Science.gov

Sample records for modified van der

  1. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  2. van der Waals torque

    NASA Astrophysics Data System (ADS)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  3. [The 'van der Linden' retainer].

    PubMed

    van der Linden, F P

    2003-11-01

    Normally, only the anterior teeth have to be retained after an orthodontic treatment. For that purpose, a lingually bonded wire is preferred in the mandible and a removable plate in the maxilla. The design of the Van der Linden-retainer is based on theoretical considerations and secures rigid fixation of the six anterior teeth with solid anchorage in that region. A retention plate should not be used to move anterior teeth. However, with instant corrections small improvements can be realized. The fabrication and clinical use of the Van der Linden-retainer is explained and illustrated. PMID:14669487

  4. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  5. ARPES studies of van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Lu, Xiaobo; Chen, Guorui; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    Van der Waals heterostructures are a novel class of ``materials by design'' which are formed by stacking different two-dimensional crystals together via van der Waals interaction. The periodic potential by the Moir é superlattice can be used as a control knob for tuning the electronic properties of two dimensional materials and can induce various novel quantum phenomena. Here we report direct electronic structure studies the of a model van der Waals heterostructure using angle-resolved photoemission spectroscopy (ARPES). This work is supported by the National Natural Science Foundation of China and Ministry of Education of China.

  6. a Modified Van Der Pauw Setup for Measuring the Resistivity and Thermopower of Thermoelectric Materials of Varying Thicknesses

    NASA Astrophysics Data System (ADS)

    Hitchcock, Dale; Waldrop, Spencer; Williams, Jared; Tritt, Terry M.

    2013-10-01

    In the investigation of thermoelectric (TE) materials as a practical, and efficient, means of power generation/ refrigeration nearly ninety percent of the possible high-efficient binary compounds have been evaluated. But only a few proved to be useful such as Bi2Te3 alloys, PbTe and SiGe to name the most important materials. Therefore, in order to expand the research of high-efficiency TE materials new compounds and methods of efficiency optimization must be explored. There currently exist a vast number of uninvestigated ternary and quaternary materials that could be potential high-efficiency thermoelectric materials. The device and methodology discussed herein deal with rapidly measuring both the electrical resistivity and the Seebeck coefficient of thermoelectric materials, at a set temperature of T ≈ 300 K. Using nontraditional resistivity measurements and rapid, room-temperature thermopower measurements, a reliable and time-efficient means of gauging the power factor (defined below) values of newly synthesized thermoelectric materials is achievable. Furthermore, the efficacy of the van der Pauw technique for measuring the resistivity of thermoelectric materials has been verified.

  7. Genetics Home Reference: van der Woude syndrome

    MedlinePlus

    ... people with this disorder are born with a cleft lip , a cleft palate (an opening in the roof ... People with van der Woude syndrome who have cleft lip and/or palate, like other individuals with these ...

  8. The Forced van der Pol Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2009-01-01

    We report on a study of the forced van der Pol equation x + [epsilon](x[superscript 2] - 1)x + x = F cos[omega]t, by solving numerically the differential equation for a variety of values of the parameters [epsilon], F and [omega]. In doing so, many striking and interesting trajectories can be discovered and phenomena such as frequency entrainment,…

  9. Obituary for Jan van der Pers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a short but valiant struggle against cancer, Jan van der Pers died on 29 April, 2006 in the hospital in Hilversum, The Netherlands, close to his home. Our conversations with Jan during the last months of his life showed the remarkable strength and positive attitude typical of him. Discussions...

  10. Resonance broadening and van der waals broadening

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.

    2010-11-01

    Resonance broadening is important for the hydrogen lines in the spectra of F-type and later stars. In the corresponding temperature regime, the extended wings of the Balmer lines are used as a stellar effective temperature indicator. We show the effect of the use of two broadening theories, Ali & Griem (1965, 1966) and Barklem et al. (2000a, 2000b), on the effective temperature derived in non-LTE from Hα and Hβ in the Sun and the metal-poor star HD19445. Van der Waals broadening is important for strong spectral lines in the atmospheres of F-type and later stars. For the selected transitions in Ca I and Ca II, line profile comparisons are made between applying the van der Waals damping constants from laboratory measurements, the ABO perturbation theory, and the classic Unsöld approximation.

  11. van der Waals Forces between Cylinders

    PubMed Central

    Mitchell, D. J.; Ninham, B. W.; Richmond, P.

    1973-01-01

    We derive the retarded van der Waals interaction between two long thin parallel dielectric cylinders immersed in a solvent. The result shows that the ultraviolet interactions which may be responsible for the specificity of macromolecular interactions do not operate strongly over distances R ≥ 50 Å. For greater distances the contribution of these frequencies ξ is damped by a factor ∞ e-ξR/c. PMID:4696763

  12. Tuning the van der Waals Interaction of Graphene with Molecules via Doping

    NASA Astrophysics Data System (ADS)

    Huttmann, Felix; Martínez-Galera, Antonio J.; Caciuc, Vasile; Atodiresei, Nicolae; Schumacher, Stefan; Standop, Sebastian; Hamada, Ikutaro; Wehling, Tim O.; Blügel, Stefan; Michely, Thomas

    2015-12-01

    We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping.

  13. Tuning the van der Waals Interaction of Graphene with Molecules via Doping.

    PubMed

    Huttmann, Felix; Martínez-Galera, Antonio J; Caciuc, Vasile; Atodiresei, Nicolae; Schumacher, Stefan; Standop, Sebastian; Hamada, Ikutaro; Wehling, Tim O; Blügel, Stefan; Michely, Thomas

    2015-12-01

    We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping. PMID:26684126

  14. Band Gap Engineering of PbI2 by Incommensurate Van der Waals Epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Jian

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of Van der Waals interfacial energy. Due to this, electrical and optical structure engineering via Van der Waals epitaxial strain has been rarely studied. However, by appropriate film-substrate selection, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via Van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate Van der Waals epitaxy. It is proposed that the Van der Waals strain is resulted from the soft nature of PbI2 and large Van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  15. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  16. Hybrid Meson Potentials and the Gluonic van der Waals Force

    SciTech Connect

    O. Lakhina; E.S. Swanson

    2004-03-01

    The chromoelectric polarizability of mesons governs the strength of the gluonic van der Waals force and therefore of non-quark-exchange processes in hadronic physics. We compute the polarizability of heavy mesons with the aid of lattice gauge theory and the Born--Oppenheimer adiabatic expansion. We find that the operator product expansion breaks down at surprisingly large quarks masses due to nonperturbative gluodynamics and that previous conclusions concerning J/{psi}--nuclear matter interactions and J/{psi} dissociation in the quark-gluon plasma must be substantially modified.

  17. Tunnelling in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, Artem; Novoselov, Kostya; Geim, Andre; Eaves, Laurence; Falko, Vladimir

    When graphene and other conductive two-dimensional (2D) materials are separated by an atomically thin insulating 2D crystal, quantum mechanical tunnelling leads to appreciable current between two 2D conductors due to the overlap of their wavefunctions. These tunnel devices demonstrate interesting physics and potential for applications: such effects as resonant tunnelling, negative differential conductance, light emission and detection have already been demonstrated. In this presentation we will outline the current status and perspectives of tunnelling transistors based on 2D materials assembled into van der Waals heterostructures. Particularly, we will present results on mono- and bilayer graphene tunnelling, tunnelling in 2D crystal-based quantum wells, and tunnelling in superconducting 2D materials. Such effects as momentum and chirality conservation, phonon- and impurity-assisted tunnelling will also be discussed. Finally, we will ponder the implications of discovered effects for practical applications.

  18. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  19. Van der Waals Epitaxy of Ultrathin Halide Perovkistes

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Shi, Yunfeng; Shi, Jian

    We present our understanding, with CH3NH3PbX3 as a model system, on the 2D van der Waals growth and kinetics of 3D parent materials. We show the successful synthesis of ultrathin (sub-10 nm), large scale (a few tens of μm) single crystalline 2D perovskite thin films on layered mica substrate by van der Waals (VDW) epitaxy. Classical nucleation and growth model explaining conventional epitaxy has been modified to interpret the unique 2D results under VDW mechanism. The generalization of our model shows that a 3D crystal with low cohesive energy tends to favor the 2D growth while the one with strong cohesive energy has less kinetic window. With Monte Carlo simulations, we show that the fractal 2D morphology in perovskite precisely manifests the kinetic competition between VDW diffusivity and thermodynamic driving force, a unique phenomenon to VDW growth, suggesting a fundamental limit on the morphology stability of the 2D form of a 3D material. On the other hand, our single crystal thin film growth results and subsequent cryogenic study in the iodide perovskite provide a perfect resource for the exploration of its complex optical and electronic properties and unveiling the origins of its popularity in the energy conversion field.

  20. Synthesis and Investigation of van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Culbertson, James; Currie, Marc; Jonker, Berend

    2015-03-01

    The recent isolation of single layers of transition metal dichalcogenides (TMD) has demonstrated that reducing dimensionality can alter the material properties. In particular, MoS2, MoSe2, WS2, and WSe2 exhibit an abrupt transition from indirect to direct bandgap semiconductors at monolayer thickness. Monolayer TMDs are promising materials for electronic components due to their high mobility, high on/off ratio, and low standby power dissipation. Additionally, selective layer-by-layer stacking to form van der Waals (vdW) heterostructures may provide the ability to controllably engineer electronic, optic, and spintronic properties. Recently, several methods were investigated to achieve vdW heterostructures including sequential exfoliation, stacking of chemical vapor deposition (CVD) grown monolayers, and epitaxial growth of bilayers. We detail our CVD synthesis of the monolayer TMDs (MoS2, MoSe2, WS2 and WSe2) and the subsequent fabrication and characterization of vdW heterostructures. In our heterostructures, we observe a dramatic decrease in PL intensity compared to the monolayer constituents. The Raman spectra exhibit clear and distinct differences from a superposition of monolayer spectra, demonstrating that interactions across the van der Waals interface in these heterostructures may significantly modify the net electronic properties. We find the observed behaviors are influenced by many factors, including charge transfer, substrate effects, stacking sequence, as well as intra- and inter-layer exciton formation, which will be discussed here.

  1. Supercurrent in van der Waals Josephson junction.

    PubMed

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  2. Van der Waals Interactions in Aspirin

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  3. Dielectric Genome of van der Waals Heterostructures.

    PubMed

    Andersen, Kirsten; Latini, Simone; Thygesen, Kristian S

    2015-07-01

    Vertical stacking of two-dimensional (2D) crystals, such as graphene and hexagonal boron nitride, has recently lead to a new class of materials known as van der Waals heterostructures (vdWHs) with unique and highly tunable electronic properties. Ab initio calculations should in principle provide a powerful tool for modeling and guiding the design of vdWHs, but in their traditional form such calculations are only feasible for commensurable structures with a few layers. Here we show that the dielectric properties of realistic, incommensurable vdWHs comprising hundreds of layers can be efficiently calculated using a multiscale approach where the dielectric functions of the individual layers (the dielectric building blocks) are computed ab initio and coupled together via the long-range Coulomb interaction. We use the method to illustrate the 2D-3D transition of the dielectric function of multilayer MoS2 crystals, the hybridization of quantum plasmons in thick graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open database together with the software for solving the coupled electrodynamic equations. PMID:26047386

  4. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  5. Modern theory of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dobson, John

    2014-03-01

    van der Waals (vdW, dispersion) interactions are important in diverse areas such as colloid, surface and nano science, cohesion of molecular crystals, and biomolecular science. They also provide competition in experiments to discover the fifth fundamental force.While vdW interactions have been understood in principle for a century, their quantitative first-principles prediction and modelling down to chemical contact separations have proven stubbornly difficult because the quantal many-electron problem is involved. After some brief historical material, the current state of the art will be discussed with particular reference to several approaches: pairwise additive, perturbative quantum chemical, vdW-DF, Lifshitz-like scattering, RPA-like, Adiabatic Connection Fluctuation Dissipation / Time Dependent DFT based etc.. A potentially useful classification will be introduced to aid in understanding the physical causes of departures from pairwise additivity, that is from the usual sum of C6R-6 contributions. These departures result in non-standard power law decays of nanostructure vdW interactions as a function of separation D, as well as surprising dependences of the attraction on the number, N, of atoms within each vdW-interacting fragment. Some further recent results on non-additivity will also be presented. Work supported by an Australian Research Council Discovery Grant.

  6. Picosecond photoresponse in van der Waals heterostructures.

    PubMed

    Massicotte, M; Schmidt, P; Vialla, F; Schädler, K G; Reserbat-Plantey, A; Watanabe, K; Taniguchi, T; Tielrooij, K J; Koppens, F H L

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices. PMID:26436565

  7. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  8. Supercurrent in van der Waals Josephson junction

    PubMed Central

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-01-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency. PMID:26830754

  9. Picosecond photoresponse in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L.

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.

  10. Supercurrent in van der Waals Josephson junction

    NASA Astrophysics Data System (ADS)

    Yabuki, Naoto; Moriya, Rai; Arai, Miho; Sata, Yohta; Morikawa, Sei; Masubuchi, Satoru; Machida, Tomoki

    2016-02-01

    Supercurrent flow between two superconductors with different order parameters, a phenomenon known as the Josephson effect, can be achieved by inserting a non-superconducting material between two superconductors to decouple their wavefunctions. These Josephson junctions have been employed in fields ranging from digital to quantum electronics, yet their functionality is limited by the interface quality and use of non-superconducting material. Here we show that by exfoliating a layered dichalcogenide (NbSe2) superconductor, the van der Waals (vdW) contact between the cleaved surfaces can instead be used to construct a Josephson junction. This is made possible by recent advances in vdW heterostructure technology, with an atomically flat vdW interface free of oxidation and inter-diffusion achieved by eliminating all heat treatment during junction preparation. Here we demonstrate that this artificially created vdW interface provides sufficient decoupling of the wavefunctions of the two NbSe2 crystals, with the vdW Josephson junction exhibiting a high supercurrent transparency.

  11. Van der Waals interaction in uniaxial anisotropic media

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.

    2013-01-01

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  12. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts. PMID:23234868

  13. Band gap engineering of a soft inorganic compound PbI2 by incommensurate van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Sun, Yi-Yang; Zhang, Shengbai; Lu, Toh-Ming; Shi, Jian

    2016-01-01

    Van der Waals epitaxial growth had been thought to have trivial contribution on inducing substantial epitaxial strain in thin films due to its weak nature of van der Waals interfacial energy. Due to this, electrical and optical structure engineering via van der Waals epitaxial strain has been rarely studied. In this report, we show that significant band structure engineering could be achieved in a soft thin film material PbI2 via van der Waals epitaxy. The thickness dependent photoluminescence of single crystal PbI2 flakes was studied and attributed to the substrate-film coupling effect via incommensurate van der Waals epitaxy. It is proposed that the van der Waals strain is resulted from the soft nature of PbI2 and large van der Waals interaction due to the involvement of heavy elements. Such strain plays vital roles in modifying the band gap of PbI2. The deformation potential theory is used to quantitatively unveil the correlation between thickness, strain, and band gap change. Our hypothesis is confirmed by the subsequent mechanical bending test and Raman characterization.

