sensibly differs from it within matter. For instance, it affects the evolution and the equilibrium structure of the Sun, giving different core temperature profiles, and deviations in the observed acoustic modes and in solar neutrino fluxes. Comparing the predictions from a modified solar model with observations, we constrain the coupling parameter of the theory, |{kappa}{sub g}| {approx}< 3 Multiplication-Sign 10{sup 5} m{sup 5} s{sup -2} kg{sup -1}. Our results show that the Sun can be used to efficiently constrain alternative theories of gravity.

  5. Artificial gravity - A countermeasure for zero gravity

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Mccormack, P. D.

    1987-01-01

    Current knowledge on artificial gravity is presented with emphasis placed on the unique characteristics of such an environment and their effects on crew performance and vehicle habitability. A parametric optimization of the vehicle size and operation is performed. The following set of 'optimum' parameter values is obtained: a cost of 15.8 billion dollars, a radius of 80 feet, a rotation rate of 4.8 rpm, and a g-value of 0.62. Consideration is also given to the problems of adaptation, retention of adaptation, and simultaneous adaptation to both nonrotating and rotating environments.

  6. Clinical Scenarios for Discordant Anti-Xa.

    PubMed

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several "day to day" clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  7. Clinical Scenarios for Discordant Anti-Xa

    PubMed Central

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several “day to day” clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  8. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  9. Inflation without quantum gravity

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Räsänen, Syksy; Wahlman, Pyry

    2015-04-01

    It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantized metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantized, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where nonminimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantization of gravity.

  10. Artificial gravity experiment satellites

    NASA Astrophysics Data System (ADS)

    Harada, Tadashi

    1992-07-01

    An overview of the conceptual study of an artificial gravity experiment satellite based on the assumption of a launch by the H-2 launch vehicle with a target launch date in the Year 2000 is presented. While many satellites provided with artificial gravity have been reported in relation to a manned Mars exploration spacecraft mission, the review has been conducted on missions and test subjects only for experimental purposes. Mission requirements were determined based on the results of reviews on the mission, test subjects, and model missions. The system baseline and development plan were based on the results of a study on conceptual structure and scale of the system, including measures to generate artificial gravity. Approximate scale of the system and arm length, mission orbit, visibility of the operation orbit from ground stations in Japan, and satellite attitude on the mission orbit are outlined.

  11. Newberry Combined Gravity 2016

    DOE Data Explorer

    Kelly Rose

    2016-01-22

    Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.

  12. Scenario Planning in Higher Education.

    ERIC Educational Resources Information Center

    Rieley, James

    Scenario planning can help institutions change the mental models used in planning to achieve a focus on the long-term future, rather than on the immediate future. While institutional survival depends upon the ability to detect and adapt to critical changes in the environment, all institutions face a wide range of potential future scenarios. By…

  13. Platform Support for Pedagogical Scenarios

    ERIC Educational Resources Information Center

    Peter, Yvan; Vantroys, Thomas

    2005-01-01

    This article deals with providing support for the execution of pedagogical scenarios in Learning Management Systems. It takes an engineering point of view to identifies actors, design and use processes. Next it defines the necessary capabilities of a platform so that actors can manage or use pedagogical scenarios. The second part of the article is…

  14. Futures Scenario in Science Learning

    ERIC Educational Resources Information Center

    Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David

    2010-01-01

    In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…

  15. Student Rights and Responsibilities Scenarios.

    ERIC Educational Resources Information Center

    Peterson, Ludwig A.; And Others

    To stimulate interest in student's rights and responsibilities, this resource contains incomplete scenarios dealing with the consequences of knowing and not knowing the law, as it is applied to modern practical situations. The scenarios can be used in high school courses such as government, social problems, history, psychology, and business law.…

  16. Gravity and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Blencowe, Miles

    The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF

  17. The Grip of Gravity

    NASA Astrophysics Data System (ADS)

    Gondhalekar, Prabhakar

    2001-09-01

    Gravity is one of the most inexplicable forces of nature, controlling everything, from the expansion of the Universe to the ebb and flow of ocean tides. The search for the laws of motion and gravitation began more than two thousand years ago, a quest that Prabhakar Gondhalekar recounts in The Grip of Gravity. Beginning with Aristotle and concluding with Planck, Gondhalekar outlines a 'genealogy' of gravity and lucidly explains how previous explanations have shaped the most recent development in the field, string theory. In this work, physicist and astronomer Gondhalekar describes experiments, both planned and proposed, and clearly explains natural phenomena like ocean tides, seasons, ice ages, the formation of planets, stars, and exotic objects like black holes and neutron stars, which are all controlled by gravity. Including anecdotes and thumb-nail sketches of the personalities involved, The Grip of Gravity provides an introduction to the foundation of modern physics and shows how the current developments in string theory may lead to a new and radical interpretation of gravity. Prabhakar Gondhalekar is an Honorary Fellow in the Department of Physics and Astronomy, University College, London. Until his retirement in 1998, he was the head of the Space Astronomy Group at the Rutherford Appleton Laboratory, where he had been a researcher for 18 years. His research has included a number of topics in galactic and extragalactic astronomy, with his major work focusing on the interstellar medium and active galactic nuclei. Gondhalekar has been awarded Royal Society, Leverhulme Trust, and NATO Research Fellowships to do research in universities in the United States and Israel.

  18. Seeking the Light: Gravity Without the Influence of Gravity

    NASA Technical Reports Server (NTRS)

    Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)

    2002-01-01

    All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.

  19. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph [Kavli Institute for Theoretical Physics

    2010-09-01

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  20. Continuous gravity gradient logging

    SciTech Connect

    Fitch, J.L.; Lyle, W.D. Jr.

    1986-07-29

    A method is described for conducting a gravimetry survey of an earth formation, comprising the steps of: (a) continuously traversing the earth formation with a gravity logging tool having a column of fluid within the tool, (b) measuring a first pressure difference along a first interval within the column of fluid, (c) measuring a second pressure difference along a second interval within the column of fluid, (d) differencing the first and second pressure differences to determine the gravity gradient along the earth formation between the first and second intervals.

  1. Position from gravity

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1973-01-01

    Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.

