Sample records for modified mortar adhesion

  1. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    NASA Astrophysics Data System (ADS)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  2. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork.

    PubMed

    Barnat-Hunek, Danuta; Widomski, Marcin K; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-03-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate.

  3. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork

    PubMed Central

    Barnat-Hunek, Danuta; Widomski, Marcin K.; Szafraniec, Małgorzata; Łagód, Grzegorz

    2018-01-01

    The aim of the research that is presented in this paper was to evaluate the physical and mechanical properties of heat-insulating mortars with expanded cork aggregates and different binders. In this work, the measurements of surface roughness and adhesion strength, supported by determination of basic mechanical and physical parameters, such as density, bulk density, open porosity, total porosity, absorbability, thermal conductivity coefficient, compressive strength, flexural strength, and frost resistance of mortars containing expanded oak cork, were performed. The scanning electron microscope (SEM) investigations demonstrated the microstructure, contact zone, and distribution of pores in the heat-insulating mortars containing expanded cork. The results indicated that the addition of expanded cork and different binders in heat-insulating mortars triggers changes in their roughness and adhesion strength. The SEM research confirmed the very good adhesion of the paste to the cork aggregate. PMID:29494525

  4. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent.

    PubMed

    Wi, Seunghwan; Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-07-26

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer-Emmett-Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties.

  5. Evaluation of Toluene Adsorption Performance of Mortar Adhesives Using Porous Carbon Material as Adsorbent

    PubMed Central

    Chang, Seong Jin; Jeong, Su-Gwang; Lee, Jongki; Kim, Taeyeon; Park, Kyung-Won; Lee, Dong Ryeol; Kim, Sumin

    2017-01-01

    Porous carbon materials are advantageous in adsorbing pollutants due to their wide range of specific surface areas, pore diameter, and pore volume. Among the porous carbon materials in the current study, expanded graphite, xGnP, xGnP C-300, xGnP C-500, and xGnP C-750 were prepared as adsorbent materials. Brunauer–Emmett–Teller (BET) analysis was conducted to select the adsorbent material through the analysis of the specific surface area, pore size, and pore volume of the prepared porous carbon materials. Morphological analysis using SEM was also performed. The xGnP C-500 as adsorbent material was applied to a mortar adhesive that is widely used in the installation of interior building materials. The toluene adsorption performances of the specimens were evaluated using 20 L small chamber. Furthermore, the performance of the mortar adhesive, as indicated by the shear bond strength, length change rate, and water retention rate, was analyzed according to the required test method specified in the Korean standards. It was confirmed that for the mortar adhesives prepared using the xGnP C-500 as adsorbent material, the toluene adsorption performance was excellent and satisfied the required physical properties. PMID:28773214

  6. Application of natural seaweed modified mortar for sustainable concrete production

    NASA Astrophysics Data System (ADS)

    Siddique, M. N. I.; Zularisam, A. W.

    2018-04-01

    The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.

  7. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.

    PubMed

    Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam

    2017-05-05

    The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rottstegge, J.; Arnold, M.; Herschke, L.

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulkmore » composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.« less

  9. Characteristics of Ceramic Fiber Modified Asphalt Mortar.

    PubMed

    Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik

    2016-09-21

    Ceramic fiber, with a major composition of Al₂O₃ and SiO₂, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder.

  10. Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes

    NASA Astrophysics Data System (ADS)

    Bouras, R.; Kaci, A.; Chaouche, M.

    2012-03-01

    The influence of Viscosity-modifying admixtures (VMA) dosage rate on the steady state rheological properties, including the yield stress, fluid consistency index and flow behaviour index, of cementitious materials is considered experimentally. The investigation is undertaken both at cement paste and mortar scales. It is found that the rheological behaviour of the material is in general dependent upon shear-rate interval considered. At sufficiently low shear-rates the materials exhibit shear-thinning. This behaviour is attributed to flow-induced defloculation of the solid particles and VMA polymer disentanglement and alignment. At relatively high shear-rates the pastes becomes shear-thickening, due to repulsive interactions among the solid particles. There is a qualitative difference between the influence of VMA dosage at cement and mortar scales: at cement scale we obtain a monotonic increase of the yield stress, while at mortar scale there exists an optimum VMA dosage for which the yield stress is a minimum. The flow behaviour index exhibit a maximum in the case of cement pastes and monotonically decreases in the case of mortars. On the other hand, the fluid consistency index presents a minimum for both cement pastes and mortars.

  11. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  12. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  13. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  14. Characteristics of Ceramic Fiber Modified Asphalt Mortar

    PubMed Central

    Wan, Jiuming; Wu, Shaopeng; Xiao, Yue; Liu, Quantao; Schlangen, Erik

    2016-01-01

    Ceramic fiber, with a major composition of Al2O3 and SiO2, has advantages of stability at relatively high temperature, big specific surface area and resistance to external mechanical vibration. It has the potential contribution of improving the rutting resistance and temperature sensitivity of modified asphalt binder by proper modification design. In this research, ceramic fiber was introduced into both pen 60/80 and pen 80/100 asphalt binder by different weight ratios. An asphalt penetration test, softening point test, ductility test and dynamic viscoelastic behavior were conducted to characterize and predict the ceramic fiber modified asphalt mortar (CFAM). Research results indicated that the ceramic fiber has a great effect on reinforcement of asphalt, which makes the asphalt stiffer so that the asphalt can only undertake less strain under the same stress. The heat insulation effect of the ceramic fiber will improve the temperature stability. Complex modulus and phase angle results indicate that the ceramic fiber can significantly enhance the high temperature resistance of soft binder. PMID:28773908

  15. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  16. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  17. Environmental Factors Affecting the Strength Characteristics of Modified Resin Mortars

    NASA Astrophysics Data System (ADS)

    Debska, Bernardeta; Licholai, Lech

    2017-12-01

    Resin concretes are composites in which a cement binder has been completely replaced by a synthetic resin. These materials are a good choice for the construction industry, especially in solutions requiring high strength, fast curing and durability. Polymer mortars are mainly used for the manufacture of industrial floors and prefabricated products such as tanks for aggressive chemicals, sewage pipes, or road and bridge drainage systems, as well as for the repair of damaged concrete structures. In all these applications, the strength and high chemical resistance of the applied material solutions are of key importance. It is particularly crucial to obtain information on how resin composites behave when exposed to aggressive agents over extended periods of time. It is also very important to use waste materials in order to obtain resin composites, as these activities are very well inscribed in the idea of environmental protection and meet the criteria of sustainable construction. The mortars described in this article meet the above principles. The article presents how the compressive strength of glycolyzate-modified epoxy mortars, obtained with the use of poly(ethylene terephthalate), changes after they are immersed in 10% sodium chloride solution. Sodium chloride solution was chosen due to the prospective applicability of the tested composites as repair materials used for e.g. bridges or overpasses that are exposed to this salt solution in wintertime. Changes in the properties of the composite samples were monitored over the period of one year. Statistical analysis of the test results was carried out with the use of Statistica programme. The module available in the mentioned program called Nonparametric Statistics - Comparing multiple independent samples made it possible to check the monitoring times during which the compressive strength values differed significantly. The obtained results allowed for determining the equation of the function approximating the course of

  18. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  19. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  20. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  1. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  2. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyacrylamide polymer (modified cationic) denture... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended to...

  3. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  4. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Döring, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2, and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

  5. New processable modified polyimide resins for adhesive and matrix applications

    NASA Technical Reports Server (NTRS)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  6. Urea modified cottonseed protein adhesive for wood composite products

    USDA-ARS?s Scientific Manuscript database

    Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...

  7. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    PubMed

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  8. [Adhesion prevention after Cesarean section by short-term biological barrier of modified chitosan].

    PubMed

    Shen, Wei; Shen, Guofang; Li, Lüwei

    2014-02-25

    To evaluate the efficacies of modified chitosan, an adhesive prevention substance, as a biological barrier for preventing adhesion after Cesarean section. A total of 250 cases undergoing primary Cesarean section from January 2011 to June 2012 at our hospital were recruited. They were randomly divided into experiment (n = 130) and control (n = 120) groups. The experiment group received modified chitosan during Cesarean section while no adhesive prevention substance was offered for the control group. Postoperative flatus time, postoperative infection and pelvic adhesion were used to evaluate the clinical efficacies. For the experiment group, the average postoperative flatus time was (25 ± 7) hours. Three cases had postoperative infections with a postoperative infection rate of 2.3%. There were 2 cases of pelvic adhesion (pelvic adhesion rate: 1.5%) during the postoperative follow-up period. For the control group, the average postoperative flatus time was (34 ± 11) hours. Five cases had postoperative infections with a postoperative infection rate of 4.2%. There were 5 cases of pelvic adhesion (pelvic adhesion rate: 4.2%) during the postoperative follow-up period. There were significant inter-group differences in postoperative flatus time, postoperative infection and pelvic adhesion (P < 0.05). Modified chitosan can prevent pelvic adhesion after Cesarean section.

  9. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    PubMed Central

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  10. Cytotoxic effects of resin-modified orthodontic band adhesives. Are they safe?

    PubMed

    Malkoc, Siddik; Corekci, Bayram; Botsali, Hayriye Esra; Yalçin, Muhammet; Sengun, Abdülkadir

    2010-09-01

    To evaluate the cytotoxic effects of three different resin-modified orthodontic band adhesives. Three resin-modified orthodontic band adhesives (Bisco Ortho Band Paste LC, Multi-Cure Glass Ionomer Band Cement, and Transbond Plus Light Cure Band Adhesive) were prepared and the samples were extracted in 3 mL of Basal Medium Eagle with 10% newborn calf serum for 24 hours. The L929 cells were plated (25,000 cells/mL) in wells of 96-well dishes and maintained in a humidified incubator for 24 hours at 37 degrees C, 5% CO(2), and 95% air. After 24-hour incubation of the cells, the incubation medium was replaced by the immersed medium in which the samples were stored. Then L929 cells were incubated in contact with eluates for 24 hours. The cell mitochondrial activity was evaluated by the methyltetrazolium test. Twelve wells were used for each specimen, and methyltetrazolium tests were applied two times. The data were statistically analyzed using one-way analysis of variance and Tukey Honestly Significantly Different tests. Results with L929 fibroblasts demonstrated that all freshly prepared resin-modified orthodontic band adhesive materials reduced vital cell numbers (P > .05), in comparison to the control group. Our data demonstrate that all materials showed significant cytotoxicity compared to the control group. The results indicate that all materials showed significant cytotoxicity compared to the control group, and further studies using different test methods are needed for all resin-modified orthodontic band adhesives.

  11. Modifying Matrix Materials to Increase Wetting and Adhesion

    NASA Technical Reports Server (NTRS)

    Zhong, Katie

    2011-01-01

    In an alternative approach to increasing the degrees of wetting and adhesion between the fiber and matrix components of organic-fiber/polymer matrix composite materials, the matrix resins are modified. Heretofore, it has been common practice to modify the fibers rather than the matrices: The fibers are modified by chemical and/or physical surface treatments prior to combining the fibers with matrix resins - an approach that entails considerable expense and usually results in degradation (typically, weakening) of fibers. The alternative approach of modifying the matrix resins does not entail degradation of fibers, and affords opportunities for improving the mechanical properties of the fiber composites. The alternative approach is more cost-effective, not only because it eliminates expensive fiber-surface treatments but also because it does not entail changes in procedures for manufacturing conventional composite-material structures. The alternative approach is best described by citing an example of its application to a composite of ultra-high-molecular- weight polyethylene (UHMWPE) fibers in an epoxy matrix. The epoxy matrix was modified to a chemically reactive, polarized epoxy nano-matrix to increase the degrees of wetting and adhesion between the fibers and the matrix. The modification was effected by incorporating a small proportion (0.3 weight percent) of reactive graphitic nanofibers produced from functionalized nanofibers into the epoxy matrix resin prior to combining the resin with the UHMWPE fibers. The resulting increase in fiber/matrix adhesion manifested itself in several test results, notably including an increase of 25 percent in the maximum fiber pullout force and an increase of 60-65 percent in fiber pullout energy. In addition, it was conjectured that the functionalized nanofibers became involved in the cross linking reaction of the epoxy resin, with resultant enhancement of the mechanical properties and lower viscosity of the matrix.

  12. Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transporting

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the problem of preparation and transportation of magnesia mortars with the help of screw mortar mixing pumps. The urgency of the wide use of mortars on magnesia binders (Sorel’s cement) in construction is substantiated due to their high characteristics: strength, hardening speed, wear resistance, possibility of using organic and mineral aggregates, ecological purity and economic efficiency. The necessity for the development of a technique for calculating the main parameters of a mortar mixing pump for its application in the technology of preparation and transportation of magnesia mortars is demonstrated. The analysis of various types of modern mortar mixing pumps is given. The conclusions are drawn about the advantages and disadvantages of standard schemes. The description of the experiment for determination of the productivity of a mortar mixing pump is described depending on the plasticity (mobility) of the used magnesia mortar. The graph and description of the mathematical dependency of the productivity of the mortar mixing pump on the magnesia mortar plasticity are given. On the basis of the obtained dependency, as well as the already known formulas given in the article, a new method is proposed for calculating the main parameters of the screw mortar mixing pump in preparation and transportation of magnesia mortar: productivity, feed range, supply pressure, drive power.

  13. Modified Epoxy Adhesives and Primers

    DTIC Science & Technology

    1992-06-30

    Shear Stress max Bulk Resin (MPa) Control 66.52±3.1 100 67.84 ±23 +20 VCDHAA 79.59 ±2.8 120 78.18 ±2.6 +15 CTBN 51.81 ±3.8 78 53.88 ±2.4 +15 CTBN ...unlimited. 0 3. ABSTRACT (MaX,UM, wor At range of monepoxy additives for epoxy resins , and non-reactive additives for3 polyimides, have been examined...a modified failure mechanism. These properties of the bulk resin translate into modest improvements in adhesive bond performance, particularly for low

  14. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    PubMed

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  15. Adhesive Bioactive Coatings Inspired by Sea Life.

    PubMed

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  16. Water transfer properties and shrinkage in lime-based rendering mortars

    NASA Astrophysics Data System (ADS)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  18. Effect of chitosan ethers on fresh state properties of lime mortars

    NASA Astrophysics Data System (ADS)

    Vyšvařil, M.; Žižlavský, T.

    2017-10-01

    The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.

  19. Detrimental effects of cement mortar and fly ash mortar on asthma progression.

    PubMed

    Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok

    2013-11-01

    Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (p<0.05) were observed in the OPC mortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher

  20. NMR relaxometry study of plaster mortar with polymer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumate, E.; Manea, D.; Moldovan, D.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can bemore » associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.« less

  1. NMR relaxometry study of plaster mortar with polymer additives

    NASA Astrophysics Data System (ADS)

    Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.

    2013-11-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.

  2. Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate

    PubMed Central

    Yuan, Xiongzhou; Xu, Weiting; Sun, Wei; Xing, Feng; Wang, Weilun

    2015-01-01

    This paper presents an experimental study on use of hot-melt polyamide (HMP) to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume) for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ) of HMP mortar was conducted through environmental scanning electron microscopy (ESEM). Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.

  3. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    PubMed

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  4. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    NASA Astrophysics Data System (ADS)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  5. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    PubMed

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  6. Pore size distribution of OPC and SRPC mortars in presence of chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.

    1995-07-01

    The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less

  7. [Characteristics of tenocyte adhesion to biologically-modified surface of polymer].

    PubMed

    Qin, Tingwu; Yang, Zhiming; Xie, Huiqi; Li, Hong; Qin, Jian; Wu, Zezhi; Xu, Shirong; Cai, Shaoxi

    2002-12-01

    In this study we examined the in vitro characteristics of tenocyte adhesion to biologically-modified surface of polymer. Polylactic-co-glycolic acid (PLGA) 85/15 films were prepared by a solvent-casting technique. Each film was adhered onto the bottom of a chamber. The film was precoated with poly-D-lysine (PDL), and then coated with serum-free F12 medium containing various concentrations of fibronectin (FN), type I collagen (CN I), and insulin-like growth factor1 (IGF-1). The monoclonal antibodies (to FN and to CN I) with various dilutions were used to inhibit attachment of tenocytes to surface precoated with FN or CN I. Human embryonic tendon cells (HETCs) and transformed human embryonic tendon cells (THETCs) were used as the seeding cells. The system used for the measurement of adhesion force was the micropipette aspiration experiment system. The micropipette was manipulated to aspirate a small portion of the tenocyte body by using a small aspiration pressure. Then the pipette was pulled away from the adhesion area by micromanipulation. The minimum force required to detach the tenocyte from the substrate was defined as the adhesion force. The results showed that modification of FN or CN I by precoating significantly enhanced attachment of tenocytes to surface of polymer (P < 0.05). As antibodies to FN or CN I were added to a polymer film precoated with FN or CN I, the adhesion force decreased significantly (P < 0.05). We concluded that the specific adhesion forces of tenocytes to extracellular matrix adhesion proteins (FN and CN I) had coordinated action and showed good dependence on their precoating concentrations, and were inhibited by the antibodies to these adhesion proteins. Films precoated with IGF-1 strongly accelerated the adhesion of tenocytes to polymer. These results indicate that the specific adhesion of tenocytes to polymer can be promoted by coating extracellular matrix adhesive proteins and insulin-like growth factor1. It is of great importance to

  8. Cross-contamination in Porcelain Mortars.

    PubMed

    Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C

    2001-01-01

    Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.

  9. Study of the adhesion of neurodegenerative proteins on plasma-modified and coated polypropylene surfaces.

    PubMed

    Poncin-Epaillard, F; Mille, C; Debarnot, D; Zorzi, W; El Moualij, B; Coudreuse, A; Legeay, G; Quadrio, I; Perret-Liaudet, A

    2012-01-01

    The inner polymeric surface of an ELISA titration well is plasma-modified and coated with different surfactant molecules. The titration of neurodegenerative proteins markers (prion, Tau and β-synuclein), previously demonstrated as more efficient with such modified tubes, is related to the adhesion behaviour of these proteins and their corresponding capture antibodies. The adhesion process is studied in terms of anchoring and specific mechanisms. The proteins and antibodies binding onto such modified surfaces is related to the substrate hydrophilic character calculated from the angle contact measure, to the polymer surface charge measured through the streaming potential determination at different pH and the inner surface roughness determined from AFM images. Furthermore, the influence of the blocking agent used during the ELISA titration is also studied.

  10. Modeling and numerical simulation of interior ballistic processes in a 120mm mortar system

    NASA Astrophysics Data System (ADS)

    Acharya, Ragini

    by using a high-resolution Godunov-type shock-capturing approach was used where the discretization is done directly on the integral formulation of the conservation laws. A linearized approximate Riemann Solver was modified in this work for the two-phase flows to compute fully non-linear wave interactions and to directly provide upwinding properties in the scheme. An entropy fix based on Harten-Heyman method was used with van Leer flux limiter for total variation diminishing. The three dimensional effects were simulated by incorporating an unsplit multi-dimensional wave propagation method, which accounted for discontinuities traveling in both normal and oblique coordinate directions. For each component, the predicted pressure-time traces showed significant pressure wave phenomena, which closely simulated the measured pressure-time traces obtained at PSU. The pressure-time traces at the breech-end of the mortar tube were obtained at Aberdeen Test Center with 0, 2, and 4 charge increments. The 3D-MIB code was also used to simulate the effect of flash tube vent-hole pattern on the pressure-wave phenomenon in the ignition cartridge. A comparison of the pressure difference between primer-end and projectile-end locations of the original and modified ignition cartridges with each other showed that the early-phase pressure-wave phenomenon can be significantly reduced with the modified pattern. The flow property distributions predicted by the 3D-MIB for 0, 2, and 4 charge increment cases as well the projectile dynamics predictions provided adequate validation of theory by experiments.

  11. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    NASA Astrophysics Data System (ADS)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  12. Parachute mortar design.

    NASA Technical Reports Server (NTRS)

    Pleasants, J. E.

    1973-01-01

    Mortars are used as one method for ejecting parachutes into the airstream to decelerate spacecraft and aircraft pilot escape modules and to effect spin recovery of the aircraft. An approach to design of mortars in the class that can accommodate parachutes in the 20- to 55-foot-diameter size is presented. Parachute deployment considerations are discussed. Comments are made on the design of a power unit, mortar tube, cover, and sabot. Propellant selection and breech characteristics and size are discussed. A method of estimating hardware weights and reaction load is presented. In addition, some aspects of erodible orifices are given as well as comments concerning ambient effects on performance. This paper collates data and experience from design and flight qualification of four mortar systems, and provides pertinent estimations that should be of interest on programs considering parachute deployment.

  13. A modified low-temperature wafer bonding method using spot pressing bonding technique and water glass adhesive layer

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wang, Shengkai; Wang, Yinghui; Chen, Dapeng

    2018-02-01

    A modified low-temperature wafer bonding method using a spot pressing bonding technique and a water glass adhesive layer is proposed. The electrical properties of the water glass layer has been studied by capacitance-voltage (C-V) and electric current-voltage (I-V) measurements. It is found that the adhesive layer can be regarded as a good insulator in terms of leakage current density. The bonding mechanism and the motion of bubbles during the thermal treatment are investigated. The dominant factor for the bubble motion in the modified bonding process is the gradient of pressure introduced by the spot pressing force. It is proved that the modified method achieves low-temperature adhesive bonding, minimizes the effect of water desorption, and provides good bonding performance.

  14. Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer

    NASA Astrophysics Data System (ADS)

    Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd

    2017-11-01

    Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.

  15. The comparison of properties and cost of material use of natural rubber and sand in manufacturing cement mortar for construction sub-base layer

    NASA Astrophysics Data System (ADS)

    Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.

    2017-11-01

    The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.

  16. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  17. Modification of Lime Mortars with Synthesized Aluminosilicates

    NASA Astrophysics Data System (ADS)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  18. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    PubMed

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  19. Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.

    2016-08-01

    Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.

  20. Modified Phenylethynyl Containing Imides for Secondary Bonding: Non-Autoclave, Low Temperature Processable Adhesives

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Technical Monitor); Chang, Alice C.

    1999-01-01

    As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.

  1. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.

    2017-11-01

    This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.

  2. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  3. Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.

    2017-12-01

    The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.

  4. Isogeometric Bézier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry

    NASA Astrophysics Data System (ADS)

    Zou, Z.; Scott, M. A.; Borden, M. J.; Thomas, D. C.; Dornisch, W.; Brivadis, E.

    2018-05-01

    In this paper we develop the isogeometric B\\'ezier dual mortar method. It is based on B\\'ezier extraction and projection and is applicable to any spline space which can be represented in B\\'ezier form (i.e., NURBS, T-splines, LR-splines, etc.). The approach weakly enforces the continuity of the solution at patch interfaces and the error can be adaptively controlled by leveraging the refineability of the underlying dual spline basis without introducing any additional degrees of freedom. We also develop weakly continuous geometry as a particular application of isogeometric B\\'ezier dual mortaring. Weakly continuous geometry is a geometry description where the weak continuity constraints are built into properly modified B\\'ezier extraction operators. As a result, multi-patch models can be processed in a solver directly without having to employ a mortaring solution strategy. We demonstrate the utility of the approach on several challenging benchmark problems. Keywords: Mortar methods, Isogeometric analysis, B\\'ezier extraction, B\\'ezier projection

  5. Use of polypropylene fibers coated with nano-silica particles into a cementitious mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppola, B., E-mail: bcoppola@unisa.it; Di Maio, L.; Scarfato, P.