  14. Van der Woude Syndrome with Short Review of the Literature

    PubMed Central

    Deshmukh, Pallavi K.; Deshmukh, Kiran; Mangalgi, Anand; Patil, Subhash; Hugar, Deepa; Kodangal, Saraswathi Fakirappa

    2014-01-01

    Van der Woude syndrome (VWS) is a rare autosomal dominant condition with high penetrance and variable expression. Clinical manifestation of this autosomal dominant clefting syndrome includes bilateral midline lower lip pits, cleft lip, and cleft palate along with hypodontia. These congenital lip pits appear as a malformation in the vermilion border of the lip, with or without excretion. Discomfort caused by spontaneous or induced drainage of saliva/mucus when pressure is applied or during a meal as well as poor aesthetic match is one of the main complaints of patients with congenital lip fistula. The pits are treated by surgical resection. Dentists should be aware of the congenital lip pits as in Van der Woude syndrome because they have been reported to be associated with a variety of malformations or other congenital disorders. Here, the authors report a rare case of Van der Woude syndrome with short review of the literature. PMID:25050184

  15. Spontaneous stacking faults in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Boussinot, G.

    2016-08-01

    The rapid developments in the manipulation of two-dimensional monoatomic layers such as graphene or h-BN allow one to create heterostructures consisting of possibly many chemically different layers, stacked owing to van der Waals attraction. We propose a Frenkel-Kontorova model including a transverse degree of freedom in order to describe local deformations in these heterostructures. We study the case where two dissimilar monolayers are alternatively stacked, and find that stacking faults may emerge spontaneously for a large enough number of stacked layers as a result of the competition between adhesion and elastic energies. This symmetry-breaking transition should become of fundamental importance for the description of three-dimensional van der Waals heterostructures as soon as a precise control on the lattice orientation of the van der Waals layers is achieved.

  16. van der Waals interactions between excited atoms in generic environments

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Passante, Roberto; Rizzuto, Lucia; Buhmann, Stefan Yoshi

    2016-07-01

    We consider the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir-Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the atoms will decay to their ground states leading to the van der Waals interaction between ground-state atoms.

  17. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  18. Collisional stabilization of van der Waals states of ozone

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail V.; Babikov, Dmitri

    2011-05-01

    The mixed quantum-classical theory developed earlier [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the collisional energy transfer and the ro-vibrational energy flow in a recombination reaction that forms ozone. Assumption is that the van der Waals states of ozone are formed in the O + O2 collisions, and then stabilized into the states of covalent well by collisions with bath gas. Cross sections for collision induced dissociation of van der Waals states of ozone, for their stabilization into the covalent well, and for their survival in the van der Waals well are computed. The role these states may play in the kinetics of ozone formation is discussed.

  19. The Economics of van der Waals Force Engineering

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  20. Curves of growth for van der Waals broadened spectral lines

    NASA Technical Reports Server (NTRS)

    Park, C.

    1980-01-01

    Curves of growth are evaluated for a spectral line broadened by the van der Waals interactions during collisions. The growth of the equivalent widths of such lines is shown to be dependent on the product of the perturber density and the 6/10 power of the van der Waals potential coefficient. When the parameter is small, the widths grow as the 1/2 power of the optical depth as they do for the Voigt profile: but when the parameter is large, they grow as 2/3 power and, hence, faster than the Voigt profile. An approximate analytical expression for the computed growth characteristics is given.

  1. Notes on Van der Meer scan for absolute luminosity measurement

    NASA Astrophysics Data System (ADS)

    Balagura, Vladislav

    2011-10-01

    The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.

  2. Thermal effects on van der Waals adhesive forces

    NASA Astrophysics Data System (ADS)

    Pinon, A. V.; Wierez-Kien, M.; Craciun, A. D.; Beyer, N.; Gallani, J. L.; Rastei, M. V.

    2016-01-01

    We present an experimental and theoretical study on how thermal energy alters van der Waals adhesion forces in nanoscale contacts stretched by mechanical probes. The force follows a distribution whose density function is an asymmetric bell-shaped curve presenting a temperature-dependent negative skewness. With increasing temperature the asymmetry increases whereas the most probable force value decreases. Using a 2-8 Lennard-Jones interaction potential within the reaction rate theory, we offer a theoretical framework permitting an evaluation of the microscopic parameters governing adhesion in a van der Waals nanocontact subjected to mechanical fluctuations.

  3. Excited nucleon as a van der Waals system of partons

    SciTech Connect

    Jenkovszky, L. L.; Muskeyev, A. O. Yezhov, S. N.

    2012-06-15

    Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) is associated with a phase transition between the partonic gas, typical of moderate x and Q{sup 2}, and partonic fluid appearing at increasing Q{sup 2} and decreasing Bjorken x. We suggest the van der Waals equation of state to describe properly this phase transition.

  4. Statistical complexity, virial expansion, and van der Waals equation

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.

    2016-09-01

    We investigate the notion of LMC statistical complexity with regards to a real gas and in terms of the second virial coefficient. The ensuing results are applied to the van der Waals equation. Interestingly enough, one finds a complexity-interpretation for the associated phase transition.

  5. Aqueous gating of van der Waals materials on bilayer nanopaper.

    PubMed

    Bao, Wenzhong; Fang, Zhiqiang; Wan, Jiayu; Dai, Jiaqi; Zhu, Hongli; Han, Xiaogang; Yang, Xiaofeng; Preston, Colin; Hu, Liangbing

    2014-10-28

    In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors. PMID:25283598

  6. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  7. Generalized van der Waals density functional theory for nonuniform polymers

    SciTech Connect

    Patra, Chandra N.; Yethiraj, Arun

    2000-01-15

    A density functional theory is presented for the effect of attractions on the structure of polymers at surfaces. The theory treats the ideal gas functional exactly, and uses a weighted density approximation for the hard chain contribution to the excess free energy functional. The attractive interactions are treated using a van der Waals approximation. The theory is in good agreement with computer simulations for the density profiles at surfaces for a wide range of densities and temperatures, except for low polymer densities at low temperatures where it overestimates the depletion of chains from the surface. This deficiency is attributed to the neglect of liquid state correlations in the van der Waals term of the free energy functional. (c) 2000 American Institute of Physics.

  8. Millimeter-wave rubidium Rydberg van der Waals spectroscopy

    SciTech Connect

    Han Jianing; Gallagher, T. F.

    2009-05-15

    We have observed the diatomic nsns{yields}ns(n+1)s{yields}(n+1)s(n+1)s microwave transitions of pairs of cold Rb Rydberg atoms for 36van der Waals shift due to its near degeneracy with the nearby np{sub 3/2}np{sub 3/2} state. In fact, the energy difference and the van der Waals shift change sign at n=38 and we observe shifts of both signs. The combined excitation of the ns(n+1)s and (n+1)s(n+1)s states leads to an unusual line shape which can be described by a three-level Floquet model.

  9. Van der Waals density functional applied to adsorption systems

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro

    2013-03-01

    The van der Waals density functional (vdW-DF) is a promising density functional to describe the van der Waals forces within density functional theory. However, despite the recent efforts, there is still room for further improvement, especially for describing molecular adsorption on metal surfaces. I will show that by choosing appropriate exchange and nonlocal correlation functionals, it is possible to calculate geometries and electronic structures for adsorption systems accurately within the framework of vdW-DF. Applicability of the present approach will be illustrated with its applications to graphene/metal, fullerene/metal, and water/graphene interfaces. This work is partly supported by a Grant-in-Aid for Scientific Research on Innovative Area (No. 23104501). AIMR was established by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  10. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

    PubMed Central

    2014-01-01

    Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two-dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type-II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable, and under appropriate gate bias an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. PMID:25057817

  11. Spin-Flavor van der Waals Forces and NN interaction

    SciTech Connect

    Alvaro Calle Cordon, Enrique Ruiz Arriola

    2011-12-01

    A major goal in Nuclear Physics is the derivation of the Nucleon-Nucleon (NN) interaction from Quantum Chromodynamics (QCD). In QCD the fundamental degrees of freedom are colored quarks and gluons which are confined to form colorless strongly interacting hadrons. Because of this the resulting nuclear forces at sufficiently large distances correspond to spin-flavor excitations, very much like the dipole excitations generating the van der Waals (vdW) forces acting between atoms. We study the Nucleon-Nucleon interaction in the Born-Oppenheimer approximation at second order in perturbation theory including the Delta resonance as an intermediate state. The potential resembles strongly chiral potentials computed either via soliton models or chiral perturbation theory and has a van der Waals like singularity at short distances which is handled by means of renormalization techniques. Results for the deuteron are discussed.

  12. Quantum field theory of van der Waals friction

    SciTech Connect

    Volokitin, A. I.; Persson, B. N. J.

    2006-11-15

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment.

  13. van der Waals explosion of cold Rydberg clusters

    NASA Astrophysics Data System (ADS)

    Faoro, R.; Simonelli, C.; Archimi, M.; Masella, G.; Valado, M. M.; Arimondo, E.; Mannella, R.; Ciampini, D.; Morsch, O.

    2016-03-01

    We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with interparticle distances of around 5 μ m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.

  14. Van der Waals interaction-tuned heat transfer in nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wang, Jianxiang; Kang, Wei

    2012-12-01

    Interfaces usually impede heat transfer in heterogeneous structures. Recent experiments show that van der Waals (vdW) interactions can significantly enhance thermal conductivity parallel to the interface of a bundle of nanoribbons compared to a single layer of freestanding nanoribbon. In this paper, by simulating heat transfer in nanostructures based on a model of nonlinear one-dimensional lattices interacting via van der Waals interactions, we show that the vdW interface interaction can adjust the thermal conductivity parallel to the interface. The efficiency of the adjustment depends on the intensity of interactions and temperature. The nonlinear dependence of the conductivity on the intensity of interactions agrees well with experimental results for carbon nanotube bundles, multi-walled carbon nanotubes, multi-layer graphene, and nanoribbons.

  15. Structure and dynamics of small van der Waals complexes

    SciTech Connect

    Loreau, J.

    2014-10-06

    We illustrate computational aspects of the calculation of the potential energy surfaces of small (up to five atoms) van der Waals complexes with high-level quantum chemistry techniques such as the CCSD(T) method with extended basis sets. We discuss the compromise between the required accuracy and the computational time. Further, we show how these potential energy surfaces can be fitted and used in dynamical calculations such as non-reactive inelastic scattering.

  16. A van der Waals free energy in electrolytes revisited

    NASA Astrophysics Data System (ADS)

    Jancovici, B.

    2006-01-01

    A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-Hückel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

  17. Van der Waals and Casimir-Polder interactions between neutrons

    NASA Astrophysics Data System (ADS)

    Babb, James F.; Hussein, Mahir S.

    2016-03-01

    We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  18. Nonadiabatic Van der Pol oscillations in molecular transport

    NASA Astrophysics Data System (ADS)

    Kartsev, Alexey; Verdozzi, Claudio; Stefanucci, Gianluca

    2014-01-01

    The force exerted by the electrons on the nuclei of a current-carrying molecular junction can be manipulated to engineer nanoscale mechanical systems. In the adiabatic regime a peculiarity of these forces is negative friction, responsible for Van der Pol oscillations of the nuclear coordinates. In this work we study the robustness of the Van der Pol oscillations against high-frequency sources. For this purpose we go beyond the adiabatic approximation and perform full Ehrenfest dynamics simulations. The numerical scheme implements a mixed quantum-classical algorithm for open systems and is capable to deal with arbitrary time-dependent driving fields. We find that the Van der Pol oscillations are extremely stable. The nonadiabatic electron dynamics distorts the trajectory in the momentum-coordinate phase space but preserves the limit cycles in an average sense. We further show that high-frequency fields change both the oscillation amplitudes and the average nuclear positions. By switching the fields off at different times one obtains cycles of different amplitudes which attain the limit cycle only after considerably long times.

  19. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids.

    PubMed

    Dumazer, G; Antoine, C; Lemarchand, A; Nowakowski, B

    2009-12-01

    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics. PMID:20365269

  20. Van der Waals pressure and its effect on trapped interlayer molecules

    NASA Astrophysics Data System (ADS)

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-07-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2+/-0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces.

  1. Application of diffusion Monte Carlo to materials dominated by van der Waals interactions

    SciTech Connect

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols; Kim, Jeongnim; Von Lilienfeld, Anatole

    2014-01-01

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  2. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions

    DOE PAGESBeta

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; von Lilienfeld, O. Anatole

    2014-06-12

    Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.

  3. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E; Dappe, Yannick J; Bertran, François; Fèvre, Patrick Le; Johnson, A T Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  4. Multiple critical points and liquid liquid equilibria from the van der Waals like equations of state

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-06-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  5. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    PubMed Central

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-01-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design. PMID:27246929

  6. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-06-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.

  7. Ionized van-der-Waals systems: Structure and interactions

    SciTech Connect

    Zuelicke, L.

    1996-12-31

    Ions of molecular systems with internal interactions partly of van-der-Waals type differ significantly from their neutral parent species in binding, structure and dynamics. Theoretical knowledge is still rather scarce. The paper discusses some recent advances from theoretical work in the field concerning (i) electronic and geometric structure of triatomic rare-gas containing cations like Ar{sub 3}{sup +} and ArHCI{sup +}, in ground and excited electronic states; (ii) potential energy surfaces for the interaction of H{sup +} or H{sup -} with diatomic molecules, in ground and excited electronic states; (iii) some features of the dynamics of these systems.

  8. Impact of van der Waals Interactions on Single Asperity Friction

    NASA Astrophysics Data System (ADS)

    Lessel, Matthias; Loskill, Peter; Hausen, Florian; Gosvami, Nitya Nand; Bennewitz, Roland; Jacobs, Karin

    2013-07-01

    Single asperity measurements on Si wafers with variable SiO2 layer thickness, yet identical roughness, revealed the influence of van der Waals (vdW) interactions on friction: on thin (1 nm) SiO2 layers, higher friction and jump-off forces were observed as compared to thick (150 nm) SiO2 layers. The vdW interactions were additionally controlled by a set of silanized Si wafers, exhibiting the same trend. The experimental results demonstrate the influence of the subsurface material and are quantitatively described by combining calculations of interactions of the involved materials and the Derjaguin-Müller-Toporov model.

  9. Impact of van der Waals interactions on single asperity friction.

    PubMed

    Lessel, Matthias; Loskill, Peter; Hausen, Florian; Gosvami, Nitya Nand; Bennewitz, Roland; Jacobs, Karin

    2013-07-19

    Single asperity measurements on Si wafers with variable SiO(2) layer thickness, yet identical roughness, revealed the influence of van der Waals (vdW) interactions on friction: on thin (1 nm) SiO(2) layers, higher friction and jump-off forces were observed as compared to thick (150 nm) SiO(2) layers. The vdW interactions were additionally controlled by a set of silanized Si wafers, exhibiting the same trend. The experimental results demonstrate the influence of the subsurface material and are quantitatively described by combining calculations of interactions of the involved materials and the Derjaguin-Müller-Toporov model. PMID:23909336

  10. Phonons in nonlocal van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Sabatini, Riccardo; Küçükbenli, Emine; Pham, Cong Huy; de Gironcoli, Stefano

    2016-06-01

    We extend the formulation of density functional perturbation theory to treat nonlocal density functionals, accounting for van der Waals interactions, in a rigorous and efficient way. We provide a general formalism, suitable for any functional in this family, and give specific equations for the most widely used ones. We then study the lattice dynamics of graphite, comparing several nonlocal functionals and the local density approximation, showing that our recent revision of the VV10 functional [R. Sabatini et al., Phys. Rev. B 87, 041108(R) (2013), 10.1103/PhysRevB.87.041108] gives the best comparison with experiments.

  11. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene?

    NASA Astrophysics Data System (ADS)

    Park, Je-Geun

    2016-08-01

    There has been a huge increase of interests in two-dimensional van der Waals materials over the past ten years or so with the conspicuous absence of one particular class of materials: magnetic van der Waals systems. In this Viewpoint, we point it out and illustrate how we might be able to benefit from exploring these so-far neglected materials.

  12. van der Waals forces influencing adhesion of cells

    PubMed Central

    Kendall, K.; Roberts, A. D.