  2. Gauge/Gravity Duality

    SciTech Connect

    Polchinski, Joseph

    2010-02-24

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  3. Artificial gravity field

    NASA Astrophysics Data System (ADS)

    Markley, Larry C.; Lindner, John F.

    Using computer algebra to run Einstein's equations "backward", from field to source rather than from source to field, we design an artificial gravity field for a space station or spaceship. Everywhere inside astronauts experience normal Earth gravity, while outside they float freely. The stress-energy that generates the field contains exotic matter of negative energy density but also relies importantly on pressures and shears, which we describe. The same techniques can be readily used to design other interesting spacetimes and thereby elucidate the connection between the source and field in general relativity.

  4. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  5. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-01

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe. PMID:20867432

  6. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-01-01

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position. PMID:25046019

  7. The effects of Gravity on Transitional and Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Mehravaran, Kian; Jaberi, Farhad

    2002-11-01

    The effects of gravity on compositional and physical structure of transitional and turbulent jet flames are studied via analysis of the data generated by direct numerical simulation (DNS) of a planar jet flame at various gravity conditions. A fully-compressible finite-difference computational solver is used together with a single step Arrhenius model for chemical reaction. The results of our non-reacting flow simulations are in good agreement with available experimental data for planar jets. The results of our reacting simulations are also consistent with previous findings and indicate that at zero- (or micro-) gravity condition combustion damps the flow instability; hence reduces ``turbulence production'' and jet growth. However, in ``normal'' gravity condition, combustion generated density variations and buoyancy effects promotes vorticity generation and enhances the otherwise damped turbulence by heat of reaction. Buoyancy generated vorticity and strain field leads to more jet entrainment as well as better mixing and combustion. Both large and small scale flow structures are modified by gravity; resulting in variation of the spatial and the compositional flame structures. The analysis of compositional flame structures suggest that finite-rate chemistry effects and localized flame extinction are more significant in normal gravity conditions than in zero-gravity.

  8. Observational exclusion of a consistent loop quantum cosmology scenario

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Barrau, Aurélien; Grain, Julien; Schander, Susanne

    2016-06-01

    It is often argued that inflation erases all the information about what took place before it started. Quantum gravity, relevant in the Planck era, seems therefore mostly impossible to probe with cosmological observations. In general, only very ad hoc scenarios or hyper fine-tuned initial conditions can lead to observationally testable theories. Here we consider a well-defined and well-motivated candidate quantum cosmology model that predicts inflation. Using the most recent observational constraints on the cosmic microwave background B-modes, we show that the model is excluded for all its parameter space, without any tuning. Some important consequences are drawn for the deformed algebra approach to loop quantum cosmology. We emphasize that neither loop quantum cosmology in general nor loop quantum gravity are disfavored by this study but their falsifiability is established.

  9. Inflation in a two 3-form fields scenario

    SciTech Connect

    Kumar, K. Sravan; Marto, J.; Moniz, P. Vargas; Nunes, Nelson J. E-mail: jmarto@ubi.pt E-mail: pmoniz@ubi.pt

    2014-06-01

    A setting constituted by N 3-form fields, without any direct interaction between them, minimally coupled to gravity, is introduced in this paper as a framework to study the early evolution of the universe. We focus particularly on the two 3-forms case. An inflationary scenario is found, emerging from the coupling to gravity. More concretely, the fields coupled in this manner exhibit a complex interaction, mediated by the time derivative of the Hubble parameter. Our investigation is supported by means of a suitable choice of potentials, employing numerical methods and analytical approximations. In more detail, the oscillations on the small field limit become correlated, and one field is intertwined with the other. In this type of solution, a varying sound speed is present, together with the generation of isocurvature perturbations. The mentioned features allow to consider an interesting model, to test against observation. It is subsequently shown how our results are consistent with current CMB data (viz.Planck and BICEP2)

  10. Polyhedron tracking and gravity tractor asteroid deflection

    NASA Astrophysics Data System (ADS)

    Ummen, N.; Lappas, V.

    2014-11-01

    In the wake of the Chelyabinsk airburst, the defense against hazardous asteroids is becoming a topic of high interest. This work improves the gravity tractor asteroid deflection approach by tracking realistic small body shapes with tilted ion engines. An algorithm for polyhedron tracking was evaluated in a fictitious impact scenario. The simulations suggest a capability increase up to 38.2% with such improved tilting strategies. The long- and short-term effects within polyhedron tracking are illustrated. In particular, the orbital reorientation effect is influential when realistic asteroid shapes and rotations are accounted for. Also analyzed is the subject of altitude profiles, a way to tailor the gravity tractor performance, and to achieve a steering ability within the B-plane. A novel analytical solution for the classic gravity tractor is derived. It removes the simulation need for classic tractor designs to obtain comparable two body model Δv figures. This paper corroborates that the asteroid shape can be exploited for maximum performance. Even a single engine tilt adjustment at the beginning of deflection operations yields more deflection than a fixed preset tilt.

  11. Does Paramecium sense gravity?

    PubMed

    Mogami, Y; Ishii, J; Baba, S A

    1995-03-01

    In order to get an insight into the cellular mechanisms for the integration of the effects of gravity, we investigated the gravitactic behaviour in Paramecium. There are two main categories for the model of the mechanism of gravitaxis; one is derived on the basis of the mechanistic properties of the cell (physical model) and the other of the physiological properties including cellular gravireception (physiological model). In this review article, we criticized the physical models and introduced a new physiological model. Physical models postulated so far can be divided into two; one explaining the negative gravitactic orientation of the cell in terms of the static torque generated by the structural properties of the cell (gravity-buoyancy model by Verworn, 1889 and drag-gravity model by Roberts, 1970), and the other explaining it in terms of the dynamic torque generated by the helical swimming of the cell (propulsion-gravity model by Winet and Jahn, 1974 and lifting-force model by Nowakowska and Grebecki, 1977). Among those we excluded the possibility of dynamic-torque models because of their incorrect theoretical assumptions. According to the passive orientation of Ni(2+)-immobilized cells, the physical effect of the static torque should be inevitable for the gravitactic orientation. Downward orientation of the immobilized cells in the course of floating up in the hyper-density medium demonstrated the gravitactic orientation is not resulted by the nonuniform distribution of cellular mass (gravity-buoyancy model) but by the fore-aft asymmetry of the cell (drag-gravity model). A new model explaining the gravitactic behaviour is derived on the basis of the cellular gravity sensation through mechanoreceptor channels of the cell membrane. Paramecium is known to have depolarizing receptor channels in the anterior and hyperpolarizing receptors in the posterior of the cell. The uneven distribution of the receptor may lead to the bidirectional changes of the membrane