    Fiber reinforced cementitious composite (FRCC) materials have been widely used during last decades in order to overcome some of traditional cementitious materials issues: brittle behaviour, fire resistance, cover spalling, impact strength. For composite materials, fiber/matrix bond plays an important role because by increasing fiber/matrix interactions is possible to increase the behaviour of the entire material. In this study, in order to improve fiber to matrix adhesion, two chemical treatments of polypropylene fibers were investigated: alkaline hydrolysis and nano-silica sol-gel particles deposition. Treatmtents effect on fibers morphology and mechanical properties was investigated by scanning electron microscopy (SEM) and tensile tests. SEMmore » investigations report the presence of spherical nano-silica particles on fiber surface, in the case of sol-gel process, while alkaline hydrolysis leads to an increase of fibers roughness. Both treatments have negligible influence on fibers mechanical properties confirming the possibility of their use in a cementitious mortar. Pullout tests were carried out considering three embedded length of fibers in mortar samples (10, 20 and 30 mm, respectively) showing an increase of pullout energy for treated fibers. The influence on fiber reinforced mortar mechanical properties was investigated by three-point flexural tests on prismatic specimens considering two fibers length (15 and 30 mm) and two fibers volume fractions (0.50 and 1.00 %). A general increase of flexural strength over the reference mix was achieved and an overall better behaviour is recognizable for mortars containing treated fibers.« less

  6. Physical-chemical properties of dental composites and adhesives containing silane-modified SBA-15.

    PubMed

    Martim, Gedalias Custódio; Kupfer, Vicente Lira; Moisés, Murilo Pereira; Dos Santos, Andressa; Buzzetti, Paulo Henrique Maciel; Rinaldi, Andrelson Wellington; Rubira, Adley Forti; Girotto, Emerson Marcelo

    2018-04-01

    The aim of this study was to synthesize and characterize mesoporous materials SBA-15 and SBA-15 modified with 3-(methacryloxy)-propyl-trimethoxysilane (MPS) to be used as inorganic filler in restorative dental composites and adhesives, and evaluate the main physical-chemical properties of the resulting material. The SBA-15 and SBA-15/MPS were characterized by FTIR, BET and X-Ray and combined with TEGDMA, bis-GMA and commercial spherical silica to produce dental composites. Afterwards, the mesoporous materials were combined with TEGDMA, bis-GMA and HEMA to make adhesives. To compare the results, composites and adhesives containing only commercial spherical silica were investigated. Some physical-chemical properties such as degree of conversion (DC), flexural strength (FS) and modulus (FM), water sorption and solubility (W sp and W sl ), specific area (BET), and the leachable components were evaluated. The SBA-15/MPS can be used to prepare dental restorative materials, with some foreseeable advantages compared with pure SBA-15 dental materials and with improved properties compared with commercial spherical silica dental materials. An important improvement was that the dental materials based on modified SBA-15 presented a reduction of approximately 60% in leaching of unreacted monomers extracted by solvent compared to the control group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  8. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC.

    PubMed

    Asadinezhad, Ahmad; Novák, Igor; Lehocký, Marián; Sedlarík, Vladimir; Vesel, Alenka; Junkar, Ita; Sáha, Petr; Chodák, Ivan

    2010-06-01

    Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Analysis of Bending Strength of Resin Mortars That Are at Risk of Long-Term Exposure to Environmental Corrosives

    NASA Astrophysics Data System (ADS)

    Debska, Bernardeta; Licholai, Lech

    2017-12-01

    The results of the article are part of an extensive research on new building materials including cement-free polymer composites where the binder is epoxy resin modified with glycolyzates obtained from poly (ethylene terephthalate) waste (PET). The investigation conducted con-firmed that there is a possibility of using waste materials in the production of mortar. Since they have always been an environmental problem, their utilization will help to apply the principles of sustainable development in the processes of obtaining new materials. The article discusses the results of a study of flexural strength of polymer mortars. Mortar specimens modified with propylene glycol and PET waste based glycolyzate were exposed to a 10% NaCl solution and their strength parameters were then examined after one month, six months and twelve months of immersion in this aggressive medium. The same characteristics were also determined for specimens that were not exposed to the NaCl solution. The results were presented as the trend function. The sections of the curve corresponding to the particular periods of exposure in aggressive medium vary in shape. Due to this, an attempt was made to adjust the spline function to the experimental data. The composites obtained show a deterioration in their strength properties which grows with the extension of their exposure to a corrosive medium. However, the chemical corrosion resistance of the mortars under investigation can be considered very good as it is still much higher than that of conventional cement mortars. Even after a year exposure to a corrosive substance, the mortars obtained still show high mean flexural strength values which equal about 30 MPa.

  10. Bond durability of adhesives containing modified-monomer with/without-fluoride after aging in artificial saliva and under intrapulpal pressure simulation.

    PubMed

    El-Deeb, H A; Al Sherbiney, H H; Mobarak, E H

    2013-01-01

    To evaluate the dentin bond strength durability of adhesives containing modified-monomer with/without-fluoride after storage in artificial saliva and under intrapulpal pressure simulation (IPPS). The occlusal enamel of 48 freshly extracted teeth was trimmed to expose midcoronal dentin. Roots were sectioned to expose the pulp chamber and to connect the specimens to the pulpal-pressure assembly. Specimens were assigned into four groups (n=12) according to adhesive system utilized: a two-step etch-and-rinse adhesive system (SB, Adper Single Bond 2, 3M ESPE), a two-step self-etch adhesive system (CSE, Clearfil SE Bond, Kuraray Medical Inc), and two single-step self-etch adhesives with the same modified monomer (bis-acrylamide)-one with fluoride (AOF, AdheSE One F, Ivoclar-Vivadent) and the other without (AO, AdheSE One, Ivoclar-Vivadent). Bonding was carried out while the specimens were subjected to 15-mm Hg IPPS. Resin composite (Valux Plus, 3M ESPE) buildups were made. After curing, specimens were aged in artificial saliva and under 20-mm Hg IPPS at 37°C in a specially constructed incubator either for 24 hours or six months prior to testing. Bonded specimens (n=6/group) were sectioned into sticks (n=24/group) with a cross section of 0.9 ± 0.01 mm(2) and subjected to microtensile bond strength (μTBS) testing using a universal testing machine. Data were statistically analyzed using two-way analysis of variance (ANOVA) with repeated measures, one-way ANOVA tests, and a t-test (p<0.05). Failure modes were determined using a scanning electron microscope. The μTBS values of SB and CSE fell significantly after six-month storage in artificial saliva and under IPPS, yet these values remained significantly higher than those for the other two adhesives with modified monomers. There was no significant difference in the bond strength values between fluoride-containing and fluoride-free self-etch adhesive systems (AOF and AO) after 24 hours or six months. Modes of failure were

  11. Recycled sand in lime-based mortars.

    PubMed

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optimisation of nano-silica modified self-compacting high-Volume fly ash mortar

    NASA Astrophysics Data System (ADS)

    Achara, Bitrus Emmanuel; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2017-05-01

    Evaluation of the effects of nano-silica amount and superplasticizer (SP) dosage on the compressive strength, porosity and slump flow on high-volume fly ash self-consolidating mortar was investigated. Multiobjective optimisation technique using Design-Expert software was applied to obtain solution based on desirability function that simultaneously optimises the variables and the responses. A desirability function of 0.811 gives the optimised solution. The experimental and predicted results showed minimal errors in all the measured responses.

  13. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-07

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  14. AMS 14C dating of lime mortar

    NASA Astrophysics Data System (ADS)

    Heinemeier, Jan; Jungner, Högne; Lindroos, Alf; Ringbom, Åsa; von Konow, Thorborg; Rud, Niels

    1997-03-01

    A method for refining lime mortar samples for 14C dating has been developed. It includes mechanical and chemical separation of mortar carbonate with optical control of the purity of the samples. The method has been applied to a large series of AMS datings on lime mortar from three medieval churches on the Åland Islands, Finland. The datings show convincing internal consistency and confine the construction time of the churches to AD 1280-1380 with a most probable date just before AD 1300. We have also applied the method to the controversial Newport Tower, Rhode Island, USA. Our mortar datings confine the building to colonial time in the 17th century and thus refute claims of Viking origin of the tower. For the churches, a parallel series of datings of organic (charcoal) inclusions in the mortar show less reliable results than the mortar samples, which is ascribed to poor association with the construction time.

  15. Strength of mortar containing rubber tire particle

    NASA Astrophysics Data System (ADS)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  16. The Viking mortar - Design, development, and flight qualification.

    NASA Technical Reports Server (NTRS)

    Brecht, J. P.; Pleasants, J. E.; Mehring, R. D.

    1973-01-01

    Approximately 25,400 ft above the local surface of Mars, a radar height sensor fires the Viking mortar, which ejects a 53-ft D sub o disk-gap-band (DGB) parachute. The parachute decelerates and stabilizes the Viking lander sufficiently for the terminal engine system to take over and effect a soft landing. The general design and environmental requirements for the mortar system are presented; various illustrations of the mortar components and how the mortar system functions also are presented. Primary emphasis is placed on manufacturing, developing, and qualification testing of the mortar system.

  17. Modeling Adhesive Anchors in a Discrete Element Framework

    PubMed Central

    Marcon, Marco; Vorel, Jan; Ninčević, Krešimir; Wan-Wendner, Roman

    2017-01-01

    In recent years, post-installed anchors are widely used to connect structural members and to fix appliances to load-bearing elements. A bonded anchor typically denotes a threaded bar placed into a borehole filled with adhesive mortar. The high complexity of the problem, owing to the multiple materials and failure mechanisms involved, requires a numerical support for the experimental investigation. A reliable model able to reproduce a system’s short-term behavior is needed before the development of a more complex framework for the subsequent investigation of the lifetime of fasteners subjected to various deterioration processes can commence. The focus of this contribution is the development and validation of such a model for bonded anchors under pure tension load. Compression, modulus, fracture and splitting tests are performed on standard concrete specimens. These serve for the calibration and validation of the concrete constitutive model. The behavior of the adhesive mortar layer is modeled with a stress-slip law, calibrated on a set of confined pull-out tests. The model validation is performed on tests with different configurations comparing load-displacement curves, crack patterns and concrete cone shapes. A model sensitivity analysis and the evaluation of the bond stress and slippage along the anchor complete the study. PMID:28786964

  18. Study of ancient mortars from the Roman Villa of Pollio Felice in Sorrento (Naples)

    NASA Astrophysics Data System (ADS)

    Benedetti, D.; Valetti, S.; Bontempi, E.; Piccioli, C.; Depero, L. E.

    The study of ancient mortars is an important aspect of building conservation: the choice of the materials has varied according to historical period, regional habits, and their specific function in the structure. Ancient mortars are composites, comprising hydraulic or aerial binding materials, and aggregates, passive or active, which may react with binding material. Moreover, they were modified during setting, hardening, and aging, according to processes not yet well known. In this paper, we present a study of ancient mortars from the Villa of Pollio Felice of Sorrento (Naples). The analysis has been performed by conventional techniques (grain-size distribution, lime-percentage analysis, optical and electron microscopy, and X-ray diffraction) and by means of a laboratory X-ray microdiffractometer equipped with an image plate detector. This system, applied for the first time to archaeological studies, can reach a spatial resolution of a few tenths of microns and it allows us to obtain separate phase identification of binder and filler particles.

  19. [The Analysis of Traditional Lime Mortars from Zhejiang Province, China].

    PubMed

    Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian

    2016-01-01

    The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars.

  20. Hydrophobic Properties of Biofilm-Enriched Hybrid Mortar.

    PubMed

    Grumbein, Stefan; Minev, Dionis; Tallawi, Marwa; Boettcher, Kathrin; Prade, Friedrich; Pfeiffer, Franz; Grosse, Christian Ulrich; Lieleg, Oliver

    2016-10-01

    A mortar hybrid material is presented in which biomineralization processes are stimulated by adding a biological component, i.e., bacterial biofilm, to standard mortar. A material is obtained that exhibits increased roughness on the microscale and the nanoscale. Accordingly, the hybrid mortar not only resists wetting but also suppresses the uptake of water by capillary forces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    NASA Astrophysics Data System (ADS)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  2. Micro- and meso-scale pore structure in mortar in relation to aggregate content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yun, E-mail: yun.gao@ugent.be; De Schutter, Geert; Ye, Guang

    2013-10-15

    Mortar is often viewed as a three-phase composite consisting of aggregate, bulk paste, and an interfacial transition zone (ITZ). However, this description is inconsistent with experimental findings because of the basic assumption that larger pores are only present within the ITZ. In this paper, we use backscattered electron (BSE) imaging to investigate the micro- and meso-scale structure of mortar with varying aggregate content. The results indicate that larger pores are present not only within the ITZ but also within areas far from aggregates. This phenomenon is discussed in detail based on a series of analytical calculations, such as the effectivemore » water binder ratio and the inter-aggregate spacing. We developed a modified computer model that includes a two-phase structure for bulk paste. This model interprets previous mercury intrusion porosimetry data very well. -- Highlights: •Based on BSE, we examine the HCSS model. •We develop the HCSS-DBLB model. •We use the modified model to interpret the MIP data.« less

  3. Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments.

    PubMed

    Gill, Simrone K; Roohpour, Nima; Topham, Paul D; Tighe, Brian J

    2017-11-01

    Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels. This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment. Copyright © 2017 Acta Materialia

  4. Application of Nano-SiO₂ and Nano-Fe₂O₃ for Protection of Steel Rebar in Chloride Contaminated Concrete: Epoxy Nanocomposite Coatings and Nano-Modified Mortars.

    PubMed

    Nguyen, Tuan Anh; Nguyen, The Huyen; Pham, Thi Lua; Dinh, Thi Mai Thanh Dinh; Thai, Hoang; Shi, Xianming

    2017-01-01

    The effect of incorporating nanoparticles on the corrosion resistance of epoxy-coated steel in salt contaminated mortars was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy. Researchers conducted electrochemical monitoring of the coated steel embedded in mortar over 100 days of immersion in 0.1 M NaOH solutions. The chloride permeability and microstructure of Portland cement mortar with admixed nano-materials (at 1% by weight of cement) were examined using an electromigration test and field emission scanning electron microscopy (FESEM). Electrochemical monitoring showed that nano Fe₂O₃ improved the corrosion resistance of the coated rebar. The incorporation of a small amount of nano Fe₂O₃ (1% by total weight of resin and hardener) into the epoxy coating reduced the corrosion current of the epoxy-coated steel in chloride-contaminated mortar (0.3% chloride by weight of cement). After 100 days of immersion, the nanoparticles reduced the corrosion current of epoxy-coated steel by a factor of 6. The FESEM test revealed that admixing of nano-materials not only led to denser cement mortar but also changed the morphology of cement hydration products. The test results of compressive strength showed that nanoparticles increased the strength of cement mortar. The electromigration test showed that the incorporation of nanoparticles improved the chloride penetration resistance of the mortar, as indicated by the reduced apparent diffusion coefficients of the chloride anion. When nano-SiO₂ and nano-Fe₂O₃ were admixed into fresh cement mortar at 1% by weight of cement, the value of D(Cl−) was decreased by 83%, from 7.35×10(−11) m²/s (control specimen) to 1.21×10(−11) m²/s and 1.36×10(−11) m²/s, respectively.

  5. Petrography of Mayan mortar, Isla Mujeres, Quintana Roo, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bain, R.J.

    1985-01-01

    Along coastal regions of the Yucatan Peninsula Mayan builders used a mixture of beach sand, shell fragments, and clasts of rock as mortar for construction. With exposure to subaerial conditions, the aragonitic sand was converted into a semi-lithified mortar. Petrographic analysis of mortar samples collected from Mayan ruins on the south end of Isla Mujeres indicates that the mortar is cemented by blocky, meniscus style, low Mg calcite. In addition to the cement, low Mg calcite also occurs as blocky equant crystals either replacing grains or filling grain-moldic porosity. X-ray analysis of both modern beach sand and mortar shows themore » sand is composed of aragonite and high Mg calcite but lacks low Mg calcite. Mortar, on the other hand, consists of low Mg calcite, high Mg calcite, and aragonite however aragonite is much less abundant than in the sand. Aragonitic ooids, pellets and bioclasts of beach sand used in mortar were dissolved producing moldic porosity. At the same time, CaCO/sub 3/ derived from this process was precipitated as low Mg calcite which formed meniscus cement and filled moldic porosity within the walls of Mayan structures producing a remarkably hard mortar.« less

  6. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    PubMed

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  7. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar

    PubMed Central

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-01

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798

  8. Copolyimide Surface Modifying Agents for Particle Adhesion Mitigation

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Connell, John W.

    2011-01-01

    Marine biofouling, insect adhesion on aircraft surfaces, microbial contamination of sterile environments, and particle contamination all present unique challenges for which researchers have adopted an array of mitigation strategies. Particulate contamination is of interest to NASA regarding exploration of the Moon, Mars, asteroids, etc.1 Lunar dust compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern during the Apollo missions.2 Consequently, NASA has instituted a multi-faceted approach to address dust including use of sacrificial surfaces, active mitigation requiring the use of an external energy source, and passive mitigation utilizing materials with an intrinsic resistance to surface contamination. One passive mitigation strategy is modification of a material s surface energy either chemically or topographically. The focus of this paper is the synthesis and evaluation of novel copolyimide materials with surface modifying agents (SMA, oxetanes) enabling controlled variation of surface chemical composition.

  9. Simple Analysis of Historical Lime Mortars

    ERIC Educational Resources Information Center

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  10. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  11. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

    PubMed Central

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-01-01

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration. PMID:25257880

  12. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies.

    PubMed

    Daood, Umer; Swee Heng, Chan; Neo Chiew Lian, Jennifer; Fawzy, Amr S

    2015-06-26

    To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite-resin, and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.

  13. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.

    PubMed

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-30

    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  14. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    PubMed Central

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950

  15. Application of antifungal CFB to increase the durability of cement mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-07-01

    Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

  16. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    NASA Astrophysics Data System (ADS)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  17. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  18. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  19. Reuse of ground waste glass as aggregate for mortars.

    PubMed

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  20. Antimicrobial mortar surfaces for the improvement of hygienic conditions.

    PubMed

    De Muynck, W; De Belie, N; Verstraete, W

    2010-01-01

    To evaluate the effectiveness of various antimicrobial mortar formulations in inhibiting the growth of a selection of pathogens of environmental and hygienic concern. Mortar prisms containing triclosan-incorporated fibres or different concentrations of silver copper zeolites were incubated with Escherichia coli, Listeria monocytogenes, Salmonella enterica or Staphylococcus aureus at 4 or 20 degrees C for 24 h. From plate counting, a substantial bactericidal effect (>4 log units) could only be observed for the mortar specimens containing more than 3% zeolites on cement weight base, the effect being more pronounced at 20 degrees C compared to 4 degrees C. No inhibitory effect could be observed for mortar specimens containing antimicrobial fibres. Adenosinetriphosphate (ATP) measurements allowed for a rapid indication of the occurrence of antimicrobial activity. In order to obtain a bactericidal effect on mortar surfaces, concentrations of silver copper zeolites of more then 3% are required. To our knowledge, this is the first study in which the effectiveness of various antimicrobial mortar mixtures towards the inhibition of pathogens has been evaluated in a quantitative way. Antimicrobial concrete mixtures can be used for the improvement of the hygienic conditions in a variety of environments.

  1. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    NASA Astrophysics Data System (ADS)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  2. Effect of Graphene Oxide on Mechanical Properties of Recycled Mortar

    NASA Astrophysics Data System (ADS)

    Fang, Changle; Long, Wujian; Wei, Jingjie; Xiao, Bingxu; Yan, Chen

    2017-12-01

    The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the mechanical properties of recycled mortar. It is showed that the recycled mortar with GO has a better mechanical properties than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration product.

  3. 46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. DETAIL VIEW OF THE MORTAR BOXES, STAMP BATTERIES AND AMALGAMATION TABLES. NOTE FULTON IRON WORKS, SAM FRANCISCO 1908 STAMPED INTO THE MORTAR BOX. ALSO NOTE THE DIES RESTING ON THE OUTSIDE OF THE MORTAR BOX BY THE SECOND STAMP BATTERY FROM THE CAMERA POSITION. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  4. An Investigation of the Oxide Adhesion and Growth Characteristics on Platinum Modified Aluminide Coatings.

    DTIC Science & Technology

    1986-09-01

    OfI STANDARITD N0 A S In 0 Lfl NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS 49 o AN INVESTIGATION OF THE OXIDE ADHESION AND GROWTH...CHARACTERISTICS ON PLATINUM MODIFIED ALUMIINIDE COATINGS by Margaret Shannon Farrell September 1986 Thesis Advisor: P. H. Boone Approved for public release...COVERED 14 DATE OF REPORT (Year, Month. Day) 15 PAGE COLNT Mlaster’s Thesis FROM TO__ 1986 September 61 𔄀 5i-PALEV ENTARY NOTATION - COSATI CODES 18

  5. Examination of adhesive penetration in modified wood using fluorescence microscopy

    Treesearch

    Jermal G. Chandler; Rishawn L. Brandon; Charles R. Frihart

    2005-01-01

    Adhesive bonding takes place when an adhesive undergoes the conversion from liquid to solid. The liquid properties are needed for the adhesive to fully wet the bonding substance, and the solid properties are needed for the strength required for the union of the final product. The mobility of an adhesive depends heavily on its own physical and chemical properties and...

  6. Use of rubble from building demolition in mortars.

    PubMed

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  7. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  8. A Study of Array Direction HDPE Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  9. New System of Shrinkage Measurement through Cement Mortars Drying

    PubMed Central

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  10. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction.

    PubMed

    Yang, Fuwei; Zhang, Bingjian; Ma, Qinglin

    2010-06-15

    Replacing or repairing masonry mortar is usually necessary in the restoration of historical constructions, but the selection of a proper mortar is often problematic. An inappropriate choice can lead to failure of the restoration work, and perhaps even further damage. Thus, a thorough understanding of the original mortar technology and the fabrication of appropriate replacement materials are important research goals. Many kinds of materials have been used over the years in masonry mortars, and the technology has gradually evolved from the single-component mortar of ancient times to hybrid versions containing several ingredients. Beginning in 2450 BCE, lime was used as masonry mortar in Europe. In the Roman era, ground volcanic ash, brick powder, and ceramic chip were added to lime mortar, greatly improving performance. Because of its superior properties, the use of this hydraulic (that is, capable of setting underwater) mortar spread, and it was adopted throughout Europe and western Asia. Perhaps because of the absence of natural materials such as volcanic ash, hydraulic mortar technology was not developed in ancient China. However, a special inorganic-organic composite building material, sticky rice-lime mortar, was developed. This technology was extensively used in important buildings, such as tombs, in urban constructions, and even in water conservancy facilities. It may be the first widespread inorganic-organic composite mortar technology in China, or even in the world. In this Account, we discuss the origins, analysis, performance, and utility in historic preservation of sticky rice-lime mortar. Mortar samples from ancient constructions were analyzed by both chemical methods (including the iodine starch test and the acid attack experiment) and instrumental methods (including thermogravimetric differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, and scanning electron microscopy). These analytical results show that the ancient masonry

  11. Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction

    NASA Astrophysics Data System (ADS)

    Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang

    2018-03-01

    In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.

  12. Luminescence quartz dating of lime mortars. A first research approach.

    PubMed

    Zacharias, N; Mauz, B; Michael, C T

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.

  13. Effect of nylon fiber on mechanical properties of cement based mortar

    NASA Astrophysics Data System (ADS)

    Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.

    2017-11-01

    An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.

  14. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    PubMed Central

    Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin

    2018-01-01

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER. PMID:29621188

  15. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar.