    2015-01-01

    Adhesion molecules, often thought to be acting by a ‘lock and key’ mechanism, have been thought to control the adhesion of cells. While there is no doubt that a coating of adhesion molecules such as fibronectin on a surface affects cell adhesion, this paper aims to show that such surface contamination is only one factor in the equation. Starting from the baseline idea that van der Waals force is a ubiquitous attraction between all molecules, and thereby must contribute to cell adhesion, it is clear that effects from geometry, elasticity and surface molecules must all add on to the basic cell attractive force. These effects of geometry, elasticity and surface molecules are analysed. The adhesion force measured between macroscopic polymer spheres was found to be strongest when the surfaces were absolutely smooth and clean, with no projecting protruberances. Values of the measured surface energy were then about 35 mJ m−2, as expected for van der Waals attractions between the non-polar molecules. Surface projections such as abrasion roughness or dust reduced the molecular adhesion substantially. Water cut the measured surface energy to 3.4 mJ m−2. Surface active molecules lowered the adhesion still further to less than 0.3 mJ m−2. These observations do not support the lock and key concept. PMID:25533101

  13. Two-dimensional van der Waals C60 molecular crystal

    PubMed Central

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-01-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55–100 GPa, 90–155 MPa, and 1.5–2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics. PMID:26183501

  14. Quantum Monte Carlo Simulation of condensed van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.; Kim, Jeongnim; Anatole von Lilienfeld, O.

    2012-02-01

    Van der Waals forces are as ubiquitous as infamous. While post-Hartree-Fock methods enable accurate estimates of these forces in molecules and clusters, they remain elusive for dealing with many-electron condensed phase systems. We present Quantum Monte Carlo [1,2] results for condensed van der Waals systems. Interatomic many-body contributions to cohesive energies and bulk modulus will be discussed. Numerical evidence is presented for crystals of rare gas atoms, and compared to experiments and methods [3]. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.[4pt] [1] J. Kim, K. Esler, J. McMinis and D. Ceperley, SciDAC 2010, J. of Physics: Conference series, Chattanooga, Tennessee, July 11 2011 [0pt] [2] QMCPACK simulation suite, http://qmcpack.cmscc.org (unpublished)[0pt] [3] O. A. von Lillienfeld and A. Tkatchenko, J. Chem. Phys. 132 234109 (2010)

  15. Two-dimensional van der Waals C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-07-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55-100 GPa, 90-155 MPa, and 1.5-2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics.

  16. van der Waals interaction as a summable asymptotic series

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn; Sun, Jianwei; Glindmeyer, Stephen; Csonka, Gabor I.

    2012-12-01

    The dynamic multipole polarizabilities and thus the second-order van der Waals coefficients C2k of all orders are known exactly for the interaction between two classical spherical conducting shells, each of uniform electron density ρ with outer radius R and thickness t. The result is C2k=-ck(t/R)4πρ[(2R)2]k. The ck approach a limiting constant value, so the infinite series for the van der Waals interaction at separation d, -C6/d6-C8/d8-⋯, can be summed analytically, diverging only for d≤2R. This divergence can be removed without changing the asymptotic series. Real quasispherical objects like nanoclusters, fullerenes, and even atoms can be approximated by this spherical-shell model, with R fixed by the true static dipole polarizability. Once t/R is fixed, all the higher coefficients are determined by just C6 and C8. Finally, we compare the exact C2k to those from a pair interaction model, which works for solid spheres (t=R) but not for fullerenes.

  17. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    NASA Astrophysics Data System (ADS)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  18. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  19. Coincident-site lattice matching during van der Waals epitaxy

    PubMed Central

    Boschker, Jos E.; Galves, Lauren A.; Flissikowski, Timur; Lopes, Joao Marcelo J.; Riechert, Henning; Calarco, Raffaella

    2015-01-01

    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures. PMID:26658715

  20. Body-assisted van der Waals interaction between two atoms

    SciTech Connect

    Safari, Hassan; Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Ho Trung Dung

    2006-10-15

    Using fourth-order perturbation theory, a general formula for the van der Waals potential of two neutral, unpolarized, ground-state atoms in the presence of an arbitrary arrangement of dispersing and absorbing magnetodielectric bodies is derived. The theory is applied to two atoms in bulk material and in front of a planar multilayer system, with special emphasis on the cases of a perfectly reflecting plate and a semi-infinite half space. It is demonstrated that the enhancement and reduction of the two-atom interaction due to the presence of a perfectly reflecting plate can be understood, at least in the nonretarded limit, by using the method of image charges. For the semi-infinite half space, both analytical and numerical results are presented.

  1. Characterization of rarefaction waves in van der Waals fluids

    NASA Astrophysics Data System (ADS)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  2. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  3. Van der Waals Interactions in Density Functional Theory: Intermolecular Complexes

    NASA Astrophysics Data System (ADS)

    Kannemann, Felix; Becke, Axel

    2010-03-01

    Conventional density functional theory (GGA and hybrid functionals) fails to account for dispersion interactions and is therefore not applicable to systems where van der Waals interactions play a dominant role, such as intermolecular complexes and biomolecules. The exchange-hole dipole moment (XDM) dispersion model of Becke and Johnson [A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007)] corrects for this deficiency. We have previously shown that the XDM dispersion model can be combined with standard GGA functionals (PW86 for exchange and PBE for correlation) to give accurate binding energy curves for rare-gas diatomics [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 5, 719 (2009)]. Here we present further tests of the GGA-XDM method using benchmark sets including hydrogen bonding, electrostatic, dispersion and stacking interactions, and systems ranging from rare-gas diatomics to biomolecular complexes.

  4. Van der Waals Density Functional Theory with Applications

    NASA Astrophysics Data System (ADS)

    Langreth, David C.

    2004-03-01

    We discuss the development of electronic density functionals that are applicable for weakly bound systems where the van der Waals interaction and its ramifications become important. Our current functionals approach the correct asymptotic dependence at large distances and are seamless at small distances. The first form of the functional, appropriate for layered systems, has been recently applied to graphite, boron nitride, and molybdenum sulfide [H. Rydberg et al., Phys. Rev. Lett. 91, 126402 (2003) and D. C. Langreth, Int. J. Quant. Chem. (submitted), see http//:www.physics.rutgers.edu/ ˜langreth/preprints/dft2003.pdf]. The second form of the functional [M. Dion it et al. (to be published)] is appropriate for arbitrary geometries. Recent results on rare gas dimers and the benzene dimer suggest promise for this method as well.

  5. Nonlinearity of resistive impurity effects on van der Pauw measurements

    SciTech Connect

    Koon, D. W.

    2006-09-15

    The dependence of van der Pauw resistivity measurements on local macroscopic inhomogeneities is shown to be nonlinear. A resistor grid network models a square laminar specimen, enabling the investigation of both positive and negative local perturbations in resistivity. The effect of inhomogeneity is measured both experimentally, for an 11x11 grid, and computationally, for both 11x11 and 101x101 grids. The maximum 'shortlike' perturbation produces 3.1{+-}0.2 times the effect predicted by the linear approximation, regardless of its position within the specimen, while all 'openlike' perturbations produce a smaller effect than predicted. An empirical nonlinear correction for f(x,y) is presented which provides excellent fit over the entire range of both positive and negative perturbations for the entire specimen.

  6. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    SciTech Connect

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  7. Characterization of rarefaction waves in van der Waals fluids.

    PubMed

    Yuen, Albert; Barnard, John J

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy. PMID:26764692

  8. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Shimojo, Fuyuki; Vashishta, Priya

    2015-12-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10-13 s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10-12 s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  9. Ontogenic Caste Differences in the Van der Vecht Organ of Primitively Eusocial Neotropical Paper Wasps

    PubMed Central

    de Souza, André Rodrigues; Petrocelli, Iacopo; Lino-Neto, José; Santos, Eduardo Fernando; Noll, Fernando Barbosa; Turillazzi, Stefano

    2016-01-01

    Recent studies have reported incipient morphological caste dimorphism in the Van der Vecht organ size of some temperate Polistes paper wasps. Whether species other than the temperate ones show a similar pattern remains elusive. Here, we have studied some Neotropical Polistes species. By comparing females collected through the year, we showed caste related differences in the size of the Van der Vecht organ in P. ferreri (body size corrected Van der Vech organ size of queens = 0.45 ± 0.06, workers = 0.38 ± 0.07 mm2, p = 0.0021), P. versicolor (body size corrected Van der Vech organ size of queens = 0.54 ± 0.11, workers = 0.46 ± 0.09 mm2, p = 0.010), but not P. simillimus (body size corrected Van der Vech organ size of queens = 0.52 ± 0.05, workers = 0.49 ± 0.06 mm2, p = 0.238). Therefore, it seems that queens and workers of some Neotropical Polistes have diverged in their ontogenic trajectory of the Van der Vecht organ size, providing clear evidence for incipient morphological caste dimorphism. As Polistes are distributed mostly in the tropics, we propose that physical caste differences may be widespread in the genus. Also, we highlight that morphological divergence in the queen–worker phenotypes may have started through differential selection of body structures, like the Van der Vecht organ. PMID:27167514

  10. Ontogenic Caste Differences in the Van der Vecht Organ of Primitively Eusocial Neotropical Paper Wasps.

    PubMed

    de Souza, André Rodrigues; Petrocelli, Iacopo; Lino-Neto, José; Santos, Eduardo Fernando; Noll, Fernando Barbosa; Turillazzi, Stefano

    2016-01-01

    Recent studies have reported incipient morphological caste dimorphism in the Van der Vecht organ size of some temperate Polistes paper wasps. Whether species other than the temperate ones show a similar pattern remains elusive. Here, we have studied some Neotropical Polistes species. By comparing females collected through the year, we showed caste related differences in the size of the Van der Vecht organ in P. ferreri (body size corrected Van der Vech organ size of queens = 0.45 ± 0.06, workers = 0.38 ± 0.07 mm2, p = 0.0021), P. versicolor (body size corrected Van der Vech organ size of queens = 0.54 ± 0.11, workers = 0.46 ± 0.09 mm2, p = 0.010), but not P. simillimus (body size corrected Van der Vech organ size of queens = 0.52 ± 0.05, workers = 0.49 ± 0.06 mm2, p = 0.238). Therefore, it seems that queens and workers of some Neotropical Polistes have diverged in their ontogenic trajectory of the Van der Vecht organ size, providing clear evidence for incipient morphological caste dimorphism. As Polistes are distributed mostly in the tropics, we propose that physical caste differences may be widespread in the genus. Also, we highlight that morphological divergence in the queen-worker phenotypes may have started through differential selection of body structures, like the Van der Vecht organ. PMID:27167514

  11. Van der Waals pressure and its effect on trapped interlayer molecules

    PubMed Central

    Vasu, K. S.; Prestat, E.; Abraham, J.; Dix, J.; Kashtiban, R. J.; Beheshtian, J.; Sloan, J.; Carbone, P.; Neek-Amal, M.; Haigh, S. J.; Geim, A. K.; Nair, R. R.

    2016-01-01

    Van der Waals assembly of two-dimensional crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules between two-dimensional crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2±0.3 GPa are found using Raman spectrometry for molecular layers of 1-nm in thickness. We further show that this pressure can induce chemical reactions, and several trapped salts are found to react with water at room temperature, leading to two-dimensional crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces. PMID:27385262

  12. Adsorption by design: Tuning atom-graphene van der Waals interactions via mechanical strain

    NASA Astrophysics Data System (ADS)

    Nichols, Nathan S.; Del Maestro, Adrian; Wexler, Carlos; Kotov, Valeri N.

    2016-05-01

    We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain ranging from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular, we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore, we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low-dimensional superfluid phases.

  13. Gate tunable WSe2-BP van der Waals heterojunction devices

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Zhang, Ting Ting; Zhang, Jing; Xiang, Jianyong; Yu, Hua; Wu, Shuang; Lu, Xiaobo; Wang, Guole; Wen, Fusheng; Liu, Zhongyuan; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-02-01

    Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such `type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a `type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence band offset and a small conduction band offset at the WSe2/BP interface. In the optoelectrical measurements, we found the amplitude and even the polarity of photocurrent could be modulated by electrostatic gating. Our study could further enhance the understanding of designing devices based on these `type tunable' van der Waals heterojunctions. Moreover, the properties of the WSe2/BP interface were also experimentally identified through the electrical and optoelectrical measurements in our study.Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such `type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a `type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence

  14. Surface energy and wettability of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Annamalai, Meenakshi; Gopinadhan, Kalon; Han, Sang A.; Saha, Surajit; Park, Hye Jeong; Cho, Eun Bi; Kumar, Brijesh; Patra, Abhijeet; Kim, Sang-Woo; Venkatesan, T.

    2016-03-01

    The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability.The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06705

  15. van't Hoff-van der Waals osmotic pressure and energy transformers.

    PubMed

    Zener, C; Levenson, W

    1983-07-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  16. van't Hoff-van der Waals osmotic pressure and energy transformers

    PubMed Central

    Zener, Clarence; Levenson, William

    1983-01-01

    We find the van't Hoff relations between osmotic pressure, freezing point depression, and boiling point elevation provide a clue on how, by using salt solutions, one may lower the cost of extracting power from low-grade heat sources. In particular, the ratio of 7 between the heat of evaporation and the heat of freezing of pure water suggests a chemical system that raises 7-fold the temperature difference between heat source and heat sink, while decreasing by the same factor the heat flux. Heat exchangers dominate the cost of heat engines operating upon low-grade heat. Their area for a fixed power output is inversely proportional to the available temperature differential. Herein lies the potential for a great cost reduction. We show that the simple van der Waals concept of a gas of hard elastic spheres suffices to understand the colligative properties of salt solutions, at least up to the concentration of the eutectic composition. This concept enables us to physically interpret the thermodynamic processes during the concentration of salt solutions by evaporation and during the mixing of ice and solid salt hydrates at their eutectic temperature. These are identical to the thermodynamic processes taking place during the isothermal compression and expansion of gases in pumps and in turbines. PMID:16593343

  17. Hemiquantal mechanics. I. Vibrational predissociation of van der Waals molecules

    NASA Astrophysics Data System (ADS)

    Halcomb, Lawrence L.; Diestler, D. J.

    1986-03-01

    The ``hemiquantal'' equations (HQE), which pertain to a system consisting of a quantally-behaving (``light'') subsystem coupled to a classically-behaving (``heavy'') one, result from a partial classical limit of Heisenberg's equations of motion. In effect, all heavy particles are required to follow precisely their classical trajectories. The HQE are applied to vibrational predissociation in a collinear model of the van der Waals molecule He ṡ ṡ ṡI2(B). Here, the vibration of I2 is the classical subsystem and the motion of He relative to the center of mass of I2 is the quantal subsystem. In this case, the HQE comprise a partial differential equation (Schrödinger's equation for the He motion) coupled to two ordinary differential equations (Hamilton's equations for the I2 vibration). These were solved numerically on the CYBER 205 supercomputer by means of an algorithm that uses a second-order predictor-corrector for Hamilton's equations and second-order time differencing for Schrödinger's equation. A scheme based on the fast Fourier transform was used to evaluate the spatial derivative of the wave function. The computed rates of vibrational predissociation are compared with the results of previous quasiclassical and fully quantal calculations and with experimental results.

  18. Synchronization of two memristively coupled van der Pol oscillators

    NASA Astrophysics Data System (ADS)

    Ignatov, M.; Hansen, M.; Ziegler, M.; Kohlstedt, H.

    2016-02-01

    The objective of this letter is to convey two essential principles of biological computing—synchronization and memory—in an electronic circuit with two van der Pol (vdP) oscillators coupled via a memristive device. The coupling was mediated by connecting the gate terminals of two programmable unijunction transistors through a resistance-capacitance network comprising an Ag-TiOx-Al memristive device. In the high resistance state the memristance was in the order of MΩ, which leads to two independent self-sustained oscillators characterized by the different frequencies f1 and f2 and no phase relation between the oscillations. Depending on the mediated pulse amplitude, the memristive device switched to the low resistance state after a few cycles and a frequency adaptation and phase locking were observed. The experimental results are underlined by theoretically considering a system of two coupled vdP equations. This experiment may pave the way to larger neuromorphic networks in which the coupling parameters (through memristive devices) can vary in time and strength and are able to remember the history of applied electrical potentials.