  12. The virial theorem in Eddington-Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Santos, Noelia S.; Santos, Janilo

    2015-12-01

    We consider the possibility that the Eddington-Born-Infeld (EBI) modified gravity provides an alternative explanation for the mass discrepancy in clusters of galaxies. For this purpose we derive the modified Einstein field equations, finding an additional "geometrical mass" term which provides an effective contribution to the gravitational binding energy. Using some approximations and assumptions for weak gravitational fields, and taking into account the collisionless relativistic Boltzmann equation, we derive a generalized version of the virial theorem in the framework of EBI gravity. We show that the "geometrical mass" term may account for the well known virial mass discrepancy in clusters of galaxies. We also derive the velocity dispersion relation for galaxies in the clusters, which could provide an efficient method for testing EBI gravity from astrophysical observations.

  13. Our World: Gravity in Space

    NASA Video Gallery

    What is gravity? Find out about the balance between gravity and inertia that keeps the International Space Station in orbit. Learn why astronauts "float" in space and how the space shuttle has to s...

  14. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Reasons for the development of artificial gravity environments on spacecraft are outlined. The physiological effects of weightlessness on the human cardiovascular skeletal, and vestibular systems are enumerated. Design options for creating artificial gravity environments are shown.

  15. Resonant triad interactions of acoustc-gravity waves

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Akylas, T. R.

    2015-11-01

    Surface-acoustic wave disturbances in water of constant depth over a rigid bottom, due to the combined action of gravity and compressibility, are studied. In the linear theory, apart from free-surface (gravity) waves, there is also a countable infinity of acoustic (compression) modes. As the sound speed in water, typically, far exceeds the maximum gravity wave phase speed, these two types of modes feature vastly different spatial and/or temporal scales, and their linear coupling is weak. It is possible, however, to realize significant energy exchange between gravity and acoustic waves via nonlinear interactions. This scenario is analyzed for resonant wave triads that comprise two counter-propagating gravity waves and a long-crested acoustic mode. Owing to this disparity in length scales, the interaction time scale as well as the form of the amplitude evolution equations differ from those of a standard resonant triad. In the case of a perfectly tuned triad of uniform monochromatic wave trains, nearly all the energy initially in the gravity waves can be transferred to the acoustic wave. This mechanism, however, is less efficient when the interacting waves are modulated wavepackets.

  16. Student experience of a scenario-centred curriculum

    NASA Astrophysics Data System (ADS)

    Bell, Sarah; Galilea, Patricia; Tolouei, Reza

    2010-06-01

    In 2006 UCL implemented new scenario-centred degree programmes in Civil and Environmental Engineering. The new curriculum can be characterised as a hybrid of problem-based, project-based and traditional approaches to learning. Four times a year students work in teams for one week on a scenario which aims to integrate learning from lecture and laboratory classes and to develop generic skills including team working and communication. Student experience of the first two years the old and new curricula were evaluated using a modified Course Experience Questionnaire. The results showed that students on the new programme were motivated by the scenarios and perceived better generic skills development, but had a lower perception of teaching quality and the development of design skills. The results of the survey support the implementation new curriculum but highlight the importance of strong integration between conventional teaching and scenarios, and the challenges of adapting teaching styles to suit.

  17. Uncertainty in Integrated Assessment Scenarios

    SciTech Connect

    Mort Webster

    2005-10-17

    The determination of climate policy is a decision under uncertainty. The uncertainty in future climate change impacts is large, as is the uncertainty in the costs of potential policies. Rational and economically efficient policy choices will therefore seek to balance the expected marginal costs with the expected marginal benefits. This approach requires that the risks of future climate change be assessed. The decision process need not be formal or quantitative for descriptions of the risks to be useful. Whatever the decision procedure, a useful starting point is to have as accurate a description of climate risks as possible. Given the goal of describing uncertainty in future climate change, we need to characterize the uncertainty in the main causes of uncertainty in climate impacts. One of the major drivers of uncertainty in future climate change is the uncertainty in future emissions, both of greenhouse gases and other radiatively important species such as sulfur dioxide. In turn, the drivers of uncertainty in emissions are uncertainties in the determinants of the rate of economic growth and in the technologies of production and how those technologies will change over time. This project uses historical experience and observations from a large number of countries to construct statistical descriptions of variability and correlation in labor productivity growth and in AEEI. The observed variability then provides a basis for constructing probability distributions for these drivers. The variance of uncertainty in growth rates can be further modified by expert judgment if it is believed that future variability will differ from the past. But often, expert judgment is more readily applied to projected median or expected paths through time. Analysis of past variance and covariance provides initial assumptions about future uncertainty for quantities that are less intuitive and difficult for experts to estimate, and these variances can be normalized and then applied to mean

  18. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  19. Low gravity phase separator

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Pope, W. L.; Smith, L. (Inventor)

    1977-01-01

    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet.

  20. Variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

    1988-01-01

    Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

  1. Hawaii Gravity Model

    SciTech Connect

    Nicole Lautze

    2015-12-15

    Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.

  2. Time in quantum gravity

    NASA Astrophysics Data System (ADS)

    Zeh, H. D.

    1988-01-01

    The intrinsic time concept of quantum gravity allows one to derive thermodynamical and quantum mechanical time arrows correlated with cosmic expansion only. Tube-like standing waves subject to a ``final'' condition may resemble unparametrised orbits of the universe, with ``quantum Poincaré cycles'' coinciding with its durations. A recent criticism by Qadir is answered.

  3. Gravity and crustal structure

    NASA Technical Reports Server (NTRS)

    Bowin, C. O.