    PubMed

    Lee, Yunsu; Lee, Hanseung; Jung, Dohyun; Chen, Zhengxin; Lim, Seungmin

    2018-04-05

    This paper presents the effect of anion exchange resin (AER) on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH)₂ saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  16. Effect of Graphene Oxide on the Damping Capability of Recycled Mortar

    NASA Astrophysics Data System (ADS)

    Wei, Jing-Jie; Long, Wu-Jian; Fang, Chang-Le; Li, Hao-Dao; Guo, Yue-Gui

    2018-03-01

    The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the damping capability of recycled mortar. The effect of GO on damping capability was examined by using dynamic mechanical analyzer (DMA), It is showed that the recycled mortar with GO has a better damping capability than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration products.

  17. Improvements of nano-SiO2 on sludge/fly ash mortar.

    PubMed

    Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q

    2008-01-01

    Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.

  18. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology.

    PubMed

    Marzaioli, Fabio; Lubritto, Carmine; Nonni, Sara; Passariello, Isabella; Capano, Manuela; Terrasi, Filippo

    2011-03-15

    Mortars represent a class of building and art materials that are widespread at archeological sites from the Neolithic period on. After about 50 years of experimentation, the possibility to evaluate their absolute chronology by means of radiocarbon ((14)C) remains still uncertain. With the use of a simplified mortar production process in the laboratory environment, this study shows the overall feasibility of a novel physical pretreatment for the isolation of the atmospheric (14)CO(2) (i.e., binder) signal absorbed by the mortars during their setting. This methodology is based on the assumption that an ultrasonic attack in liquid phase isolates a suspension of binder carbonates from bulk mortars. Isotopic ((13)C and (14)C), % C, X-ray diffractometry (XRD), and scanning electron microscopy (SEM) analyses were performed to characterize the proposed methodology. The applied protocol allows suppression of the fossil carbon (C) contamination originating from the incomplete burning of the limestone during the quick lime production, providing unbiased dating for "laboratory" mortars produced operating at historically adopted burning temperatures.

  19. Influence of aggregate type and chemical admixtures on frost resistance of lightweight mortars

    NASA Astrophysics Data System (ADS)

    Klimek, Beata; Widomski, Marcin K.; Barnat-Hunek, Danuta

    2017-07-01

    The aim of studies presented in this paper covered analyses of type of lightweight aggregate as well as aeration and hydrophobic admixtures influence on absorbability and frost resistance of heat-insulating mortars applied in the energy-efficient construction. In the presented research, expanded perlite (EP) and expanded clay aggregate (ceramsite) were used as lightweight aggregates. The measurements of the basic mechanical and physical characteristics of tested mortars were performed, including, inter alia, compressive and flexural tensile strength, density, effective (open) and total porosity, absorbability, thermal conductivity as well as frost resistance after 25 cycles of freezing and thawing. Substitution of some part of sand fraction by the lightweight aggregates, expanded clay aggregate or perlite, resulted in changes in physical properties of the tested mortars. The observed decrease in density (specific weight), coefficient of heat transport and strength parameters were simultaneously accompanied by the increase in absorbability. Researches concerning frost resistance of mortars containing ceramsite and perlite showed the improved frost resistance of mortar utilizing perlite. Most of the tested mortars shoved satisfactory frost resistance, only samples of mortar containing ceramsite and aeration admixture were destroyed. The significant influence of aerating admixture on frost resistance of mortars was determined. Hydrophobic siloxanes addition failed to adequately protect the mortars against frost erosion, regardless the type of applied aggregate.

  20. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    PubMed

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  2. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    PubMed

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  3. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    PubMed Central

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  4. Continuous monitoring of setting and hardening of mortar using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lima, H.; Ribeiro, R.; Nogueira, R.; Silva, L.; Abe, I.; Pinto, J. L.

    2007-05-01

    The use of fibre Bragg grating sensors to study mortars' dimensional variations during the setting process is reported. When determining a mortar's potential to fissure, it's important to know its total retraction. This means it is necessary to know not only the mortar's retraction after hardened, but also to know how much it retracts during the plastic phase. This work presents a technique which allows to measure dimensional variations, either expansion or retraction, during the whole setting process. Temperature and strain evolution during both plastic and hardened phase of the mortar were obtained, allowing the determination of dimensional variations and setting times. Due to its high-speed, ease of implementation and low operation costs, this technique will allow to get a deeper knowledge of the effects of several additives on the mortar's behaviour, allowing to improve its mechanical properties through the determination of the proper chemical composition.

  5. A chemometric approach to the characterisation of historical mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampazzi, L.; Pozzi, A.; Sansonetti, A.

    2006-06-15

    The compositional knowledge of historical mortars is of great concern in case of provenance and dating investigations and of conservation works since the nature of the raw materials suggests the most compatible conservation products. The classic characterisation usually goes through various analytical determinations, while conservation laboratories call for simple and quick analyses able to enlighten the nature of mortars, usually in terms of the binder fraction. A chemometric approach to the matter is here undertaken. Specimens of mortars were prepared with calcitic and dolomitic binders and analysed by Atomic Spectroscopy. Principal Components Analysis (PCA) was used to investigate the featuresmore » of specimens and samples. A Partial Least Square (PLS1) regression was done in order to predict the binder/aggregate ratio. The model was applied to historical mortars from the churches of St. Lorenzo (Milan) and St. Abbondio (Como). The accordance between the predictive model and the real samples is discussed.« less

  6. Low Carbon Footprint mortar from Pozzolanic Waste Material

    NASA Astrophysics Data System (ADS)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  7. Ancient mortars from Cape Verde: mineralogical and physical characterization

    NASA Astrophysics Data System (ADS)

    Rocha, Fernando; Costa, Cristiana; Velosa, Ana; Quintela, Ana; Terroso, Denise; Marques, Vera

    2014-05-01

    Times and locations of different building constructions means different knowledge, habits, different construction methods and materials. The study and safeguarding of the architectural heritage takes nowadays a progressive importance as a vehicle for transmission of cultures and history of nations. The coatings are of great importance in the durability of a building due to the protective role of the masonry. The compatibility between the materials with which they are executed (masonry, mortar and grout settlement) promotes the proper functioning of the wall and a consequent increase in durability. Therefore, it becomes important to study and characterize the mortar coating of buildings to know its characteristics and to use compatible materials in the rehabilitation and maintenance of buildings. This study aims to characterize the chemical, physical, mechanical and mineralogical mortar samples collected in buildings in three islands of Cape Verde, for the conservation, rehabilitation and preservation of them. The collected samples belong to buildings constructed in the end of XIX century and in the beginning of XX century. In order to characterize the mortar samples some tests was made, such as X-Ray Diffraction, X- Ray Fluorescence, acid attack and mechanical strength. The samples were divided into three groups depending on origin; so we have a first group collected on the island of Santiago, the second on the island of Saint Vincent and the third on the island of Santo Antao. The samples are all carbonated, but Santiago samples have a lower carbonates content. In terms of insoluble residue (from the acid attack) it was concluded that the samples have similar value ranging from 9 to 26%. The compressive strength of the mortars have a range between 1.36 and 4.55 MPa, which is related to the presence of more binder in samples with higher resistance. The chemical and mineralogical analyzes showed that these consist of lime mortars (binder), natural pozzolan and

  8. Flight qualification of mortar-actuated parachute deployment systems

    NASA Technical Reports Server (NTRS)

    Pleasants, J. E.

    1975-01-01

    A brief discussion outlines background of mortar use in parachute deployment systems. A description of the system operation is presented. Effects of the environment on performance are discussed as well as the instrumentation needed to assess this performance. Power unit qualification and lot qualification for shear pins and cartridges is delineated. Functional mortar system tests are described. Finally, bridle deployment and parachute deployment are discussed.

  9. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  10. Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.

    PubMed

    Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young

    2018-09-01

    Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.

  11. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  12. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    PubMed

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Adhesive interactions with wood

    Treesearch

    Charles R. Frihart

    2004-01-01

    While the chemistry for the polymerization of wood adhesives has been studied systematically and extensively, the critical aspects of the interaction of adhesives with wood are less clearly understood. General theories of bond formation need to be modified to take into account the porosity of wood and the ability of chemicals to be absorbed into the cell wall....

  14. Reuse of de-inking sludge from wastepaper recycling in cement mortar products.

    PubMed

    Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta

    2011-08-01

    This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.

    PubMed

    Al-Salloum, Yousef; Abbas, H; Sheikh, Q I; Hadi, S; Alsayed, Saleh; Almusallam, Tarek

    2017-02-01

    Sporosarcina pasteurii , a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.

  16. Surface characterization and adhesion of oxygen plasma-modified LARC-TPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, J.W.; Wightman, J.P.

    1992-01-01

    LARC-TPI, an aromatic thermoplastic polyimide, was exposed to an oxygen plasma as a surface pretreatment of adhesive bonding. Chemical and physical changes which occurred in the polyimide surface as a result of the plasma treatment were investigated using X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IR-RAS), contact angle analysis, ellipsometry and high resolution scanning electron microscopy (HR-SEM). A 180{degree} peel test with an acrylate-based pressure sensitive adhesive as a flexible adherend was utilized to study the interactions of the plasma-treated polyimide surface with other polymeric materials. The surface characterization and adhesion testing results showed that the oxygen plasma treatment, whilemore » creating a more hydrophilic, polar surface, also caused chain scission resulting in the formation of a weak boundary layer which inhibited adhesion.« less

  17. The dynamic behavior of mortar under impact-loading

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  18. Concretes and mortars with waste paper industry: Biomass ash and dregs.

    PubMed

    Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel

    2016-10-01

    This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Comparison of analytical tools appropriate for identification of proteinaceous additives in historical mortars.

    PubMed

    Krizova, Iva; Schultz, Julia; Nemec, Ivan; Cabala, Radomir; Hynek, Radovan; Kuckova, Stepanka

    2018-01-01

    Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.

  20. Bulk & Interfacial Contributions to the Adhesion of Acrylic Emulsion-Based Pressure Sensitive Adhesives

    NASA Astrophysics Data System (ADS)

    Wang, Qifeng

    The performance of pressure sensitive adhesives (PSAs) depends strongly on the viscoelastic properties of the adhesive material itself and the surface that it is placed into contact with. In this work we use a multiple- oscillatory test with microindentation apparatus that is able to quantify the mechanical response of adhesive materials in the linear regime, and also in the highly strained regime where the adhesive layer has cavitated to form mechanically isolated brils. The experiments involved the use of hemispherical indenters made of glass or polyethylene, brought into contact with a thin adhesive layer and then retracted, with comprehensive displacement history. A set of model acrylic emulsion-based PSAs were used in the experiments which show a suprising degree of elastic character at high strain. The experiment result suggest that an adhesive failure criterion based on the stored elastic energy is appropriate for these systems. The primary effect of the substrate is to modify the maximum strain where adhesive detachment from the indenter occurs.

  1. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂ - in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  2. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  3. Modifying Of Particle Boards From Rice Husk and Pinus Merkusii Sawdust And Using Soybean Waste Waters Based Adhesive.

    NASA Astrophysics Data System (ADS)

    Raya, Indah; Ramdani, Nurfika; Karim, Abd.; Muin, Musrizal

    2018-03-01

    Research of modifying particle board has been prepared by mixing of pinus merkusii sawdust and rice husk, where used of adhesive base on Boiled Soybean Water (BSW) has been done. The research utilize the rise husk and sawdust pines mixed, and used of a renewable and environmental adhesive to replace the toxic and carcinogenic one. The testing of adhesive included are; colour, pH, solid contain, gelatination time, density and viscosity. Result showed yellowish colour, 10 of pH, 44.70 % of solid contained, 56.29 minutes of gelatination time, and 1.1656 g/cm3 and 182.4387 cP of viscocity respectively. While the particle boards testing include are density, moisture, immersion, thickness, Modulus of Rapture (MOR) and Modulus of Elasticity (MOE). The particle board best ratio it was 1:4 (Rice husk: pinus merkusii sawdust). Result of each parameter are, 0.7735 g/cm3 of density, 5.79 % of moisture, however the immersion for 2 hours is 26.90 % and immersion for 24 hours is 39.77 %, 101.1592 kg/cm2 of MOR and 18,248.3063 kg/cm2of MOE. The summary, the adhesive based on SNI 06-4567-1998 and the particle board based on SNI 03-2105-1996

  4. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    PubMed

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterial on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells].

    PubMed

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin

    2014-10-01

    In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P < 0.05). The ALP staining and ALP activity of MC3T3-E1 cells in Group A were significantly higher than those in Group B and Group C (P < 0.05). The sintered bone modified with surface mineralization/P24 composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.

  6. Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar

    PubMed Central

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures. PMID:22319347

  7. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    PubMed

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  8. Recycling red mud from the production of aluminium as a red cement-based mortar.

    PubMed

    Yang, Xiaojie; Zhao, Jianfeng; Li, Haoxin; Zhao, Piqi; Chen, Qin

    2017-05-01

    Current management for red mud is insufficient and a new method is needed. A series of experiments have been carried out to develop a new approach for effective management of red mud. Mortars without or with 3%, 6% and 9% red mud were prepared and their fresh and hardened properties were measured to access the possibility of recycling the red mud in the production of red cement-based mortar. The mechanisms corresponding to their mechanical performance variations were explored by X-ray powder diffraction and scanning electron microscopy. The results show that the fresh mortars with red mud present an increase of viscosity as compared with the control. However, little difference is found when the content of red mud is altered. It also can be seen that red mud increases flow time and reduces the slump flow of the mortar. Meanwhile, it is found that mortar with red mud is provided with higher air content. Red mud is eligible to adjust the decorative mortar colour. Compressive strength of mortar is improved when less than 6% red mud is added. However, overall it has a slightly negative effect on tensile bond strength. It decreases the Ca(OH) 2 content and densifies the microstructure of hardened paste. The heavy metal concentrations in leachates of mortars with red mud are much lower than the values required in the standard, and it will not do harm to people's health and the environment. These results are important to recycle and effectively manage red mud via the production of red cement-based mortar.

  9. Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos

    Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO{sub 2} content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO{sub 2} concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thickermore » beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.« less

  10. Artillery/mortar round type classification to increase system situational awareness

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  11. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  12. Durability of waste glass flax fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less

  13. Use of waste brick as a partial replacement of cement in mortar.

    PubMed

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  14. Amination of black liquor and the application in the ready-mixed wet mortar.

    PubMed

    Zheng, Dafeng; Zheng, Tao; Chen, Ran; Li, Xiaokang; Qiu, Xueqing

    2018-01-01

    In order to extend the application of black liquor (BL), amino group was introduced in lignin through Mannich reaction. The structure of the aminated black liquor (ABL) was characterized with FT-IR, elemental analysis, the zeta potential and the inherent viscosity. The foam generated by ABL was more stable, for the surface tension was lower. The results of the mortar test indicated that the water-retention rate of the fresh mortar incorporated with 0.3 wt% ABL was 89.1%; the consistency loss was about 39.7% after 4 h. When the dosage was less than 0.3 wt%, ABL could increase the bond strength of the hardened mortars. The results showed that ABL could be used as an effective ready-mixed wet mortar admixture. This study not only provided a new method to develop new mortar admixture, but also alleviated the pollution of BL.

  15. Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung-Tae

    2009-08-15

    The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled finemore » aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.« less

  16. Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties

    PubMed Central

    Torres-Gómez, Ana Isabel; Ledesma, Enrique F.; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge

    2016-01-01

    This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources’ consumption and to increase the recycling rate of Nc-FA and FRMA. PMID:28773849

  17. Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties.

    PubMed

    Torres-Gómez, Ana Isabel; Ledesma, Enrique F; Otero, Rocio; Fernández, José Maria; Jiménez, José Ramón; de Brito, Jorge

    2016-08-25

    This work evaluates the effects of using non-conforming fly ash (Nc-FA) generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA) and recycled sand from masonry waste (FRMA). The incorporation of powdered recycled masonry filler (R-MF) is also tested as an alternative to siliceous filler (Si-F). Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources' consumption and to increase the recycling rate of Nc-FA and FRMA.

  18. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review

    NASA Astrophysics Data System (ADS)

    Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G.

    2018-04-01

    The invention of environmentally friendly, high performance, and green material such as biopolymers marked an emerging trend for sustainable construction over the past decades. Biopolymer comprises of natural monomers and synthesized by plants or other organisms. The sustainable, biodegradable, and renewable biopolymers were used in concrete mixes to improve their physical and mechanical properties and durability. The aim of this paper is to provide a brief an overview of the impact of biopolymer addition into concrete and mortar mixes. Many studies on the influence of biopolymer on the properties of concrete and mortar by adding biopolymers at a certain proportion (usually less than one wt.%) to the concrete or mortar mixes, and the heavy metal leaching, rheological, and mechanical properties of the mixes were conducted. Biopolymers included in this review are chitosan (CH), xanthan gum (XG), guar gum (GG), lignosulphonate (LS), and cellulose ethers (CE). Data from previous studies showed that the addition of certain types of biopolymer into concrete and mortar mixes improve workability, water retention, and compressive strength by up to 30 percent. Chitosan strengthens heavy metal encapsulation in the mortar and neutralizes the negative impact of heavy metal on the mortar properties and environment. To sum up, the use of biopolymers improve physical properties and leaching characteristics of mortar and concrete.

  19. Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.

  20. Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer

    PubMed Central

    Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426

  1. Tracing formation and durability of calcite in a Punic-Roman cistern mortar (Pantelleria Island, Italy).

    PubMed

    Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht

    2016-01-01

    Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the

  2. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Shiyun, E-mail: tjzhongshiyun@163.com; Ni Kun; Li Jinmei

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratiomore » (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is

  3. Analysis of main parameters affecting substrate/mortar contact area through tridimensional laser scanner.

    PubMed

    Stolz, Carina M; Masuero, Angela B

    2015-10-01

    This study assesses the influence of the granulometric composition of sand, application energy and the superficial tension of substrates on the contact area of rendering mortars. Three substrates with distinct wetting behaviors were selected and mortars were prepared with different sand compositions. Characterization tests were performed on fresh and hardened mortars, as well as the rheological characterization. Mortars were applied to substrates with two different energies. The interfacial area was then digitized with 3D scanner. Results show that variables are all of influence on the interfacial contact in the development area. Furthermore, 3D laser scanning proved to be a good method to contact area measurement. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  5. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  6. Immobilization in cement mortar of chromium removed from water using titania nanoparticles.

    PubMed

    Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad

    2016-05-01

    Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.

    PubMed

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-02-28

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.

  8. Use of waste brick as a partial replacement of cement in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-15

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by themore » X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.« less

  9. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler

    PubMed Central

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-01-01

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603

  10. A mortar formulation including viscoelastic layers for vibration analysis

    NASA Astrophysics Data System (ADS)

    Paolini, Alexander; Kollmannsberger, Stefan; Rank, Ernst; Horger, Thomas; Wohlmuth, Barbara

    2018-05-01

    In order to reduce the transfer of sound and vibrations in structures such as timber buildings, thin elastomer layers can be embedded between their components. The influence of these elastomers on the response of the structures in the low frequency range can be determined accurately by using conforming hexahedral finite elements. Three-dimensional mesh generation, however, is yet a non-trivial task and mesh refinements which may be necessary at the junctions can cause a high computational effort. One remedy is to mesh the components independently from each other and to couple them using the mortar method. Further, the hexahedral mesh for the thin elastomer layer itself can be avoided by integrating its elastic behavior into the mortar formulation. The present paper extends this mortar formulation to take damping into account such that frequency response analyses can be performed more accurately. Finally, the proposed method is verified by numerical examples.

  11. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less

  12. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less

  13. The potential use of silica sand as nanomaterials for mortar

    NASA Astrophysics Data System (ADS)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  14. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  15. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control

    PubMed Central

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M.; Modolo, Luca; Leonelli, Cristina

    2016-01-01

    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity. PMID:28773529

  16. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control.

    PubMed

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M; Modolo, Luca; Leonelli, Cristina

    2016-05-24

    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity.

  17. Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mosnje (Slovenia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, Sabina, E-mail: sabina.kramar@rescen.si; Zalar, Vesna; Urosevic, Maja

    This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES.more » Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: {yields} Mineral and microstructural characterizations of brick-lime mortars. {yields} Hydraulic character of mortars in Roman baths complex. {yields} Reaction rims were observed around brick fragments and dolomitic grains. {yields} Higher content of brick particles yielded a higher BET surface area. {yields} Addition of brick particles increased porosity and diminished pore size diameter.« less

  18. Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar.

    PubMed

    Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu

    2013-04-09

    This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145-173 mm for pastes and 131-136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength.

  19. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA)

    PubMed Central

    Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára

    2016-01-01

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851

  20. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    PubMed

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  1. Sirolimus-coated, poly(L-lactic acid)-modified polypropylene mesh with minimal intra-peritoneal adhesion formation in a rat model.

    PubMed

    Lu, S; Hu, W; Zhang, Z; Ji, Z; Zhang, T

    2018-05-18

    This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(L-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh. PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH 2 Cl 2 solvent. Sprague-Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically. Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm -1 ), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation. The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.

  2. Calcite-forming bacteria for compressive strength improvement in mortar.

    PubMed

    Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2010-04-01

    Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

  3. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  4. Comparing the use of sewage sludge ash and glass powder in cement mortars.

    PubMed

    Chen, Zhen; Poon, Chi Sun

    2017-06-01

    This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.

  5. Compressive and bonding strength of fly ash based geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Zailani, Warid Wazien Ahmad; Abdullah, Mohd Mustafa Al Bakri; Zainol, Mohd Remy Rozainy Mohd Arif; Razak, Rafiza Abd.; Tahir, Muhammad Faheem Mohd

    2017-09-01

    Geopolymer which is produced by synthesizing aluminosilicate source materials with an alkaline activator solution promotes sustainable and excellent properties of binder. The purpose of this paper is to determine the optimum binder to sand ratio of geopolymer mortars based on mechanical properties. In order to optimize the formulation of geopolymer mortar, various binder to sand ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, and 4.0) are prepared. The investigation on the effect of sand inclusion to the compressive and bonding strength of geopolymer mortar is approached. The experimental results show that the bonding strength performance of geopolymer is also depends on the various binder to sand ratio, where the optimum ratio 0.5 gives a highest strength of 12.73 MPa followed by 12.35 MPa, which corresponds the ratio 1.0 for geopolymer, while the compared value of OPC bonding strength is given by 9.3 MPa. The morphological structure at the interface zone is determined by Scanning Electron Microscope (SEM) and the homogenous bonding between geopolymer and substrate can be observed. Fly ash based geopolymers reveal a new category of mortar which has high potential to be used in the field of concrete repair and rehabilitation.

  6. Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar

    PubMed Central

    Li, Xueying; Ma, Xinwei; Zhang, Shoujie; Zheng, Enzu

    2013-01-01

    This paper presents workability, compressive strength and microstructure for geopolymer pastes and mortars made of class C fly ash at mass ratios of water-to-fly ash from 0.30 to 0.35. Fluidity was in the range of 145–173 mm for pastes and 131–136 mm for mortars. The highest strengths of paste and mortar were 58 MPa and 85 MPa when they were cured at 70 °C for 24 h. In XRD patterns, unreacted quartz and some reacted product were observed. SEM examination indicated that reacted product has formed and covered the unreacted particles in the paste and mortar that were consistent with their high strength. PMID:28809222

  7. Application of micromechanics to the characterization of mortar by ultrasound.

    PubMed

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  8. Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate.

    PubMed

    Snoeck, D; Wang, J; Bentz, D P; De Belie, N

    2018-02-01

    One of the major concerns in infrastructure repair is a sufficient bond between the substrate and the repair material, especially for the long-term performance and durability of the repaired structure. In this study, the bond of the repair material on the mortar substrate is promoted via the biodeposition of a calcium carbonate layer by a ureolytic bacterium. X-ray diffraction and scanning electron microscopy were used to examine the interfaces between the repair material and the substrate, as well as the polymorph of the deposited calcium carbonate. The approximately 50 μm thick biodeposition film on the mortar surface mostly consisted of calcite and vaterite. Both the repair material and the substrate tended to show a good adherence to that layer. The bond, as assessed by slant shear specimen testing, was improved by the presence of the biodeposition layer. A further increase was found when engineering the substrate surface using a structured pattern layer of biodeposition.