  19. Jarzynski equality in van der Pol and Rayleigh oscillators

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideo

    2011-12-01

    We have studied the Jarzynski equality (JE) in van der Pol and Rayleigh oscillators, which are typical deterministic non-Hamiltonian models but not expected to rigorously satisfy the JE because they are not reversible. Our simulations that calculate the contribution to the work W of an applied ramp force with a duration τ show that the JE approximately holds for a fairly wide range of τ including τ→0 and τ→∞, except for τ˜T, where T denotes the period of relaxation oscillations in the limit cycle. The work distribution function (WDF) is shown to be non-Gaussian with the U-shaped structure for a strong damping parameter. The τ dependence of R (=-kBTln) obtained by our simulations is semiquantitatively elucidated with the use of a simple expression for limit-cycle oscillations, where the bracket <·> expresses an average over the WDF. The result obtained in self-excited oscillators is in contrast with the fact that the JE holds in the Nosé-Hoover oscillator, which also belongs to deterministic non-Hamiltonian models.

  20. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  1. Peptide folding driven by Van der Waals interactions.

    PubMed

    Sung, Shen-Shu

    2015-09-01

    Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism. PMID:26013298

  2. Photocurrent generation with two-dimensional van der Waals semiconductors.

    PubMed

    Buscema, Michele; Island, Joshua O; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2015-06-01

    Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures. PMID:25909688

  3. Surface energy and wettability of van der Waals structures.

    PubMed

    Annamalai, Meenakshi; Gopinadhan, Kalon; Han, Sang A; Saha, Surajit; Park, Hye Jeong; Cho, Eun Bi; Kumar, Brijesh; Patra, Abhijeet; Kim, Sang-Woo; Venkatesan, T

    2016-03-14

    The wetting behaviour of surfaces is believed to be affected by van der Waals (vdW) forces; however, there is no clear demonstration of this. With the isolation of two-dimensional vdW layered materials it is possible to test this hypothesis. In this paper, we report the wetting behaviour of vdW heterostructures which include chemical vapor deposition (CVD) grown graphene, molybdenum disulfide (MoS2) and tungsten disulfide (WS2) on few layers of hexagon boron nitride (h-BN) and SiO2/Si. Our study clearly shows that while this class of two-dimensional materials are not completely wetting transparent, there seems to be a significant amount of influence on their wetting properties by the underlying substrate due to dominant vdW forces. Contact angle measurements indicate that graphene and graphene-like layered transitional metal dichalcogenides invariably have intrinsically dispersive surfaces with a dominating London-vdW force-mediated wettability. PMID:26910437

  4. Gate tunable WSe2-BP van der Waals heterojunction devices.

    PubMed

    Chen, Peng; Zhang, Ting Ting; zhang, Jing; Xiang, Jianyong; Yu, Hua; Wu, Shuang; Lu, Xiaobo; Wang, Guole; Wen, Fusheng; Liu, Zhongyuan; Yang, Rong; Shi, Dongxia; Zhang, Guangyu

    2016-02-14

    Due to the weak screening effect, the concentration and type of charge carriers in 2D semiconductor heterostructures can be effectively tuned by electrostatic gating, enabling us to realize different types of heterojunctions in a single device. Such 'type tunable' properties are useful for designing novel electrical or optoelectrical devices. Here, we demonstrate a 'type tunable' heterojunction device construct with two pieces of ambipolar 2D semiconductors: WSe2 and black phosphorus (BP). This heterojunction could be tuned to either the p-p junction or n-n junction by gate modulation. The p-p junction shows a large current rectification ratio while the n-n junction shows a negligible current rectification ratio, indicating a large valence band offset and a small conduction band offset at the WSe2/BP interface. In the optoelectrical measurements, we found the amplitude and even the polarity of photocurrent could be modulated by electrostatic gating. Our study could further enhance the understanding of designing devices based on these 'type tunable' van der Waals heterojunctions. Moreover, the properties of the WSe2/BP interface were also experimentally identified through the electrical and optoelectrical measurements in our study. PMID:26810387

  5. Effects of van der Waals interaction on nanoparticle adsorption

    NASA Astrophysics Data System (ADS)

    Poddar, Nitun; Amar, Jacques

    2014-03-01

    The results of molecular dynamics (MD) simulations carried out using an all-atom model in order to understand the structure, diffusion, and binding of dodecanethiol (DDT)-coated Au nanoparticles (NPs) at the toluene-air interface are presented. We find that due to the strong attraction between DDT and toluene, the NP lies mainly below the interface. As a result, the coefficient for diffusion along the interface is close to the Stokes-Einstein prediction for 3D bulk diffusion. We also find that, due to the small ratio of ligand length to NP diameter, there is little spontaneous asymmetry in the NP coating. We have also used our MD results along with analytical expressions for the van der Waals (VdW) interactions to estimate corrections to the adsorption energy for DDT-coated Au NPs at the toluene-vapor interface as well as for alkanethiol-coated NPs at the water-vapor interface. In both cases, we find that the core-solvent interaction may significantly reduce the binding energy. We also find that the competition between this interaction and short-range attraction to the interface leads to well-defined activation barriers for interfacial desorption as well as for NP adsorption from the solvent. This work was supported by NSF Grant No. CHE-1012896.

  6. Van Der Pol model of a Cerenkov maser

    SciTech Connect

    Kleckner, M.; Ron, A.; Botton, M.

    1995-12-31

    A non-linear analysis of a Cerenkov maser is presented. The system consists of a ring configuration of a cylindrical waveguide filled with a dielectric material. A single transverse-magnetic mode is assumed to propagate in the system. A low-density pencil electron beam travels in part of the ring, confined by a strong axial magnetic field. Using the single-particle description for the beam and the wave equation for the field, we obtain a set of two coupled non-linear differential equations describing the slowly varying amplitude and phase of the electromagnetic mode. The gain per path is assumed to be small and the spatial growth of the field is neglected. The resulting time dependent amplitude includes the exponential gain of the linear stage and the saturation to its maximum value. The time dependent frequency is also calculated. The two equations are combined to a single Van Der Pol equation with a non-linear restoring force. This description demonstrates the similarities and differences between the Cerenkov maser and other lasing systems.

  7. Van der Waals interactions in density functional theory

    NASA Astrophysics Data System (ADS)

    Langreth, David C.

    2009-03-01

    The van der Waals density functional which we introduced half a decade agoootnotetextM. Dion et al. Phys. Rev. Lett. 92, 246401 (2004). and its self-consistent generalizationootnotetextT. Thonhauser et al., Phys. Rev. B 76, 125112 (2007). will be briefly reviewed. There are many collaborators in the application review that will follow, not only those who worked in the physics department at Rutgers% ootnotetextMaxime Dion, Aaron Puzder, T. Thonhauser, Valentino R. Cooper, Shen Li, Eamonn Murray, Lingzhu Kong, and Kyuho Lee. and at Chalmers,% ootnotetextHenrik Rydberg, Svetla Chakarova-K"ack, Jesper Kleis, Elsebeth Schr"oder, Per Hyldgaard, and Bengt I. Lundqvist. but also at Denmarks Technical University,% ootnotetextAndrei Kelkkanen, Poul G. Moses, Jesper Kleis, and Bengt I. Lundqvist. the chemistry department at Rutgers,% ootnotetextKonhoa Li, Jing Li, Yves Chabal, and Wilma K. Olson. and most recently at the University of Texas at Dallas.% ootnotetextNour Nijem and Yves Chabal. I will expand on our recent review article,ootnotetextD. C. Langreth et al., J. Phys. Cond. Mat. (in press). which hopefully will be published before the present talk, and include applications by other groups not listed below. If possible, I will also review results from a more recent collaboration to study nucleosomal DNA and beyond.

  8. Inflationary magnetogenesis, derivative couplings, and relativistic Van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2015-08-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and 100 Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e., the backreaction constraints, the magnetogenesis bounds and the naturalness of the initial conditions of the scenario) are jointly satisfied. Weakly coupled initial data are favored if the gauge couplings are of the same order at the end of inflation. Duality is systematically used to simplify the analysis of the wide parameter space of the model.

  9. Van der Waals coefficients beyond the classical shell model

    SciTech Connect

    Tao, Jianmin; Fang, Yuan; Hao, Pan; Scuseria, G. E.; Ruzsinszky, Adrienn; Perdew, John P.

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  10. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Rahman Frictional temperature rise in a sliding physisorbed monolayer of Kr/grapheneM Walker, C Jaye, J Krim and Milton W Cole How to modify the van der Waals and Casimir forces without change of the dielectric permittivityG L Klimchitskaya, U Mohideen and V M Mostepanenko Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74-MgNour Nijem, Pieremanuele Canepa, Lingzhu Kong, Haohan Wu, Jing Li, Timo Thonhauser and Yves J Chabal A theoretical study of the hydrogen-storage potential of (H2)4CH4 in metal organic framework materials and carbon nanotubesQ Li and T Thonhauser The influence of dispersion interactions on the hydrogen adsorption properties of expanded graphiteYungok Ihm, Valentino R Cooper, Lujian Peng and James R Morris A DFT-D study of structural and energetic properties of TiO2 modificationsJonas Moellmann, Stephan Ehrlich, Ralf Tonner and Stefan Grimme Spherical-shell model for the van der Waals coefficients between fullerenes and/or nearly spherical nanoclustersJohn P Perdew, Jianmin Tao, Pan Hao, Adrienn Ruzsinszky, Gábor I Csonka and J M Pitarke Dynamical screening of the van der Waals interaction between graphene layersY J Dappe, P G Bolcatto, J Ortega and F Flores Structural evolution of amino acid crystals under stress from a non-empirical density functionalRiccardo Sabatini, Emine Küçükbenli, Brian Kolb, T Thonhauser and Stefano de Gironcoli Physisorption of nucleobases on graphene: a comparative van der Waals studyDuy Le, Abdelkader Kara, Elsebeth Schröder, Per Hyldgaard and Talat S Rahman The role of van der Waals interactions in the adsorption of noble gases on metal surfacesDe-Li Chen, W A Al-Saidi and J Karl Johnson Desorption of n-alkanes from graphene: a van der Waals density functional studyElisa Londero, Emma K Karlson, Marcus Landahl, Dimitri Ostrovskii, Jonatan D Rydberg and Elsebeth Schröder Benchmarking van der Waals density functionals with experimental data

  11. Comparing heat exchangers of thermacoustic prime movers with a Van der Pol model

    NASA Astrophysics Data System (ADS)

    Cox, I.; Jorgensen, M.; Andersen, B.

    2010-10-01

    A thermoacoustic standing-wave prime mover is a self-sustained oscillator whose initial growth of acoustic pressure into amplitude saturation can be modeled by the Van der Pol equation. The nonlinear Van der Pol equation is calculated computationally, using 4^th order Runge-Kutta. The Van der Pol model gives quantitative loss and gain parameters, when using a best-fit with experimental data. The engines tested in this study have an average frequency of 2700 Hz, which suggests that the first second of oscillations when using the Van der Pol model can reveal information about the steady-state performance of the device. This model is applied to studying the effect of different heat exchanger sizes. All sixteen possible permutations were tested using different copper wire mesh dimensions: 24X24, 40X40, 60X60, and 80X80 for the hot and cold heat exchangers (where ##X## indicates wires per inch). Plotting the steady-state acoustic pressure as a function of the gain term divided by the loss term shows roughly, a linear relationship. The engine with the highest gain term and smallest loss term was using 80X80 for the hot heat exchanger combined with the 24X24 for the cold heat exchanger and is consistent with the highest steady-state pressure achieved. The modeling process has been very successful and fits the Van der Pol equation.

  12. Van der Waals interactions and the limits of isolated atom models at interfaces

    PubMed Central

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar–Xe, Kr–Xe and Xe–Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal–organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  13. Van der Waals interactions and the limits of isolated atom models at interfaces

    NASA Astrophysics Data System (ADS)

    Kawai, Shigeki; Foster, Adam S.; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H.; Jung, Thomas A.; Meyer, Ernst

    2016-05-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

  14. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  15. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  16. Van der Waals interactions and the limits of isolated atom models at interfaces.

    PubMed

    Kawai, Shigeki; Foster, Adam S; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H; Jung, Thomas A; Meyer, Ernst

    2016-01-01

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems. PMID:27174162

  17. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions.

    PubMed

    Li, Yupeng; Kim, Hyung-ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-09-14

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. PMID:26242771

  18. Nano-photonic phenomena in van der Waals heterostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Basov, Dmitri N.

    2015-09-01

    van der Waals (vdW) crystals consist of individual atomic planes coupled by vdW interaction, similar to graphene monolayers in bulk graphite. We investigated van der Waals heterostructures assembled from atomically thin layers of graphene and hexagonal boron nitride (hBN). We launched, detected and imaged plasmonic, phonon polaritonic and hybrid plasmon-phonon polariton waves in a setting of an antenna based nano-infrared apparatus. Hyperbolic phonon polaritons in hBN enabled sub-diffractional focusing in infrared frequencies. Because electronic, plasmonic and phonon polaritonic properties in van der Waals heterstructures are intertwined, gate voltage and/or details of layer assembly enable efficient control of nano-photonic effects.

  19. Quantum vacuum photon modes and repulsive Lifshitz-van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Dellieu, Louis; Deparis, Olivier; Muller, Jérôme; Kolaric, Branko; Sarrazin, Michaël

    2015-12-01

    The bridge between quantum vacuum photon modes and properties of patterned surfaces is currently being established on solid theoretical grounds. Based on these foundations, the manipulation of quantum vacuum photon modes in a nanostructured cavity is theoretically shown to be able to change the Lifshitz-van der Waals forces from attractive to repulsive regime. Since this concept relies on surface nanopatterning instead of chemical composition changes, it drastically relaxes the usual conditions for achieving repulsive Lifshitz-van der Waals forces. As a case study, the potential interaction energy between a nanopatterned polyethylene slab and a flat polyethylene slab with water as the intervening medium is calculated. Extremely small corrugation heights (<10 nm) are shown to be able to change the Lifshitz-van der Waals force from attractive to repulsive, the interaction strength being controlled by the corrugation height. This new approach could lead to various applications in surface science.

  20. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    PubMed

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  1. Measurement of the van der Waals interaction by atom trajectory imaging

    NASA Astrophysics Data System (ADS)

    Thaicharoen, N.; Schwarzkopf, A.; Raithel, G.

    2015-10-01

    We study the repulsive van der Waals interaction of cold rubidium 70 S1 /2 Rydberg atoms by analysis of time-delayed pair-correlation functions. After excitation, Rydberg atoms are allowed to accelerate under the influence of the van der Waals force. Their positions are then measured using a single-atom imaging technique. From the average pair-correlation function of the atom positions we obtain the initial atom-pair separation and the terminal velocity, which yield the van der Waals interaction coefficient C6. The measured C6 value agrees well with calculations. The experimental method has been validated by simulations. The data hint at anisotropy in the overall expansion, caused by the shape of the excitation volume. Our measurement implies that the interacting entities are individual Rydberg atoms, not groups of atoms that coherently share a Rydberg excitation.

  2. Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal

    SciTech Connect

    Levy, M.; Sarachik, M. P.

    1989-07-01

    The van der Pauw geometry has been widely used for the measurement of resistivities and Hall coefficients. Although the measurement of a Hall coefficient requires a finite magnetic field, it should be noted that van der Pauw's expression is valid only in the limit of zero field; in addition to the Hall contribution, measurements in a finite magnetic field generally include a term associated with field-induced changes in the longitudinal resistivity. Although a simple solution to this problem entails taking the difference between readings in opposite field directions, there are circumstances where this may be impractical. In this note we present a straightforward extension of the van der Pauw calculation which allows a determination of the Hall coefficient from quantities measured in one field direction only.