    1976-01-01

    Lunar gravitational properties were analyzed along with the development of flat moon and curved moon computer models. Gravity anomalies and mascons were given particular attention. Geophysical and geological considerations were included, and comparisons were made between the gravitional fields of the Earth, Mars, and the Moon.

  4. Revamped braneworld gravity

    SciTech Connect

    Bao Ruoyu; Park, Minjoon; Carena, Marcela; Santiago, Jose; Lykken, Joseph

    2006-03-15

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the van Dam-Veltman-Zakharov (vDVZ) discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit straight gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e., the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of Dvali-Gabadadze-Porrati (DGP)-like crossover behavior in a general warped setup.

  5. Revamped braneworld gravity

    SciTech Connect

    Bao, Ruoyu; Carena, Marcela; Lykken, Joseph; Park, Minjoon; Santiago, Jose; /Fermilab

    2005-11-01

    Gravity in five-dimensional braneworld backgrounds often exhibits problematic features, including kinetic ghosts, strong coupling, and the vDVZ discontinuity. These problems are an obstacle to producing and analyzing braneworld models with interesting and potentially observable modifications of 4d gravity. We examine these problems in a general AdS{sub 5}/AdS{sub 4} setup with two branes and localized curvature from arbitrary brane kinetic terms. We use the interval approach and an explicit ''straight'' gauge-fixing. We compute the complete quadratic gauge-fixed effective 4d action, as well as the leading cubic order corrections. We compute the exact Green's function for gravity as seen on the brane. In the full parameter space, we exhibit the regions which avoid kinetic ghosts and tachyons. We give a general formula for the strong coupling scale, i.e. the energy scale at which the linearized treatment of gravity breaks down, for relevant regions of the parameter space. We show how the vDVZ discontinuity can be naturally but nontrivially avoided by ultralight graviton modes. We present a direct comparison of warping versus localized curvature in terms of their effects on graviton mode couplings. We exhibit the first example of DGP-like crossover behavior in a general warped setup.

  6. Spaceborne Gravity Gradiometers

    NASA Technical Reports Server (NTRS)

    Wells, W. C. (Editor)

    1984-01-01

    The current status of gravity gradiometers and technology that could be available in the 1990's for the GRAVSAT-B mission are assessed. Problems associated with sensors, testing, spacecraft, and data processing are explored as well as critical steps, schedule, and cost factors in the development plan.

  7. Artificial Gravity Research Plan

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  8. A Trick of Gravity

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2010-01-01

    It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.

  9. Physiological Considerations of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Cramer, D. B.

    1985-01-01

    Weightlessness produces significant physiological changes. Whether these changes will stabilize or achieve medical significance is not clear. Artificial gravity is the physiological countermeasure, and the tether system represents an attractive approach to artificial gravity. The need for artificial gravity is examined.

  10. Lunar transportation scenarios utilising the Space Elevator

    NASA Astrophysics Data System (ADS)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  11. Lunar transportation scenarios utilising the Space Elevator.

    PubMed

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. PMID:16010760

  12. GRAVITY detector systems

    NASA Astrophysics Data System (ADS)

    Mehrgan, Leander H.; Finger, Gert; Accardo, Matteo; Lizon, Jean-Louis; Stegmeier, Joerg; Eisenhauer, Frank

    2014-07-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. It will combine the AO corrected beams of the four VLT telescopes. The GRAVITY instrument uses a total of five eAPD detectors, four of which are for wavefront sensing and one for the Fringe tracker. In addition two Hawaii2RG are used, one for the acquisition camera and one for the spectrometer. A compact bath cryostat is used for each WFS unit, one for each of the VLT Unit Telescopes. Both Hawaii2RG detectors have a cutoff wavelength of 2.5 microns. A new and unique element of GRAVITY is the use of infrared wavefront sensors. For this reason SELEX-Galileo has developed a new high speed avalanche photo diode detector for ESO. The SAPHIRA detector, which stands for Selex Avalanche Photodiodes for Highspeed Infra Red Applications, has been already evaluated by ESO. At a frame rate of 1 KHz, a read noise of less than one electron can be demonstrated. A more detailed presentation about the performance of the SPAHIRA detector will be given at this conference 1. Each SAPHIRA detector is installed in an LN2 bath cryostat. The detector stage, filter wheel and optics are mounted on the cold plate of the LN2 vessel and enclosed by a radiation shield. All seven detector systems are controlled and read out by the standard ESO NGC controller. The NGC is a controller platform which can be adapted and customized for all infrared and optical detectors. This paper will discuss specific controller modifications implemented to meet the special requirements of the GRAVITY detector systems and give an overview of the GRAVITY detector systems and their performance.

  13. Detection of Directions of Gravity by Organisms and Contributions to SmaggIce

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.

    2003-01-01

    Research covers the following: In the Microgravity Environment and Telescience Branch, a study wasI extended thar focused upon a flagellated alga or other swimming microbe and the effect of gravity upon its swimming direction. It has long been known that many organisms tend to swim up or down on Earth. How organisms detect the direction of gravity is a question not fully resolved. The response of such organisms to reduced gravity or the absence of gravity is also of interest, particularly because the expected modified behavior may affect the health of astronauts.

  14. Low Reynolds number suspension gravity currents.

    PubMed

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation. PMID:23933985

  15. Ghost anomalous dimension in asymptotically safe quantum gravity

    SciTech Connect

    Eichhorn, Astrid; Gies, Holger

    2010-05-15

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension {eta}{sub c} is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of {eta}{sub c{approx_equal}}-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  16. Gravity-mediated (or composite) Dark Matter confronts astrophysical data

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min; Park, Myeonghun; Sanz, Verónica

    2014-05-01

    We consider the astrophysical bounds on a new form of dark matter, the so called Gravity-mediated Dark Matter. In this scenario, dark matter communicates with us through a mediator sector composed of gravitational resonances, namely a new scalar (radion) and a massive spin-two resonance (massive graviton). We consider specific models motivated by natural electroweak symmetry breaking or weak-scale dark matter in the context of models in warped extra-dimensions and their composite duals. The main Dark Matter annihilation mechanism is due to the interactions of KK gravitons to gauge bosons that propagate in bulk. We impose the bounds on monochromatic or continuum photons from Fermi-LAT and HESS. We also explore scenarios in which the Fermi gamma-ray line could be a manifestation of Gravity-mediated Dark Matter.