  9. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  10. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    PubMed Central

    Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256

  11. [Study on the traditional lime mortar from the memorial archway in the southern Anhui province].

    PubMed

    Wei, Guo-Feng; Sun, Sheng; Wang, Cheng-Xing; Zhang, Bing-Jian; Chen, Xi-Min

    2013-07-01

    The traditional lime mortar was investigated by means of scanning electron microscope (SEM), X-ray diffractometry and Fourier transform infrared spectrometry (FTIR). The results show that the mortar from the memorial archway in the southern Anhui province was the organic-inorganic composite materials composed of lime with tung oil or sticky rice. It was found that the excellent performance of the tung oil-lime mortar can be explained by the compact lamellar organic-inorganic composite structure that was produced by carbonization reaction of lime, cross-linking reactions of tung oil and oxygen and complexing reaction of Ca2+ and -COO-. The compact micro-structure of sticky rice-lime mortar, which was produced due to carbonation process of lime controlled by amylopectin, should be the cause of the good performance of this kind of organic-inorganic mortar.

  12. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  13. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    NASA Astrophysics Data System (ADS)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  14. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  15. Study on basalt fiber parameters affecting fiber-reinforced mortar

    NASA Astrophysics Data System (ADS)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  16. Metal-Filled Adhesives Amenable To X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer

    1994-01-01

    Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.

  17. Anti-adhesive characteristics of CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} plasma-modified silicon molds for nanoimprint lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaemin; Lee, Junmyung; Lee, Hyun Woo

    The anti-adhesive characteristics of a plasma-modified silicon mold surface for nanoimprint lithography are presented. Both CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} plasma were used to form an anti-adhesive layer on silicon mold surfaces. The gas mixing ratios of CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} were experimentally changed between 0% and 80% to optimize the plasma conditions to obtain a low surface energy of the silicon mold. The plasma characteristics were examined by optical emission spectroscopy (OES). In order to investigate the changes in surface energy and surface chemistry of the anti-adhesive layer during repeated demolding cycles,more » contact angle measurements and X-ray photoelectron spectroscopy (XPS) were performed on the plasma-modified silicon mold surface. Simultaneously, the surface morphology of the demolded resists was evaluated by field-emission scanning electron microscope (FE-SEM) in order to examine the effect of the anti-adhesive layers on the duplicated patterns of the resists. It was observed that the anti-adhesive layer formed by CHF{sub 3}/O{sub 2} plasma treatment was worn out more easily during repeated demolding cycles than the film formed by C{sub 4}F{sub 8}/O{sub 2} plasma treatment, because CHF{sub 3}/O{sub 2} gas plasma formed a thinner plasma-polymerized film over the same plasma treatment time.« less

  18. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    NASA Astrophysics Data System (ADS)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  19. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    PubMed

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  20. A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.

    PubMed

    Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young

    2015-11-01

    White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.

  1. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars

    PubMed Central

    Atta-ur-Rehman; Qudoos, Abdul; Kim, Hong Gi

    2018-01-01

    In this study, the effects of titanium dioxide (TiO2) nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC) and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50) were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Thermogravimetry Analysis (TGA) and Differential Scanning Calorimetry (DSC) tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack. PMID:29495616

  2. Microscopic characterisation of old mortars from the Santa Maria Church in Evora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adriano, P., E-mail: padriano@lnec.pt; Santos Silva, A., E-mail: ssilva@lnec.pt; Veiga, R., E-mail: rveiga@lnec.pt

    2009-07-15

    Evora Cathedral (one of the most emblematic monuments of Evora - Portugal) has suffered several conservation and restoration interventions through the ages, without, however, any type of previous knowledge about mortars and materials used. This work was carried out in order to identify the mortar's composition in different locations, which were attributed to different construction or conservation periods. The characterisation methodology involved a multidisciplinary set of chemical, physical, microstructural and mechanical techniques, and gave special attention to the use of microstructural characterisation techniques, particularly petrographical analysis and scanning electron microscopy for the identification of the mortar's constituents as well asmore » in the evaluation of the state of conservation. The test results showed that two types of aerial binders were used, dolomitic and calcitic limes, the former being predominant. The aggregates used have a siliceous nature and are similar in composition to the granodiorites of the region around Evora. The mortars differ in the aggregate contents and, in some cases, crushed bricks were used as an additive.« less

  3. Nonconforming mortar element methods: Application to spectral discretizations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Mavriplis, Cathy; Patera, Anthony

    1988-01-01

    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.

  4. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    PubMed Central

    Colangelo, Francesco; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Cioffi, Raffaele

    2013-01-01

    The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight) and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too. PMID:28811418

  5. Verification of chloride adsorption effect of mortar with salt adsorbent

    NASA Astrophysics Data System (ADS)

    Hoshina, T.; Nakajima, N.; Sudo, H.; Date, S.

    2017-11-01

    In order to investigate the chloride adsorption effect of mortar mixed with chloride adsorbent, electrophoresis test using mortar specimen and immersion dry repeated test were conducted to evaluate chloride adsorption effect. As a result, it was confirmed that soluble salt content that causes corrosion of rebar in the specimen was reduced by the chloride adsorbent and corrosion inhibiting effect of the rebar was also obtained. It was also confirmed that by increasing dosage of the chloride adsorbent, the chloride adsorbing effect becomes larger as well..

  6. Adhesion formation after previous caesarean section-a meta-analysis and systematic review.

    PubMed

    Shi, Z; Ma, L; Yang, Y; Wang, H; Schreiber, A; Li, X; Tai, S; Zhao, X; Teng, J; Zhang, L; Lu, W; An, Y; Alla, N R; Cui, T

    2011-03-01

    The optimal technique for performing caesarean section with respect to minimising postoperative adhesions has not been determined. To evaluate adhesion formation for three common caesarean section techniques in women undergoing repeat caesarean section surgeries. A database was constructed from Medline, EMBASE, Cochrane Library, National Science Digital Library, China Biological Medicine Database and through contact with experts in this field from January 1990 to May 2010. Studies were included if they examined adhesion formation in repeat caesarean sections as a primary objective, delineated a clear study design, specified an adhesion scoring system, and had sufficient patient exclusion criteria. We abstracted data regarding adhesion formation. The Mantel-Haenszel random-effects model was employed for all analyses using odds ratio or inverse variance, along with 95% CI. Thirty-three qualified studies including 4423 women were analysed. There were 406 adhesions among 571 women and 238 adhesions among 596 women in the Stark's caesarean section (also known as Misgav-Ladach method) group and modified Stark's caesarean section group, respectively, with pooled OR 4.69 (95% CI 3.32-6.62; P < 0.01, 12 studies); 1173 adhesions among 1555 women and 1179 adhesions among 1625 women in Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 1.28 (95% CI 0.97-1.68; P = 0.08, 21 studies); and 29 adhesions from 102 women and 115 adhesions from 193 women in modified Stark's caesarean section group and classic lower-segment caesarean section group, respectively, with pooled odds ratio 0.28 (95% CI 0.10-0.82; P = 0.02, two studies). Closure of the peritoneum in modified Stark's caesarean section resulted in less adhesion formation and should be recommended. © 2010 The Authors Journal compilation © RCOG 2010 BJOG An International Journal of Obstetrics and Gynaecology.

  7. Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.

    PubMed

    De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia

    2017-12-15

    The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Latex modified Portland cement overlays : an analysis of samples removed from a bridge deck.

    DOT National Transportation Integrated Search

    1975-01-01

    This report describes an evaluation of the latex modified mortar overlay the Route 85 (NBL) bridge over the Roanoke River. While the performance of the overlay has been generally satisfactory, corings and chloride analyses indicate the possibility of...

  9. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    PubMed

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  10. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution

    PubMed Central

    Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason

    2016-01-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830

  11. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    PubMed

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  12. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    NASA Astrophysics Data System (ADS)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  13. Strengthening and repair of RC beams with sugarcane bagasse fiber reinforced cement mortar

    NASA Astrophysics Data System (ADS)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Maarof, M. Z. Md; Syazani Leman, Alif; Zuki, S. S. Mohd; Azmi, M. A. Mohammad

    2017-11-01

    The use of a jacket made of fiber reinforced cement mortar with tensile hardening behaviour for strengthening RC beams was investigated in this study. A full-scale test was conducted on beams measuring 1000mm in length. A 25mm jacket was directly applied to the surface of the beams to test its ability to repair and strengthen the beams. The beams were initially damaged and eventually repaired. Three types of beams which included unrepaired beams, beams repaired with normal mortar jacket and beams repaired with 10% sugarcane bagasse fiber mortar jacket were studied. The jacket containing 10% of sugarcane bagasse fiber enhanced the flexural strength of the beams.

  14. Synthesis of dextrin-stabilized colloidal silver nanoparticles and their application as modifiers of cement mortar.

    PubMed

    Konował, Emilia; Sybis, Marta; Modrzejewska-Sikorska, Anna; Milczarek, Grzegorz

    2017-11-01

    Various commercial dextrins were used as reducing and stabilizing agents for a novel one-step synthesis of silver nanoparticles from ammonia complexes of silver ions. As a result, stable colloids of silver were formed during the reaction with the particle size being the function of the dextrin type. The obtained colloids were characterized by UV-vis spectrophotometry, size distribution (using Non-Invasive Backscatter optics) and transmission electron microscopy (TEM). The achieved results clearly indicate the possibility of low-cost production of large quantities of colloidal silver nanoparticles using materials derived from renewable sources. The resulting silver colloids can be used for different purposes, e.g. as bactericidal agents. Combination of the aforementioned properties of nanosilver particles with plasticizing properties of dextrin enables to obtain cement mortars with increased workability and enhanced compressive strength. Moreover, the obtained material is also characterized by increased immunity to adverse impact of microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars.

    PubMed

    Abdul-Majid, S; Othman, F

    1994-03-01

    Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.

  16. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    NASA Astrophysics Data System (ADS)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  17. Antibacterial activity of resin adhesives, glass ionomer and resin-modified glass ionomer cements and a compomer in contact with dentin caries samples.

    PubMed

    Herrera, M; Castillo, A; Bravo, M; Liébana, J; Carrión, P

    2000-01-01

    A total of 103 clinical samples of carious dentin were used to study the antibacterial action of different dental resin adhesive materials (Gluma 2000, Syntac, Prisma Universal Bond 3, Scotchbond Multi-Purpose and Prime&Bond 2.0) glass ionomer cements (Ketac-Cem, Ketac-Bond, Ketac-Silver, Ketac-Fil) resin-modified glass ionomer cements (Fuji II LC, Vitremer and Vitrebond) and a compomer (Dyract). The agar plate diffusion method was used for the microbial cultures and a chlorhexidine control. The growth of the caries-producing microorganisms was effectively inhibited by the Vitremer and Vitrebond cements, and to a lesser extent by the Scotchbond Multi-Purpose adhesive system. Overall, there were statistically significant differences in the antibacterial activity of the products tested.

  18. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  19. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    PubMed Central

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  20. The Effect of Mechanical Performance on PP Fiber to Polymer Mortar

    NASA Astrophysics Data System (ADS)

    Xie, Xinying; Kang, Xinnan; Jin, Yujie; Cai, Jingwei

    2018-03-01

    It introduces the purpose of of adding Polypropylene fiber. The paper The production process and test method of epoxy resin mortar with PP fiber are developed. The influence of PP fiber on mechanical properties of polymer mortar was studied in this paper, including the influence of PP fiber content on flexural strength, the ratio of flexural and compressive strength and so on. The experimental results are compared and analyzed. The reason is found, the conclusion of research is acquired.

  1. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  2. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  3. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  4. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  5. Assessment of adhesion formation to intra-abdominal polypropylene mesh and polytetrafluoroethylene mesh.

    PubMed

    Matthews, Brent D; Pratt, Broc L; Pollinger, Harrison S; Backus, Charles L; Kercher, Kent W; Sing, R F; Heniford, B Todd

    2003-10-01

    The development of intra-abdominal adhesions, bowel obstruction, and enterocutaneous fistulas are potentially severe complications related to the intraperitoneal placement of prosthetic biomaterials. The purpose of this study was to determine the natural history of adhesion formation to polypropylene mesh and two types of polytetrafluoroethylene (ePTFE) mesh when placed intraperitoneally in a rabbit model that simulates laparoscopic ventral hernia repair. Thirty New Zealand white rabbits were used for this study. A 10-cm midline incision was performed for intra-abdominal access and a 2 cm x 2 cm piece of mesh (n = 60) was sewn to an intact peritoneum on each side of the midline. Two types of ePTFE mesh (Dual Mesh and modified Dual Mesh, W.L. Gore & Assoc., Flagstaff, AZ) and polypropylene mesh were compared. The rate of adhesion formation was evaluated by direct visualization using microlaparoscopy (2-mm endoscope/trocar) at 7 days, 3 weeks, 9 weeks, and 16 weeks after mesh implantation. Adhesions to the prosthetic mesh were scored for extent (%) using the Modified Diamond Scale (0 = 0%, 1 50%). At necropsy the mesh was excised en bloc with the anterior abdominal wall for histological evaluation of mesothelial layer growth. The mean adhesion score for the polypropylene mesh was significantly greater (P < 0.05) than Dual Mesh at 9 weeks and 16 weeks and modified Dual Mesh at 7 days, 9 weeks, and 16 weeks. Fifty-five percent (n = 11) of the polypropylene mesh had adhesions to small intestine or omentum at necropsy compared to 30% (n = 6) of the Dual Mesh and 20% (n = 4) of the modified Dual Mesh. There was a significantly greater percentage (P < 0.003) of ePTFE mesh mesothelialized at explant (modified Dual Mesh 44.2%; Dual Mesh 55.8%) compared to the polypropylene mesh (12.9%). Serial microlaparoscopic evaluation of intraperitoneally implanted polypropylene mesh and ePTFE mesh in a rabbit model revealed a progression of adhesions to

  6. Mineralogical characterization of rendering mortars from decorative details of a baroque building in Kozuchow (SW Poland)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.

    Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less

  7. [Study on the mechanism of liesegang pattern development during carbonating of traditional sticky rice-lime mortar].

    PubMed

    Wei, Guo-feng; Fang, Shi-qiang; Zhang, Bing-jian; Wang, Xiao-qi; Li, Zu-guang

    2012-08-01

    Liesegang patterns in traditional sticky rice-lime mortar undergoing carbonation were investigated by means of FTIR, XRD and SEM. Results indicate that well-developed Liesegang patterns only occur in the mortar prepared with aged lime and sticky rice. The smaller Ca(OH)2 particle size in aged lime and the control of the sticky rice for the crystallization of calcium carbonate lead to the small pores in this mortar. These small pores can make Ca2+ and CO3(2-) highly supersaturated, which explains the reason why Liesegang pattern developed in the sticky rice-aged lime mortar. The formed metastable aragonite proves that Liesegang pattern could be explained based on the post-nucleation theory.

  8. Formulation and characterization of date palm fibers mortar by addition of silica fume

    NASA Astrophysics Data System (ADS)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  9. Evaluation of adhesive penetration of wood fibre by nanoindentation and microscopy

    Treesearch

    Christopher G. Hunt; Joseph E. Jakes; Warren Grigsby

    2010-01-01

    Adhesives used in wood products sometimes infiltrate, or diffuse into the solid material of, wood cell walls, potentially modifying their properties. These changes in cell wall properties are likely to impact the performance of adhesive bonds. While adhesive infiltration has been observed by multiple methods, the effect on cell wall properties is not well understood....

  10. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  11. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar.

    PubMed

    Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong

    2009-04-01

    To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.

  12. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Protein Modifiers Generally Provide Limited Improvement in Wood Bond Strength of Soy Flour Adhesives

    Treesearch

    Charles R. Frihart; Linda Lorenz

    2013-01-01

    Soy flour adhesives using a polyamidoamine-epichlorohydrin (PAE) polymeric coreactant are used increasingly as wood adhesives for interior products. Although these adhesives give good performance, higher bond strength under wet conditions is desirable. Wet strength is important for accelerated tests involving the internal forces generated by the swelling of wood and...

  14. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  15. Self-leveling mortar as a possible cause of symptoms associated with "sick building syndrome".

    PubMed

    Lundholm, M; Lavrell, G; Mathiasson, L

    1990-01-01

    In newly constructed houses and buildings in which self-leveling mortar containing casein has been used, residents and office employees have noted a bad odor and have complained of headache, eye and throat irritation, and tiredness. These problems were suspected to result from the degradation products emitted from the mortar. Samples obtained from dry mortar powder and from mortar in buildings where casein was used and from control buildings were found to contain microorganisms (mean of 10(2) culture forming units/g). Environmental species were predominantly found, e.g., Bacillus, Clostridium, Micrococcus, and Propionibacterium. Fungi were found occasionally; no evidence of bacterial degradation was found. Headspace and gas chromatographic-mass spectrometric analysis of air from the newly constructed houses and from hydroxide-degraded casein revealed the presence of amines in the 0.003-0.013 ppm range and the presence of ammonia and sulfhydryl compounds, all of which in low concentrations can cause the symptoms observed. These substances, however, were not detected in control buildings.

  16. Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T

    2011-01-01

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less

  17. Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material

    NASA Astrophysics Data System (ADS)

    Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad

    2016-06-01

    Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.

  18. Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates)

    NASA Astrophysics Data System (ADS)

    Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui

    This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.

  19. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar

    NASA Astrophysics Data System (ADS)

    Grasing, David; Desai, Sachi; Morcos, Amir

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  1. Strength Performance of Blended Ash Based Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Zahib, Zaidahtulakmal M.; Kamaruddin, Kartini; Saman, Hamidah M.

    2018-03-01

    Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

  2. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  3. The Market Gate of Miletus: damages, material characteristics and the development of a compatible mortar for restoration

    NASA Astrophysics Data System (ADS)

    Siegesmund, Siegfried; Middendorf, Bernhard

    2008-12-01

    The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3-4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.

  4. Scaling of strength and ductility in bioinspired brick and mortar composites

    NASA Astrophysics Data System (ADS)

    Wilbrink, David V.; Utz, Marcel; Ritchie, Robert O.; Begley, Matthew R.

    2010-11-01

    This paper provides scaling relationships between constituent properties and the uniaxial tensile response of synthetic "brick and mortar" composite materials inspired by nacre. The macroscopic strength and ductility (work of fracture) are predicted in terms of the brick properties (size, strength, and layout) and interface cohesive properties (e.g., maximum shear and normal stresses and separations). The results illustrate the trade-off between increasing strength and decreasing ductility with the increasing aspect ratio of the bricks. The models can be used to identify optimum mortar properties that maximize toughness for a given brick strength.

  5. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.

    PubMed

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-03-21

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.

  6. Effect of various superplasticizers on rheological properties of cement paste and mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, I.; Agarwal, S.K.

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cementmore » paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.« less

  7. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure.

    PubMed

    Pino, F; Fermo, P; La Russa, M; Ruffolo, S; Comite, V; Baghdachi, J; Pecchioni, E; Fratini, F; Cappelletti, G

    2017-05-01

    In the present work, two kinds of hybrid polymeric-inorganic coatings containing TiO 2 or SiO 2 particles and prepared starting from two commercial resins (Alpha®SI30 and Bluesil®BP9710) were developed and applied to two kinds of mortars (an air-hardening calcic lime mortar [ALM] and a natural hydraulic lime mortar [HLM]) to achieve better performances in terms of water repellence and consequently damage resistance. The two pure commercial resins were also applied for comparison purposes. Properties of the coated materials and their performance were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Tests were also performed to determine the weathering effects on both the commercial and the hybrid coatings in order to study their durability. Thus, exposures to UV radiation, to UV radiation/condensed water cycles and to a real polluted atmospheric environment have been performed. The effectiveness of the hybrid SiO 2 based coating was demonstrated, especially in the case of the HLM mortar.

  8. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  9. Improvement on the Repair Effect of Electrochemical Chloride Extraction Using a Modified Electrode Configuration

    PubMed Central

    Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping

    2018-01-01

    To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855

  10. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    PubMed

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  11. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    NASA Astrophysics Data System (ADS)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  12. Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives

    Treesearch

    B.H. River; R.O. Ebewele; G.E. Myers

    1994-01-01

    Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...

  13. Strandboard made from soy-based adhesive with high soy content

    Treesearch

    Zhiyong Cai; James M. Wescott; Jerrold E. Winandy

    2005-01-01

    A novel green adhesive with high soy content has recently been developed (13) with a process that denatures soy flour, modifies resulting protein with formaldehyde, and uses suitable phenolic crosslinking agents for copolymerization. Compared with mechanical and physical performances of oriented strandboard, the new adhesive showed promise for improving panel...

  14. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  15. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  16. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  17. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  18. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    NASA Astrophysics Data System (ADS)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  19. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    NASA Astrophysics Data System (ADS)

    Sanders, Lindsey Kennedy

    proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.

  20. The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill

    NASA Astrophysics Data System (ADS)

    Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min

    This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.

  1. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    NASA Astrophysics Data System (ADS)

    Bocca, P.; Grazzini, A.; Masera, D.

    2011-07-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  2. Isotopic analysis for degradation diagnosis of calcite matrix in mortar.

    PubMed

    Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P

    2009-12-01

    Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.

  3. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    PubMed

    Yang, Yunlong; Liu, Xiaolin; Li, Yan; Wang, Yang; Bao, Chunyan; Chen, Yunfeng; Lin, Qiuning; Zhu, Linyong

    2017-10-15

    Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. In this study, a tissue

  4. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain.

    PubMed

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-12-21

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  5. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    PubMed Central

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-01-01

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151

  6. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis

    PubMed Central

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-01-01

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935

  7. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    PubMed

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  8. Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate

    NASA Astrophysics Data System (ADS)

    Czarnecki, Slawomir

    2017-10-01

    This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.

  9. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    NASA Astrophysics Data System (ADS)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  10. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less

  11. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Luca, E-mail: luca.bertolini@polimi.it; Carsana, Maddalena, E-mail: maddalena.carsana@polimi.it; Gastaldi, Matteo, E-mail: matteo.gastaldi@polimi.it

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniquesmore » throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  12. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  13. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  14. Finite cover method with mortar elements for elastoplasticity problems

    NASA Astrophysics Data System (ADS)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  15. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  16. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  17. 63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), INTERIOR, LOOKING SOUTHEAST DOWN SCREENED WALKWAY ON NORTHWEST SIDE. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  18. Application of AMDS mortar as a treatment agent for arsenic in subsurface environment

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, H.; Choi, U. K.; Yang, I. J.

    2014-12-01

    Among the treatment technologies available for As in soil and groundwater, adsorption or precipitation using acid mine drainage (AMD) sludge has become a promised technique because of high efficiency, inexpensiveness and simple to handling. The adsorbents were prepared by addition of Cement, Joomoonjin sand, fly ash, and Ca(OH)2 to air dry AMD sludge. In this work, the adsorption of As (III) and As (V) on AMDS mortar has been studied as a function of kinetic, pH, and initial arsenic concentration. Results of batch study showed that 75-90% of both As (III) and As (V) were removed at pH 7. Arsenic adsorption capacities were the highest at neutral pH condition and the adsorption equilibrium time reached in 7 days using AMDS mortar. Additionally, the adsorption kinetic process is expressed well by pseudo-second-order model. The adsorption capacities of AMDS mortar for As(III) and As(V) were found 19.04 and 30.75 mg g-1, respectively. The results of As (III) adsorption isotherms were fitted well to the Freundlich model. Moreover, As (V) adsorption isotherms were fitted well to the Langmuir model rather than Freundlich model. Based on experimental results in this study, we could conclude that AMDS mortar can be effectively used for arsenic removal agent from subsurface environment.