  3. Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science

    NASA Astrophysics Data System (ADS)

    Chohan, Vinod C.

    2011-02-01

    Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.

  4. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-05-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.

  5. Van der Waals interactions among alkali Rydberg atoms with excitonic states

    NASA Astrophysics Data System (ADS)

    Zoubi, Hashem

    2015-09-01

    We investigate the influence of the appearance of excitonic states on van der Waals interactions among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the | {ns}> and | {np}> states. The resonant dipole-dipole interactions yield symmetric and antisymmetric excitons, with energy splitting that give rise to new resonances as the atoms approach each other. Only away from these resonances can the van der Waals coefficients, C6sp, be defined. We calculate the C6 coefficients for alkali atoms and present the results for lithium by applying perturbation theory. At short interatomic distances of several μ {{m}}, we show that the widely used simple model of two-level systems for excitons in Rydberg atoms breaks down, and the correct representation implies multi-level atoms. Even though, at larger distances one can keep the two-level systems but in including van der Waals interactions among the atoms .

  6. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  7. Observation of long-lived van der Waals molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Yamazaki, Rekishu; Shibata, Kosuke; Yamamoto, Ryuta; Yamada, Hirotaka; Takahashi, Yoshiro

    2012-10-01

    We observe long-lived tightly bound van der Waals molecules of ytterbium in a three-dimensional optical lattice with a lifetime of 8.0 s. The molecules, state-selectively produced by a photoassociation technique from a Bose-Einstein condensate or an atomic Mott insulator, are successfully detected with a photodissociation method where the molecules are photodissociated into two atoms and the atoms are captured by a magneto-optical trap or optical molasses, for the fluorescence detection. This work will open up various possibilities of research with van der Waals molecules in an optical lattice.

  8. General theory based on fluctuational electrodynamics for van der Waals interactions in colloidal systems

    SciTech Connect

    Yannopapas, Vassilios

    2007-12-15

    A rigorous theory for the determination of the van der Waals interactions in colloidal systems is presented. The method is based on fluctuational electrodynamics and a multiple-scattering method which provides the electromagnetic Green's tensor. In particular, expressions for the Green's tensor are presented for arbitrary, finite collections of colloidal particles, for infinitely periodic or defected crystals, as well as for finite slabs of crystals. The presented formalism allows for ab initio calculations of the van der Waals interactions in colloidal systems since it takes fully into account retardation, many-body, multipolar, and near-field effects.

  9. Numerical integration of nearly-Hamiltonian systems. [Van der Pol oscillator and perturbed Keplerian motion

    NASA Technical Reports Server (NTRS)

    Bond, V. R.

    1978-01-01

    The reported investigation is concerned with the solution of systems of differential equations which are derived from a Hamiltonian function in the extended phase space. The problem selected involves a one-dimensional perturbed harmonic oscillator. The van der Pol equation considered has an exact asymptotic value for its amplitude. Comparisons are made between a numerical solution and a known analytical solution. In addition to the van der Pol problem, known solutions regarding the restricted problem of three bodies are used as examples for perturbed Keplerian motion. The extended phase space Hamiltonian discussed by Stiefel and Scheifele (1971) is considered. A description is presented of two canonical formulations of the perturbed harmonic oscillator.

  10. Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients: Generalization of the van der Pauw Method.

    PubMed

    Zhou, Wang; Yoo, H M; Prabhu-Gaunkar, S; Tiemann, L; Reichl, C; Wegscheider, W; Grayson, M

    2015-10-30

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. PMID:26565488

  11. Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients: Generalization of the van der Pauw Method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Yoo, H. M.; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.; Grayson, M.

    2015-10-01

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients.

  12. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    NASA Technical Reports Server (NTRS)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  13. On Attempting to Do What Lord Said Was Impossible: Commentary on van der Linden's "Some Conceptual Issues in Observed-Score Equating"

    ERIC Educational Resources Information Center

    Dorans, Neil J.

    2013-01-01

    van der Linden (this issue) uses words differently than Holland and Dorans. This difference in language usage is a source of some confusion in van der Linden's critique of what he calls equipercentile equating. I address these differences in language. van der Linden maintains that there are only two requirements for score equating. I maintain…

  14. Comments on van der Linden's Critique and Proposal for Equating

    ERIC Educational Resources Information Center

    Holland, Paul W.

    2013-01-01

    While agreeing with van der Linden (this issue) that test equating needs better theoretical underpinnings, my comments criticize several aspects of his article. His examples are, for the most part, worthless; he does not use well-established terminology correctly; his view of 100 years of attempts to give a theoretical basis for equating is…

  15. A theoretical study of the rovibrational levels of the bosonic van der Waals neon trimer.

    PubMed

    Salci, Moses; Levin, Sergey B; Elander, Nils; Yarevsky, Evgeny

    2008-10-01

    The eigenenergies and root mean square radii of the rovibrational levels (J = 0-3) of the weakly bound bosonic van der Waals neon trimer were calculated using a full angular momentum three-dimensional finite element method. The differing results of three previous studies for zero angular momentum are discussed, explained, and compared with the results presented here. PMID:19045087

  16. The Average IQ of Sub-Saharan Africans: Comments on Wicherts, Dolan, and van der Maas

    ERIC Educational Resources Information Center

    Lynn, Richard; Meisenberg, Gerhard

    2010-01-01

    Wicherts, Dolan, and van der Maas (2009) contend that the average IQ of sub-Saharan Africans is about 80. A critical evaluation of the studies presented by WDM shows that many of these are based on unrepresentative elite samples. We show that studies of 29 acceptably representative samples on tests other than the Progressive Matrices give a…

  17. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures.

    PubMed

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep; Kang, Moon Sung; Marks, Tobin J; Hersam, Mark C; Cho, Jeong Ho

    2016-05-01

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm(-2) ) and on/off current ratios (>10(4) ) in a narrow voltage window (<3 V). PMID:27002478

  18. Comments on "Some Conceptual Issues in Observed-Score Equating" by Wim J. van der Linden

    ERIC Educational Resources Information Center

    Bradlow, Eric T.

    2013-01-01

    The van der Linden article (this issue) provides a roadmap for future research in equating. My belief is that the roadmap begins and ends with collecting auxiliary data that can be utilized to provide improved equating, especially when data are sparse or equating beyond simple moments is desired.

  19. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  20. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.

    PubMed

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-21

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K(-1) which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices. PMID:27314610

  1. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence. PMID:23032606

  2. Dynamical screening of the van der Waals interaction between graphene layers

    NASA Astrophysics Data System (ADS)

    Dappe, Y. J.; Bolcatto, P. G.; Ortega, J.; Flores, F.

    2012-10-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp3d5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  3. Generalized van der Waals Hamiltonian: periodic orbits and C1 nonintegrability.

    PubMed

    Guirao, Juan L G; Llibre, Jaume; Vera, Juan A

    2012-03-01

    The aim of this paper is to study the periodic orbits of the generalized van der Waals Hamiltonian system. The tool for studying such periodic orbits is the averaging theory. Moreover, for this Hamiltonian system we provide information on its C(1) nonintegrability, i.e., on the existence of a second first integral of class C(1). PMID:22587198

  4. First kind symmetric periodic solutions of the generalized van der Waals Hamiltonian

    NASA Astrophysics Data System (ADS)

    Alberti, Angelo; Vidal, Claudio

    2016-07-01

    The aim of this paper is to prove the existence of a new symmetric family of periodic solutions of the generalized van der Waals Hamiltonian. In fact, we prove the existence of several families of first kind symmetric periodic solutions as continuation of circular orbits of the Kepler problem in the spatial case.

  5. Holography Does Not Account for Goodness: A Critique of van der Helm and Leeuwenberg (1996)

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Chater, Nick; Watson, Derrick G.

    2004-01-01

    P. A. van der Helm and E. L. J. Leeuwenberg (1996; see record 1996-01780-002) outlined a holographic account of figural goodness of a perceptual stimulus. The theory is mathematically precise and can be applied to a broad spectrum of empirical data. The authors argue, however, that the account is inadequate on both theoretical and empirical…

  6. Maxwell's Relations for a van der Waals Gas and a Nuclear Paramagnetic System.

    ERIC Educational Resources Information Center

    Herlihy, James; And Others

    1981-01-01

    Since Maxwell's relations are derived in general form from the first to second laws, and students often wonder what they mean and how they are used, appropriate partition functions for van der Waals gas and the nuclear paramagnetic system are used to obtain entropy expressions and equations of state. (Author/SK)

  7. van der Waals Density Functional Theory vdW-DFq for Semihard Materials

    NASA Astrophysics Data System (ADS)

    Peng, Qing; de, Suvranu

    There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  8. Approximating the 3D Character of a Van Der Waals Atom-Solid Potential

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2016-04-01

    A truncated Fourier decomposition of the atom-substrate potential energy is developed for three-dimensional models of van der Waals systems, specifically for adsorption on the basal plane surface of graphite or the (111) face of a face-centered-cubic lattice. This provides a framework for analysis of a priori calculations of physical adsorption energies.

  9. Control of excitons in multi-layer van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Calman, E. V.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hu, S.; Mishchenko, A.; Geim, A. K.

    2016-03-01

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS2 and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  10. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.

    PubMed

    La Torre, Alessandro; Gimenez-Lopez, Maria del Carmen; Fay, Michael W; Lucas, Carlos Herreros; Brown, Paul D; Khlobystov, Andrei N

    2015-06-01

    Transmission electron microscopy studies on the assembly and growth of gold nanoparticles on carbon nanotubes supported on few-layer graphene and amorphous carbon reveal a competition between van der Waals forces and electrostatic interactions, enabling controlled positioning and sizing of adsorbed nanoparticles at the nanochannels formed between the carbon nanotube and the few-layer graph-ene surface. PMID:25689488

  11. Bonded Paths and van der Waals Interactions in Orpiment, As2S3

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2010-06-17

    Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and

  12. Van der Woude and Popliteal Pterygium Syndromes: Broad intrafamilial variability in a three generation family with mutation in IRF6.

    PubMed

    Busche, Andreas; Hehr, Ute; Sieg, Peter; Gillessen-Kaesbach, Gabriele

    2016-09-01

    Patients with Van der Woude syndrome typically present with cleft lip, cleft lip and palate, or with cleft palate only. In contrast to non-syndromic cleft lip and/or palate, Van der Woude syndrome typically is characterized by bilateral, paramedian lower-lip pits. Popliteal pterygium syndrome shares features with Van der Woude syndrome, but, in addition, is characterized by a popliteal pterygium, genital anomalies, cutaneous syndactyly of the fingers and the toes, and a characteristic pyramidal fold of skin overlying the nail of the hallux. In some patients oral synechiae or eyelid synechiae are present. Van der Woude Syndrome and Popliteal pterygium syndrome are autosomal dominantly inherited disorders caused by heterozygous mutations in IRF6. We present a three generation family with tremendous intrafamilial phenotypic variability. The newborn index patient had a diagnosis of Popliteal pterygium syndrome. The mother presented with a classic Van der Woude Syndrome, while the maternal grandfather had Van der Woude Syndrome as well as minor signs of Popliteal pterygium syndrome. In all three affecteds the known pathogenic mutation c.265A>G, p.Lys89Glu in IRF6 was identified. While inter- as well as intra-familial variability has been described in IRF6-related disorders, the occurrence of a typical Van der Woude Syndrome without any other anomalies as well as a diagnosis of Popliteal pterygium syndrome in the same family is rare. © 2016 Wiley Periodicals, Inc. PMID:27286731

  13. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

    PubMed Central

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-01-01

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. PMID:26442629

  14. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures

    PubMed Central

    Khestanova, E.; Guinea, F.; Fumagalli, L.; Geim, A. K.; Grigorieva, I. V.

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  15. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials.

    PubMed

    Kim, Chan Kyung; Lee, Kyung A; Hyun, Kwan Hoon; Park, Heung Jin; Kwack, In Young; Kim, Chang Kon; Lee, Hai Whang; Lee, Bon-Su

    2004-12-01

    The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables. PMID:15484184

  16. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.

    PubMed

    Khestanova, E; Guinea, F; Fumagalli, L; Geim, A K; Grigorieva, I V

    2016-01-01

    Trapped substances between a two-dimensional (2D) crystal and an atomically flat substrate lead to the formation of bubbles. Their size, shape and internal pressure are determined by the competition between van der Waals attraction of the crystal to the substrate and the elastic energy needed to deform it, allowing to use bubbles to study elastic properties of 2D crystals and conditions of confinement. Using atomic force microscopy, we analysed a variety of bubbles formed by monolayers of graphene, boron nitride and MoS2. Their shapes are found to exhibit universal scaling, in agreement with our analysis based on the theory of elasticity of membranes. We also measured the hydrostatic pressure induced by the confinement, which was found to reach tens of MPa inside submicron bubbles. This agrees with our theory estimates and suggests that for even smaller, sub-10 nm bubbles the pressure can be close to 1 GPa and may modify properties of a trapped material. PMID:27557732

  17. Goiter in paintings by Rogier van der Weyden (1399-1464).

    PubMed

    Lazzeri, Davide; Pozzilli, Paolo; Zhang, Yi Xin; Persichetti, Paolo

    2015-05-01

    Figures affected by goiter were only sparsely depicted by Peter Paul Rubens and Albrecht Dürer among Flemish artists, because obvious goiter was not common in regions such as the Netherlands and Belgium. However, the recent observation of two figures with a goiter elegantly depicted by Rogier van der Weyden has raised our interest in this topic. When taking a close look at the paintings of this Flemish Renaissance painter, it is interesting to note that 16 portrayed subjects show an abnormal profile of the neck with swelling, suggestive of a presumptive medico-artistic diagnosis of goiter. Van der Weyden travelled to Italy where he soon acquired great fame and was second only to the other Flemish painter of the time, Jan Van Eyck. It is very likely that in Italy he had the opportunity to look at several female figures depicted with goiter, which may have influenced his paintings. Van der Weyden was appreciated because of his style to mix realistic details with idealized softened features to increase the beauty and appeal of his models. It is also likely that the integration of the goiter may have been part of the Renaissance tendency toward a more realistic and precise representation of subjects. The fact that in almost all cases the goiter was a low-to-moderate grade enlargement of the thyroid may confirm our speculation that perhaps the painter used the same model or the template derived from one model for subsequent paintings. PMID:25747746

  18. Coexisting two canards and their breakdown into chaos in the van der Pol oscillator under weak periodic perturbation

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Aihara, Kazuyuki

    2007-04-01

    Two coexisting stable canards are discussed in a periodically driven singularly perturbed van der Pol equation, where the amplitude of the driving force is extremely small. Canard breakdown into chaos via period-doubling bifurcations is also observed.

  19. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  20. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-01

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches. PMID:26583215

  1. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    PubMed Central

    Cho, Sung Beom; Chung, Yong-Chae

    2016-01-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer. PMID:27301777

  2. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  3. Electrical and optical properties of SnS2/WSe2 van der Waals Heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmad; Nourbakhsh, Amirhasan; Dresselhaus, Mildred; Palacios, Tomas

    Two dimensional crystals based on atomically thin films of transition metal dichalcogenides offer an exciting platform for various optoelectronic applications. Their unique crystal properties make them particularly attractive for van der Waals heterostructures which open up an additional degree of freedom to tailor the material properties into new physics and device applications. In this work, we explore, for the first time, the optoelectronic properties of van der Waals SnS2/WSe2 heterojunction. WSe2 is an ambipolar semiconductor while SnS2 is an n-type wide bandgap semiconductor. We use the pickup and dry transfer methods to fabricate SnS2/WSe2 heterojunction transistors (hetero-FETs). We observe negative differential transconductance in the SnS2/WSe2 hetero-FET. Also, the heterostructure couples strongly to incident light and shows high photovoltaic responsivity which can find applications in nano-devices such as photo-detectors and solar cells.