  17. National Geodetic Survey Gravity Network

    NASA Astrophysics Data System (ADS)

    Moose, R. E.

    1986-12-01

    In 1966, the U.S. National Gravity Base Network was established through the cooperative efforts of several government agencies and academic institutions involved in nationwide gravity observations. The network was reobserved between 1975 and 1979 by the National Geodetic Survey (NGS) using field procedures designed to give high-quality gravity differences. The report discusses the adjustment and the areas where apparent gravity change was observed. NGS plans to densify and maintain this network and to improve the accuracy of the station values by additional high-quality relative ties and by making observations with a new, absolute gravity meter in each of the states.

  18. Plants and gravity. Special issue

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z. (Principal Investigator)

    2002-01-01

    This issue of the Journal of Plant Growth Regulation explores the effects of gravity on plant growth and development from several perspectives. Most of the review papers consider plants and gravity from the viewpoint of ground-based laboratory research, and several papers consider gravitropism, the directed growth in response to gravity, in some detail. However, another approach to study the effects of gravity on plant is to effectively remove the force due to gravity. A very dramatic way to accomplish this goal is through the free-fall conditions achieved by spacecraft in low Earth orbit, so some of the authors have reviewed recent advances in spaceflight research with plant systems.

  19. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  20. Gravity gradiometry developments at Lockheed Martin

    NASA Astrophysics Data System (ADS)

    Difrancesco, D.

    2003-04-01

    Lockheed Martin has developed and fielded multiple configurations of the rotating accelerometer gravity gradiometer instrument. Applications for both static and moving-base measurements have been demonstrated for a variety of scenarios, including vehicle navigation, hydrocarbon exploration, mineral exploration, reservoir monitoring, underground void detection and treaty monitoring and compliance. The most recent systems built by Lockheed Martin extend the performance range of the early 4-accelerometer gradiometers by adding a second complement of four accelerometers. This achieves the benefit of lower instrument noise and improved frequency response (wider bandwidth) for stringent application scenarios. A summary of the gradiometer development history, functional concepts, instrument and system operation, and demonstrated performance will be presented. Development Background The U. S. Air Force Geophysics Laboratory (AFGL; now AFRL) instituted a program in 1982 to develop and field a moving base gradiometer system that could be used both on land and in the air. The result was the Gravity Gradiometer Survey System (GGSS) which first demonstrated the ability to make airborne gravity gradient measurements in 1987 (Jekeli, 1988). At the same time, the U.S. Navy began development of the Gravity Sensors System (GSS) for use on the Fleet Ballistic Submarine Trident II navigation subsystem. This military background paved the way for commercial uses of gravity gradiometry. Both the GSS and GGSS employed a first generation gravity gradiometer instrument (GGI), which was comprised of four accelerometers mounted on a rotating disk. The details of the GGI operation are further described in the work by Gerber and Hofmeyer (Gerber, 1978 and Hofmeyer, 1994). Recent Advancements in Gradiometer Instrumentation With the instrumentation experience gained through such programs as GSS and GGSS, Lockheed Martin embarked upon an ambitious effort in the early 1990's to further improve the

  1. Security message exchange interoperability scenarios

    SciTech Connect

    Tarman, Thomas

    1998-07-01

    This contribution describes three interoperability scenarios for the ATM Security Message Exchange (SME) protocol. These scenarios include network-wide signaling support for the Security Services Information Element, partial signaling support wherethe SSIE is only supported in private or workgroup ATM networks, and the case where the SSIE is nonsupported by any network elements (exceptthosethat implement security services). Explanatory text is proposed for inclusion infection 2.3 of the ATM Security Specification, Version 1.0.

  2. Toward a new satellite gravimetric mission: opportunities and scenarios

    NASA Astrophysics Data System (ADS)

    Biancale, Richard; Seoane, Lucia; Gegout, Pascal; Ramillien, Guillaume; Bruinsma, Sean

    Based on the CNES concept of "MIni-Constellation of Research Orbiters for Mapping the Earth Gravity Anomalies" (MICROMEGA) we have refined simulation scenarios in order to meet the requirements of the E.motion project, a proposal for ESA's Earth Explorer-8 mission. Mainly in view of hydrological applications, the foremost objective of next GRACE-like missions is to provide higher spatial resolution but without loss of precision. That is why we aspire a precision of 1 cm at 200 km resolution (spherical harmonic degree 100). This requires the development of a satellite-to-satellite laser link with sub micrometric precision -which should be technologically mature -coupled with optimal orbit and measurement scenarios. This presentation aims to describe the different numerical simulations achieved in this context and to give an optimal realistic configuration.

  3. Einstein’s Theory of Gravity and the Problem of Missing Mass

    NASA Astrophysics Data System (ADS)

    Ferreira, Pedro G.; Starkman, Glenn D.

    2009-11-01

    The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton’s and Einstein’s theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein’s theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter.

  4. Recent Advances in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Chaykov, Spasen

    2016-03-01

    In recent years, significant advances have been made in alternative gravitational theories. Although MOND remains the leading candidate among the alternative models, Conformal Gravity has been studied by Mannheim and O'Brien to solve the rotation curve problem without the need for dark matter. Recently, Mannheim, O'Brien and Chaykov have begun solving other gravitational questions in Conformal Gravity. In this presentation, we highlight the new work of Conformal Gravity's application to random motions of clusters (the original Zwicky problem), gravitational bending of light, gravitational lensing and a very recent survey of dwarf galaxy rotation curves. We will show in each case that Conformal Gravity can provide an accurate explanation and prediction of the data without the need for dark matter. Coupled with the fact that Conformal Gravity is a fully re-normalizable metric theory of gravity, these results help to push Conformal Gravity onto a competitive stage against other alternative models.

  5. Constraints on massive gravity theory from big bang nucleosynthesis

    SciTech Connect

    Lambiase, G.

    2012-10-01

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  6. Variable gravity: A suitable framework for quintessential inflation

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Wali; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N.