  19. On the role of hydrophobic Si-based protective coatings in limiting mortar deterioration.

    PubMed

    Cappelletti, G; Fermo, P; Pino, F; Pargoletti, E; Pecchioni, E; Fratini, F; Ruffolo, S A; La Russa, M F

    2015-11-01

    In order to avoid both natural and artificial stone decay, mainly due to the interaction with atmospheric pollutants (both gases such as NOx and SO2 and particulate matter), polymeric materials have been widely studied as protective coatings enable to limit the penetration of fluids into the bulk material. In the current work, an air hardening calcic lime mortar (ALM) and a natural hydraulic lime mortar (HLM) were used as substrates, and commercially available Si-based resins (Alpha®SI30 and Silres®BS16) were adopted as protective agents to give hydrophobicity features to the artificial stones. Surface properties of coatings and their performance as hydrophobic agents were studied using different techniques such as contact angle measurements, capillary absorption test, mercury intrusion porosimetry, surface free energy, colorimetric measurements and water vapour permeability tests. Finally, some exposure tests to UV radiation and to real polluted atmospheric environments (a city centre and an urban background site) were carried out during a wintertime period (when the concentrations of the main atmospheric pollutants are higher) in order to study the durability of the coating systems applied. The effectiveness of the two commercial resins in reducing salt formation (sulphate and nitrate), induced by the interaction of the mortars with the atmospheric pollutants, was demonstrated in the case of the HLM mortar. Graphical Abstract ᅟ.

  20. A Peridynamic Approach for Nanoscratch Simulation of the Cement Mortar

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; Zhang, Qing; Lu, Guangda; Chen, Depeng

    2018-03-01

    The present study develops a peridynamic approach for simulating the nanoscratch procedure on the cement mortar interface. In this approach, the cement and sand are considered as discrete particles with certain mechanical properties on the nanoscale. Besides, the interaction force functions for different components in the interface are represented by combining the van der Waals force and the peridynamic force. The nanoscratch procedures with the indenter moving along certain direction either parallel or perpendicular to the interface are simulated in this paper. The simulation results show the damage evolution processes and the final damage distributions of the cement mortar under different scratching speed and depth of the indenter, indicating that the interface between cement and sand is a weak area.

  1. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  2. VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MORTARED ROCK AND CONCRETE INLET TO COUCH LATERAL CANAL, UPSTREAM OF COLLINS ROAD. LOOKING NORTH/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  3. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion.

    PubMed

    Luo, Xiaofan; Ou, Runqing; Eberly, Daniel E; Singhal, Amit; Viratyaporn, Wantinee; Mather, Patrick T

    2009-03-01

    In this paper, we report on the development of a new and broadly applicable strategy to produce thermally mendable polymeric materials, demonstrated with an epoxy/poly(-caprolactone) (PCL) phase-separated blend. The initially miscible blend composed of 15.5 wt % PCL undergoes polymerization-induced phase separation during cross-linking of the epoxy, yielding a "bricks and mortar" morphology wherein the epoxy phase exists as interconnected spheres (bricks) interpenetrated with a percolating PCL matrix (mortar). The fully cured material is stiff, strong, and durable. A heating-induced "bleeding" behavior was witnessed in the form of spontaneous wetting of all free surfaces by the molten PCL phase, and this bleeding is capable of repairing damage by crack-wicking and subsequent recrystallization with only minor concomitant softening during that process. The observed bleeding is attributed to volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). In controlled thermal-mending experiments, heating of a cracked specimen led to PCL extrusion from the bulk to yield a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals formed at the site of the crack, restoring a significant portion of the mechanical strength. When a moderate force was applied to assist crack closure, thermal-mending efficiencies exceeded 100%. We further observed that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety of materials, without any requirement for macroscopic softening or flow.

  4. Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure

    NASA Astrophysics Data System (ADS)

    Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.

    Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.

  5. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.

    PubMed

    Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M

    2016-01-01

    Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.

  6. Tamping Mortars with Stabilizing and Plasticizing Admixtures

    NASA Astrophysics Data System (ADS)

    Terlyha, Volodymir; Sobol, Khrystyna

    2012-06-01

    Boreholes cementing operations at the depth of several kilometers requires the best technology as well as the best materials. To produce the materials satisfying all the requirements concerning the tamping works is possible using the technology of dry building mixes (DBM) prepared at the factories by thorough mixing of accurately dosed components. Using of chemical admixtures allows improving some properties of these mixes. In this work the influence of mineral fillers and chemical admixtures on the properties of the fresh mixture and hardened tamping mortar was investigated. It is established that introduction of the admixture with complex action on the basis of stabilizer Walocel 15-01 and plasticizer Melflux 2651 allows obtaining the fresh mixture with high spreadability. At the same time the value of dehydration approaches to zero which favorably effects on stabilization of fresh mixture and not allows the sedimentation processes to take place. By the X-ray analysis, the positive influence of modification admixtures on the hydration processes in the tamping mortars by activating them was identified. In the result of this, the formation of hydrate phases is accelerated; these phases tightly mud the pore area of tamping stone increasing by this its strength.

  7. 9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF DECORATIVE MORTAR AND COBBLESTONE WORK ON TYPICAL POST ON UPSTREAM PARAPET WALL OF UPPER EMBANKMENT. VIEW TO SOUTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  8. Application of biochar from food and wood waste as green admixture for cement mortar.

    PubMed

    Gupta, Souradeep; Kua, Harn Wei; Koh, Hui Jun

    2018-04-01

    Landfilling of food waste due to its low recycling rate is raising serious concerns because of associated soil and water contamination, and emission of methane and other greenhouse gases during the degradation process. This paper explores feasibility of using biochar derived from mixed food waste (FWBC), rice waste (RWBC) and wood waste (mixed wood saw dust, MWBC) as carbon sequestering additive in mortar. RWBC is prepared from boiled plain rice, while FWBC is prepared from combination of rice, meat, and vegetables in fixed proportion. Carbon content in FWBC, RWBC and MWBC were found to be 71%, 66% and 87% by weight respectively. Results show that addition of 1-2wt% of FWBC and RWBC in mortar results in similar mechanical strength as control mix (without biochar). 1wt% of FWBC led to 40% and 35% reduction in water penetration and sorptivity respectively, indicating higher impermeability of mortar. Biochar from mixed wood saw dust performed better in terms of mechanical and permeability properties. Increase in compressive strength and tensile strength by up to 20% was recorded, while depth of water penetration and sorptivity was reduced by about 60% and 38% respectively compared to control. Both FWBC and MWBC were found to act as reinforcement to mortar paste, which resulted in higher ductility than control at failure under flexure. This study suggests that biochar from food waste and mixed wood saw dust has the potential to be successfully deployed as additive in cement mortar, which would also promote waste recycling, and sequester high volume carbon in civil infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunther, W., E-mail: Wolfgang.Kunther@empa.ch; Lothenbach, B.; Scrivener, K.

    2013-02-15

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposedmore » in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.« less

  10. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    PubMed Central

    Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng

    2015-01-01

    The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  11. Stability Analysis of a mortar cover ejected at various Mach numbers and angles of attack

    NASA Astrophysics Data System (ADS)

    Schwab, Jane; Carnasciali, Maria-Isabel; Andrejczyk, Joe; Kandis, Mike

    2011-11-01

    This study utilized CFD software to predict the aerodynamic coefficient of a wedge-shaped mortar cover which is ejected from a spacecraft upon deployment of its Parachute Recovery System (PRS). Concern over recontact or collision between the mortar cover and spacecraft served as the impetus for this study in which drag and moment coefficients were determined at Mach numbers from 0.3 to 1.6 at 30-degree increments. These CFD predictions were then used as inputs to a two-dimensional, multi-body, three-DoF trajectory model to calculate the relative motion of the mortar cover and spacecraft. Based upon those simulations, the study concluded a minimal/zero risk of collision with either the spacecraft or PRS. Sponsored by Pioneer Aerospace.

  12. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornu, R.; Kelly, M.A.; Smith, R.L.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48%more » (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.« less

  13. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  14. Role of cellular adhesions in tissue dynamics spectroscopy

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  15. VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MORTARED ROCK FOOTING THAT ONCE SUPPORTED THE TWIN FLUME'S OUTLET TO TUMALO FEED CANAL, WITH BRIDGE. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  16. 8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW TO NORTH OF INTERIOR OF STAMPMILLING LEVEL; MORTAR MOUNT FOR MILL IS IMMEDIATELY BELOW AND TO LEFT OF ORE-HOPPER (UPPER-CENTER). - Steamboat Stampmill, Brush Creek Canyon, Jacksonville, Jackson County, OR

  17. Application of honeymoon cold-set adhesive systems for structural end joints in North America

    Treesearch

    Roland E. Kreibich; Richard W. Hemingway; William T. Nearn

    1993-01-01

    High quality, structural end joints can be cold-set at mill speed using a two-component honeymoon adhesive system composed of southern pine bark or pecan shell membrane tannin and a modified, commercially available. phenol-resorcinol-formaldehyde resin. Adhesive costs of a fully waterproof glueline are approximately $0.60/lb. of applied adhesive mix compared to $0.80/...

  18. Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.

    PubMed

    Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto

    2014-11-01

    This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    PubMed Central

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  20. Modeling Heat and Moisture Transport in Steam-Cured Mortar: Application to Aashto Type Vi Beams.

    PubMed

    Hernández-Bautista, E; Sandoval-Torres, S; de J Cano-Barrita, P F; Bentz, D P

    2017-10-01

    During steam curing of concrete, temperature and moisture gradients are developed, which are difficult to measure experimentally and can adversely affect the durability of concrete. In this research, a model of cement hydration coupled to moisture and heat transport was used to simulate the process of steam curing of mortars with water-to-cement ( w/c ) ratios by mass of 0.30 and 0.45, considering natural convection boundary conditions in mortar and concrete specimens of AASHTO Type VI beams. The primary variables of the model were moisture content, temperature, and degree of hydration. Moisture content profiles of mortar specimens (40 mm in diameter and 50 mm in height) were measured by magnetic resonance imaging. The degree of hydration was obtained by mass-based measurements of loss on ignition to 1000 °C. The results indicate that the model correctly simulates the moisture distribution and degree of hydration in mortar specimens. Application of the model to the steam curing of an AASHTO Type VI beam indicates temperature differences (between the surface and the center) higher than 20 °C during the cooling stage, and internal temperatures higher than 70 °C that may compromise the durability of the concrete.

  1. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials.

    PubMed

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-08-18

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  2. Adsorption of cesium on cement mortar from aqueous solutions.

    PubMed

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. Do Schools Still Need Brick-and-Mortar Libraries?

    ERIC Educational Resources Information Center

    Johnson, Doug; Mastrion, Keith

    2009-01-01

    Do all schools need brick-and-mortar libraries? In this article, Johnson and Mastrion share their contradictory thoughts to the question. Johnson says some schools don't need library facilities or programs or librarians. These schools' teachers and administrators: (1) feel no need for a collaborative learning space; (2) feel the ability to process…

  4. The use of Papuan iron sand and river sand for fine aggregate in mortar for nuclear radiation shield application

    NASA Astrophysics Data System (ADS)

    Dahlan, K.; Haryati, E.; Aninam, Y. S.

    2018-03-01

    This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.

  5. Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar

    NASA Astrophysics Data System (ADS)

    Dobiszewska, Magdalena; Beycioğlu, Ahmet

    2017-10-01

    Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement

  6. [Correspondence between advances of dental composites and adhesives and clinical guidelines for direct restorations].

    PubMed

    Wang, X Y; Yue, L

    2018-06-09

    The longevity of direct adhesive restoration is related to the restorative materials, the patient and the professional. On one hand, dental composites/adhesives have been modified and developed to fulfill the criteria for clinical application. On the other hand, the clinical guidelines for adhesive restorations have been released and updated accordingly, which would prolong the longevity of restorations. In this commentary, the removal of carious tissues, interface preparation for bonding and application of adhesives are emphasized. The administrative measures for registration and clinical evaluation criteria for adhesive restorative material are also introduced.

  7. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Care, S.; Nguyen, Q.T.; L'Hostis, V.

    This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less

  8. 7. Detail, beaded mortar joint, stepped wingwall coping at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail, beaded mortar joint, stepped wingwall coping at the east portal of Tunnel 18, 135mm lens with electronic flash fill. - Southern Pacific Railroad Natron Cutoff, Tunnel No. 18, Milepost 410, Dorris, Siskiyou County, CA

  9. Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo) Mud in Semi High Volume Pozzolanic Mortar

    PubMed Central

    Hardjito, Djwantoro; Antoni; Wibowo, Gunadi M.; Christianto, Danny

    2012-01-01

    LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI), the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.

  10. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR

    PubMed Central

    Lucero, Catherine L.; Spragg, Robert P.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, (w/c), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl2 reacts with the cement paste to produce products (Friedel’s salt, Kuzel’s salt, or calcium oxychloride) that block pores and reduce absorption. PMID:28626299

  11. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR.

    PubMed

    Lucero, Catherine L; Spragg, Robert P; Bentz, Dale P; Hussey, Daniel S; Jacobson, David L; Weiss, W Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl 2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, ( w/c ), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl 2 reacts with the cement paste to produce products (Friedel's salt, Kuzel's salt, or calcium oxychloride) that block pores and reduce absorption.

  12. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin

    PubMed Central

    Yu, Hao-Han; Zhang, Ling; Yu, Fan; Li, Fang; Liu, Zheng-Ya; Chen, Ji-Hua

    2017-01-01

    This study evaluated epigallocatechin-3-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG-3Me) modified etch-and-rinse adhesives (Single Bond 2, SB 2) for their antibacterial effect and bonding stability to dentin. EGCG-3Me was isolated and purified with column chromatography and preparative high performance liquid chromatography. EGCG and EGCG-3Me were incorporated separately into the adhesive SB 2 at concentrations of 200, 400, and 600 µg/mL. The effect of cured adhesives on the growth of Streptococcus mutans (S. mutans) was determined with scanning electron microscopy and confocal laser scanning microscopy; the biofilm of bacteria was further quantified via optical density 600 values. The inhibition of EGCG and EGCG-3Me on dentin-originated collagen proteases activities was evaluated with a proteases fluorometric assay kit. The degree of conversion (DC) of the adhesives was tested with micro-Raman spectrum. The immediate and post-thermocycling (5000 cycles) bond strength was assessed through Microtensile Bond Strength (MTBS) test. Cured EGCG/EGCG-3Me modified adhesives inhibit the growth of S. mutans in a concentration-dependent manner. The immediate MTBS of SB 2 was not compromised by EGCG/EGCG-3Me modification. EGCG/EGCG-3Me modified adhesive had higher MTBS than SB 2 after thermocycling, showing no correlation with concentration. The DC of the adhesive system was affected depending on the concentration of EGCG/EGCG-3Me and the depth of the hybrid layer. EGCG/EGCG-3Me modified adhesives could inhibit S. mutans adhesion to dentin–resin interface, and maintain the bonding stability. The adhesive modified with 400 µg/mL EGCG-3Me showed antibacterial effect and enhanced bonding stability without affect the DC of adhesive. PMID:28772546

  14. Epigallocatechin-3-gallate and Epigallocatechin-3-O-(3-O-methyl)-gallate Enhance the Bonding Stability of an Etch-and-Rinse Adhesive to Dentin.

    PubMed

    Yu, Hao-Han; Zhang, Ling; Yu, Fan; Li, Fang; Liu, Zheng-Ya; Chen, Ji-Hua

    2017-02-15

    This study evaluated epigallocatechin-3-gallate (EGCG) and epigallocatechin-3- O -(3- O -methyl)-gallate (EGCG-3Me) modified etch-and-rinse adhesives (Single Bond 2, SB 2) for their antibacterial effect and bonding stability to dentin. EGCG-3Me was isolated and purified with column chromatography and preparative high performance liquid chromatography. EGCG and EGCG-3Me were incorporated separately into the adhesive SB 2 at concentrations of 200, 400, and 600 µg/mL. The effect of cured adhesives on the growth of Streptococcus mutans ( S. mutans ) was determined with scanning electron microscopy and confocal laser scanning microscopy; the biofilm of bacteria was further quantified via optical density 600 values. The inhibition of EGCG and EGCG-3Me on dentin-originated collagen proteases activities was evaluated with a proteases fluorometric assay kit. The degree of conversion (DC) of the adhesives was tested with micro-Raman spectrum. The immediate and post-thermocycling (5000 cycles) bond strength was assessed through Microtensile Bond Strength (MTBS) test. Cured EGCG/EGCG-3Me modified adhesives inhibit the growth of S. mutans in a concentration-dependent manner. The immediate MTBS of SB 2 was not compromised by EGCG/EGCG-3Me modification. EGCG/EGCG-3Me modified adhesive had higher MTBS than SB 2 after thermocycling, showing no correlation with concentration. The DC of the adhesive system was affected depending on the concentration of EGCG/EGCG-3Me and the depth of the hybrid layer. EGCG/EGCG-3Me modified adhesives could inhibit S. mutans adhesion to dentin-resin interface, and maintain the bonding stability. The adhesive modified with 400 µg/mL EGCG-3Me showed antibacterial effect and enhanced bonding stability without affect the DC of adhesive.

  15. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    PubMed Central

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-01

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved. PMID:28788452

  16. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy.

    PubMed

    Dong, Biqin; Qiu, Qiwen; Xiang, Jiaqi; Huang, Canjie; Xing, Feng; Han, Ningxu

    2014-01-03

    A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  17. A chemical rationalization of the processing and application of the mortar coatings: Structural, thermodynamic, and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Lima, Nathan B.; Rogerio, V. A.; Belarmino, Marcia K. D. L.; Silva, Anderson I. S.; Ioras, Renan U. F.; Oliveira, Romilde A.; Lima, Nathalia B. D.

    2018-07-01

    A chemical rationalization of the processing and application of the roughcast and plaster mortar coatings was advanced. The results revealed that the structural and thermodynamic nature of the hydrogen-bonded complexes between the inorganic precursors and water molecules are associated with the physical properties of both coatings. In this sense, the workability and curing time of the roughcast and the plaster mortars studied, seemingly, are related to the nature of the water solvation in the main components of these materials: calcium hydroxide and silicon dioxide. In addition, PM7 and PM7/COSMO results indicate that the enthalpy of solvation of water by hydrogen bonds in calcium hydroxide is stronger when compared with silicon dioxide systems. Therefore, the presence of free hydrated lime (calcium hydroxide) in the precursor mixture of plaster mortar leads to the large workability and elapsed curing time of this material. On the other hand, the absence of free hydrated lime in the precursor mixture of the roughcast mortar leads to its poor workability and faster elapsed curing time. Further, fluorescence microscopy experiments revealed that the inorganic compounds present in the cement precursor were transformed into different materials, that exhibit red and blue fluorescence. Finally, mechanical tests showed a tensile strength average 0.67 MPa for the plaster mortar material, whereas for the roughcast material is 0.53 MPa.

  18. 18. Detail, typical quarryfaced ashlar blocks, convextooled mortar joints, on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail, typical quarry-faced ashlar blocks, convex-tooled mortar joints, on pillars in former porte porte cochere area, view to southeast, 135mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  19. 9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, SHOWING STEEL CROSSBEAMS, TORSIONAL DIAGONAL STRUTS, AND WOODEN STRINGERS. FACING SOUTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  20. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  1. 8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SIDE VIEW OF NORTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (LEFT) AND DRESSED, DRY-LAID RETAINING WALL (RIGHT). FACING WEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  2. 10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SIDE VIEW OF SOUTHEASTERN ROCKFACED DRESSED AND MORTARED STONE BRIDGE ABUTMENT (RIGHT) AND DRESSED, DRY-LAID RETAINING WALL (LEFT). FACING NORTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  3. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey Ann

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work willmore » be discussed.« less

  4. Comparison of Glass Powder and Fly Ash Effect on the Fresh Properties of Self-Compacting Mortars

    NASA Astrophysics Data System (ADS)

    Öznur Öz, Hatice; Erhan Yücel, Hasan; Güneş, Muhammet

    2017-10-01

    This study is aimed to determine effects of glass powder on fresh properties of self-compacting mortars. Self-compacting mortars incorporating glass powder (SCMGPs) were designed with a water/binder ratio of 0.40 and a total binder content of 550 kg/m3. At first, the control mixture was produced with 20% fly ash and % 80 cement of the total binder content without using the glass powder. Then, glass powder was used in the proportions 5%, 10%, 15% and 20% instead of fly ash in the mortars. Mini-slump flow and mini-v funnel tests experimentally investigated on SCMGPs to compare the effect of fly ash and glass powder. With increasing the amount of glass powder used in SCMGPs increased the amount of superplasticizer used to obtain the desired mini-slump flow diameter. So, the use of glass powder reduced the flow ability of SCMGPs in comparison to fly ash. Additionally, the compressive strength and flexural strength of the mortar mixtures were determined at the 28th day. The test results indicated that the mechanical characteristics of SCMGPs improved when the fly ash was replaced with glass powder in SCMGPs.

  5. Chemical and physical effects on the adhesion, maturation, and survival of monocytes, macrophages, and foreign body giant cells

    NASA Astrophysics Data System (ADS)

    Collier, Terry Odell, III

    Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface

  6. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  7. Improving adhesion of seasonings to crackers with hydrocolloid solutions.

    PubMed

    Armstrong, Matthew E; Barringer, Sheryl A

    2013-11-01

    Food powders were applied on crackers that had been coated using water, oil, emulsion, sucrose, or hydrocolloid solutions. The hydrocolloids that were used include gellan gum, kappa-carrageenan, methylcellulose, gum karaya, gum tragacanth, gum arabic, guar gum, modified starch, and maltodextrin. Solutions of similar hydrophobicity to the powder gave the greatest adhesion. NaCl, barbecue (BBQ), ranch, and sour cream & onion (SC&O) seasoning showed greatest adhesion with water, cheese powder with an emulsion of 12.5% to 25% oil, and cocoa powder with oil. For NaCl, BBQ, ranch, and SC&O seasoning, hydrocolloids improved the adhesion over using water alone, with gellan gum providing the greatest adhesion. Hydrocolloid structural differences, including the presence or absence of branching, substitution of sugar units, and molecular weight affect water binding and thickening of the hydrocolloid spray that seemed to be significant factors affecting adhesion of powders to the target surface. For cheese powder, hydrocolloids were capable of replacing the oil within an emulsion while improving or maintaining the same level of adhesion, with gum arabic providing the greatest adhesion. For cocoa powder, hydrocolloid solutions were ineffective adhesives due to differences in hydrophilicity that result in insolubility. The effect of hydrocolloid concentration on adhesion was dependent both on the hydrocolloid type and the concentration that is sprayable, with 0.5% being the optimum concentration for most gums. Adhesion using sucrose solutions was determined by particle size and relative hydrophobicity. Increasing sucrose concentration decreased adhesion of smaller particles, but increased adhesion of larger particles. Adhesion of NaCl significantly increased with decreasing NaCl size using oil, water, and sucrose solutions. © 2013 Institute of Food Technologists®

  8. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells.