  4. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  5. Stochastic bifurcations induced by correlated noise in a birhythmic van der Pol system

    NASA Astrophysics Data System (ADS)

    Mbakob Yonkeu, R.; Yamapi, R.; Filatrella, G.; Tchawoua, C.

    2016-04-01

    We investigate the effects of exponentially correlated noise on birhythmic van der Pol type oscillators. The analytical results are obtained applying the quasi-harmonic assumption to the Langevin equation to derive an approximated Fokker-Planck equation. This approach allows to analytically derive the probability distributions as well as the activation energies associated to switching between coexisting attractors. The stationary probability density function of the van der Pol oscillator reveals the influence of the correlation time on the dynamics. Stochastic bifurcations are discussed through a qualitative change of the stationary probability distribution, which indicates that noise intensity and correlation time can be treated as bifurcation parameters. Comparing the analytical and numerical results, we find good agreement both when the frequencies of the attractors are about equal or when they are markedly different.

  6. Energetics, dynamics, and reactions of rydberg state molecules in van der Waals clusters

    SciTech Connect

    Shang, Q.Y.; Bernstein, E.R.

    1994-12-31

    In the past 10 years the study of van der Waals clusters has grown enormously; perhaps one of the best indications of this growth, in both activity and sophistication, is the advent of this review issue devoted to such research. Van der Waals clusters, synthesized one molecule or atom at a time and accessed according to size and structure, provide a molecule by molecule view of the solvation process, its energetics, solute/solvent dynamics, and eventually even unimolecular and bimolecular chemical reactions. The clusters treated most frequently and discussed in this review are of the form solute or chromophore (solvent)n, with n varying from 1 to more than 100. These clusters are most typically generated in a supersonic beam; both large and small clusters can be synthesized by controlling the expansion conditions.

  7. Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Béguin, L.; Vernier, A.; Chicireanu, R.; Lahaye, T.; Browaeys, A.

    2013-06-01

    We report the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe its characteristic C6/R6 dependence. The measured C6 coefficients agree well with ab initio calculations, and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

  8. Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Abourabia, A. M.; Morad, A. M.

    2015-11-01

    Analytical solutions of the van der Waals normal form for fluidized granular media have been done to study the phase separation phenomenon by using two different exact methods. The Painlevé analysis is discussed to illustrate the integrability of the model equation. An auto-Bäcklund transformation is presented via the truncated expansion and symbolic computation. The results show that the exact solutions of the model introduce solitary waves of different types. The solutions of the hydrodynamic model and the van der Waals equation exhibit a behavior similar to the one observed in molecular dynamic simulations such that two pairs of shock and rarefaction waves appear and move away, giving rise to the bubbles. The dispersion properties and the relation between group and phase velocities of the model equation are studied using the plane wave assumption. The diagrams are drawn to illustrate the physical properties of the exact solutions, and indicate their stability and bifurcation.

  9. Diffuse-interface modeling of liquid-vapor phase separation in a van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Lamorgese, A. G.; Mauri, R.

    2009-04-01

    We simulate liquid-vapor phase separation in a van der Waals fluid that is deeply quenched into the unstable range of its phase diagram. Our theoretical approach follows the diffuse-interface model, where convection induced by phase change is accounted for via a nonequilibrium (Korteweg) force expressing the tendency of the liquid-vapor system to minimize its free energy. Spinodal decomposition patterns for critical and off-critical van der Waals fluids are studied numerically, revealing the scaling laws of the characteristic length scale and composition of single-phase microdomains, together with their dependence on the Reynolds number. Unlike phase separation of viscous binary mixtures, here local equilibrium is reached almost immediately after single-phase domains start to form. In addition, as predicted by scaling laws, such domains grow in time like t2/3. Comparison between 2D and 3D results reveals that 2D simulations capture, even quantitatively, the main features of the phenomenon.

  10. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    SciTech Connect

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  11. The van der Waals interactions in rare-gas dimers: the role of interparticle interactions.

    PubMed

    Chen, Yu-Ting; Hui, Kerwin; Chai, Jeng-Da

    2016-01-28

    We investigate the potential energy curves of rare-gas dimers with various ranges and strengths of interparticle interactions (nuclear-electron, electron-electron, and nuclear-nuclear interactions). Our investigation is based on the highly accurate coupled-cluster theory associated with those interparticle interactions. For comparison, the performances of the corresponding Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and density functional theory are also investigated. Our results reveal that when the interparticle interactions retain the long-range Coulomb tails, the nature of van der Waals interactions in the rare-gas dimers remains similar. By contrast, when the interparticle interactions are sufficiently short-range, the conventional van der Waals interactions in the rare-gas dimers completely disappear, yielding purely repulsive potential energy curves. PMID:26738722

  12. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.

    PubMed

    Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H

    2015-09-22

    The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design. PMID:25815562

  13. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force

    NASA Astrophysics Data System (ADS)

    Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B.

    2006-11-01

    We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.

  14. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  15. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Suenram, R. D.; Lovas, F. J.

    1990-05-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  16. Elution of human granulocytes from nylon fibers by means of repulsive van der Waals forces.

    PubMed

    Absolom, D R; van Oss, C J; Neumann, A W

    1981-01-01

    A novel method for the isolation of granulocytes from nylon fibers is described. It is modification of filtration leukapheresis based on cellular surface thermodynamics. The system takes into account both electrical and van der Waals forces. The elution buffer contains a chelating agent and a surface active agent which lowers the surface tension of the liquid to a value intermediate between that of the surface tensions of the nylon fibers and of the granulocytes. Thus, the attractive van der Waals interaction between the fibers and the granulocytes becomes a repulsion. This results in a two- to threefold increase in cell yield. Phagocytosis, candicidal activity, and oxygen consumption did not appear to be affected through the isolation procedure. By both light and transmission electron microscopy the isolated granulocytes appeared to be morphologically intact. PMID:7314214

  17. On the pseudopotential approximation in the van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Hamada, Ikutaro; Callsen, Martin

    The van der Waals density functional (vdW-DF) is a density functional that is able to describe van der Waals and covalent interactions in a seamless fashion, and has been applied to a variety of systems. In practical calculations, the pseudopotential (PP) approximation has been employed, for which the PPs should be generated consistently for the chosen exchange correlation XC functional. However, usually PPs generated with a generalized gradient approximation (GGA) XC functional are used and the effect of the approximation to the XC functional applied in the PP generation is scarcely discussed. In this work, we discuss the appropriate XC functionals in the PP generation for the vdW-DF calculations. Furthermore, we compare the vdW-DF results for several systems using the PP's generated with appropriate XC and those with GGA XC.

  18. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  19. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  20. Spectroscopic measurement of the titanium-helium van der Waals molecule: TiHe

    NASA Astrophysics Data System (ADS)

    Quiros, Nancy; Tariq, Naima; Weinstein, Jonathan

    2016-05-01

    Atoms that are weakly bound by the van der Waals (vdW) interaction are known as van der Waals molecules. The existence and formation of vdW molecules is favorable at low temperatures due to their weak binding energy. We have used laser ablation and helium buffer gas cooling to create the exotic vdW diatomic molecule made of titanium (Ti) and helium (He). TiHe molecules were detected through laser-induced-fluorescence spectroscopy closely blue-detuned from the a3F2 --> y3F3 atomic Ti transition at 25227 cm-1. Measurements of the binding energy of TiHe were obtained by studying its equilibrium thermodynamic properties. It is believed the molecules are formed from the constituent cold atoms through three-body recombination. Progress towards measuring the three-body recombination rate coefficient will be discussed. This material is based upon work supported by National Science Foundation under Grant No. PHY 1265905.

  1. Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Jing, Wang; Xiang-Mei, Duan

    2016-03-01

    We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. Projected supported by the National Natural Science Foundation of China (Grant No. 11574167), the New Century 151 Talents Project of Zhejiang Province,China, and the K. C. Wong Magna Foundation in Ningbo University, China.

  2. Microwave spectra of van der Waals complexes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Suenram, R. D.; Lovas, F. J.

    1990-01-01

    The Fourier-transform Fabry-Perot pulsed-molecular-beam microwave spectrometer at NIST was used to study the microwave spectra of a number of molecular dimers and trimers that may be present in planetary atmospheres. The weak van der Waals bonds associated with these species usually give rise to rotational-tunneling splittings in the microwave spectra. The microwave spectrum of the water dimer species was used to illustrate the complications that can arise in the study of the rotational spectra of these loosely bound species. In addition to the water dimer species, the microwave spectra of the following hydrogen-bonded and van der Waals complexes were studied: (CO2)2-H2O, CO2-(H2O)2, CO2-H2S, N2-H2O, CO-H2O, SO2-H2O, and O3-H2O.

  3. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  4. Synchronization of coupled van der pole and Kislov-Dmitriev self-oscillators

    NASA Astrophysics Data System (ADS)

    Emel'Yanova, Yu. P.; Kuznetsov, A. P.

    2011-04-01

    The problem of interaction of self-oscillating elements of different origin is considered for a coupled van der Pole oscillator and Kislov-Dmitriev generator. Domains with different types of dynamics in the space of parameters are indicated taking into account the possibility of broadband synchronization of the systems. The case of essentially different control parameters is considered. Chaos stabilization effects and the opposite effect (initiated chaos) are detected in the system under investigation for various values of parameters.

  5. Stability analysis for periodic solutions of the Van der Pol-Duffing forced oscillator

    NASA Astrophysics Data System (ADS)

    Cui, Jifeng; Liang, Jiaming; Lin, Zhiliang

    2016-01-01

    Based on the homotopy analysis method (HAM), the high accuracy frequency response curve and the stable/unstable periodic solutions of the Van der Pol-Duffing forced oscillator with the variation of the forced frequency are obtained and studied. The stability of the periodic solutions obtained is analyzed by use of Floquet theory. Furthermore, the results are validated in the light of spectral analysis and bifurcation theory.

  6. EXPERIMENTAL AND THEORETICAL STUDIES OF THE CN-AR VAN DER WAALS COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CN-Ar van der Waals complex has been observed using B2E+-X2E+ and A2II-X2E+ electronic transitions. The spectra yielded a dissociation energy of D0"=109+2 cm1 and a zero point rational constant of B0"=0.067+0.005 cm-1 for CN(x)-Ar. The dissociation energy for Cn(A)-Ar was found to be D0"=132+2...

  7. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates.

    PubMed

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices. PMID:27199079

  8. Complex Dynamics in a Duffing-Van der Pol Oscillator with φ6 Potential

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Xie, Zhi-kun; Yu, Li-xian

    2008-11-01

    The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in some detail. Different routes to chaos such as period-doubling bifurcation and intermittency, as well as various shapes of strange attractors and rich dynamical phenomena: crisis, transient chaos, are all observed by using bifurcation diagrams, phase projections and Poincaré maps. To characterize chaotic behavior of this oscillator system, the spectrum of Lyapunov exponent and Lyapunov dimension of the strange attractor are also employed.

  9. GENERAL: Period-Doubling Cascades and Strange Attractors in Extended Duffing-Van der Pol Oscillator

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Pan, Wei-Zhen; Zhang, Rong-Bo

    2009-05-01

    The dynamical behavior of the extended Duffing-Van der Pol oscillator is investigated numerically in detail. With the aid of some numerical simulation tools such as bifurcation diagrams and Poincaré maps, the different routes to chaos and various shapes of strange attractors are observed. To characterize chaotic behavior of this oscillator system, the spectrum of Lyapunov exponent and Lyapunov dimension are also employed.

  10. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGESBeta

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  11. The van der Waals interaction in one, two, and three dimensions

    NASA Astrophysics Data System (ADS)

    Ipsen, A. C.; Splittorff, K.

    2015-02-01

    The van der Waals interaction between two polarizable atoms is considered. In three dimensions, the standard form with an attractive 1/R6 potential is obtained from second-order quantum perturbation theory. When the electron motion is restricted to lower dimensions (but the 1/R Coulomb potential is retained), new terms in the expansion appear and alter both the sign and the R-dependence of the interaction.

  12. Estimation of Some Parameters from Morse-Morse-Spline-Van Der Waals Intermolecular Potential

    SciTech Connect

    Coroiu, I.

    2007-04-23

    Some parameters such as transport cross-sections and isotopic thermal diffusion factor have been calculated from an improved intermolecular potential, Morse-Morse-Spline-van der Waals (MMSV) potential proposed by R.A. Aziz et al. The treatment was completely classical and no corrections for quantum effects were made. The results would be employed for isotope separations of different spherical and quasi-spherical molecules.

  13. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  14. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    SciTech Connect

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Chen; Damien, West; Meunier, Vincent; Zhang, Prof. Shengbai

    2016-01-01

    The success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application

  15. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

    PubMed

    You, Baiqing; Wang, Xiaocha; Zheng, Zhida; Mi, Wenbo

    2016-03-14

    The electronic structure of black phosphorene (BP)/monolayer 1H-XT2 (X = Mo, W; T = S, Se, Te) two dimensional (2D) van der Waals heterostructures have been calculated by the first-principles method. It is found that the electronic band structures of both BP and XT2 are preserved in the combined van der Waals heterostructures. The WSe2/BP van der Waals heterostructure demonstrates a type-I band alignment, but the MoS2/BP, MoSe2/BP, MoTe2/BP, WS2/BP and WTe2/BP van der Waals heterostructures demonstrate a type-II band alignment. In particular, the n-type XT2/p-type BP van der Waals heterostructures can be applied in p-n diode and logical devices. Strong spin splitting appears in all of the heterostructures when considering the spin orbital coupling. Our results play a significant role in the prediction of novel 2D van der Waals heterostructures that have potential applications in spin-filter devices, spin field effect transistors, optoelectronic devices, etc. PMID:26899350

  16. Probabilistic characteristics of noisy Van der Pol type oscillator with nonlinear damping

    NASA Astrophysics Data System (ADS)

    Dubkov, A. A.; Litovsky, I. A.

    2016-05-01

    The exact Fokker–Planck equation for the joint probability distribution of amplitude and phase of a Van der Pol oscillator perturbed by both additive and multiplicative noise sources with arbitrary nonlinear damping is first derived by the method of functional splitting of averages. We truncate this equation in the usual manner using the smallness of the damping parameter and obtain a general expression for the stationary probability density function of oscillation amplitude, which is valid for any nonlinearity in the feedback loop of the oscillator. We analyze the dependence of this stationary solution on system parameters and intensities of noise sources for two different situations: (i) Van der Pol generator with soft and hard excitation regimes; (ii) Van der Pol oscillator with negative nonlinear damping. As shown, in the first case the probability distribution of amplitude demonstrates one characteristic maximum, which indicates the presence of a stable limit cycle in the system. The non-monotonic dependence of stationary probability density function on oscillation frequency is also detected. In the second case we examine separately three situations: linear oscillator with two noise sources, nonlinear oscillator with additive noise and nonlinear oscillator with frequency fluctuations. For the last two situations, noise-induced transitions in the system under consideration are found.

  17. The hot pick-up technique for batch assembly of van der Waals heterostructures

    PubMed Central

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures. PMID:27305833

  18. Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.; De Hosson, J. Th. M.

    2009-05-15

    In this paper, we present calculations of van der Waals/Casimir forces, described by Lifshitz theory, for the solid-liquid-solid system using measured dielectric functions of all involved materials for the wavelength range from millimeters down to subnanometers. It is shown that even if the dielectric function is known over all relevant frequency ranges, the scatter in the dielectric data can lead to very large scatter in the calculated van der Waals/Casimir forces. Especially when the liquid dielectric function becomes comparable in magnitude to the dielectric function of one of the interacting solids, the associated variation in the force can be up to a factor of 2 for plate-plate separations 5-500 nm. This corresponds to an uncertainty up to 100% in the theory prediction for a specific system. As a result accuracy testing of the Lifshitz theory under these circumstances is rather questionable. Finally we discuss predictions of Lifshitz theory regarding multiple repulsive-attractive transitions with separation distance, as well as nontrivial scaling of the van der Waals/Casimir force with distance.