    2014-07-01

    In this paper, we investigate a scenario of variable gravity and apply it to the unified description of inflation and late-time cosmic acceleration dubbed quintessential inflation. The scalar field called "cosmon," which in this model unifies both the concepts, reduces to the inflaton at early epochs. We calculate the slow-roll parameters, the Hubble parameter at the end of inflation, the reheating temperature, and the tensor-to-scalar ratio, and we demonstrate the agreement of the model with observations and the Planck data. As for the postinflationary dynamics, the cosmon tracks the background before it exits the scaling regime at late times. The scenario gives rise to the correct epoch sequence of standard cosmology, namely, radiative regime, matter phase, and dark energy. We show that the long kinetic regime after inflation gives rise to enhancement of the relic gravity wave amplitude, resulting in violation of the nucleosynthesis constraint at the commencement of the radiative regime in the case of an inefficient reheating mechanism, such as gravitational particle production. Instant preheating is implemented to successfully circumvent the problem. As a generic feature, the scenario gives rise to a blue spectrum for gravity waves on scales smaller than the comoving horizon scale at the commencement of the radiative regime.

  7. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  8. Antimatter gravity experiment

    SciTech Connect

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development.

  9. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  10. Computing Gravity's Strongest Grip

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre

    2008-04-01

    Gravitational physics is entering a new era, one driven by observation, that will begin once gravitational wave interferometers such as LIGO make their first detections. The gravitational waves are produced during violent events such as the merger of two black holes. The detection of these waves or ripples in the fabric of spacetime is a formidable undertaking, requiring innovative engineering, powerful data analysis tools and careful theoretical modeling. In support of this theoretical modeling, recent breakthroughs in numerical relativity have lead to the development of computational tools that allow us to explore where and how gravitational wave observations can constrain or inform our understanding of gravity and astrophysical phenomena. I will review these latest developments, focusing on binary black hole simulations and the role these simulations play in our new understanding of physics and astronomy where gravity exhibits its strongest grip on our spacetime.

  11. Hamiltonian spinfoam gravity

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang M.

    2014-01-01

    This paper presents a Hamiltonian formulation of spinfoam gravity, which leads to a straightforward canonical quantization. To begin with, we derive a continuum action adapted to a simplicial decomposition of space-time. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise—in the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may still miss an additional constraint. Finally, we canonically quantize and recover the EPRL (Engle-Pereira-Rovelli-Livine) face amplitudes. Communicated by P R L V Moniz

  12. More about scalar gravity

    NASA Astrophysics Data System (ADS)

    Bittencourt, E.; Moschella, U.; Novello, M.; Toniato, J. D.

    2016-06-01

    We discuss a class of models for gravity based on a scalar field. The models include and generalize the old approach by Nordström which predated and, in some ways, inspired general relativity. The class include also a model that we have recently introduced and discussed in terms of its cosmological aspects (GSG). We present here a complete characterization of the Schwarschild geometry as a vacuum solution of GSG and sketch a discussion of the first post-Newtonian approximation.

  13. Artificial gravity Mars spaceship

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1989-01-01

    Experience gained in the study of artificial gravity for a manned trip to Mars is reviewed, and a snowflake-configured interplanetary vehicle cluster of habitat modules, descent vehicles, and propulsion systems is presented. An evolutionary design is described which permits sequential upgrading from five to nine crew members, an increase of landers from one to as many a three per mission, and an orderly, phased incorporation of advanced technologies as they become available.

  14. New improved massive gravity

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  15. Gravity gradient study

    NASA Technical Reports Server (NTRS)

    Bell, C. C.

    1971-01-01

    The results of the noise and drift test, and the comparison of the experimental simulation tests with the theoretical predictions, confirm that the rotating gravity gradiometer is capable of extracting information about mascon distributions from lunar orbit, and that the sensitivity of the sensor is adequate for lunar orbital selenodesy. The experimental work also verified analytical and computer models for the directional and time response of the sensor.

  16. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  17. Minimal length in quantum gravity and gravitational measurements

    NASA Astrophysics Data System (ADS)

    Farag Ali, Ahmed; Khalil, Mohammed M.; Vagenas, Elias C.

    2015-10-01

    The existence of a minimal length is a common prediction of various theories of quantum gravity. This minimal length leads to a modification of the Heisenberg uncertainty principle to a Generalized Uncertainty Principle (GUP). Various studies showed that a GUP modifies the Hawking radiation of black holes. In this paper, we propose a modification of the Schwarzschild metric based on the modified Hawking temperature derived from the GUP. Based on this modified metric, we calculate corrections to the deflection of light, time delay of light, perihelion precession, and gravitational redshift. We compare our results with gravitational measurements to set an upper bound on the GUP parameter.

  18. Constraining inverse curvature gravity with supernovae

    SciTech Connect

    Mena, Olga; Santiago, Jose; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  19. Power-law and intermediate inflationary models in f( T)-gravity

    NASA Astrophysics Data System (ADS)

    Rezazadeh, K.; Abdolmaleki, A.; Karami, K.

    2016-01-01

    We study inflation in the framework of f( T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f( T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f( T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f( T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f( T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V( ϕ) ∝ ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f( T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V( ϕ) ∝ ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f( T) scenario while it is ruled out in the standard inflationary scenario.

  20. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  1. Branes in Gravity's Rainbow

    NASA Astrophysics Data System (ADS)

    Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal

    2016-05-01

    In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.