    PubMed

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2016-01-02

    Alterations of endothelial adhesive properties by cigarette smoke (CS) can progressively favor the development of atherosclerosis which may cause cardiovascular disorders. Modified risk tobacco products (MRTPs) are tobacco products developed to reduce smoking-related risks. A systems biology/toxicology approach combined with a functional in vitro adhesion assay was used to assess the impact of a candidate heat-not-burn technology-based MRTP, Tobacco Heating System (THS) 2.2, on the adhesion of monocytic cells to human coronary arterial endothelial cells (HCAECs) compared with a reference cigarette (3R4F). HCAECs were treated for 4h with conditioned media of human monocytic Mono Mac 6 (MM6) cells preincubated with low or high concentrations of aqueous extracts from THS2.2 aerosol or 3R4F smoke for 2h (indirect treatment), unconditioned media (direct treatment), or fresh aqueous aerosol/smoke extracts (fresh direct treatment). Functional and molecular investigations revealed that aqueous 3R4F smoke extract promoted the adhesion of MM6 cells to HCAECs via distinct direct and indirect concentration-dependent mechanisms. Using the same approach, we identified significantly reduced effects of aqueous THS2.2 aerosol extract on MM6 cell-HCAEC adhesion, and reduced molecular changes in endothelial and monocytic cells. Ten- and 20-fold increased concentrations of aqueous THS2.2 aerosol extract were necessary to elicit similar effects to those measured with 3R4F in both fresh direct and indirect exposure modalities, respectively. Our systems toxicology study demonstrated reduced effects of an aqueous aerosol extract from the candidate MRTP, THS2.2, using the adhesion of monocytic cells to human coronary endothelial cells as a surrogate pathophysiologically relevant event in atherogenesis. Copyright © 2015 Z. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  10. Material Performance and Animal Clinical Studies on Performance-Optimized Hwangtoh Mixed Mortar and Concrete to Evaluate Their Mechanical Properties and Health Benefits.

    PubMed

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun

    2015-09-17

    In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.

  11. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  12. The Impact of Involvement in Mortar Board Senior Honor Society on Lifelong Views of Civic Engagement and Leadership

    ERIC Educational Resources Information Center

    Turner, Daniel James

    2012-01-01

    This study examines the impact that involvement in Mortar Board National Senior Honor Society has on lifelong views of civic engagement and leadership. Mortar Board Senior Honor Society is a collegiate honor society established in 1918 that recognizes students for their outstanding contributions to their college or university community in the…

  13. Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

    PubMed Central

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  14. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    PubMed

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.

  15. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  16. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge.

    PubMed

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-06-11

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.

  17. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    PubMed Central

    Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan

    2017-01-01

    In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999

  18. Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars.

    PubMed

    Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de

    2017-03-15

    This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn 2 (OH) 6 ·2H 2 O) instead of the portlandite phase (Ca(OH) 2 ) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    PubMed

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  20. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  1. The Properties of Mortar Mixtures Blended with Natural, Crushed, and Recycled Fine Aggregates for Building Construction Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Myoung-Youl; Lee, Jae-Yong; Chung, Chul-Woo

    2012-01-12

    In this research, the possible applicability of fine aggregates blended with natural, crushed, and recycled fine aggregate are discussed. The fresh and hardened properties of mortar using blended fine aggregates are monitored depending on various blending ratio of fine aggregates. Newly developed ternary diagram was also utilized for better interpretation of the data. It was found that air content increased and unit weight decreased as recycled fine aggregate content increased. With moisture type processing of recycled fine aggregate, the mortar flow was not negatively affected by increase in the recycled fine aggregate content. The ternary diagram is found to bemore » an effective graphical presentation tool that can be used for the quality evaluation of mortar using blended fine aggregate.« less

  2. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

    PubMed Central

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-01-01

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854

  3. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing.

    PubMed

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-08-27

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.

  4. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    PubMed

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  5. Protein Adsorption and Subsequent Fibroblasts Adhesion on Hydroxyapatite Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Takemura, Taro; Hanagata, Nobutaka; Yoshioka, Tomohiko; Tanaka, Junzo

    2011-10-01

    Quartz crystal microbalance with dissipation (QCM-D) technique was employed for protein adsorption and subsequent fibroblast adhesion on hydroxyapatite (HAp) nanocrystals. The pre-adsorption of three proteins (albumin (BSA) or fibronectin (Fn) or collagen (Col)) and subsequent adsorption of fetal bovine serum (FBS), and the adhesion of fibroblasts on the surface were in situ monitored, and evaluated with the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic change as ΔD-Δf plot. The Col adsorption showed larger Δf and ΔD values compared with BSA or Fn adsorption, and the subsequent FBS adsorption depended on the pre-adsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed the different behaviour on the surfaces, indicating the process affected by cell-protein interactions. The confocal laser scanning microscope images of adherent cells showed the different morphology and pseudopod on the surfaces. The cells adhered on the surfaces modified with Fn and Col had the uniaxially expanded shape with fibrous pseudopods, while those modified with BSA had round shape. The different cell-protein interaction would cause the arrangement of extracellular matrix and cytoskeleton changes at the interfaces.

  6. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  7. Quantitative wood–adhesive penetration with X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.

    Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximatelymore » 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO 2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified

  8. Adhesion of perfume-filled microcapsules to model fabric surfaces.

    PubMed

    He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing

    2014-01-01

    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.

  9. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization.

    PubMed

    Farinha, Catarina Brazão; de Brito, Jorge; Veiga, Rosário; Fernández, J M; Jiménez, J R; Esquinas, A R

    2018-03-20

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation.

  10. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes.

    PubMed

    Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A

    2016-05-06

    This study investigates the engineering performance and CO₂ footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e. , normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO₂ footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.

  11. Wastes as Aggregates, Binders or Additions in Mortars: Selecting Their Role Based on Characterization

    PubMed Central

    de Brito, Jorge; Veiga, Rosário

    2018-01-01

    The production of waste has increased over the years and, lacking a recycle or recovery solution, it is forwarded to landfill. The incorporation of wastes in cement-based materials is a solution to reduce waste deposition. In this regard, some researchers have been studying the incorporation of wastes with different functions: aggregate, binder and addition. The incorporation of wastes should take advantage of their characteristics. It requires a judicious analysis of their particles. This research involves the analysis of seven industrial wastes: biomass ashes, glass fibre, reinforced polymer dust, sanitary ware, fluid catalytic cracking, acrylic fibre, textile fibre and glass fibre. The main characteristics and advantages of each waste are enunciated and the best type of introduction in mortars is discussed. The characterization of the wastes as particles is necessary to identify the most suitable incorporation in mortars. In this research, some wastes are studied with a view to their re-use or recycling in mortars. Thus, this research focuses on the chemical, physical and mechanical characterization of industrial wastes and identification of the potentially most advantageous type of incorporation. PMID:29558418

  12. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes

    PubMed Central

    Razi, Putri Zulaiha; Abdul Razak, Hashim; Khalid, Nur Hafizah A.

    2016-01-01

    This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM) were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum). This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%). Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average. PMID:28773465

  13. The effects of bauxite, metakaolin, and porosity on the thermal properties of prepared Iraqi clays refractory mortars

    NASA Astrophysics Data System (ADS)

    Zaidan, Shihab A.; Omar, Mustafa H.

    2018-05-01

    One of the most important requirements for the manufacture of refractory mortars, especially those used in the construction of thermal systems (building or plastering), is the balance between thermal insulation properties and porosity. Where, increasing porosity of mortar to a large amount may be always undesirable, because the absorption of liquid and gases emitted from industrial system is decline the bonded with bricks and structural properties of mortars. Refractory mortars prepared from either fired bauxite or metakaolin clays with different percentages of kaolin (10, 20, 30, and 40 wt%). Bauxite rocks were fired at 1200 °C and metakaolin was obtained by firing kaolin up to 700 °C then crushed and grinded. Grog was added to mixture to reduce the shrinkage. Cylindrical specimens are prepared and then sintered at 1200 °C. All mixtures maintained a low thermal conductivity within the limits of thermal insulation material (less than 0.5 W/m K); it was done by controlling the porosity which reached a maximum value approximately 25%. The volumetric heat capacity and thermal diffusivity was ranged between (1-10 MJ/m3 K), (0.06-0.2 mm2/s), respectively.

  14. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    PubMed

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  15. 2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR BLOCKS WERE FOR THE MILL'S 3-STAMP BATTERIES ERECTED IN 1903, NORTH OF THE TWO 1901 BATTERIES WHICH WERE MOUNTED ON WOODEN TIMBERS - Wilbur-Womble Mill, Southern Edge Of Salt Spring Valley, Copperopolis, Calaveras County, CA

  16. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.

    PubMed

    Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua

    2017-11-10

    As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.

  17. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  18. Material Performance and Animal Clinical Studies on Performance-Optimized Hwangtoh Mixed Mortar and Concrete to Evaluate Their Mechanical Properties and Health Benefits

    PubMed Central

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun

    2015-01-01

    In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability. PMID:28793563

  19. Additives for cement compositions based on modified peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The articlemore » discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.« less

  20. Investigation of Hydraulic Binding Characteristics of Lime Based Mortars Used in Historical Masonry Structures

    NASA Astrophysics Data System (ADS)

    Binal, Adil

    2017-10-01

    In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.

  1. Adhesion and Interphase Properties of Reinforced Polymeric Composites

    NASA Astrophysics Data System (ADS)

    Caldwell, Kyle Bernd

    Reinforced polymeric composites are an increasingly utilized material with a wide range of applications. Fiber reinforced polymeric composites, in particular, possess impressive mechanical properties at a fraction of the weight of many other building materials. There will always, however, be a demand for producing lighter, stiffer, and stronger materials. Understanding the mechanism of adhesion and ways to engineer the reinforcement-matrix interphase can lead to the development of new materials with improved mechanical properties, and even impart additional functionality such as electrical conductivity. The performance of reinforced polymeric composites is critically dependent upon the adhesion between the reinforcement and the surrounding polymer. The relative adhesion between a filler and a thermoplastic matrix can be predicted using calculable thermodynamic quantities such as the Gibbs free energy of mixing. A recent model, COSMO-SAC, is capable of predicting the adhesion between organo-silane treated glass surfaces and several thermoplastic materials. COSMO-SAC uses information based on the charge distribution of a molecule's surface to calculate many thermodynamic properties. Density functional theory calculations, which are relative inexpensive computations, generate the information necessary to perform the COSMO-SAC analysis and can be performed on any given molecule. The flexibility of the COSMO-SAC model is one of the main advantages it possesses over other methods for calculating thermodynamic quantities. In many cases the adhesion between a reinforcing fiber and the surrounding matrix may be improved by incorporating interphase modifiers in the vicinity of the fiber surface. The modifiers can improve the fracture toughness and modulus of the interphase, which may improve the stress transfer from the matrix to the fiber. In addition, the interphase modifiers may improve the mechanical interlock between the fiber surface and the bulk polymer, leading to

  2. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    PubMed

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  3. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Marie D.; Landis, Eric N.; Brune, Philip F.

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈more » 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900 year old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.« less

  4. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    DOE PAGES

    Jackson, Marie D.; Landis, Eric N.; Brune, Philip F.; ...

    2014-12-15

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈more » 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900 year old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.« less

  5. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    PubMed Central

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  6. Mathematical Model Relating Uniaxial Compressive Behavior of Manufactured Sand Mortar to MIP-Derived Pore Structure Parameters

    PubMed Central

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257

  7. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    PubMed

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  8. The Effect of Graphene Oxide on Cement Mortar

    NASA Astrophysics Data System (ADS)

    Kjaernsmo, Henrik; Kakay, Samdar; Fossa, Kjell T.; Gronli, John

    2018-05-01

    This paper investigates the effect of water dispersed- and powder Graphene oxide (GO) nanoparticle on fresh cement mortar, microstructure and mechanical strength after 3,7, and 28 days of curing. These properties were studied by treating the cement mortar with 0.03 wt%, 0.05 wt%, and 0.2 wt% GO of the cement weight combined with 0.8wt % polycarboxylate superplasticizer. The results show that the workability decreases as increasing the content of water dispersed GO. The heat of hydration is increased for both types of GO systems. The percent air content in 0.03 wt% and 0.05 wt% GO is almost constant, but increased from 3.2 % to 4.9 % in 0.2 wt% water dispersed GO. The increased air content has effect on poor compaction and workability. GO has the potential of accelerating the hydration process and enhance the early mechanical strength (3 and 7 days), but the workability seems to diminish the mechanical strength after 28 days of curing, particularly for the highest content of water dispersed GO. No distinct influence of GO on the microstructure. The overall results showed that the impact of water dispersed GO was found out to be higher than the powder GO.

  9. Brick mortar exposure and chronic lymphocytic leukemia.

    PubMed

    Markovic-Denic, L; Jankovic, S; Marinkovic, J; Radovanovic, Z

    1995-01-01

    A case-control study of 130 patients with chronic lymphocytic leukemia (CLL) and 130 controls matched with respect to sex, age (2 years), type of residence (urban-rural) and area of residence (according to the national per capita income) was carried out. Conditional logistic regression analysis showed that, apart of four risk factors already described in the literature (work in a hazardous industry, hair dye use, family history of leukemia and exposure to electromagnetic radiation), brick mortar exposure was also significantly related to CLL.

  10. Wood : adhesives

    Treesearch

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  11. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    NASA Astrophysics Data System (ADS)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  12. Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin Lee

    This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water

  13. Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.

    PubMed

    Niwa, Daisuke; Fujie, Toshinori; Lang, Thorsten; Goda, Nobuhito; Takeoka, Shinji

    2012-08-01

    Recently, biomaterials have been widely used in a variety of medical applications. We previously reported that a poly-l-lactic acid (PLLA) nanosheet shows anti-adhesive properties and constitutes a useful biomaterial for preventing unwanted wound adhesion in surgical operations. In this article, we examine whether the PLLA nanosheet can be specifically modified with biomacromolecules on one surface only. Such an approach would endow each side of the nanosheet with discrete functions, that is anti-adhesive and pro-healing properties. We fabricated two distinct PLLA nanosheets: (i) collagen cast on the surface of a PLLA nanosheet (Col-Cast-PLLA) and (ii) collagen spin-coated on the nanosheet (Col-Spin-PLLA). In the Col-Spin-PLLA nanosheet, the collagen layer had a thickness of 5-10 nm on the PLLA surface and displayed increased hydrophilicity compared to both PLLA and Col-Cast-PLLA nanosheets. In addition, atomic force microscopy showed disorganized collagen fibril formation on the PLLA layer when covered using the spin-coating method, while apparent bundle formations of collagen were formed in the Col-Cast-PLLA nanosheet. The Col-Spin-PLLA nanosheet provided a microenvironment for cells to adhere and spread. By contrast, the Col-Cast-PLLA nanosheet displayed reduced cell adhesion compared to the Col-Spin-PLLA nanosheet. Consistent with these findings, immunocytochemical analysis clearly showed fine networks of actin filaments in cells cultured on the Col-Spin-PLLA, but not the Col-Cast-PLLA nanosheet. Therefore, the Col-Spin-PLLA nanosheet was shown to be more suitable for acting as a scaffold. In conclusion, we have succeeded in developing a heterofunctional nanosheet comprising a collagen modified side, which has the ability to rapidly adhere cells, and an unmodified side, which acts as an adhesion barrier, by using a spin-coating technique.

  14. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    NASA Astrophysics Data System (ADS)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  15. Superstrong encapsulated monolayer graphene by the modified anodic bonding

    NASA Astrophysics Data System (ADS)

    Jung, Wonsuk; Yoon, Taeshik; Choi, Jongho; Kim, Soohyun; Kim, Yong Hyup; Kim, Taek-Soo; Han, Chang-Soo

    2013-12-01

    We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m-2 about 310% that of van der Waals bonding (0.45 J m-2) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03822j

  16. Improvement of adhesion properties of low density polyethylene (LDPE) substrate using atmospheric plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Nacher, L.; Garcia-Sanoguera, D.; Fenollar, O.

    2010-06-02

    In this work we have used atmospheric plasma technology on polyethylene surface with different treatment conditions. These modify surface pre-treatments on polyethylene, thus having a positive effect on overall surface activity of polymer surface and, consequently, adhesion properties can be remarkably improved. We have evaluated the influence of the nozzle/substrate distance and atmospheric plasma speed on wettability changes and adhesion properties. Wettability changes have been studied by contact angle measurements and subsequent surface energy calculation. Mechanical characterization of adhesion joints has been carried out in two different ways: peel and shear tensile test. The overall results show a remarkable increasemore » in mechanical properties of adhesion joints for low nozzle/substrate distances and low speed. So plasma atmospheric technology is highly useful to increase adhesion properties of polypropylene.« less

  17. S. sanguinis adhesion on rough titanium surfaces: effect of culture media.

    PubMed

    Rodríguez-Hernández, Ana G; Muñoz-Tabares, José A; Godoy-Gallardo, Maria; Juárez, Antonio; Gil, Francisco-Javier

    2013-03-01

    Bacterial colonization plays a key role in dental implant failure, because they attach directly on implant surface upon implantation. Between different types of bacteria associated with the oral environment, Streptococcus sanguinis is essential in this process since it is an early colonizer. In this work the relationship between titanium surfaces modified by shot blasting treatment and S. sanguinis adhesion; have been studied in approached human mouth environment. Bacteria pre-inoculated with routinary solution were put in contact with titanium samples, shot-blasted with alumina and silicon carbide, and adhesion results were compared with those obtained when bacteria were pre-inoculated with modified artificial saliva medium and on saliva pre-coated titanium samples. Our results showed that bacterial adhesion on titanium samples was influenced by culture conditions. When S. sanguinis was inoculated in routinary culture media, colonies forming unities per square millimeter presented an increment correlated with roughness and surface energy, but separated by the type of particle used during shot-blasting treatment; whereas in modified artificial saliva only a relationship between bacteria adhered and the increment in both roughness and surface energy were observed, regardless of the particle type. Finally, on human saliva pre-coated samples no significant differences were observed among roughness, surface energy or particle. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls.

  19. Mechanisms of Staphylococcus epidermidis adhesion to model biomaterial surfaces: Establising a link between thrombosis and infection

    NASA Astrophysics Data System (ADS)

    Higashi, Julie Miyo

    Infections involving Staphylococcus epidermidis remain a life threatening complication associated with the use of polymer based cardiovascular devices. One of the critical steps in infection pathogenesis is the adhesion of the bacteria to the device surface. Currently, mechanisms of S. epidermidis adhesion are incompletely understood, but are thought to involve interactions between bacteria, device surface, and host blood elements in the form of adsorbed plasma proteins and surface adherent platelets. Our central hypothesis is that elements participating in thrombosis also promote S. epidermidis adhesion by specifically binding to the bacterial surface. The adhesion kinetics of S. epidermidis RP62A to host modified model biomaterial surface octadecyltrichlorosilane (OTS) under hydrodynamic shear conditions were characterized. Steady state adhesion to adsorbed proteins and surface adherent platelets was achieved at 90-120 minutes and 60-90 minutes, respectively. A dose response curve of S. epidermidis adhesion in the concentration range of 10sp7{-}10sp9 bac/mL resembled a multilayer adsorption isotherm. Increasing shear stress was found to LTA, and other LTA blocking agents significantly decreased S. epidermidis adhesion to the fibrin-platelet clots, suggesting that this interaction between S. epidermidis and fibrin-platelet clots is specific. Studies evaluated the adhesion of S. epidermidis to polymer immobilized heparin report conflicting results. Paulsson et al., showed that coagulase negative staphylococci adhered in comparable numbers to both immobilized heparin and nonheparinized surfaces, while exhibiting significantly greater adhesion to both surfaces than S. aureus. Preadsorption of the surfaces with specific heparin binding plasma proteins vitronectin, fibronectin, laminin, and collagen significantly increased adhesion. It was postulated that immobilized heparin contained binding sites for the plasma proteins, exposing bacteria binding domains of the

  20. 62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. BUILDING NO. 1301, ORDNANCE FACILITY (MORTAR POWDER BUILDING), LOOKING AT NORTHWEST FACADE. ACCESS TO ROOF ALLOWS MAINTENANCE OF VENTILATION EQUIPMENT WHICH IS PLACED OUTSIDE BUILDING TO MINIMIZE EXPLOSION HAZARD. NO. 2 VISIBLE ON WALL OF BUILDING STANDS FOR EXPLOSION HAZARD WITH FRAGMENTATION. - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  1. A liposomal hydrogel for the prevention of bacterial adhesion to catheters.

    PubMed

    DiTizio, V; Ferguson, G W; Mittelman, M W; Khoury, A E; Bruce, A W; DiCosmo, F

    1998-10-01

    The adhesion of bacteria to medical implants and the subsequent development of a biofilm frequently results in the infection of surrounding tissue and may require removal of the device. We have developed a liposomal hydrogel system that significantly reduces bacterial adhesion to silicone catheter material. The system consists of a poly (ethylene glycol)-gelatin hydrogel in which liposomes containing the antibiotic ciprofloxacin are sequestered. A poly (ethylene glycol)-gelatin-liposome mixture was applied to a silicone surface that had been pre-treated with phenylazido-modified gelatin. Hydrogel cross-linking and attachment to surface-immobilized gelatin was accomplished through the formation of urethane bonds between gelatin and nitrophenyl carbonate-activated poly (ethylene glycol). Liposomal hydrogel-coated catheters were shown to have an initial ciprofloxacin content of 185+/-16 microg cm(-2). Ciprofloxacin was released over seven days with an average release rate of 1.9+/-0.2 microg cm(-2) h(-1) for the first 94 h. In vitro assays using a clinical isolate of Pseudomonas aeruginosa established the antimicrobial efficacy of the liposomal hydrogel. A modified Kirby-Bauer assay produced growth-inhibition zone diameters of 39+/-1 mm, while bacterial adhesion was completely inhibited on catheter surfaces throughout a seven-day in vitro adhesion assay. This new antimicrobial coating shows promise as a prophylactic and/or treatment for catheter-related infection.

  2. Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels.

    PubMed

    Góralczyk, Krzysztof; Szymańska, Justyna; Gryko, Łukasz; Fisz, Jacek; Rość, Danuta

    2018-05-03

    Endothelium plays a key role in maintaining vascular homeostasis by secreting active factors involved in many biological processes such as hemostasis, angiogenesis, and inflammation. Hyperglycemia in diabetic patients causes dysfunction of endothelial cells. Soluble fractions of adhesion molecules like sE-selectin and vascular cell adhesion molecule (sVCAM) are considered as markers of endothelial damage. The low-level laser therapy (LLLT) effectively supports the conventional treatment of vascular complications in diabetes, for example hard-to-heal wounds in patients with diabetic foot syndrome. The aim of our study was to evaluate the effect of low-energy laser at the wavelength of 635 nm (visible light) and 830 nm (infrared) on the concentration of adhesion molecules: sE-selectin and sVCAM in the supernatant of endothelial cell culture of HUVEC line. Cells were cultured under high-glucose conditions of 30 mM/L. We have found an increase in sE-selectin and sVCAM levels in the supernatant of cells cultured under hyperglycemic conditions. This fact confirms detrimental influence of hyperglycemia on vascular endothelial cell cultures. LLLT can modulate the inflammation process. It leads to a decrease in sE-selectin and sVCAM concentration in the supernatant and an increase in the number of endothelial cells cultured under hyperglycemic conditions. The influence of LLLT is greater at the wavelength of 830 nm.

  3. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less

  4. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  5. Attenuation of postoperative adhesions using a modeled manual therapy.