  19. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept

    NASA Astrophysics Data System (ADS)

    Ginoux, Jean-Marc; Letellier, Christophe

    2012-06-01

    Relaxation oscillations are commonly associated with the name of Balthazar van der Pol via his paper (Philosophical Magazine, 1926) in which he apparently introduced this terminology to describe the nonlinear oscillations produced by self-sustained oscillating systems such as a triode circuit. Our aim is to investigate how relaxation oscillations were actually discovered. Browsing the literature from the late 19th century, we identified four self-oscillating systems in which relaxation oscillations have been observed: (i) the series dynamo machine conducted by Gérard-Lescuyer (1880), (ii) the musical arc discovered by Duddell (1901) and investigated by Blondel (1905), (iii) the triode invented by de Forest (1907), and (iv) the multivibrator elaborated by Abraham and Bloch (1917). The differential equation describing such a self-oscillating system was proposed by Poincaré for the musical arc (1908), by Janet for the series dynamo machine (1919), and by Blondel for the triode (1919). Once Janet (1919) established that these three self-oscillating systems can be described by the same equation, van der Pol proposed (1926) a generic dimensionless equation which captures the relevant dynamical properties shared by these systems. Van der Pol's contributions during the period of 1926-1930 were investigated to show how, with Le Corbeiller's help, he popularized the "relaxation oscillations" using the previous experiments as examples and, turned them into a concept.

  20. The hot pick-up technique for batch assembly of van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S.; Caridad, José M.; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J.

    2016-06-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

  1. van der Waals torque and force between dielectrically anisotropic layered media

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-01

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  2. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs. PMID:27475386

  3. Study of van der Waals bonding and interactions in metal organic framework materials.

    PubMed

    Zuluaga, Sebastian; Canepa, Pieremanuele; Tan, Kui; Chabal, Yves J; Thonhauser, Timo

    2014-04-01

    Metal organic framework (MOF) materials have attracted a lot of attention due to their numerous applications in fields such as hydrogen storage, carbon capture and gas sequestration. In all these applications, van der Waals forces dominate the interaction between the small guest molecules and the walls of the MOFs. In this review article, we describe how a combined theoretical and experimental approach can successfully be used to study those weak interactions and elucidate the adsorption mechanisms important for various applications. On the theory side, we show that, while standard density functional theory is not capable of correctly describing van der Waals interactions, functionals especially designed to include van der Waals forces exist, yielding results in remarkable agreement with experiment. From the experimental point of view, we show examples in which IR adsorption and Raman spectroscopy are essential to study molecule/MOF interactions. Importantly, we emphasize throughout this review that a combination of theory and experiment is crucial to effectively gain further understanding. In particular, we review such combined studies for the adsorption mechanism of small molecules in MOFs, the chemical stability of MOFs under humid conditions, water cluster formation inside MOFs, and the diffusion of small molecules into MOFs. The understanding of these phenomena is critical for the rational design of new MOFs with desired properties. PMID:24613989

  4. The hot pick-up technique for batch assembly of van der Waals heterostructures.

    PubMed

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S; Caridad, José M; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures. PMID:27305833

  5. Effect of van der Waals interactions on the structural and binding properties of GaSe

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey Y.; Kosobutsky, Alexey V.; Shandakov, Sergey D.

    2015-12-01

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga-Ga, Ga-Se bond lengths and Ga-Ga-Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172-0.197 eV/layer (14.2-16.2 meV/Å2).

  6. Physisorption of nucleobases on graphene: a comparative van der Waals study

    NASA Astrophysics Data System (ADS)

    Le, Duy; Kara, Abdelkader; Schröder, Elsebeth; Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ˜ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ˜ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.

  7. The effects of van der Waals attractions on cloud droplet growth by coalescence

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Davis, Robert H.

    1990-01-01

    The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.

  8. Short-range Cut-Off of the Summed-Up van der Waals Series

    NASA Astrophysics Data System (ADS)

    Patra, Abhirup; Perdew, John P.

    2015-03-01

    van der Waals interactions are important in typical van der Waals-bound systems such as noble-gas, hydrocarbon, alkali and alkaline-earth dimers. The summed-up van der Waals series works well and gives an accurate result at large separation between two atoms. But it has a strong singularity at short non-zero separation, where the two atoms touch. In this work we remove that singularity with a reasonable and physical choice of the cut-off distance. Only one fitting parameter has been introduced for the short-range cut off. The parameter in our model has been optimized for each system, and a system-averaged value has been used to get the final binding energy curves. When this correction is added to the binding energy curve from the semilocal density functional meta-GGA-MS2, we get vdW- corrected binding energy curve. These curves are compared with the results of other vdW-corrected methods such as PBE-D2 and vdW-DF2 .Binding energy curves are in reasonable agreement with those from experiment. These curves also predict reasonably good equilibrium bond length. Supported by NSF (DMR).

  9. Adsorption characteristics of Thiophene on Cu and Ni(100): role of van der Waals

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Matos, Jeronimo; Kara, Abdelkader

    2014-03-01

    We apply density functional theory, with and without the inclusion of self-consistent van der Waals (vdWs) interactions (optB86, optB88, optPBE, revPBE, rPW86), to study the adsorption of thiophene (C4H4S) on Cu(100) and Ni(100). Our calculations reveal that the C4H4S molecule adsorbs, on either substrate, with its molecular plane parallel to the surface with the sulfur close to the bridge site. The inclusion of vdWs interactions results in a significant increase in the binding energy of thiophene on Cu(100) (from 0.12 eV to up to 0.77 eV), while the adsorption height is also modified from 3.2 A down to, at most, 2.38 A, depending on the functional used. The Ni(100) case presents a similar behavior for the binding energy (enhancement from 1.56 eV to up to 2.34 eV), but the adsorption heights increase from 2.12 Å up to 2.32 Å. In addition to adsorption geometry and energetics, we present the results and analysis of the electronic properties (charge transfer, changes in the d-band of the substrate, and change in the work function) of these two systems to complement our understanding of the molecule-substrate bonding. Our results suggest that the adsorption characteristics are dependent on the type of functional used; opt-type functionals (optB86, optB88, optPBE) are found to produce stronger bonding as compared to PBE, revPBE and rPW86. This work is funded by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243.

  10. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-01

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (Rbar{3}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and Rbar{3} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  11. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    SciTech Connect

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  12. Application of Solution-blown 20-50 nm Nanofibers in Filtration of Nanoparticles: The Efficient van der Waals Collectors

    NASA Astrophysics Data System (ADS)

    Sinha-Ray, Sumit; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2015-11-01

    Filtration efficiency of commercially available filter media with fiber/pore sizes on the scale of 10 μm can be dramatically increased by adding a layer of ultrafine supersonically-blown 20-50 nm nanofibers. Different commercial filters were modified with (i) electrospun nanofibers alone, (ii) solution-blown 20-50 nm alone, and (iii) the dual coating with electrospun nanofibers deposited first and the solution-blown 20-50 nm nanofibers deposited on top of them. Detailed observations of nanoparticle removal revealed that the above-mentioned modified filters, especially those with the dual nanofiber coating with the 20-50 nm nanofibers deposited on top, are the most effective in removing the below-200 nm Cu nanoparticles/clusters from aqueous suspensions, in particular at the lowest concentrations of 0.2-0.5 ppm. The theory developed in the present work dealing with convective transport of nanoparticles in the fluid flow along with diffusion of nanoparticles and the van der Waals attraction explains and describes how the smallest solution-blown nanofibers introduce a novel physical mechanism of nanoparticle interception (the attractive van der Waals forces) and become significantly more efficient collectors compared to the larger electrospun nanofibers. The theory also elucidates the morphology of the nanoparticle clusters being accumulated at the smallest nanofiber surfaces, including the clusters growing at the windward side, or in some cases also on the leeward side of a nanofiber. This work is supported by the Nonwovens Cooperative Research Center (NCRC), grant No. 12-144SB.

  13. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.

    PubMed

    Corminboeuf, Clemence

    2014-11-18

    computationally demanding self-consistent implementation. The proposed correction is then exploited to identify the key factors at the origin of the errors in thermochemistry beyond van der Waals complexes. Particular focus is placed on charge-transfer and mixed-valence complexes, which are relevant to the field of organic electronics. These types of complexes represent insightful examples for which the delocalization error may partially counterbalance the missing dispersion. Our devised methodology reveals the true performance of standard density functional approximations and the subtle interplay between the two types of errors. The analysis presented provides guidance for future functional development that could further improve the modeling of the structures and properties of molecular materials. Overall, the proposed state-of-the-art approaches have contributed to stress the crucial role of dispersion and improve their description in both straightforward van der Waals complexes and more challenging chemical situations. For the treatment of the latter, we have also provided relevant insights into which type of density functionals to favor. PMID:24655016

  14. Microwave and ab initio studies of rare gas-methane van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Liu, Yaqian; Jäger, Wolfgang

    2004-05-01

    Rotational spectra of the weakly bound Kr-methane van der Waals complex were recorded using a pulsed molecular beam Fourier transform microwave spectrometer in the range from 3.5 to 18 GHz. Spectra of 25 isotopomers of Kr-methane were assigned and analyzed. For isotopomers containing CH4, 13CH4, and CD4, two sets of transitions with K=0 and one with K=1 were recorded, correlating to the j=0, 1, and 2 rotational levels of free methane, respectively (j is the rotational angular momentum quantum number of the methane monomer). For isotopomers containing CH3D and CHD3, two K=0 components were recorded, correlating to the jk=00 and 11 rotational levels of free methane (k corresponds to the projection of j onto the C3 axis of CH3D and CHD3). The obtained spectroscopic results were used to derive van der Waals bond distance R, van der Waals stretching frequency νs, and the corresponding stretching force constant ks. Nuclear spin statistical weights of individual states were obtained from molecular symmetry group analyses and were compared with the observed relative transition intensities. The tentatively assigned j=2 transitions were more intense than predicted from symmetry considerations. This is attributed to a relatively large effective dipole moment of this state, supported by ab initio dipole moment calculations. Ab initio potential energy calculations of Kr-CH4 and Ar-CH4 were done at the coupled cluster level of theory, with single and double excitations and perturbative inclusion of triple excitations, using the aug-cc-pVTZ basis set supplemented with bond functions. The theoretical results show that the angular dynamics of the dimer does not change significantly when the binding partner of methane changes from Ar to Kr. The dipole moment of Ar-CH4 was calculated at various configurations, providing a qualitative explanation for the unsuccessful spectral searches for rotational transitions of Ar-CH4.

  15. The Dielectric Function for Water and Its Application to van der Waals Forces.

    PubMed

    Dagastine; Prieve; White

    2000-11-15

    The dielectric response, varepsilon(ixi), for water (which is required in Lifshitz theory to calculate the van der Waals interactions in aqueous systems) is commonly constructed, in the absence of complete spectral data, by fitting a damped-harmonic-oscillator model to absorption data. Two sets of parameters for the model have been developed corresponding to different constraints: Parsegian and Weiss (J. Colloid Interface Sci., 1981, 81, 285) and Roth and Lenhoff (J. Colloid Interface Sci., 1996, 179, 637). These different representations of the dielectric response lead to significant differences in the van der Waals force calculated from Lifshitz theory. In this work, more recent and complete spectral data for water were compiled from the literature and direct integration of the Kramers-Kronig relations was used to construct a new varepsilon(ixi) for water at 298 degrees K. This approach also allows a number of different types of spectral measurements (such as infrared spectroscopy, microwave resonance techniques, and x-ray inelastic scattering) in the compilation of absorption data over a large frequency range (on the order of 8 to 10 decades in frequency). A Kramers-Kronig integration was employed to construct the real and imaginary parts of varepsilon(omega), varepsilon'(omega), and varepsilon"(omega) for water from the different spectral measurements before calculation of varepsilon(ixi) from its integral definition. The resulting new varepsilon(ixi) is intermediate between the Parsegian-Weiss and Roth-Lenhoff representations of varepsilon(ixi), does not use a model, and treats the conversion of absorption data as rigorously as possible. We believe the varepsilon(ixi) from the present work is the most reliable construction for use in van der Waals force calculations using Lifshitz theory. The extension of the varepsilon(ixi) construction to other temperatures is also discussed. Copyright 2000 Academic Press. PMID:11049685

  16. Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Yankowitz, Matthew Abraham

    A large family of materials, collectively known as "van der Waals materials", have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures", which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically

  17. Nonlocal van der Waals functionals: the case of rare-gas dimers and solids.

    PubMed

    Tran, Fabien; Hutter, Jürg

    2013-05-28

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations, supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)]. An analysis of the results in terms of energy decomposition is also provided. PMID:23742450

  18. Period-doubling cascades of canards from the extended Bonhoeffer-van der Pol oscillator

    NASA Astrophysics Data System (ADS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Hikihara, Takashi

    2010-08-01

    This Letter investigates the period-doubling cascades of canards, generated in the extended Bonhoeffer-van der Pol oscillator. Canards appear by Andronov-Hopf bifurcations (AHBs) and it is confirmed that these AHBs are always supercritical in our system. The cascades of period-doubling bifurcation are followed by mixed-mode oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is clarified that the period-doubling bifurcations arise from a narrow parameter value range at which the original canard in the non-extended equation is observed.

  19. Nanoscopy of Surface-Induced van der Waals-Zeeman Transitions

    SciTech Connect

    Hamamda, M.; Grucker, J.; Dutier, G.; Perales, F.; Baudon, J.; Ducloy, M.; Bocvarski, V.

    2008-10-22

    van der Waals transitions among magnetic sub-levels of a metastable rare gas atom passing near a surface immersed in a magnetic field, are described. Related transition amplitudes are calculated using both the sudden and the Landau-Zener approximations. Experimental data for Ne*({sup 3}P{sub 2}) atoms traversing a copper grating are presented. For a pair of surfaces (e.g. the opposite edges of a slit) and a sufficiently large coherence width, Fresnel's biprism interference fringes are obtained. From this interference pattern, detailed information about the transition amplitude at a sub-nanometric scale can be derived. The effect of gravity on this pattern is examined.

  20. Infrared vibrational predissociation of van der Waals clusters: applications to isotope separation

    SciTech Connect

    Philippoz, J.M.; Zellweger, J.M.; van den Bergh, H.; Monot, R.

    1984-08-30

    Isotope separation is demonstrated following the selective infrared laser-induced photodissociation of van der Waals clusters in a free jet. Irradiation of a natural abundance mixture of SF/sub 6/ isotopomers diluted in argon with a 20-W cw CO/sub 2/ laser gives overall enrichment factors in excess of 1.1. By adjusting the wavelength one can either enrich or deplete the center of the free jet in any one of the sulfur isotopes. Furthermore, unselective photodissociation of clusters can be used to enhance the separation of isotopes in a recently reported selective condensation method. 8 references, 3 figures.

  1. 3D van der Waals σ-model and its topological excitations

    NASA Astrophysics Data System (ADS)

    Bulgadaev, S. A.

    2001-09-01

    It is shown that the 3D vector van der Waals nonlinear σ-model (NSM) on a sphere S2 has two types of topological excitations: reminiscent vortices and instantons of 2D NSM. The first ones, the hedgehogs, are described by the homotopic group π2(S2) = Z and have logarithmic energies. They are an analog of 2D vortices. The second ones, corresponding to 2D instantons, are the hopfions. They are described by the homotopic group π3(S2) = Z, or the Hopf invariant HinZ, and have finite energy. The possibility of a topological phase transition in this model and its applications are briefly discussed.