  2. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is

  3. Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    Subjective measures of physical exertion, compensation, and controllability while performing tasks in simulated reduced gravity can be affected by changing the center of gravity (CG) of the overall system. The CG of the overall system is defined as the combined CG of the subject, the spacesuit, and the equipment required to change the CG. PURPOSE: To determine if changing the CG affects subjective ratings of suited human performance in simulated lunar gravity. METHODS: A custom weight support structure interfaced with the lunar prototype spacesuit, allowing manipulation of the CG. Weight locations to alter CG were based on a reference subject (81.6 kg, 182.9 cm). Six subjects (80.0 +/- 10.6 kg, 182.3 +/- 6.2 cm) completed 4 tasks (walking, kneel/stand, rock pickup, and shoveling) with system CG at 3 different locations (B=4.8/1.0, C=7.6/14.4, and P=11.2/20.1 cm aft/above the standard subject?s CG). Lunar gravity (0.17-g) was simulated by parabolic flight. Suited testing was performed at 29.6 kPa with a combined suit and structure mass of 181 kg. In all conditions, subjects provided ratings of perceived exertion (RPE) and the gravity compensation and performance scale (GCPS) upon completion of each task. RESULTS: Mean RPE and GCPS were highest at P for all tasks. Variability was greatest at B and lowest at C, and large variations between subjects at the same CG existed for both RPE and GCPS. These trends were not consistent with results from unsuited CG studies performed in other underwater and overhead suspension lunar gravity simulations. CONCLUSION: Modifying CG during suited testing at lunar gravity seems to affect subjective human performance. However, variation in subjective ratings at a given CG location indicates that further study is needed to determine the interactions among lunar gravity simulation, system CG, system mass, and subject characteristics such as anthropometry, strength, and fitness.

  4. Evaluation of Gravity Wave Effects on Bow Echo Development

    NASA Astrophysics Data System (ADS)

    Adams-Selin, R.; Johnson, R. H.

    2012-12-01

    A numerical simulation of the 13 March 2003 bow echo over Oklahoma is used to evaluate bow echo development and its relationship with gravity wave generation. The research is also directed at an explanation of recent observations of surface pressure surges ahead of convective lines prior to the bowing process. Multiple fast-moving n = 1 gravity waves are generated in association with fluctuations in the first vertical mode of heating in the convective line, and each wave modifies the pre-system environment. The surface impacts of four such waves are observed in Oklahoma Mesonet data during this case. A slower gravity wave is also produced in the simulation, which is responsible for the pre-bowing pressure surge in the model. This gravity wave is generated by an increase in low-level microphysical cooling associated with strengthened rear-to-front flow and low-level downdrafts shortly before bowing. The low-level upward vertical motion associated with this wave, in conjunction with higher-frequency gravity waves generated by the multicellularity of the convective line, increases the immediate pre-system CAPE by approximately 250 J kg-1. Statistical methods are used to evaluate the significance of each vertical mode within the microphysical heating profile at the time of the pressure surge. The contribution of each microphysical process to the overall profile, particularly that of cooling by melting and evaporation, is also examined in an attempt to connect the processes generating the slower gravity wave with those producing bow echo development.

  5. Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories

    SciTech Connect

    Wu Shaofeng; Ge Xianhui; Yang Guohong; Zhang Pengming

    2010-02-15

    We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.

  6. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  7. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  8. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    SciTech Connect

    Chung, Daniel J. H.; Zhou Peng

    2010-07-15

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  9. Gravity field information from Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.

    1989-01-01

    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.

  10. Testing gravity with EG: mapping theory onto observations

    NASA Astrophysics Data System (ADS)

    Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine

    2015-12-01

    We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.

  11. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  12. Matter bounce loop quantum cosmology from F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2014-12-01

    Using the reconstruction method, we investigate which F (R ) theories, with or without the presence of matter fluids, can produce the matter bounce scenario of holonomy corrected loop quantum cosmology. We focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit. For the former, we find that, in the presence of noninteracting and nonrelativistic matter, the F (R ) gravity that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that the Jordan frame is described by a general metric that, when it is conformally transformed to the Einstein frame, produces an accelerating Friedmann-Robertson-Walker metric, we find explicitly the scalar field dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the F (R ) theory and compare it with the Planck experiment data. In order to implement the resulting picture, we embed the F (R ) gravity explicitly in a loop quantum cosmology framework by introducing holonomy corrections to the F (R ) gravity. In this way, the resulting inflation picture corresponding to the F (R ) gravity can be corrected in order that it coincides to some extent with the current experimental data.

  13. Gravity investigation of a Niagaran reef

    SciTech Connect

    Bolla, W.O.; Noel, J.A.

    1983-09-01

    North Ridge and West Ridge, two isolated hills north of Cary, Ohio, in Wyandott County, were described by Winchell more than 100 years ago. About 75 years later, Cummings designated the ridges as being underlain by Niagaran reefs after studying exposures in several small quarries. The extensive exposures in the large quarries subsequently operated in North Ridge left little doubt that this ridge is underlain by a Niagaran reef. West Ridge is analogous in size, shape, orientation, and topographic expression. From the similarities, coupled with Cummings' earlier studies, it is assumed that West Ridge is also a Niagaran reef. A gravity survey, using a LaCoste-Romberg gravity meter, was conducted over West Ridge. The survey was several traverses consisting of 423 stations with station spacing along the traverses of 200 ft (61 m). Elevations were determined by transit surveys, and densities were measured in the laboratory from samples collected in the reef and enclosing rocks exposed in the Wyandott Dolomite Co. quarry on North Ridge. The thickness of the glacial drift was determined from all available water well records. The gravity profiles were analyzed using the Talwani Method. The theoretical profiles were computed using parameters which simulated the size, shape, and density of the reef exposed in the quarries on North Ridge. The field gravity profiles over West Ridge matched the theoretical closely with only 0.008 mgal difference. A cross section constructed from electric logs shows the stratigraphy of the area. A structure contour map of the bed rock reveals that West Ridge is a bedrock-controlled topogrpahic feature, and that its size and shape, although modified by glacial erosion, are similar to other Niagaran reefs in northwestern Ohio.