    PubMed

    Bove, Geoffrey M; Chapelle, Susan L; Hanlon, Katherine E; Diamond, Michael P; Mokler, David J

    2017-01-01

    Postoperative adhesions are pathological attachments that develop between abdominopelvic structures following surgery. Considered unavoidable and ubiquitous, postoperative adhesions lead to bowel obstructions, infertility, pain, and reoperations. As such, they represent a substantial health care challenge. Despite over a century of research, no preventive treatment exists. We hypothesized that postoperative adhesions develop from a lack of movement of the abdominopelvic organs in the immediate postoperative period while rendered immobile by surgery and opiates, and tested whether manual therapy would prevent their development. In a modified rat cecal abrasion model, rats were allocated to receive treatment with manual therapy or not, and their resulting adhesions were quantified. We also characterized macrophage phenotype. In separate experiments we tested the safety of the treatment on a strictureplasty model, and also the efficacy of the treatment following adhesiolysis. We show that the treatment led to reduced frequency and size of cohesive adhesions, but not other types of adhesions, such as those involving intraperitoneal fatty structures. This effect was associated with a delay in the appearance of trophic macrophages. The treatment did not inhibit healing or induce undesirable complications following strictureplasty. Our results support that that maintained movements of damaged structures in the immediate postoperative period has potential to act as an effective preventive for attenuating cohesive postoperative adhesion development. Our findings lay the groundwork for further research, including mechanical and pharmacologic approaches to maintain movements during healing.

  6. Experimental analysis of compaction of concrete and mortar

    NASA Astrophysics Data System (ADS)

    Burlion, Nicolas; Pijaudier-Cabot, Gilles; Dahan, Noël

    2001-12-01

    Compaction of concrete is physically a collapse of the material porous microstructure. It produces plastic strains in the material and, at the same time, an increase of its bulk modulus. This paper presents two experimental techniques aimed at obtaining the hydrostatic response of concrete and mortar. The first one is a uniaxial confined compression test which is quite simple to implement and allows to reach hydrostatic pressures of about 600 MPa. The specimen size is large enough so that concrete with aggregate sizes up to 16 mm can be tested. The second one is a true hydrostatic test performed on smaller (mortar) specimens. Test results show that the hydrostatic response of the material is elasto-plastic with a stiffening effect on both the tangent and unloading bulk moduli. The magnitude of the irreversible volumetric strains depends on the initial porosity of the material. This porosity can be related in a first approximation to the water/cement ratio. A comparison of the hydrostatic responses obtained from the two testing techniques on the same material show that the hydrostatic response of cementitious materials cannot be uncoupled from the deviatoric response, as opposed to the standard assumption in constitutive relations for metal alloys. This feature should be taken into account in the development of constitutive relations for concrete subjected to high confinement pressures which are needed in the modelling of impact problems.

  7. Abdominal Adhesions

    MedlinePlus

    ... Clearinghouse What are abdominal adhesions? Abdominal adhesions are bands of fibrous tissue that can form between abdominal ... Esophagus Stomach Large intestine Adhesion Abdominal adhesions are bands of fibrous tissue that can form between abdominal ...

  8. Complement C3 participation in monocyte adhesion to different surfaces.

    PubMed Central

    McNally, A K; Anderson, J M

    1994-01-01

    As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848

  9. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.

  10. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  11. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  12. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  13. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  14. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  15. The energetics of adhesion in composite materials

    NASA Astrophysics Data System (ADS)

    Harding, Philip Hiram

    Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the

  16. Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling

    PubMed Central

    Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.

    2013-01-01

    Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111

  17. Adhesion

    MedlinePlus

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  18. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    NASA Astrophysics Data System (ADS)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  19. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  20. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaohui; Jacobsen, Stefan; He Jianying

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less

  1. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    NASA Astrophysics Data System (ADS)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  4. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  5. Wood adhesion and adhesives

    Treesearch

    Charles R. Frihart

    2005-01-01

    An appreciation of rheology, material science, organic chemistry, polymer science, and mechanics leads to better understanding of the factors controlling the performance of the bonded assemblies. Given the complexity of wood as a substrate, it is hard to understand why some wood adhesives work better than other wood adhesives, especially when under the more severe...

  6. Biomimetic structured surfaces increase primary adhesion capacity of cartilage implants.

    PubMed

    Lahner, Matthias; Kalwa, Lukas; Olbring, Roxana; Mohr, Charlotte; Göpfert, Lena; Seidl, Tobias

    2015-01-01

    In cartilage repair, scaffold-assisted single-step techniques are used to improve the cartilage regeneration. Nevertheless, the fixation of cartilage implants represents a challenge in orthopaedics, particularly in the moist conditions that pertain during arthroscopic surgery. Within the animal kingdom a broad range of species has developed working solutions to intermittent adhesion under challenging conditions. Using a top-down approach we identified promising mechanisms for biomimetic transfer The tree-frog adhesive system served as a test case to analyze the adhesion capacity of a polyglycolic acid (PGA) scaffold with and without a structural modification in a bovine articular cartilage defect model. To this end, PGA implants were modified with a simplified foot-pad structure and evaluated on femoral articular bovine cartilage lesions. Non-structured PGA scaffolds were used as control. Both implants were pressed on 20 mm × 20 mm full-thickness femoral cartilage defects using a dynamometer. The structured scaffolds showed a higher adhesion capacity on the cartilage defect than the non-structured original scaffolds. The results suggest that the adhesion ability can be increased by means of biomimetic structured surfaces without the need of additional chemical treatment and thus significantly facilitate primary fixation procedures.

  7. Ultra high vacuum adhesion testing of NERVA engine materials

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The primary objective of this research program was to determine the effects of surface cleaning and deliberate gaseous contamination on the adhesion behavior of selected candidate materials for use in the NERVA nuclear rocket engine program. Using a torsion balance technique, the relationship between the normal compressive load applied to crossed rod samples and the resultant contact resistance was used to ascertain the extent of adhesion under each set of experimental conditions. In addition to an evaluation of the static adhesion behavior of selected materials combinations, the experimental apparatus was modified to permit a similar investigation relating to the effects of specific tangential displacements of the sample wires, i.e., their sliding friction behavior. During the course of this subcontract, the materials combinations 440 C vs. 440 C. pyrographite vs ZTA graphite, Nbc (graphite) vs. Nbc (graphite), and Electrolize Inconel 718 vs. Au electroplated 302 S/S were evaluated.

  8. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  9. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.

    PubMed

    Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O

    2013-10-01

    The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. The Effect of Sodium Hydroxide Molarity on Strength Development of Non-Cement Class C Fly Ash Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Wardhono, A.

    2018-01-01

    The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.

  11. 21 CFR 177.1640 - Polystyrene and rubber-modified polystyrene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polystyrene and rubber-modified polystyrene. 177.1640 Section 177.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  12. 21 CFR 177.1640 - Polystyrene and rubber-modified polystyrene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polystyrene and rubber-modified polystyrene. 177.1640 Section 177.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  13. 21 CFR 177.1640 - Polystyrene and rubber-modified polystyrene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polystyrene and rubber-modified polystyrene. 177.1640 Section 177.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  14. 21 CFR 177.1640 - Polystyrene and rubber-modified polystyrene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polystyrene and rubber-modified polystyrene used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polystyrene and rubber-modified polystyrene. 177.1640 Section 177.1640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  15. Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.

    PubMed

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2018-01-16

    Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.

  16. Compressive and flexural strength of high strength phase change mortar

    NASA Astrophysics Data System (ADS)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  17. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    PubMed

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Coulon, J. F.; Tournerie, N.; Maillard, H.

    2013-10-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m2 to 70 mJ/m2 because the plasma pretreatment led to the formation of hydrophilic Csbnd O and Cdbnd O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  19. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    PubMed

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.

  20. Application of a semi-empirical model for the evaluation of transmission properties of barite mortar.

    PubMed

    Santos, Josilene C; Tomal, Alessandra; Mariano, Leandro; Costa, Paulo R

    2015-06-01

    The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of mixing proportion on the properties of seaweed modified sustainable concrete

    NASA Astrophysics Data System (ADS)

    Siddique, Md Nurul Islam; Wahid, Zularisam bin Abd

    2017-10-01

    Although the application of organic polymer has already been reported in the development of polymer modification process the use of carbohydrate polymer hasn't been reported till date. The effect of mixing ratio of seaweed modified mortar on the properties of sustainable concrete was investigated. A number of mixing ratios of seaweed (gel) with cement, sand and water (such as 0.1; 0.6; 1.1; 6) was studied in this work. In addition, a range of mixing ratios of seaweed (powder) with cement, sand and water (such as 0.1; 0.3; 0.6; 1.1; 2.1, 5.1) was examined. The performance of the seaweed modified sustainable concrete was evaluated by compressive and splitting strength. Results revealed that seaweed modified concrete with mixing ratio (0.6) was optimum. This ratio produced significant compressive and splitting strength of 30 MPa and 5 MPa for 28 days, respectively.

  2. Influence of denture adhesives on occlusion and disocclusion times.

    PubMed

    Abdelnabi, Mohamed Hussein; Swelem, Amal Ali; Al-Dharrab, Ayman A

    2016-03-01

    The effectiveness of adhesives in enhancing several functional aspects of complete denture performance has been well established. The direct influence of adhesives on occlusal contact simultaneity has not yet been investigated. The purpose of this crossover clinical trial was to evaluate quantitatively the influence of adhesives on occlusal balance by recording timed occlusal contacts; namely occlusion time (OT) and disocclusion time during right (DT-right) and left (DT-left) excursions by using computerized occlusal analysis. A crossover clinical trial was adopted. Assessments were carried out while participants (n=49) wore their dentures first without then with adhesives. Computerized occlusal analysis using the T-Scan III system was conducted to perform baseline computer-guided occlusal adjustment for conventionally fabricated dentures. Retention and stability assessment using the modified Kapur index and recording of OT and DT-right and DT-left values using the T-Scan III were subsequently carried out for all dentures, first without adhesives and then after application of adhesive. All T-Scan procedures were carried out by the same clinician. Wilcoxon signed-rank test was used to analyze the Kapur index scores and occlusal parameters (α=.05). Stability and retention of conventional dentures ranged initially from good to very good. However, adhesive application resulted in significant improvement (P<.001) in stability and retention and a significant decrease in duration of all occlusal parameters (OT [P=.003], DT-right [P=.003], and DT-left [P=.008]). Adhesives significantly decreased OT and DT durations in initially well-fitting complete dentures with fairly well balanced occlusion, and further enhanced denture stability and occlusal contact simultaneity. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Superstrong encapsulated monolayer graphene by the modified anodic bonding.

    PubMed

    Jung, Wonsuk; Yoon, Taeshik; Choi, Jongho; Kim, Soohyun; Kim, Yong Hyup; Kim, Taek-Soo; Han, Chang-Soo

    2014-01-07

    We report a superstrong adhesive of monolayer graphene by modified anodic bonding. In this bonding, graphene plays the role of a superstrong and ultra-thin adhesive between SiO2 and glass substrates. As a result, monolayer graphene presented a strong adhesion energy of 1.4 J m(-2) about 310% that of van der Waals bonding (0.45 J m(-2)) to SiO2 and glass substrates. This flexible solid state graphene adhesive can tremendously decrease the adhesive thickness from about several tens of μm to 0.34 nm for epoxy or glue at the desired bonding area. As plausible causes of this superstrong adhesion, we suggest conformal contact with the rough surface of substrates and generation of C-O chemical bonding between graphene and the substrate due to the bonding process, and characterized these properties using optical microscopy, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.

  4. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    DOT National Transportation Integrated Search

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  5. Conductive Adhesive Based on Mussel-Inspired Graphene Decoration with Silver Nanoparticles.

    PubMed

    Casa, Marcello; Sarno, Maria; Liguori, Rosalba; Cirillo, Claudia; Rubino, Alfredo; Bezzeccheri, Emanuele; Liu, Johan; Ciambelli, Paolo

    2018-02-01

    Decoration with silver nanoparticles was obtained by coating graphene with a polydopamine layer, able to induce spontaneous metallic nanoparticles formation without any specific chemical interfacial modifier, neither using complex instrumentation. The choice of dopamine was inspired by the composition of adhesive proteins in mussels, related to their robust attach to solid surfaces. The synthesis procedure started from graphite and involved eco-friendly compounds, such as Vitamin C and glucose as reducing agent and water as reaction medium. Silver decorated graphene was inserted as secondary nanofiller in the formulation of a reference conductive adhesive based on epoxy resin and silver flakes. A wide characterization of the intermediate materials obtained along the step procedure for the adhesive preparation was carried out by several techniques. We have found that the presence of nanofiller yields, in addition to an improvement of the thermal conductivity (up to 7.6 W/m · K), a dramatic enhancement of the electrical conductivity of the adhesive. In particular, starting from 3 · 102 S/cm of the reference adhesive, we obtained a value of 4 · 104 S/cm at a nanofiller concentration of 11.5 wt%. The combined double filler conductivity was evaluated by Zallen's model. The effect of the temperature on the resistivity of the adhesive has been also studied.

  6. Design and fabrication of realistic adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Shyprykevich, P.

    1983-01-01

    Eighteen bonded joint test specimens representing three different designs of a composite wing chordwise bonded splice were designed and fabricated using current aircraft industry practices. Three types of joints (full wing laminate penetration, two side stepped; midthickness penetration, one side stepped; and partial penetration, scarfed) were analyzed using state of the art elastic joint analysis modified for plastic behavior of the adhesive. The static tensile fail load at room temperature was predicted to be: (1) 1026 kN/m (5860 1b/in) for the two side stepped joint; (2) 925 kN/m (5287 1b/in) for the one side stepped joint; and (3) 1330 kN/m (7600 1b/in) for the scarfed joint. All joints were designed to fail in the adhesive.

  7. Research on Performance and Microstructure of Sewage Pipe Mortar Strengthened with Different Anti-Corrosion Technologies

    NASA Astrophysics Data System (ADS)

    Mu, Song; Zhou, Huaxin; Shi, Liang; Liu, Jianzhong; Cai, Jingshun; Wang, Feng

    2017-10-01

    Mostly urban underground sewage is the acidic corrosion environment with a high concentration of aggressive ions and microbe, which resulted in performance deterioration and service-life decrease of sewage concrete pipe. In order to effectively protect durability of the concrete pipe, the present paper briefly analysed the main degradation mechanism of concrete pipe attacked by urban underground sewage, and proposed that using penetrating and strengthening surface sealer based on inorganic chemistry. In addition, using index of compressive strength, weight loss and appearance level to investigate the influence of the sealer on corrosion resistance of mortar samples after different dry-wet cycles. Besides, comparative research on effect of the sealer, aluminate cement and admixture of corrosion resistance was also addressed. At last, the SEM technology was used to reveal the improvement mechanism of different technologies of corrosion resistance. The results indicated that the sealer and aluminate cement can significantly improve corrosion resistance of mortar. Besides, the improvement effect can be described as the descending order: the penetrating and strengthening surface sealer > aluminate cement > admixture of corrosion resistance. The mortar sample treated with the sealer displayed the condensed and sound microstructure which proved that the sealer can improve the corrosion resistance to urban underground sewage.

  8. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Ding, Gang; Li, Jinlu; Yang, Shenhui; Fang, Bisong; Sun, Hongchen; Zhou, Yanmin

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased ( p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  9. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    PubMed Central

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  10. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  11. Microleakage of adhesive and nonadhesive luting cements for stainless steel crowns.

    PubMed

    Memarpour, Mahtab; Mesbahi, Maryam; Rezvani, Gita; Rahimi, Mehran

    2011-01-01

    This study's purpose was to compare the ability of 5 luting cements to reduce microleakage at stainless steel crown (SSC) margins on primary molar teeth. Standard preparations were performed on 100 extracted primary molar teeth for SSC restoration. After fitting SSCs, samples were randomly divided into 5 groups of 20 teeth each, which were cemented with nonadhesive cement consisting of polycarboxylate (PC) or zinc phosphate (ZP), or with adhesive cement consisting of glass ionomer (GIC), resin-modified glass ionomer cement (RMGIC), or RMGIC with a bonding agent (RMGIC+DBA). After aging and thermocycling, the specimens were placed in 1% methylene blue, sectioned, and evaluated under a digital microscope. The data were compared between groups with the t test, analysis of variance, and the least significant difference test. Microleakage with adhesive cements was significantly lower than with nonadhesive cements (P<.05). Differences between cements were statistically significant at P<.001. RMGIC+DBA showed the lowest microleakage, followed in increasing order by RMGIC, GIC, and ZP. The PC cement showed the greatest microleakage. Adhesive cements were more effective in reducing microleakage in stainless steel crowns than nonadhesive cements. Use of a bonding agent with a resin-modified glass ionomer cement yielded better results than using the latter alone.

  12. Characterization of solidified radioactive waste due to the incorporation of high- and low-density polyethylene granules and titanium dioxide in mortar matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peric, A.

    1997-12-31

    The rutile form of titanium dioxide and granules of high density polyethylene (PEHD) and low density polyethylene (PELD) were used to prepare mortar matrices for immobilization of radioactive waste materials containing {sup 137}Cs. PELD, PEHD and TiO{sub 2} were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide. One type of PELD and two types of PEHD were used to replace 50 wt.% of stone granules normally used in the matrix, in order to decrease the porosity and density of the mortar matrix andmore » to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. TiO{sub 2} was also added to the mortar formulation, replacing 5 and 8 wt.% of the total cement weight. Cured samples were investigated under temperature stress conditions, where the temperature extremes were: T{sub min} = {minus}20 C, T{sub max} = +70 C. Samples were periodically immersed in distilled water at the ambient room temperature, after each freezing and heating treatment. Results of accelerated leaching experiments for these samples and samples prepared exclusively with polyethylenes replacing 100% of the stone granules and TiO{sub 2}, treated in nonaccelerated leaching experiments, were compared. Even using an accelerated ageing leach test that overestimates {sup 137}Cs leach rates, it can be deduced, that radionuclide leach rates from the radioactive waste mortar mixture forms were improved. Leach rates decreased from 5%, for the material prepared with stone aggregate, to 3.1 to 4.0%, for the materials prepared solely with PEHD, PELD or TiO{sub 2}, and to about 3% for all six types of the TiO{sub 2}-PEHD and TiO{sub 2}-PELD mixtures tested.« less

  13. Incorporation mode effect of Nano-silica on the rheological and mechanical properties of cementitious pastes and cement mortars

    NASA Astrophysics Data System (ADS)

    Safi, B.; Aknouche, H.; Mechakra, H.; Aboutaleb, D.; Bouali, K.

    2018-04-01

    Previous research indicates that the inclusion of nanosilica (NS) modifies the properties of the fresh and hardened state, compared to the traditional mineral additions. NS decreases the setting times of the cement mortar compared to silica fume (SF) and reduce of required water while improving the cohesion of the mixtures in the fresh state. Some authors estimate that the appropriate percentage of Nano-silica should be small (1 to 5% by weight) because of difficulties caused by agglomeration to particles during mixing, while others indicate that 10% by weight, if adjustments are made to the formulation to avoid an excess of self-drying and micro cracks that could impede strength. For this purpose, the present work aim to see the effect of the introduction mode of the nanosilica on the rheological and physic mechanical properties of cement mortars. In this study, NS was used either powdered with cement or in solution with the superplasticizer (Superplasticizer doped in nanosilica). Results show that the use of nanosilica powder (replacing cement on the one hand) has a negative influence on the rheological parameters and the rheological behavior of cementitious pastes. However, the introduction of nanosilica in solution in the superplasticizer (SP) was significantly improved the rheological parameters and the rheological behavior of cementitious pastes. Indeed, more the dosage of NS-doped SP increases more the shear stress and viscosities of the cementitious pastes become more fluid and manageable. A significant reduction of shear stress and plastic viscosity were observed that due to the increase in superplasticizer. A dosage of 1.5% NS-doped SP gave adequate fluidity and the shear rate was lower.

  14. Behavior of fiber reinforced mortar joints in masonry walls subjected to in-plane shear and out-of-plane bending

    NASA Astrophysics Data System (ADS)

    Armwood, Catherine K.

    In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.

  15. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    PubMed

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  16. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  17. The influence of adhesive on fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua

    2009-08-01

    A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.

  18. Conformational analysis of a modified RGD adhesive sequence.

    PubMed

    Triguero, Jordi; Zanuy, David; Alemán, Carlos

    2017-02-01

    The conformational preferences of the Arg-GlE-Asp sequence, where GlE is an engineered amino acid bearing a 3,4-ethylenedioxythiophene (EDOT) ring as side group, have been determined combining density functional theory calculations with a well-established conformational search strategy. Although the Arg-GlE-Asp sequence was designed to prepare a conducting polymer-peptide conjugate with excellent electrochemical and bioadhesive properties, the behavior of such hybrid material as adhesive biointerface is improvable. Results obtained in this work prove that the bioactive characteristics of the parent Arg-Gly-Asp sequence become unstable in Arg-GlE-Asp because of both the steric hindrance caused by the EDOT side group and the repulsive interactions between the oxygen atoms belonging to the backbone amide groups and the EDOT side group. Detailed analyses of the conformational preferences identified in this work have been used to re-engineer the Arg-GlE-Asp sequence for the future development of a new electroactive conjugate with improved bioadhesive properties. The preparation of this new conjugate is in progress. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  19. The development of autoclave processable, thermally stable adhesives for titanium alloy and graphite composite structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.

    1971-01-01

    The A-type polyimide adhesive resin P11B was modified by use of mixed diamines (thio-dianiline and meta phenylene diamine) which provided the desired autoclave processability. This new resin was termed P11BA. It was shown that copolymeric blends of P11BA and Amoco AI-1137 amide-imide resin provided improved adhesive properties when autoclave processed over the properties obtained previously by press bonding with P11B based copolymeric blended adhesives. Properties of bonded assemblies are presented for long-term aging at both elevated and low temperatures, and also stress-rupture tests at elevated temperature.

  20. Early Adhesion of Candida albicans onto Dental Acrylic Surfaces.

    PubMed

    Aguayo, S; Marshall, H; Pratten, J; Bradshaw, D; Brown, J S; Porter, S R; Spratt, D; Bozec, L

    2017-07-01

    Denture-associated stomatitis is a common candidal infection that may give rise to painful oral symptoms, as well as be a reservoir for infection at other sites of the body. As poly (methyl methacrylate) (PMMA) remains the main material employed in the fabrication of dentures, the aim of this research was to evaluate the adhesion of Candida albicans cells onto PMMA surfaces by employing an atomic force microscopy (AFM) single-cell force spectroscopy (SCFS) technique. For experiments, tipless AFM cantilevers were functionalized with PMMA microspheres and probed against C. albicans cells immobilized onto biopolymer-coated substrates. Both a laboratory strain and a clinical isolate of C. albicans were used for SCFS experiments. Scanning electron microscopy (SEM) and AFM imaging of C. albicans confirmed the polymorphic behavior of both strains, which was dependent on growth culture conditions. AFM force-spectroscopy results showed that the adhesion of C. albicans to PMMA is morphology dependent, as hyphal tubes had increased adhesion compared with yeast cells ( P < 0.05). C. albicans budding mother cells were found to be nonadherent, which contrasts with the increased adhesion observed in the tube region. Comparison between strains demonstrated increased adhesion forces for a clinical isolate compared with the lab strain. The clinical isolate also had increased survival in blood and reduced sensitivity to complement opsonization, providing additional evidence of strain-dependent differences in Candida-host interactions that may affect virulence. In conclusion, PMMA-modified AFM probes have shown to be a reliable technique to characterize the adhesion of C. albicans to acrylic surfaces.

  1. Application of High-Impact Polystyrene (HIPS) as a Graphene Nanoparticle Reinforced Composite Thermoplastic Adhesive

    NASA Astrophysics Data System (ADS)

    Stitt, Erik

    Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.