  2. Electron transport calculations with Wannier functions in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Wushi; Lopez-Bezanilla, Alejandro; Littlewood, Peter; Andreas Roelofs'group at Argonne National Lab Collaboration

    The vertical stacking of 2D materials forming van der Waals heterostructures (vdWHs) exhibits a wide range of interesting properties. A combined approach based on the Green's function formalism and a mean-field description of the electronic structure is used to calculate vertical electron transport in vdWHs. Tight-binding parameters obtained from Maximally Localized Wannier Functions enable us to model quantum electron transport at low computational costs. Our analysis of electron transport efficiencies provides the foundation and motivation for experimental works.

  3. The effect of various types of periodic random excitations on the Van der Pol system

    NASA Astrophysics Data System (ADS)

    Nguyen, D. A.

    1986-02-01

    Random oscillations in a Van der Pol system characterized by random and periodic external excitation with a periodically varying natural frequency or by random and periodic parametric excitation are analyzed using the Krylov-Bogoliubov-Mitropolskii asymptotic methods and the method of Fokker-Planck-Kolmogorov equations. It is shown that in the system investigated, the integrability condition for the averaged Fokker-Planck-Kolmogorov equations is satisfied. Exact amplitude and phase probability densities are obtained, which are then used to analyze the oscillation characteristics.

  4. New species and records of Metriocnemus van der Wulp s. str. from China (Diptera, Chironomidae)

    PubMed Central

    Li, Xing; Wang, Xin-hua

    2014-01-01

    Abstract The Chinese species of Metriocnemus van der Wulp s. str., 1874 is reviewed. M. (M.) calcaneum sp. n. is described and illustrated as adult male. M. (M.) albolineatus (Meigen) is recorded from China for the first time. M. (M.) beringensis (Cranston & Oliver), M. (M.) bilobatus Makarchenko & Makarchenko, M. (M.) caudigus Sæther, M. (M.) intergerivus Sæther, M. (M.) tamaokui Sasa and M. (M.) tristellus Edwards are recorded from the Oriental Region for the first time. A key to the males of 17 Chinese Metriocnemus (Metriocnemus) species is given. PMID:24693220

  5. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    SciTech Connect

    Arai, Miho; Moriya, Rai Yabuki, Naoto; Masubuchi, Satoru; Ueno, Keiji; Machida, Tomoki

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  6. Stability of an attractive bosonic cloud with van der Waals interaction

    SciTech Connect

    Biswas, Anindya; Das, Tapan Kumar; Salasnich, Luca; Chakrabarti, Barnali

    2010-10-15

    We investigate the structure and stability of Bose-Einstein condensates of {sup 7}Li atoms with realistic van der Waals interactions by using the potential harmonic expansion method. Besides the known low-density metastable solution with a contact {delta}-function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of a nonlocal effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.

  7. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-06-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  8. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    NASA Astrophysics Data System (ADS)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  9. Rare and hidden attractors in Van der Pol-Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Brezetskyi, S.; Dudkowski, D.; Kapitaniak, T.

    2015-07-01

    We study the dynamics of the single and coupled van der Pol-Duffing oscillators. Each oscillator is characterized by the multistability (the coexistence of attractors). Some of the coexisting attractors have very small basins of attraction (the rare ones) and some of them do not contain equilibria in their basin of attraction (the hidden ones). We perform the detailed bifurcation analysis of these attractors and investigate how this plethora of states influences the dynamics of the network of coupled oscillators. We have observed the cluster synchronization on different attractors as well as different types of chimera states.

  10. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures.

    PubMed

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J; Li, Lain-Jong; Wallace, Robert M; Datta, Suman; Robinson, Joshua A

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics. PMID:26088295

  11. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    SciTech Connect

    Xia, Congxin Xue, Bin; Wang, Tianxing; Peng, Yuting; Jia, Yu

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  12. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals

    PubMed Central

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E.; Man, Michael K.L.; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M.

    2016-01-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures. PMID:26936437

  13. Spectroscopy of DABCO-rare-gas and DABCO-DABCO van der Waals complexes

    NASA Astrophysics Data System (ADS)

    van den Hock, G.; Consalvo, D.; Parker, D. H.; Reuss, J.

    1993-03-01

    The excited electronic origin bands of several DABCO containing van der Waals complexes have been observed via (1+1) resonance enhanced multi-photon ionization. Sharp resonances with widths of about 3 cm-1 are seen for DABCO-Rg n=1,2,3 (Rg is Ar, Kr or Xe), for the DABCO-DABCO dimer and for DABCO-DABCO-Ar. The origins of the rare-gas complexes are blue shifted with respect to the monomer origin. Broad features originating from DABCO-Rg n complexes with high n, appear to higher energies than the complex origins, with widths of 120 cm-1.

  14. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas.

    PubMed

    Teixeira, R Celistrino; Hermann-Avigliano, C; Nguyen, T L; Cantat-Moltrecht, T; Raimond, J M; Haroche, S; Gleyzes, S; Brune, M

    2015-07-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms. PMID:26182093

  15. Nonadiabatic alignment of van der Waals--force-bound argon dimers by femtosecond laser pulses

    SciTech Connect

    Wu, J.; Vredenborg, A.; Ulrich, B.; Schmidt, L. Ph. H.; Meckel, M.; Voss, S.; Sann, H.; Kim, H.; Jahnke, T.; Doerner, R.

    2011-06-15

    We demonstrated that the weak van der Waals-force-bound argon dimer can be nonadiabatically aligned by nonresonant femtosecond laser pulses, showing periodic alignment and anti-alignment revivals after the extinction of the laser pulse. Based on the measured nonadiabatic alignment trace, the rotational constant of the argon dimer ground state is determined to be B{sub 0}= 0.05756 {+-} 0.00004 cm{sup -1}. Noticeable alignment dependence of frustrated tunneling ionization and bond-softening induced dissociation of the argon dimer are observed.

  16. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Lin, Zhen; Zhang, Xiao; Yu, Xiang; Wei, Jiali; Wang, Xiaoping

    2014-05-01

    Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial-radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples.

  17. Thermally programmable gas storage and release in single crystals of an organic van der Waals host.

    PubMed

    Enright, Gary D; Udachin, Konstantin A; Moudrakovski, Igor L; Ripmeester, John A

    2003-08-20

    A single crystal of a low density form of guest-free p-tert-butylcalix[4]arene can take up and release small guest molecules by controlling the temperature and pressure without changing the structure. Using NMR spectroscopy with flowing hyperpolarized xenon, we have shown that at room temperature access of xenon to the pore system is difficult, whereas it is relatively easy at 100 degrees C. There are good prospects for simple van der Waals materials such as the title material to be used as programmable zeolite mimics. PMID:12914432

  18. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals

    NASA Astrophysics Data System (ADS)

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E.; Man, Michael K. L.; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M.

    2016-03-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures.

  19. Evidence for strong van der Waals type Rydberg-Rydberg interaction in a thermal vapor.

    PubMed

    Baluktsian, T; Huber, B; Löw, R; Pfau, T

    2013-03-22

    We present evidence for Rydberg-Rydberg interaction in a gas of rubidium atoms above room temperature. Rabi oscillations on the nanosecond time scale to different Rydberg states are investigated in a vapor cell experiment. Analyzing the atomic time evolution and comparing to a dephasing model, we find a scaling with the Rydberg quantum number n that is consistent with van der Waals interaction. Our results show that the interaction strength can be larger than the kinetic energy scale (Doppler width), which is the requirement for realization of thermal quantum devices in the GHz regime. PMID:25166800

  20. Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals.

    PubMed

    Deckoff-Jones, Skylar; Zhang, Jingjing; Petoukhoff, Christopher E; Man, Michael K L; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Talbayev, Diyar; Madéo, Julien; Dani, Keshav M

    2016-01-01

    Van der Waals materials, existing in a range of thicknesses from monolayer to bulk, allow for interplay between surface and bulk nonlinearities, which otherwise dominate only at atomically-thin or bulk extremes, respectively. Here, we observe an unexpected peak in intensity of the generated second harmonic signal versus the thickness of Indium Selenide crystals, in contrast to the quadratic increase expected from thin crystals. We explain this by interference effects between surface and bulk nonlinearities, which offer a new handle on engineering the nonlinear optical response of 2D materials and their heterostructures. PMID:26936437

  1. Families at risk: comment on Dirkzwager, Bramsen, Adèr, and van der Ploeg (2005).

    PubMed

    Fairbank, John A; Fairbank, Doreen W

    2005-06-01

    New findings from a study by A. J. E. Dirkzwager, I. Bramsen, H. Adèr, and H. M. van der Ploeg (2005; see record 2005-06518-006) provide important empirical information on the adverse psychological and functional adjustment of families of former Dutch peacekeepers suffering from posttraumatic stress disorder (PTSD). In this comment the authors consider a few methodological limitations and issues for future study, including the need for intergenerational studies of the legacy of peacekeeping-related PTSD. Attention to considering the treatment needs of families of traumatized former peacekeepers is encouraged. PMID:15982099

  2. Effects of zero van der Waals and zero electrostatic forces on droplet sedimentation

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Snyder, R. S.; Van Oss, C. J.; Absolom, D. R.; Neumann, A. W.

    1981-01-01

    The present investigation provides a confirmation of the dependence of droplet sedimentation on particle concentration. It is shown that it is possible to determine the maximum particle concentration which can remain stable on a given liquid from droplet sedimentation experiments. Droplet sedimentation can be reduced but not totally eliminated by the addition of appropriate amounts of dimethyl sulfoxide (DMSO) to reduce the van der Waals forces to zero. It was found that, at 12% DMSO, a maximum particle concentration of 6.3 x 10 to the 8th cells/ml of glutaraldehyde-fixed human erythrocytes suspended in physiological saline can remain stable on a D2O cushion.

  3. Ground-state van der Waals forces in planar multilayer magnetodielectrics

    SciTech Connect

    Buhmann, Stefan Yoshi; Welsch, Dirk-Gunnar; Kampf, Thomas

    2005-09-15

    Within the frame of lowest-order perturbation theory, the van der Waals potential of a ground-state atom placed within an arbitrary dispersing and absorbing magnetodielectric multilayer system is given. Examples of an atom situated in front of a magnetodielectric plate or between two such plates are studied in detail. Special emphasis is placed on the competing attractive and repulsive force components associated with the electric and magnetic matter properties, respectively, and conditions for the formation of repulsive potential walls are given. Both numerical and analytical results are presented.

  4. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  5. Hydrogenic Rydberg States of Molecular van der Waals Complexes: Resolved Rydberg Spectroscopy of DABCO-N2

    NASA Astrophysics Data System (ADS)

    Cockett, Martin C.; Watkins, Mark J.

    2004-01-01

    The complementary threshold ionization techniques of MATI and ZEKE spectroscopy have been used to reveal well-resolved, long-lived (>10 μs) hydrogenic Rydberg series (50≤n≤98) in a van der Waals complex formed between a polyatomic molecule and a diatomic molecule for the first time. The series are observed within 50 cm-1 of the adiabatic ionization threshold as well as two core-excited thresholds corresponding to excitation of up to two quanta in the van der Waals vibra­tional mode.

  6. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    PubMed Central

    Sediri, Haikel; Pierucci, Debora; Hajlaoui, Mahdi; Henck, Hugo; Patriarche, Gilles; Dappe, Yannick J.; Yuan, Sheng; Toury, Bérangère; Belkhou, Rachid; Silly, Mathieu G.; Sirotti, Fausto; Boutchich, Mohamed; Ouerghi, Abdelkarim

    2015-01-01

    Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene. PMID:26585245

  7. Excitons in one-dimensional van der Waals materials: Sb2S3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Filip, Marina R.; Giustino, Feliciano

    2015-09-01

    Antimony sulphide Sb2S3 has emerged as a promising material for a variety of energy applications ranging from solar cells to thermoelectrics and solid-state batteries. The most distinctive feature of Sb2S3 is its crystal structure, which consists of parallel 1-nm-wide ribbons held together by weak van der Waals forces. This structure clearly suggests that it should be possible to isolate individual Sb2S3 ribbons using micromechanical or liquid-phase exfoliation techniques. However, it is not clear yet how to identify the ribbons postexfoliation using standard optical probes. Using state-of-the-art first-principles calculations based on many-body perturbation theory, here we show that individual ribbons of Sb2S3 carry optical signatures clearly distinct from those of bulk Sb2S3 . In particular, we find a large blueshift of the optical absorption edge (from 1.38 to 2.30 eV) resulting from the interplay between a reduced screening and the formation of bound excitons. In addition, we observe a transition from an indirect band gap to a direct gap, suggesting an enhanced photoluminescence in the green. These unique fingerprints will enable extending the research on van der Waals materials to the case of one-dimensional chalchogenides.

  8. Transition metals-graphene interaction: the role of the screened van der Waals energy

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2015-03-01

    The interaction of graphene with transition metals is of particular interest for practical applications, which include for instance the efficient production of high-quality graphene. The accurate theoretical description of transition metals-graphene interfaces, however, is a particularly challenging problem due to the complex interplay between van der Waals (vdW) and hybridization effects. Here we apply the DFT/vdW-WF2s method, which allows to augment semi-local Density Functional Theory through the introduction of screened vdW interactions. Notably, we find that a reliable modeling of the van der Waals interaction should account for complex metal screening effects, that are due to the combined contributions of the p- and s-like quasi-free electrons, and the more localized d-states. The resulting geometry and energetic properties are in good agreement with experimental data and sophisticates theoretical calculations. Moreover, the Maximally Localized Wannier Functions underlying the DFT/vdW-WF2s method allow for an intuitive understanding of the complex binding mechanism.

  9. van der Waals Solids from Self-Assembled Nanoscale Building Blocks.

    PubMed

    Choi, Bonnie; Yu, Jaeeun; Paley, Daniel W; Trinh, M Tuan; Paley, Maria V; Karch, Jessica M; Crowther, Andrew C; Lee, Chul-Ho; Lalancette, Roger A; Zhu, Xiaoyang; Kim, Philip; Steigerwald, Michael L; Nuckolls, Colin; Roy, Xavier

    2016-02-10

    Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and transition metal dichalcogenides have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based two-dimensional (2D) layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Here we describe a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. The absorption spectrum of the bulk solid shows an optical gap of 390 ± 40 meV that is consistent with thermal activation energy obtained from electrical transport measurement. We find that the dimensional confinement of fullerenes significantly modulates the optical and electronic properties compared to the bulk solid. PMID:26829055

  10. Van der Waals free energy model for solubilization of oil in micelles.

    PubMed

    Troncoso, Americo Boza; Acosta, Edgar

    2015-01-21

    This work introduces the first of a two part thermodynamic framework to estimate the solubilization of nonpolar oils in micelles conformed by nonionic surfactants with linear alkyl tails, considering their configuration and the molecular properties of the constituents. This first part introduces a formal approach to account for the lipophilic (van der Waals) contributions to the free energy of solubilization in spherical micelles. To this end, this work uses two recently developed integration methods for sphere-shell and cone-shell VDW interactions that allow the calculation of surfactant-oil and surfactant-surfactant interactions that take place within the micelles of the solubilization process studied here. The method consists in calculating the free energy of transferring a normal alkane from its continuum, and surfactants monomers from empty micelles to produce an oil swollen micelle. The lipophilic interactions are estimated using the microscopic approach of Hamaker with Lifshitz-based Hamaker constants. The influence of n-alkane and surfactant tail length on the solubilization capacity predicted by the van der Walls free energy model (VDW-FEM) are consistent with experimental trends and it is also consistent with the lipophilic terms included in the semi-empirical Hydrophilic-Lipophilic-Difference + Net-Average-Curvature's (HLD-NAC) equation that predicts the phase behavior of microemulsions. As a result, these lipophilic terms can now be defined in terms of molecular interactions and molecular properties. PMID:25415662