  14. Exploring Cartan gravity with dynamical symmetry breaking

    NASA Astrophysics Data System (ADS)

    Westman, Hans; Złośnik, Tom

    2014-05-01

    It has been known for some time that General Relativity can be regarded as a Yang-Mills-type gauge theory in a symmetry broken phase. In this picture the gravity sector is described by an SO(1, 4) or SO(2, 3) gauge field A^{a}_{\\phantom{a}b\\mu } and Higgs field Va which acts to break the symmetry down to that of the Lorentz group SO(1, 3). This symmetry breaking mirrors that of electroweak theory. However, a notable difference is that while the Higgs field Φ of electroweak theory is taken as a genuine dynamical field satisfying a Klein-Gordon equation, the gauge independent norm V2 ≡ ηabVaVb of the Higgs-type field Va is typically regarded as non-dynamical. Instead, in many treatments Va does not appear explicitly in the formalism or is required to satisfy V2 = const. ≠ 0 by means of a Lagrangian constraint. As an alternative to this we propose a class of polynomial actions that treat both the gauge connection A^{a}_{\\phantom{a}b\\mu } and Higgs field Va as genuine dynamical fields with no ad hoc constraints imposed. The resultant equations of motion consist of a set of first-order partial differential equations. We show that for certain actions these equations may be cast in a second-order form, corresponding to a scalar-tensor model of gravity. One simple choice leads to the extensively studied Peebles-Ratra rolling quintessence model. Another choice yields a scalar-tensor symmetry broken phase of the theory with positive cosmological constant and an effective mass M of the gravitational Higgs field ensuring the constancy of V2 at low energies and agreement with empirical data if M is sufficiently large. More general cases are discussed corresponding to variants of Chern-Simons modified gravity and scalar-Euler form gravity, each of which yield propagating torsion.

  15. Parametrization for the scale dependent growth in modified gravity

    SciTech Connect

    Sanchez, Juan C. Bueno; Perivolaropoulos, Leandros; Dent, James B.; Dutta, Sourish E-mail: jbdent@asu.edu E-mail: leandros@uoi.gr

    2010-09-01

    We propose a scale dependent analytic approximation to the exact linear growth of density perturbations in Scalar-Tensor (ST) cosmologies. In particular, we show that on large subhorizon scales, in the Newtonian gauge, the usual scale independent subhorizon growth equation does not describe the growth of perturbations accurately, as a result of scale-dependent relativistic corrections to the Poisson equation. A comparison with exact linear numerical analysis indicates that our approximation is a significant improvement over the standard subhorizon scale independent result on large subhorizon scales. A comparison with the corresponding results in the Synchronous gauge demonstrates the validity and consistency of our analysis.

  16. Probing modified gravity with atom-interferometry: A numerical approach

    NASA Astrophysics Data System (ADS)

    Schlögel, Sandrine; Clesse, Sébastien; Füzfa, André

    2016-05-01

    Refined constraints on chameleon theories are calculated for atom-interferometry experiments, using a numerical approach consisting in solving for a four-region model the static and spherically symmetric Klein-Gordon equation for the chameleon field. By modeling not only the test mass and the vacuum chamber but also its walls and the exterior environment, the method allows one to probe new effects on the scalar field profile and the induced acceleration of atoms. In the case of a weakly perturbing test mass, the effect of the wall is to enhance the field profile and to lower the acceleration inside the chamber by up to 1 order of magnitude. In the thin-shell regime, results are found to be in good agreement with the analytical estimations, when measurements are realized in the immediate vicinity of the test mass. Close to the vacuum chamber wall, the acceleration becomes negative and potentially measurable. This prediction could be used to discriminate between fifth-force effects and systematic experimental uncertainties, by doing the experiment at several key positions inside the vacuum chamber. For the chameleon potential V (ϕ )=Λ4 +α/ϕα and a coupling function A (ϕ )=exp (ϕ /M ), one finds M ≳7 ×1016 GeV , independently of the power-law index. For V (ϕ )=Λ4(1 +Λ /ϕ ), one finds M ≳1014 GeV . A sensitivity of a ˜10-11 m /s2 would probe the model up to the Planck scale. Finally, a proposal for a second experimental setup, in a vacuum room, is presented. In this case, Planckian values of M could be probed provided that a ˜10-10 m /s2 , a limit reachable by future experiments. Our method can easily be extended to constrain other models with a screening mechanism, such as symmetron, dilaton and f(R) theories.

  17. Minimally modified self-dual 2-forms gravity

    NASA Astrophysics Data System (ADS)

    Capovilla, Riccardo; Montesinos, Merced; Velázquez, Mercedes

    2010-07-01

    The first-order Plebański formulation of (complex) general relativity (GR) in terms of self-dual 2-forms admits a generalization, proposed by Krasnov, that is qualitatively different from other possible generalizations of GR in terms of metric variables. In this paper, we investigate, within a minimal modification, and in a perturbative approach, the geometrical meaning of the field variables used in the Krasnov generalization, and compare them to the field variables used in the Plebański formulation.

  18. Gravity monitoring of CO2 movement during sequestration: Model studies

    SciTech Connect

    Gasperikova, E.; Hoversten, G.M.

    2008-07-15

    We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic

  19. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  20. Toward predictive scenarios of planetary migration

    NASA Astrophysics Data System (ADS)

    Baruteau, Clement

    2008-10-01

    The detection over the past fifteen years of planets orbiting stars other than the Sun, the exoplanets, has provided an exciting opportunity to test our theories of planet formation and evolution. An impressive result inferred from the observations is the significant proportion of exoplanets having a mass comparable to that of Jupiter, and located much closer to their star than Mercury is from our own Sun! These exoplanets, known as the Hot Jupiters, are probably built up from an solid core, so they are unlikely to have formed where they are detected. They should rather have formed further out in the disc, where temperatures are more favorable to their growth. One then needs to explain how planets could move closer to their host star. Remarkably enough, such an explanation was proposed well before the discovery of the first exoplanet. It considered the interaction between a planet and the protoplanetary disc, which leads to a decrease of the planet's semi-major axis. Planets should progressively spiral toward their central star. This is known as planetary migration. Before the beginning of my thesis, many analytical and numerical studies have shown that the migration timescale of low-mass planets is much shorter than the lifetime of the protoplanetary disc. All planets should therefore have migrated to the vicinity of their host star! This is at least in contradiction with the locations of the planets in our Solar System. In order to elaborate predictive scenarios of planet formation and evolution, it is of primary interest to refine our understanding of disc-planet interactions. The inclusion of the disc self-gravity is an illustration of this. With analytical and numerical arguments, we show that discarding the self-gravity leads to a significant overestimate of the differential Lindblad torque for migrating low-mass planets. Another aspect explored in this thesis is the impact of the gas thermodynamics on migration. We show that the thermodynamic evolution of