  2. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  3. Classification review of dental adhesive systems: from the IV generation to the universal type

    PubMed Central

    Sofan, Eshrak; Sofan, Afrah; Palaia, Gaspare; Tenore, Gianluca; Romeo, Umberto; Migliau, Guido

    2017-01-01

    Summary Adhesive dentistry has undergone great progress in the last decades. In light of minimal-invasive dentistry, this new approach promotes a more conservative cavity design, which relies on the effectiveness of current enamel-dentine adhesives. Adhesive dentistry began in 1955 by Buonocore on the benefits of acid etching. With changing technologies, dental adhesives have evolved from no-etch to total-etch (4th and 5th generation) to self-etch (6th, 7th and 8th generation) systems. Currently, bonding to dental substrates is based on three different strategies: 1) etch-and-rinse, 2) self-etch and 3) resin-modified glass-ionomer approach as possessing the unique properties of self-adherence to the tooth tissue. More recently, a new family of dentin adhesives has been introduced (universal or multi-mode adhesives), which may be used either as etch-and-rinse or as self-etch adhesives. The purpose of this article is to review the literature on the current knowledge for each adhesive system according to their classification that have been advocated by many authorities in most operative/restorative procedures. As noted by several valuable studies that have contributed to understanding of bonding to various substrates helps clinicians to choose the appropriate dentin bonding agents for optimal clinical outcomes. PMID:28736601

  4. Block Copolymer Adhesion Measured by Contact Mechanics Methods

    NASA Astrophysics Data System (ADS)

    Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.

    1997-03-01

    Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.

  5. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar.

    PubMed

    Herbrand, Martin; Adam, Viviane; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-09-19

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented.

  6. Strengthening of Existing Bridge Structures for Shear and Bending with Carbon Textile-Reinforced Mortar

    PubMed Central

    Herbrand, Martin; Classen, Martin; Kueres, Dominik; Hegger, Josef

    2017-01-01

    Increasing traffic loads and changes in code provisions lead to deficits in shear and flexural capacity of many existing highway bridges. Therefore, a large number of structures are expected to require refurbishment and strengthening in the future. This projection is based on the current condition of many older road bridges. Different strengthening methods for bridges exist to extend their service life, all having specific advantages and disadvantages. By applying a thin layer of carbon textile-reinforced mortar (CTRM) to bridge deck slabs and the webs of pre-stressed concrete bridges, the fatigue and ultimate strength of these members can be increased significantly. The CTRM layer is a combination of a corrosion resistant carbon fiber reinforced polymer (CFRP) fabric and an efficient mortar. In this paper, the strengthening method and the experimental results obtained at RWTH Aachen University are presented. PMID:28925962

  7. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion

    PubMed Central

    Dart, Anna E.; Box, Gary M.; Court, William; Gale, Madeline E.; Brown, John P.; Pinder, Sarah E.; Eccles, Suzanne A.

    2015-01-01

    P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration. PMID:26598620

  8. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  9. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  10. Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin

    2016-08-01

    This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.

  11. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia.

    PubMed

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000-13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500-11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution.

  12. The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar

    NASA Astrophysics Data System (ADS)

    Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian

    Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.

  13. Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars.

    PubMed

    Pagnotta, Stefano; Lezzerini, Marco; Ripoll-Seguer, Laura; Hidalgo, Montserrat; Grifoni, Emanuela; Legnaioli, Stefano; Lorenzetti, Giulia; Poggialini, Francesco; Palleschi, Vincenzo

    2017-04-01

    The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm 2 , with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.

  14. Influence of Curing on the Strength Development of Calcium-Containing Geopolymer Mortar

    PubMed Central

    Li, Xueying; Wang, Zheng; Jiao, Zhenzhen

    2013-01-01

    This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)2 showed slow increase till the age of 28 days. Under these non-standard conditions (2–4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor. PMID:28788377

  15. Influence of Curing on the Strength Development of Calcium-Containing Geopolymer Mortar.

    PubMed

    Li, Xueying; Wang, Zheng; Jiao, Zhenzhen

    2013-11-07

    This paper investigated the curing effects on the mechanical properties of calcium-containing geopolymer mortar. Three precursors are used: Class C fly ash, Class F fly ash plus calcium hydroxide and Class F fly ash plus slag. Curing conditions included: (1) standard curing at 20 ± 3 °C and RH 95% (C); (2) steam curing at 60 °C for 24 h (S); (3) steam curing at 60 °C for 6 h (S6); and (4) oven curing at 60 °C for 24 h (O), then the latter three followed by the standard curing. Under the standard conditions, the flexural strength and compressive strength of Class C fly ash geopolymer mortars developed quickly until the age of 7 days, followed by a gradual increase. Specimens with Class F fly ash plus Ca(OH)₂ showed slow increase till the age of 28 days. Under these non-standard conditions (2-4), all specimens showed higher 3-day strength, while later strengths were either higher or lower than those in standard conditions, depending on the type of the precursor.

  16. Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method

    NASA Astrophysics Data System (ADS)

    Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa

    2014-02-01

    Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.

  17. Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses

    NASA Astrophysics Data System (ADS)

    Yuan, Liu; Fan, Wenshuai; Han, Linyingjun; Guo, Changan; Yan, Zuoqin; Zhu, Meifang; Mo, Xiumei

    2018-03-01

    In this study, natural materials (sodium alginate, dextran, gelatin and carboxymethyl chitosan) were modified to get aldehyde components and amino components. Upon mixing the two-component solutions together, four kinds of Schiff base hydrogels formed successfully within 5-300 s and could seal the wound tissue. The cytotoxicity tests of hydrogel extraction solution confirmed that the hydrogels are nontoxic materials. The adhesive ability was evaluated in vivo by measuring the adhesive strength after sealing the skin incisions on the back of rats. All the hydrogels showed higher adhesive strength than that of commercial fibrin glue and the blank control. The histological staining observation by hematoxylin and eosin staining (HE) and Masson's trichrome staining (MTC) methods suggested that the hydrogels had good biocompatibility and biodegradation in vivo. They have only normal initial inflammation to skin tissue and could improve the formation of new collagen in the incision section. So, the prepared hydrogels were both safe and effective tissue adhesive, which had the great potentials to be used as skin tissue adhesive.

  18. Petrographic microscope investigation of mortar and ceramic technologies for the conservation of the built heritage

    NASA Astrophysics Data System (ADS)

    Pavia, S.; Caro, S.

    2007-07-01

    Polarised-light (or petrographic) microscopy has been widely applied to heritage materials to assess composition and diagnose damage. However, instead, this paper focuses on the petrographic investigation of brick and mortar technologies for the production of quality repair materials compatible with their adjacent fabrics. Furthermore, the paper relates production technologies to the physical properties of the materials fabricated, and thus their final quality and durability. According to Cesare Brandi´s theory of compatibility (the 20th century architect on whose work modern conservation theory and practice are largely based) existing historic materials should be replaced with their equivalent. This paper demonstrates that polarised-light microscopy provides data on the origin and nature of raw materials, and processing parameters such as blending, mixing, firing, calcination and slaking, and how these relate to the quality of the final product. In addition, this paper highlights the importance of production technologies as these directly impact the physical properties of the materials fabricated and thus determine their final quality and durability. In this context, the paper investigates mortar calcination and slaking, two important operations in the manufacture of building limes that govern the reactivity, shrinkage and water retention of a lime binder which will impact mortar's properties such as workability, plasticity and carbonation speed, and these in turn will determine the ease of execution, durability and strength of a lime mortar. Petrographic analysis also provides evidence of ceramic technology including identification of local or foreign production and processing parameters such as sieving, blending, mixing and firing. A petrographic study of the ceramic matrix coupled to the diagnosis of mineral phases formed during firing allows to quantify sintering and vitrification and thus determine firing temperatures. Finally, certain features of the raw

  19. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.

    PubMed

    Solouk, Atefeh; Cousins, Brian G; Mirahmadi, Fereshteh; Mirzadeh, Hamid; Nadoushan, Mohammad Reza Jalali; Shokrgozar, Mohammad Ali; Seifalian, Alexander M

    2015-01-01

    To date, there are no small internal diameter (<5mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. POSS-PCU was activated by plasma treatment in air/O2 to from hydroperoxides (-OH, -OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Poly-AA content on each of the plasma treated nanocomposite films increased on Low, Med and High samples due

  20. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  1. Design and basic properties of ternary gypsum-based mortars

    NASA Astrophysics Data System (ADS)

    Doleželová, M.; Vimmrová, A.

    2017-10-01

    Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.

  2. Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures.

    PubMed

    Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John

    2012-04-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

  3. Protein adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  4. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal.

    PubMed

    Collingwood, Scott; Heitbrink, William A

    2007-11-01

    During mortar removal with a right angle grinder, a building renovation process known as "tuck pointing," worker exposures to respirable crystalline silica can be as high as 5 mg/m(3), 100 times the recommended exposure limit developed by the National Institute for Occupational Safety and Health. To reduce the risk of silicosis among these workers, a vacuum cleaner can be used to exhaust 80 ft(3)/min (2.26 m(3)/min) from a hood mounted on the grinder. Field trials examined the ability of vacuum cleaners to maintain adequate exhaust ventilation rates and measure exposure outcomes when using this engineering control. These field trials involved task-based exposure measurement of respirable dust and crystalline silica exposures during mortar removal. These measurements were compared with published exposure data. Vacuum cleaner airflows were obtained by measuring and digitally logging vacuum cleaner static pressure at the inlet to the vacuum cleaner motor. Static pressures were converted to airflows based on experimentally determined fan curves. In two cases, video exposure monitoring was conducted to study the relationship between worker activities and dust exposure. Worker activities were video taped concurrent with aerosol photometer measurement of dust exposure and vacuum cleaner static pressure as a measure of airflow. During these field trials, respirable crystalline silica exposures for 22 samples had a geometric mean of 0.06 mg/m(3) and a range of less than 0.01 to 0.86 mg/m(3). For three other studies, respirable crystalline silica exposures during mortar removal have a geometric means of 1.1 to 0.35. Although this field study documented noticeably less exposure to crystalline silica, video exposure monitoring found that the local exhaust ventilation provided incomplete dust control due to low exhaust flow rates, certain work practices, and missing mortar. Vacuum cleaner airflow decrease had a range of 3 to 0.4 ft(3)/min (0.08 to 0.01 m(3)/sec(2)) over a range

  5. Properties of microcement mortar with nano particles

    NASA Astrophysics Data System (ADS)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0

  6. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars.

    PubMed

    Durán-Herrera, A; Campos-Dimas, J K; Valdez-Tamez, P L; Bentz, D P

    2016-07-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity ( k ) of the composite. Mortars were produced for three different water/binder ratios by mass ( w/b ), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kg f /cm 2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator.

  7. Effect of a micro-copolymer addition on the thermal conductivity of fly ash mortars

    PubMed Central

    Durán-Herrera, A.; Campos-Dimas, J. K.; Valdez-Tamez, P.L.; Bentz, D. P.

    2015-01-01

    In this study, a copolymer composed of hollow spherical particles with an average particle size of 90 µm was evaluated as a lightweight aggregate in Portland cement-fly ash mortars to improve the thermal conductivity (k) of the composite. Mortars were produced for three different water/binder ratios by mass (w/b), 0.4, 0.5 and 0.6. Optimized proportions were obtained for a minimum target compressive strength of 35 kgf/cm2 (3.4 MPa) according to the requirements of Mexican standards for non-structural masonry units. Thermal conductivity was determined for dry and saturated samples through the transient plane technique with average results of 0.16 W/(m·K) and 0.31 W/(m·K), respectively. These values represent an increment of 23 % and a reduction of 33 %, respectively, in comparison to an efficient Portland cement-based commercially available thermal insulator. PMID:27453717

  8. Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar.

    PubMed

    Mignon, Arn; Devisscher, Dries; Vermeulen, Jolien; Vagenende, Maxime; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-07-15

    Smart pH-responsive superabsorbent polymers (SAPs) could be useful for self-healing of cracks in mortar. They will swell minimally during the alkaline conditions of mixing, leading to only small macro-pores but will swell stronger with a lower pH when water enters the cracks. As such, polysaccharides (alginate, chitosan and agarose) were methacrylated and cross-linked with amine-based monomers (dimethylaminoethyl methacrylate and dimethylaminopropyl methacrylamide) to induce a varying pH-sensitivity. These materials showed a strong cross-linking efficiency and induced moisture uptake capacities up to 122% at 95% relative humidity with a negligible hysteresis. Additionally, interesting pH-responsive swelling capacities were obtained, especially for SAPs based on chitosan and agarose with values up to 110gwater/gSAP. Most of these materials showed limited hydrolysis in cement filtrate solutions, making them very promising for use in mortar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  10. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range.

    PubMed

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-16

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm -2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a 'nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  11. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates.

    PubMed

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel; Gutiérrez-Arzaluz, Mirella; Romero-Romo, Mario

    2017-09-27

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO₂) nanoparticles plus zirconia (ZrO₂) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO₂ nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO₂ nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR).

  12. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    PubMed Central

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel

    2017-01-01

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO2) nanoparticles plus zirconia (ZrO2) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR). PMID:28953243

  13. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  14. Germinant-Enhanced Decontamination of Bacillus Spores Adhered to Iron and Cement-Mortar Drinking Water Infrastructures

    PubMed Central

    Muhammad, Nur; Heckman, Lee; Rice, Eugene W.; Hall, John

    2012-01-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone. PMID:22267659

  15. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  16. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  17. Experimental Barley Flour Production in 12,500-Year-Old Rock-Cut Mortars in Southwestern Asia

    PubMed Central

    Eitam, David; Kislev, Mordechai; Karty, Adiel; Bar-Yosef, Ofer

    2015-01-01

    Experimental archaeology at a Natufian site in the Southern Levant documents for the first time the use of 12,500-year-old rock-cut mortars for producing wild barley flour, some 2,000 to 3,000 years before cereal cultivation. Our reconstruction involved processing wild barley on the prehistoric threshing floor, followed by use of the conical mortars (a common feature in Natufian sites), thereby demonstrating the efficient peeling and milling of hulled grains. This discovery complements nearly 80 years of investigations suggesting that the Natufians regularly harvested almost-ripe wild cereals using sickles hafted with flint blades. Sickles had been replicated in the past and tested in the field for harvesting cereals, thusly obtaining the characteristic sheen along the edge of the hafted flint blades as found in Natufian remnants. Here we report that Natufian wide and narrow conical mortars enabled the processing of wild barley for making the groats and fine flour that provided considerable quantities of nourishment. Dishes in the Early Natufian (15,000–13,500 CalBP) were groat meals and porridge and subsequently, in the Late Natufian (13,500–11,700 CalBP), we suggest that unleavened bread made from fine flour was added. These food preparing techniques widened the dietary breadth of the sedentary Natufian hunter-gatherers, paving the way to the emergence of farming communities, the hallmark of the Neolithic Revolution. PMID:26230092

  18. Properties of Roman bricks and mortars used in Serapis temple in the city of Pergamon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkaya, Ozlem Aslan; Boeke, Hasan, E-mail: hasanboke@iyte.edu.tr

    Serapis temple, which was constructed in the Roman period in the city of Pergamon (Bergama/Turkey), is one of the most important monuments of the world heritage. In this study, the characteristics of bricks and mortars used in the temple have been determined in order to define the necessary characteristics of the intervention materials, which will be used in the conservation works of the temple. Several analyses were carried out to determine their basic physical properties, raw material compositions, mineralogical and microstructural properties using X-ray diffraction, Scanning Electron Microscope and a Thermo Gravimetric Analyzer. Analysis results indicated that the mortars aremore » stiff, compact and hydraulic due to the use of natural pozzolanic aggregates. The Roman bricks are of low density, high porosity and were produced from raw materials containing calcium poor clays fired at low temperatures.« less

  19. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    PubMed

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  20. Glucosamine Treatment-mediated O-GlcNAc Modification of Paxillin Depends on Adhesion State of Rat Insulinoma INS-1 Cells*

    PubMed Central

    Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon

    2010-01-01

    Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364

  1. Chapter 9:Wood Adhesion and Adhesives

    Treesearch

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  2. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells.

    PubMed

    Pashkuleva, I; Marques, A P; Vaz, F; Reis, R L

    2005-01-01

    The surface modification of three starch based polymeric biomaterials, using a KMnO4/HNO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows--starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.

  3. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  4. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    NASA Astrophysics Data System (ADS)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  5. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  6. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  7. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  8. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less

  9. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  10. Controlling the cell adhesion property of silk films by graft polymerization.

    PubMed

    Dhyani, Vartika; Singh, Neetu

    2014-04-09

    We report here a graft polymerization method to improve the cell adhesion property of Bombyx mori silk fibroin films. B. mori silk has evolved as a promising material for tissue engineering because of its biocompatibility and biodegradability. However, silk's hydrophobic character makes cell adhesion and proliferation difficult. Also, the lack of sufficient reactive amino acid residues makes biofunctionalization via chemical modification challenging. Our study describes a simple method that provides increased chemical handles for tuning of the surface chemistry of regenerated silk films (SFs), thus allowing manipulation of their bioactivity. By grafting pAAc and pHEMA via plasma etching, we have increased carboxylic acid and hydroxyl groups on silk, respectively. These modifications allowed us to tune the hydrophilicity of SFs and provide functional groups for bioconjugation. Our strategy also allowed us to develop silk-based surface coatings, where spatial control over cell adhesion can be achieved. This control over cell adhesion in a particular region of the SFs is difficult to obtain via existing methods of modifying the silk fibroin instead of the SF surface. Thus, our strategy will be a valuable addition to the toolkit of biofunctionalization for enhancing SFs' tissue engineering applications.

  11. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    PubMed

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm 2 ) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  12. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  13. Comparison of enamel discoloration associated with bonding with three different orthodontic adhesives and cleaning-up with four different procedures.

    PubMed

    Ye, Cui; Zhao, Zhihe; Zhao, Qing; Du, Xi; Ye, Jun; Wei, Xing

    2013-11-01

    The aim of this study was to compare whether there was any difference in the enamel discoloration after staining when three orthodontic adhesives and four enamel clean-up methods were tested. Three types of orthodontic adhesives were used: chemically cured resin, light-cured resin and resin-modified glass-ionomer cement. A total of 120 human extracted premolars were included. 10 teeth of each orthodontic adhesive were randomly cleaned-up with one of four different procedures and stained in coffee for seven days: (1) carbide bur (TC); (2) carbide bur; Sof-Lex polishers (TC+SL); (3) carbide bur and one gloss polishers (TC+OG); and (4) carbide bur and PoGo polishers (TC+PG). Color measurements were made with Crystaleye dental spectrophotometer at baseline and after storage in a coffee solution one week. Two-way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The color change values of the adhesive materials in the TC groups were the greatest. The lowest ΔE* values were obtained from the TC+SL groups. However, there were no significant difference between the TC+SL and TC+PG groups (P>0.05). The resin-modified glass-ionomer cement groups showed the lowest color differences and chemically cured resin groups showed the highest ΔE* values among all the orthodontic adhesives (P<0.05). The color change of enamel surface was affected by the type of adhesive materials and cleanup procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses

    NASA Astrophysics Data System (ADS)

    Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel

    2015-02-01

    Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out.

  15. Effect of Nano-CuO on Engineering and Microstructure Properties of Fibre-Reinforced Mortars Incorporating Metakaolin: Experimental and Numerical Studies

    PubMed Central

    Ghanei, Amir; Jafari, Faezeh; Mehrinejad Khotbehsara, Mojdeh; Mohseni, Ehsan; Cui, Hongzhi

    2017-01-01

    In this study, the effects of nano-CuO (NC) on engineering properties of fibre-reinforced mortars incorporating metakaolin (MK) were investigated. The effects of polypropylene fibre (PP) were also examined. A total of twenty-six mixtures were prepared. The experimental results were compared with numerical results obtained by adaptive neuro-fuzzy inference system (ANFIS) and Primal Estimated sub-GrAdient Solver for SVM (Pegasos) algorithm. Scanning Electron Microscope (SEM) was also employed to investigate the microstructure of the cement matrix. The mechanical test results showed that both compressive and flexural strengths of cement mortars decreased with the increase of MK content, however the strength values increased significantly with increasing NC content in the mixture. The water absorption of samples decreased remarkably with increasing NC particles in the mixture. When PP fibres were added, the strengths of cement mortars were further enhanced accompanied with lower water absorption values. The addition of 2 wt % and 3 wt % nanoparticles in cement mortar led to a positive contribution to strength and resistance to water absorption. Mixture of PP-MK10NC3 indicated the best results for both compressive and flexural strengths at 28 and 90 days. SEM images illustrated that the morphology of cement matrix became more porous with increasing MK content, but the porosity reduced with the inclusion of NC. In addition, it is evident from the SEM images that more cement hydration products adhered onto the surface of fibres, which would improve the fibre–matrix interface. The numerical results obtained by ANFIS and Pegasos were close to the experimental results. The value of R2 obtained for each data set (validate, test and train) was higher than 0.90 and the values of mean absolute percentage error (MAPE) and the relative root mean squared error (PRMSE) were near zero. The ANFIS and Pegasos models can be used to predict the mechanical properties and water

  16. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escoda, J.; Departement Materiaux et Mecanique des Composants, Electricite de France, Moret-sur-Loing; Willot, F., E-mail: francois.willot@ensmp.f

    2011-05-15

    This study concerns the prediction of the elastic properties of a 3D mortar image, obtained by micro-tomography, using a combined image segmentation and numerical homogenization approach. The microstructure is obtained by segmentation of the 3D image into aggregates, voids and cement paste. Full-fields computations of the elastic response of mortar are undertaken using the Fast Fourier Transform method. Emphasis is made on highly-contrasted properties between aggregates and matrix, to anticipate needs for creep or damage computation. The representative volume element, i.e. the volume size necessary to compute the effective properties with a prescribed accuracy, is given. Overall, the volumes usedmore » in this work were sufficient to estimate the effective response of mortar with a precision of 5%, 6% and 10% for contrast ratios of 100, 1000 and 10,000, resp. Finally, a statistical and local characterization of the component of the stress field parallel to the applied loading is carried out.« less

  17. Influence of Etching Mode on Enamel Bond Durability of Universal Adhesive Systems.

    PubMed

    Suzuki, T; Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Endo, H; Erickson, R L; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to determine the enamel bond durability of three universal adhesives in different etching modes through fatigue testing. The three universal adhesives used were Scotchbond Universal, Prime&Bond Elect universal dental adhesive, and All-Bond Universal light-cured dental adhesive. A single-step self-etch adhesive, Clearfil S 3 Bond Plus was used as a control. The shear bond strength (SBS) and shear fatigue strength (SFS) to human enamel were evaluated in total-etch mode and self-etch mode. A stainless steel metal ring with an internal diameter of 2.4 mm was used to bond the resin composite to the flat-ground (4000-grit) tooth surfaces for determination of both SBS and SFS. For each enamel surface treatment, 15 specimens were prepared for SBS and 30 specimens for SFS. The staircase method for fatigue testing was then used to determine the SFS of the resin composite bonded to the enamel using 10-Hz frequencies for 50,000 cycles or until failure occurred. Scanning electron microscopy was used to observe representative debonded specimen surfaces and the resin-enamel interfaces. A two-way analysis of variance and the Tukey post hoc test were used for analysis of the SBS data, whereas a modified t-test with Bonferroni correction was used for the SFS data. All adhesives in total-etch mode showed significantly higher SBS and SFS values than those in self-etch mode. Although All-Bond Universal in self-etch mode showed a significantly lower SBS value than the other adhesives, there was no significant difference in SFS values among the adhesives in this mode. All adhesives showed higher SFS:SBS ratios in total-etch mode than in self-etch mode. With regard to the adhesive systems used in this study, universal adhesives showed higher enamel bond strengths in total-etch mode. Although the influence of different etching modes on the enamel-bonding performance of universal adhesives was found to be dependent on the adhesive material, total-etch mode

  18. SEM/EDX and vis spectrophotometry study of the stability of resin-bound mortars used for casting replicas and filling missing parts of historic stone fountains.

    PubMed

    Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza

    2003-04-01

    A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.

  19. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  20. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.